
Semantic Full-text Search with Broccoli

Hannah Bast, Florian Bäurle, Björn Buchhold, Elmar Haußmann
Department of Computer Science

University of Freiburg
79110 Freiburg, Germany

{bast, baeurlef, buchhold, haussmann}@informatik.uni-freiburg.de

ABSTRACT

We combine search in triple stores with full-text search into
what we call semantic full-text search. We provide a fully
functional web application that allows the incremental con-
struction of complex queries on the English Wikipedia com-
bined with the facts from Freebase. The user is guided by
context-sensitive suggestions of matching words, instances,
classes, and relations after each keystroke. We also pro-
vide a powerful API, which may be used for research tasks
or as a back end, e.g., for a question answering system.
Our web application and public API are available under
http://broccoli.cs.uni-freiburg.de.

1. INTRODUCTION

Knowledge is available in electronic form in two main rep-
resentations: as natural language text (e.g., Wikipedia), and
in structured form (e.g., Freebase). The central motivation
behind our system is that both representations have their
advantages and should be combined for high-quality seman-
tic search.1

For example, consider the query Plants with edible leaves

and rich in vitamin C. Information about which plant con-
tains how much vitamin C is naturally represented as fact
triples. Indeed, this information is found in a knowledge
base like Freebase. Information about which plants have
edible leaves is more likely to be mentioned in natural lan-
guage text. It is mentioned many times in Wikipedia, but we
don’t find it in Freebase (or any other knowledge base that
we know of). In principle, the information could be added,
but there will always be specific or recent information only
described as text.
In the following, we describe how we combine these two

information sources in a deep way. Figure 1 shows a screen-
shot of our demo system in action for our example query.

1As a matter of fact, Wikipedia also contains some struc-
tured data, and Freebase also contains natural language
text.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

SIGIR’14, July 6–11, 2014, Gold Coast, Queensland, Australia.

ACM 978-1-4503-2257-7/14/07.

http://dx.doi.org/10.1145/2600428.2611186.

2. SYSTEM OVERVIEW

Preprocessing In principle, our system works for any given
text corpus and ontology. For our demo we use the English
Wikipedia (text) + Freebase (ontology). We preprocess this
data in three phases. First, we link entities from the ontol-
ogy to mentions in the full text, utilizing Wikipedia links
and a set of heuristics as described in [1]. This provides the
basis for our occurs-with operator explained below. Second,
the full text is split into contexts that ”semantically belong
together” as described in [3]. This is key for results of high
quality. Third, the special-purpose index described in [2] is
built. This is key for providing results and suggestions in
real time.

Queries The user interface allows to incrementally con-
struct basic tree-like SPARQL queries, extended by an ad-
ditional relation occurs-with. This relation allows to specify
the co-occurrence of entities from the ontology with words
from the text. For our example query, the back end com-
putes all occurrences of plants that occur in the same con-
text (see above) as the words edible and leaves. We also
provide the special relation has-occurrence-of, to search for
documents in which words and entities co-occur. Regular
full-text search is thus included as a special case.

Query Suggestions Based on the input of a user, our sys-
tem gives context-sensitive suggestions for words, classes,
instances, and relations. The displayed suggestions always
lead to hits, and the more / higher-scored hits they lead to,
the higher they are ranked. This is an elementary feature
for any system that utilizes a very large ontology. Without
good suggestions it is very hard to guess how entities and
relations are named, even for expert users.

Excerpts For each result hit (an entity or a document),
matching evidence for each part of the query is provided.
This is invaluable for the user to judge whether a hit indeed
matches the query intent. The UI also provides (on click) de-
tailed information about the NLP preprocessing (see above).

3. TARGET USERS

We see two uses of our system, and hence also two target
groups of users.

Our first target group is expert searchers. Our search in-
terface is more complex than ordinary keyword search or
asking questions in natural language. The benefit is a pow-
erful query language with precise result semantics. Under
these constraints, we have made the query process as easy-
to-use as possible. For example, there are tens of thousands
of Wikipedia List pages like ”Plants with edible leaves”.

http://broccoli.cs.uni-freiburg.de

Words

Garden cress (4)

Broccoli (9)

Kohlrabi (3)

Instances:

1 - 3 of 9

Ingredient (9)

Food (9)

Classes:

1 - 2 of 37 Broccoli

Ontology fact

Broccoli: is a plant; Vitamin C per 100g in mg 89.2

Document: Edible plant stem

The edible portions of Broccoli are … the leaves.

