Lasse Kliemann
Peter Sanders (Eds.)

+—
|-
<<
(D)
i
N
[
i
(D)
+—
(ge)
+—
(U]

Survey

LNCS 9220

Algorithm Engineering

Selected Results and Surveys

Design

Algorithm
Engineering

X
/Inpleme“

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9220

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Lasse Kliemann - Peter Sanders (Eds.)

Algorithm Engineering

Selected Results and Surveys

@ Springer

Editors

Lasse Kliemann Peter Sanders

Kiel University Karlsruhe Institute of Technology
Kiel Karlsruhe

Germany Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)

Lecture Notes in Computer Science

ISBN 978-3-319-49486-9 ISBN 978-3-319-49487-6 (eBook)

DOI 10.1007/978-3-319-49487-6
Library of Congress Control Number: 2016957380
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing AG 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Algorithm Engineering is a methodology for algorithmic research that combines theory
with implementation and experimentation in order to obtain better algorithms with high
practical impact. Traditionally, the study of algorithms was dominated by mathematical
(worst-case) analysis. In Algorithm Engineering, algorithms are also implemented and
experiments conducted in a systematic way, sometimes resembling the experimentation
processes known from fields such as biology, chemistry, or physics. This helps in
counteracting an otherwise growing gap between theory and practice. The possible
benefits are manifold:

We can identify practically good algorithms, even where theoretical analysis is
lacking or does not make an accurate enough statement. This can lead to successful
algorithms being recognized and put into practice even when they look mathe-
matically inaccessible. It can also lead to theoretically appealing algorithms being
recognized as less useful in practice. For example, suppose that we have one
algorithm with a quadratic worst-case running time and another with a cubic bound,
both proven by theory. Which of the two is faster in practice? This cannot be
answered by merely looking at the degrees of the polynomials.

Experimentation can be supportive of design and analysis. It can help to identify
bottlenecks that could be eliminated by a re-design. It can help to build and to test
falsifiable hypotheses, e.g., whether a particular algorithm after a modification that
makes it faster will still deliver the same solution quality. This creates a feedback
loop where each particular sub-methodology benefits from the others.
Observations of good performance in practice of an algorithm for which we only
know unsatisfactory theoretical guarantees have sparked new types of theoretical
algorithm analyses. In particular, smoothed analysis instead of the traditional
worst-case analysis has been shown to be successful. In smoothed analysis, the
input is first chosen as in worst-case analysis (i.e., we consider all possible inputs)
but then small random perturbations are performed. We then conduct an
average-case analysis using the resulting distribution on the set of instances.

The requirement to implement and to experimentally evaluate algorithms motivates
algorithm designers to think about practicability and to consider more realistic
computational models. New possibilities and their restrictions given by modern
hardware are moved into focus, such as memory hierarchies and parallelism.
Testing algorithms on real-world input stimulates the exchange and cooperation
between the algorithmics community and other fields where algorithms are used as
tools.

This volume reviews important algorithmic developments and results that were

made possible or were supported by Algorithm Engineering. Chapters are ordered
alphabetically by first author. This work emerged from the Priority Programme
“Algorithm Engineering” (1307) funded by the German Research Foundation (DFG),

VI Preface

which started in 2007 and lasted six years. In total, 28 projects received funding
through this program. In addition there were six associated projects. We gratefully
acknowledge this support.

Each submission for this volume was peer-reviewed. We sincerely thank the authors
and the reviewers for their work, diligence, and cooperation.

In total, we have 12 chapters, including extensive surveys and case studies:

Chapter 1 A simple but powerful stochastic local search algorithm for the SAT
problem is presented and analyzed. Experiments are used for tuning and for
comparison with other algorithms. It is concluded that when flipping a variable,
it is more important to pay attention to the number of newly unsatisfied clauses
than to the number of newly satisfied ones.

Chapter 2 is a survey on practical algorithms for routing in transportation networks,
including road networks, schedule-based public transport networks, as well as
multimodal scenarios. Experiments show that it is possible to find good jour-
neys within milliseconds in large-scale networks. Several of the described
approaches have been included in mainstream production systems.

Chapter 3 surveys different ways to theoretically analyze the k-means clustering
algorithm. Several of the theoretical activities, e.g., smoothed analysis, were
motivated by observations in experiments.

Chapter 4 surveys practical algorithms for balanced graph partitioning. A large
variety of different approaches are presented, and implementation aspects and
benchmarking are discussed.

Chapter 5 In randomized and derandomized rounding, for many applications it is
required that the solution satisfies certain constraints with probability one. In
order to obtain such solutions, there exist two very different algorithmic
approaches, which, however, have very similar theoretical properties. This
chapter surveys theoretical foundations, experimental studies, and applications
for those two original approaches and new ones derived from them.

Chapter 6 is a review of external-memory search for state space problems, giving
detailed descriptions of algorithms and data structures, complemented by
concrete examples. Implementation on a GPU is discussed and speedups are
substantiated by experiment.

Chapter 7 presents a framework for the development and evaluation of real-time
rendering algorithms. A central concept is a meta rendering algorithm that
automatically selects an algorithm for the visualization of highly complex
scenes.

Chapter 8 applies the Algorithm Engineering cycle of design, analysis, imple-
mentation, and experimentation to robust optimization. In such problems, the
exact data is not known but bounded by a set of possible realizations. The
importance of considering real-world applications is demonstrated.

Chapter 9 gives a survey on concepts and algorithms for finding clusters in net-
works that change over time. Data sets for experimentation, comprised of
real-world and synthetic data, are thoroughly discussed.

Preface VII

Chapter 10 Many industrial production planning problems have both sequencing
and allocation aspects. This chapter describes and experimentally evaluates a
framework based on genetic algorithms that can smoothly integrate both
aspects.

Chapter 11 A streaming algorithm for the bipartite matching problem is gradually
improved using experimentation. This finally results in a version that inherits all
the good theoretical properties of the original version while being much faster
in practice.

Chapter 12 is a survey and a unified, extensive experimental comparison of algo-
rithms for the art gallery problem — a classic and important problem from
computational geometry. Moreover, a new and superior implementation is
presented, which combines the best techniques identified in previous
approaches.

February 2016 Lasse Kliemann
Peter Sanders

Contents

Engineering a Lightweight and Efficient Local Search SAT Solver 1
Adrian Balint and Uwe Schéning

Route Planning in Transportation Networks 19
Hannah Bast, Daniel Delling, Andrew Goldberg,
Matthias Miiller-Hannemann, Thomas Pajor, Peter Sanders,
Dorothea Wagner, and Renato F. Werneck

Theoretical Analysis of the k-Means Algorithm — A Survey 81
Johannes Blomer, Christiane Lammersen, Melanie Schmidit,
and Christian Sohler

Recent Advances in Graph Partitioning 117
Aydin Bulug, Henning Meyerhenke, Ilya Safro, Peter Sanders,
and Christian Schulz

How to Generate Randomized Roundings with Dependencies
and How to Derandomize Them 159
Benjamin Doerr and Magnus Wahlstrém

External-Memory State Space Search. 185
Stefan Edelkamp

Algorithm Engineering Aspects of Real-Time Rendering Algorithms. 226
Matthias Fischer, Claudius Jihn, Friedhelm Meyer auf der Heide,
and Ralf Petring

Algorithm Engineering in Robust Optimization. 245
Marc Goerigk and Anita Schobel

Clustering Evolving Networks 280
Tanja Hartmann, Andrea Kappes, and Dorothea Wagner

Integrating Sequencing and Scheduling: A Generic Approach
with Two Exemplary Industrial Applications 330
Wiebke Hohn and Rolf H. Mohring

Engineering a Bipartite Matching Algorithm in the Semi-Streaming Model. .. 352
Lasse Kliemann

http://dx.doi.org/10.1007/978-3-319-49487-6_1
http://dx.doi.org/10.1007/978-3-319-49487-6_2
http://dx.doi.org/10.1007/978-3-319-49487-6_3
http://dx.doi.org/10.1007/978-3-319-49487-6_4
http://dx.doi.org/10.1007/978-3-319-49487-6_5
http://dx.doi.org/10.1007/978-3-319-49487-6_5
http://dx.doi.org/10.1007/978-3-319-49487-6_6
http://dx.doi.org/10.1007/978-3-319-49487-6_7
http://dx.doi.org/10.1007/978-3-319-49487-6_8
http://dx.doi.org/10.1007/978-3-319-49487-6_9
http://dx.doi.org/10.1007/978-3-319-49487-6_10
http://dx.doi.org/10.1007/978-3-319-49487-6_10
http://dx.doi.org/10.1007/978-3-319-49487-6_11

X Contents

Engineering Art Galleries

Pedro J. de Rezende, Cid C. de Souza, Stephan Friedrichs,
Michael Hemmer, Alexander Kroller, and Davi C. Tozoni

Author Index

http://dx.doi.org/10.1007/978-3-319-49487-6_12

Engineering a Lightweight and Efficient Local
Search SAT Solver

Adrian Balint and Uwe Schoning®™)
Institute of Theoretical Computer Science, Ulm University,

89069 Ulm, Germany
{adrian.balint,uwe.schoening}@uni-ulm.de

Abstract. One important category of SAT solver implementations use
stochastic local search (SLS, for short). These solvers try to find a satis-
fying assignment for the input Boolean formula (mostly, required to be
in CNF) by modifying the (mostly randomly chosen) initial assignment
by bit flips until a satisfying assignment is possibly reached. Usually such
SLS type algorithms proceed in a greedy fashion by increasing the num-
ber of satisfied clauses until some local optimum is reached. Trying to
find its way out of such local optima typically requires the use of random-
ness. We present an easy, straightforward SLS type SAT solver, called
probSAT, which uses just one simple strategy being based on biased
probabilistic flips. Within an extensive empirical study we evaluate the
current state-of-the-art solvers on a wide range of SAT problems, and
show that our approach is able to exceed the performance of other solv-
ing techniques.

1 Introduction

The SAT problem is one of the most studied A/P-complete problems in computer
science. One reason is the wide range of SAT’s practical applications ranging
from hardware verification to planning and scheduling. Given a propositional
formula in CNF with variables {z1,...,z,} the SAT-problem consists in finding
an assignment for the variables such that all clauses are satisfied.

Stochastic local search (SLS) solvers operate on complete assignments and
try to find a solution by flipping variables according to a given heuristic. Most
SLS solvers are based on the following scheme: Initially, a random assignment
is chosen. If the formula is satisfied by the assignment the solution is found. If
not, a variable is chosen according to a (possibly probabilistic) variable selection
heuristic, which is further called pickVar. The heuristics mostly depend on some
score, which counts the number of satisfied /unsatisfied clauses, as well as other
aspects like the “age” of variables, and others. It was believed that a good
flip heuristic should be designed in a very sophisticated way to obtain a really
efficient solver. We show in the following that it is worth to “come back to
the roots” since a very elementary and (as we think) elegant design principle

© Springer International Publishing AG 2016
L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 1-18, 2016.
DOI: 10.1007/978-3-319-49487-6_1

2 A. Balint and U. Schoning

for the pickVar heuristic just based on probability distributions will do the job
extraordinary well.

It is especially popular (and successful) to pick the flip variable from an
unsatisfied clause. This is called focused local search in [14]. In each round, the
selected variable is flipped and the process starts over again until a solution is
eventually found.

Most important for the flip heuristic seems to be the score of an
assignment, i.e. the number of satisfied clauses. Considering the process of flip-
ping one variable, we get the relative score change produced by a candidate
variable for flipping as: (score after flipping minus score before flipping) which
is equal to make minus break. Here make means the number of newly satisfied
clauses which come about by flipping the variable, and break means the number
of clauses which become false by flipping the respective variable. To be more
precise, we will denote make(z,«) and break(x,) as functions of the respec-
tive flip variable x and the actual assignment « (before flipping). Notice that
in case of focused flipping mentioned above the value of make is always
at least 1.

Most of the SLS solvers so far, if not all, follow the strategy that whenever
the score improves by flipping a certain variable from an unsatisfied clause, they
will indeed flip this variable without referring to probabilistic decisions. Only if
no improvement is possible as is the case in local minima, a probabilistic strat-
egy is performed. The winner of the SAT Competition 2011 category random
SAT, Sparrow, mainly follows this strategy but when it comes to a probabilistic
strategy it uses a probability distribution function [2]. The probability distribu-
tion in Sparrow is defined as an exponential function of the score value. In this
chapter we analyze several simple SLS solvers which are based only on proba-
bility distributions.

2 The New Algorithm Paradigm

We propose a new class of solvers here, called probSAT, which base their prob-
ability distributions for selecting the next flip variable solely on the make and
break values, but not necessarily on the value of the score = make — break, as
it was the case in Sparrow. Our experiments indicate that the influence of make
should be kept rather weak — it is even reasonable to ignore make completely,
like in implementations of WalkSAT [13]. The role of make and break in these
SLS-type algorithms should be seen in a new light. The new type of algorithm
presented here can also be applied for general constraint satisfaction problems
and works as follows.

Engineering SLS for SAT 3

Algorithm 1. ProbSAT
Input : Formula F', mazTries, maxFlips
Output: satisfying assignment a or UNKNOWN

1 for i =1 to mazTries do

2 «a «— randomly generated assignment

3 for j =1 to maxFlips do

4 if (o is model for F) then

5 L return o

6 C, < randomly selected unsatisfied clause

7 for x in C, do

8 L compute f(z,)

9 var « random variable = according to probability S jé":?()m)
10 a — flip(var) in «

11 return UNKNOWN;

The idea here is that the function f should give a high value to variable
z if flipping x seems to be advantageous, and a low value otherwise. Using f
the probability distribution for the potential flip variables is calculated. The flip
probability for x is proportional to f(z,a). Letting f be a constant function
leads in the k-SAT case to the probabilities (%, ceey %) morphing the probSAT
algorithm to the random walk algorithm that is theoretically analyzed in [15]. In
all our experiments with various functions f we made f depend on break(z,)
and possibly on make(x, @), and no other properties of x and « nor the history
of previous search course. In the following we analyze experimentally the effect
of several functions to be plugged in for f.

2.1 An Exponential Function

First we considered an exponential decay, 2-parameter function:

- (Cm)make(w,a)
f(SL',Oé) - (Cb)break(a:,a)

The parameters of the function are ¢, and ¢,,. Because of the exponential func-
tions used here (think of ¢* = eT7) this is reminiscence of the way Metropolis-
like algorithms (see [17]) select a variable. Also, this is similar to the Softmax
probabilistic decision for actions in reinforcement learning [19]. We call this the
exp-algorithm. The separation into the two base constants ¢, and ¢, will allow
us to find out whether there is a different influence of the make and the break
value — and there is one, indeed.

It seems reasonable to try to maximize make and to minimize break. There-
fore, we expect ¢, > 1 and ¢, > 1 to be good choices for these parameters.
Actually, one might expect that ¢, should be identical to ¢; such that the above
formula simplifies to ¢make—break — cscore for an appropriate parameter c.

4 A. Balint and U. Schéning

To get a picture on how the performance of the solver varies for different
values of ¢,,, and ¢, we have done a uniform sampling of ¢, € [1.0,4.0] and
of ¢, € [0.1,2.0] for this exponential function and of ¢, € [-1.0,1.0] for the
polynomial function (see below). We have then run the solver with the different
parameter settings on a set of randomly generated 3-SAT instances with 1000
variables at a clause to variable ratio of 4.26. The cutoff limit was set to 10s.
As a performance measure we use PAR10: penalized average runtime, where a
timeout of the solver is penalized with 10-(cutoff limit). A parameter setting
where the solver is not able to solve anything has a PARI10 value of 100 in
our case.

In the case of 3-SAT a very good choice of the parameters is ¢, > 1 (as
expected) and ¢, < 1 (totally unexpected), for example, ¢, = 3.6 and ¢, = 0.5
(see Fig. 1 left upper diagram and the survey in Table 1) with small variation

par10 runtime against exp(cb,cm) par10 runtime against exp(cb)

100

80

-
60

par10

o0 @ "'.‘ ~
K>
1
40
par10

N
o
Q‘»
T
20

cb
10 15 20 25 3.0 35 40

0

0.0 0.5 1.0 15 2.0 10 15 20 25 30 35 40
cm cb
par10 runtime against poly(cb,cm) par10 runtime against poly(cb)

100

100

3
par10
'
- -
%
< :".-:.
.\' ;'r
60 80
par10

40

8 [
C
-”

\

2

cb
10 15 20 25 30 35 40

Fig. 1. Parameter space performance plot: The left plots show the performance
of different combinations of ¢, and ¢y, for the exponential (upper left corner) and the
polynomial (lower left corner) functions. The darker the area the better the runtime of
the solver with that parameter settings. The right plots show the performance variation
if we ignore the make values (correspond to the cut in the left plots) by setting ¢, = 1
for the exponential function and c¢,, = 0 for the polynomial function.

Engineering SLS for SAT 5

depending on the considered set of benchmarks. In the interval ¢,, € [0.3, 1.§]
the optimal choice of parameters can be described by the hyperbola-like function
(cy — 1.3) - ¢, = 1.1. Almost optimal results were also obtained if ¢, is set to
1 (and ¢, to 2.5), see Fig. 1, both upper diagrams. In other words, the value of
make is not taken into account in this case.

As mentioned, it turns out that the influence of make is rather weak, there-
fore it is reasonable, and still leads to very good algorithms — also because the
implementation is simpler and has less overhead — if we ignore the make value
completely and consider the one-parameter function:

f(a:,oz) — (Cb)fbreak(x,a)

We call this the break-only-exp-algorithm.

2.2 A Polynomial Function

Our experiments showed that the exponential decay in probability with growing
break value might be too strong in the case of 3-SAT. The above formulas have
an exponential decay in probability comparing different (say) break values. The
relative decay is the same when we compare break = 0 with break = 1, and
when we compare, say, break = 5 with break = 6. A “smoother” function for
high values would be a polynomial decay function. This led us to consider the
following, 2-parameter function (¢ = 1 in all experiments):

(make(x, a))m

flz,a) = (e + break(z, o))

We call this the poly-algorithm. The best parameters in case of 3-SAT turned
out to be ¢,, = —0.8 (notice the minus sign!) and ¢, = 3.1 (See Fig. 1, lower
part). In the interval ¢,, € [-1.0, 1.0] the optimal choice of parameters can be
described by the linear function ¢ + 0.9¢,,, = 2.3. Without harm one can set
¢m = 0, and then take ¢, = 2.3, and thus ignore the make value completely.
Ignoring the make value (i.e. setting ¢,, = 0) brings us to the function

f(:C, O‘) = (6 + break(x, a))*cb

We call this the break-only-poly-algorithm.

2.3 Some Remarks

As mentioned above, in both cases, the exp- and the poly-algorithm, it was a
good choice to ignore the make value completely (by setting c,, = 1 in the
exp-algorithm, or by setting ¢,, = 0 in the poly-algorithm). This corresponds to
the vertical lines in Fig. 1, left diagrams. But nevertheless, the optimal choice in
both cases, was to set ¢,, = 0.5 and ¢, = 3.6 in the case of the exp-algorithm

(and similarly for the poly-algorithm.) We have % ~ 3.6~ (breaktmake/2)

6 A. Balint and U. Schoning

This can be interpreted as follows: instead of the usual score = make — break a
better score measure is —(break + make/2).

The value of ¢, determines the greediness of the algorithm. We concentrate
on ¢, in this discussion since it seems to be the more important parameter.
The higher the value of ¢, the more greedy is the algorithm. A low value of
¢p (in the extreme, ¢, = 1 in the exp-algorithm) morphs the algorithm to a
random walk algorithm with flip probabilities (7, ... ;) like the one considered
in [15]. Examining Fig. 1, almost a phase-transition can be observed. If ¢;, falls
under some critical value, like 2.0, the expected run time increases tremendously.
Turning towards the other side of the scale, increasing the value of ¢, i.e. making
the algorithm more greedy, also degrades the performance but not with such an
abrupt rise of the running time as in the other case. These observations have
also been made empirically by Hoos in [9], where he proposed to approximate
the noise value from above, rather from below.

3 Experimental Analysis of the Functions

To determine the performance of our probability distribution based solver we
have designed a wide variety of experiments. In the first part of our experiments
we try to determine good settings for the parameters ¢, and c¢,, by means of
automatic configuration procedures. In the second part we will compare our
solver to other state-of-the-art solvers.

3.1 The Benchmark Formulae

All random instances used in our settings are uniform random k-SAT problems
generated with different clause to variable ratios, denoted with r. The class
of random 3-SAT problems is the best studied class of random problems and
because of this reason we have four different sets of 3-SAT instances.

1. 3satlk [21]: 10® variables at r = 4.26 (500 instances)

2. 3sat10k [21]: 10? variables at r = 4.2 (500 instances)

3. 3satComp!: all large 3-SAT instances from the SAT Competition 2011 cate-
gory random with variables range 2-10%...5-10* at r = 4.2 (100 instances)

4. 3satExtreme: 10°...5 - 10° variables at r = 4.2 (180 instances)

The 5-SAT and 7-SAT problems used in our experiments come from [21]: 5sat500
(500 variables at r = 20) and 7sat90 (90 variables at r = 85). The 3satlk,
3sat10k, 5satb00 and 7sat90 instance classes are divided into two equal sized
classes called train and test. The train set is used to determine good parameters
for ¢, and ¢, and the second class is used to report the performance. Further
we also include the set of satisfiable random and crafted instances from the SAT
Competition 2011.

! www.satcompetition.org.

www.satcompetition.org

Engineering SLS for SAT 7

3.2 Good Parameter Setting

The problem that every solver designer is confronted with is the determination
of good parameters for its solvers. We have avoided to accomplish this task by
manual tuning but instead have used an automatic procedure.

As our parameter search space is relatively small, we have opted to use a mod-
ified version of the iterated F-Race [5] configurator, which we have implemented
in Java. The idea of F-race is relatively simple: good configurations should be
evaluated more often than poor ones which should be dropped as soon as possi-
ble. F-Race uses a familywise Friedman test (see Test 25 in [18] for more details
about the test) to check if there is a significant performance difference between
solver configurations. The test is conducted every time the solvers have run on
an instance. If the test is positive, poor configurations are dropped, and only
the good ones are further evaluated. The configurator ends when the number of
solvers left in the race is less than 2 times the number of parameters or if there
are no more instances to evaluate on.

To determine good values for ¢, and ¢, we have run our modified version
of F-Race on the training sets 3satlk, 3sat10k, 5sat500 and 7sat90. The cutoff
time for the solvers were set to 10s for 3sat1lk and to 100s for the rest. The best
parameter values returned by this procedure are listed in Table 1. Values for the
class of 3satlk problems were also included, because the preliminary analysis of
the parameter search space was done on this class. The best parameter of the
break-only-exp-algorithm for k-SAT can be roughly described by the formula
cp = k;O'S.

Table 1. Parameter setting for ¢, and c¢,,: Each cell represents a good setting for
¢y and ¢, dependent on the function used by the solver. Parameter values close to
these values have similar good performance.

3satlk | 3satl0k 5satbH00 | 7sat90
exp(cp,cm) 3.6 0.5 13.97 0.3 3.1 1332 14
poly(cy,cm) | 3.1 —0.82.86 —0.81 |- -
exp(cp) 2.50 2.33 3.6 44
poly(cy) 2.38 2.16 - -

4 Empirical Evaluation

In the second part of our experiments we compare the performance of our solvers
to that of the SAT Competition 2011 winners and also to WalkSAT [13]. An
additional comparison to a survey propagation algorithm will show how far our
probSAT local search solver can get.

8 A. Balint and U. Schoning

Soft- and Hardware. The solvers were run on a part of the bwGrid clusters [8]
(Intel Harpertown quad-core CPUs with 2.83 GHz and 8 GByte RAM). The
operating system was Scientific Linux. All experiments were conducted with
EDACC, a platform that distributes solver execution on clusters [1].

The Competitors. The WalkSAT solver is implemented within our own code
basis. We use our own implementation and not the original code (version 48)
provided by Henry Kautz?, because our implementation is approximately 1.35
times faster?.

We have used version 1.4 of the survey propagation solver provided by
Zecchina?, which was changed to be DIMACS conform. For all other solvers
we have used the binaries from the SAT Competition 2011°.

Parameter Settings of Competitors. Sparrow is highly tuned on our target set of
instances and incorporates optimal settings for each set within its code. WalkSAT
[13] has only one single parameter, the walk probability wp. In case of 3-SAT
we took the optimal values for wp = 0.567 which have been established in an
extensive analysis in [11]. Because we could not find any settings for 5-SAT and 7-
SAT problems we have run our modified version of F-Race to find good settings.
For 5sat500 the configurator reported wp = 0.25 and for 7sat90 wp = 0.1. The
survey propagation solver was evaluated with the default settings reported in [6]
(fixing 5% of the variables per step).

Results. We have evaluated our solvers and the competitors on the test set of the
instance sets 3sat1k, 3sat10k, 5sat500 and 7sat90 (note that the training set was
used only for finding good parameters for the solvers). The parameter setting
for ¢, and ¢y, are those from Table1 (in case of 3-SAT we have always used the
parameters for 3sat10k). The results of the evaluations are listed in Table 2.

On the 3-SAT instances, the polynomial function yields the overall best per-
formance. On the 3-SAT competition set all of our solver variants exhibited the
most stable performance, being able to solve all problems within cutoff time.
The survey propagation solver has problems with the 3satl0k and the 3sat-
Comp problems (probably because of the relatively small number of variables).
The good performance of the break-only-poly-solver remains surprisingly good
even on the 3satExtreme set where the number of variables reaches 5 - 105 (ten
times larger than that from the SAT Competition 2011). From the class of SLS
solvers it exhibits the best performance on this set and is only approx. 2 times
slower than survey propagation. Note that a value of ¢, = 2.165 for the break-
only-poly solver further improved the runtime of the solver by approximately
30 % on the 3satExtreme set.

2 http://www.cs.rochester.edu/u/kautz/walksat /.

3 The latest version 50 of WalkSAT has been significantly improved, but was not
available at the time we have performed the experiments.

* http://users.ictp.it/~zecchina/SP/.

