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ABSTRACT
We present a web mapping application that offers interactive visu-
alization of query results with hundreds of millions of geospatial
objects. This is in contrast to existing applications, which are slow
or unresponsive when the number of objects in the result is large.
We describe a general technique, which works for any database
engine that represents each geospatial object with a unique IDs and
that can return a query result either with the objects or with the
IDs. We have implemented a web mapping application using this
technique and with the QLever SPARQL engine as backend. We
evaluate it on queries on the complete OpenStreetMap (OSM) data,
with result sizes ranging from small to very large. We compare it
against the map interfaces of Overpass, PostGIS, and OSCAR.
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1 INTRODUCTION
In a typical geospatial database, geospatial objects (points, open or
closed polygons, or collections thereof) are annotated with addi-
tional data fields. The natural way to explore the results of queries
on such a geospatial database is to display them on a map. Indeed,
most query engines offer such map interfaces. However, these inter-
faces become slow or unresponsive already for a moderately large
number of geospatial objects. In this work, we present petrimaps,
a technique and web mapping application that allows interactive
visualization (supporting the usual actions like zoom and pan) of
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Figure 1: Results of the query All named buildings with
their id, name, and type on a dataset built from the entire
OpenStreetMap data (planet.osm), displayed by petrimaps as
a heatmap (left) and with full geometries (right).

hundreds of millions of geospatial objects. Our application can
render heatmaps as well as the exact geometries, and it provides
an export of the result as CSV, TSV, or GeoJSON. We have imple-
mented our web application using the QLever SPARQL engine as
backend and with the complete OpenStreetMap (OSM) dataset. An
example for a geospatial SPARQL query and the visualization of
the corresponding result using petrimaps can be seen in Figures 1
and 2.

1.1 Contributions
We consider the following as our main contributions:
• We present a technique for the interactive visualization of query
results with a very large number of geospatial objects on a map.
The technique works for any database engine that represents
each geospatial object using an internal ID and that can return a
query result either with the objects or with the IDs.

• We provide an implementation of this technique using theQLever
SPARQL engine as backend. The code is publicly available on
https://github.com/ad-freiburg.

• We provide a complete web application, with the QLever UI
for entering SPARQL queries, our web mapping application for
showing the result on a map, and the complete OSM data; see
https://qlever.cs.uni-freiburg.de/osm-planet.

• We evaluate the responsiveness of our web mapping application
on queries with a variety of result sizes and compare it against
the map interfaces of Overpass, PostGIS, and OSCAR.

https://doi.org/10.1145/3589132.3625594
https://doi.org/10.1145/3589132.3625594
https://github.com/ad-freiburg
https://qlever.cs.uni-freiburg.de/osm-planet
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SELECT ?building ?name ?type ?geometry WHERE {
?building geo:hasGeometry ?geometry .
?building osmkey:name ?name .
?building osmkey:building ?type .

}

Figure 2: SPARQL query for example from Figure 1. The
predicate hasGeometry from the GeoSPARQL standard con-
nects entities to their geometry.

1.2 Related Work
We first introduce some approaches that combine the querying and
visualization of geospatial data. OSCAR [1] is a tool that efficiently
searches for prefixes, substrings, and geometric constraints on OSM
data using a cell-based preprocessing. It has a UI that visualizes
search results using client-side rendering. For low zoom levels, only
one point per geometry is rendered, for high zoom levels the exact
geometries are rendered.

The Overpass API (http://overpass-api.de/) is a tool to filter OSM
data by tags or by a bounding box. It is most efficient if the result
is constraint to a small bounding box [5]. It has a UI called Over-
pass Turbo (http://overpass-turbo.eu/). Like OSCAR, Overpass Turbo
also visualizes all geometries as points on lower zoom levels, but
renders these points as a heatmap. An example for a stand-alone
visualization tool is GeoServer (https://geoserver.org/), a middle-
ware that can render query results from a multitude of sources,
for example from a PostGIS instance. However, GeoServer does not
allow for arbitrary user-defined queries, but each query has to be
specified by the maintainers of the server instance in advance. The
following tools are used in combination with our tool petrimaps:
QLever (https://qlever.cs.uni-freiburg.de, [3]) is a SPARQL engine
for very large knowledge graphs which supports context-sensitive
autocompletion of queries [4]. osm2rdf [2] is a tool that converts
raw OSM data to RDF Turtle. This allows to load OSM into any
SPARQL engine.

