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ABSTRACT
We consider the following problem: Given two sets of geometric
objects in 2D (points, lines, polygonal areas, and collections of
these), compute the set of object pairs for each of the spatial rela-
tions contains, covers, within, intersects, touches, crosses, and equals.
We provide an efficient algorithm together with a fully functional
implementation that is practical also for very large inputs. In par-
ticular, we can compute the self join of the 1.3 billion geometries
from the complete OpenStreetMap data (with a total result size of
52.1 billion triples) in 1.5 hours on a standard PC. This is more than
500 times faster than the widely used PostgreSQL+PostGIS. Beyond
our code, which is freely available on GitHub, we provide an exten-
sive empirical evaluation on a variety of datasets. In particular, we
investigate the effect of various speed-up heuristics and when and
why PostgreSQL+PostGIS is comparatively slow.
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1 INTRODUCTION
Many queries in geospatial databases involve computing the spatial
relation between geometric objects. For example, consider the fol-
lowing queries on the OpenStreetMap data, which as of this writing
contains around 1.3 billion geospatial objects:
All streets in Germany
All strees crossing a power line
All restaurants near a transit stop
Let us quickly explain how a typical geospatial database, like the
widely used PostgreSQL+PostGIS, processes such queries. As a
pre-computation, a geometric index is built, typically an R-tree
over all the geometric objects stored in the database. At query
time, this index is used to prune combinations of objects based on
their bounding boxes. For example, when the intersection of the
bounding box of a street and the bounding box of Germany is empty,
that pair cannot belong to any of the seven relations named in the
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abstract. For each of the remaining candidates, the exact geometric
relations have to be computed or inferred. For example, after the
described pruning via the geometric index, the first query above
leaves 19.2 million streets, for each of which we have to determine
whether they are fully covered by the shape of Germany.

In this paper, we are particularly interested in self joins. These
are queries of the following kind, where ST_Intersects can be any
of the seven spatial relations mentioned in the abstract:

SELECT * FROM objects A, objects B
WHERE ST_Intersects(A.geom , B.geom);

Such queries are interesting in three respects: (1) They are useful
in themselves in that they occur as typical queries or parts thereof.
(2) They tend to be the computationally hardest spatial joins, and
therefore serve as a natural performance benchmark for a spatial
database. (3) They can be used to precompute spatial relations, in
order to speed up queries involving spatial joins.1

Any algorithm for self joins can also be used for a join between
two non-identical sets: just compute the self-join of the union of
the two sets and keep only those pairs, where one object is from the
one set the other object is from the other. In our evaluation, we also
consider such spatial joins. We find that PostgreSQL+PostGIS is
reasonably efficient for spatial joins with relatively small candidate
sets or when most objects have simple geometries, but practically
unusable for self joins of large datasets with many complex geome-
tries. Our goal is to be efficient for all such spatial joins.

1.1 Problem Definition
We consider the problem of computing the spatial join between two
sets 𝑂1 and 𝑂2 of geometric objects in 2D.

Each object can be either a point, a polygonal line, an area that
is delineated by one or several polygonal lines2, or arbitrary col-
lections of these. Specifically, we assume that each object is given
as a pair of an ID (an arbitrary string, unique for that object) and a
Well-Known Text (WKT) string defining the geometry. For example,
the object for Freiburg Hbf could be given as: osmnode:21769883
POINT(7.8412948 47.9977308).

The goal is to compute all pairs (𝑜1, 𝑜2), with 𝑜1 ∈ 𝑂1 and
𝑜2 ∈ 𝑂2, from one of the following seven relations: contains, covers,
within, intersects, touches, crosses, and equals. Specifically, the output
is a list of triples, where each triple consists of a pair of IDs, and
a string describing their spatial relation. For example, the triple
expressing that Germany contains Freiburg Hbf could be output as:
osmrel:51477 contains osmnode:21769883. The details of the geomet-
ric relations are defined by the OGC in [9], which describes a 3 × 3
matrix of criteria defining geospatial relations (DE-9IM).
1For example, each of the first two example queries from the introduction can be
computed fast if the spatial relations intersects and covered are pre-computed.
2In particular, areas can consist of multiple rings, with holes, and then again areas
insides the holes, etc.
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The details of the input and output format are not important for
this paper. We just provide them here for the sake of concreteness
and because that is what our own tool uses.

1.2 Contributions
We consider the following as our main contributions:
• We provide an algorithm and a fully functional implementation
for computing the spatial join between two given sets of geomet-
ric objects in 2D, according to the definition above.

• Our implementation is very efficient. In particular, we can com-
pute the complete spatial self join of all the 1.3 billion geometric
objects from the complete OpenStreetMap data (with a total size
of 52.1 billion triples) in 1.5 hours on a standard PC.

• Our tool is open source and publicly available on GitHub, includ-
ing documentation and instructions for how to reproduce the
results from this paper.

• We provide an extensive evaluation on a variety of datasets. In
particular, we show that in a fair comparison (with equal re-
sources and optimal configuration for each) our code is over 500
times faster than the widely used PostgreSQL+PostGIS for self
joins such as the above.

• We investigate in detail the effect of various speed-up heuristics.
In particular, we explain why existing implementations like that
of PostgreSQL+PostGIS are so comparatively slow, despite using
similar core algorithms as we do.

2 RELATEDWORK
The typical way to perform a spatial join, whichwe also use, consists
of the following three phases: (1) retrieve all pairs of geometries,
called candidates, where the bounding boxes intersect; (2) option-
ally reduce the candidate set further, using heuristics; (3) for each
candidate, compute the exact value of the predicate. We will discuss
the related work for each of these phases.

2.1 Candidate Retrieval
A good overview on algorithms for candidate generation can be
found in the survey [10]. The survey focuses on intersection, whereas
we consider all of: contains, covers, within, intersects, touches, crosses,
and equals. The survey distinguishes between internal-memory
methods (like R-tree indexing and other hierarchical data struc-
tures) and external-memory methods (like sweep-line techniques).
The basic idea of sweep-line techniques is to sweep a vertical line
over all bounding boxes, in order of ascending x-coordinate, and
to maintain the set of rectangles that intersect the current sweep
line. The typical data structure for that set is an interval tree. This
technique can be used to determine whether a set of line segments
intersect at all in time O(𝑛 log𝑛) [16], and also to report all inter-
secting pairs in a set of axis-aligned rectangles [14]. Our approach
builds on the latter, and is described in detail in Section 3.1.

2.2 Candidate Set Reduction
Brinkhoff and Kriegel [5] propose a set of simple geometric ap-
proximations to reduce the candidate set, like the rotated minimum
bounding rectangle, the minimum bounding circle, or the convex
hull. Another way of approximating geometries is by overlaying a
grid over the geometric space and then representing a geometry

by the grid cells which it intersects. Azevedo et al. [2] present a
three-color covering, which for each geometry stores the set of
cells which it fully covers and the set of cells which it partially
covers. We describe and analyze a similar approach in Section 3.7.
Georgiadis and Mamoulis [8] use a four-color scheme with the
additional information whether a cell is covered more or less than
50%. They additionally enumerate the cells using the Hilbert curve,
which allows for efficient compression and intersection at the same
time. Google’s S2 library3 combines the Hilbert-curve approach
with a hierarchical grid that can be stored efficiently. S2 does not
use colors, but explicitly maintains an outer covering (a set of cells
which fully covers the geometry) as well as an inner covering (a
set of cells which is fully covered by the geometry).

