
Real-Time Movement Visualization of Public Transit Data

Hannah Bast
University of Freiburg

79110 Freiburg, Germany
bast@informatik.uni-

freiburg.de

Patrick Brosi
geOps

Kaiser-Joseph-Str. 263
79098 Freiburg, Germany

patrick.brosi@geops.de

Sabine Storandt
University of Freiburg

79110 Freiburg, Germany
storandt@informatik.uni-

freiburg.de

ABSTRACT
We introduce a framework to create a world-wide live map of
public transit, i.e. the real-time movement of all buses, sub-
ways, trains and ferries. Our system is based on freely avail-
able General Transit Feed Specification (GTFS) timetable
data and also features real-time delay information (where
available). The main problem of such a live tracker is the
enormous amount of data that has to be handled (millions of
vehicle movements). We present a highly efficient back-end
that accepts temporal and spatial boundaries and returns
all relevant trajectories and vehicles in a format that allows
for easy rendering by the client. The real-time movement
visualization of complete transit networks allows to observe
the current state of the system, to estimate the transit cov-
erage of certain areas, to display delays in a neat manner,
and to inform a mobile user about near-by vehicles. Our sys-
tem can be accessed via http://tracker.geops.ch/. The
current implementation features over 80 transit networks,
including the complete Netherlands (with real-time delay
data), and various metropolitan areas in the US, Europe,
Australia and New Zealand. We continuously integrate new
data. Especially for Europe and North America we expect
to achieve almost full coverage soon.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.2.8 [Database Management]:
Database Applications

General Terms
Algorithms, Data Structures, Visualization

Keywords
Public Transit Network, Spatio-Temporal Grid, Real-Time
Visualization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL ’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright 2014 ACM 978-1-4503-3131-9/14/11...$15.00
http://dx.doi.org/10.1145/2666310.2666404

1. INTRODUCTION
A variety of live public transit maps were developed over

the last decades, displaying the actual positions of certain
vehicles. First approaches dealt with shuttle buses around
universities as Stanford1 or Utah2. Meanwhile, larger trans-
portation systems have been visualized, e.g. the complete
Swiss train network3, subways in Munich4, and the train net-
works of Germany5, Austria6 and the UK7. Several other
transit agencies provide small live maps for their service
range. Unfortunately, all existing live maps are either re-
stricted to a very small area or to a certain type of vehicle
(e.g. bus). Moreover most live maps do not feature smooth
vehicle movements, but vehicles ’jump’ in certain intervals.
Also often proprietary data is used, which typically comes in
some individually defined format. Therefore combined live
maps of several agencies are hard to find.

But global live maps would be beneficial in many aspects.
From an operator’s point of view this would provide a use-
ful tool to supervise the complete system, track single vehi-
cles, and observe non-scheduled stops or delays immediately.
Also the coverage of an area (at a certain time) can be es-
timated well if all vehicles passing through are displayed.
The same holds for evaluating how well-synchronized vehi-
cles from different agencies are. From a user perspective,
the easy retrieval of all vehicles that are near-by can help to
decide for a certain transportation mode or e.g. a particular
bus to take. Also it can tell if you should hurry to catch
your selected bus. In combination with a route planner, a
live map can inform about delays of relevant vehicles neatly,
and may give a hint about alternative transfers.

We present the first live map implementation which has
the potential to efficiently visualize the public transit of the
whole world. For that purpose, we developed a framework
based on GTFS data. GTFS is a general format to describe
static timetable data as well as real-time information. Many
agencies already provide their data openly in this format,
and expectedly their number is going to grow.

The main challenge in creating a world-wide live map is
to handle the huge amount of data necessary for the applica-
tion. For example, in the area of New York alone, over three

1http://transportation.stanford.edu/marguerite/
2http://www.uofubus.com/
3swisstrains.ch
4http://s-bahn-muenchen.hafas.de
5http://bahn.de/zugradar
6http://zugradar.oebb.at
7http://traintimes.org.uk/map

million times a day a vehicle departs from station. At 8am
over 4,700 vehicle movements need to be visualized only in
this area (see Figure 1 for an impression). Note, that other
world-wide live maps, as e.g. provided for planes8 or ships9,
hardly ever have to display more than 10,000 elements in
total. So extrapolating the New York values to the whole
world, it becomes clear that custom-tailored data structures
have to be designed to store the transit data, and to answer
requests efficiently.

1.1 Related Work
Most live map providers have not published the approach

behind their application. A notable exception is e.g. the
BusCatcher system [2]. Here GPS based bus positions are
displayed on an interactive city map, along with the correct
schedule and possibly actual delays. The evaluation of the
system focuses on user trials, identifying the lack in system
responsiveness as major drawback. For vessels a web archi-
tecture for live tracking and visualization was described by
Bertrand et al. [3]. The vessel positions are again deter-
mined sensor-based (GPS or GSM) combined with inertial
systems. These kind of input data is also used for traffic
flow estimations and other systems which track vehicles in
street networks. For example, the VAST (Visual Analytics
for Smart Transportation) system [9] visualizes taxi posi-
tions in real-time and is built on GPS and road-sensors as
well. The system is used to detect hot spots of taxi usage,
to compute good taxi routes and to provide a user with the
locations of near-by taxis.

In contrast to all those methods our system is not based
on GPS data. In the next section, we will explain in detail
why GPS is not a good data source for public transit vehicle
tracking. Instead, we will use static timetable data combined
with real-time updates. TransitGenie [4] is based on the
same input, with the purpose to improve route planning by
incorporating delays. But this and related systems do not
feature live visualization.

Client/server interfaces for rendering and routing have
been studied mostly for street networks. In [10] a scheme
was introduced for sending very small data packages (pre-
computed by the server) to the client, which nonetheless
allow for optimal route planning on client-side. In [5] a cor-
ridor graph between source and target is computed by the
server and transmitted to the client in order to deal with
traffic updates efficiently and to take care of periods of time
when the user is offline. We are not aware of similar pub-
lished approaches for public-transit network data.