Garden cress

Ontology fact

Cabbage: is a plant; Vitamin C per 100g in mg 69

Document: Cress

Plants cultivated for their edible leaves : Garden cress …

Your Query:

Plant

occurs-with edible leaves

Vitamin C per 100g in mg

Hits: 1 - 2 of 9

> 50

occurs-with

Relations:

1 - 3 of 22

Compatible with dietary restriction

Energy per 100g

(9)

(9)

 enter search terms …

+

Figure 1: A screenshot of our demo system. The current query is visualized on the top right as a tree. Below,
the result hits are shown, grouped by instance (entity) and ranked by relevance, together with evidence from
the ontology and the full text. The query can be extended further with the search field on the top left. The
four boxes below provide context-sensitive suggestions that depend on the current focus in the query, here:
matching sub and super classes, instances, and relations for plants matching the current query.

Many of these are actually non-trivial semantic queries, which
are hard to answer with traditional tools, like Google web
search. We expect our tool to be a great asset for contrib-
utors to such List pages. We expect a similar benefit for
expert searches in other areas, e.g., news (presidential cam-
paign backers) or medicine (symptoms of a disease).
Our second target group is researchers in semantic search

or engineers of such systems. They may want to use our
system to explore the given data and thus gain insight into
which facts are expressed in which ways. Engineers may
also use our API as a back end for a more simplistic front
end, suited for non-expert users. As a first step towards
such a front end, we have integrated the following feature in
our demo: when typing a query with three or more words
without following any of the suggestions, the system tries
to convert these keywords into a matching structured query.
For example, try mafia films directed by francis coppola.

4. RELATED WORK

We see three lines of research closely related to our system.
First, we already mentioned systems for semantic search

with more elaborate front ends. In particular, such allowing
natural language queries like IBM’s well-known Watson [4],
or standard keyword queries like in ad-hoc entity search [5].
When they work, such more intuitive front ends are clearly
to be preferred. However, semantic search is complex and
hard, and queries often fail. Then simple front ends lack the
feedback needed to understand what went wrong and what
can be done to ask a better query.
Second, there are various extensions of ontology search

by a free-text component. A good example is the MQL
language (similar to the more standard SPARQL) provided
by Freebase (http://www.freebase.com/query). In MQL,
objects of triples can also be string literals and these can be

matched against regular expressions and keyword queries.
For example, find all songs containing the words love and
you in their title. In principle, this could be used to simulate
our occurs-with operator, but only very inefficiently; see [2,
Section 4 and Table 1].

Third, information extraction (IE) aims at extracting fac-
tual knowledge from text. If this succeeded perfectly, on-
tology search would be all we need. There are two caveats,
however. Whatever information was not extracted prop-
erly is lost. In our system, all the original information is
kept and is, in principle, accessible by an appropriate query.
Also, IE triples often have string literals as objects. Dealing
efficiently with these requires a special index data structure,
like the one behind our search.

5. REFERENCES

[1] H. Bast, F. Bäurle, B. Buchhold, and E. Haussmann.
Broccoli: Semantic full-text search at your fingertips.
CoRR, abs/1207.2615, 2012.

[2] H. Bast and B. Buchhold. An index for efficient
semantic full-text search. In CIKM, pages 369–378,
2013.

[3] H. Bast and E. Haussmann. Open information
extraction via contextual sentence decomposition. In
ICSC, pages 154–159, 2013.

[4] D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan,
D. Gondek, A. Kalyanpur, A. Lally, J. W. Murdock,
E. Nyberg, J. M. Prager, N. Schlaefer, and C. A. Welty.
Building watson: An overview of the DeepQA project.
AI Magazine, 31(3):59–79, 2010.

[5] J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object
retrieval in the web of data. In WWW, pages 771–780,
2010.

http://www.freebase.com/query

	Introduction
	System Overview
	Target Users
	Related Work
	References