2.3 Exact Predicate Evaluation
For exact predicate evaluation, we again rely on a sweep-line al-
gorithm. Bentley and Ottmann extend the algorithm by Shamos
and Hoey to report all intersections in a set of line segments [4]. In
this scenario, the algorithm cannot stop on the first intersection,
and line segments may change their order relative to the sweep
line at crossing points. To handle this, intersection points are added
as future events, which requires a dynamic event list. This is typi-
cally realized via a priority queue, which results in a running time
of O((𝑛 + 𝑘) · log𝑛), where 𝑘 is the number of reported intersec-
tions. An important special case of this problem is the red/blue
line-segment intersection problem, where two sets 𝐴 and 𝐵 of line
segments are given, with the property that no two lines from𝐴 and
no two lines from 𝐵 have intersecting interiors. Then the relative
order of the active segments in 𝐴 and in 𝐵 remains fixed during the
line sweep. Mairson and Stolfi [12] proposed an O(𝑛 · log𝑛 + 𝑘)
algorithm for this problem, which was later simplified by Chan [6].
We use an approach similar to Chan’s in Section 3.3.1.

2.4 Related Problems
Several works solve variations of our problem, by restricting the size
of the input, the type of geometries, or the set of supported spatial
predicates. Kipf et al [11] discuss the problem where a relatively
small and static set of polygons (e.g., the streets and buildings
of a city) are joined with a large set of points that are streamed
into the algorithm (for example the current position drivers and
potential passengers in a taxi app). They precompute an efficiently
compressed quadtree-based index which stores a hierarchical, cell-
based approximation of the polygons using Google’s S2 library. In
particular, they discuss applications where such an approximation
is sufficient and the exact predicate evaluation can be omitted.
Aghajarian et al. [1] use GPUs to solve the spatial join of polygons
efficiently. Their approach is limited to intersection and requires
that the complete input fits into the memory of the GPU. You et al.
[18] discuss the problem of polyline intersection on GPU clusters.

2.5 Tools and Software
PostGIS4 is a widely used extension for the PostgreSQL database
that allows spatial joins with all the predicates that we also sup-
port. It supports the precomputation of R-tree indices for columns

3https://s2geometry.io
4https://postgis.net/
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Figure 1: Reporting pairs of intersecting rectangles using a
sweep line approach. For two rectangles to intersect, a vertical
line must intersect both of them, We sweep such a line from
left to right, checking each position. The set of rectangles
intersecting 𝑠 only changes at the left or right 𝑥 coordinates
𝑥𝑙 and 𝑥𝑟 of rectangles.

with spatial data. When performing a spatial join, PostGIS only
uses these indices for one of the inputs, even if indices for both in-
puts are present or a self-join is performed. For the exact predicate
evaluations, PostGIS uses libgeos5, a widely used library for geo-
metric primitives. In Section 4, we compare our approach against
PostgreSQL+PostGIS.

HyPerSpace [13] is the geospatial extension of the in-memory
database HyPer ; unfortunately, the code is proprietary. HyPerSpace
relies on Google’s S2 for the efficient processing of geospatial
queries on datasets that change frequently.

OSCAR [3] allows specific spatial queries on the complete OSM
data, namely finding all OSM objects in a given set of OSM regions.
The core idea is to precompute a cell arrangement of all the given
polygons. Then the mentioned spatial queries reduce to computing
the intersection of lists of cell IDs. This approach can be considered
as a variant of the grid approaches discussed in Section 2.2, making
use of special properties of the OSM data (namely that the produced
cells are relatively few and of even size).

3 APPROACH
Our basic method consists of the following two steps: (1) Candidate
retrieval, which reports all geometries with intersecting bounding-
boxes, and (2) Full geometric checks between candidates. We will
first describe this baseline method, and gradually extend it with
varying heuristics. The goal of all our heuristics is to prevent an
expensive full geometric check between candidates. The effect of
our techniques will then be evaluated in Section 4.

3.1 Candidate Retrieval
For the candidate retrieval, we are essentially given a set of axis-
aligned bounding boxes 𝐵(𝐺) = ((𝑥𝑙

𝑖
, 𝑦𝑙

𝑖
), (𝑥𝑟

𝑖
, 𝑦𝑟

𝑖
)) for all geome-

tries𝐺 . Our goal is then to find all pairs of rectangles that intersect.
As described above, we use a sweep line approach to produce a
stream of candidate pairs (𝐺1,𝐺2).

The basic idea is that for two axis-aligned rectangles 𝐵(𝐺1) and
𝐵(𝐺2) to intersect, there must be a vertical line 𝑠𝑥 intersecting both.
We may thus sweep such a vertical line over the entire dataset and

5https://libgeos.org

retrieve at all 𝑥 positions the rectangles intersecting 𝑠𝑥 . For each
of these active rectangles, we then check whether their 𝑦-intervals
also overlap. The active set only changes at the 𝑥𝑙 and 𝑥𝑟 positions
of our rectangles. It is therefore sufficient to sweep along these 𝑥
values. Figure 1 gives an example.

In the standard sweep line approach, all 𝑥𝑙 and 𝑥𝑟 and their corre-
sponding object ID are stored as tuples (𝑥𝑙 , 𝑖, 𝐼𝑁 ) and (𝑥𝑟 , 𝑖,𝑂𝑈𝑇 )
in an event list 𝐸. Left 𝑥 coordinates are an 𝐼𝑁 event, right 𝑥 coordi-
nates are an𝑂𝑈𝑇 event. If we now sort 𝐸 by these 𝑥 coordinates, an
iteration over 𝐸 is equivalent to sweeping 𝑠 over the entire dataset,
but skipping positions where the state does not change. On 𝐼𝑁

events, we add the corresponding rectangle id to an active set 𝐴.
On 𝑂𝑈𝑇 event, we remove the id from 𝐴.

At each event, we must now check whether the corresponding
rectangle has an overlapping 𝑦-interval with any other rectangle in
𝐴. This can be done by using an interval tree for the active set. The
operations insert, delete, and lookup on such an interval tree can
be done in O(log𝑛). Finding overlapping 𝑦-intervals for a single
rectangle than takes time O(log𝑛 + 𝑘), where 𝑘 is the number of
overlapping intervals. This approach thus runs inO(|𝑂 |·(log 𝐼+𝑀)),
where𝑀 is the maximum number of rectangles intersecting a single
rectangle, and 𝐼 is the maximum size of 𝐴 at any time.

Note that 𝐸 can be easily held, sorted, and traversed on disk.
We thus only require memory for the active set and the interval
tree. For real-world input data, 𝐼 is usually small (for our evaluation
dataset OpenStreetMap, it was around 50,000).

3.2 Geometry Cache
Note that the candidate retrieval so far only delivered geometry IDs.
For further checks, we need the actual geometric objects. As storing
all full geometric objects in memory is unrealistic, we store them on
disk and load them on demand. To avoid excessive loading of very
large objects that are used very often in comparison (for example,
think of the polygon of an entire country), we use a straightforward
LRU cache. This has the effect that very large polygons requiring
many comparisons usually remain in the cache until they are no
longer required.