2. OBTAINING VEHICLE POSITIONS
The very basis of all live map functionality is to obtain

the information about all actual vehicle positions continu-
ously. On top of that, we would like to have a comparison
to the position the vehicle is supposed to be according to the
schedule, in order to be able to inform about delays. We will
discuss now several data sources with the conclusion that in-
terpolated schedules augmented with real-time information
are the method of choice.

8http://www.flightradar24.com/
9http://www.marinetraffic.com/de/

2.1 GPS and Sensor Data
The most common way to track vehicles of all kind is to

place a GPS-device inside and transmit the position informa-
tion to a server, where it can be accumulated and processed.
A GPS based visualization has the advantage of always dis-
playing the current vehicle position. But multiple reasons
speak against GPS as the sole information source:

Low availability and coverage. We are not aware of any
transportation agency that provides access to raw GPS po-
sitions of their vehicles. And it seems utopian that this
will change in the near future. There were some recent at-
tempts to use mobile phone data to determine the mode of
transportation of a passenger and also the movement of the
vehicle, see e.g. [11]. But again, there is little hope for good
coverage world-wide. Additionally, GPS is not available ev-
erywhere with a precision high enough for our purpose, and
signal blockages due to obstructing foliage or high buildings
can not be ruled out.

No fall-back. Relying on raw GPS positions means that if a
tracking device fails, the visualized vehicle will stop or dis-
appear. There is no fall-back.

No extrapolation. Raw GPS positions are completely seman-
tic. The data does not reveal the underlying structure of the
transit network at all. A typical server output simply says
that a certain vehicle currently is at position (x, y). In gen-
eral, the route of the vehicle, the remaining time until its
next arrival, the information if the vehicle is on time, etc.,
can not be extrapolated from the GPS data alone. So the
GPS data has to be combined with static timetable infor-
mation for those purposes.

Huge amount of data. Receiving GPS positions from all
currently moving vehicles world-wide results in heavy traf-
fic and an enormous amount of data to manage, especially
for the client/server-interface. We will discuss this in more
detail in the next section.

2.2 Interpolated Schedules
Static schedules are much easier to manage than GPS

data. In fact, static schedules exhibit none of the draw-
backs of GPS described above. With the development of
GTFS, there exists a common format to represent public
transit schedules and related geodata. A typical GTFS feed
exhibits the following components:

• agency.txt Holds information about one or multiple
service agencies of this feed. This file also holds the
timezone. This is important because times are always
provided in a HH:MM:SS format, never as absolute
timestamps.
• stops.txt A list of all stations along with their respec-

tive IDs, human-readable names and geographical po-
sitions.
• trips.txt The headers of all vehicle movements in this

feed. Each trip has a service ID which specifies the
days it operates on.
• stop times.txt The exact station sequence for each trip.

Each station has an arrival and a departure time.
• calendar.txt Holds weekly service times referenced by

trips.txt.
• calendar dates.txt Holds explicit date-wise service times

referenced by trips.txt. These services can extend ser-
vices specified in calendar.txt with single exceptions,
but they can also stand alone.

Figure 1: Map
zoomed in on New
York early in the
morning. The high
density of public tran-
sit vehicles (buses,
light rail, subways,
ferries) – displayed
by our system as
coloured circles –
indicates the com-
plexity of real-time
visualization of large
transit networks.

• shapes.txt Representation of geographical polylines that
describe the exact route a vehicle takes.

• routes.txt Groups trips into single services that are pre-
sented to users.

Many agencies world-wide already provide their data as a
GTFS feed. So the coverage is already high and likely to
grow in the next years. One drawback of using static sched-
ules is that they typically only feature station locations and
travel times between stations, but no vehicle positions in-
between (the shape.txt file is optional). So these interme-
diate positions have to be interpolated somehow to realize
smooth vehicle movements. More severely, static schedules
lack real-time information. Delays, cancellation and route
changes at short notice are not taken into account. This is
discussed in the next section.

2.3 Schedules Plus Real-Time Information
We would like to have the best of both worlds: cover-

age, fall-back, complete schedule information, compact data
and real-time information. We achieve this by using a com-
bined approach. The static timetable data provides all of
the basic information, like station locations, envisioned ar-
rival and departure times of vehicles at stations, sequences
of stations and so on. By interpolating this data we can
continuously compute the positions for all relevant vehicles.
If live delay information is available, we will incorporate it
by updating the respective vehicle positions in a suitable
way. This approach adds minimal additional traffic (only a
delay value for a time point) and falls back seamlessly to
the static schedule if no real-time information is available.
There exists an extension to GTFS, called GTFS-realtime,
which was developed to specify delay informations in a neat
manner. Unfortunately, the coverage of GTFS-realtime is
still far behind the general GTFS coverage, but for some
countries, like the Netherlands, such information is already
available nationwide.
Even with this combined approach the amount of data that
has to be managed by the server is huge. Therefore an ef-

Server

• holds transit data

• updates real time data

• processes requests

Client

• draws vehicles

• fires requests

• provides user interaction

sends vehicle positions

bounding box requests

Figure 2: Basic architecture.

ficient client/server infrastructure is crucial to enable real-
time movement visualization on client side.

3. CLIENT/SERVER INFRASTRUCTURE
We will focus now on a client/server architecture simi-

lar to the one sketched in Figure 2. The server manages
transit data, receives requests and outputs information that
enables the client to display vehicles on the screen. A client
can either be a web application, a desktop application, a
smartphone app, or something completely different. In this
section, we present the two most common interface designs
currently used in transit visualization maps.

3.1 Periodic Updates
The basic method of displaying vehicle movements on a

map is to fire periodic position requests for a certain area of
the network and to draw the results on the map. If client
performance is low, this can be the preferred way to visual-
ize vehicles, as the client code can be extremely thin. Most
of the live maps mentioned in the introduction are based on
periodic updates. If the server uses raw GPS positions as a
data source, this is the only practicable interface. Neverthe-
less, it is also possible to use this approach with interpolated
schedule data.