5 http://www.cril.univ-artois.fr/SAT11 /solvers /SAT2011-static-binaries.tar.gz.

http://www.cs.rochester.edu/u/kautz/walksat/
http://users.ictp.it/~zecchina/SP/
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz

Engineering SLS for SAT 9

Table 2. Evaluation results: Each cell represents the PAR10 (Penalized average
runtime with penalization factor 10 - every unsuccessful run is penalized with 10 times
the maximum runtime.) runtime and the number of successful runs for the solvers on
the given instance set. Results are highlighted if the solver succeeded in solving all
instances within the cutoff time, or if it has the best PAR10 runtime. Cutoff times are
600 s for 3sat10k, 5sat500 and 7sat90 and 5000s for the rest. The blank cells indicates
that we have no parameter setting worth evaluating.

3sat10k | 3satComp | 3satExtreme | 5sat500 | 7sat90

exp(cy, Cm) |46.6 93.84 - 12.49 201.68
(998) | (500) (10%) | (974)

poly(cp, ¢) | 46.65 | 76.81 - - -
996 | (500)

exp(cy) 53.02 |126.59 - 7.84 134.06
(997) | (500) (10%) | (984)

poly(cp) 22.80 |54.37 1121.34 - -
(1000) | (500) | (180)

Sparrow 199.78 |498.05 47419 952 | 14.94
(973) | (498) (10) (10%) | (10%)

WalkSAT | 61.74 |172.21 1751.77 14.71 | 69.34
(995) | (499) (178) (10%) | (994)

sp 1.4 3146.17 18515.79 | 599.01 5856 | 6000
(116) | (63) (180) (6) (0)

On the 5-SAT instances the exponential break-only-exp solver yields the
best performance being able to beat even Sparrow, which was the best solver for
5-SAT within the SAT Competition 2011. On the 7-SAT instances though the
performance of our solvers is relatively poor. We observed a very strong variance
of the run times on this set and it was relatively hard for the configurator to
cope with such high variances.

Overall the performance of our simple probability based solvers reaches state-
of-the-art performance and can even get into problem size regions where only
survey propagation could catch ground.

Scaling Behavior with the Number of Variables n. Experiments show that
the survey propagation algorithm scales linearly with n on formulas generated
near the threshold ratio. The same seems to hold for WalkSAT with optimal
noise as the results in [11] show. The 3satExtreme instance set contains very
large instances with varying n € {10°...5-10°}. To analyze the scaling behavior
of probSAT in the break-only-poly variant we have computed for each run the
number of flips per variable performed by the solver until a solution was found.
The number of flips per variable remains constant at about 2 - 10 independent
of n. The same holds for WalkSAT, though WalkSAT seems to have a slightly
larger variance of the runtimes.

10 A. Balint and U. Schéning

Results on the SAT Competition 2011 Satisfiable Random Set. We have
compiled an adaptive version of probSAT and of WalkSAT, that first checks the
size of the clauses (i.e. k) and then sets the parameters accordingly (like Spar-
row does). We have ran these solvers on the complete satisfiable instances set
from the SAT Competition 2011 random category along with all other competi-
tion winning solvers from this category: Sparrow2011, sattime2011 and EagleUP.
Cutoff time was set to 5000s. We report only the results on the large set, as the
medium set was completely solved by all solvers and the solvers had a median
runtime under one second. As can be seen from the results of the cactus plot in
Fig. 2, the adaptive version of probSAT would have been able to win the compe-
tition. Interestingly is to see that the adaptive version of WalkSAT would have
ranked third.

5000 —8— Sparrow2011
EagleUP

4000 — —A— WalkSAT adapt
2 sattime2011
0593000 —*— probSAT adapt
=
2
o 2000
(@)

1000

0 50 100 150

number of solved instances

Fig. 2. Results on the “large” set of the SAT Competition 2011 random instances
represented as a cactus plot. The x-axis represents the number of problems a solver
was able to solve ordered by runtime; the y-axis is the runtime. The lower a curve
(low runtimes) and the more it gets to the right (more problems solved) the better the
solver.

Results on the SAT Competition 2011 Satisfiable Crafted Set. We have
also run the different solvers on the satisfiable instances from the crafted set of
SAT Competition 2011 (with a cutoff time of 5000 s). The results are listed
in Table 3. We have also included the results of the best three complete solvers
from the crafted category. probSAT and WalkSAT performed best in their 7-SAT
break-only configuration solving 81 respectively 101 instances. The performance
of WalkSAT could not be improved by changing the walk probability. probSAT
though exhibited better performance with ¢, = 7 and a switch to the polynomial
break-only scheme, being then able to solve 93 instances. With such a high ¢,
value (very greedy) the probability of getting stuck in local minima is very high.
By adding a static restart strategy after 2 - 10* flips per variable probSAT was
then able to solve 99 instances (as listed in the table).

Engineering SLS for SAT 11

Table 3. Results on the crafted satisfiable instances: Each cell reports the
number of solved instances within the cutoff time (5000s). The first line shows the
results on the original instances and the second on the preprocessed instances.

Sattime | Sparrow | WalkSAT | probSAT | MPhaseSAT | clasp
(complete) (complete)

Crafted 107 104 101 99 93 81
Crafted pre | 86 97 101 95 98 80

The high greediness level needed for WalkSAT and probSAT to solve the
crafted instances indicates that this instances might be more similar to the
7-SAT instances (generally to higher k-SAT). A confirmation of this conjec-
ture is that Sparrow with fixed parameters for 7-SAT instances could solve 103
instances vs. 104 in the default setting (which adapts the parameters according
to the maximum clause length found in the problem). We suppose that improv-
ing SLS solvers for random instances with large clause length would also yield
improvements for non random instances.

To check whether the performance of SLS solvers can be improved by pre-
processing the instances first, we have run the preprocessor of lingeling [4],
which incorporates all main preprocessing techniques, to simplify the instances.
The results unluckily show the contrary of what would have been expected (see
Table 3). None of the SLS solvers could benefit from the preprocessing step, solv-
ing equal or less instances. These results motivated the analysis of preprocess-
ing techniques in more detail, which was performed in [3]. It turns out that
bounded variable elimination, which performs variable elimination through res-
olution rules up to certain bound is a good preprocessing technique for SLS
solvers and can indeed improve the performance of SLS solvers.

Results on the SAT Challenge 2012 Random Set. We have submitted
the probSAT solver (the adaptive version) to the SAT Challenge 2012 random
satisfiable category. The results of the best performing solvers can be seen as
a cactus plot in Fig. 3. probSAT was the second best solver on these instances
been only outperformed by CCAsat.

While the difference to all other competitors is significant in terms of a Mann-
Whitney-U test, the difference to CCAsat is not.

Results on the SAT Competition 2013 Satisfiable Random Set. We
have also submitted an improved version of probSAT to the SAT Competition
2013 to the Random Satisfiable category. The implementation of probSAT was
improved with respect to parameters, data structure and work flow.

12 A. Balint and U. Schéning

Sparrow2011
sattime2011
sattime2012
SATzilla2012 Rand
EagleUP

CCASat

pfolioUZK
ppfolio2012

SAT Solver Selector
SATzilla2012 All
probSAT

WalkSAT

800 —

bé

600 —

400 —

CPU Time (s)
ERSRERS

200 —

number of solved instances

Fig. 3. Results of the best performing solvers on the SAT Challenge 2012 random
instances as a cactus plot. For details about cactus plot see Fig. 2.

The parameters of probSAT have been set as follows:

k| fct |cb e
3 |poly 2.06]0.9
4 lexp |2.85]-
5 |exp |3.7 |-
6 |exp |5.1 |-
> T exp |54 |-

where k is the size of the longest clause found in the problem during pars-
ing. These parameter values have been determined in different configuration
experiments.

All array data structures where ended by a sentinel® (i.e. the last element
in the array is the stop value; in our case we have used 0). All for-loops have
been changed into while-loops that have no counter but only a sentinel check,
allowing us to save several memory dereferences and variables. As most of the
operations performed by SLS solvers are loops over some small sized arrays,
this optimization turns out to improve the performance of the solver between
10 %25 % (dependent on the instances).

5 We would like to thank Armin Biere for this suggestion.

Engineering SLS for SAT 13

Compared to the original version the version submitted to the competition
is not selecting an unsatisfied clause randomly but will iterate through the set
of unsatisfied clauses with the flip counter (i.e. instead of c=rand() modulo
numUnsat we use c=flipCounter modulo numUnsat). This scheme will reduce
the probability of undoing a change right in the next step. This small change
seems to improve in some cases the stagnation behavior of the solver giving it a
further boost”.

To measure the isolated effect of the different changes we have performed a
small experiment on the 3sat10k instance set. We start with the version that was
submitted to the SAT Challenge 2012 with new parameters (sc12(1)), then we
add the code optimizations (sc12(2)) and finally we remove the random selection
of a false clause (sc13). A further version was added to this evaluation that does
not cache the break values, but computes them on the fly. This version is denoted
with (nc) in the table and was analyzed only after the competition. The results
of the evaluation are listed in Table 4.

Table 4. The results of the evaluation of different implementation variants of the
probSAT solver on the 3sat10k instance set. The last column shows the speed up with
respect to the last row. Time is measured in seconds.

Solver Total Average Median Average
CPU time |CPU time |CPU time | speedup

1| probSAT scl3 (nc) | 4356.0729 | 17.4243 7.886 2.01x
2| probSAT scl3 4696.9674 | 18.7879 8.499 1.86x
3 probSAT sc12(2) | 7632.1326 30.5285 | 10.695 1.15x
4 probSAT sc12(1) | 8781.8255 351273 | 12.489 -

The code optimizations yielded an average speedup of 15 %, while the removal
of random clause selection is further improving the performance by around 70 %.
Further adding on the fly computation of the break values yields a twofold
speedup compared to the original version with new parameters.

probSAT scl3 was submitted to SAT Competition 2013%. The results of the
best performing solvers submitted to SAT Competition 2013 can be seen as
a cactus plot in Fig.4. probSAT is able to outperform all its competitors. The
instances used in SAT Competition 2013 contained randomly generated instances
on the phase transition point for £ = 3,...,7 and also a small set of huge
instances (in terms of number of variables). The last were intended to test the
robustness of the solvers. probSAT turns out to be a very robust solver, being
able to solve many of the huge instances 18 out of the 26 that have been solved
by some solver (out of a total of 36). From the set of phase transition instances

" This might also be the case for the WalkSAT solver.
8 The code was compiled with the Intel®Compiler 12.0 with the following parameters:
-038 -zhost -static -unroll-aggressive -opt-prefetch -fast.

14 A. Balint and U. Schéning

5000 —

i

probSAT SC13
WalkSATIm2013
CScoreSAT2013
vflipnum
FrwCB2013
CCA2013
BalancedZ

4000 —

b

3000 —

CPU Time (s)

2000 Ncca+

sattime2013

teddt

1000 —

20 40 60 80 100

number of solved instances

Fig. 4. Results of the best performing solvers on the SAT Competition 2013 random
satisfiable instances.

probSAT solved 81 out of 109 that could be solved by any solver. Altogether this
shows that the solving approach (and the parameter settings) used by probSAT
has an overall good performance.

5 Comparison with WalkSAT

In principle, WalkSAT [13] also uses a certain pattern of probabilities for flipping
one of the variables within a non-satisfied clause. But the probability distribution
does not depend on a single continuous function f as in our algorithms described
above, but uses some non-continuous if-then-else decisions as described in [13].

In Table 5 we compare the flipping probabilities in WalkSAT (setting the wp
parameter i.e. the noise value to wp = 0.567) with the break-only-poly-algorithm
(with ¢;, = 2.06 and € = 0.9) using several examples of break values combinations
that might occur within a 3-CNF clause.

Even though the probabilities look very similar, we think that the small
differences renders our approach to be more robust. Further, probSAT has the
PAC property [10, p. 153]. In each step every variable has a probability greater
zero to be picked for flipping. This is though not the case for WalkSAT. A variable
occurring in a clause where an other variable has a score of zero can not be
chosen for flipping. There is no published example for which WalkSAT gets
trapped in cycles. Though, during a talk given by Donald Knuth in Trento at the
SAT Conference in 2012 where he presented details about his implementation
of WalkSAT, he mentioned that Bram Cohen, the designer of WalkSAT, has
provided such an example.

Engineering SLS for SAT 15

Table 5. Probability comparison of WalkSAT and probSAT: The first columns
show some possible break value combinations that occur within a clause in a 3-SAT
formula during the search. For the different solvers considered here the probabilities
for each of the 3 variables to be flipped are listed.

Breaks | WalkSAT Break-only-poly
0.33]0.3310.33/0.33|0.33/0.33
0.5 |05 |0 0.45/0.45]0.10
1.0 |0 0 0.70/0.15]0.15
1.0 |0 0 0.76]0.16 | 0.07
1.0 |0 0 0.85]0.070.07
0.33]0.3310.33/0.33/0.33/0.33
0.41/0.41]0.17/0.41/0.410.18
0.5310.2310.23|0.54|0.23 | 0.22
0.5310.23]0.23/0.610.25/0.14

o
o

—l=lRrlRlOlOolO0|lO|lO
NN == N == O
WIN N~ NN ==

6 Implementation Variations

In the previous sections we have compared the solvers based on their runtime. As
a consequence the efficiency of the implementation plays a crucial role and the
best available implementation should be taken for comparison. Another possible
comparison measure is the number of flips the solver needs to perform to find
a solution. From a practical point of view this is not optimal. The number
of flips per second (denoted with flips/sec) is a key measure of SLS solvers
when it comes to compare algorithm implementations or two different similar
algorithms. In this Section we would like to address this problem by comparing
two different implementations of probSAT and WalkSAT on a set of very large
3-SAT problems.

All efficient implementations of SLS solvers are computing the scores of vari-
ables from scratch only within the initialization phase. During the search of the
solver, the scores are only updated. This is possible because only the score of
variables can change that are in the neighborhood of the variable being flipped.
This method is also known as caching (the scores of the variables are being
cached) in [10, p. 273] or incremental approach in [7].

The other method would be to compute the score of variables on the fly before
taking them into consideration for flipping. This method is called non-caching
or non-incremental approach. In case of probSAT or WalkSAT only the score of
variables from one single clause has to be computed as opposed to other solvers
where all variables from all unsatisfied clauses are taken into consideration for
flipping.

We have implemented two different versions of probSAT and WalkSAT within
the same code basis (i.e. the solvers are identical with exception of the pickVar
method), one that uses caching and one that does not. We have evaluated the

16 A. Balint and U. Schéning

15000 —

(!

5

3

3

3
Il

neppflttt

CPU Time (s)

—&— probSAT caching
probSAT non-caching

—4&— WalkSAT (UBCSAT)
WalkSAT non-caching

»— WalkSAT caching
0 T T T T T

0 20 40 60 80 100

number of solved instances

Fig. 5. Comparison of the different implementation variants of probSAT and WalkSAT
on extreme large 3-SAT problems (within the same code basis), with and without
caching of the break values. We also evaluate the best known WalkSAT implementation
(non-caching) from UBCSAT as a reference.

four different solvers on a set of 100 randomly generated 3-SAT problems with
108 variables and a ratio of 4.2. The results can be seen in Fig. 5.

Within the time limit of 1.5-10% s only the variants not using caching were able
to solve all problems. The implementation with caching solved only 72 (prob-
SAT) respectively 65 instances (WalkSAT). Note that all solvers started with
the same seed (i.e. they perform search on the exactly same search trajectory).
The difference between the different implementations in terms of performance
can be explained by the different number of flips/sec. While the version with
caching performs around 1.4 - 10° flips/sec the version without caching is able to
perform around 2.2-10° flips/sec. This explains the difference in runtime between
the two different implementations. Similar findings have also been observed in
[20, p. 27] and in [7].

The advantage of non-caching decreases with increasing k (for random gen-
erated k-SAT problems) and becomes even a disadvantage for 5-SAT problems
and upwards. As a consequence the latest version of probSAT uses caching for
3-SAT problems and non-caching for the other types of problems.

7 Conclusion and Future Work

We introduced a simple algorithmic design principle for a SLS solver which does
its job without heuristics and “tricks”. It just relies on the concept of probability
distribution and focused search. It is though flexible enough to allow plugging
in various functions f which guide the search.

Using this concept we were able to discover a non-symmetry regarding the
importance of the break and make values: the break value is the more important
one; one can even do without the make value completely.

Engineering SLS for SAT 17

We have systematically used an automatic configurator to find the best para-
meters and to visualize the mutual dependency and impact of the parameters.

Furthermore, we observe a large variation regarding the running times even
on the same input formula. Therefore the issue of introducing an optimally cho-
sen restart point arises. Some initial experiments show that performing restarts,
even after a relatively short period of flips (e.g. 20n) gives favorable results on
hard instances. It seems that the probability distribution of the number of flips
until a solution is found, shows some strong heavy tail behavior (cf. [12,16]).

Finally, a theoretical analysis of the Markov chain convergence and speed of
convergence underlying this algorithm would be most desirable, extending the
results in [15].

Acknowledgments. We would like to thank the BWGrid [8] project for providing
the computational resources. This project was funded by the Deutsche Forschungsge-
meinschaft (DFG) under the number SCHO 302/9-1. We thank Daniel Diepold and
Simon Gerber for implementing the F-race configurator and providing different analy-
sis tools within the EDACC framework. We would also like to thank Andreas Frohlich
for fruitful discussions on this topic and Armin Biere for helpful suggestions regarding
code optimizations.

References

1. Balint, A., Diepold, D., Gall, D., Gerber, S., Kapler, G., Retz, R.: EDACC - an
advanced platform for the experiment design, administration and analysis of empir-
ical algorithms. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 586-599.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3-46

2. Balint, A., Frohlich, A.: Improving stochastic local search for SAT with a new
probability distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol.
6175, pp. 10-15. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14186-7_3

3. Balint, A., Manthey, N.: Analysis of preprocessing techniques and their utility for
CDCL and SLS solver. In: Proceedings of POS2013 (2013)

4. Biere, A.: Lingeling and friends at the SAT competition 2011. Technical report,
FMV Reports Series, Institute for Formal Models and Verification, Johannes
Kepler University, Altenbergerstr. 69, 4040 Linz, Austria (2011)

5. Birattari, M., Yuan, Z., Balaprakash, P., Stiitzle, T.: F-Race and iterated
F-Race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L.,
Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algo-
rithms, pp. 311-336. Springer, Heidelberg (2010). http://dx.doi.org/10.1007/
978-3-642-02538-9_13

6. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for
satisfiability. Random Structures & Algorithms 27(2), 201-226 (2005)

7. Fukunaga, A.: Efficient implementations of SAT local search. In: Seventh Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT 2004),
pp- 287-292 (2004, this volume)

8. bwGRiD (http://www.bwgrid.de/): Member of the German D-Grid initiative,
funded by the Ministry of Education and Research (Bundesministeriumfiir Bildung
und Forschung) and the Ministry for Science, Research and Arts Baden-Wiirttemberg
(Ministerium fiir Wissenschaft, Forschung und Kunst Baden-Wiirttemberg). Techi-
cal report, Universities of Baden-Wiirttemberg (2007-2010)

http://dx.doi.org/10.1007/978-3-642-25566-3_46
http://dx.doi.org/10.1007/978-3-642-14186-7_3
http://dx.doi.org/10.1007/978-3-642-02538-9_13
http://dx.doi.org/10.1007/978-3-642-02538-9_13
http://www.bwgrid.de/

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Balint and U. Schéning

Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of the
Eighteenth National Conference in Artificial Intelligence (AAAI 2002), pp. 655—
660 (2002)

Hoos, H.H., Stiitzle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco (2005)

Kroc, L., Sabharwal, A., Selman, B.: An empirical study of optimal noise and
runtime distributions in local search. In: Strichman, O.; Szeider, S. (eds.) SAT
2010. LNCS, vol. 6175, pp. 346-351. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14186-7_31

Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
In: ISTCS, pp. 128-133 (1993). http://dblp.uni-trier.de/db/conf/istcs/istcs1993.
html#LubySZ93

McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search.
In: Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAT 1997), pp. 321-326 (1997)

Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: Proceedings of
the 32nd Annual Symposium on Foundations of Computer Science (FOCS 1991),
pp. 163-169 (1991)

Schoéning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: Proceedings of the Fourtieth Annual Symposium on Foundations of Com-
puter Science (FOCS 1999), p. 410 (1999)

Schoning, U.: Principles of stochastic local search. In: Akl, S.G., Calude, C.S.,
Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618,
pp. 178-187. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73554-0_17
Seitz, S., Alava, M., Orponen, P.: Focused local search for random 3-satisfiability.
CoRR abs/cond-mat /0501707 (2005)

Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures,
4th edn. Chapman & Hall/CRC, Boca Raton (2007)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998). http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.
html

Tompkins, D.A.D.: Dynamic local search for SAT: design, insights and analysis.
Ph.D. thesis, University of British Columbia, October 2010

Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain jack: new variable selection
heuristics in local search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT
2011. LNCS, vol. 6695, pp. 302-316. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21581-0_24

http://dx.doi.org/10.1007/978-3-642-14186-7_31
http://dx.doi.org/10.1007/978-3-642-14186-7_31
http://dblp.uni-trier.de/db/conf/istcs/istcs1993.html#LubySZ93
http://dblp.uni-trier.de/db/conf/istcs/istcs1993.html#LubySZ93
http://dx.doi.org/10.1007/978-3-540-73554-0_17
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://dx.doi.org/10.1007/978-3-642-21581-0_24
http://dx.doi.org/10.1007/978-3-642-21581-0_24

Route Planning in Transportation Networks

Hannah Bast!, Daniel Delling?, Andrew Goldberg?,
Matthias Miiller-Hannemann?, Thomas Pajor®®™) Peter Sanders®,
Dorothea Wagner®, and Renato F. Werneck?®

! University of Freiburg, Freiburg im Breisgau, Germany
bast@informatik.uni-freiburg.de
2 Apple Inc., Cupertino, USA
ddelling@apple.com
3 Amazon, Seattle, USA
{andgold,werneck}@amazon.com
4 Martin-Luther-Universitiit Halle-Wittenberg, Halle, Germany
muellerh@informatik.uni-halle.de
5 Microsoft Research, Mountain View, USA
microsoft@tpajor.com
6 Karlsruhe Institute of Technology, Karlsruhe, Germany
{sanders,dorothea.wagner}@kit.edu

Abstract. We survey recent advances in algorithms for route plan-
ning in transportation networks. For road networks, we show that one
can compute driving directions in milliseconds or less even at continen-
tal scale. A variety of techniques provide different trade-offs between
preprocessing effort, space requirements, and query time. Some algo-
rithms can answer queries in a fraction of a microsecond, while others
can deal efficiently with real-time traffic. Journey planning on public
transportation systems, although conceptually similar, is a significantly
harder problem due to its inherent time-dependent and multicriteria
nature. Although exact algorithms are fast enough for interactive queries
on metropolitan transit systems, dealing with continent-sized instances
requires simplifications or heavy preprocessing. The multimodal route
planning problem, which seeks journeys combining schedule-based trans-
portation (buses, trains) with unrestricted modes (walking, driving), is
even harder, relying on approximate solutions even for metropolitan
inputs.

1 Introduction

This survey is an introduction to the state of the art in the area of practical algo-
rithms for routing in transportation networks. Although a thorough survey by
Delling et al. [94] has appeared fairly recently, it has become outdated due to sig-
nificant developments in the last half-decade. For example, for continent-sized

This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and
Renato F. Werneck were at Microsoft Research Silicon Valley.
© Springer International Publishing AG 2016

L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 19-80, 2016.
DOI: 10.1007/978-3-319-49487-6_2

20 H. Bast et al.

road networks, newly-developed algorithms can answer queries in a few hun-
dred nanoseconds; others can incorporate current traffic information in under
a second on a commodity server; and many new applications can now be dealt
with efficiently. While Delling et al. focused mostly on road networks, this sur-
vey has a broader scope, also including schedule-based public transportation
networks as well as multimodal scenarios (combining schedule-based and unre-
stricted modes).

Section 2 considers shortest path algorithms for static networks; although
it focuses on methods that work well on road networks, they can be applied to
arbitrary graphs. Section 3 then considers the relative performance of these algo-
rithms on real road networks, as well as how they can deal with other transporta-
tion applications. Despite recent advances in routing in road networks, there is
still no “best” solution for the problems we study, since solution methods must
be evaluated according to different measures. They provide different trade-offs in
terms of query times, preprocessing effort, space usage, and robustness to input
changes, among other factors. While solution quality was an important factor
when comparing early algorithms, it is no longer an issue: as we shall see, all
current state-of-the-art algorithms find provably exact solutions. In this survey,
we focus on algorithms that are not clearly dominated by others. We also dis-
cuss approaches that were close to the dominance frontier when they were first
developed, and influenced subsequent algorithms.

Section 4 considers algorithms for journey planning on schedule-based pub-
lic transportation systems (consisting of buses, trains, and trams, for example),
which is quite different from routing in road networks. Public transit systems
have a time-dependent component, so we must consider multiple criteria for
meaningful results, and known preprocessing techniques are not nearly as effec-
tive. Approximations are thus sometimes still necessary to achieve acceptable
performance. Advances in this area have been no less remarkable, however: in
a few milliseconds, it is now possible to find good journeys within public trans-
portation systems at a very large scale.

Section 5 then considers a true multimodal scenario, which combines schedule-
based means of transportation with less restricted ones, such as walking and
cycling. This problem is significantly harder than its individual components, but
reasonable solutions can still be found.

A distinguishing feature of the methods we discuss in this survey is that they
quickly made real-life impact, addressing problems that need to be solved by
interactive systems at a large scale. This demand facilitated technology transfer
from research prototypes to practice. As our concluding remarks (Sect. 6) will
explain, several algorithms we discuss have found their way into mainstream
production systems serving millions of users on a daily basis.

This survey considers research published until January 2015. We refer to the
final (journal) version of a result, citing conference publications only if a journal
version is not yet available. The reader should keep in mind that the journal
publications we cite often report on work that first appeared (at a conference)
much earlier.

Route Planning in Transportation Networks 21

2 Shortest Paths Algorithms

Let G = (V, A) be a (directed) graph with a set V of vertices and a set A of arcs.
Each arc (u,v) € A has an associated nonnegative length ¢(u,v). The length of
a path is the sum of its arc lengths. In the point-to-point shortest path problem,
one is given as input the graph G, a source s € V, and a target ¢ € V, and
must compute the length of the shortest path from s to ¢ in G. This is also
denoted as dist(s, t), the distance between s and t. The one-to-all problem is to
compute the distances from a given vertex s to all vertices of the graph. The
all-to-one problem is to find the distances from all vertices to s. The many-to-
many problem is as follows: given a set S of sources and a set T of targets, find
the distances dist(s,t) for all s € S, t € T. For S =T =V we have the all pairs
shortest path problem.