To further reduce both the I/O and the required disk space, we
distinguish 5 different geometric types: Points are stored as raw 64
bit integer coordinates (𝑥 and 𝑦 are 32 bits, respectively). Simple
Lines are lines with only 2 anchor points, these are stored as 2
raw 64 bit integer coordinates. Lines that aren’t simple are stored
as pre-sorted lists of segments (this will be used in Section 3.3),
together with their length, their bounding box and additional pre-
computed information used by our heuristics (see below). Simple
Areas are areas with less than 10 anchor points and without any
holes, these are stored as raw lists of their 64 bit integer coordinates.
Areas that aren’t simple are stored as pre-sorted lists of segments,
together with their holes (also pre-sorted), their bounding box, their
geometric area, and again additional pre-computed information
used by our heuristics. The basic idea of the distinction of “simple”
and “normal” geometries is that for the simple geometries, the
computation of the sorted list of segments, the bounding box and
the various informations used by our heuristics is cheaper to do on
the fly than loading it precomputed from disk.

https://libgeos.org
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Figure 2: Two polygons have either intersecting boundaries,
are disjoint, or one is completely contained in the other.

For our reference implementation, we used one cache per ge-
ometry type. The point cache had a maximum capacity of 1,000
objects (as it usually does not make much sense to keep points at
all), all other caches could hold 10,000 objects.

3.3 Full Geometry Comparisons
To decide whether a candidate pair really fulfills the geometric
relation, a full geometry comparison is necessary. We reduce all full
geometry comparisons to two basic operations: (1) given two sets
𝐿1 and 𝐿2 of line segments, retrieve the set 𝐶 ⊆ 𝐿1 × 𝐿2 of all line
segments that intersect each other, and (2) given a point 𝑃 and a
set 𝐿 of line segments, find out whether 𝑃 lies on any line segment
of 𝐿 or inside a closed polygon described by 𝐿.

It is easy to see that with these basic operations, we can decide
whether a point is inside a polygon (Operation 2), whether a point
intersects a line (Operation 2), or whether a line intersects another
line (Operation 1). To check whether a line 𝐿1 intersects a closed
polygon described by 𝐿2, we first use Operation 1 to decide whether
𝐿1 intersects the polygon boundary 𝐿2. If yes, we know that 𝐿1 in-
tersects 𝐿2. If not, we must exclude the case where 𝐿1 is completely
inside the polygon described by 𝐿2. This can be achieved by doing
Operation 2 for a single random point of any segment in 𝐿1. The
same approach can be used for deciding whether a polygon inter-
sects another polygon (see Figure 2 for an example). We note that
for more complex comparisons (touches, covers, overlaps, crosses),
a subsequent analysis of the intersecting line segments returned
from Operation 1 is necessary. We will describe this at the end of
this section.

Operation 2 is the standard point-in-polygon tests, which can
for example be solved in linear time by a ray casting algorithm [17].
We will describe Operation 1 in more detail below.

Note that we ignore polygons with inner rings (holes) here for
brevity, although our implementation supports them. In principle,
if a polygon with a hole is involved in a comparison, the inner
rings have to be compared separately to the other side, using the
same approach as described here. To avoid iterating over all inner
rings of polygons for each check (which might be problematic for
polygons with a large number of such inner rings), we store for
each polygon the bounding boxes of each inner ring, together with
a list of inner ring IDs sorted be the leftmost 𝑥-coordinate of the
ring. This enables us to quickly search for the first relevant inner
ring, and to discard them as irrelevant based on the bounding box.

3.3.1 Sweep Line Approach. The naive approach for Operation 1
is a pairwise intersection test between all pairs (𝑙1, 𝑙2) ∈ 𝐿1 × 𝐿2,
resulting in time O(|𝐿1 | |𝐿2 |). As mentioned above, a restricted
variant of Operation 1 is known as the red/blue segment intersection

5 10 15 20
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s5 s8
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s11

Figure 3: Sweeping over two sets of line segments (blue and
red) to find intersections between blue/red and red/blue pairs.
In this case, the line segments are polygon boundaries.

problem: in this variant, the interiors of all line segments in 𝐴

(and 𝐵 respectively) are not allowed to intersect (that is, interior
intersections are only allowed for pairs (𝑙1, 𝑙2) ∈ 𝐿1 × 𝐿2). This
restriction can be easily fulfilled in our case: we simply pre-process
all input geometries and add explicit anchor points at places where
line segments intersect.

We first insert all line segments from 𝐿1 and 𝐿2 into a merged
set 𝐿 and mark each line segment as originating either from 𝐿1
or 𝐿2. We assume that for a line segment 𝑙 = ((𝑥1, 𝑦1), (𝑥2, 𝑦2)),
it already holds that 𝑥1 ≤ 𝑥2 and use the more convenient nota-
tion ((𝑥𝑙 , 𝑦𝑙 ), (𝑥𝑟 , 𝑦𝑟 )). Next, we again build an event list 𝐸, into
which each line segment 𝑙 is inserted as two events: (𝑥𝑙 , 𝑜, 𝑙, 𝐼𝑁 )
and (𝑥𝑟 , 𝑜, 𝑙,𝑂𝑈𝑇 ), where 𝑜 ∈ 1, 2 states whether 𝑙 is from 𝐿1, or 𝐿2.
𝐸 is again sorted by the left and right 𝑥 coordinates.

As in the bounding box intersection case above, we require
an active set that at each sweep line position 𝑠𝑥 holds lines that
are currently intersecting 𝑠𝑥 , sorted by the 𝑦-coordinate of their
intersection with 𝑠𝑥 . For two line segments 𝑙 and 𝑘 , we say 𝑙 <𝑥 𝑘

if the 𝑦-coordinate of the intersection of 𝑠𝑥 with 𝑙 is smaller than
that of the intersection of 𝑠𝑥 with 𝑘 (we break ties in ambiguous
cases, for example of an endpoint of 𝑙 is exactly on 𝑘). We now
exploit the fact that no two line segments from 𝐿1, and no two
line segments from 𝐿2, have intersecting interiors. This means that
when sweeping over the set 𝐿 from left to right, the relation <𝑥

is constant for each pair 𝑙1, 𝑙 ′1 ∈ 𝐿2
1 , and each pair 𝑙2, 𝑙 ′2 ∈ 𝐿2

2 : no
two line segments from the same set can ever “switch sides”. We
can thus maintain two separate active sets 𝐴1 and 𝐴2, and keep
them correctly sorted according to <𝑥 using the following simple
ordering relation: if a segment𝑚 was added to 𝐴 before a segment
𝑛 (if 𝑥𝑚𝑙 < 𝑥𝑛𝑙 ), then 𝑛 < 𝑚 exactly then if 𝑥𝑛𝑙 is to the right of𝑚.
If 𝑥𝑚𝑙 > 𝑥𝑛𝑙 , then 𝑛 < 𝑚 exactly then if 𝑥𝑚𝑙 is to the left of 𝑛. If the
left endpoint of 𝑛 is on𝑚 (or vice versa), we use the right endpoint.
If the left endpoint of 𝑛 is exactly on the right endpoint of𝑚, we
break ties by always ordering 𝑛 < 𝑚. In our implementation, we
use a simple binary search tree (std::set) for 𝐴1 and 𝐴2. Figure 3
gives an example of such a line sweep.