There are several shortcomings in this method. Its biggest
advantage, the absence of any client code to calculate vehicle
positions, is also its biggest disadvantage. Without a new

position request, vehicles will not move. To achieve a smooth
simulation, the requests have to be repeated frequently. This
generates a lot of server load. If client and server are phys-
ically separated, it also means heavy network traffic. This
is especially problematic on mobile devices, where network
connections can be extremely slow or even break down com-
pletely. If the server connection is interrupted, the vehicle
movements stop.

3.2 Spatio-temporal Bounding Boxes
A better interface design allowing for look-ahead requests

are spatio-temporal queries. In this design, the client does
not request vehicle positions, but partial vehicle trajectories
within a certain rectangle for a specific timespan ∆t (e.g. 2
minutes). We call this request a spatio-temporal bounding
box. Note that we operate in two-dimensional space.

Definition 1. A spatio-temporal bounding box Bst is a 6-
tuple (x1, y1, x2, y2, tb, te) where x1, y1 is the lower left (we
say: south-west) corner of a rectangle and x2, y2 the upper
right one (we say: north-east). Bst is additionally bounded
by a begin time tb and an end time te.

Our client works with spatio-temporal bounding boxes
with a fixed10 difference ∆t = te − tb. Then, as long as the
client’s viewport stays entirely within the rectangle (x1, y1,
x2, y2), a new such bounding box is required every ∆t time
units. Note that we can choose the rectangle larger than
the client’s viewport. Then more data needs to be trans-
ferred per request, but with the advantage that the user can
move the viewport without the need for a new request. Also
note that vehicle delays are only transmitted on each new
request. The client therefore tends to become inaccurate for
large ∆t.

It is easy to see that periodic update queries are a spe-
cial case of spatio-temporal queries, namely with tb = te.
Then ∆t = 0, and we theoretically require a new bound-
ing box every 0 seconds. In practice, however, the vehicle
positions are refreshed only every r time units anyway. A
typical monitor has a screen refresh rate of 60 Hz, in which
case r does not neet to be smaller than 16 ms. When the ve-
hicles move fast relative to the viewport11, we indeed need
a refresh rate that small for a smooth visualization. But
launching a periodic update query that frequently is unreal-
istic if considering communication via HTTP requests and a
server that has to answer 60 requests per second from possi-
bly hundreds of clients. This is the reason why it is generally
not possible to get smooth vehicle movements with periodic
updates. We hence prefer spatio-temporal queries.

4. MODEL AND DATA STRUCTURES
The main server task is to answer spatio-temporal queries

as efficiently as possible, and to send the relevant informa-
tion to the client in a format that allows for easy visualiza-
tion. In this section, we first formally define a vehicle trajec-
tory in space and time. Then we introduce a grid-based data

10A variable difference could make sense to adapt to very low
zoom levels, where the vehicles hardly move, or to adapt to
rush hour periods with a high frequency of real-time up-
dates. However, we found this to be an optimization with
little gain (performance-wise and quality-wise).

11This happens when either the zoom level is large, or when
we use the fast-forward button to accelerate time.

structure, which allows to extract all relevant trajectories in-
side a spatio-temporal bounding box efficiently. Finally, we
point out how live delay information can be incorporated
into our model.

4.1 Vehicle Trajectories
To visualize all vehicle movements in a certain area, we

first define the path taken by an individual vehicle through
(two-dimensional) space and time. We call this the trajec-
tory of the vehicle. A trajectory is described as a list of
spatio-temporal way-points.

Definition 2. A spatio-temporal waypoint p is a 3-tuple
(x, y, t) where x, y are coordinates on the two-dimensional
spatial plane and t is a time stamp.

We call the set of all spatio-temporal waypoints of a trajec-
tory P. The sequence of coordinates x, y of the way-points
describes a piecewise linear curve. The time stamps are a
parametrization of this curve. Obviously, a vehicle defined
by a trajectory can only appear once a day. To model ser-
vice days of a vehicle in a neat manner, we assign an activity
function α : D → {0, 1} to each trajectory, with D being the
set of all possible dates (e.g. all dates in the validity period
of the timetable, typically something like half a year or a
complete year). We say that a trajectory with activity fun-
tion α is active for a specific date d ∈ D if α(d) = 1. Thus,
from now on, we describe a trajectory as a tuple (P, α).

When extracting the trajectory data from GTFS, we are
confronted with the problem that spatio-temporal way-points
are typically only defined for stations. At a station, the lo-
cation as well as the arrival and departure times are known.
However, vehicle coordinates and time stamps between sta-
tions are typically not available. Some agencies provide in
their GTFS feed shape files, which describe the curve the
vehicle moves on – but not at which time the vehicle will be
at which position. So we would like to assign timestamps to
those coordinates. Also, to allow for smooth vehicle move-
ment later on and to be able to crop trajectories in our data
structure, we need a tool for calculating timestamped way-
points between stations.

For that purpose, we assume that a vehicle drives with
constant speed between stations. So consider two consecu-
tive waypoints (x, y, t) and (x′, y′, t′), and let tcur ∈ [t, t′] be
a point in time after leaving the first and before arriving at
the second waypoint. What are the belonging coordinates
xcur, ycur? The relative progress at time tcur on the way
from x, y to x′, y′ can be expressed as:

λ =
tcur − t
t′ − t

Accordingly, we get xcur = x + λ(x′ − x) and ycur = y +
λ(y′−y). The other way around, if xcur, ycur are known, we
can compute the respective timestamp using the following
value for λ:

λ =
(x′ − x)(y′ − y)

(xcur − x)(ycur − y)

Therefore it yields tcur = t+ λ(t′ − t). These simple calcu-
lations can be performed fast enough for on-the-fly interpo-
lation of vehicle trajectories.