In addition to the distances, many applications need to find the corresponding
shortest paths. An out-shortest path tree is a compact representation of one-to-
all shortest paths from the root r. (Likewise, the in-shortest path tree represents
the all-to-one paths.) For each vertex u € V, the path from r to u in the tree is
the shortest path.

In this section, we focus on the basic point-to-point shortest path problem
under the basic server model. We assume that all data fits in RAM. How-
ever, locality matters, and algorithms with fewer cache misses run faster. For
some algorithms, we consider multi-core and machine-tailored implementations.
In our model, preprocessing may be performed on a more powerful machine
than queries (e.g., a machine with more memory). While preprocessing may
take a long time (e.g., hours), queries need to be fast enough for interactive
applications.

In this section, we first discuss basic techniques, then those using preprocess-
ing. Since all methods discussed could in principle be applied to arbitrary graphs,
we keep the description as general as possible. For intuition, however, it pays to
keep road networks in mind, considering that they were the motivating applica-
tion for most approaches we consider. We will explicitly consider road networks,
including precise performance numbers, in Sect. 3.

2.1 Basic Techniques

The standard solution to the one-to-all shortest path problem is Dijkstra’s
algorithm [108]. It maintains a priority queue @ of vertices ordered by (ten-
tative) distances from s. The algorithm initializes all distances to infinity,
except dist(s,s) = 0, and adds s to Q. In each iteration, it extracts a vertex u
with minimum distance from @ and scans it, i. e., looks at all arcs a = (u,v) € A
incident to u. For each such arc, it determines the distance to v via arc a by com-
puting dist(s, u) + ¢(a). If this value improves dist(s,v), the algorithm performs
an arc relazation: it updates dist(s,v) and adds vertex v with key dist(s,v) to
the priority queue @Q. Dijkstra’s algorithm has the label-setting property: once a
vertex u € V is scanned (settled), its distance value dist(s,u) is correct. There-
fore, for point-to-point queries, the algorithm may stop as soon as it scans the

22 H. Bast et al.

xT

S s t s
o 0 .N./\. o _ 0t

Fig. 1. Schematic search spaces of Dijkstra’s algorithm (left), bidirectional search (mid-
dle), and the A* algorithm (right).

target t. We refer to the set of vertices S C V scanned by the algorithm as its
search space. See Fig.1 for an illustration.

The running time of Dijkstra’s algorithm depends on the priority queue used.
The running time is O((|V| + |A|)log|V|) with binary heaps [254], improving
to O(JA| + |V|log |V|) with Fibonacci heaps [129]. For arbitrary (non-integral)
costs, generalized versions of binary heaps (such as 4-heaps or 8-heaps) tend to
work best in practice [61]. If all arc costs are integers in the range [0, C], multi-
level buckets [103] yield a running time of O(|]A| + |V |+/log C) [8,62] and work
well in practice. For the average case, one can get an O(|V|+ |A]|) (linear) time
bound [147,192]. Thorup [244] has improved the theoretical worst-case bound of
Dijkstra’s algorithm to O(|A| + |V|loglog min{|V|,C}), but the required data
structure is rather involved and unlikely to be faster in practice.

In practice, one can reduce the search space using bidirectional search [67],
which simultaneously runs a forward search from s and a backward search from ¢.
The algorithm may stop as soon as the intersection of their search spaces prov-
ably contains a vertex x on the shortest path from s to ¢. For road networks,
bidirectional search visits roughly half as many vertices as the unidirectional
approach.

An alternative method for computing shortest paths is the Bellman-Ford
algorithm [46,127,198]. It uses no priority queue. Instead, it works in rounds,
each scanning all vertices whose distance labels have improved. A simple FIFO
queue can be used to keep track of vertices to scan next. It is a label-correcting
algorithm, since each vertex may be scanned multiple times. Although it runs
in O(|V]|A|) time in the worst case, it is often much faster, making it competitive
with Dijkstra’s algorithm in some scenarios. In addition, it works on graphs with
negative edge weights.

Finally, the Floyd-Warshall algorithm [126] computes distances between all
pairs of vertices in ©(|V|*) time. For sufficiently dense graphs, this is faster
than |V| calls to Dijkstra’s algorithm.

2.2 Goal-Directed Techniques

Dijkstra’s algorithm scans all vertices with distances smaller than dist(s, t). Goal-
directed techniques, in contrast, aim to “guide” the search toward the target by

Route Planning in Transportation Networks 23

avoiding the scans of vertices that are not in the direction of ¢. They either
exploit the (geometric) embedding of the network or properties of the graph
itself, such as the structure of shortest path trees toward (compact) regions of
the graph.

A* Search. A classic goal-directed shortest path algorithm is A* search [156]. It
uses a potential function 7: V' — R on the vertices, which is a lower bound on
the distance dist(u,t) from w to ¢. It then runs a modified version of Dijkstra’s
algorithm in which the priority of a vertex u is set to dist(s,u) + 7(u). This
causes vertices that are closer to the target ¢ to be scanned earlier during the
algorithm. See Fig.1. In particular, if 7 were an exact lower bound (7w(u) =
dist(u, t)), only vertices along shortest s—t paths would be scanned. More vertices
may be visited in general but, as long as the potential function is feasible (i.e.,
if (v, w) — w(v) + w(w) > 0 for (v,w) € E), an s—t query can stop with the
correct answer as soon as it is about to scan the target vertex t.

The algorithm can be made bidirectional, but some care is required to ensure
correctness. A standard approach is to ensure that the forward and backward
potential functions are consistent. In particular, one can combine two arbitrary
feasible functions 7; and m, into consistent potentials by using (7; — m,)/2
for the forward search and (m, — 7s)/2 for the backward search [163]. Another
approach, which leads to similar results in practice, is to change the stopping
criterion instead of making the two functions consistent [148,166,216,220].

In road networks with travel time metric, one can use
the geographical distance [217,237] between u and ¢ divided
by the maximum travel speed (that occurs in the network)
as the potential function. Unfortunately, the corresponding

bounds are poor, and the performance gain is small or non- @
existent [148]. In practice, the algorithm can be accelerated
using more aggressive bounds (for example, a smaller denom-

inator), but correctness is no longer guaranteed. In practice,
even when minimizing travel distances in road networks, A*
with geographical distance bound performs poorly compared
to other modern methods.

One can obtain much better lower bounds (and pre-
serve correctness) with the ALT (A% landmarks, and trian- Fig. 2. Triangle
gle inequality) algorithm [148]. During a preprocessing phase, inequalities for
it picks a small set L C V of landmarks and stores the dis- ALT.
tances between them and all vertices in the graph. During an s—t query, it
uses triangle inequalities involving the landmarks to compute a valid lower
bound on dist(u,t) for any vertex w. More precisely, for any landmark I,
both dist(u,t) > dist(u,l;) — dist(¢,l;) and dist(u,t) > dist(l;,t) — dist(l;, u)
hold. If several landmarks are available, one can take the maximum overall
bound. See Fig.2 for an illustration. The corresponding potential function is
feasible [148].

The quality of the lower bounds (and thus query performance) depends on
which vertices are chosen as landmarks during preprocessing. In road networks,

24 H. Bast et al.

picking well-spaced landmarks close to the boundary of the graph leads to the
best results, with acceptable query times on average [112,150]. For a small (but
noticeable) fraction of the queries, however, speedups relative to bidirectional
Dijkstra are minor.

Geometric Containers. Another goal-directed method is Geometric Containers.
It precomputes, for each arc a = (u,v) € A, an arc label L(a) that encodes
the set V, of vertices to which a shortest path from u begins with the arc a.
Instead of storing V,, explicitly, L(a) approximates this set by using geometric
information (i.e., the coordinates) of the vertices in V,,. During a query, if the
target vertex t is not in L(a), the search can safely be pruned at a. Schulz
et al. [235] approximate the set V, by an angular sector (centered at) that
covers all vertices in V,. Wagner et al. [251] consider other geometric containers,
such as ellipses and the convex hull, and conclude that bounding boxes perform
consistently well. For graphs with no geometric information, one can use graph
layout algorithms and then create the containers [55,250]. A disadvantage of
Geometric Containers is that its preprocessing essentially requires an all-pairs
shortest path computation, which is costly.

Arc Flags. The Arc Flags approach [157,178] is somewhat similar to Geometric
Containers, but does not use geometry. During preprocessing, it partitions the
graph into K cells that are roughly balanced (have similar number of vertices)
and have a small number of boundary vertices. Each arc maintains a vector of K
bits (arc flags), where the i-th bit is set if the arc lies on a shortest path to some
vertex of cell i. The search algorithm then prunes arcs which do not have the
bit set for the cell containing t. For better query performance, arc flags can be
extended to nested multilevel partitions [197]. Whenever the search reaches the
cell that contains ¢, it starts evaluating arc flags with respect to the (finer) cells
of the level below. This approach works best in combination with bidirectional
search [157].

The arc flags for a cell ¢ are computed by growing a backward shortest path
tree from each boundary vertex (of cell i), setting the i-th flag for all arcs of
the tree. Alternatively, one can compute arc flags by running a label-correcting
algorithm from all boundary vertices simultaneously [157]. To reduce preprocess-
ing space, one can use a compression scheme that flips some flags from zero to
one [58], which preserves correctness. As Sect.3 will show, Arc Flags currently
have the fastest query times among purely goal-directed methods for road net-
works. Although high preprocessing times (of several hours) have long been a
drawback of Arc Flags, the recent PHAST algorithm (cf. Sect.2.7) can make
this method more competitive with other techniques [75].

Precomputed Cluster Distances. Another goal-directed technique is Precomputed
Cluster Distances (PCD) [188]. Like Arc Flags, it is based on a (preferably bal-
anced) partition C = (C1,...,Ck) with K cells (or clusters). The preprocessing
algorithm computes the shortest path distances between all pairs of cells.

Route Planning in Transportation Networks 25

Fig. 3. Left: Multilevel overlay graph with two levels. The dots depict separator vertices
in the lower and upper level. Right: Overlay graph constructed from arc separators.
Each cell contains a full clique between its boundary vertices, and cut arcs are thicker.

The query algorithm is a pruned version of Dijkstra’s algorithm. For any
vertex u visited by the search, a valid lower bound on its distance to the target
is dist(s, u) + dist(C'(u), C(¢t)) + dist(v, t), where C(u) is the cell containing u
and v is the boundary vertex of C'(¢) that is closest to ¢. If this bound exceeds the
best current upper bound on dist(s, t), the search is pruned. For road networks,
PCD has similar query times to ALT, but requires less space.

Compressed Path Databases. The Compressed Path Databases (CPD) [52,53]
method implicitly stores all-pairs shortest path information so that shortest
paths can be quickly retrieved during queries. Each vertex u € V maintains
a label L(u) that stores the first move (the arc incident to w) of the shortest
path toward every other vertex v of the graph. A query from s simply scans L(u)
for ¢, finding the first arc (s,u) of the shortest path (to t); it then recurses on u
until it reaches ¢. Explicitly storing the first arc of every shortest path (in ©(|V|*)
space) would be prohibitive. Instead, Botea and Harabor [53] propose a lossless
data compression scheme that groups vertices that share the same first move (out
of u) into nonoverlapping geometric rectangles, which are then stored with wu.
Further optimizations include storing the most frequent first move as a default
and using more sophisticated compression techniques. This leads to fast queries,
but space consumption can be quite large; the method is thus dominated by
other approaches. CPD can be seen as an evolution of the Spatially Induced
Linkage Cognizance (SILC) algorithm [228], and both can be seen as stronger
versions of Geometric Containers.

2.3 Separator-Based Techniques

Planar graphs have small (and efficiently-computable) separators [181]. Although
road networks are not planar (think of tunnels or overpasses), they have been
observed to have small separators as well [79,123,227]. This fact is exploited by
the methods in this section.

26 H. Bast et al.

Vertex Separators. We first consider algorithms based on wertex separators.
A vertex separator is a (preferably small) subset S C V of the vertices whose
removal decomposes the graph G into several (preferably balanced) cells (com-
ponents). This separator can be used to compute an overlay graph G’ over S.
Shortcut arcs [249] are added to the overlay such that distances between any
pair of vertices from S are preserved, i.e., they are equivalent to the distance
in G. The much smaller overlay graph can then be used to accelerate (parts of)
the query algorithm.

Schulz et al. [235] use an overlay graph over a carefully chosen subset S (not
necessarily a separator) of “important” vertices. For each pair of vertices u,v €
S, an arc (u,v) is added to the overlay if the shortest path from u to v in G
does not contain any other vertex w from S. This approach can be further
extended [160,236] to multilevel hierarchies. In addition to arcs between sepa-
rator vertices of the same level, the overlay contains, for each cell on level i,
arcs between the confining level i separator vertices and the interior level (i — 1)
separator vertices. See Fig. 3 for an illustration.

Other variants of this approach offer different trade-offs by adding many
more shortcuts to the graph during preprocessing, sometimes across different
levels [151,164]. In particular High-Performance Multilevel Routing (HPML) [83]
substantially reduces query times but significantly increases the total space usage
and preprocessing time. A similar approach, based on path separators for pla-
nar graphs, was proposed by Thorup [245] and implemented by Muller and
Zachariasen [205]. It works reasonably well to find approximate shortest paths
on undirected, planarized versions of road networks.

Arc Separators. The second class of algorithms we consider uses arc sepa-
rators to build the overlay graphs. In a first step, one computes a parti-
tion C = (C4,...,Cy) of the vertices into balanced cells while attempting to
minimize the number of cut arcs (which connect boundary vertices of different
cells). Shortcuts are then added to preserve the distances between the boundary
vertices within each cell.

An early version of this approach is the Hierarchical MulTi (HiTi)
method [165]. It builds an overlay graph containing all boundary vertices and
all cut arcs. In addition, for each pair u,v of boundary vertices in C;, HiTi adds
to the overlay a shortcut (u,v) representing the shortest path from u to v in G
restricted to C;. The query algorithm then (implicitly) runs Dijkstra’s algorithm
on the subgraph induced by the cells containing s and ¢ plus the overlay. This
approach can be extended to use nested multilevel partitions. HiTi has only been
tested on grid graphs [165], leading to modest speedups. See also Fig. 3.

The recent Customizable Route Planning (CRP) [76,78] algorithm uses a
similar approach, but is specifically engineered to meet the requirements of real-
world systems operating on road networks. In particular, it can handle turn costs
and is optimized for fast updates of the cost function (metric). Moreover, it uses
PUNCH [79], a graph partitioning algorithm tailored to road networks. Finally,
CRP splits preprocessing in two phases: metric-independent preprocessing and
customization. The first phase computes, besides the multilevel partition, the

Route Planning in Transportation Networks 27

topology of the overlays, which are represented as matrices in contiguous memory
for efficiency. Note that the partition does not depend on the cost function. The
second phase (which takes the cost function as input) computes the costs of
the clique arcs by processing the cells in bottom-up fashion and in parallel.
To process a cell, it suffices to run Dijkstra’s algorithm from each boundary
vertex, but the second phase is even faster using the Bellman-Ford algorithm
paired with (metric-independent) contraction [100] (cf. Sect.2.4), at the cost of
increased space usage. Further acceleration is possible using GPUs [87]. Queries
are bidirectional searches in the overlay graph, as in HiTi.

2.4 Hierarchical Techniques

Hierarchical methods aim to exploit the inherent hierarchy of road networks.
Sufficiently long shortest paths eventually converge to a small arterial network
of important roads, such as highways. Intuitively, once the query algorithm is far
from the source and target, it suffices to only scan vertices of this subnetwork.
In fact, using input-defined road categories in this way is a popular heuris-
tic [115,158], though there is no guarantee that it will find exact shortest paths.
Fu et al. [130] give an overview of early approaches using this technique. Since
the algorithms we discuss must find exact shortest paths, their correctness must
not rely on unverifiable properties such as input classifications. Instead, they use
the preprocessing phase to compute the importance of vertices or arcs according
to the actual shortest path structure.

Contraction Hierarchies. An important approach to exploiting the hierarchy is
to use shortcuts. Intuitively, one would like to augment G with shortcuts that
could be used by long-distance queries to skip over “unimportant” vertices.

The Contraction Hierarchies (CH) algo-
rithm, proposed by Geisberger et al. [142],
implements this idea by repeatedly executing a
vertex contraction operation. To contract a ver-
tex v, it is (temporarily) removed from G, and
a shortcut is created between each pair u,w of
neighboring vertices if the shortest path from u
to w is unique and contains v. During pre-
processing, CH (heuristically) orders the ver- ¢
tices by “importance” and contracts them from
least to most important.

The query stage runs a bidirectional search Fig. 4. Tllustrating a Contraction
from s and ¢ on G augmented by the shortcuts fierarchies query.
computed during preprocessing, but only visits
arcs leading to vertices of higher ranks (importance). See Fig. 4 for an illustra-
tion. Let ds(u) and di(u) be the corresponding distance labels obtained by these
upward searches (set to oo for vertices that are not visited). It is easy to show
that ds(u) > dist(s,u) and d¢(u) > dist(u, t); equality is not guaranteed due to

— vertex importance =p-

28 H. Bast et al.

pruning. Nevertheless, Geisberger et al. [142] prove that the highest-ranked ver-
tex u* on the original s—t path will be visited by both searches, and that both its
labels will be exact, i.e., ds(u*) = dist(s, u*) and d;(u*) = dist(u*, t). Therefore,
among all vertices u visited by both searches, the one minimizing dg(u) + d;(u)
represents the shortest path. Note that, since u* is not necessarily the first vertex
that is scanned by both searches, they cannot stop as soon as they meet.

Query times depend on the vertex order. During preprocessing, the ver-
tex order is usually determined online and bottom-up. The overall (heuristic)
goal is to minimize the number of edges added during preprocessing. One typ-
ically selects the vertex to be contracted next by considering a combination
of several factors, including the net number of shortcuts added and the num-
ber of nearby vertices already contracted [142,168]. Better vertex orders can
be obtained by combining the bottom-up algorithm with (more expensive) top-
down offline algorithms that explicitly classify vertices hitting many shortest
paths as more important [5,77]. Since road networks have very small separa-
tors [79], one can use nested dissection to obtain reasonably good orders that
work for any length function [100,107]. Approximate CH has been considered as
a way to accommodate networks with less inherent hierarchy [143].

CH is actually a successor of Highway Hierarchies [225] and Highway Node
Routing [234], which are based on similar ideas. CH is not only faster, but also
conceptually simpler. This simplicity has made it quite versatile, serving as a
building block not only for other point-to-point algorithms [4,15,40,100], but
also for extended queries (cf. Sect.2.7) and applications (cf. Sect. 3.2).

Reach. An earlier hierarchical approach is Reach [154]. Reach is a centrality
measure on vertices. Let P be a shortest s—t path that contains vertex u. The
reach r(u,P) of u with respect to P is defined as min{dist(s,u), dist(u,t)}.
The (global) reach of u in the graph G is the maximum reach of u over all
shortest paths that contain u. Like other centrality measures [54], reach cap-
tures the importance of vertices in the graph, with the advantage that it can be
used to prune a Dijkstra-based search.

A reach-based s—t query runs Dijkstra’s algorithm, but prunes the search
at any vertex u for which both dist(s,u) > r(u) and dist(u,t) > r(u) hold;
the shortest s—t path provably does not contain u. To check these condi-
tions, it suffices [149] to run bidirectional searches, each using the radius of
the opposite search as a lower bound on dist(u,t) (during the forward search)
or dist(s,u) (backward search).

Reach values are determined during the preprocessing stage. Computing
exact reaches requires computing shortest paths for all pairs of vertices, which
is too expensive on large road networks. But the query is still correct if r(u)
represents only an upper bound on the reach of u. Gutman [154] has shown that
such bounds can be obtained faster by computing partial shortest path trees.
Goldberg et al. [149] have shown that adding shortcuts to the graph effectively
reduces the reaches of most vertices, drastically speeding up both queries and
preprocessing and making the algorithm practical for continent-sized networks.

Route Planning in Transportation Networks 29

2.5 Bounded-Hop Techniques

The idea behind bounded-hop techniques is to precompute distances between
pairs of vertices, implicitly adding “virtual shortcuts” to the graph. Queries can
then return the length of a virtual path with very few hops. Furthermore, they
use only the precomputed distances between pairs of vertices, and not the input
graph. A naive approach is to use single-hop paths, i. e., precompute the distances
among all pairs of vertices u,v € V. A single table lookup then suffices to
retrieve the shortest distance. While the recent PHAST algorithm [75] has made
precomputing all-pairs shortest paths feasible, storing all @(\V\Q) distances is
prohibitive already for medium-sized road networks. As we will see in this section,
considering paths with slightly more hops (two or three) leads to algorithms with
much more reasonable trade-offs.

Labeling Algorithms. We first consider labeling algo- s
rithms [215]. During preprocessing, a label L(u) is
computed for each vertex u of the graph, such that,
for any pair u,v of vertices, the distance dist(u,v)

can be determined by only looking at the labels L(u) = * = @
and L(v). A natural special case of this approach is - u
Hub Labeling (HL) [64,135], in which the label L(u) u]

associated with vertex u consists of a set of ver-]

tices (the hubs of u), together with their distances t

from w. These labels are chosen such that they

obey the cover property: for any pair (s,t) of ver- Fig.5. Illustrating hub
tices, L(s) N L(t) must contain at least one vertex on labels of vertices s (dia-
the shortest s—t path. Then, the distance dist(s,t) monds) and ¢ (squares).
can be determined in linear (in the label size) time

by evaluating dist(s,?) = min{dist(s,u) + dist(u,t) | v € L(s) and v € L(¢)}.
See Fig.5 for an illustration. For directed graphs, the label associated with u is
actually split in two: the forward label L;(u) has distances from u to the hubs,
while the backward label Ly(u) has distances from the hubs to w; the shortest s—¢
path has a hub in L (s) N Ly(2).

Although the required average label size can be O(|V]) in general [135], it
can be significantly smaller for some graph classes. For road networks, Abraham
et al. [4] have shown that one can obtain good results by defining the label of
vertex u as the (upward) search space of a CH query from u (with suboptimal
entries removed). In general, any vertex ordering fully defines a labeling [5], and
an ordering can be converted into the corresponding labeling efficiently [5,12].
The CH-induced order works well for road networks. For even smaller labels,
one can pick the most important vertices greedily, based on how many shortest
paths they hit [5]. A sampling version of this greedy approach works efficiently
for a wide range of graph classes [77].

Note that, if labels are sorted by hub ID, a query consists of a linear sweep
over two arrays, as in mergesort. Not only is this approach very simple, but
it also has an almost perfect locality of access. With careful engineering, one

30 H. Bast et al.

does not even have to look at all the hubs in a label [4]. As a result, HL has
the fastest known queries for road networks, taking roughly the time needed
for five accesses to main memory (see Sect.3.1). One drawback is space usage,
which, although not prohibitive, is significantly higher than for competing meth-
ods. By combining common substructures that appear in multiple labels, Hub
Label Compression (HLC) [82] (see also [77]) reduces space usage by an order of
magnitude, at the expense of higher query times.

Distance Table Transit Node Routing. The Transit Node
Routing (TNR) [15,28,30,224] technique
uses distance tables on a subset of the
vertices. During preprocessing, it selects
a small set T' C V of transit nodes and
computes all pairwise distances between
them. From those, it computes, for each
e vertex uw € V' \ T, a relevant set of access
o)- nodes A(u) C T. A transit node v € T' is an
? access node of u if there is a shortest path P
from w in G such that v is the first tran-
sit node contained in P. In addition to the
Fig. 6. lllustrating a TNR query. The vertex itself, preprocessing also stores the
access nodes of s (t) are indicated by distances between u and its access nodes.
three (two) do‘fs' The arrows point An st query uses the distance table
EE t(};e respectlgf r%V;fIS/ Cﬁluﬁnz Odf to select the path that minimizes the com-
e distance table. Lhe highlighted ;g s—a(s)—a(t)-t distance, where a(s) €
entries correspond to the access nodes A(s) and a(t) € A(t) are access nodes. Note
which minimize the combined st N ;)
distance. that the result is incorrect if the shortest
path does not contain a vertex from T.
To account for such cases, a locality filter decides whether the query might be
local (i.e., does not contain a vertex from 7). In that case, a fallback short-
est path algorithm (typically CH) is run to compute the correct distance. Note
that TNR is still correct even if the locality filter occasionally misclassifies a
global query as local. See Fig. 6 for an illustration of a TNR query. Interestingly,
global TNR queries (which use the distance tables) tend to be faster than local
ones (which perform graph searches). To accelerate local queries, TNR can be
extended to multiple (hierarchical) layers of transit (and access) nodes [28,224].
The choice of the transit node set is crucial to the performance of the algo-
rithm. A natural approach is to select vertex separators or boundary vertices
of arc separators as transit nodes. In particular, using grid-based separators
yields natural locality filters and works well enough in practice for road net-
works [28]. (Although an optimized preprocessing routine for this grid-based
approach was later shown to have a flaw that could potentially result in sub-
optimal queries [257], the version with slower preprocessing reported in [28] is
correct and achieves the same query times.)
For better performance [3,15,142,224], one can pick as transit nodes vertices
that are classified as important by a hierarchical speedup technique (such as CH).

Route Planning in Transportation Networks 31

Locality filters are less straightforward in such cases: although one can still
use geographical distances [142,224], a graph-based approach considering the
Voronoi regions [189] induced by transit nodes tends to be significantly more
accurate [15]. A theoretically justified TNR variant [3] also picks important
vertices as transit nodes and has a natural graph-based locality filter, but is
impractical for large networks.

Pruned Highway Labeling. The Pruned Highway Labeling (PHL) [11] algorithm
can be seen as a hybrid between pure labeling and transit nodes. Its preprocessing
routine decomposes the input into disjoint shortest paths, then computes a label
for each vertex v containing the distance from v to vertices in a small subset of
such paths. The labels are such that any shortest s—t path can be expressed as
s—u—w-t, where u—w is a subpath of a path P that belongs to the labels of
s and t. Queries are thus similar to HL, finding the lowest-cost intersecting path.
For efficient preprocessing, the algorithm uses the pruned labeling technique [12].
Although this method has some similarity with Thorup’s distance oracle for
planar graphs [245], it does not require planarity. PHL has only been evaluated
on undirected graphs, however.