Going over the event list 𝐸, we then have to consider the follow-
ing cases:

(1) On event (𝑥𝑙 , 𝑜, 𝑙, 𝐼𝑁 ): add 𝑥𝑙 to 𝐴𝑜 and search the other
active set 𝐴𝑜 for the line segments directly above and below
of 𝑥𝑙 (if they exist). In both directions, check whether 𝑥𝑙
intersects with them and report if they do (e.g. at 𝑠5 an 𝑠8 in
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Figure 4: Using local segment intersections to decide global geometric relationships. (1): Trivial cases where a local intersection
analysis is enough to decide global relationships. For example, 𝑎 touches 𝑏 locally, and 𝐴 also touches 𝐵. 𝑒 locally crosses into 𝐹 ,
and 𝐸 also is inside 𝐹 . (2): Cases where local analysis is not enough: segment 𝑏 both locally overlaps segments 𝑎 and 𝑎′, but line
𝐴 covers line 𝐵. For 𝐶 and 𝐷 , we would locally decide that 𝐶 and 𝐷 touch, although they cross. 𝑒 is right of 𝑓 , but does not lie
inside 𝐹 , as another segment restricts the interior. (3) For each segmen, we store the outgoing angles of all adjacent segments.
Then we can locally decide that 𝑒 does indeed no cross into 𝐹 by comparing 𝛼 to 𝛾 . (4) Similarly, we can now decide that based
on the comparison 𝑎 vs. 𝑏, 𝑏 does not overlap 𝐴, as the outgoing angle of the adjacent segment is exactly 180◦. For 𝐶 and 𝐷 , the
presence of an outgoing angle at the intersections of 𝑑 and 𝑐 makes it clear that the local touch of 𝑑 and 𝑐 is not a global touch.

Figure 3). If there is an intersection in one direction (as is the
case at 𝑠11 in Figure 3), continue traversing and checking𝐴𝑜

in this direction until the first non-intersecting line segment
is encountered. Note that the total number of these checks
is bounded by 𝑂 (𝑘), where 𝑘 is the maximum number of
intersections.

(2) On (𝑥𝑙 , 𝑜, 𝑙,𝑂𝑈𝑇 ): remove 𝑥𝑙 from 𝐴𝑜 . Note that 𝑥𝑙 might
have been a “blocker” masking an intersection between a
line segment from 𝐴𝑜 directly below 𝑥𝑙 and a line segment
from𝐴𝑜 directly above 𝑥𝑙 (or vice versa). This is for example
the case at 𝑠9 in Figure 3). We check all lines below 𝑥𝑙 in 𝐴𝑜

and all lines above 𝑥𝑙 in 𝐴𝑜 for pairwise intersections (and
vice versa), again stopping in either direction as soon as we
cannot find any more intersections. Again, the total number
of these checks is bounded by 𝑂 (𝑘).

Sorting the event lists takes time O(|𝐿 | log |𝐿 |), and sweeping
over the events takes time O(|𝐿 | log max( |𝐿1 |, |𝐿2 |)+𝑘), resulting in
a total running time of O(|𝐿 | log |𝐿 | +𝑘). Note that 𝑘 ∈ O(|𝐿1 | · |𝐿2 |).

3.3.2 Pre-Sorting Geometries. An important advantage of this ap-
proach is that we can directly store and pre-sort the event lists 𝐸1
and 𝐸2 for 𝐿1 and 𝐿2. For reporting the intersections between 𝐿1
and 𝐿2, we then do not have to materialize and sort the combined
event list 𝐸: it is enough to iterate over the pre-sorted event lists
𝐸1 and 𝐸2 in a “zipper”-like fashion, producing the sorted event list
𝐸 on the fly. (Another minor side effect is that we do not have to
mark each event as originating from either 𝐿1 or 𝐿2.)

It is important to understandwhy this is relevant for our practical
performance: theoretically, the difference between the bare sweep
complexity O(|𝐿 | log max( |𝐿1 |, |𝐿2 |) + 𝑘) and the total (including
sorting) complexity O(|𝐿 | log |𝐿 | + 𝑘) does not appear to be very
significant. However, the O(log max( |𝐿1 |, |𝐿2 |)) part comes from
the lookup operations in the binary search trees holding the active
sets. In practice, these sets are extremely small - for a convex poly-
gon, they contain at most 2 segments, and in our testing datasets,
the active set was typically smaller than 10. Also note that we have
to do 𝑘 = |𝐿1 | · |𝐿2 | additional iterations of the binary search tree
in up and down direction only in the worst case - typically, 𝑘 is

very small. Even more importantly, the number of additional tra-
versals per sweep line event is usually upper-bounded by a very
small maximum size of the active sets. For almost all comparisons
in our testing datasets, the sweeping could thus be assumed to run
in linear time (and it strictly runs in linear time for comparisons
between convex geometries), while the sorting of the merged event
list 𝐸 would have still required O(|𝐿 | log |𝐿 |) time. Additionally, we
save the copying of 𝐸1 and 𝐸2 into a sorted merged list 𝐸. This is
highly relevant in our scenario because we typically have millions
of comparisons involving the same geometry - for example, in our
testing dataset of the entire German OpenStreetMap data, we re-
quire (without any heuristic) a geometric check of all ∼ 84𝑀 houses
in Germany against the geometry of Germany itself. Without the
pre-sorting, we would have to sort the line segments constituting
the German border 84 million times.

3.3.3 Analyzing Line Segment Intersections. If any two line seg-
ments 𝑙1 and 𝑙2 intersect, we would like to know the following: (1)
do their geometries only touch at exterior bounds, or do they cross
each other? (2) do they overlap? For checks against a part of a poly-
gon boundary 𝑙2, we would additionally like to know whether (3) 𝑙1
lies on the inside our the outside of the polygon. This would enable
us to compute all relations considered in this work (and to also fill
the DE-9IM matrix) between the corresponding geometric objects
(note that the case where no line segments intersect is trivial: either
the corresponding geometries are disjoint, or one of the geometries
is a polygon and completely contains the other).

Checking this seems straightforward: (1) and (2) are easy to
check, and (3) is a matter of storing the polygon boundary 𝑙 in
its original clockwise orientation, in which case any intersecting
line segment crossing to the right of 𝑙 is on the “inside” side of the
segment, and any line segment crossing to the left on the “outside”
side. Figure 4.1 give examples. However, consider Figure 4.2. Here,
we would for example decide that 𝑓 crosses into the interior of
the polygon corresponding to 𝑓 - but this is not actually the case,
as a neighboring line segment further restricts the interior of the
polygon. A similar problem can be seen between𝐶 and 𝐷 : here, we
would locally decide that two lines touch each other, while in reality
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Figure 5: Comparing a large geometric 𝐵 object to a smaller
object 𝐴. In the list of sorted segments of 𝐵, we can skip all
segments with 𝑥𝑙 < 𝑥1 − 𝑑𝑥 using a simple binary search.
When we reach a segment of 𝐵 with 𝑥𝑙 > 𝑥2, we abort.
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Figure 6: Checking whether a single random point of 𝐴 is in
𝐵 using raycasting with a ray (𝑥,−∞) to (𝑥,𝑦). We can again
search for the first segment of 𝐵 with with 𝑥𝑙 >= 𝑥 − 𝑑𝑥

they cross each other. To handle these problems, we additionally
store for each line segment the left and right outgoing angle of
the adjacent line segment as a lookahead. If the segment was the
last (or first) segment of a line, we use a special placeholder value
indicating "no adjacent segment". We can then avoid false local
reporting by comparing angles, as shown in Figures 4.3 and 4.4.