4.2 Efficient Trajectory Retrieval
To answer spatio-temporal queries, we need to find the set

of all trajectories which intersect the given spatio-temporal

box Bst. A naive way to do this would be to parse through
the list of all trajectories and check, for each trajectory, its
relevance for Bst. A simple way to assure that all necessary
trajectories are identified correctly is to compute the spatio-
temporal bounding box (xmin, ymin, xmax, ymax, tmin, tmax)
for each trajectory and intersect this box with Bst. But
performing these steps for all available trajectories is im-
practical. In the Netherlands alone, there are over 100,000
trips per day. Considering the whole world, we have to deal
with millions of vehicle trajectories. But of course it makes
little sense to check trajectories in Australia when being
zoomed in on the Netherlands. Therefore we need efficient
data structures to group trajectories, in order to allow for
more output-sensitive query times.
A common index structure for geo-coordinates is an R-tree
[8]. R-trees group nearby objects and represent them with
their minimum bounding rectangle. Multiple bounding rect-
angles can again be grouped by their respective bounding
rectangles on the next level. R-trees allow for fast nearest-
neighbor and bounding rectangle requests, and they are com-
monly used in geographic information systems. However, we
do not only aim for finding all trajectories in a certain box,
but we want to create a hierarchy among trajectories. City
buses, for example, should only appear in the live transit
map if we are above a certain zoom level. Subways should
not be visible if we are looking at an entire country. Trains
should appear on the highest zoom level along with buses
or ferries. The following tables shows, which vehicles are
shown on which zoom level in our implementation. Zoom
level 1 is maximally zoomed out, zoom level 20 is maximally
zoomed in.

14 - 20 : bus

13 - 20 : streetcar, cable car, funicular

11 - 20 : subway, ferry

5 - 20 : rail

We could use multiple R-trees for the different zoom lev-
els. But then we would have to traverse multiple R-tree in
order to display vehicles from multiple levels. We therefore
propose another data structure, which allows for spatial and
temporal indexing, and an easy hierarchical representation.

Multi-Layer Spatio-Temporal Grids. A classical grid
divides the spatial plane in grid cells of equal size. It can
simply be stored as a two-dimensional array. A trajectory
is then assigned to all grid cells it traverses. To model the
hierarchy of transportation modes, we use a multi-layer grid.
Like an R-tree, it groups multiple bounding rectangles into
a bigger rectangle on the next level. Figure 3 gives an ex-
ample of such a multi-layer grid. Each layer is visible on a
certain zoom level. The side lengths of a cell on level i are
two times the lengths of a cell on level i + 1. This resem-
bles the way tiles are generated for web map services like
OpenStreetMap or Google Maps, which will turn out to be
beneficial for the visualization by the client. More compli-
cated grid-based data structures as described in [1] produce
different sized cells on the same hierarchical level and are
therefore not as easy applicable here. In Figure 3, a rectan-
gle request for zoom level 15 is highlighted along with the
grid cells that have to be checked for trajectories traversing
the rectangle. The obvious disadvantage of this approach is
that some trajectories have to be indexed for multiple cells.

However, this index blow-up can be controlled by choosing
appropriate side lengths; see Figure 6 in our experimental
evaluation.

zreq

z

Figure 3: Example of a multi-layer grid. The current
view-box and the grid cells that have to be checked
are highlighted.

To index the temporal component of a trajectory, we chose
a discrete approach that sorts trajectories into multiple date
bins, based on their activity function. In particular, we use
9 bins per grid cell. Bins 1-7 model weekdays. For example,
a trajectory is indexed in Bin 2 if it is active on Tuesdays.
Services that are active on all workdays are stored in Bin
8. Bin 9 is reserved for irregular trajectories that are only
active on specific dates. Each bin is stored using a simple
array, with items sorted by date (for Bin 9) and time. We
now discuss the algorithms for spatial and temporal index-
ing of trajectories in more detail.

Spatial Indexing. Spatial indexing is not as trivial as it
may seem at first glance. Figure 4 illustrates the difficul-
ties of two naive approaches to this problem. In the first
approach, a trajectory is spatially indexed into a grid cell c
if its minimum spatial bounding box Bmin(T1) intersects c.
As shown in the figure, this can lead to unnecessary index
items: T1 never crosses c. In a different approach, T2 is in-
dexed into c if one or more waypoints of T2 lie within c. Fol-
lowing this approach, T2 would not be sorted into c despite
the fact that T2 crosses c three times. Instead of those naive
approaches, we use a variant of the Cohen-Sutherland clip-
ping algorithm [7] to determine whether a trajectory really
crosses a grid cell c. The algorithm surrounds the bounding
box (the grid cell) with 8 rectangular regions. To efficiently
calculate clipping points, flags are computed for each end-
point of a straight line that specify the region the endpoint
lies in. If, for example, one endpoint lies in the upper right
area and the other endpoint lies in the bottom right area,
we can safely assume that the straight line does not cross
the bounding box. If a non-trivial situation occurs, the al-
gorithm clips the straight line at one endpoint based on the

Bmin(T1)

T1

c

T2

Figure 4: Sorting trajectories into a grid cell c.

area the endpoint is in. In the worst case, this linear in-
terpolation has to be done for both endpoints, which means
the algorithm terminates in constant time.

Temporal Indexing. We introduced the concept of an ac-
tivity function α for a trajectory, which indicates if a trajec-
tory is providing service on a given day. Activity functions
are related to and created from services in a GTFS feed.
But they are rather an abstraction of the calendar.txt file
in GTFS. In GTFS, it is possible for a regular service to
have negative exceptions (in GTFS, they are defined in cal-
endar dates.txt). Many GTFS feeds only provide positive
exceptions in calendar dates.txt, which basically means that
each active day of a trajectory is given explicitly. This does
not allow for effective indexing and renders bins 1-8 useless.
We are left with a single bin that contains each trajectory
that crosses the bin’s parent grid cell, indexed for every day
it is active. In a feed that only provides calendar dates.txt,
we have to index each T per date because otherwise, for
each requests, we would have to scan all trajectories inside
a grid cell for those that are active on the time of the spatio-
temporal request. This means that we either have to accept
a bloated data structure or long query times, both of which
are unacceptable to us. For example, consider a single tra-
jectory that provides service from Monday till Saturday and
whose service is given explicitly for each day in the GTFS
feed. If the feed is valid for one year, we would have to cre-
ate an index item for each of the about 310 days where that
trajectory is active. In contrast, by using Bin 8 (”active on
working days”) we would require only a single index item for
this trajectory. Therefore, before doing temporal indexing,
we analyze and compress all activity functions.