2.6 Combinations

Since the individual techniques described so far exploit different graph proper-
ties, they can often be combined for additional speedups. This section describes
such hybrid algorithms. In particular, early results [161,235] considered the com-
bination of Geometric Containers, multilevel overlay graphs, and (Euclidean-
based) A* on transportation networks, resulting in speedups of one or two orders
of magnitude over Dijkstra’s algorithm.

More recent studies have focused on combining hierarchical methods (such as
CH or Reach) with fast goal-directed techniques (such as ALT or Arc Flags). For
instance, the REAL algorithm combines Reach and ALT [149]. A basic combina-
tion is straightforward: one simply runs an ALT query with additional pruning
by reach (using the ALT lower bounds themselves for reach evaluations). A more
sophisticated variant uses reach-aware landmarks: landmarks and their distances
are only precomputed for vertices with high reach values. This saves space (only
a small fraction of the graph needs to store landmark distances), but requires
two-stage queries (goal direction is only used when the search is far enough from
both source and target).

A similar space-saving approach is used by Core-ALT [40,88]. It first com-
putes an overlay graph for the core graph, a (small) subset (e.g., 1%) of ver-
tices (which remain after “unimportant” ones are contracted), then computes
landmarks for the core vertices only. Queries then work in two stages: first plain
bidirectional search, then ALT is applied when the search is restricted to the core.
The (earlier) HH* approach [95] is similar, but uses Highway Hierarchies [225]
to determine the core.

Another approach with two-phase queries is ReachFlags [40]. During pre-
processing, it first computes (approximate) reach values for all vertices in G,

32 H. Bast et al.

then extracts the subgraph H induced by all vertices whose reach value exceeds
a certain threshold. Arc flags are then only computed for H, to be used in the
second phase of the query.

The SHARC algorithm [39] combines the computation of shortcuts with
multilevel arc flags. The preprocessing algorithm first determines a partition
of the graph and then computes shortcuts and arc flags in turn. Shortcuts are
obtained by contracting unimportant vertices with the restriction that shortcuts
never span different cells of the partition. The algorithm then computes arc
flags such that, for each cell C, the query uses a shortcut arc if and only if the
target vertex is not in C'. Space usage can be reduced with various compression
techniques [58]. Note that SHARC is unidirectional and hierarchical: arc flags not
only guide the search toward the target, but also vertically across the hierarchy.
This is useful when the backward search is not well defined, as in time-dependent
route planning (discussed in Sect. 2.7).

Combining CH with Arc Flags results in the CHASE algorithm [40]. Dur-
ing preprocessing, a regular contraction hierarchy is computed and the search
graph that includes all shortcuts is assembled. The algorithm then extracts the
subgraph H induced by the top k vertices according to the contraction order.
Bidirectional arc flags (and the partition) are finally computed on the restricted
subgraph H. Queries then run in two phases. Since computing arc flags was
somewhat slow, k was originally set to a small fraction (about 5%) of the total
number |V| of vertices [40]. More recently, Delling et al. showed that PHAST (see
Sect. 2.7) can compute arc flags fast enough to allow k to be set to |V, making
CHASE queries much simpler (single-pass), as well as faster [75].

Finally, Bauer et al. [40] combine Transit Node Routing with Arc Flags to
obtain the TNR+4AF algorithm. Recall that the bottleneck of the TNR query is
performing the table lookups between pairs of access nodes from A(s) and A(¢).
To reduce the number of lookups, TNR+AF’s preprocessing decomposes the set
of transit nodes T into k cells. For each vertex s and access node u € A(s), it
stores a k-bit vector, with bit ¢ indicating whether there exists a shortest path
from s to cell ¢ through u. A query then only considers the access nodes from s
that have their bits set with respect to the cells of A(t). A similar pruning is
done at the target.

2.7 Extensions

In various applications, one is often interested in more than just the length of
the shortest path between two points in a static network. Most importantly,
one should also be able to retrieve the shortest path itself. Moreover, many of
the techniques considered so far can be adapted to compute batched shortest
paths (such as distance tables), to more realistic scenarios (such as dynamic
networks), or to deal with multiple objective functions. In the following, we
briefly discuss each of these extensions.

Path Retrieval. Our descriptions so far have focused on finding only the length
of the shortest path. The algorithms we described can easily be augmented to

Route Planning in Transportation Networks 33

provide the actual list of edges or vertices on the path. For techniques that do
not use shortcuts (such as Dijkstra’s algorithm, A* search, or Arc Flags), one
can simply maintain a parent pointer for each vertex v, updating it whenever
the distance label of v changes. When shortcuts are present (such as in CH,
SHARC, or CRP), this approach gives only a compact representation of the
shortest path (in terms of shortcuts). The shortcuts then need to be unpacked.
If each shortcut is the concatenation of two other arcs (or shortcuts), as in CH,
storing the middle vertex [142] of each shortcut allows for an efficient (linear-
time) recursive unpacking of all shortcuts on the output path. If shortcuts are
built from multiple arcs (as for CRP or SHARC), one can either store the entire
sequence for each shortcut [225] or run a local (bidirectional) Dijkstra search from
its endpoints [78]. These two techniques can be used for bounded-hop algorithms
as well.

Batched Shortest Paths. Some applications require computing multiple paths
at once. For example, advanced logistics applications may need to compute all
distances between a source set S and a target set 7. This can be trivially done
with [S| - |T| point-to-point shortest-path computations. Using a hierarchical
speedup technique (such as CH), this can be done in time comparable to O(|S|+
|T|) point-to-point queries in practice, which is much faster. First, one runs a
backward upward search from each t; € T'; for each vertex u scanned during
the search from t;, one stores its distance label d;,(u) in a bucket ((w). Then,
one runs a forward upward search from each s; € S. Whenever such a search
scans a vertex v with a non-empty bucket, one searches the bucket and checks
whether d, (v) +d;, (v) improves the best distance seen so far between s; and ;.
This bucket-based approach was introduced for Highway Hierarchies [172], but
can be used with any other hierarchical speedup technique (such as CH) and
even with hub labels [81]. When the bucket-based approach is combined with
a separator-based technique (such as CRP), it is enough to keep buckets only
for the boundary vertices [99]. Note that this approach can be used to compute
one-to-many or many-to-many distances.

Some applications require one-to-all computations, i.e., finding the distances
from a source vertex s to all other vertices in the graph. For this problem,
Dijkstra’s algorithm is optimal in the sense that it visits each edge exactly once,
and hence runs in essentially linear time [147]. However, Dijkstra’s algorithm
has bad locality and is hard to parallelize, especially for sparse graphs [186,193].
PHAST [75] builds on CH to improve this. The idea is to split the search in two
phases. The first is a forward upward search from s, and the second runs a linear
scan over the shortcut-enriched graph, with distance values propagated from
more to less important vertices. Since the instruction flow of the second phase
is (almost) independent of the source, it can be engineered to exploit parallelism
and improve locality. In road networks, PHAST can be more than an order of
magnitude faster than Dijkstra’s algorithm, even if run sequentially, and can
be further accelerated using multiple cores and even GPUs. This approach can
also be extended to the ome-to-many problem, i.e., computing distances from

34 H. Bast et al.

a source to a subset of predefined targets [81]. Similar techniques can also be
applied with graph separators (instead of CH), yielding comparable query times
but with faster (metric-dependent) preprocessing [113].

Dynamic Networks. Transportation networks tend to be dynamic, with
unpredictable delays, traffic, or closures. If one assumes that the modified net-
work is stable for the foreseeable future, the obvious approach for speedup tech-
niques to deal with this is to rerun the preprocessing algorithm. Although this
ensures queries are as fast as in the static scenario, it can be quite costly. As a
result, four other approaches have been considered.

It is often possible to just “repair” the preprocessed data instead of rebuild-
ing it from scratch. This approach has been tried for various techniques, includ-
ing Geometric Containers [251], ALT [96], Arc Flags [66], and CH [142,234],
with varying degrees of success. For CH, for example, one must keep track of
dependencies between shortcuts, partially rerunning the contraction as needed.
Changes that affect less important vertices can be dealt with faster.

Another approach is to adapt the query algorithms to work around the
“wrong” parts of the preprocessing phase. In particular, ALT is resilient to
increases in arc costs (due to traffic, for example): queries remain correct with
the original preprocessing, though query times may increase [96]. Less trivially,
CH queries can also be modified to deal with dynamic changes to the net-
work [142,234] by allowing the search to bypass affected shortcuts by going
“down” the hierarchy. This is useful when queries are infrequent relative to
updates.

A third approach is to make the preprocessing stage completely metric-
independent, shifting all metric-dependent work to the query phase. Funke
et al. [131] generalize the multilevel overlay graph approach to encode
all k-hop paths (for small k) in an overlay graph. Under the assumption that
edge costs are defined by a small number of physical parameters (as in simplified
road networks) this allows setting the edge costs at query time, though queries
become significantly slower.

For more practical queries, the fourth approach splits the preprocessing phase
into metric-independent and metric-dependent stages. The metric-independent
phase takes as input only the network topology, which is fairly stable. When edge
costs change (which happens often), only the (much cheaper) metric-dependent
stage must be rerun, partially or in full. This concept can again be used for
various techniques, with ALT, CH, and CRP being the most prominent. For ALT,
one can keep the landmarks, and just recompute the distances to them [96,112].
For CH, one can keep the ordering, and just rerun contraction [107,142]. For
CRP, one can keep the partitioning and the overlay topology, and just recompute
the shortcut lengths using a combination of contraction and graph searches [78].
Since the contraction is metric-independent, one can precompute and store the
sequence of contraction operations and reexecute them efficiently whenever edge
lengths change [78,87]. The same approach can be used for CH with metric-
independent orders [107].

Route Planning in Transportation Networks 35

Time-Dependence. In real transportation networks, the best route often
depends on the departure time in a predictable way [102]. For example, cer-
tain roads are consistently congested during rush hours, and certain buses
or trains run with different frequencies during the day. When one is inter-
ested in the earliest possible arrival given a specified departure time (or, sym-
metrically, the latest departure), one can model this as the time-dependent
shortest path problem, which assigns travel time functions to (some of) the
edges, representing how long it takes to traverse them at each time of the day.
Dijkstra’s algorithm still works [65] as long as later departures cannot lead to ear-
lier arrivals; this non-overtaking property is often called first-in first-out (FIFO).
Although one must deal with functions instead of scalars, the theoretical run-
ning time of Dijkstra-based algorithms can still be bounded [71,128]. Moreover,
many of the techniques described so far work in this scenario, including bidi-
rectional ALT [88,207], CH [32], or SHARC [72]. Recently, Kontogiannis and
Zaroliagis [175] have introduced a theoretical (approximate) distance oracle with
sublinear running time. Other scenarios (besides FIFO with no waiting at ver-
tices) have been studied [69,70,208,209], but they are less relevant for trans-
portation networks.

There are some challenges, however. In particular, bidirectional search
becomes more complicated (since the time of arrival is not known), requiring
changes to the backward search [32,207]. Another challenge is that shortcuts
become more space-consuming (they must model a more complicated travel time
function), motivating compression techniques that do not sacrifice correctness,
as demonstrated for SHARC [58] or CH [32]. Batched shortest paths can be
computed in such networks efficiently as well [141].

Time-dependent networks motivate some elaborate (but still natural) queries,
such as finding the best departure time in order to minimize the total time
in transit. Such queries can be dealt with by range searches, which compute
the travel time function between two points. There exist Dijkstra-based algo-
rithms [71] for this problem, and most speedup techniques can be adapted to
deal with this as well [32,72].

Unfortunately, even a slight deviation from the travel time model, where total
cost is a linear combination of travel time and a constant cost offset, makes the
problem NP-hard [9,33]. However, a heuristic adaptation of time-dependent CH
shows negligible errors in practice [33].

Multiple Objective Functions. Another natural extension is to consider mul-
tiple cost functions. For example, certain vehicle types cannot use all segments
of the transportation network. One can either adapt the preprocessing such that
these edge restrictions can be applied during query time [140], or perform a
metric update for each vehicle type.

Also, the search request can be more flexible. For example, one may be will-
ing to take a more scenic route even if the trip is slightly longer. This can be
dealt with by performing a multicriteria search. In such a search, two paths
are incomparable if neither is better than the other in all criteria. The goal is

36 H. Bast et al.

to find a Pareto set, i.e., a maximum set of incomparable paths. Such sets of
shortest paths can be computed by extensions of Dijkstra’s algorithm; see [117]
for a survey on multicriteria combinatorial optimization. More specifically, the
Multicriteria Label-Setting (MLS) algorithm [155,187,196,243] extends Dijk-
stra’s algorithm by keeping, for each vertex, a bag of nondominated labels. Each
label is represented as a tuple, with one entry per optimization criterion. The
priority queue maintains labels instead of vertices, typically ordered lexicograph-
ically. In each iteration, it extracts the minimum label L and scans the incident
arcs a = (u,v) of the vertex u associated with L. It does so by adding the cost
of a to L and then merging L into the bag of v, eliminating possibly dominated
labels on the fly. In contrast, the Multi-Label-Correcting (MLC) algorithm [68, 98]
considers the whole bag of nondominated labels associated with u at once when
scanning the vertex u. Hence, individual labels of ©v may be scanned multiple
times during one execution of the algorithm.

Both MLS and MLC are fast enough as long as the Pareto sets are
small [109,204]. Unfortunately, Pareto sets may contain exponentially many solu-
tions, even for the restricted case of two optimization criteria [155], which makes
it hard to achieve large speedups [47,97]. To reduce the size of Pareto sets, one
can relax domination. In particular, (1 + €)-Pareto sets have provable polyno-
mial size [212] and can be computed efficiently [182,246,253]. Moreover, large
Pareto sets open up a potential for parallelization that is not present for a single
objective function [124,222].

A reasonable alternative [138] to multicriteria search is to optimize a linear
combination ac; + (1 — «)cq of two criteria (c1, ¢2), with the parameter « set at
query time. Moreover, it is possible to efficiently compute the values of o where
the path actually changes. Funke and Storandt [133] show that CH can handle
such functions with polynomial preprocessing effort, even with more than two
criteria.

2.8 Theoretical Results

Most of the algorithms mentioned so far were developed with practical perfor-
mance in mind. Almost all methods we surveyed are exact: they provably find
the exact shortest path. Their performance (in terms of both preprocessing and
queries), however, varies significantly with the input graph. Most algorithms
work well for real road networks, but are hardly faster than Dijkstra’s algorithm
on some other graph classes. This section discusses theoretical work that helps
understand why the algorithms perform well and what their limitations are.
Most of the algorithms considered have some degree of freedom during pre-
processing (such as which partition, which vertex order, or which landmarks to
choose). An obvious question is whether one could efficiently determine the best
such choices for a particular input so as to minimize the query search space (a
natural proxy for query times). Bauer et al. [36] have determined that finding
optimal landmarks for ALT is NP-hard. The same holds for Arc Flags (with
respect to the partition), SHARC (with respect to the shortcuts), Multilevel
Overlay Graphs (with respect to the separator), Contraction Hierarchies (with

Route Planning in Transportation Networks 37

respect to the vertex order), and Hub Labels (with respect to the hubs) [252].
In fact, minimizing the number of shortcuts for CH is APX-hard [36,194]. For
SHARC, however, a greedy factor-k approximation algorithm exists [38]. Decid-
ing which k shortcuts (for fixed k) to add to a graph in order to minimize the
SHARC search space is also NP-hard [38]. Bauer et al. [35] also analyze the pre-
processing of Arc Flags in more detail and on restricted graph classes, such as
paths, trees, and cycles, and show that finding an optimal partition is NP-hard
even for binary trees.

Besides complexity, theoretical performance bounds for query algorithms,
which aim to explain their excellent practical performance, have also been con-
sidered. Proving better running time bounds than those of Dijkstra’s algorithm
is unlikely for general graphs; in fact, there are inputs for which most algorithms
are ineffective. That said, one can prove nontrivial bounds for specific graph
classes. In particular, various authors [37,194] have independently observed a
natural relationship between CH and the notions of filled graphs [214] and elim-
ination trees [232]. For planar graphs, one can use nested dissection [180] to
build a CH order leading to O(|V]log|V|) shortcuts [37,194]. More generally,
for minor-closed graph classes with balanced O(\/m)—separators, the search
space is bounded by O(+/[V]) [37]. Similarly, on graphs with treewidth k, the
search space of CH is bounded by O(klog|V|) [37].

Road networks have motivated a large amount of theoretical work on algo-
rithms for planar graphs. In particular, it is known that planar graphs have sepa-
rators of size O(1/|V]) [180,181]. Although road networks are not strictly planar,
they do have small separators [79,123], so theoretically efficient algorithms for
planar graphs are likely to also perform well in road networks. Sommer [238]
surveys several approximate methods with various trade-offs. In practice, the
observed performance of most speedup techniques is much better on actual road
networks than on arbitrary planar graphs (even grids). A theoretical explanation
of this discrepancy thus requires a formalization of some property related to key
features of real road networks.

One such graph property is Highway Dimension, proposed by Abraham
et al. [3] (see also [1,7]). Roughly speaking, a graph has highway dimension A if,
at any scale r, one can hit all shortest paths of length at least r by a hitting set .S
that is locally sparse, in the sense that any ball of radius r has at most h elements
from S. Based on previous experimental observations [30], the authors [7] con-
jecture that road networks have small highway dimension. Based on this notion,
they establish bounds on the performance of (theoretically justified versions of)
various speedup techniques in terms of i and the graph diameter D, assuming
the graph is undirected and that edge lengths are integral. More precisely, after
running a polynomial-time preprocessing routine, which adds O(hlog hlog D)
shortcuts to G, Reach and CH run in O((hloghlog D)?) time. Moreover, they
also show that HL runs in O(hloghlog D) time and long-range TNR queries
take O(h?) time. In addition, Abraham et al. [3] show that a graph with high-
way dimension h has doubling dimension log(h + 1), and Kleinberg et al. [171]
show that landmark-based triangulation yields good bounds for most pairs of

38 H. Bast et al.

vertices of graphs with small doubling dimension. This gives insight into the
good performance of ALT in road networks.

The notion of highway dimension is an interesting application of the scientific
method. It was originally used to explain the good observed performance of
CH, Reach, and TNR, and ended up predicting that HL (which had not been
implemented yet) would have good performance in practice.

Generative models for road networks have also been proposed and analyzed.
Abraham et al. [3,7] propose a model that captures some of the properties of
road networks and generates graphs with provably small highway dimension.
Bauer e al. [42] show experimentally that several speedup techniques are indeed
effective on graphs generated according to this model, as well as according to
a new model based on Voronoi diagrams. Models with a more geometric flavor
have been proposed by Eppstein and Goodrich [123] and by Eisenstat [118].

Besides these results, Rice and Tsotras [220] analyze the A* algorithm and
obtain bounds on the search space size that depend on the underestimation
error of the potential function. Also, maintaining and updating multilevel overlay
graphs have been theoretically analyzed in [57]. For Transit Node Routing, Eisner
and Funke [120] propose instance-based lower bounds on the size of the transit
node set. For labeling algorithms, bounds on the label size for different graph
classes are given by Gavoille et al. [135]. Approximation algorithms to compute
small labels have also been studied [16,64,80]; although they can find slightly
better labels than faster heuristics [5,77], their running time is prohibitive [80].

Because the focus of this work is on algorithm engineering, we refrain from
going into more detail about the available theoretical work. Instead, we refer the
interested reader to overview articles with a more theoretical emphasis, such as
those by Sommer [238], Zwick [262], and Gavoille and Peleg [134].

3 Route Planning in Road Networks

In this section, we experimentally evaluate how the techniques discussed so far
perform in road networks. Moreover, we discuss applications of some of the
techniques, as well as alternative settings such as databases or mobile devices.

3.1 Experimental Results

Our experimental analysis considers carefully engineered implementations, which
is very important when comparing running times. They are written in C++ with
custom-built data structures. Graphs are represented as adjacency arrays [190],
and priority queues are typically binary heaps, 4-heaps, or multilevel buckets.
As most arcs in road networks are bidirectional, state-of-the-art implementations
use edge compression [233]: each road segment is stored at both of its endpoints,
and each occurrence has two flags indicating whether the segment should be
considered as an incoming and/or outgoing arc. This representation is compact
and allows efficient iterations over incoming and outgoing arcs.

Route Planning in Transportation Networks 39

We give data for two models. The simplified model ignores turn restrictions
and penalties, while the realistic model includes the turn information [255]. There
are two common approaches to deal with turns. The arc-based representation [59]
blows up the graph so that roads become vertices and feasible turns become arcs.
In contrast, the compact representation [76,144] keeps intersections as vertices,
but with associated turn tables. One can save space by sharing turn tables among
many vertices, since the number of intersection types in a road network is rather
limited. Most speedup techniques can be used as is for the arc-based represen-
tation, but may need modification to work on the compact model.

Most experimental studies are restricted to the simplified model. Since some
algorithms are more sensitive to how turns are modeled than others, it is hard
to extrapolate these results to more realistic networks. We therefore consider
experimental results for each model separately.

Simplified Model. An important driving force behind the research on speedup
techniques for Dijkstra’s algorithm was its application to road networks. A key
aspect for the success of this research effort was the availability of continent-
sized benchmark instances. The most widely used instance has been the road
network of Western Europe from PTV AG, with 18.0 million vertices and 42.5
million directed arcs. Besides ferries (for which the traversal time was given),
it has 13 road categories. Category ¢ has been assigned an average speed of
10ikm/h. This synthetic assignment is consistent with more realistic propri-
etary data [78,82]. Another popular (and slightly bigger) instance, represent-
ing the TIGER/USA road network, is undirected and misses several important
road segments [6]. Although the inputs use the simplified model, they allowed
researchers from various groups to run their algorithms on the same instance,
comparing their performance. In particular, both instances were tested during
the DIMACS Challenge on Shortest Paths [101].

Figure 7 succinctly represents the performance of previously published imple-
mentations of various point-to-point algorithms on the Western Europe instance,
using travel time as the cost function. For each method, the plot relates its pre-
processing and average query times. Queries compute the length of the short-
est path (but not its actual list of edges) between sources and targets picked
uniformly at random from the full graph. For readability, space consumption
(a third important quality measure) is not explicitly represented.! We repro-
duce the numbers reported by Bauer et al. [40] for Reach, HH, HNR, ALT,
(bidirectional) Arc Flags, REAL, HH* SHARC, CALT, CHASE, ReachFlags
and TNR+AF. For CHASE and Arc Flags, we also consider variants with
quicker PHAST-based preprocessing [75]. In addition, we consider the recent
ALT implementation by Efentakis and Pfoser [112]. Moreover, we report results
for several variants of TNR [15,40], Hub Labels [5,82], HPML [83], Contraction
Hierarchies (CH) [142], and Customizable Contraction Hierarchies (CCH) [107].
CRP (and the corresponding PUNCH) figures [78] use a more realistic graph

! The reader is referred to Sommer [238] for a similar plot (which inspired ours) relating
query times to preprocessing space.

40 H. Bast et al.

Dijkstra’s Algorithm
1,000 Bidirectional Search
100 = ALT
(customization) o
10
— (customization) © Reach
O

E CALT fe) O— CRP Arc Flags CCH
g 1 o HNR
= o 0—o0 o) o O

(customization) HH
2 01 HH* O REAL ReachFlags
= ' ° °
3 CH

(customization) ® O SHARC
0.01 HPML
: CHASE g® HLC 0
®-o0
TNR —0—g TNR with Arc Flags
0.001 ®
o—o °
Hub Labels i
0.0001 Table Lookup P
(PHAST)
0.1 1 10 100 1,000 10,000

Preprocessing time [min)]

Fig. 7. Preprocessing and average query time performance for algorithms with available
experimental data on the road network of Western Europe, using travel times as edge
weights. Connecting lines indicate different trade-offs for the same algorithm. The figure
is inspired by [238].

model that includes turn costs. For reference, the plot includes unidirectional and
bidirectional implementations of Dijkstra’s algorithm using a 4-heap. (Note that
one can obtain a 20 % improvement when using a multilevel bucket queue [147].)
Finally, the table-lookup figure is based on the time of a single memory access
in our reference machine and the precomputation time of |V| shortest path trees
using PHAST [75]. Note that a machine with more than one petabyte of RAM (as
required by this algorithm) would likely have slower memory access times.
Times in the plot are on a single core of an Intel X5680 3.33 GHz CPU,
a mainstream server at the time of writing. Several of the algorithms in
the plot were originally run on this machine [5,75,78,82]; for the remaining,
we divide by the following scaling factors: 2.322 for [40,83], 2.698 for [142],
1.568 for [15], 0.837 for [107], and 0.797 for [112]. These were obtained from
a benchmark (developed for this survey) that measures the time of computing
several shortest path trees on the publicly available USA road network with
travel times [101]. For the machines we did not have access to, we asked the
authors to run the benchmark for us [112]. The benchmark is available from

Route Planning in Transportation Networks 41

http://algo.iti.kit.edu/~pajor/survey/, and we encourage future works to use it
as a base to compare (sequential) running times with existing approaches.

The figure shows that there is no best technique. To stress this point, tech-
niques with at least one implementation belonging to the Pareto set (considering
preprocessing time, query time, and space usage) are drawn as solid circles; hol-
low entries are dominated. The Pareto set is quite large, with various methods
allowing for a wide range of space-time trade-offs. Moreover, as we shall see when
examining more realistic models, these three are not the only important criteria
for real-world applications.

Table 1. Performance of various speedup techniques on Western Europe. Column
source indicates the implementation tested for this survey.