3.4 Skipping Irrelevant Segments
The pre-sorting of line segments by their left 𝑥-coordinate enables
other speed up heuristics. Consider Figure 5. It is easy to see that
all line segments of 𝐵 that end to the left of 𝐴 are completely
irrelevant for the sweepline process - they will have left the active
set of 𝐵 before any segment of 𝐴 will become active. We may thus
skip them completely by iterating to the first segment which is
actually relevant for our process. If there are 𝑛 segments to the
left of 𝐴, this still requires iterating over 𝑛 segments. As the list of
segments is sorted, we would like to apply a simple binary search
to get the number of iterations down to O(log𝑛). But we cannot
simply search for the first segment of 𝐵 which ends after the first
segment of 𝐴: the segments are sorted by the left 𝑥-coordinate. To
nevertheless apply a binary search, we store for each geometric
object the longest covered 𝑥-interval 𝑑𝑥 . Let 𝑥𝑎 be the leftmost 𝑥-
coordinate of 𝐴. Using binary search, we can then quickly search
for the first segment of 𝐵 with 𝑥𝑙 >= 𝑥𝑎 −𝑑𝐵𝑥 . We can also trivially
abort our sweep line process as soon as we are past the rightmost
segment of 𝐴, effectively restricting our sweep line process to a
narrow band around 𝐴.

Note that the same technique can be used to speed up the point-
in-polygon tests (Operation 2). Consider Figure 6. The standard
ray-casting algorithm iterates over all line segments and checks for
an intersection between a line going from infinity to 𝑃 = (𝑥,𝑦). If

we chose this line to go from (𝑥,−∞) to (𝑥,𝑦), we again can use a
binary search to find the first segment of 𝐵 with 𝑥𝑙 >= 𝑥−𝑑𝐵𝑥 . If we
then check the line segments for intersections with ((𝑥,−∞), (𝑥,𝑦))
in their sorted order, we can again abort as soon as the first segment
of 𝐵 with 𝑥𝑙 > 𝑥 appears.

3.5 Surface Area Precomputation
Recall that Operation 2 (Point-in-Polygon check) is required to
differentiate between two cases after we have established that the
segments of a geometry 𝐴 and a polygon 𝐵 do not intersect: (1) 𝐴
is completely contained in 𝐵, or (2) 𝐴 and 𝐵 are disjoint. If both
𝐴 and 𝐵 are polygons, we have to both check if 𝐴 is in 𝐵, and (if
not), if 𝐵 is in 𝐴. A simple preprocessing step to avoid one of these
checks is to compute the surface area of all input polygons. Then,
if the surface area of polygon 𝐴 is smaller than the surface area of
polygon 𝐵, we can already be certain that 𝐴 cannot contain 𝐵.

3.6 Approximate Geometries
The techniques described so far aim to improve the performance
of raw geometry comparisons. The reminder of this section will
discuss heuristics to avoid such comparisons between full input
geometries. Our techniques can be broadly classified into two cate-
gories: (1) approximate geometries, which are then again geometri-
cally compared, and (2) a decomposition of input geometries using
a static cell grid, which can then be used to decide some geometric
relations without any geometric comparisons. We will first give a
list of the simplified geometries used in our evaluation.

3.6.1 Diagonal Bounding Box. A bounding box simplification is
already used in the geospatial index. This may be further refined by
also computing diagonal bounding boxes - that is, the axis-aligned
bounding box after the coordinate system has been rotated by 45◦.
The fixed orientation enables us to check for intersections using
standard intersection tests for axis-aligned rectangles. Additionally,
the boxes can be stored using only 2 coordinates. We store them
directly in the event list for the candidate retrieval described in
Section 3.1 (all other precomputations are stored in the cache). This
heuristic may thus completely bypass the geometry cache.

3.6.2 Oriented Bounding Box. To improve on the diagonal bound-
ing box, while still keeping the number of anchor points at only 4,
we additionally precompute the oriented bounding box (OBB) of
each polygon in𝑂 and use this OBB to quickly decide whether two
geometries are disjoint.

3.6.3 Inner and Outer Ramer-Douglas-Peucker. To further improve
the approximation, and to also allow us to quickly make positive
contains or intersect decision based on the simplified geometries,
we also precompute for each polygon 𝐴 two approximations: a
simplified outer polygon outer(𝐴), and a simplified inner polygon
inner(𝐴). It obviously holds that 𝐵 ⊆ inner(𝐴) ⇒ 𝐵 ⊂ 𝐴 and
𝐵 ⊄ outer(𝐴) ⇒ 𝐵 ⊄ 𝐴, and also 𝐺 ∩ inner(𝐴) ≠ ∅ ⇒ 𝐺 ∩𝐴 ≠ ∅
and 𝐺 ∩ outer(𝐴) = ∅ ⇒ 𝐺 ∩𝐴 = ∅.

To compute outer(𝐴) and inner(𝐵), we modify the classic Ramer-
Douglas-Peucker (RDP) algorithm for line simplification [7, 15].
Given a line 𝐿 as an ordered list of anchor points, RDP takes an
anchor point pair (𝑝,𝑢) (starting with the first and last point of
𝐿) and finds the point 𝑞 between them with the largest distance
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Figure 7: Using inner and outer simplified geometries for
faster geometry comparison. If 𝐵 is contained in the inner
geometry, it is surely contained in 𝐴. If 𝐸 is not contained in
the outer geometry, it is surely disjoint with 𝐴.

𝑑 = dist(𝑞, 𝑝,𝑢) to the line segment 𝑝𝑢. If 𝑑 is smaller than a sim-
plification threshold 𝜖 , all points between 𝑝 and 𝑢 are discarded.
If 𝑑 > 𝜖 , 𝑞 is kept, and the process recursively continues for (𝑝, 𝑞)
and (𝑞,𝑢).

Given a polygon 𝐴 as a closed list of anchor points (𝑝1, . . . , 𝑝𝑛),
we simplify the lines given by (𝑝1, . . . , 𝑝 ⌊𝑛/2⌋ ) and (𝑝 ⌊𝑛/2⌋+1, . . . , 𝑝𝑛)
separately and later join the resulting simplified lines again. As a
simplification criteria for RDP, we use the signed distance function

dist(𝑞, 𝑝,𝑢) =
(𝑥𝑢 − 𝑥𝑝 ) (𝑦𝑝 − 𝑦𝑞) − (𝑥𝑝 − 𝑥𝑞) (𝑦𝑢 − 𝑦𝑝 )√︃

(𝑥𝑢 − 𝑥𝑝 )2 = (𝑦𝑢 − 𝑦𝑝 )2
(1)

for a point𝑞 = (𝑥𝑞, 𝑦𝑞) and a line segment described by 𝑝 = (𝑥𝑝 , 𝑦𝑝 )
and 𝑞 = (𝑥𝑞, 𝑦𝑞).

For the inner polygon, we keep 𝑞 if 0 < dist(𝑞, 𝑝,𝑢) < 𝜖 . For the
outer polygon, we keep 𝑞 if 0 < −dist(𝑞, 𝑝,𝑢) < 𝜖 .