4.3 Answering Spatio-Temporal Queries
After trajectories have been constructed and indexed in

the multi-layer grid, the server enters request mode. The
client fires a request in the form of a spatio-temporal bound-
ing box Bst and expects the server to return all relevant tra-
jectories. If a trajectory is only partly contained in Bst, the
server should also clip the trajectory by adding new interme-
diate start and end points and transmitting only this partial
trajectory. If a trajectory leaves Bst and re-enters it mul-

tiple times, all resulting partial trajectories are grouped by
their parent trajectory. Also we decided to perform on-the-
fly temporal interpolation of non-timestamped waypoints to
save space. In the Netherlands feed alone, there are about
35 million shape vertices (specified in the shape.txt file). If
timestamps are stored as 32-bit integers this alone would add
about 140 MB to the total data set. If temporal interpola-
tion is done at query time instead of in the pre-processing,
the total memory consumption of our data is significantly
smaller.

So the server first identifies the set of relevant trajectory
IDs for Bst by invoking the multi-layer spatio-temporal grid,
considering affected grid cells and parsing through the tra-
jectories in the bins that match the current date. Then,
for every trajectory T in the resulting set, the server has to
perform three basic tasks:

A. find the exact (interpolated) clipping points pb, pe which
describe the begin/end of a partial trajectory of T in-
side Bst

B. output all waypoints that lie between pb and pe
C. perform on-the-fly temporal interpolation to transform

shape vertices into full waypoints

Let P = p1, · · · , pk be the waypoints of T . To fulfil tasks
A. and B., every pair of consecutive waypoints pi, pi+1 is
checked for temporal crossings into Bst (which can be done
in constant time) and for spatial crossing by giving the
straight line induced by pi, pi+1, and Bst to the Cohen-
Sutherland algorithm. This algorithm then computes the
correct clipping points in O(1). Sweeping over all computed
entry and exit waypoints of T and collecting the waypoints
in between, the set of all partial trajectories of T inside Bst

can be computed. On-the-fly interpolation is performed as
described earlier, also only requiring constant time per way-
point. Therefore the total runtime to accomplish all three
tasks is in O(k).

The waypoint coordinates of partial trajectories are subse-
quently transformed into coordinates relative to the current
viewbox of the client and then output as JSON. Sending
pixel coordinates instead of latitude and longitude values
allows for intermediate rendering by the client without the
necessity to perform time-intensive transformations.

Another important optimization is the following kind of
trajectory simplification. For higher zoom levels, our server
filters out projected waypoints (not time-points) with prede-
cessor distances below a certain threshold (per zoom level).
This greatly reduces the size of the JSON result as well the
computational load of the client, which is essential for a
smooth visualization. Without this step, the server would
output complete trajectories with hundreds of waypoints on
zoom levels where even distances of multiple kilometers are
far below the width of a single projection pixel. The client
would then have to do thousands of interpolations without
any visible effect at all.

4.4 Modelling Real-Time Data
Real-time public transit data is usually modelled as a list

of arrival and departure delays per trip and station. Since
August 2011, the GTFS specification is extended by a real-
time transit data feed. GTFS-realtime provides support for
several kinds of information: Trip updates describe devia-
tions from the official schedule like delays (’stop time up-
date’), cancellations and route changes. This is our main

Figure 5: Displaying delay information.

station 0 1 2 3 4 5
δarr 0s 0s 60s 180s 240s 60s
δdep 0s 0s 120s 180s 120s 60s
tarr 13:10 13:17 13:24 13:40 13:51 13:58
tdep 13:11 13:19 13:25 13:45 13:52 13:59

Table 1: Example of erroneous delay information.
The invalid delay is marked red.

source of real-time data. Updates are given with the IDs
of the scheduled GTFS trip they relate to. There is also
support for GPS vehicle positions, which can be used for
an approach where actual vehicle coordinates are outputted
explicitly, along with their current speed. However, that
information is currently not provided in any of the GTFS-
realtime feeds we know of.

To incorporate delays in our framework, each timestamped
waypoint of a trajectory can hold two delays; an arrival de-
lay δarr and a departure delay δdep. In the station sequence
of a trajectory, a delay δ for station i affects all stations after
i and has to be explicitly neutralized by another delay. After
the real-time feed has been received and parsed, the server
updates each affected trajectory. This is done by locking
the trajectory (so that concurrent spatio-temporal request
runs will not produce erroneous results) and updating the
arrival and delay fields of each timestamped waypoint in
P. Both the interpolation algorithm, and the trajectory re-
trieval and cropping algorithm, described in the previous
sections, respect delays by adding them to the timestamps
of the affected stations. The server checks each received de-
lay update for validity, because real-time feeds sometimes
output invalid delay times. Especially for past stations, an
erroneous delay information could break the clipping algo-
rithm completely.

Table 1 gives an example of a corrupted delay feed. For

Station 4, δdep sets the departure time to 13:54, while δarr
sets the arrival time to 13:55, which is of course impossible
and would lead to undefined outputs by our clipping algo-
rithm.

After possible delays got filtered, δarr and δdep are used
in the retrieval and interpolation process, in order to get the
correct set of trajectories to be displayed by the client and
to calculate the correct (delayed) vehicle position. Delay
information is also output by the client, see Figure 5.

5. FURTHER APPLICATIONS

5.1 Combination with Route Planning
We already mentioned that a (mobile) user can benefit

from a real-time public transit map in various ways. The
user can easily get an overview of all near-by and approxi-
mating vehicles at any point in time. Delay information can
be obtained by the vehicle position as well as by displayed
infoboxes. Possible transfers between vehicles can be iden-
tified by comparing the vehicle tracks or zooming in on a
particular station.