2 RENDERING QUERY RESULTS
A problem of existing approaches is that query results are usually
fully transferred from the database to the client (usually a web
browser) in some serialization format. The client then has to dese-
rialize the objects, render them on a map, and manage potentially
huge amounts of data during map interaction. For example, con-
sider a simple serialization of Well-Known Text (WKT) geometries,
separated by a line break. Then the query “all farms in OSM” already
yields 28 MB of gzipped data1. But to render an interactive map,
the client neither requires all objects, nor their exact geometries,
nor any non-geometric data fields. It suffices to transfer only the
objects in the bounding box corresponding to the current map view.
Data fields for single objects can be transferred separately if they
are explicitly requested by the user (for example, by clicking on
an object). The client rendering load can be reduced further if the
browser already receives a fully rendered bitmap, e.g., a PNG image.

We built an efficient middleware server which accepts a SPARQL
query, sends it to the SPARQL engine, caches the results, and can
deliver either a heatmap or an exact object map to the web client.
The general architecture of our approach is shown in Figure 3 and
1https://qlever.cs.uni-freiburg.de/osm-planet/flQ7jQ→ Download result as TSV.
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Figure 3: Architecture of our map frontend and the middle-
ware backend. All map interaction is handled via the mid-
dleware backend, which also maintains a static cache of all
geometries present in the database engine.

will be explained in detail below. Note that while we use the QLever
SPARQL engine as the backend of our tool, our approach works in
principle for all types of database systems and query engines that
work by assigning a unique ID to each data item and that are able
to expose those IDs to third-party software like our middleware.

2.1 Geometry Cache
To avoid having to transfer the full query results (in particular
serialized geometries) from our SPARQL engine to the middleware,
we cache the coordinates of each geospatial object stored in the
SPARQL engine in a dense array 𝐶 of coordinates. A second array
𝐺 contains tuples (qid, offset), where qid is the ID given to
the geometry in the SPARQL engine, and offset is the position in
𝐶 where the geometry of the object qid begins.𝐺 and𝐶 are loaded
at startup by requesting all geospatial objects and their IDs from
the SPARQL engine, ordered by the IDs.

2.1.1 Cache Compression. We compress the coordinate array 𝐶

to 𝐶 ′ as follows. All coordinates are scaled and rounded so that
each of them can be represented as a 30-bit integer. We call the
upper and lower 15 bits the major and minor part of the coordi-
nate, respectively. Each part is stored in 16 bits, where the most
significant bit is 1 for the major part and 0 for the minor part. For
each coordinate of a geometry, we store both parts (in 32 bits) if
the coordinate is the first of the geometry or if the major part is
different from that of the previous coordinate. Otherwise, we store
only the minor part (in 16 bits).

2.1.2 Retrieving Relevant Objects. When a SPARQL query arrives at
the middleware, it is rewritten to request only the column with the
geometry2, in ID representation. The data reduction is substantial:
for example, for the query “all farms in OSM”, the compressed WKT
literals have a size of 28 MB, whereas the ID representation requires
only 2.6 MB. The array 𝑅 of IDs is then sorted and intersected with
𝐺 , yielding an array𝐷 of pairs (row, gid), where row is the index
of the geometry ID in 𝑅, and gid is its index in𝐺 . As both 𝑅 and𝐺
are sorted, we use exponential search to speed up this intersection.

2For example, on the OSM RDF knowledge graph we can identify this column by
looking for the hasGeometry predicate.

http://overpass-api.de/
http://overpass-turbo.eu/
https://geoserver.org/
https://qlever.cs.uni-freiburg.de
https://qlever.cs.uni-freiburg.de/osm-planet/flQ7jQ
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2.2 Map Rendering
We support two types of maps: raw maps, which simply render
the point or polygon objects, and heatmaps, which depict object
densities using color gradients. The latter is particularly useful for
large query results. For both map styles, we implemented an untiled
web map service (WMS) which can be box-queried and returns the
requested map as a single PNG file. This section describes how the
raw 2D array of the map’s RGB values is filled.