Note that for non-convex polygons, discarding a point to the
right of a straight line segment does not necessarily mean that
the resulting line segment is inside the original polygon. Similarly,
discarding a point to the left does not mean that the resulting line
segment is outside of the polygon. A simply mitigation strategy
is to check a posteriori whether 𝑖𝑛𝑛𝑒𝑟 (𝐴) is really contained in 𝐴,
and to discard 𝑖𝑛𝑛𝑒𝑟 (𝐴) otherwise. Similarly, if 𝐴 is not contained
in 𝑜𝑢𝑡𝑒𝑟 (𝐴), discard 𝑜𝑢𝑡𝑒𝑟 (𝐴).

During our experiments, we found that selecting a fixed simpli-
fication parameter for the inner and outer simplified polygons is
problematic. Small simplification parameters will lead to little to no
gains for large polygons. For smaller polygons, large simplification
parameters will usually result in empty inner geometries, and an
outer geometry that is equivalent to the convex hull. We settled
on the following dynamic parameter: 𝜖 (𝐴) = 𝛼

√︁
area(𝐴)/𝜋 . This

bases 𝜖 (𝐴) directly on the (weighted) radius of a hypothetical circle
with the same surface area as 𝐴. We set the weight 𝛼 = 10.

3.7 Intersecting Cell IDs
So far, the speed-up techniques still relied on geometric compar-
isons. This section describes a technique which allows to quickly
decide whether a geometry𝐺 is definitely contained in a polygon 𝑃 ,
whether it is definitely not contained in 𝑃 , or whether it might be
contained, without doing any geometric calculation (apart from the
preprocessing). This technique is based on a grid covering the input
dataset. The grid cells are continuously numbered from east to west,
and north to south. We have found this approach to be more effi-
cient than the more sophisticated hierarchical cell-covering from
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Figure 8: A static grid covering the bounding box of the entire
dataset, with numbered cells. If a geometric object intersects
a cell, it is added with a negative sign to its list of cell IDs.
If a cell is completely contained in a polygon, the cell ID is
added with a positive sign.

Google’s S2 library (see section 2.5), mostly because of the more
expensive precomputation of the covering in S2.

3.7.1 Collecting Cell IDs. In a preprocessing step, we first compute
for each polygon 𝑃 the set 𝐴+ of grid cells completely covered by
𝑃 and the set 𝐴− of grid cells only intersecting 𝑃 . We define 𝐴 =

𝐴+ ∪𝐴− . The cells are represented by their integer id. Second, we
compute for each line 𝐿 the set𝐴− which holds all cells intersecting
𝐿 (note that 𝐴+ is naturally empty for lines). Note that we do not
have to precompute cell IDs for points, as we can easily determine
them on the fly. For notational convenience, we nevertheless also
define a set 𝐴− for points (it contains a single cell ID).

3.7.2 Geometric Contains and Intersect via Efficient List Intersection.
Consider now for example two polygons 𝑃1 and 𝑃2 and their cell
ID sets 𝐴+

1 , 𝐴
−
1 , 𝐴

+
2 , and 𝐴

−
2 . If |𝐴1 ∩ 𝐴+

2 | = |𝐴1 |, then 𝑃1 is surely
completely contained in 𝑃2. If |𝐴1 ∩𝐴2 | = |𝐴1 |, but |𝐴1 ∩𝐴−

2 ) | ≠ 0,
𝑃1 might be contained in 𝑃2, requiring o a full predicate check.

Given two pair of cell ID sets (𝐴+
1 , 𝐴

−
1 ) and (𝐴+

2 , 𝐴
−
2 ) for two

polygons 𝑃1 and 𝑃2. To capture the relations exemplified above,
we determine the following measures: (1) 𝐼◦+ = |𝐴1 ∩ 𝐴+

2 |, (2)
𝐼+− = |𝐴+

1 ∩𝐴
−
2 |, and (3) 𝐼−− = |𝐴−

1 ∩𝐴−
2 |. Table 1 gives an overview

of how these numbers relate to geometric relations between pairs
of geometries.

To compute these measures in a single pass, we combine 𝐴+

and 𝐴− in a list 𝐿 = (𝑐1, . . . , 𝑐𝑛) in which cell IDs from 𝐴+ are
stored unchanged, and cell IDs from 𝐴− are stored with a negative
sign. 𝐿 is then sorted by |𝑐𝑖 |. Computing 𝐼◦+, 𝐼+− and 𝐼−− is then
a list intersection problem between the two list 𝐿1 and 𝐿2, sorted
by the (absolute!) values of their cell IDs. We compute this with an
exponential search approach.

3.7.3 Efficient Calculation and Storage of Cell ID Lists. A naive
calculation of the cell ID sets (𝐴+, 𝐴−) for a polygon 𝑃 would collect
each cell 𝑐 which intersects the bounding box of 𝑃 , and check
whether 𝑐 is fully contained in 𝑃 , or only intersects 𝑃 . This would
require a number of box-in-polygon checks which depends on the
surface area of 𝑃 , and might thus be quadratic in the worst case.
To mitigate this, we scan 𝑃 in a quadtree-like fashion. Let 𝑤 be
the side length of a grid cell, and let𝑊 and 𝐻 be the width and
height of the bounding box of 𝑝 . We call grid cells of side length
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Table 1: Relations between cell ID intersection measures and
geometric comparisons. For each decision "yes" or "no", one
of the conditions must be met. A — means that no decision is
possible. No match requires a full predicate check.

yes no

intersects 𝐼◦+ + 𝐼+− > 0 𝐼◦+ + 𝐼+− + 𝐼−− = 0
contains 𝐼◦+ = |𝐴1 | 𝐼◦+ + 𝐼+− + 𝐼−− ≠ |𝐴1 |
covers 𝐼◦+ = |𝐴1 | 𝐼◦+ + 𝐼+− + 𝐼−− ≠ |𝐴1 |

touches
{

— 𝐼◦+ + 𝐼+− + 𝐼−− = 0
𝐼◦+ > 0

overlaps 0 < 𝐼◦+ > |𝐴1 | 𝐼◦+ + 𝐼+− + 𝐼−− = 0
crosses — 𝐼◦+ + 𝐼+− + 𝐼−− = 0

L

L

334

231

P

a334

a231

Figure 9: A line 𝐿 and a polygon 𝑃 sharing a single common
cell ID (334), but the cell is not contained in 𝑃 . To avoid a full
geometry check between 𝐿 and 𝑃 , we store an offset to the
first line segment of 𝑃 in each cell.

𝑤 a base cell. Instead of scanning 𝑃 with many small cells of width
and height𝑤 , we begin with cells of width ⌈𝑊 /𝑤⌉/4 ·𝑤 and height
⌈𝐻/𝑤⌉/4 ·𝑤 . These larger probe cells are grid-aligned. Each of them
exactly contains ⌈𝑊 /𝑤⌉/4 · ⌈𝐻/𝑤⌉/4 base cells. Let 𝑑 be such a cell.
Then, if 𝑑 is fully contained in 𝑃 , we add all contained base cells to
𝐴+ and continue to the next cell. If 𝑑 does not intersect with 𝑃 , we
skip it completely. If 𝑑 intersects with 𝑃 , but is not contained, we
partition it into 4 smaller cells and check 𝑃 against these cells. This
process continues recursively. If 𝑑 is a base cell, the recursion stops,
and we add the corresponding base cell to 𝐴− .

To avoid excessive memory consumption of the cell ID lists, we
additionally use a simple running length encoding. Note that if a
fully contained probe cell contains𝑛 ·𝑚 base cells, it is then sufficient
to simple add the cell with the lowest 𝑥 value and a running length
of 𝑛 for each of the𝑚 rows.