Algorithm Impl. Data structures Queries
source

Space [GiB] | Time [h:m] | Scanned vertices | Time [js]
Dijkstra [75] 04 - 9326 696 2195080
Bidir. Dijkstra | [75] 0.4 - 4914 804 1205660
CRP [78] 0.9 1:00 2766 1650
Arc Flags [75] 0.6 0:20 2646 408
CH (78] 0.4 0:05 280 110
CHASE [75] 0.6 0:30 28 5.76
HLC [82] 1.8 0:50 - 2.55
TNR [15] 2.5 0:22 - 2.09
TNR+AF [40] 5.4 1:24 - 0.70
HL 82] 18.8 0:37 - 0.56
HL-c0 (5] 17.7 60:00 - 0.25
table lookup | [75] 1208358.7 | 145:30 - 0.06

Table 1 has additional details about the methods in the Pareto set, includ-
ing two versions of Dijkstra’s algorithm, one Dijkstra-based hierarchical tech-
nique (CH), three non-graph-based algorithms (TNR, HL, HLC), and two com-
binations (CHASE and TNR+AF). For reference, the table also includes a goal-
directed technique (Arc Flags) and a separator-based algorithm (CRP), even
though they are dominated by other methods. All algorithms were rerun for
this survey on the reference machine (Intel X5680 3.33 GHz CPU), except those
based on TNR, for which we report scaled results. All runs are single-threaded for
this experiment, but note that all preprocessing algorithms could be accelerated
using multiple cores (and, in some cases, even GPUs) [75,144].

For each method, Table 1 reports the total amount of space required by all
data structures (including the graph, if needed, but excluding extra information
needed for path unpacking), the total preprocessing time, the number of vertices

http://algo.iti.kit.edu/~pajor/survey/

42 H. Bast et al.

scanned by an average query (where applicable) and the average query time.
Once again, queries consist of pairs of vertices picked uniformly at random. We
note that all methods tested can be parametrized (typically within a relatively
narrow band) to achieve different trade-offs between query time, preprocessing
time, and space. For simplicity, we pick a single “reasonable” set of parameters
for each method. The only exception is HL-0o, which achieves the fastest reported
query times but whose preprocessing is unreasonably slow.

Observe that algorithms based on any one of the approaches considered in
Sect. 2 can answer queries in milliseconds or less. Separator-based (CRP), hierar-
chical (CH), and goal-directed (Arc Flags) methods do not use much more space
than Dijkstra’s algorithm, but are three to four orders of magnitude faster. By
combining hierarchy-based pruning and goal direction, CHASE improves query
times by yet another order of magnitude, visiting little more than the shortest
path itself. Finally, when a higher space overhead is acceptable, non-graph-based
methods can be more than a million times faster than the baseline. In particular,
HL-o00 is only 5 times slower than the trivial table-lookup method, where a query
consists of a single access to main memory. Note that the table-lookup method
itself is impractical, since it would require more than one petabyte of RAM.

The experiments reported so far consider only random queries, which tend to
be long-range. In a real system, however, most queries tend to be local. For that
reason, Sanders and Schultes [223] introduced a methodology based on Dijkstra
ranks. When running Dijkstra’s algorithm from a vertex s, the rank of a vertex u
is the order in which it is taken from the priority queue. By evaluating pairs of
vertices for Dijkstra ranks 2*,22, ..., 2U°glVI] for some randomly chosen sources,
all types (local, mid-range, global) of queries are evaluated. Figure8 reports
the median running times for all techniques from Table 1 (except TNR+AF, for
which such numbers have never been published) for 1000 random sources and
Dijkstra ranks > 2°. As expected, algorithms based on graph searches (including
Dijkstra, CH, CRP, and Arc Flags) are faster for local queries. This is not true
for bounded-hop algorithms. For TNR, in particular, local queries must actually
use a (significantly slower) graph-based approach. HL is more uniform overall
because it never uses a graph.

Realistic Setting. Although useful, the results shown in Table 1 do not capture
all features that are important for real-world systems. First, systems providing
actual driving directions must account for turn costs and restrictions, which the
simplified graph model ignores. Second, systems must often support multiple
metrics (cost functions), such as shortest distances, avoid U-turns, avoid/prefer
freeways, or avoid ferries; metric-specific data structures should therefore be
as small as possible. Third, query times should be robust to the choice of cost
functions: the system should not time out if an unfriendly cost function is chosen.
Finally, one should be able to incorporate a new cost function quickly to account
for current traffic conditions (or even user preferences).

CH has the fastest preprocessing among the algorithms in Table1 and its
queries are fast enough for interactive applications. Its performance degrades

Route Planning in Transportation Networks 43

T T T T T T T T T (—
- - e Dijkstra -O- Bi. Dijkstra g
g| —CRP Arc Flags |
SF - CH CHASE E
~[—- HLC —— TNR i
g -= HL —#— HL-)

— ©F -k T. Lookup E

= —I]

o I i

£ 8L 4

B & E

ST i

i R i

s of |

=] - B

~ I :
—F E
I i
S

96 98 910 912 ol4 916 918 920 922 924
Dijkstra Rank

Fig. 8. Performance of speedup techniques for various Dijkstra ranks.

under realistic constraints [78], however. In contrast, CRP was developed with
these constraints in mind. As explained in Sect. 2.3, it splits its preprocessing
phase in two: although the initial metric-independent phase is relatively slow (as
shown in Table 1), only the subsequent (and fast) metric-dependent customiza-
tion phase must be rerun to incorporate a new metric. Moreover, since CRP is
based on edge separators, its performance is (almost) independent of the cost
function.

Table 2 (reproduced from [78]) compares CH and CRP with and without turn
costs, as well as for travel distances. The instance tested is the same in Table 1,
augmented by turn costs (set to 100 seconds for U-turns and zero otherwise).
This simple change makes it almost as hard as fully realistic (proprietary) map
data used in production systems [78]. The table reports metric-independent pre-
processing and metric-dependent customization separately; “DS” refers to the
data structures shared by all metrics, while “cusToM” refers to the additional
space and time required by each individual metric. Unlike in Table 1, space con-
sumption also includes data structures used for path unpacking. For queries,
we report the time to get just the length of the shortest path (dist), as well
as the total time to retrieve both the length and the full path (path). More-
over, preprocessing (and customization) times refer to multi-threaded executions
on 12 cores; queries are still sequential.

As the table shows, CRP query times are very robust to the cost function and
the presence of turns. Also, a new cost function can be applied in roughly 370 ms,
fast enough to even support user-specific cost functions. Customization times can

44 H. Bast et al.

Table 2. Performance of Contraction Hierarchies and CRP on a more realistic instance,
using different graph representations. Preprocessing and customization times are given
for multi-threaded execution on a 12-core server, while queries are run single-threaded.

Metric | Turn info | CH CRP
DS Queries DS Custom Queries
Time | Space | Nmb. | Dist | Path | Time | Space | Time | Space | Nmb. |Dist. |Path
[h:m] | [GiB] |scans |[ms] | [ms] |[h:m] |[GiB] |[s] [GiB] |scans |[ms] [ms]
Dist None 0:12 | 0.68 858 |0.87 |1.07 |0:12 |3.11 0.37 0.07 2942 |1.91 2.49
Time |None 0:02 | 0.60 280 |0.11{0.21 |0:12 |3.11 0.37 |0.07 2766 |1.65 1.81
Arc-based | 0:23 |3.14 404 [0.20 |0.30 |- — - — — - -
Compact |0:29 |1.09 1998 |2.27 |2.37 |0:12 |3.11 0.37 |0.07 3049 |1.67 1.85

be even reduced to 36 ms with GPUs [87], also reducing the amount of data stored
in main memory by a factor of 6. This is fast enough for setting the cost function
at query time, enabling realistic personalized driving directions on continental
scale. If GPUs are not available or space consumption is an issue, one can drop
the contraction-based customization. This yields customization times of about
one second on a 12-core CPU, which is still fast enough for many scenarios.
In contrast, CH performance is significantly worse on metrics other than travel
times without turn costs.

We stress that not all applications have the same requirements. If only good
estimates on travel times (and not actual paths) are needed, ignoring turn costs
and restrictions is acceptable. In particular, ranking POIs according to travel
times (but ignoring turn costs) already gives much better results than ranking
based on geographic distances. Moreover, we note that CH has fast queries even
with fully realistic turn costs. If space (for the expanded graph) is not an issue,
it can still provide a viable solution to the static problem; the same holds for
related methods such as HL and HLC [82]. For more dynamic scenarios, CH
preprocessing can be made parallel [144] or even distributed [168]; even if run
sequentially, it is fast enough for large metropolitan areas.

3.2 Applications

As discussed in Sect. 2.7, many speedup techniques can handle more than plain
point-to-point shortest path computations. In particular, hierarchical techniques
such as CH or CRP tend to be quite versatile, with many established extensions.

Some applications may involve more than one path between a source and
a target. For example, one may want to show the user several “reasonable”
paths (in addition to the shortest one) [60]. In general, these alternative paths
should be short, smooth, and significantly different from the shortest path (and
other alternatives). Such paths can either be computed directly as the concate-
nation of partial shortest paths [6,60,78,173,184] or compactly represented as
a small graph [17,174,213]. A related problem is to compute a corridor [806]
of paths between source and target, which allows deviations from the best
route (while driving) to be handled without recomputing the entire path.

Route Planning in Transportation Networks 45

These robust routes can be useful in mobile scenarios with limited connectivity.
Another useful tool to reduce communication overhead in such cases is route
compression [31].

Extensions that deal with nontrivial cost functions have also been considered.
In particular, one can extend CH to handle flexible arc restrictions [140] (such
as height or weight limitations) or even multiple criteria [133,138] (such as opti-
mizing costs and travel time). Minimizing the energy consumption of electric
vehicles [43,44,122,152,240,241] is another nontrivial application, since batteries
are recharged when the car is going downhill. Similarly, optimal cycling routes
must take additional constraints (such as the amount of uphill cycling) into
account [239)].

The ability of computing many (batched) shortest paths fast enables inter-
esting new applications. By quickly analyzing multiple candidate shortest paths,
one can efficiently match GPS traces to road segments [119,121]. Traffic simu-
lations also benefit from acceleration techniques [183], since they must consider
the likely routes taken by all drivers in a network. Another application is route
prediction [177]: one can estimate where a vehicle is (likely) headed by mea-
suring how good its current location is as a via point towards each candidate
destination. Fast routing engines allow more locations to be evaluated more fre-
quently, leading to better predictions [2,121,162,176]. Planning placement of
charging stations can also benefit from fast routing algorithms [132]. Another
important application is ride sharing [2,110,139], in which one must match a
ride request with the available offer in a large system, typically by minimizing
drivers’ detours.

Finally, batched shortest-path computations enable a wide range of point-of-
interest queries [2,99,114,119,137,179,221,260]. Typical examples include find-
ing the closest restaurant to a given location, picking the best post office to stop
on the way home, or finding the best meeting point for a group of friends. Typ-
ically using the bucket-based approach (cf. Sect.2.7), fast routing engines allow
POIs to be ranked according to network-based cost functions (such as travel
time) rather than geographic distances. This is crucial for accuracy in areas
with natural (or man-made) obstacles, such as mountains, rivers, or rail tracks.
Note that more elaborate POI queries must consider concatenations of shortest
paths. One can handle these efficiently using an extension of the bucket-based
approach that indexes pairs of vertices instead of individual ones [2,99].

3.3 Alternative Settings

So far, we have assumed that shortest path computations take place on a stan-
dard server with enough main memory to hold the input graph and the auxiliary
data. In practice, however, it is often necessary to run (parts of) the routing algo-
rithm in other settings, such as mobile devices, clusters, or databases. Many of
the methods we discuss can be adapted to such scenarios.

Of particular interest are mobile devices, which typically are slower and (most
importantly) have much less available RAM. This has motivated external mem-
ory implementation of various speedup techniques, such as ALT [150], CH [226],

46 H. Bast et al.

and time-dependent CH [167]. CH in particular is quite practical, supporting
interactive queries by compressing the routing data structures and optimizing
their access patterns.

Relational databases are another important setting in practice, since they
allow users to formulate complex queries on the data in SQL, a popular and
expressive declarative query language [230].

Unfortunately, the table-based computational model makes it hard (and inef-
ficient) to implement basic data structures such as graphs or even priority queues.
Although some distance oracles based on geometric information could be imple-
mented on a database [229], they are approximate and very expensive in terms
of time and space, limiting their applicability to small instances. A better solu-
tion is to use HL, whose queries can very easily be expressed in SQL, allowing
interactive applications based on shortest path computations entirely within a
relational database [2].

For some advanced scenarios, such as time-dependent networks, the pre-
processing effort increases quite a lot compared to the time-independent sce-
nario. One possible solution is to run the preprocessing in a distributed fashion.
One can achieve an almost linear speedup as the number of machine increases,
for both CH [168] and CRP [116].

4 Journey Planning in Public Transit Networks

This section considers journey planning in (schedule-based) public transit net-
works. In this scenario, the input is given by a timetable. Roughly speaking, a
timetable consists of a set of stops (such as bus stops or train platforms), a set
of routes (such as bus or train lines), and a set of trips. Trips correspond to
individual vehicles that visit the stops along a certain route at a specific time of
the day. Trips can be further subdivided into sequences of elementary connec-
tions, each given as a pair of (origin/destination) stops and (departure/arrival)
times between which the vehicle travels without stopping. In addition, footpaths
model walking connections (transfers) between nearby stops.

A key difference to road networks is that public transit networks are inher-
ently time-dependent, since certain segments of the network can only be traversed
at specific, discrete points in time. As such, the first challenge concerns modeling
the timetable appropriately in order to enable the computation of journeys, i.e.,
sequences of trips one can take within a transportation network. While in road
networks computing a single shortest path (typically the quickest journey) is
often sufficient, in public transit networks it is important to solve more involved
problems, often taking several optimization criteria into account. Section 4.1 will
address such modeling issues.

Accelerating queries for efficient journey planning is a long-standing prob-
lem [45,235,247,248]. A large number of algorithms have been developed not
only to answer basic queries fast, but also to deal with extended scenarios that
incorporate delays, compute robust journeys, or optimize additional criteria,
such as monetary cost.

Route Planning in Transportation Networks 47

4.1 Modeling

The first challenge is to model the timetable in order to enable algorithms that
compute optimal journeys. Since the shortest-path problem is well understood
in the literature, it seems natural to build a graph G = (V, A) from the timetable
such that shortest paths in G correspond to optimal journeys. This section
reviews the two main approaches to do so (time-expanded and time-dependent),
as well as the common types of problems one is interested to solve. For a more
detailed overview of these topics, we refer the reader to an overview article by
Miiller-Hannemann et al. [203].

Time-Ezxpanded Model. Based on the fact that a timetable consists of time-
dependent events (e.g., a vehicle departing at a stop) that happen at discrete
points in time, the idea of the time-expanded model is to build a space-time
graph (often also called an event graph) [211] that “unrolls” time. Roughly
speaking, the model creates a vertex for every event of the timetable and uses
arcs to connect subsequent events in the direction of time flow. A basic ver-
sion of the model [196,235] contains a vertex for every departure and arrival
event, with consecutive departure and arrival events connected by connection (or
travel) arcs. To enable transfers between vehicles, all vertices at the same stop
are (linearly, in chronological order) interlinked by transfer (or waiting) arcs.
Miiller-Hannemann and Weihe [204] extend the model to distinguish trains (to
optimize the number of transfers taken during queries) by subdividing each con-
nection arc by a new vertex, and then interlinking the vertices of each trip (in
order of travel). Pyrga et al. [218,219] and Miiller-Hannemann and Schnee [200]
extend the time-expanded model to incorporate minimum change times (given
by the input) that are required as buffer when changing trips at a station. Their
realistic model introduces an additional transfer vertex per departure event, and

[
~u - /yl 3
<> Y 1
’BED\ <o D/
l oy A - /rl:l‘ >
O%D\ " ::D(.
- < E \:D< >

Fig. 9. Realistic time-expanded (left) and time-dependent (right) models. Differ-
ent vertex types are highlighted by shape: diamond (arrival), circle (transfer) and
square (departure) for the left figure; and circle (stop) and square (route) for the right
figure. Connection arcs in the time-expanded model are annotated with its trips ¢;, and
route arcs in the time-dependent model with its routes r;.

48 H. Bast et al.

connects each arrival vertex to the first transfer vertex that obeys the minimum
change time constraints. See Fig.9 for an illustration. If there is a footpath from
stop p; to stop p;, then for each arrival event at stop p; one adds an arc to
the earliest reachable transfer vertex at p;. This model has been further engi-
neered [90] to reduce the number of arcs that are explored “redundantly” during
queries.

A timetable is usually valid for a certain period of time (up to one year).
Since the timetables of different days of the year are quite similar, a space-
saving technique (compressed model) is to consider events modulo their traffic
days [202,219].

Time-Dependent Model. The main disadvantage of the time-expanded model
is that the resulting graphs are quite large [218]. For smaller graphs, the time-
dependent approach (see Sect. 2.7) has been considered by Brodal and Jacob [56].
In their model, vertices correspond to stops, and an arc is added from u to v if
there is at least one elementary connection serving the corresponding stops in
this order. Precise departure and arrival times are encoded by the travel time
function associated with the arc (u, v). Fig. 10 shows the typical shape of a travel
time function: each filled circle represents an elementary connection; the line
segments (with slope —1) reflect not only the travel time, but also the waiting
time until the next departure. Pyrga et al. [219] further extended this basic
model to enable minimum change times by creating, for each stop p and each
route that serves p, a dedicated route verter. Route vertices at p are connected to
a common stop vertex by arcs with constant cost depicting the minimum change
time of p. Trips are distributed among route arcs that connect the subsequent
route vertices of a route, as shown in Fig.9. They also consider a model that
allows arbitrary minimum change times between pairs of routes within each
stop [219]. Footpaths connecting nearby stops are naturally integrated into the
time-dependent model [109]. For some applications, one may merge route vertices
of the same stop as long as they never connect trips such that a transfer between
them violates the minimum change time [85].

Frequency-Based Model. In real-world timetables trips often operate according
to specific frequencies at times of the day. For instance, a bus may run every

10

Travel time [h]

SR NER N

Departure time

oF ®F @oF o O ® O

Fig. 10. Travel time function on an arc.

Route Planning in Transportation Networks 49

5min during rush hour, and every 10min otherwise. Bast and Storandt [27]
exploit this fact in the frequency-based model: as in the time-dependent approach,
vertices correspond to stops, and an arc between a pair of stops (u,v) is added
if there is at least one elementary connection from w to v. However, instead of
storing the departures of an arc explicitly, those with coinciding travel times are
compressed into a set of tuples consisting of an initial departure time 74ep, a time
interval A, and a frequency f. The corresponding original departures can thus be
reconstructed by computing each 7qep + fi for those ¢ € Z>q that satisfy 74qep +
fi < Taep + A. Bast and Storandt compute these tuples by covering the set
of departure times by a small set of overlapping arithmetic progressions, then
discarding duplicate entries (occurring after decompression) at query time [27].

Problem Variants. Most research on road networks has focused on computing
the shortest path according to a given cost function (typically travel times).
For public transit networks, in contrast, there is a variety of natural problem
formulations.

The simplest variant is the earliest arrival problem. Given a source stop ps,
a target stop p;, and a departure time 7, it asks for a journey that departs p;
no earlier than 7 and arrives at p; as early as possible. A related variant is the
range (or profile) problem [206], which replaces the departure time by a time
range (e.g. 8-10am, or the whole day). This problem asks for a set of journeys
of minimum travel time that depart within that range.

Both the earliest arrival and the range problems only consider (arrival or
travel) time as optimization criterion. In public-transit networks, however, other
criteria (such as the number of transfers) are just as important, which leads to the
multicriteria problem [204]. Given source and target stops ps, p; and a departure
time 7 as input, it asks for a (maximal) Pareto set J of nondominating journeys
with respect to the optimization criteria considered. A journey J; is said to
dominate journey Js if Ji is better than or equal to J in all criteria. Further
variants of the problem relax or strengthen these domination rules [200].

4.2 Algorithms Without Preprocessing

This section discusses algorithms that can answer queries without a preprocess-
ing phase, which makes them a good fit for dynamic scenarios that include delays,
route changes, or train cancellations. We group the algorithms by the problems
they are meant to solve.

Earliest Arrival Problem. Earliest arrival queries on the time-expanded model
can be answered in a straightforward way by Dijkstra’s algorithm [235], in
short TED (time-expanded Dijkstra). It is initialized with the vertex that cor-
responds to the earliest event of the source stop ps that occurs after 7 (in the
realistic model, a transfer vertex must be selected). The first scanned vertex
associated with the target stop p; then represents the earliest arrival s—t jour-
ney. In the compressed time-expanded model, slight modifications to Dijkstra’s
algorithm are necessary because an event vertex may appear several times on

50 H. Bast et al.

the optimal shortest path (namely for different consecutive days). One possible
solution is to use a bag of labels for each vertex as in the multicriteria variants
described below. Another solution is described in Pyrga et al. [219].

On time-dependent graphs, Dijkstra’s algorithm can be augmented to com-
pute shortest paths [65,111], as long as the cost functions are nonnegative and
FIFO [208,209]. The only modification is that, when the algorithm scans an
arc (u,v), the arc cost is evaluated at time 7 4 dist(s,). Note that the algo-
rithm retains the label-setting property, i. e., each vertex is scanned at most once.
In the time-dependent public transit model, the query is run from the stop vertex
corresponding to ps; and the algorithm may stop as soon as it extracts p; from
the priority queue. The algorithm is called TDD (time-dependent Dijkstra).

Another approach is to exploit the fact that the time-expanded graph is
directed and acyclic. (Note that overnight connections can be handled by
unrolling the timetable for several consecutive periods.) By scanning vertices
in topological order, arbitrary queries can be answered in linear time. This sim-
ple and well-known observation has been applied for journey planning by Mellouli
and Suhl [191], for example. While this idea saves the relatively expensive pri-
ority queue operations of Dijkstra’s algorithm, one can do even better by not
maintaining the graph structure explicitly, thus improving locality and cache
efficiency. The recently developed Connection Scan Algorithm (CSA) [105] orga-
nizes the elementary connections of the timetable in a single array, sorted by
departure time. The query then only scans this array once, which is very effi-
cient in practice. Note that CSA requires footpaths in the input to be closed
under transitivity to ensure correctness.

Range Problem. The range problem can be solved on the time-dependent model
by variants of Dijkstra’s algorithm. The first variant [68,206] maintains, at each
vertex u, a travel-time function (instead of a scalar label) representing the opti-
mal travel times from s to u for the considered time range. Whenever the algo-
rithm relaxes an arc (u,v), it first links the full travel-time function associated
with u to the (time-dependent) cost function of the arc (u,v), resulting in a func-
tion that represents the times to travel from s to v via u. This function is then
merged into the (tentative) travel time function associated with v, which corre-
sponds to taking the element-wise minimum of the two functions. The algorithm
loses the label-setting property, since travel time functions cannot be totally
ordered. As a result the algorithm may reinsert vertices into the priority queue
whenever it finds a journey that improves the travel time function of an already
scanned vertex.

Another algorithm [34] exploits the fact that trips depart at discrete points
in time, which helps to avoid redundant work when propagating travel time
functions. When it relaxes an arc, it does not consider the full function, but
each of its encoded connections individually. It then only propagates the parts
of the function that have improved.

The Self-Pruning Connection Setting algorithm (SPCS) [85] is based on the
observation that any optimal journey from s to ¢ has to start with one of the trips
departing from s. It therefore runs, for each such trip, Dijkstra’s algorithm from s

Route Planning in Transportation Networks 51

at its respective departure time. SPCS performs these runs simultaneously using
a shared priority queue whose entries are ordered by arrival time. Whenever
the algorithm scans a vertex wu, it checks if u has been already scanned for an
associated (departing) trip with a later departure time (at s), in which case it
prunes u. Moreover, SPCS can be parallelized by assigning different subsets of
departing trips from s to different CPU cores.

Bast and Storandt [27] propose an extension of Dijkstra’s algorithm that
operates on the (compressed) frequency-based model directly. It maintains with
every vertex u a set of tuples consisting of a time interval, a frequency, and the
travel time. Hence, a single tuple may represent multiple optimal journeys, each
departing within the tuple’s time interval. Whenever the algorithm relaxes an
arc (u,v), it first extends the tuples from the bag at u with the ones stored at the
arc (u,v) in the compressed graph. The resulting tentative bag of tuples (rep-
resenting all optimal journeys to v via u) is then merged into the bag of tuples
associated with v. The main challenge of this algorithm is efficiently merging
tuples with incompatible frequencies and time intervals [27].

Finally, the Connection Scan Algorithm has been extended to the range prob-
lem [105]. It uses the same array of connections, ordered by departure time, as
for earliest arrival queries. It still suffices to scan this array once, even to obtain
optimal journeys to all stops of the network.

Multicriteria Problem. Although Pareto sets can contain exponentially many
solutions (see Sect.2.7), they are often much smaller for public transit route
planning, since common optimization criteria are positively correlated. For exam-
ple, for the case of optimizing earliest arrival time and number of transfers, the
Layered Dijkstra (LD) algorithm [56,219] is efficient. Given an upper bound K
on the number of transfers, it (implicitly) copies the timetable graph into K
layers, rewiring transfer arcs to point to the next higher level. It then suffices to
run a time-dependent (single criterion) Dijkstra query from the lowest level to
obtain Pareto sets.

In the time-expanded model, Miiller-Hannemann and Schnee [200] consider
the Multicriteria Label-Setting (MLS) algorithm (cf. Sect. 2.7) to optimize arrival
time, ticket cost, and number of transfers. In the time-dependent model, Pyrga
et al. [219] compute Pareto sets of journeys for arrival time and number of
transfers. Disser et al. [109] propose three optimizations to MLS that reduce the
number of queue operations: hopping reduction, label forwarding, and dominance
by early results (or target pruning). Bast and Storandt [27] extend the frequency-
based range query algorithm to also include number of transfers as criterion.

A different approach is RAPTOR (Round-bAsed Public Transit Optimized
Router) [92]. Tt is explicitly developed for public transit networks and its basic
version optimizes arrival time and the number of transfers taken. Instead of
using a graph, it organizes the input as a few simple arrays of trips and routes.
Essentially, RAPTOR is a dynamic program: it works in rounds, with round i
computing earliest arrival times for journeys that consist of exactly 4 transfers.
Each round takes as input the stops whose arrival time improved in the previous
round (for the first round this is only the source stop). It then scans the routes

52 H. Bast et al.

served by these stops. To scan route 7, RAPTOR traverses its stops in order of
travel, keeping track of the earliest possible trip (of r) that can be taken. This
trip may improve the tentative arrival times at subsequent stops of route r. Note
that RAPTOR scans each route at most once per round, which is very efficient in
practice (even faster than Dijkstra’s algorithm with a single criterion). Moreover,
RAPTOR can be parallelized by distributing non-conflicting routes to different
CPU cores. It can also be extended to handle range queries (rRAPTOR) and
additional optimization criteria (McRAPTOR). Note that, like CSA, RAPTOR
also requires footpaths in the input to be closed under transitivity.