2.2.1 Render Grids. To prepare the relevant objects for rendering,
we insert points and polygons into separate coarse grids. For points,
we directly store the gid, as the single coordinate can be quickly
looked up in 𝐶 . For open and closed polygons, we store the anchor
points. Note that every user session uses its own grids. However,
they are reused for subsequent requests during map interaction.
Building these grids has multiple benefits: First, we can use the
grids to directly render maps of the result set if the desired ground
resolution is larger than the grid cell length. Second, for smaller
ground resolutions, the grids provide efficient access to the parts of
the result set required for rendering. Third, for the polygon anchor
points, the grid allows for a simple delta encoding of the geometry
coordinates: we don’t store raw coordinates, but their offsets to the
upper right corner of the grid cell. These are scaled to the [0, 256]
range to fit in an unsigned 8 bit integer. We use a grid cell size of
𝑐 = 65, 536 web mercator units (~65 km at the equator). This means
that our scaled 8 bit integer offset coordinates are precise enough
until a ground resolution of 𝑑 = 256 web mercator units per pixel.
To also support lower ground resolutions, we additionally maintain
an auxiliary grid containing only the geometry IDs for polygons.
If the requested resolution is below 256 map units per pixel, we
access this grid and retrieve the exact geometries from 𝐺 .

2.2.2 Heatmap Rendering. For rendering the heatmap, wemaintain
a two-dimensional array 𝐻 containing an integer for each pixel
of the requested map. The value is increased by 1 if an element is
covering the pixel. As mentioned above, we can populate 𝐻 from
the precomputed grids for resolutions ≥ 𝑐 . To achieve this, we
simply iterate over the grid cells in the requested bounding box
and increase the corresponding pixel value in 𝐻 by the number of
elements stored in the cell. If the requested resolution is between 𝑐
and 𝑑 , we iterate over all coordinates in the active cells and increase
their corresponding heatmap pixel value by 1. If the requested
resolution is below𝑑 , we do the same, but using the exact geometries
obtained via the auxiliary grid, as described above. For each element
(𝑥,𝑦) in 𝐻 , a 2D intensity stamp (with intensities decreasing from
the center) is then printed to the final map drawing (again a 2D
pixel array𝑀), weighted by𝐻 [𝑥] [𝑦]. Pixel colors in𝑀 are based on
this intensity value. We use libheatmap3 to generate𝑀 and libpng4

to convert𝑀 into a PNG image.
As we only add polygon anchor points to the heatmap, they

may not appear connected on small ground resolutions (Fig. 4).
To avoid this, we densify them when the geometry cache is filled,
using a distance between added anchor points high enough so
that polygons are rendered without gaps for resolutions ≥ 𝑑 . For
resolutions < 𝑑 , we densify the anchor points again on the fly.

3https://github.com/lucasb-eyer/libheatmap
4http://www.libpng.org/

Figure 4: Heatmap of a query for all streets in Freiburg, with
(left) and without (right) polygon densification.

2.2.3 Raw Object Rendering. To render maps containing the raw
objects, we essentially use the same approach as for rendering heat
maps. However, we use only a single stamp color and use only
binary object counting (a pixel is either occupied, or it isn’t).

2.3 Map Interaction
Each SPARQL request spawns a session in our middleware, main-
taining its own result grids during user interaction to allow fast
re-rendering of the current map extent. The downside of this ap-
proach is a high memory consumption in our middleware for ses-
sions showing large result sets.

The maps produced above are static PNG images. So far, we have
not transferred any columns except the internal geometry IDs. To
provide efficient interactive access to the query result columns, we
again use the grids built for the query result rendering. If a user
clicks into the map, we retrieve the nearest object from the grids
and explicitly request the corresponding row from the SPARQL
backend5. The object geometry is then simplified according to the
current map resolution, and returned to the client as a GeoJSON
object. The client renders this object in a highlight color, and also
shows a popup containing the data columns (Fig. 1, right).