3.8 Geometry Cutouts
We would also like to leverage the box IDs in cases where full
geometric checks are still required. Consider Figure 9. If we know
that line 𝐿 and some polygon 𝑃 only share a single cell ID (which
𝑃 does not completely contain), it would be enough to check 𝐿

against the part of 𝑃 that is inside the cell. A naive way to allow
such checks would be to store the geometric intersection between
each non-contained cell and 𝑃 , and to then check 𝐿 only against
the “cutout” geometry of the shared cell. See Figure 9, right for an
example. However, storing these cutouts is expensive. A better way
would be to store the segment intervals that lie inside each cell

Table 2: Number of geometries in our four datasets, number
of candidates for the self join, and total number of result
pairs of all seven predicates.

points lines polygons #candidates #results

OHM 5.2M 1.8M 1.2M 311M 734M
FIN 1.5M 3.2M 4.2M 211M 351 B
GER 18.4M 18.5M 46.4M 2.4 B 4.1 B
OSM 235M 293M 721M 34.4 B 52.1 B

(in the example of Figure 9, one such interval would be required
for box 231, and 2 intervals for box 334. Recall, however, that we
store all geometries as lists of line segments, ordered by their left
𝑥-coordinate. The consecutive line segments inside a cell are not
necessarily consecutive if sorted in this way. To nevertheless use
a variant of these storage-friendly cutouts in our experiments, we
store for each cell 𝑐 a single offset to the first line segment that
intersects 𝑐 . In the example of Figure 9, we can then directly jump
to the first line segment of 𝑃 in cell 334 and start the the sweep line
process there.

4 EXPERIMENTAL EVALUATION
We have implemented the approach described in Section 3 as a
command-line tool called spatialjoin. It inputs two sets of geome-
tries 𝑂1 and 𝑂2 and outputs a set of triples with all the geometric
relations, as defined in Section 1.1. Specifically, the input is a single
TSV file with one line per geometry and three columns: a unique ID
for the geometry, an index indicating two which of the to input sets
the geometry belongs (0 for𝑂1 and 1 for𝑂2), and a WKT represen-
tation of the geometry. The output is one line per triple. The code
is publicly available on https://github.com/ad-freiburg/spatialjoin.

4.1 Setup
All our experiments were run on the same machine, with an AMD
Ryzen 9 7950X processor with 16 physical and 32 virtual cores,
128 GB of RAM (DDR5), and 7.7 TB of disk space (NVMe SSD),
running Ubuntu 22.04. For the PostgreSQL experiments, we use
version 16.3 (with PostGIS version 3.4.2). For all its spatial joins,
PostgreSQL uses one thread per index scan and one thread for the
exact predicate evalatuations. For a fair comparison, we therefore
run our tool with option –num-threads 2, which has the same effect.
For the self-comparison of our tool with variants of itself or on
different datasets, we use all the cores the machine provides.

4.2 Evaluation of Our Approach and Heuristics
We first evaluate the performance of our tool on self joins, the most
expensive kinds of joins. In particular, we investigate the effect of
the various heuristics for reducing the candidate set described in
Section 3. We always compute the pairs for all seven predicates:
contains, covers, within, intersects, touches, crosses, and equals.

We consider four datasets: all geometries from OpenStreetMap
(OSM), the subset that lies in Germany (GER), the subset that lies
in Finland (FIN), and all the geometries from OpenHistoricalMap
(OHM). The dimensions of these datasets are shown in Table 2. FIN
and OHM are of roughly the same size, but have very different

https://github.com/ad-freiburg/spatialjoin
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Table 3: Total time (in minutes) for computing the self-join with our tool, on each of our four datasets, for the seven heuristic
settings described in Section 4.2. The speedup is relative to the setting shown in the last column.

OHM FIN GER OSM

heuristics time speedup time speedup time speedup time speedup relative to

bcsdoi 19.7 min 0.8 min 11.3 min 862 min
Bcsdoi 12.6 min 1.57 × 0.6 min 1.24 × 7.0 min 1.61 × 105 min 8.20 × bcsdoi
BCsdoi 12.8 min 0.99 × 0.6 min 0.97 × 6.8 min 1.04 × 104 min 1.01 × Bcsdoi
BCSdoi 12.9 min 0.99 × 0.7 min 0.97 × 6.8 min 1.00 × 107 min 0.97 × BCsdoi
BCSDoi 12.8 min 1.00 × 0.6 min 1.07 × 5.8 min 1.17 × 94 min 1.14 × BCSdoi
BCSdOi 12.7 min 1.01 × 0.7 min 0.98 × 6.8 min 0.99 × 105 min 1.01 × BCSdoi
BCSdoI 13.8 min 0.93 × 0.7 min 1.01 × 6.6 min 1.02 × 107 min 0.99 × BCSdoi

characteristics: OHM has many similar regions, which makes self-
joins significantly harder (because no heuristic we know of can
filter out a pair of two very similar objects).

For each dataset, we evaluated the effect of each of our seven
heuristics from Section 3:

B cell IDs, also called box IDs (Section 3.7)
C cutouts (Section 3.8)
S precomputed surface area (Section 3.5)
D diagonal bounding box (Section 3.6.1)
O oriented bounding box (Section 3.6.2)
I inner/outer simplified geometries (Section 3.6.3)

Each of these six heuristics can be switched on or off. We evaluated
all of the resulting 64 combinations.We found that all the significant
effects can be observed via the relative speed-ups of these seven
combinations: bcsdoi, Bcsdoi, BCsdoi, BCSdoi, BCSDoi, BCSdOi,
BCSdoI. Each combination is represented by a six-letter string,
where an uppercase letter means that the heuristic is enabled, and
a lowercase letter means that the heuristic is disabled. The first
combination is the baseline, with all heuristics disabled. The next
three combinations successively add one of the heuristics B, C, and S.
The last three combinations add either of the three approximation
heuristics D, O, or I from Section 3.6.

Table 3 reports the total running time of our tool for self joins
of each of the four datasets and for each of the seven combinations.
The most effective heuristic is the cell IDs, especially for the very
large OSM dataset. This is understandable as cell IDs are particularly
effective when they save an exact predicate evaluation between a
small geometry (like a building) and a large geometry (like a whole
city). The effect is larger for OHM than for FIN (despite their similar
size) because OHM has many more points and fewer polygons;
see Table 2. The second most effective heuristic are the diagonal
bounding boxes. Of the three approximate-geometry heuristics,
they yield the best trade-off between quality of approximation, cost
of computation, and storage cost. As the diagonal bounding boxes
are stored directly in the event list of the sweep, they also avoid
costly geometry cache loads for candidate false positives. They
don’t improve performance relative to the cell IDs for OHM, which
has many polygons that differ only slightly at the boundary; then
no heuristic can save the expensive predicate evaluations.

The effect of C was marginal. The S heuristic gave hardly any
speedup at all. We found that the main reason for this is because
the single point-in-polygon test that it saves is very cheap.