Trip-Based Routing [256] accelerates RAPTOR by executing a BFS-like
search on a network of trips and precomputed sensible transfers.

4.3 Speedup Techniques

This section presents an overview of preprocessing-based speedup techniques for
journey planning in public transit networks. A natural (and popular) approach
is to adapt methods that are effective on road networks (see Fig. 7). Unfortu-
nately, the speedups observed in public transit networks are several orders of
magnitude lower than in road networks. This is to some extent explained by the
quite different structural properties of public transit and road networks [22]. For
example, the neighborhood of a stop can be much larger than the number of road
segments incident to an intersection. Even more important is the effect of the
inherent time-dependency of public transit networks. Thus, developing efficient
preprocessing-based methods for public transit remains a challenge.

Some road network methods were tested on public transit graphs without per-
forming realistic queries (i. e., according to one of the problems from Sect.4.1).
Instead, such studies simply perform point-to-point queries on public-transit
graphs. In particular, Holzer et al. [161] evaluate basic combinations of bidirec-
tional search, goal directed search, and Geometric Containers on a simple stop
graph (with average travel times). Bauer et al. [41] also evaluated bidirectional
search, ALT, Arc Flags, Reach, REAL, Highway Hierarchies, and SHARC on
time-expanded graphs. Core-ALT, CHASE, and Contraction Hierarchies have
also been evaluated on time-expanded graphs [40].

A* Search. On public transit networks, basic A* search has been applied to
the time-dependent model [109,219]. In the context of multicriteria optimiza-
tion, Disser et al. [109] determine lower bounds for each vertex u to the target
stop p: (before the query) by running a backward search (from p;) using the (con-
stant) lower bounds of the travel time functions as arc cost.

ALT. The (unidirectional) ALT [148] algorithm has been adapted to both the
time-expanded [90] and the time-dependent [207] models for computing earliest
arrival queries. In both cases, landmark selection and distance precomputation
is performed on an auxiliary stop graph, in which vertices correspond to stops
and an arc is added between two stops p;, p; if there is an elementary connection
from p; to p; in the input. Arc costs are lower bounds on the travel time between
their endpoints.

Route Planning in Transportation Networks 53

Geometric Containers. Geometric containers [235,251] have been extensively
tested on the time-expanded model for computing earliest arrival queries. In
fact, they were developed in the context of this model. As mentioned in Sect. 2,
bounding boxes perform best [251].

Arc Flags and SHARC. Delling et al. [90] have adapted Arc Flags [157,178] to
the time-expanded model as follows. First, they compute a partition on the stop
graph (defined as in ALT). Then, for each boundary stop p of cell C, and each of
its arrival vertices, a backward search is performed on the time-expanded graph.
The authors observe that public transit networks have many paths of equal
length between the same pair of vertices [90], making the choice of tie-breaking
rules important. Furthermore, Delling et al. [90] combine Arc Flags, ALT, and
a technique called Node Blocking, which avoids exploring multiple arcs from the
same route.

SHARC, which combines Arc Flags with shortcuts [39], has been tested on
the time-dependent model with earliest arrival queries by Delling [72]. Moreover,
Arc Flags with shortcuts for the Multi-Label-Setting algorithm (MLS) have been
considered for computing full (i.e., using strict domination) Pareto sets using
arrival time and number of transfers as criteria [47]. In time-dependent graphs,
a flag must be set if its arc appears on a shortest path toward the correspond-
ing cell at least once during the time horizon [72]. For better performance, one
can use different sets of flags for different time periods (e. g., every two hours).
The resulting total speedup is still below 15, from which it is concluded that
“accelerating time-dependent multicriteria timetable information is harder than
expected” [47]. Slight additional speedups can be obtained if one restricts the
search space to only those solutions in the Pareto set for which the travel time
is within an interval defined by the earliest arrival time and some upper bound.
Berger et al. [49] observed that in such a scenario optimal substructure in com-
bination with lower travel time bounds can be exploited and yield additional
pruning during search. It is worth noting that this method does not require any
preprocessing and is therefore well-suited for a dynamic scenario.

Overlay Graphs. To accelerate earliest arrival queries, Schulz et al. [235] compute
single-level overlays between “important” hub stations in the time-expanded
model, with importance values given as input. More precisely, given a subset
of important stations, the overlay graph consists of all vertices (events) that
are associated with these stations. Edges in the overlay are computed such that
distances between any pair of vertices (events) are preserved. Extending this
approach to overlay graphs over multiple levels of hub stations (selected by
importance or degree) results in speedups of about 11 [236].

Separator-based techniques. Strasser and Wagner [242] combine the Connection
Scan Algorithm [105] with ideas of customizable route planning (CRP) [78] result-
ing in the Accelerated Connection Scan Algorithm (ACSA). It is designed for both
earliest arrival and range queries. ACSA first computes a multilevel partition of

54 H. Bast et al.

stops, minimizing the number of elementary connections with endpoints in dif-
ferent cells. Then, it precomputes for each cell the partial journeys (transit con-
nections) that cross the respective cell. For queries, the algorithm essentially runs
CSA restricted to the elementary connections of the cells containing the source or
target stops, as well as transit connections of other (higher-level) cells. As shown
in Sect. 4.5, it achieves excellent query and preprocessing times on country-sized
instances.

Contraction Hierarchies. The Contraction Hierarchies algorithm [142] has been
adapted to the realistic time-dependent model with minimum change times for
computing earliest arrival and range queries [136]. It turns out that simply apply-
ing the algorithm to the route model graph results in too many shortcuts to be
practical. Therefore, contraction is performed on a condensed graph that con-
tains only a single vertex per stop. Minimum change times are then ensured by
the query algorithm, which must maintain multiple labels per vertex.

Transfer Patterns. A speedup technique specifically developed for public transit
networks is called Transfer Patterns [24]. Tt is based on the observation that
many optimal journeys share the same transfer pattern, defined as the sequence
of stops where a transfer occurs. Conceptually, these transfer patterns are pre-
computed using range queries for all pairs of stops and departure times. At query
time, a query graph is built as the union of the transfer patterns between the
source and target stops. The arcs in the query graph represent direct connections
between stops (without transfers), and can be evaluated very fast. Dijkstra’s
algorithm (or MLS) is then applied to this much smaller query graph.

If precomputing transfer patterns between all pairs of stops is too expen-
sive, one may resort to the following two-level approach. It first selects a subset
of (important) hub stops. From the hubs, global transfer patterns are precom-
puted to all other stops. For the non-hubs, local transfer patterns are computed
only towards relevant hub stops. This approach is similar to TNR, but the idea is
applied asymmetrically: transfer patterns are computed from all stops to the hub
stops, and from the hub stops to everywhere. If preprocessing is still impractical,
one can restrict the local transfer patterns to at most three legs (two transfers).
Although this restriction is heuristic, the algorithm still almost always finds the
optimal solution in practice, since journeys requiring more than two transfers to
reach a hub station are rare [24].

TRANSIT. Finally, Transit Node Routing [28,30,224] has been adapted to pub-
lic transit journey planning in [14]. Preprocessing of the resulting TRANSIT
algorithm uses the (small) stop graph to determine a set of transit nodes (with
a similar method as in [28]), between which it maintains a distance table that
contains sets of journeys with minimal travel time (over the day). Each stop p
maintains, in addition, a set of access nodes A(p), which is computed on the
time-expanded graph by running local searches from each departure event of p
toward the transit stops. The query then uses the access nodes of p; and p; and

Route Planning in Transportation Networks 55

the distance table to resolve global requests. For local requests, it runs goal-
directed A* search. Queries are slower than for Transfer Patterns.

4.4 Extended Scenarios

Besides computing journeys according to one of the problems from Sect. 4.1,
extended scenarios (such as incorporating delays) have been studied as well.

Uncertainty and Delays. Trains, buses and other means of transport are often
prone to delays in the real world. Thus, handling delays (and other sources
of uncertainty) is an important aspect of a practical journey planning system.
Firmani et al. [125] recently presented a case study for the public transport
network of the metropolitan area of Rome. They provide strong evidence that
computing journeys according to the published timetable often fails to deliver
optimal or even high-quality solutions. However, incorporating real-time GPS
location data of vehicles into the journey planning algorithm helps improve the
journey quality (e.g., in terms of the experienced delay) [13,84].

Miiller-Hannemann and Schnee [201] consider the online problem where
delays, train cancellations, and extra trains arrive as a continuous stream of
information. They present an approach which quickly updates the time-expanded
model to enable queries according to current conditions. Delling et al. [74] also
discuss updating the time-dependent model and compare the required effort with
the time-expanded model. Cionini et al. [63] propose a new graph-based model
which is tailored to handle dynamic updates, and they experimentally show its
effectiveness in terms of both query and update times. Berger et al. [48] pro-
pose a realistic stochastic model that predicts how delays propagate through
the network. In particular, this model is evaluated using real (delay) data from
Deutsche Bahn. Bast et al. [25] study the robustness of Transfer Patterns with
respect to delays. They show that the transfer patterns computed for a scenario
without any delays give optimal results for 99 % of queries, even when large and
area-wide (random) delays are injected into the networks.

Disser et al. [109] and Delling et al. [93] study the computation of reliable
journeys via multicriteria optimization. The reliability of a transfer is defined as a
function of the available buffer time for the transfer. Roughly speaking, the larger
the buffer time, the more likely it is that the transfer will be successful. According
to this notion, transfers with a high chance of success are still considered reliable
even if there is no backup alternative in case they fail.

To address this issue, Dibbelt et al. [105] minimize the exzpected arrival
time (with respect to a simple model for the probability that a transfer breaks).
Instead of journeys, their method (which is based on the CSA algorithm) outputs
a decision graph representing optimal instructions to the user at each point of
their journey, including cases in which a connecting trip is missed. Interestingly,
minimizing the expected arrival time implicitly helps minimizing the number of
transfers, since each “unnecessary” transfer introduces additional uncertainty,
hurting the expected arrival time.

56 H. Bast et al.

Finally, Goerigk et al. [146] study the computation of robust journeys, con-
sidering both strict robustness (i. e., computing journeys that are always feasible
for a given set of delay scenarios) and light robustness (i. e., computing journeys
that are most reliable when given some extra slack time). While strict robustness
turns out to be too conservative in practice, the notion of light robustness seems
more promising. Recoverable robust journeys (which can always be updated when
delays occur) have recently been considered in [145]. A different, new robustness
concept has been proposed by Bohmové et al. [51]. In order to propose solutions
that are robust for typical delays, past observations of real traffic situations are
used. Roughly speaking, a route is more robust the better it has performed in
the past under different scenarios.

Night Trains. Gunkel et al. [153] have considered the computation of overnight
train journeys, whose optimization goals are quite different from regular “day-
time” journeys. From a customer’s point of view, the primary objective is usu-
ally to have a reasonably long sleeping period. Moreover, arriving too early in
the morning at the destination is often not desired. Gunkel et al. present two
approaches to compute overnight journeys. The first approach explicitly enu-
merates all overnight trains (which are given by the input) and computes, for
each such train, the optimal feeding connections. The second approach runs
multicriteria search with sleeping time as a maximization criterion.

Fares. Miiller-Hannemann and Schnee [199] have analyzed several pricing sche-
mes, integrating them as an optimization criterion (cost) into MOTIS, a mul-
ticriteria search algorithm that works on the time-expanded model. In general,
however, optimizing exact monetary cost is a challenging problem, since real-
world pricing schemes are hard to capture by a mathematical model [199].

Delling et al. [92] consider computing Pareto sets of journeys that optimize
fare zones with the McRAPTOR algorithm. Instead of using (monetary) cost
as an optimization criterion directly, they compute all nondominated journeys
that traverse different combinations of fare zones, which can then be evaluated
by cost in a quick postprocessing step.

Guidebook Routing. Bast and Storandt [26] introduce Guidebook Routing, where
the user specifies only source and target stops, but neither a day nor a time of
departure. The desired answer is then a set of routes, each of which is given
by a sequence of train or bus numbers and transfer stations. For example, an
answer may read like take bus number 11 towards the bus stop at X, then change
to bus number 13 or 14 (whichever comes first) and continue to the bus stop
at Y. Guidebook routes can be computed by first running a multicriteria range
query, and then extracting from the union of all Pareto-optimal time-dependent
paths a subset of routes composed by arcs which are most frequently used. The
Transfer Patterns algorithm lends itself particularly well to the computation
of such guidebook routes. For practical guidebook routes (excluding “exotic”
connections at particular times), the preprocessing space and query times of
Transfer Patterns can be reduced by a factor of 4 to 5.

Route Planning in Transportation Networks 57

4.5 Experiments and Comparison

This section compares the performance of some of the journey planning algo-
rithms discussed in this section. As in road networks, all algorithms have been
carefully implemented in C++ using mostly custom-built data structures.

Table 3 summarizes the results. Running times are obtained from a sequential
execution on one core of a dual 8-core Intel Xeon E5-2670 machine clocked at
2.6 GHz with 64 GiB of DDR3-1600 RAM. The exceptions are Transfer Patterns
and Contraction Hierarchies, for which we reproduce the values reported in the
original publication (obtained on a comparable machine).

For each algorithm, we report the instance on which it has been evaluated,
as well as its total number of elementary connections (a proxy for size) and the
number of consecutive days covered by the connections. Unfortunately, realistic
benchmark data of country scale (or larger) has not been widely available to the
research community. Some metropolitan transit agencies have recently started
making their timetable data publicly available, mostly using the General Transit
Feed format?. Still, research groups often interpret the data differently, making it
hard to compare the performance of different algorithms. The largest metropoli-
tan instance currently available is the full transit network of London?. It contains
approximately 21 thousand stops, 2.2 thousand routes, 133 thousand trips, 46
thousand footpaths, and 5.1 million elementary connections for one full day. We
therefore use this instance for the evaluation of most algorithms. The instances
representing Germany and long-distance trains in Europe are generated in a
similar way, but from proprietary data.

The table also contains the preprocessing time (where applicable), the aver-
age number of label comparisons per stop, the average number of journeys com-
puted by the algorithm, and its running time in milliseconds. Note that the
number of journeys can be below 1 because some stops are unreachable for cer-
tain late departure times. References indicate the publications from which the
figures are taken (which may differ from the first publication); TED was run by
the authors for this survey. (Our TED implementation uses a single-level bucket
queue [104] and stops as soon as a vertex of the target stop has been extracted.)
The columns labeled “criteria” indicate whether the algorithm minimizes arrival
time (arr), number of transfers (tran), fare zones (fare), reliability (rel), and
whether it computes range queries (rng) over the full timetable period of 1, 2,
or 7days. Methods with multiple criteria compute Pareto sets.

Among algorithms without preprocessing, we observe that those that do not
use a graph (RAPTOR and CSA) are consistently faster than their graph-based
counterparts. Moreover, running Dijkstra’s algorithm on the time-expanded
graph model (TED) is significantly slower than running it on the time-dependent
graph model (TDD), since time-expanded graphs are much larger. For earliest
arrival queries on metropolitan areas, CSA is the fastest algorithm without pre-
processing, but preprocessing-based methods (such as Transfer Patterns) can

2 https://developers.google.com /transit /gtfs/.
3 http://data.london.gov.uk/.

https://developers.google.com/transit/gtfs/
http://data.london.gov.uk/

58 H. Bast et al.

Table 3. Performance of various public transit algorithms on random queries. For
each algorithm, the table indicates the implementation tested (which may not be the
publication introducing the algorithm), the instance it was tested on, its total number
of elementary connections (in millions) as well as the number of consecutive days they
cover. A “p” indicates that the timetable is periodic (with a period of one day). The
table then shows the criteria that are optimized (a subset of arrival times, transfers,
full range, fares, and reliability), followed by total preprocessing time, average number
of comparisons per stop, average number of journeys in the Pareto set, and average
query times in milliseconds. Missing entries either do not apply (-) or are well-defined
but not available (n/a).

Algorithm Impl. |INPUT CRITERIA QUERY

Name Conn. |Dy.|Arr.|Tran.|Rng. |Fare|Rel.|Prep [h]|Comp./ |jn Time

[109] stop [ms]

TED London 5.1 |1 . o o o o - 50.6 0.9 44.8
TDD [93] |London 51 |1 |e o o o o - 7.4 0.9 11.0
CH [136] |Europe (Ing)| 1.7 |p |e o o o o <0.1 <0.1 n/a 0.3
CSA [105] |London 4.9 |1 |e o o o o - 26.6 n/a 2.0
ACSA [242] | Germany 46.2 |2 |e o o o o - n/a n/a 8.7
T. Patterns [27] |Germany 90.4 |7 |e o o o o 541 - 1.0 0.4
LD [93] |London 51 |1 |e . o o o - 15.6 1.8 28.7
MLS [93] |London 51 |1 |e . o o o 23.7 1.8 50.0
RAPTOR [93] |London 5.1 |1 . . o o o - 10.9 1.8 5.4
T. Patterns [27] |Germany 90.4 |7 |e . o o o 566 - 2.0 0.8
CH [136] |Europe (Ing)| 1.7 |p |e o . o o <0.1 <0.1 n/a 3.7
SPCS [105] |London 4.9 1 . o . o o - 372.5 98.2 |843.0
CSA [105] |London 4.9 |1 |e o . o o - 436.9 98.2 |161.0
ACSA [242] | Germany 46.2 |2 |e o . o o 8 n/a n/a [171.0
T. Patterns [27] |Germany 90.4 |7 |e o . o o 541 - 121.2| 22.0
rRAPTOR [105] |London 4.9 |1 . . . o o — 1634.0 |203.4|922.0
CSA [105] |London 4.9 1 . . . o o - 3824.9 203.4/466.0
T. Patterns [27] |Germany 90.4 |7 |e . . o o 566 - 226.0| 39.6
MLS [93] |London 51 |1 |e . o . o - 818.2 8.8 |304.2
McRAPTOR| [93] |London 5.1 |1 . . o . o - 277.5 8.8 100.9
MLS [93] |London 5.1 |1 . . o o . - 286.6 4.7 239.8
McRAPTOR| [93] |London 5.1 |1 . . o o . — 89.6 4.7 71.9

be even faster. For longer-range transit networks, preprocessing-based methods
scale very well. CH takes 210 seconds to preprocess the long-distance train con-
nections of Europe, while ACSA takes 8 hours to preprocess the full transit net-
work of Germany. Transfer Patterns takes over 60 times longer to preprocess (a
full week of) the full transit network of Germany, but has considerably lower
query times.

For multicriteria queries, RAPTOR is about an order of magnitude faster
than Dijkstra-based approaches like LD and MLS. RAPTOR is twice as fast as
TDD, while computing twice as many journeys on average. Adding further crite-
ria (such as fares and reliability) to MLS and RAPTOR increases the Pareto set,
but performance is still reasonable for metropolitan-sized networks. Thanks to
preprocessing, Transfer Patterns has the fastest queries overall, by more than an

Route Planning in Transportation Networks 59

order of magnitude. Note that in public transit networks the optimization crite-
ria are often positively correlated (such as arrival time and number of transfers),
which keeps the Pareto sets at a manageable size. Still, as the number of criteria
increases, exact real-time queries become harder to achieve.

The reported figures for Transfer Patterns are based on preprocessing lever-
aging the frequency-based model with traffic days compression, which makes
quadratic (in the number of stops) preprocessing effort feasible. Consequently,
hub stops and the three-leg heuristic are not required, and the algorithm is guar-
anteed to find the optimal solution. The data produced by the preprocessing is
shown to be robust against large and area-wide delays, resulting in much less
than 1% of suboptimal journeys [25] (not shown in the table).

For range queries, preprocessing-based techniques (CH, ACSA, Transfer Pat-
terns) scale better than CSA or SPCS. For full multicriteria range queries (con-
sidering transfers), Transfer Patterns is by far the fastest method, thanks to
preprocessing. Among search-based methods, CSA is faster than rTRAPTOR by
a factor of two, although it does twice the amount of work in terms of label
comparisons. Note, however, that while CSA cannot scale to smaller time ranges
by design [105], the performance of TRAPTOR depends linearly on the num-
ber of journeys departing within the time range [92]. For example, for 2-hour
range queries rRAPTOR computes 15.9 journeys taking only 61.3ms on aver-
age [93] (not reported in the table). Guidebook routes covering about 80 % of
the optimal results (for the full period) can be computed in a fraction of a
millisecond [26].

5 Multimodal Journey Planning

We now consider journey planning in a multimodal scenario. Here, the gen-
eral problem is to compute journeys that reasonably combine different modes
of transportation by a holistic algorithmic approach. That is, not only does an
algorithm consider each mode of transportation in isolation, but it also opti-
mizes the choice (and sequence) of transportation modes in some integrated
way. Transportation modes that are typically considered include (unrestricted)
walking, (unrestricted) car travel, (local and long-distance) public transit, flight
networks, and rental bicycle schemes. We emphasize that our definition of “mul-
timodal” requires some diversity from the transportation modes, i. e., both unre-
stricted and schedule-based variants should be considered by the algorithm. For
example, journeys that only use buses, trams, or trains are not truly multi-
modal (according to our definition), since these transportation modes can be
represented as a single public transit schedule and dealt with by algorithms
from Sect. 4.

In fact, considering modal transfers explicitly by the algorithm is crucial in
practice, since the solutions it computes must be feasible, excluding sequences of
transportation modes that are impossible for the user to take (such as a private
car between train rides). Ideally, even user preferences should be respected. For
example, some users may prefer taxis over public transit at certain parts of the
journey, while others may not.

60 H. Bast et al.

A general approach to obtain a multimodal network is to first build an
individual graph for each transportation mode, then merge them into a sin-
gle multimodal graph with link arcs (or vertices) added to enable modal
transfers [89,210,258]. Typical examples [89,210] model car travel and walk-
ing as time-independent (static) graphs, public transit networks using the real-
istic time-dependent model [219], and flight networks using a dedicated flight
model [91]. Beyond that, Kirchler et al. [169,170] compute multimodal journeys
in which car travel is modeled as a time-dependent network in order to incorpo-
rate historic data on rush hours and traffic congestion (see Sect. 2.7 for details).

Overview. The remainder of this section discusses three different approaches to
the multimodal problem. The first (Sect. 5.1) considers a combined cost function
of travel time with some penalties to account for modal transfers. The second
approach (Sect.5.2) uses the label-constrained shortest path problem to obtain
journeys that explicitly include (or exclude) certain sequences of transportation
modes. The final approach (Sect. 5.3) computes Pareto sets of multimodal jour-
neys using a carefully chosen set of optimization criteria that aims to provide
diverse (regarding the transportation modes) alternative journeys.

5.1 Combining Costs

To aim for journeys that reasonably combine different transport modes, one
may use penalties in the objective function of the algorithm. These penalties
are often considered as a linear combination with the primary optimization
goal (typically travel time). Examples for this approach include Aifadopoulou
et al. [10], who present a linear program that computes multimodal journeys.
The TRANSIT algorithm [14] also uses a linear utility function and incorporates
travel time, ticket cost, and “inconvenience” of transfers. Finally, Modesti and
Sciomachen [195] consider a combined network of unrestricted walking, unre-
stricted car travel, and public transit, in which journeys are optimized according
to a linear combination of several criteria, such as cost and travel time. More-
over, their utility function incorporates user preferences on the transportation
modes.

5.2 Label-Constrained Shortest Paths

The label-constrained shortest paths [21] approach computes journeys that explic-
itly obey certain constraints on the modes of transportation. It defines an alpha-
bet X of modes of transportation and labels each arc of the graph by the
appropriate symbol from X. Then, given a language L over X as additional
input to the query, any journey (path) must obey the constraints imposed by
the language L, i.e., the concatenation of the labels along the path must sat-
isfy L. The problem of computing shortest label-constrained paths is tractable
for regular languages [21], which suffice to model reasonable transport mode
constraints in multimodal journey planning [18,20]. Even restricted classes of

Route Planning in Transportation Networks 61

regular languages can be useful, such as those that impose a hierarchy of trans-
port modes [50,89,169,170,210,258] or Kleene languages that can only globally
exclude (and include) certain transport modes [140].

Barrett et al. [21] have proven that the label-constrained shortest path prob-
lem is solvable in deterministic polynomial time. The corresponding algorithm,
called label-constrained shortest path problem Dijkstra (LCSPP-D), first builds a
product network G of the input (the multimodal graph) and the (possibly non-
deterministic) finite automaton that accepts the regular language L. For given
source and target vertices s,t (referring to the original input), the algorithm
determines origin and destination sets of product vertices from G, containing
those product vertices that refer to s/t and an initial/final state of the automa-
ton. Dijkstra’s algorithm is then run on G between these two sets of product
vertices. In a follow-up experimental study, Barrett et al. [20] evaluate this algo-
rithm using linear regular languages, a special case.

Basic speedup techniques, such as bidirectional search [67], A* [156], and
heuristic A* [237] have been evaluated in the context of multimodal journey
planning in [159] and [19]. Also, Pajor [210] combines the LCSPP-D algorithm
with time-dependent Dijkstra [65] to compute multimodal journeys that con-
tain a time-dependent subnetwork. He also adapts and analyzes bidirectional
search [67], ALT [148], Arc Flags [157,178], and shortcuts [249] with respect to
LCSPP.

Access-Node Routing. The Access-Node Routing (ANR) [89] algorithm is a
speedup technique for the label-constrained shortest path problem (LCSPP). It
handles hierarchical languages, which allow constraints such as restricting walk-
ing and car travel to the beginning and end of the journey. It works similarly
to Transit Node Routing [28-30,224] and precomputes for each vertex u of the
road (walking and car) network its relevant set of entry (and exit) points (access
nodes) to the public transit and flight networks. More precisely, for any shortest
path P originating from vertex u (of the road network) that also uses the public
transit network, the first vertex v of the public transit network on P must be an
access node of u. The query may skip over the road network by running a multi-
source multi-target algorithm on the (much smaller) transit network between
the access nodes of s and ¢, returning the journey with earliest combined arrival
time.