However, the full potential of the live map could be ex-
ploited in combination with a route planning engine. The
user inputs a start time, a source and a target location. The
route planner then computes a set of good journeys from
source to target, considering e.g. travel time and number of
transfers. On that basis, the client could now visualize only
the movements of relevant vehicles. If the user decides for a
specific journey, the client displays only those vehicles that
are relevant for this journey. A traveler thus has continuous
information about her current position, and the positions
of connecting vehicles. When delays make planned transfers
impossible, the client should display alternative connections.

5.2 Statistics and Replays
Our grid data structure allows for very efficient answering

of spatio-temporal requests; see Section 6 below. This al-
lowed us to implement a fancy ”fast-forward” feature, where
time can be accelerated by a factor of up to 60.

Moving backwards in time might also be of interest. If a
user selects a bus at a certain time, she might be interested if
this particular bus was on time yesterday, or to have statis-
tics about how often the bus was delayed in the last weeks.
Also if the user took a longer journey, he might welcome the
opportunity to watch a replay of the vehicle movements of
that journey. As the schedule data is stored by our system
anyway, we just have to maintain a database to store de-
lay values to feature statistical analysis and spatio-temporal
requests reaching in the past.

5.3 Cleaner GTFS Feeds
In the process of our implementation work, it emerged

that our server had become a powerful tool to validate and
minimize GTFS feeds. The GTFS parser can handle cor-
rupted feeds (also corrupted delays), is able to optimize the
number of shape vertices, dramatically reduces the number
of service dates by transforming explicit service dates into
weekly services with exceptions and can even add missing
timestamps to shape nodes. If the internal transformations
would be used to create a new version of the GTFS feed,
those would be cleaner and less space-consuming than the
original one, in many cases to a large extent.

GTFS feed #|T | #stops #arr/dep box area
Vitoria-Gasteiz 6,041 338 122,184 66.84

Budapest 147,556 5,357 2,660,027 1,952
New York Area 300,417 34,948 11,665,443 98,965

Netherlands 548,007 73,293 12,221,953 2.5·107

Combined feed 2,507,566 298,535 76,287,281 ∼ 108

(22 GTFS feeds)

Table 2: Datasets used for testing. Areas are given
in km2.

6. EXPERIMENTAL EVALUATION
Our server is written in C++ (compiled with gcc 4.4.6

and optimization flag -Ofast), it holds the transit data in
the described multi-layered grid structure, requests real-time
data from feeds and responds to spatio-temporal requests
sent by the client via a HTTP-interface.

To evaluate the server performance, we ran tests on several
GTFS feeds and measured computation times. All tests were
executed on a machine with two Intel Xeon E5640 CPUs
(8 cores in total) and 66 GB of RAM. To show that the
computational cost of naive approaches quickly grows be-
yond any limit reasonable for live map requests, we started
with smaller networks for single cities and gradually chose
bigger networks of entire countries. A detailed overview of
the dataset parameters is given in Table 2. At the time of
testing, real-time feeds were available for New York, San
Francisco and the Netherlands. However, delay information
usually does not affect the request times at all.
We first give some insight in how to compute good grid cell
sizes for our multi-layered data structure and then present
server performance results for a variety of requests.

6.1 Grid-Layer Construction
To get optimal results with our multi-layer spatio-temporal

grid data structure, the side-length l of the bottom grid has
to be chosen wisely. If l is too small, the grid overhead gets
too large and grid lookup times exceed even the actual in-
terpolation times. If l is too big, trajectories of vehicles that
are not currently moving through the spatial part of Bst

are given to the interpolation algorithm, resulting in un-
necessary interpolations. Figure 6 illustrates this problem.
We ran several tests against the GTFS feed of the Nether-
lands projected onto a 268,435,456×268,435,456 map plane.
Buses, streetcars and subways were loaded into a single grid
of cell size l, on which a spatial request with a square of
side lengths lr = 500,000 (≈ 45km) was executed. We mea-
sured the average index count per trajectory as well as the
number of trajectories that were given to the interpolation
algorithm. Note that only trajectories that were active on
a normal Monday were output. With smaller l, the number
of index items per trajectory explodes. With bigger l, more
and more unnecessary potential trajectories Tpot are given
to the interpolation algorithm. At l = 2.5 × 106, a single
cell almost spans the whole network and the number of Tpot
reaches the total number of trajectories active on a Monday.
Note that the number of index items per T never reaches 1
because there are some trajectories that have to be indexed
temporally more than one time.

6.2 Server Performance
We tested the server performance by running several spatio-

temporal queries against the datasets described above. Each

0 0.5 1 1.5 2 2.5

·106

100

101

102

grid size l

�
in
d
ex

it
em

s
p
er
T

0.5

1

1.5

·105lr

�
n
u
m
b
er

of
T p

o
t

Figure 6: Effects of spatial grid size l. We mea-
sured the number of trajectory index items and the
number of output potential trajectories Tpot inside
a spatio-temporal bounding box with side length
500.000 (ca. 45 km). Data is taken from the com-
plete Netherlands GTFS.

query requested the partial trajectories for the next 60 min-
utes and was run twice: once in the morning rush hour with
tb = 8:00:00 and once in the late evening with tb = 23:00:00.
In a first step, we did a total area scan that requested the
partial trajectories of the entire dataset (z = 20). We then
proceeded with a spatio-temporal bounding box request that
resembles the requests fired by real clients. The request box
with area A ≈ 10 km2 was hand-picked from the center of
the dataset. The request zoom level was z = 20. A third
request covered an area of about 60,000 km2 at zoom level
z = 9.

All of these queries were answered using two different ap-
proaches. First, we ran the test using a naive approach
where trajectories were stored as an unsorted list. We then
did the same request on a layered grid with base-cell side
length l = 500,000 (approximately 40 km in central Europe.)
Note that even in the naive approach, we implemented var-
ious simple optimizations. Consider, for example, a query
that requests all partial trajectories between 8:00 and 9:00.
If the naive approach finds a trajectory that leaves the first
station at 9:20 and arrives at the last station at 10:50, the
trajectory is skipped.