Note that we did not distinguish between open and closed poly-
gons added to the grid in Section 2.2.1. To do so, we add a special
marker coordinate to𝐶 at the end of each closed polygon. For such
polygons, we then use point-in-polygon tests on user interaction.

3 PERFORMANCE EVALUATION
We formulated equivalent queries in 4 languages: (1) SQL queries
against a PostGIS database filled with OSM data using osm2pgsql
(with appropriate indexes), (2) Overpass API queries against an
exclusive Overpass API instance, (3) search engine queries against
OSCAR, and (4) SPARQL queries against QLever, filled with RDF
data for OSM produced by osm2rdf. Results were displayed for (1)
in the standard web GUI for PostgreSQL databases (pgAdmin), for
(2) in Overpass Turbo, for (3) in the OSCAR web GUI, and for (4) in
our own tool petrimaps. We used the following queries:
(Q1) The single building with OSM way id 98284318
(Q2) All castle buildings (building=castle)
(Q3) All train station buildings (building=train_station)
(Q4) All farm buildings (building=farm)
(Q5) All residential buildings (building=residential)
(Q6) All streets (highway=*)
5Row selection is achieved by a combination of OFFSET <row> and LIMIT 1. This is
very fast if the SPARQL engine has cached the query result in the ID space and thus
doesn’t have to process the query again. For backends that don’t provide such a cache
we could also initially transmit all the columns of the result to our midddleware as IDs
and store them. Selecting a row would then be implemented by asking the backend to
resolve the IDs of the corresponding row to their respective serialization.

https://github.com/lucasb-eyer/libheatmap
http://www.libpng.org/
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The evaluation of the map rendering times for (1), (2), and (3)
was tedious, which is why we only evaluated 6 queries. However,
these times mostly depend on the total number of result objects
(and their average number of geometry anchor points), not on the
distribution of geometries over the planet, or the query structure.
We hence chose queries representative for different result set sizes.

In Table 1 we measured the database retrieval time (𝑡𝑅 ) and
the time between the successful retrieval of the query data and
the finished rendered map (𝑡𝑀 ). For petrimaps, this includes the
transfer time of the rendered PNG. In Table 2 we measured the total
blocking time (TBT, the total time the browser was not responsive
for more than 50ms, excluding the first 50ms) incurred by increasing
the zoom level by 1 (𝑡𝑍 ), and the TBT incurred by a map pan from
center to right (𝑡𝑃 ). TBT was measured using Google Lighthouse6.

Client-side experiments were run on an machine with 32 GB of
RAM. The petrimaps middleware, Overpass, and PostgreSQL were
run on a machine with 256 GB of RAM. Filling the geometry cache
for petrimaps took around 2 hours. For OSCAR, we used the official
instance7. Our complete evaluation setup can be found online8.

Table 1: Efficiency of the web GUIs for PostGIS (pgAdmin),
Overpass (Overpass Turbo), OSCAR, and petrimaps for our
test queries. |𝑅 | is the result size, 𝑡𝑅 the time until all data has
been received from the database, and 𝑡𝑀 is the initial map
rendering time. A time of × means the application crashed
during rendering, or the query was cancelled due to its size.

Overpass pgAdmin OSCAR petrimaps
|𝑅 | 𝑡𝑅 𝑡𝑀 𝑡𝑅 𝑡𝑀 𝑡𝑅 𝑡𝑀 𝑡𝑅 𝑡𝑀

Q1 1 80ms 40ms 0.1s 20ms 0.1s 0ms 140ms 63ms
Q2 2.5k 6.7s 2.1s 0.5s 1.1s 0.1s 0.2s 50ms 0.3s
Q3 48k 1.5m 32.3s 2.6s 3.5s 0.5s 0.7s 0.1s 0.4s
Q4 358k 3.5m × 3.8s × 1.5s 2.4s 0.3s 0.4s
Q5 15M × × 41s × × × 3.1s 4.2s
Q6 218M × × 8.5m × × × 32s 58s