The Core-Based ANR [89] method further reduces preprocessing space and
time by combining ANR with contraction. As in Core-ALT [40,88], it precom-
putes access nodes only for road vertices in a much smaller core (overlay) graph.
The query algorithm first (quickly) determines the relevant core vertices of s
and t (i.e., those covering the branches of the shortest path trees rooted at s
and t), then runs a multi-source multi-target ANR query between them.

Access-Node Routing has been evaluated on multimodal networks of intercon-
tinental size that include walking, car travel, public transit, and flights. Queries
run in milliseconds, but preprocessing time strongly depends on the density of
the public transit and flight networks [89]. Moreover, since the regular language

62 H. Bast et al.

is used during preprocessing, it can no longer be specified at query time without
loss of optimality.

State-Dependent ALT. Another multimodal speedup technique for LCSPP is
State-Dependent ALT (SDALT) [170]. It augments the ALT algorithm [148] to
overcome the fact that lower bounds from a vertex u may depend strongly on the
current state ¢ of the automaton (expressing the regular language) with which u
is scanned. SDALT thus uses the automaton to precompute state-dependent
distances, providing lower bound values per vertex and state. For even bet-
ter query performance, SDALT can be extended to use more aggressive (and
potentially incorrect) bounds to guide the search toward the target, relying on a
label-correcting algorithm (which may scan vertices multiple times) to preserve
correctness [169]. SDALT has been evaluated [169,170] on a realistic multimodal
network covering the Ile-de-France area (containing Paris) incorporating rental
and private bicycles, public transit, walking, and a time-dependent road network
for car travel. The resulting speedups are close to 30. Note that SDALT, like
ANR, also predetermines the regular language constraints during preprocessing.

Contraction Hierarchies. Finally, Dibbelt et al. [106] have adapted Contraction
Hierarchies [142] to LCSPP, handling arbitrary mode sequence constraints. The
resulting User-Constrained Contraction Hierarchies (UCCH) algorithm works
by (independently) only contracting vertices whose incident arcs belong to the
same modal subnetwork. All other vertices are kept uncontracted. The query
algorithm runs in two phases. The first runs a regular CH query in the subnet-
works given as initial or final transport modes of the sequence constraints until
the uncontracted core graph is reached. Between these entry and exit vertices,
the second phase then runs a regular LCSPP-Dijkstra restricted to the (much
smaller) core graph. Query performance of UCCH is comparable to Access-Node
Routing, but with significantly less preprocessing time and space. Also, in con-
trast to ANR, UCCH also handles arbitrary mode sequence constraints at query
time.

5.3 Multicriteria Optimization

While label constraints are useful to define feasible journeys, computing the (sin-
gle) shortest label-constrained path has two important drawbacks. First, in order
to define the constraints, users must know the characteristics of the particular
transportation network; second, alternative journeys that combine the available
transportation modes differently are not computed. To obtain a set of diverse
alternatives, multicriteria optimization has been considered.

The criteria optimized by these methods usually include arrival time and, for
each mode of transportation, some mode-dependent optimization criterion [23,
73]. The resulting Pareto sets will thus contain journeys with different usage of
the available transportation modes, from which users can choose their favorites.

Delling et al. [73] consider networks of metropolitan scale and use the follow-
ing criteria as proxies for “convenience”: number of transfers in public transit,

Route Planning in Transportation Networks 63

walking duration for the pedestrian network, and monetary cost for taxis. They
observe that simply applying the MLS algorithm [155,187,196,243] to a compre-
hensive multimodal graph turns out to be slow, even when partial contraction
is applied to the road and pedestrian networks, as in UCCH [106]. To get bet-
ter query performance, they extend RAPTOR, [92] to the multimodal scenario,
which results in the multimodal multicriteria RAPTOR algorithm (MCR) [73].
Like RAPTOR, MCR operates in rounds (one per transfer) and computes Pareto
sets of optimal journeys with exactly ¢ transfers in round ¢. It does so by running,
in each round, a dedicated subalgorithm (RAPTOR for public transit; MLS for
walking and taxi) which obtains journeys with the respective transport mode as
their last leg.

Since with increasing number of optimization criteria the resulting Pareto
sets tend to get very large, Delling et al. identify the most significant journeys in
a quick postprocessing step by a scoring method based on fuzzy logic [259]. For
faster queries, MCR-based heuristics (which relax domination during the algo-
rithm) successfully find the most significant journeys while avoiding the compu-
tation of insignificant ones in the first place.

Bast et al. [23] use MLS with contraction to compute multimodal multicri-
teria journeys at a metropolitan scale. To identify the significant journeys of the
Pareto set, they propose a method called Types aNd Thresholds (TNT). The
method is based on a set of simple azxioms that summarize what most users
would consider as unreasonable multimodal paths. For example, if one is willing
to take the car for a large fraction of the trip, one might as well take it for
the whole trip. Three types of reasonable trips are deduced from the axioms:
(1) only car, (2) arbitrarily much transit and walking with no car, and (3) arbi-
trarily much transit with little or no walking and car. With a concrete threshold
for “little” (such as 10 min), the rules can then be applied to filter the reasonable
journeys. As in [73], filtering can be applied during the algorithm to prune the
search space and reduce query time. The resulting sets are fairly robust with
respect to the choice of threshold.

6 Final Remarks

The last decade has seen astonishing progress in the performance of shortest
path algorithms on transportation networks. For routing in road networks, in
particular, modern algorithms can be up to seven orders of magnitude faster
than standard solutions. Successful approaches exploit different properties of
road networks that make them easier to deal with than general graphs, such
as goal direction, a strong hierarchical structure, and the existence of small
separators. Although some early acceleration techniques relied heavily on geom-
etry (road networks are after all embedded on the surface of the Earth), no
current state-of-the-art algorithm makes explicit use of vertex coordinates (see
Table 1). While one still sees the occasional development (and publication) of
geometry-based algorithms they are consistently dominated by established tech-
niques. In particular, the recent Arterial Hierarchies [261] algorithm is compared

64 H. Bast et al.

to CH (which has slightly slower queries), but not to other previously published
techniques (such as CHASE, HL, and TNR) that would easily dominate it. This
shows that results in this rapidly-evolving area are often slow to reach some
communities; we hope this survey will help improve this state of affairs.

Note that experiments on real data are very important, as properties of
production data are not always accurately captured by simplified models and
folklore assumptions. For example, the common belief that an algorithm can
be augmented to include turn penalties without significant loss in performance
turned out to be wrong for CH [76].

Another important lesson from recent developments is that careful engineer-
ing is essential to unleash the full computational power of modern computer
architectures. Algorithms such as CRP, CSA, HL, PHAST, and RAPTOR, for
example, achieve much of their good performance by carefully exploiting locality
of reference and parallelism (at the level of instructions, cores, and even GPUs).

The ultimate validation of several of the approaches described here is that
they have found their way into systems that serve millions of users every day.
Several authors of papers cited in this survey have worked on routing-related
projects for companies like Apple, Esri, Google, MapBox, Microsoft, Nokia,
PTV, TeleNav, TomTom, and Yandex. Although companies tend to be secretive
about the actual algorithms they use, in some cases this is public knowledge.
TomTom uses a variant of Arc Flags with shortcuts to perform time-dependent
queries [231]. Microsoft’s Bing Maps® use CRP for routing in road networks.
OSRM [185], a popular route planning engine using OpenStreetMap data, uses
CH for queries. The Transfer Patterns [24] algorithm has been in use for public-
transit journey planning on Google Maps® since 2010. RAPTOR is currently in
use by OpenTripPlannerS.

These recent successes do not mean that all problems in this area are solved.
The ultimate goal, a worldwide multimodal journey planner, has not yet been
reached. Systems like Rome2Rio” provide a simplified first step, but a more useful
system would take into account real-time traffic and transit information, historic
patterns, schedule constraints, and monetary costs. Moreover, all these elements
should be combined in a personalized manner. Solving such a general problem
efficiently seems beyond the reach of current algorithms. Given the recent pace
of progress, however, a solution may be closer than expected.

4 http://www.bing.com/blogs/site_blogs/b/maps/archive/2012/01/05/
bing-maps-new-routing-engine.aspx.

® http://www.google.com /transit.

5 http://opentripplanner.com.

7 http://www.rome2rio.com.

http://www.bing.com/blogs/site_blogs/b/maps/archive/2012/01/05/bing-maps-new-routing-engine.aspx
http://www.bing.com/blogs/site_blogs/b/maps/archive/2012/01/05/bing-maps-new-routing-engine.aspx
http://www.google.com/transit
http://opentripplanner.com
http://www.rome2rio.com

Route Planning in Transportation Networks 65

References

1.

10.

11.

12.

13.

14.

15.

Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-dimension
and shortest path algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6755, pp. 690-699. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22006-7_58

. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: HLDB:

Location-based services in databases. In: Proceedings of the 20th ACM SIGSPA-
TTAL International Symposium on Advances in Geographic Information Systems
(GIS 2012), pp. 339-348. ACM Press 2012. Best Paper Award

. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway

dimension and provably efficient shortest path algorithms. Technical report MSR-
TR-2013-91, Microsoft Research (2013)

Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling
algorithm for shortest paths in road networks. In: Pardalos, P.M., Rebennack, S.
(eds.) SEA 2011. LNCS, vol. 6630, pp. 230-241. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20662-7-20

Abraham, 1., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub label-
ings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol.
7501, pp. 24-35. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33090-2_4
Abraham, 1., Delling, D., Goldberg, A.V., Werneck, R.F.: Alternative routes in
road networks. ACM J. Exp. Algorithm. 18(1), 1-17 (2013)

. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, short-

est paths, and provably efficient algorithms. In: Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 782-793.
SIAM (2010)

Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.: Faster algorithms for the
shortest path problem. J. ACM 37(2), 213-223 (1990)

Ahuja, R.K., Orlin, J.B., Pallottino, S., Scutella, M.G.: Dynamic shortest paths
minimizing travel times and costs. Networks 41(4), 197-205 (2003)
Aifadopoulou, G., Ziliaskopoulos, A., Chrisohoou, E.: Multiobjective optimum
path algorithm for passenger pretrip planning in multimodal transportation net-
works. J. Transp. Res. Board 2032(1), 26-34 (2007). doi:10.3141,/2032-04
Akiba, T., Iwata, Y., Kawarabayashi, K., Kawata, Y.: Fast shortest-path distance
queries on road networks by pruned highway labeling. In: Proceedings of the 16th
Meeting on Algorithm Engineering and Experiments (ALENEX 2014), pp. 147—
154. STAM (2014)

Akiba, T., Iwata, Y., Yoshida,Y.: Fast exact shortest-path distance queries on
large networks by pruned landmark labeling. In: Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data (SIGMOD 2013), pp.
349-360. ACM Press (2013)

Allulli, L., Italiano, G.F., Santaroni, F.: Exploiting GPS data in public
transport journey planners. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 295-306. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-07959-2_25

Antsfeld, L., Walsh, T.: Finding multi-criteria optimal paths in multi-modal pub-
lic transportation networks using the transit algorithm. In: Proceedings of the
19th ITS World Congress (2012)

Arz, J., Luxen, D., Sanders, P.: Transit node routing reconsidered. In: Bonifaci, V.,
Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 55-66. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38527-8_7

http://dx.doi.org/10.1007/978-3-642-22006-7_58
http://dx.doi.org/10.1007/978-3-642-22006-7_58
http://dx.doi.org/10.1007/978-3-642-20662-7_20
http://dx.doi.org/10.1007/978-3-642-33090-2_4
http://dx.doi.org/10.3141/2032-04
http://dx.doi.org/10.1007/978-3-319-07959-2_25
http://dx.doi.org/10.1007/978-3-319-07959-2_25
http://dx.doi.org/10.1007/978-3-642-38527-8_7

66

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

H. Bast et al.

Babenko, M., Goldberg, A.V., Gupta, A., Nagarajan, V.: Algorithms for hub label
optimization. In: Fomin, F.V.| Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7965, pp. 69-80. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-39206-1_7

Bader, R., Dees, J., Geisberger, R., Sanders, P.: Alternative route graphs in road
networks. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol.
6595, pp. 21-32. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19754-3_5
Barrett, C., Bisset, K., Holzer, M., Konjevod, G., Marathe, M., Wagner, D.: Engi-
neering label-constrained shortest-path algorithms. In: Fleischer, R., Xu, J. (eds.)
AAIM 2008. LNCS, vol. 5034, pp. 27-37. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-68880-8_5

Barrett, C., Bisset, K., Holzer, M., Konjevod, G., Marathe, M.V., Wagner, D.:
Engineering label-constrained shortest-path algorithms. In: The Shortest Path
Problem: Ninth DIMACS Implementation Challenge, DIMACS Book, vol. 74,
pp- 309-319. American Mathematical Society (2009)

Barrett, C., Bisset, K., Jacob, R., Konjevod, G., Marathe, M.: Classical and con-
temporary shortest path problems in road networks: implementation and exper-
imental analysis of the TRANSIMS router. In: Méhring, R., Raman, R. (eds.)
ESA 2002. LNCS, vol. 2461, pp. 126-138. Springer, Heidelberg (2002). doi:10.
1007/3-540-45749-6_15

Barrett, C., Jacob, R., Marathe, M.V.: Formal-language-constrained path prob-
lems. SIAM J. Comput. 30(3), 809-837 (2000)

Bast, H.: Car or public transport—two worlds. In: Albers, S., Alt, H., N&her, S.
(eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 355-367. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03456-5_24

Bast, H., Brodesser, M., Storandt, S.: Result diversity for multi-modal route
planning. In: Proceedings of the 13th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS 2013), OpenAc-
cess Series in Informatics (OASIcs), pp. 123-136 (2013)

Bast, H., Carlsson, E., Eigenwillig, A., Geisberger, R., Harrelson, C., Raychev, V.,
Viger, F.: Fast routing in very large public transportation networks using transfer
patterns. In: Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 290-301.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15775-2_25

Bast, H., Sternisko, J., Storandt, S.: Delay-robustness of transfer patterns in
public transportation route planning. In: Proceedings of the 13th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
(ATMOS 2013), OpenAccess Series in Informatics (OASIcs), pp. 42-54 (2013)
Bast, H., Storandt, S.: Flow-based guidebook routing. In: Proceedings of the 16th
Meeting on Algorithm Engineering and Experiments (ALENEX 2014), pp. 155—
165. STAM (2014)

Bast, H., Storandt, S.: Frequency-based search for public transit. In: Proceed-
ings of the 22nd ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 13-22. ACM Press, November 2014

Bast, H., Funke, S., Matijevic, D.: Ultrafast shortest-path queries via transit
nodes. In: The Shortest Path Problem: Ninth DIMACS Implementation Chal-
lenge, DIMACS Book, vol. 74, pp. 175-192. American Mathematical Society
(2009)

Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to con-
stant shortest-path queries in road networks. In: Proceedings of the 9th Workshop
on Algorithm Engineering and Experiments (ALENEX 2007), pp. 46-59. SIAM
(2007)

http://dx.doi.org/10.1007/978-3-642-39206-1_7
http://dx.doi.org/10.1007/978-3-642-39206-1_7
http://dx.doi.org/10.1007/978-3-642-19754-3_5
http://dx.doi.org/10.1007/978-3-540-68880-8_5
http://dx.doi.org/10.1007/978-3-540-68880-8_5
http://dx.doi.org/10.1007/3-540-45749-6_15
http://dx.doi.org/10.1007/3-540-45749-6_15
http://dx.doi.org/10.1007/978-3-642-03456-5_24
http://dx.doi.org/10.1007/978-3-642-15775-2_25

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Route Planning in Transportation Networks 67

Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science 316(5824), 566 (2007)

Batz, G.V., Geisberger, R., Luxen, D., Sanders, P., Zubkov, R.: Efficient route
compression for hybrid route planning. In: Even, G., Rawitz, D. (eds.) MedAlg
2012. LNCS, vol. 7659, pp. 93-107. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34862-4_7

Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent
travel times with contraction hierarchies. ACM J. Exp. Algorithm. 18(1.4), 1-43
(2013)

Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objec-
tive functions. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 169-180. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33090-2_16
Bauer, A.: Multimodal profile queries. Bachelor thesis, Karlsruhe Institute of
Technology, May 2012

Bauer, R., Baum, M., Rutter, I., Wagner, D.: On the complexity of partitioning
graphs for arc-flags. J. Graph Algorithms Appl. 17(3), 265-299 (2013)

Bauer, R., Columbus, T., Katz, B., Krug, M., Wagner, D.: Preprocess-
ing speed-up techniques is hard. In: Calamoneri, T., Diaz, J. (eds.) CIAC
2010. LNCS, vol. 6078, pp. 359-370. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13073-1_32

Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contraction
hierarchies. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7965, pp. 93-104. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-39206-1_9

Bauer, R., D’Angelo, G., Delling, D., Schumm, A., Wagner, D.: The shortcut
problem - complexity and algorithms. J. Graph Algorithms Appl. 16(2), 447-481
(2012)

Bauer, R., Delling, D.: SHARC: Fast and robust unidirectional routing. ACM J.
Exp. Algorithm. 14(2.4), 1-29 (2009). Special Section on Selected Papers from
ALENEX 2008

Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:
Combining hierarchical, goal-directed speed-up techniques for Dijkstra’s algo-
rithm. ACM J. Exp. Algorithm. 15(2.3), 1-31 (2010). Special Section devoted
to WEA 2008

Bauer, R., Delling, D., Wagner, D.: Experimental study on speed-up techniques
for timetable information systems. Networks 57(1), 38-52 (2011)

Bauer, R., Krug, M., Meinert, S., Wagner, D.: Synthetic road networks. In:
Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 46-57. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14355-7_6

Baum, M., Dibbelt, J., Hiibschle-Schneider, L., Pajor, T., Wagner, D.: Speed-
consumption tradeoff for electric vehicle route planning. In: Proceedings of
the 14th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS 2014), OpenAccess Series in Informatics
(OASIcs), pp. 138-151 (2014)

Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric
vehicles. In: Proceedings of the 21st ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pp. 54-63. ACM Press (2013)
Baumann, N., Schmidt, R.: Buxtehude-Garmisch in 6 Sekunden. die elektronis-
che Fahrplanauskunft (EFA) der Deutschen Bundesbahn. Zeitschrift fiir aktuelle
Verkehrsfragen 10, 929-931 (1988)

http://dx.doi.org/10.1007/978-3-642-34862-4_7
http://dx.doi.org/10.1007/978-3-642-34862-4_7
http://dx.doi.org/10.1007/978-3-642-33090-2_16
http://dx.doi.org/10.1007/978-3-642-13073-1_32
http://dx.doi.org/10.1007/978-3-642-13073-1_32
http://dx.doi.org/10.1007/978-3-642-39206-1_9
http://dx.doi.org/10.1007/978-3-642-39206-1_9
http://dx.doi.org/10.1007/978-3-642-14355-7_6

68

46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

H. Bast et al.

Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87-90 (1958)

Berger, A., Delling, D., Gebhardt, A., Milller-Hannemann, M.: Accelerating time-
dependent multi-criteria timetable information is harder than expected. In: Pro-
ceedings of the 9th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems (ATMOS 2009), OpenAccess Series in
Informatics (OASIcs) (2009)

Berger, A., Gebhardt, A., Miiller-Hannemann, M., Ostrowski, M.: Stochastic
delay prediction in large train networks. In: Proceedings of the 11th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and Sys-
tems (ATMOS 2011), OpenAccess Series in Informatics (OASIcs), vol. 20, pp.
100-111 (2011)

Berger, A., Grimmer, M., Miiller-Hannemann, M.: Fully dynamic speed-up tech-
niques for multi-criteria shortest path searches in time-dependent networks.
In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 35-46. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13193-6_4

Bielli, M., Boulmakoul, A., Mouncif, H.: Object modeling and path computation
for multimodal travel systems. Eur. J. Oper. Res. 175(3), 1705-1730 (2006)
Bohmovi4, K., Mihaldk, M., Proger, T., Sramek, R., Widmayer, P.: Robust rout-
ing in urban public transportation: how to find reliable journeys based on past
observations. In: Proceedings of the 13th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems (ATMOS 2013), Ope-
nAccess Series in Informatics (OASIcs), pp. 27-41 (2013)

Botea, A.: Ultra-fast optimal pathfinding without runtime search. In: Proceedings
of the Seventh AAATI Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE 2011), pp. 122-127. AAAI Press (2011)

Botea, A., Harabor, D.: Path planning with compressed all-pairs shortest paths
data. In: Proceedings of the 23rd International Conference on Automated Plan-
ning and Scheduling, AAAT Press (2013)

Brandes, U., Erlebach, T.: Network Analysis: Methodological Foundations. The-
oretical Computer Science and General Issues, vol. 3418. Springer, Heidelberg
(2005)

Brandes, U., Schulz, F., Wagner, D., Willhalm, T.: Travel planning with self-made
maps. In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153,
pp. 132-144. Springer, Heidelberg (2001). doi:10.1007/3-540-44808-X_10
Brodal, G., Jacob, R.: Time-dependent networks as models to achieve fast exact
time-table queries. In: Proceedings of the 3rd Workshop on Algorithmic Methods
and Models for Optimization of Railways (ATMOS 2003), Electronic Notes in
Theoretical Computer Science, vol. 92, pp. 3-15 (2004)

Bruera, F., Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D.: Dynamic
multi-level overlay graphs for shortest paths. Math. Comput. Sci. 1(4), 709-736
(2008)

Brunel, E., Delling, D., Gemsa, A., Wagner, D.: Space-efficient SHARC-routing.
In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 47-58. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13193-6_5

Caldwell, T.: On finding minimum routes in a network with turn penalties. Com-
mun. ACM 4(2), 107-108 (1961)

Cambridge Vehicle Information Technology Ltd. Choice routing (2005). http://
www.camvit.com

Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms. Math.
Programm. Ser. A 73, 129-174 (1996)

http://dx.doi.org/10.1007/978-3-642-13193-6_4
http://dx.doi.org/10.1007/3-540-44808-X_10
http://dx.doi.org/10.1007/978-3-642-13193-6_5
http://www.camvit.com
http://www.camvit.com

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.
73.

74.

75.

76.

7.

78.

79.

80.

Route Planning in Transportation Networks 69

Cherkassky, B.V., Goldberg, A.V., Silverstein, C.: Buckets, heaps, lists, and
monotone priority queues. In: Proceedings of the 8th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 1997), pp. 83-92. IEEE Computer Society
Press (1997)

Cionini, A., D’Angelo, G., D’Emidio, M., Frigioni, D., Giannakopoulou, K.,
Paraskevopoulos, A.: Engineering graph-based models for dynamic timetable
information systems. In: Proceedings of the 14th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS
2014), OpenAccess Series in Informatics (OASIcs), pp. 46-61 (2014)

Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. SIAM J. Comput. 32(5), 1338-1355 (2003)

Cooke, K., Halsey, E.: The shortest route through a network with time-dependent
intermodal transit times. J. Math. Anal. Appl. 14(3), 493-498 (1966)

D’Angelo, G., D’Emidio, M., Frigioni, D., Vitale, C.: Fully dynamic maintenance
of arc-flags in road networks. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276,
pp. 135-147. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30850-5_13
George, B.D.: Linear Programming and Extensions. Princeton University Press,
Princeton (1962)

Dean, B.C.: Continuous-time dynamic shortest path algorithms. Master’s thesis,
Massachusetts Institute of Technology (1999)

Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks with
waiting policies. Networks 44(1), 41-46 (2004)

Dean, B.C.: Shortest paths in FIFO time-dependent networks: theory and algo-
rithms. Technical report, Massachusetts Institute Of Technology (2004)

Dehne, F., Omran, M.T., Sack, J.-R.: Shortest paths in time-dependent FIFO
networks. Algorithmica 62, 416-435 (2012)

Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60-94 (2011)
Delling, D., Dibbelt, J., Pajor, T., Wagner, D., Werneck, R.F.: Computing
multimodal journeys in practice. In: Bonifaci, V., Demetrescu, C., Marchetti-
Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 260-271. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38527-8_24

Delling, D., Giannakopoulou, K., Wagner, D., Zaroliagis, C.: Timetable informa-
tion updating in case of delays: modeling issues. Technical report 133, Arrival
Technical report (2008)

Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: Hardware-
accelerated shortest path trees. J. Parallel Distrib. Comput. 73(7), 940-952 (2013)
Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376-387. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20662-7_32
Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust distance queries on
massive networks. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737,
pp. 321-333. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44777-2_27
Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning in road networks. Transp. Sci. (2015)

Delling, D., Goldberg, A.V., Razenshteyn, 1., Werneck, R.F.: Graph partition-
ing with natural cuts. In: 25th International Parallel and Distributed Processing
Symposium (IPDPS 2011), pp. 1135-1146. IEEE Computer Society (2011)
Delling, D., Goldberg, A.V., Savchenko, R., Werneck, R.F.: Hub labels: theory and
practice. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504,
pp. 259-270. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07959-2_22

http://dx.doi.org/10.1007/978-3-642-30850-5_13
http://dx.doi.org/10.1007/978-3-642-38527-8_24
http://dx.doi.org/10.1007/978-3-642-20662-7_32
http://dx.doi.org/10.1007/978-3-662-44777-2_27
http://dx.doi.org/10.1007/978-3-319-07959-2_22

70

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

H. Bast et al.

Delling, D., Goldberg, A.V., Werneck, R.F.: Faster batched shortest paths in road
networks. In: Proceedings of the 11th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS 2011), OpenAc-
cess Series in Informatics (OASIcs), vol. 20, pp. 52-63 (2011)

Delling, D., Goldberg, A.V., Werneck, R.F.: Hub label compression. In: Bonifaci,
V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 18-29. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38527-8 4
Delling, D., Holzer, M., Miiller, K., Schulz, F., Wagner, D., High-performance
multi-level routing. In: The Shortest Path Problem: Ninth DIMACS Implemen-
tation Challenge, DIMACS Book, vol. 74, pp. 73-92. American Mathematical
Society (2009)

Delling, D., Italiano, G.F., Pajor, T., Santaroni, F.: Better transit routing by
exploiting vehicle GPS data. In: Proceedings of the 7th ACM SIGSPATIAL
International Workshop on Computational Transportation Science. ACM Press,
November 2014