We measured the total query time, the number of output
partial trajectories and the number of affected trajectories.
We say a trajectory T is affected during a query if a non-
trivial computation has to be executed on T . Non-trivial
computations include, for example, clipping and a call to
the trajectory’s activity function. Calls to getter functions
are considered trivial. A good measurement for the scala-
bility of an approach is the ratio of affected trajectories and
partial trajectories in the output. If, for example, the server
outputs 500 partial trajectories and only had to look at 700
trajectories at all, we consider this a good result.
For small networks like Vitoria-Gasteiz, the naive approach
yields reasonable good results. However, even for this small
dataset, request times are 5 to 20 times higher than for the
grid layer approach. Despite the fact that Vitoria-Gasteiz
does not have any vehicles that are displayed at zoom level
9, the naive approach still has to check 6,000 trajectories for
the z = 9 box request. For bigger datasets like Budapest,
box requests at ground level are still 20 times faster with

Naive Grid
8am 11pm 8am 11pm

Total area scan
time in ms 500 480 100 50
#partial trajectories 3.3 k 1.6 k 3.3 k 1.6 k
#affected trajectories 147.6 k 147.6 k 3.8 k 1.8 k
request area in km2 1.9 k 1.9 k 1.9 k 1.9 k

Box request
time in ms 457 460 27 12
#partial trajectories 1 k 434 1 k 434
#affected trajectories 147.6 k 147.6 k 1.5 k 628
request area in km2 9.9 9.9 9.9 9.9

Box request with z = 9
time in ms 328 326 1.8 < 1
#partial trajectories 73 39 73 39
#affected trajectories 147.6 k 147.6 k 73 39
request area in km2 60.2 k 60.2 k 60.2 k 60.2 k

Table 3: Testing results for Budapest.

the grid layer than with the naive approach, see Table 3.
In Table 4, the z = 9 box request for the New York City

area at 11pm yields 161 partial trajectories. To output this
(small) number of T par, the naive approach has to look at
300,000 trajectories, while the grid only has to look at 227.
Similar results can be seen in Table 5 for the Netherlands
feed.

To the best of our knowledge, the Netherlands GTFS is
(by far) the biggest transit feed available. It can be con-
sidered as ’complete’, meaning that every public transit ve-
hicle in the country is included with its full polyline. Still,
despite the fact that the total number of trajectory vertices
is 16 times as high as in the Budapest feed (the number of
arrival/departure events is nearly 5 times as high), the time
to output about 1,000 partial trajectories at ground level in
the city center of Amsterdam is only slightly bigger than
the time to output about 1,000 T par in the city center of
Budapest. The higher time for the box request in Amster-
dam can be explained by the higher network density in the
city and mainly because of the higher vertex density in the
Netherlands feed. Note that the z = 9 box requests in Ta-
ble 5, which nearly covers the whole country of the Nether-
lands, only takes 23 ms during the morning rush hour. At
this zoom level, only trains are returned by the server.

To show that our back-end has the potential to handle the
public transit network of the whole world, we ran the queries
against a dataset consisting of 22 feeds from around the
world. These feeds include three entire countries (Switzer-
land, Sweden and the Netherlands). The other feeds are:
public transit in the cities of Albuquerque, Boston, Los An-
geles, Miami, San Francisco, Portland, Chicago (all USA),
Quebec, Montreal (both Canada), Manchester (UK), Bu-
dapest (Hungary), Rennes (France), Turin (Italy), Vitoria-
Gasteiz (Spain), Auckland, Wellington (both New Zealand),
Adelaide (Australia) and the public transit in the areas of
Freiburg (Germany) and New York (USA). The parameters
of this combined feed are listed in Table 2.

Table 6 shows that even when run against the combined
dataset, the grid layer approach is still able the handle re-
quests very fast. For the box requests, computation times
are nearly the same (±1 ms) as for the Netherlands. This

Naive Grid
8am 11pm 8am 11pm

Total area scan
time in ms 1.3 k 1.1 k 478 155
#partial trajectories 11.5 k 3.6 k 11.5 k 3.6 k
#affected trajectories 300 k 300 k 17.2 k 3.8 k
request area in km2 98 k 98 k 98 k 98 k

Box request
time in ms 1.1 k 1 k 87 26
#partial trajectories 1.1 k 353 1.1 k 353
#affected trajectories 300 k 300 k 3.4 k 783
request area in km2 10.7 10.7 10.7 10.7

Box request with z = 9
time in ms 676 670 13 5
#partial trajectories 485 161 485 161
#affected trajectories 300 k 300 k 559 227
request area in km2 60.8 k 60.8 k 60.8 k 60.8 k

Table 4: Testing results for New York + New Jersey.

Naive Grid
8am 11pm 8am 11pm

Total area scan
time in ms 2.1 k 1.9 k 706 310
#partial trajectories 11.5 k 5.1 k 11.5 k 5.1 k
#affected trajectories 548 k 548 k 18.1 k 8.2 k
request area in km2 25 M 25 M 25 M 25 M

Box request
time in ms 1.82 k 1.82 k 51 33
#partial trajectories 911 556 911 556
#affected trajectories 548 k 548 k 2 k 1.2 k
request area in km2 10.7 10.7 10.7 10.7

Box request with z = 9
time in ms 1.28 k 1.28 k 23 14
#partial trajectories 707 451 707 451
#affected trajectories 548 k 548 k 986 533
request area in km2 60 k 60 k 60 k 60 k

Table 5: Testing results for the Netherlands.

