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ABSTRACT
We investigate the following map-matching problem: given a se-
quence of stations taken by a public transit vehicle and given the
underlying network, find the most likely geographical course taken
by that vehicle.We provide a new algorithm and tool, which is based
on a hidden Markov model and takes characteristics of transit net-
works into account. Our tool can be useful for the visualization of
transit lines in map services, for transit data providers, and for an
on-line matching of live passenger GPS data to a public transit vehi-
cle. We evaluate our tool on real-world data, and compare it against
two baselines. The shapes produced by our tool are very close to
the true shapes. We have made our software publicly available,
enabling full reproducibility of our results.

CCS CONCEPTS
• Information systems → Geographic information systems;
• Theory of computation → Routing and network design
problems;
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1 INTRODUCTION
Most map services offer an optional transit layer showing an area’s
transit lines on top of the regular map data. Ideally, the actual
geographical course of these lines is shown. However, for many
areas they are shown only as straight-line connections (Figure 1).
In principle, the geographical course of a transit line is part of GTFS
(General Transit Feed Specification), the de facto standard format
for transit data [4]. However, this shape data, as it is called in GTFS,
may be missing for some feeds.

The goal of this paper is to automatically compute accurate shape
data from the following information: the sequence of the (possibly
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Figure 1: Red: Straight-line paths between stops of a Swiss
train, taken from schedule data. Blue: correct geographical
path found by pfaedle.

imprecise) station positions, the geography of the underlying net-
work and optional metadata about the network. These shapes can
then be used as a substitute for missing or inaccurate shape data in
a GTFS feed.

1.1 Related Work
Our work is closely related to map-matching of GPS trajectories
(given a sequence of positions, determine the most likely path
through a given network). Like our approach, recent work is based
on a hidden Markov model (see [8] for an overview).

The main difference between our work and existing approaches
is the notion of sparseness. For the latter, a sampling rate > 30
seconds may already be considered sparse [6]. In our case, we
frequently have to match data where the average distance between
sample points may be up to several hundred kilometers. Another
difference lies in the variable type of the underlying network. While
previous work was mostly limited to road networks, map-matching
on rail networks is commonly required in a public transit scenario.

Only little applied work onmap-matching of schedule data exists.
In [2], the authors describe a greedy approach based on an iterative
shortest-path search. A global approach based on the construction
of a “pseudo-graph” which resembles a hidden Markov model was
described in [7] and evaluated against the schedule data of Zurich
on an OpenStreetMap (OSM) network. (Inter-hop) turn restrictions
and a broader use of OSM attributes were left as an open problem.

Our solution to inter-hop turn restrictions is based on previous
work in [3]. An edge-based Dijkstra’s algorithm was described to
improve time and space efficiency of routing in road networks.

For our evaluation, we build onmetrics for map-matching quality
previously described in the literature. A similarity metric between
curves based on the average Fréchet distance was first used as a
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Figure 2: Station positions s0, ..., s6 from a GTFS feed (possi-
bly imprecise) of a bus route through a road network. Red:
candidate nodes within a radius ri around each si . Blue: the
correct path of the bus.

quality metric for map-matching results in [1]. In [5], two additional
metrics AN and AL based on the number and length of incorrectly
matched segments were introduced. We use AN in Section 5.

2 BASIC APPROACH
Let us denote by S = (s0, s1, ..., sn ) the sequence of station positions,
and byG = (V ,E) the graph of the underlying network. This section
describes how we find the node candidates for each si (Section
2.1), how we find the most likely sequence of node candidates
using a hidden Markov model (Section 2.2), and how we obtain
the most likely path through G between those selected candidates
(Section 2.2.3).

2.1 Finding Node Candidates
In a first step, we collect sets of possible node candidatesHi ⊆ V for
each si . We identify all edges e = (u,v) ∈ E that lie within a radius
ri around si . At the projection of si on e , we insert a candidate node.
Hi is the set of these candidate nodes. In our experiments, we set
all ri = rt , where t is the vehicle type pertaining to S (see Table 2).

2.2 Optimal Candidate Sequences
Given the candidate nodes Hi for each sample point si , we now
want to find the most likely candidate hi ∈ Hi for each si .

A simple approach is to greedily compute the h0, ...,hn one after
the other: having computed hi , take hi+1 as that node from Hi+1
with the shortest path from hi . This algorithm may be refined by
searching the shortest path from any node candidatehi′ ∈ Hi to any
hi+1 ∈ Hi+1. Then, an additional step to connect the hop segments
(hi−1,hi ) and (hi′ ,hi+1) is necessary to ensure a continuous path. A
simple solution is to just run another shortest-path search between
hi and hi′ and fall back to a straight line if no such path exists.