None of the other GUIs were able to display the results for Q5
and Q6, and both Overpass and pgAdmin also failed to render Q4.
For pgAdmin, the reason was a hardcoded restriction to 100,000
elements. Overpass either crashed the browser while trying to ren-
der the results, or the backend aborted the query. OSCAR aborted
Q5 and Q6 because of the result set size. For all but Q1 and Q2,
petrimaps had the fastest map rendering time. The slower initial
map rendering time for Q1 can be explained by the overhead of first
building the session grid and rendering / transferring a full PNG
image. All other GUIs directly rendered the retrieved geometry on
the client side. The faster initial map rendering time of OSCAR
for Q2 can additionally be explained by the fact that OSCAR only
considers a single anchor point per geometry at the zoom level re-
quired for this map. The more objects we draw, the faster petrimaps
becomes relative to to other tools.

Overpass Turbo, pgAdmin and Oscar quickly reached interaction
TBTs of over 600 ms, which is the worst (red) category in Light-
house scores and is interpreted as an unresponsive application. In
contrast, petrimaps stayed responsive and usable for all queries.
6https://developer.chrome.com/docs/lighthouse/performance
7https://www.oscar-web.de
8https://qlever.cs.uni-freiburg.de/mapui-petri/evaluation/

As petrimaps has to render and transfer a new PNG image after
each map interaction, we additionally measured the time required
to render and transfer the map image after each interaction (𝑡∗

𝑍
, 𝑡∗
𝑃
).

These times were below 300 ms for all queries and all interactions.
For the entire OSM data, we required 69 GB of RAM to hold the

geometry cache. The largest of our queries, Q6, required 6 GB of
RAM to hold the session’s result cache grid.

Table 2: Responsiveness of pgAdmin, Overpass Turbo, OS-
CAR, and petrimaps for our test queries. 𝑡𝑍 is the total block-
ing time (TBT) for a single zoom-in. 𝑡𝑃 is the TBT for a single
map pan from center to right. A time of — means the appli-
cation could not display the results. For petrimaps, 𝑡∗

𝑍
and 𝑡∗

𝑃
give the time required to render and transfer the map PNG.

Overpass pgAdmin OSCAR petrimaps
𝑡𝑍 𝑡𝑃 𝑡𝑍 𝑡𝑃 𝑡𝑍 𝑡𝑃 𝑡𝑍 𝑡∗

𝑍
𝑡𝑃 𝑡∗

𝑃

Q1 0ms 0ms 0ms 0ms 0.1s 10ms 0ms 53ms 0ms 66ms
Q2 0.2s 30ms 0.1s 20ms 0.1s 70ms 0.1s 0.2s 10ms 0.1s
Q3 2.9s 2.3s 1.2s 0.3s 0.3s 80ms 80ms 0.3s 0ms 0.1s
Q4 — — — — 0.7s 1.2s 60ms 0.2s 0ms 0.1s
Q5 — — — — — — 90ms 0.2s 0ms 0.1s
Q6 — — — — — — 0.1s 0.3s 10ms 0.1s

4 CONCLUSIONS AND FUTUREWORK
We have presented petrimaps, a web mapping application for the
interactive visualization of query results with hundreds of mil-
lions of geospatial objects. We have compared it to the web inter-
faces of Overpass, PostGIS, and OSCAR, which become slow or
unresponsive when the number of objects gets larger. Our code
is publicly available on https://github.com/ad-freiburg and a live
version of our web application is available on https://qlever.cs.uni-
freiburg.de/osm-planet.

As of this writing, our implementation caches a pre-processed
representation of all geometries of the given dataset. For the com-
plete OpenStreetMap data, the initial pre-processing takes around 2
hours. The result is serialized to disk, so that when the application
is restarted, it can be read back into RAM in around 2 minutes.
We plan to implement the following improvements. First, lazily
pre-process the geometries in the background and when queries
arrive (then pre-processing the geometries for that query), so that
the application is responsive right from the start. Second, reduce
RAM usage by loading only those pre-processed geometries needed
for the current query. Finally, we consider integrating this whole
mechanism into the QLever SPARQL engine.
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