The effect of adding the inner/outer geometries (I) was also
insignificant. We assume that this is mainly because of two effects:
(1) the bounding box and diagonal bounding box filter during the
candidate reterieval form an implicit simplified outer polygon that
is often very close to the outer simplified geometry, and (2) the
cases where I would have been effective are exactly the cases
where the cell IDs (C) are effective - comparisons between very
large and very small geometries. Also note that for geometries
that are nearly equivalent, I adds an additional geometric test
between the simplified geometries, but will have no filtering effect.
This additional but ineffective work is noticable and explains the
significantly slower running times with I on the OHM dataset.

4.3 Comparison to PostgreSQL+PostGIS
We compare the running time of our tool to PostgreSQL (with the
PostGIS extension, which gives PostgreSQL its spatial-join capa-
bilities). We consider both self joins and other spatial joins. For
PostgreSQL, we load each dataset into a separate table and build a
spatial index over the geometry column. We do not measure the
time this takes for PostgreSQL, and for a fair comparison, we also
do not measure the corresponding time our tool takes (whereas
in Section 4.2 we consider the total time, including the parsing of
the input file). For all queries, we separately measured the time for
only the candidate generation (in PostgreSQL this can be achieved
via the && operator, our tool has an option –no-geometry-checks
for this) and the time for computing the full spatial join (including
the time for the candidate generation). For PostgreSQL, we use the
ST_Intersects predicate while our tool always computes all of the
spatial predicates. We also tried the other predicates for PostgreSQL,
but found them to be impractically slow.

4.3.1 Self joins. Table 4 shows how our tool compares with Post-
greSQL regarding self joins. As explained in Section 4.1, we ran
our tool with option –num-threads 2 for a fair comparison with
PostgreSQL; the running times are therefore slower than those
in Table 3. We used the best combination of heuristics, which is
BCSDoi. We see an enormous difference in running time. While our
tool can compute the self-join even for the huge OSM dataset (with
1.3 B geometries, see Table 2) in less than 10 hours, PostgreSQL
does not finish within 10 hours (after which we aborted it) even for
the small FIN dataset (with 8.9 M geometries). Because of this large
discrepancy, we also ran PostgreSQL on an even smaller dataset (all
OSM geometries in Berlin, with 2.1 M geometries), where it took
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Table 4: Comparison of our tool with PostgreSQL for self
joins, on all four datasets. The table shows both the total
computation time and the time for candidate generation
(which was measured separately). If the computation was
not finished after 10 hours, it was aborted.

PostgreSQL Ours

candidates intersects candidates all predicates

OHM 10.7 min > 10 h 5.9 s 41.7 min
FIN 27.0 min > 10 h 6.8 s 30.6 s
GER > 10 h > 10 h 1.7 min 21.0 min
OSM > 10 h > 10 h 25.1 min 9.2 h

6.4 hours to compute the self join, versus 42 seconds for our tool
(which is more than 500 times faster). The table also shows the time
used for the candidate generation. For the two smallest datasets
(OHM and FIN), PostgreSQL can compute the candidate set in less
than an hour, but still two orders of magnitude slower than our
tool. For the two larger datasets, even candidate generation is out of
reach for PostgreSQL in a reasonable time. This shows that for self
joins, both candidate generation and exact predicate evaluation are
a bottleneck for PostgreSQL, though the bulk of the performance is
lost in the latter.

We investigated the reasons for PosgreSQL’s poor performance
by inspecting its query plans and source code. The candidate gener-
ation is slow because PostgreSQL only uses its R-Tree index for one
side of the (self-join) and performs one index lookup for each geom-
etry in the other side. This is much less efficient than our sweep-line
approach for joins where both sides are large. The exact predicate
evaluations are slower because PostgreSQL does not use filtering
heuristics and because it always has to sort the line segments of
each geometry by x-coordinate before being able to perform the
actual predicate evaluation, whereas we store this sorted represen-
tation as part of our index structure (see Section 3.3.2). This saves a
lot of time when each geometry is involved in many checks, which
is typical for self joins.

4.3.2 Other Joins. We computed the following non-self spatial
joins with both PostgreSQL+PostGIS (again, only ST_Intersects)
and our tool (again, all predicates). The geometries are again from
OpenStreetMap. Apart from the queries, the setup was the same as
in the previous section. The results can be seen in Table 5.
Q1 1.1M restaurants ⊲⊳ 1.3M transit stops6
Q2 66.4M residential streets ⊲⊳ 0.7M administrative regions
Q3 66.4M residential streets ⊲⊳ 66.4M residential streets
Q4 0.9M powerlines ⊲⊳ 66.4M residential streets

For Q1, which involves only simple axis-aligned rectangles, the
candidate generation of our tool is about 10 times faster than that
of PostgreSQL. For Q3 and Q4, which mainly involve simple line
geometries, it is about 35 times faster. For Q2, the number of candi-
dates per element on the right side is largest because administrative
regions typically contain thousands of streets. For this query, the

6Using axis-aligned squares with a side length of 1km around the point geometries on
both sides.

Table 5: Running times for the four non-self spatial-join
queries described in Section 4.3.2. As in Table 2, the column
#results gives the total number of results for all seven predi-
cates. As in Table 4, the time only for candidate generation
and the total time are shown separately.

PostgreSQL Ours

#results candidates intersects candidates all predicates

Q1 19.3 M 6.8 s 12.5 s 0.7 s 10.6 s
Q2 279.2 M 21.7 min > 10 h 19.0 s 5.6 min
Q3 230.3 M 8.9 min 12.5 min 31.5 s 7.2 min
Q4 1.3 M 6.5 min 10.6 min 12.5 s 1.1 min

candidate generation of our approach was nearly 70 times faster
than that of PostgreSQL.

For queries involving only points, lines and/or simple polygons
on both sides (Q1, Q2, and Q4), PostgreSQL spent most of its time
for candidate generation. For example, for the simple query Q1, the
exact predicate check only took an additional 5.7 seconds, while our
approach took an additional 9.9 seconds. For Q2, which involves
many checks between small streets and very large polygons, we
aborted the full ST_Intersects query after 10 hours, while our
approach took only 5.6 minutes.

This is consistent with our findings in the previous section: The
exact predicate evaluation of PostgreSQL is efficient when the in-
volved geometries are simple, or when each geometry is involved in
only few candidate pairs. Both of those hold for Q1, Q3, and Q4, but
not for Q2 where the complex but few polygons of administrative
regions are involved in many predicate checks. Our tool efficiently
handles all of those cases.

5 CONCLUSIONS AND FUTUREWORK
We have described an efficient algorithm and implementation for
computing spatial joins between very large sets of geometric obects
in 2D. Our code is publicly available on GitHub, with instructions
for how to reproduce the results from this paper. Our code is signifi-
cantly faster than the widely used PostgreSQL+PostGIS in all cases,
and orders of magnitude faster when the number of candidate pairs
is large or many complex geometries are involved. In particular,
this is often the case for self joins.

We found that there are three main ingredients for this perfor-
mance difference, which we all consider but PostgreSQL misses.
First, when both sets are large, it is important to use a spatial index
for both sides (PostgreSQL always iterates over one side). Second,
when a spatial join involves many predicate evaluations with the
same complex geometry, a suitable pre-processing of that geometry
is crucial (which PostgreSQL does not do). Third, cell IDs are an in-
valuable heuristic when comparing small with large geometries, and
diagonal bounding boxes provide another significant performance
boost at almost no cost (PostgreSQL employs no such heuristics).

We currently provide a command-line tool to compute spatial
joins. We consider developing this into a C++ library, which even-
tually may even serve as a drop-in replacement for libgeos.
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