A better approach to map-matching is to use a hidden Markov
model (HMM). The station positions si now act as observations, and
the node candidatesHi as hidden states. For eachHi and each candi-
date node hik ∈ Hi , an emission probability distribution Pr(si |hki ) is
defined which gives the likelihood that hki is a matching candidate
given that we observed si . Additionally, for each hki , the probability
that the next state will be some hk

′

i+1 is given by Pr(hki → hk
′

i+1). To
incorporate many weight functions into our approach, we model
our transition probability based on a setWT of weight functions
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Figure 3: Hidden Markov model for finding the most likely
node candidate sequence through 3 layers H0, H1 and H2.

w1
τ ,w

2
τ , ...,w

m
τ , all following an exponential distribution:

Pr(hi → hi+1) =
|WT |∏
j=1

e−λjw
j
τ (hi ,hi+1). (1)

Emission probabilities are based on weight functionswϵ ∈WE :

Pr(si |hi ) =
|WE |∏
j=1

e−βjw
j
ϵ (si+1,hi+1). (2)

The goal is then to find the hidden state sequence h0,h1, ...,hn
with the maximum likelihood

max
h0, ...,hn

n−1∏
i=0

Pr(hi → hi+1) · Pr(si+1 |hi+1) (3)

= min
h0, ...,hn

n−1∑
i=0

[WT∑
j=1

λjw
j
τ (hi ,hi+1)︸                 ︷︷                 ︸

=cτ (hi ,hi+1)

+

WE∑
j=1

βjw
j
ϵ (si+1,hi+1)︸                   ︷︷                   ︸

=cϵ (si+1,hi+1)

]
(4)

which can be found by doing a shortest-path search on the transition
DAG with edge costs c(hi ,hi+1) = cτ (hi ,hi+1) + cϵ (si+1,hi+1).

2.2.1 Transition Weights. In the basic version of our approach,
cτ (hi ,hi+1) consists of two transition weightswτ (hi ,hi+1): (1) The
network distance in meterswd

τ (hi ,hi+1). (2) The number of stations
passed without stop ws

τ (hi ,hi+1). Both costs are weighted by λd
and λs respectively and calculated by finding the path through G
from hi to hi+1 that optimizes the transition cost function

cτ (hi ,hi+1) =λdw
d
τ (hi ,hi+1) + λsw

s
τ (hi ,hi+1) (5)

which can be found by doing a shortest path search (we use an
ordinary A∗ algorithm) through G . The intuition behindwd

τ is that
vehicles will most likely use the next node candidate hi+1 that is
nearest (in terms of network distance) to hi . With ws

τ , we avoid
paths that pass through many stations without stopping there.

2.2.2 Emission Weights. In the basic version, our approach uses
a single emission weight wd

ϵ (si ,hi ): the great-circle distance be-
tween si and node candidate hi . The emission cost function is

cϵ (si ,hi ) =βdw
d
ϵ (si ,hi ). (6)

We describe additional weights based on attribute similarities be-
tween the input geo data and the schedule data in Section 4.

2.2.3 Path Guessing. As we computed the optimal paths be-
tween layers with respect to ourwτ during the calculation of the
transition weights (Sect. 2.2.1), connecting the optimal node can-
didate sequence is trivial. We can just combine the shortest paths
found by our A∗ runs into the final result path P .



Sparse Map-Matching in Public Transit Networks with Turn Restrictions SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA

h0
1h0

0

v

Figure 4: Blue: most likely transition from h00 to h01 with
distance-based cost. For trains, the lower path ismore likely.
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Figure 5: Map-matching without inter-hop turn restrictions
(left), and with inter-hop turn restrictions (right).

3 TURN RESTRICTIONS
Turn restrictions are valuable information for calculating the tran-
sition probability. A transition from a candidate node h00 to h

0
1 may

be impossible in the real world because traffic rules forbid mak-
ing a turn required to reach h01. We would therefore like to add a
transition weightwt

τ that punishes those turns.
In rail networks, we have to respect turn restrictions resulting

from physical limitations. For example, a train does not usually
make a 180◦ turn on open track (Fig. 4). To address this, we would
like to add a transition weightw f

τ punishing these full turns.
In map-matching, a third problem appears: inter-hop turn re-

strictions. Consider Figure 5. Even if we respect turn-restrictions
when calculating the transition probabilities from h01 to h

0
2, the blue

route on the left will be the most likely - but the vehicle has to
make an unnecessary full turn.