Naive Grid
8am 11pm 8am 11pm

Total area scan
time in ms 8 k 9 k 1.3 k 1.7 k
#partial trajectories 40.5 k 40.3 k 40.5 k 40.3 k
#affected trajectories 2,5 M 2,5 M 67.7 k 67.1 k
request area in km2 ∼100 M

Box request
time in ms 7.5 k 8.2 k 51 33
#partial trajectories 911 556 911 556
#affected trajectories 2,5 M 2,5 M 2 k 1.2 k
request area in km2 10.7

Box request z = 9
time in ms 5.9 5.9 23 15
#partial trajectories 707 451 707 451
#affected trajectories 2,5 M 2,5 M 986 533
request area in km2 60 k

Table 6: Testing results for the combined feed. Box
request areas are the same as in Table 5. Request
times are CET.

proves that loading more feeds in our system does not affect
the runtime of spatio-temporal queries covered by a single
feed. With that observation, we can conclude that our im-
plementation (given enough memory) can provide real-time
vehicle movements all around the whole world efficiently. In
combination with a client that visualizes this movements in
an appealing manner, we now have a framework for a fully
functional world-wide live public transit map.

We encourage the reader to visit our live demo at http:

//tracker.geops.ch . At the time of this writing, over 80
feeds have been incorporated, which is even more than in
our experiments.

7. CONCLUSIONS AND FUTURE WORK
We presented a scalable approach for the live visualization

of real-time public transit data. We described a strategy
that handles vehicle trajectories as piecewise linear curves
on the projected map plane and combines delay information
with static schedule data to provide a visualization that is
both close to reality and robust against missing real-time
updates. We discussed the advantages of the approach com-
pared to periodically updated GPS positions and developed
a suitable client/server architecture. Evaluation showed that
even in dense transportation networks, the average request
times for the server are very low (usually between 1 and 80
ms). Further tests showed that the request times stay the
same if the dataset grows in both the number of trajectories
and covered area.

There are still several aspects in which our back-end could
be improved. One important aspect is the space consump-
tion of the whole system and the network traffic. Shape ver-
tices use a lot of memory and slow down the clipping and in-
terpolation algorithm. We mentioned that our server filters
out waypoints whose distance is below a certain threshold.
But there are still many shape vertices that are redundant,
for example, sequences of waypoints on a straight line. Line
simplification algorithms like Ramer-Douglas-Peucker [6] or
the algorithm by Suri [12] could be applied to the dataset
before storing it into the grid layer.

Another aspect is that shape information is often missing
from GTFS feeds, especially for buses. Buses stick to street
networks, and interpolating the way between two bus stops
by a straight line does not do justice to this fact. Inter-
polation by computing shortest paths between consecutive
bus stops in the street network (e.g. extracted from Open-
StreetMap) could improve those shapes significantly.

There are some simplifications used in our model in order
to keep processing times low and algorithms simple. For
example, we assume constant travel speed or straight lines
between waypoints. We think that user experience is not
significantly impaired by these assumptions. Still, slowing
down before a stop and initial acceleration after a stop could
be added to our model. A similar embellishment would be
to replace the simple linear interpolation between waypoints
by interpolation with curves of higher order.

Even without these optimizations, we have already demon-
strated that esthetically pleasing and scalable real-time pub-
lic transit visualization is possible. With the increasing
availability of static and real-time GTFS feeds, we hope that
soon our live demo will indeed cover the entire world.

8. REFERENCES
[1] Walid G Aref and Hanan Samet. Efficient processing

of window queries in the pyramid data structure. In
Proceedings of the ninth ACM
SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 265–272. ACM, 1990.

[2] Michela Bertolotto, Ailish Brophy, Alan Martin,
O Gregory, Robin Strahan, Eoin McLoughlin, et al.
Bus catcher: A context sensitive prototype system for
public transportation users. In Web Information
Systems Engineering Workshops, International
Conference on, page 64. IEEE Computer Society,
2002.

[3] Frédéric Bertrand, Alain Bouju, Christophe
Claramunt, Thomas Devogele, and Cyril Ray. Web
architecture for monitoring and visualizing mobile
objects in maritime contexts. In Web and Wireless
Geographical Information Systems, pages 94–105.
Springer, 2007.

[4] James Biagioni, Adrian Agresta, Tomas Gerlich, and
Jakob Eriksson. Transitgenie: a context-aware,
real-time transit navigator. In Proceedings of the 7th
ACM Conference on Embedded Networked Sensor
Systems, pages 329–330. ACM, 2009.

[5] Daniel Delling, Moritz Kobitzsch, Dennis Luxen, and
Renato Fonseca F Werneck. Robust mobile route
planning with limited connectivity. In ALENEX,
pages 150–159. SIAM, 2012.

[6] David H Douglas and Thomas K Peucker. Algorithms
for the reduction of the number of points required to
represent a digitized line or its caricature.
Cartographica: The International Journal for
Geographic Information and Geovisualization,
10(2):112–122, 1973.

[7] James D Foley, Andries Van Dam, Steven K Feiner,
John F Hughes, and Richard L Phillips. Introduction
to computer graphics, volume 55. Addison-Wesley
Reading, 1994.

[8] Antonin Guttman. R-trees: A dynamic index structure
for spatial searching, volume 14. ACM, 1984.

[9] Siyuan Liu, Ce Liu, Qiong Luo, Lionel M. Ni, and
Huamin Qu. A visual analytics system for
metropolitan transportation. In Proceedings of the
19th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, GIS ’11,
pages 477–480, New York, NY, USA, 2011. ACM.

[10] Niklas Schnelle, Stefan Funke, and Sabine Storandt.
Dorc: Distributed online route computation-higher
throughput, more privacy. In Pervasive Computing
and Communications Workshops (PERCOM
Workshops), 2013 IEEE International Conference on,
pages 344–347. IEEE, 2013.

[11] Leon Stenneth, Ouri Wolfson, Philip S Yu, and
Bo Xu. Transportation mode detection using mobile
phones and gis information. In Proceedings of the 19th
ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pages
54–63. ACM, 2011.

[12] Subhash Suri. A linear time algorithm for minimum
link paths inside a simple polygon. Computer Vision,
Graphics, and Image Processing, 35(1):99–110, 1986.