To address these issues, we transform the network graph G =
(V ,E) into its edge-to-vertex dualL(G) = (V ′,E ′). Each edge (u,v) ∈
E is represented by v ′

u,v ∈ V ′, and a node vj ∈ V is represented
by edges e(u,vj ),(vj ,w ) ∈ E ′ (Fig. 6). Weights in G ′ now model
costs between edges inG , which enables us to directly punish turn
restrictions in Dijkstra’s algorithm [3].

To finally enable turn restrictions between hops, instead of choos-
ing orientationless node candidates hki ∈ Hi ⊂ V for each sample
point si , we now use all outgoing edges of each hki as hidden states
in our HMM (Fig. 7). Intuitively, this means we now have hidden
states for each possible vehicle orientation at hki .

4 INCORPORATING OSM METADATA
Our approach described so far can be used on arbitrary transit
network datasets which contain suitable geographical information.
Pfaedle uses OpenStreetMap (OSM) data as the default geo data
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Figure 6: Black: Weighted network graph G. Red: edge-to-
vertex dual graph G ′ of G.
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Figure 7: Left: A single hidden state h02 is used to model the
orientationless arrival at node n. Right: each outgoing edge
of n is used explicitly as a hidden state eki .

input format. The data is filtered per vehicle type using manually
compiled rules. In this section, we describe how to incorporate
information present in the OSM data into our approach to enhance
the overall map-matching result.

4.1 Augmenting Transition Probabilities
The following information contained in the OSM data can naturally
be used directly in our approach.

4.1.1 Turn-Restriction Relations. The relation restriction con-
tains many types of edge-to-edge turn restrictions. Pfaedle uses
most of them in the approach described in Section 3 and respects
specific exceptions, for example turns that are specifically allowed
for public transit vehicles.

4.1.2 One-Way Streets. One way streets can be incorporated by
setting the corresponding edge cost in our network graph to∞.

4.1.3 Edge Levels. We make use of the fine-grained hierarchy
of way objects in OSM by using 5 different transition weights
wd0
τ , ...,w

d5
τ instead of a singlewd

τ in our cost function (Eq. 5). The
weight factors λd0 ...λd5 are chosen to punish roads of higher levels.

4.1.4 Public Transit Routes. OSM data already contains exten-
sive information regarding the routes of public transit vehicles in
route relations. To use this information into our approach, we add
a transition costwL

τ that is calculated as the sum of the length of
all network segments that do not have a matching route relation.

4.2 Augmenting Emission Probabilities
In addition to improving the transitions weights with attributes
of the OSM data, several attributes can be used to also make the
emission weights more precise.

4.2.1 Station Labels. OSM already contains nodes tagged as
stations. To use this, we extend our node candidate search by first
identifying all nodes within radius ri around the sample point si
(with station label n(si )) that are marked as stations in OSM (with
station label n(hki )). To measure the similarity between two station
labels a and b, we define the following token-subset edit distance:

TED(a,b) = min
[

min
A′∈P(T (a))

lev(|A′ |,b), min
B′∈P(T (b))

lev(|B′ |,a)

]
,

where lev(a,b) is the Levenshtein distance, T (a) is the set of white-
space separated tokens in a and |A′ | is the space-separated concate-
nation of tokens in A’. With this, we add an emission weight

wn
ϵ (si ,h

k
i ) =

TED
(
n(si ),n(h

k
i )
)

max
(
|n(si )| ,

���n(hki )���) . (7)

4.2.2 Track Numbers. Stations in OSM may also contain a ref
attribute specifying the track number. To favor node candidates
with a matching track, we define a track label function t(n) and add
a weightwn

ϵ (si ,h
k
i ) which is 1 if t(hki ) = t(si ), or else 0.



SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA Hannah Bast and Patrick Brosi

10 20 30 40 50 60 70 80 90 100
0

1,000
2,000
3,000
4,000

δaF

#
ve
hi
cl
e
pa
th
s

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1,000
2,000
3,000
4,000
5,000

AN

#
ve
hi
cl
e
pa
th
s

(a) Vitoria-Gasteiz

10 20 40 80 160 320 640 2,560 10,240
0

10,000
20,000
30,000
40,000

δaF

HMM+R
HMM
NTL
LTL

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10,000
20,000
30,000
40,000

AN

(b) Stuttgart

Figure 8: Evaluation results of our approach (HMM / HMM+R) and our two baselines (NTL / LTL).

5 EVALUATION
We evaluated pfaedle on the GTFS feeds of Stuttgart (S), Vitoria-
Gasteiz (VG), Switzerland (CH), and the Paris/Île-de-France region
(P). Table 1 shows the dimensions of these feeds. Table 2 shows
the parameter values of pfaedle. S and VG were selected because of
the high-quality shape data, which we took as ground truth in our
evaluation. CH and Pwere selected because of their size, they do not
have good shape data. The shapes computed by pfaedle for all four
feeds are available online under http://travic.cs.uni-freiburg.de.

Figure 8 shows the results of our evaluation for S and VG. We
used two metrics to compare the path P computed by pfaedle to
the corresponding pathQ from the ground truth. The first metric is
the average Fréchet Distance δaF of P and Q (divided into an equal
number of segments of length 1m in P ). The second metric is the
percentage AN of hop (between-station) segments with Fréchet
Distance ≥ 20m. We evaluated four approaches: our approach
using OSM route metadata (HMM+R), our approach without this
metadata (HMM), the greedy 1-to-layer approach from Section 2.2
(NTL) and the layer-to-layer approach from the same section (LTL).

Both HMM approaches clearly outperform both baselines. Most
paths deviate less than 20m from the ground truth, which we con-
sider an almost perfect match (below 20m, inconsistencies between
the ground truth and theOSMdata become noticeable). Surprisingly,
the additional use of OSM metadata leads to only minor improve-
ments (HMM+R vs. HMM). For the Stuttgart data, the spike of NTL
and LTL at 10 ≤ δaF ≤ 20 is caused by the high percentage of
regional trains in this dataset. For trains, both baseline approaches
work particularly well, because the number of node candidates per
station is usually low.

Table 3 shows the running times of our approach HMM+R versus
LTL on an Intel Core i7-2600 3.40 GHz machine with 32 GB RAM.

6 CONCLUSIONS AND FUTUREWORK
We presented a novel approach for automatically computing miss-
ing shape data in GTFS feeds with very high accuracy. Unlike
previous approaches, we take critical characteristics of transit data
into account. Our approach is implemented in a publicly available
tool, called pfaedle. Its running time is sufficiently fast for practical
use, but slower than that of simpler baselines.

Our work so far does not use the temporal information available
in GTFS feeds. This information may be valuable, however, for
filtering out unlikely paths.

Table 1: Dataset dimensions. |T | is the number of trips in
the schedule data, ϕ is the average straight-line distance be-
tween stations in the schedule data inmeters. |V | is the num-
ber of nodes, |E | the number of edges in the OSM data.

Bus Tram+Subway Rail
|T | ϕ |V | |E | |T | ϕ |V | |E | |T | ϕ |V | |E |

VG 6k 380 5.6k 14.5k 1.3k 400 83 196 — — — —
S 53k 833 156k 409k 14k 594 1.5k 3.4k 23k 6.2k 5.7k 14.8k
CH 395k 2.1k 0.5M 1.4M 60k 2.1k 3.5k 8k 81k 8.7k 153k 0.4M
P 260k 1.1k 346k 0.9M 57.6k 1.1k 14.3k 38.8k 13k 6.3k 14.4k 38.8k

Table 2: Manually chosen parameters for our HMM and
HMM+R approaches.

λd0 λd1 λd2 λd3 λd4 λd5 λs λf λt λL βd βn βt rt

Rail 1 1.25 1.5 2 2.5 3.5 100 3k 1 1 3 100 2k 200
Subw. 1 1.5 2 2.5 3.5 5 100 2k 1 0.5 3 235 0 100
Tram 1 1.5 2 2.5 3.5 5 100 2k 1 0.5 3 235 0 100
Bus 1 1.25 1.5 1.75 2.25 3 0 500 5k 1.75 2.5 500 0 100

Table 3: Running times of HMM+R vs. LTL. HMM times are
similar to HMM+R, NTL times are similar to LTL.

Bus Tram Subway Rail
∑

HMM+R LTL HMM+R LTL HMM+R LTL HMM+R LTL HMM+R LTL
VG 1.2s 18ms 9ms 3ms — — — — 1.2s 21ms
S 2m 7.1s — — 0.4s 16ms 19s 0.2s 2.3m7.4s
CH 41m 2.4m 4.4s 1s 32ms 7ms 21m 0s 1h 3m
P 45m 74s 60ms 8ms 4s 32ms 53s 4s 46m 79s
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