Delling, D., Katz, B., Pajor, T.: Parallel computation of best connections in public
transportation networks. ACM J. Exp. Algorithm. 17(4), 4. 1-4. 26 (2012)
Delling, D., Kobitzsch, M., Luxen, D., Werneck, R.F.: Robust mobile route plan-
ning with limited connectivity. In: Proceedings of the 14th Meeting on Algorithm
Engineering and Experiments (ALENEX 2012), pp. 150-159. SIAM (2012)
Delling, D., Kobitzsch, M., Werneck, R.F.: Customizing driving directions
with GPUs. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014.
LNCS, vol. 8632, pp. 728-739. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-09873-9_61

Delling, D., Nannicini, G.: Core routing on dynamic time-dependent road net-
works. Informs J. Comput. 24(2), 187-201 (2012)

Delling, D., Pajor, T., Wagner, D.: Accelerating multi-modal route planning by
access-nodes. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
587-598. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04128-0_53
Delling, D., Pajor, T., Wagner, D.: Engineering time-expanded graphs for faster
timetable information. In: Ahuja, R.K., Mohring, R.H., Zaroliagis, C.D. (eds.)
Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 182-206.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-05465-5_7

Delling, D., Pajor, T., Wagner, D., Zaroliagis, C.: Efficient route planning in flight
networks. In: Proceedings of the 9th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS 2009), OpenAc-
cess Series in Informatics (OASIcs) (2009)

Delling, D., Pajor, T., Werneck, R.F.: Round-based public transit routing. In:
Proceedings of the 14th Meeting on Algorithm Engineering and Experiments
(ALENEX 2012), pp. 130-140. SIAM (2012)

Delling, D., Pajor, T., Werneck, R.F.: Round-based public transit routing. Transp.
Sci. 49, 591-604 (2014)

Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117-139. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02094-0_7

Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In:
The Shortest Path Problem: Ninth DIMACS Implementation Challenge, DIMACS
Book, vol. 74, pp. 141-174. American Mathematical Society (2009)

http://dx.doi.org/10.1007/978-3-642-38527-8_4
http://dx.doi.org/10.1007/978-3-319-09873-9_61
http://dx.doi.org/10.1007/978-3-319-09873-9_61
http://dx.doi.org/10.1007/978-3-642-04128-0_53
http://dx.doi.org/10.1007/978-3-642-05465-5_7
http://dx.doi.org/10.1007/978-3-642-02094-0_7

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

Route Planning in Transportation Networks 71

Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Deme-
trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52-65. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-72845-0_5

Delling, D., Wagner, D.: Pareto paths with SHARC. In: Vahrenhold, J. (ed.)
SEA 2009. LNCS, vol. 5526, pp. 125-136. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-02011-7_13

Delling, D., Wagner, D.: Time-dependent route planning. In: Ahuja, R.K.,
Mohring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimiza-
tion. LNCS, vol. 5868, pp. 207-230. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-05465-5_8

Delling, D., Werneck, R.F.: Customizable point-of-interest queries in road net-
works. In: Proceedings of the 21st ACM SIGSPATTAL International Symposium
on Advances in Geographic Information Systems (GIS 2013), pp. 490-493. ACM
Press (2013)

Delling, D., Werneck, R.F.: Faster customization of road networks. In: Bonifaci,
V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 30—42. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38527-8_5
Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Prob-
lem: Ninth DIMACS Implementation Challenge, DIMACS Book, vol. 74. Ameri-
can Mathematical Society, Providence (2009)

Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: A case for time-dependent
shortest path computation in spatial networks. In: Proceedings of the 18th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems (GIS 2010), pp. 474-477 (2010)

Denardo, E.V., Fox, B.L.: Shortest-route methods: 1. reaching, pruning, and buck-
ets. Oper. Res. 27(1), 161-186 (1979)

Dial, R.B.: Algorithm 360: shortest-path forest with topological ordering [H].
Commun. ACM 12(11), 632-633 (1969)

Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Intriguingly simple and fast tran-
sit routing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.)
SEA 2013. LNCS, vol. 7933, pp. 43-54. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38527-8_6

Dibbelt, J., Pajor, T., Wagner, D.: User-constrained multi-modal route planning.
In: Proceedings of the 14th Meeting on Algorithm Engineering and Experiments
(ALENEX 2012), pp. 118-129. SIAM (2012)

Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271-282.
Springer, Heidelberg (2014). do0i:10.1007/978-3-319-07959-2_23

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269-271 (1959)

Disser, Y., Miiller-Hannemann, M., Schnee, M.: Multi-criteria shortest paths
in time-dependent train networks. In: McGeoch, C.C. (ed.) WEA 2008.
LNCS, vol. 5038, pp. 347-361. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68552-4_26

Drews, F., Luxen, D.: Multi-hop ride sharing. In: Proceedings of the 5th Interna-
tional Symposium on Combinatorial Search (SoCS 2012), pp. 71-79. AAAI Press
(2013)

Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3),
395-412 (1969)

http://dx.doi.org/10.1007/978-3-540-72845-0_5
http://dx.doi.org/10.1007/978-3-642-02011-7_13
http://dx.doi.org/10.1007/978-3-642-02011-7_13
http://dx.doi.org/10.1007/978-3-642-05465-5_8
http://dx.doi.org/10.1007/978-3-642-05465-5_8
http://dx.doi.org/10.1007/978-3-642-38527-8_5
http://dx.doi.org/10.1007/978-3-642-38527-8_6
http://dx.doi.org/10.1007/978-3-642-38527-8_6
http://dx.doi.org/10.1007/978-3-319-07959-2_23
http://dx.doi.org/10.1007/978-3-540-68552-4_26
http://dx.doi.org/10.1007/978-3-540-68552-4_26

72

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.
127.

H. Bast et al.

Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing.
In: Proceedings of the 6th ACM SIGSPATTAL International Workshop on Com-
putational Transportation Science, pp. 25:25-25:30. ACM Press, November 2013
Efentakis, A., Pfoser, D.: GRASP. Extending graph separators for the single-
source shortest-path problem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014.
LNCS, vol. 8737, pp. 358-370. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44777-2_30

Efentakis, A., Pfoser, D., Vassiliou., Y.: SALT: a unified framework for all
shortest-path query variants on road networks. CoRR, abs/1411.0257 (2014)
Efentakis, A., Pfoser, D., Voisard, A.: Efficient data management in support of
shortest-path computation. In: Proceedings of the 4th ACM SIGSPATIAL Inter-
national Workshop on Computational Transportation Science, pp. 28—-33. ACM
Press (2011)

Efentakis, A., Theodorakis, D., Pfoser,D.: Crowdsourcing computing resources
for shortest-path computation. In: Proceedings of the 20th ACM SIGSPATIAL
International Symposium on Advances in Geographic Information Systems (GIS
2012), pp. 434-437. ACM Press (2012)

Ehrgott, M., Gandibleux, X.: Multiple Criteria Optimization: State of the Art
Annotated Bibliographic Surveys. Kluwer Academic Publishers Group, New York
(2002)

Eisenstat, D.: Random road networks: the quadtree model. In: Proceedings of the
Eighth Workshop on Analytic Algorithmics and Combinatorics (ANALCO 2011),
pp- 76-84. STAM, January 2011

Eisner, J., Funke, S.: Sequenced route queries: getting things done on the way back
home. In: Proceedings of the 20th ACM SIGSPATIAL International Symposium
on Advances in Geographic Information Systems (GIS 2012), pp. 502-505. ACM
Press (2012)

Eisner, J., Funke, S.: Transit nodes - lower bounds and refined construction.
In: Proceedings of the 14th Meeting on Algorithm Engineering and Experiments
(ALENEX 2012), pp. 141-149. SIAM (2012)

Eisner, J., Funke, S., Herbst, A., Spillner, A., Storandt, S.: Algorithms for match-
ing and predicting trajectories. In: Proceedings of the 13th Workshop on Algo-
rithm Engineering and Experiments (ALENEX 2011), pp. 84-95. SIAM (2011)
Eisner, J., Funke, S., Storandt, S.: Optimal route planning for electric vehicles in
large network. In: Proceedings of the Twenty-Fifth AAAT Conference on Artificial
Intelligence. AAAI Press, August 2011

Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through
an algorithmic lens. In: Proceedings of the 16th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems (GIS 2008),
pp. 1-10. ACM Press (2008)

Erb, S., Kobitzsch, M., Sanders, P.: Parallel bi-objective shortest paths using
weight-balanced B-trees with bulk updates. In: Gudmundsson, J., Katajainen,
J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 111-122. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-07959-2_10

Firmani, D., Italiano, G.F., Laura, L., Santaroni, F.: Is timetabling routing always
reliable for public transport? In: Proceedings of the 13th Workshop on Algo-
rithmic Approaches for Transportation Modeling, Optimization, and Systems
(ATMOS 2013), OpenAccess Series in Informatics (OASIcs), pp. 15-26 (2013)
Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)
Ford, Jr., L.R.: Network flow theory. Technical report P-923, Rand Corporation,
Santa Monica, California (1956)

http://dx.doi.org/10.1007/978-3-662-44777-2_30
http://dx.doi.org/10.1007/978-3-662-44777-2_30
http://dx.doi.org/10.1007/978-3-319-07959-2_10

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

Route Planning in Transportation Networks 73

Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent short-
est paths. Algorithmica 68(4), 1075-1097 (2014)

Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596-615 (1987)

Fu, L., Sun, D., Rilett, L.R.: Heuristic shortest path algorithms for transportation
applications: state of the art. Comput. Oper. Res. 33(11), 3324-3343 (2006)
Funke, S., Nusser, A., Storandt, S.: On k-path covers and their applications.
In: Proceedings of the 40th International Conference on Very Large Databases
(VLDB 2014), pp. 893-902 (2014)

Funke, S., Nusser, A., Storandt, S.: Placement of loading stations for electric
vehicles: no detours necessary! In: Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence. AAATI Press (2014)

Funke, S., Storandt, S.: Polynomial-time construction of contraction hierarchies
for multi-criteria objectives. In: Proceedings of the 15th Meeting on Algorithm
Engineering and Experiments (ALENEX 2013), pp. 31-54. SIAM (2013)
Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Dis-
trib. Comput. 16(2-3), 111-120 (2003)

Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J.
Algorithms 53, 85-112 (2004)

Geisberger, R.: Contraction of timetable networks with realistic transfers. In:
Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 71-82. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13193-6_7

Geisberger, R.: Advanced route planning in transportation networks. Ph.D. thesis,
Karlsruhe Institute of Technology, February 2011

Geisberger, R., Kobitzsch, M., Sanders, P.: Route planning with flexible objective
functions. In: Proceedings of the 12th Workshop on Algorithm Engineering and
Experiments (ALENEX 2010), pp. 124-137. SIAM (2010)

Geisberger, R., Luxen, D., Sanders, P., Neubauer, S., Volker, L.: Fast detour com-
putation for ride sharing. In: Proceedings of the 10th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS
2010), OpenAccess Series in Informatics (OASIcs), vol. 14, pp. 88-99 (2010)
Geisberger, R., Rice, M., Sanders, P., Tsotras, V.: Route planning with flexible
edge restrictions. ACM J. Exp. Algorithm. 17(1), 1-20 (2012)

Geisberger, R., Sanders, P.: Engineering time-dependent many-to-many short-
est paths computation. In: Proceedings of the 10th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS
2010), OpenAccess Series in Informatics (OASIcs), vol. 14 (2010)

Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388-404 (2012)
Geisberger, R., Schieferdecker, D.: Heuristic contraction hierarchies with approx-
imation guarantee. In: Proceedings of the 3rd International Symposium on Com-
binatorial Search (SoCS 2010). AAAI Press (2010)

Geisberger, R., Vetter, C.: Efficient routing in road networks with turn costs. In:
Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 100-111.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20662-7_9

Goerigk, M., Hefle, S., Miiller-Hannemann, M., Schmidt, M.: Recoverable robust
timetable information. In: Proceedings of the 13th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS
2013), OpenAccess Series in Informatics (OASIcs), pp. 1-14 (2013)

http://dx.doi.org/10.1007/978-3-642-13193-6_7
http://dx.doi.org/10.1007/978-3-642-20662-7_9

74

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

H. Bast et al.

Goerigk, M., Knoth, M., Miiller-Hannemann, M., Schmidt, M., Schobel, A.: The
price of strict and light robustness in timetable information. Transp. Sci. 48,
225-242 (2014)

Goldberg, A.V.: A practical shortest path algorithm with linear expected time.
SIAM J. Comput. 37, 1637-1655 (2008)

Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets
graph theory. In: Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2005), pp. 156-165. STAM (2005)

Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: shortest path algo-
rithms with preprocessing. In: The Shortest Path Problem: Ninth DIMACS Imple-
mentation Challenge, DIMACS Book, vol. 74, pp. 93-139. American Mathemat-
ical Society (2009)

Goldberg, A.V., Werneck, R.F.: Computing point-to-point shortest paths from
external memory. In: Proceedings of the 7th Workshop on Algorithm Engineering
and Experiments (ALENEX 2005), pp. 26-40. STAM (2005)

Goldman, R., Shivakumar, N.R., Venkatasubramanian, S., Garcia-Molina, H.:
Proximity search in databases. In: Proceedings of the 24th International Con-
ference on Very Large Databases (VLDB 1998), pp. 26-37. Morgan Kaufmann,
August 1998

Goodrich, M.T., Pszona, P.: Two-phase bicriterion search for finding fast and
efficient electric vehicle routes. In: Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. ACM
Press, November 2014

Gunkel, T., Schnee, M., Miiller-Hannemann, M.: How to find good night train
connections. Networks 57(1), 19-27 (2011)

Gutman, R.J., Reach-based routing: a new approach to shortest path algorithms
optimized for road networks. In: Proceedings of the 6th Workshop on Algorithm
Engineering and Experiments (ALENEX 2004), pp. 100-111. STAM (2004)
Hansen, P.: Bricriteria path problems. In: Fandel, G., Gal, T. (eds.) Multiple
Criteria Decision Making - Theory and Application. LNEMS, vol. 177, pp. 109—
127. Springer, Heidelberg (1979). doi:10.1007/978-3-642-48782-8_9

Hart, P.E., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100-107 (1968)
Hilger, M., Kohler, E., Mohring, R.H., Schilling, H., Fast point-to-point shortest
path computations with arc-flags. In: The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, DIMACS Book, vol. 74, pp. 41-72. American Mathe-
matical Society (2009)

Hlinény, P., Mori§, O.: Scope-based route planning. In: Demetrescu, C.,
Halldérsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 445-456. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23719-5_38

Holzer, M.: Engineering planar-separator and shortest-path algorithms. Ph.D.
thesis, Karlsruhe Institute of Technology (KIT) - Department of Informatics
(2008)

Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for
shortest-path queries. ACM J. Exp. Algorithm. 13(2.5), 1-26 (2008)

Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining speed-up techniques
for shortest-path computations. ACM J. Exp. Algorithm. 10(2.5), 1-18 (2006)
Horvitz, E., Krumm, J.: Some help on the way: opportunistic routing under uncer-
tainty. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing
(Ubicomp 2012), pp. 371-380. ACM Press (2012)

http://dx.doi.org/10.1007/978-3-642-48782-8_9
http://dx.doi.org/10.1007/978-3-642-23719-5_38

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

Route Planning in Transportation Networks 75

Ikeda, T., Hsu, M.-Y., Imai, H., Nishimura, S., Shimoura, H., Hashimoto, T.,
Tenmoku, K., Mitoh, K.: A fast algorithm for finding better routes by Al search
techniques. In: Proceedings of the Vehicle Navigation and Information Systems
Conference (VNSI 1994), pp. 291-296. ACM Press (1994)

Jing, N., Huang, Y.-W., Rundensteiner, E.A.: Hierarchical encoded path views for
path query processing: an optimal model and its performance evaluation. IEEE
Trans. Knowl. Data Eng. 10(3), 409-432 (1998)

Jung, S., Pramanik, S.: An efficient path computation model for hierarchically
structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029—
1046 (2002)

Kaindl, H., Kainz, G.: Bidirectional heuristic search reconsidered. J. Artif. Intell.
Res. 7, 283-317 (1997)

Kaufmann, H.: Towards mobile time-dependent route planning. Bachelor thesis,
Karlsruhe Institute of Technology (2013)

Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent con-
traction hierarchies. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 83-93.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13193-6_8

Kirchler, D., Liberti, L., Wolfler Calvo, R.: A label correcting algorithm for the
shortest path problem on a multi-modal route network. In: Klasing, R. (ed.) SEA
2012. LNCS, vol. 7276, pp. 236-247. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30850-5_21

Kirchler, D., Liberti, L., Pajor, T., Calvo, R.W.: UniALT for regular language con-
straint shortest paths on a multi-modal transportation network. In: Proceedings
of the 11th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS 2011), OpenAccess Series in Informatics
(OASIcs), vol. 20, pp. 64-75 (2011)

Kleinberg, J.M., Slivkins, A., Wexler, T.: Triangulation and embedding using
small sets of beacons. In: Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2004), pp. 444-453. IEEE Computer
Society Press (2004)

Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing many-
to-many shortest paths using highway hierarchies. In: Proceedings of the 9th
Workshop on Algorithm Engineering and Experiments (ALENEX 2007), pp. 36—
45. STAM (2007)

Kobitzsch, M.: HiDAR: an alternative approach to alternative routes. In: Bod-
laender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 613-624.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40450-4_52

Kobitzsch, M., Radermacher, M., Schieferdecker, D.: Evolution and evaluation
of the penalty method for alternative graphs. In: Proceedings of the 13th Work-
shop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS 2013), OpenAccess Series in Informatics (OASIcs), pp. 94-107
(2013)

Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8572, pp. 713-725. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43948-7_59

Krumm, J., Gruen, R., Delling, D.: From destination prediction to route predic-
tion. J. Locat. Based Serv. 7(2), 98-120 (2013)

Krumm, J., Horvitz, E.: Predestination: where do you want to go today? IEEE
Comput. 40(4), 105-107 (2007)

http://dx.doi.org/10.1007/978-3-642-13193-6_8
http://dx.doi.org/10.1007/978-3-642-30850-5_21
http://dx.doi.org/10.1007/978-3-642-30850-5_21
http://dx.doi.org/10.1007/978-3-642-40450-4_52
http://dx.doi.org/10.1007/978-3-662-43948-7_59
http://dx.doi.org/10.1007/978-3-662-43948-7_59

76

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

H. Bast et al.

Lauther, U.: An experimental evaluation of point-to-point shortest path calcula-
tion on roadnetworks with precalculated edge-flags. In: The Shortest Path Prob-
lem: Ninth DIMACS Implementation Challenge, vol. 74, DIMACS Book, pp. 19—
40. American Mathematical Society (2009)

Ken, C.K., Lee, J.L., Zheng, B., Tian, Y.: ROAD: a new spatial object search
framework for road networks. IEEE Trans. Knowl. Data Eng. 24(3), 547-560
(2012)

Lipton, R.J., Rose, D.J., Tarjan, R.: Generalized nested dissection. STAM J.
Numer. Anal. 16(2), 346-358 (1979)

Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. STAM J. Appl.
Math. 36(2), 177-189 (1979)

Loridan, P.: e-solutions in vector minimization problems. J. Optim. Theory Appl.
43(2), 265-276 (1984)

Luxen, D., Sanders, P.: Hierarchy decomposition for faster user equilibria on road
networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630,
pp. 242-253. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20662-7_21
Luxen, D., Schieferdecker, D.: Candidate sets for alternative routes in road net-
works. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 260—270. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30850-5_23

Luxen, D., Vetter, C.: Real-time routing with OpenStreetMap data. In: Proceed-
ings of the 19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM Press (2011)

Madduri, K., Bader, D.A., Berry, J.W., Crobak, J.R., Parallel shortest path algo-
rithms for solving large-scale instances. In: The Shortest Path Problem: Ninth
DIMACS Implementation Challenge, DIMACS Book, vol. 74, pp. 249-290. Amer-
ican Mathematical Society (2009)

Martins, E.Q.: On a multicriteria shortest path problem. Eur. J. Oper. Res. 26(3),
236-245 (1984)

Maue, J., Sanders, P., Matijevic, D.: Goal-directed shortest-path queries using
precomputed cluster distances. ACM J. Exp. Algorithm. 14, 3.2:1-3.2:27 (2009)
Mehlhorn, K.: A faster approximation algorithm for the Steiner problem in graphs.
Inf. Process. Lett. 27(3), 125-128 (1988)

Mehlhorn, K., Sanders, P., Algorithms, D.S.: The Basic Toolbox. Springer, Hei-
delberg (2008)

Mellouli, T., Suhl, L.: Passenger online routing in dynamic networks. In: Mattfeld,
D.C., Suhl, L. (eds.) Informations probleme in Transport und Verkehr, vol. 4, pp.
17-30. DS&OR Lab, Universitidt Paderborn (2006)

Meyer, U.: Single-source shortest-paths on arbitrary directed graphs in linear
average-case time. In: Proceedings of the 12th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2001), pp. 797-806 (2001)

Meyer, U., Sanders, P.: §-stepping: a parallelizable shortest path algorithm. J.
Algorithms 49(1), 114-152 (2003)

Milosavljevié¢, N.: On optimal preprocessing for contraction hierarchies. In: Pro-
ceedings of the 5th ACM SIGSPATIAL International Workshop on Computa-
tional Transportation Science, pp. 33-38. ACM Press (2012)

Modesti, P., Sciomachen, A.: A utility measure for finding multiobjective shortest
paths in urban multimodal transportation networks. Eur. J. Oper. Res. 111(3),
495-508 (1998)

http://dx.doi.org/10.1007/978-3-642-20662-7_21
http://dx.doi.org/10.1007/978-3-642-30850-5_23

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

Route Planning in Transportation Networks 7

Mohring, R.H.: Verteilte Verbindungssuche im offentlichen Personenverkehr -
Graphentheoretische Modelle und Algorithmen. In: Angewandte Mathematik ins-
besondere Informatik, Beispiele erfolgreicher Wege zwischen Mathematik und
Informatik, pp. 192-220. Vieweg (1999)

Mohring, R.H., Schilling, H., Schiitz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speedup Dijkstra’s algorithm. ACM J. Exp. Algorithm. 11(28), 1-29
(2006)

Moore, E.F.: The shortest path through a maze. In: Proceedings of the Interna-
tional Symposium on the Theory of Switching, pp. 285—292. Harvard University
Press (1959)

Miiller-Hannemann, M., Schnee, M.: Paying less for train connections with
MOTIS. In: Proceedings of the 5th Workshop on Algorithmic Methods and Mod-
els for Optimization of Railways (ATMOS 2005), OpenAccess Series in Informat-
ics (OASIcs), p. 657 (2006)

Miiller-Hannemann, M., Schnee, M.: Finding all attractive train connections
by multi-criteria pareto search. In: Geraets, F., Kroon, L., Schoebel, A., Wag-
ner, D., Zaroliagis, C.D. (eds.) Algorithmic Methods for Railway Optimiza-
tion. LNCS, vol. 4359, pp. 246-263. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74247-0_13

Miiller-Hannemann, M., Schnee, M.: Efficient timetable information in the pres-
ence of delays. In: Ahuja, R.K., Mohring, R.H., Zaroliagis, C.D. (eds.) Robust
and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 249-272. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-05465-5_10

Miiller-Hannemann, M., Schnee, M., Weihe, K.: Getting train timetables into the
main storage. Electron. Notes Theoret. Comput. Sci. 66(6), 8-17 (2002)
Miiller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable infor-
mation: models and algorithms. In: Geraets, F., Kroon, L., Schoebel, A., Wag-
ner, D., Zaroliagis, C.D. (eds.) Algorithmic Methods for Railway Optimiza-
tion. LNCS, vol. 4359, pp. 67-90. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74247-0_3

Miiller-Hannemann, M., Weihe, K.: Pareto shortest paths is often feasible in
practice. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE
2001. LNCS, vol. 2141, pp. 185-197. Springer, Heidelberg (2001). doi:10.1007/
3-540-44688-5_15

Muller, L.F., Zachariasen, M.: Fast and compact oracles for approximate dis-
tances in planar graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA
2007. LNCS, vol. 4698, pp. 657-668. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75520-3_58

Nachtigall, K.: Time depending shortest-path problems with applications to rail-
way networks. Eur. J. Oper. Res. 83(1), 154-166 (1995)

Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* search on
time-dependent road networks. Networks 59, 240-251 (2012). Best Paper Award
Orda, A., Rom, R.: Shortest-path and minimum delay algorithms in networks
with time-dependent edge-length. J. ACM 37(3), 607625 (1990)

Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. Networks
21, 295-319 (1991)

Pajor, T.: Multi-modal route planning. Master’s thesis, Universitat Karlsruhe
(TH), March 2009

Pallottino, S., Scutella, M.G.: Shortest path algorithms in transportation models:
Classical and innovative aspects. In: Equilibrium and Advanced Transportation
Modelling, pp. 245-281. Kluwer Academic Publishers Group (1998)

http://dx.doi.org/10.1007/978-3-540-74247-0_13
http://dx.doi.org/10.1007/978-3-540-74247-0_13
http://dx.doi.org/10.1007/978-3-642-05465-5_10
http://dx.doi.org/10.1007/978-3-540-74247-0_3
http://dx.doi.org/10.1007/978-3-540-74247-0_3
http://dx.doi.org/10.1007/3-540-44688-5_15
http://dx.doi.org/10.1007/3-540-44688-5_15
http://dx.doi.org/10.1007/978-3-540-75520-3_58
http://dx.doi.org/10.1007/978-3-540-75520-3_58

78

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

H. Bast et al.

Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: Proceedings of the 41st Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS 2000), pp. 86-92 (2000)
Paraskevopoulos, A., Zaroliagis, C.: Improved alternative route planning. In:
Proceedings of the 13th Workshop on Algorithmic Approaches for Transporta-
tion Modeling, Optimization, and Systems (ATMOS 2013), OpenAccess Series in
Informatics (OASIcs), pp. 108-122 (2013)

Parter, S.V.: The use of linear graphs in Gauss elimination. SIAM Rev. 3(2),
119-130 (1961)

Peleg, D.: Proximity-preserving labeling schemes. J. Graph Theory 33(3), 167—
176 (2000)

Pohl, I.: Bi-directional and heuristic search in path problems. Technical report
SLAC-104, Stanford Linear Accelerator Center, Stanford, California (1969)
Pohl, I.: Bi-directional search. In: Proceedings of the Sixth Annual Machine Intel-
ligence Workshop, vol. 6, pp. 124-140. Edinburgh University Press (1971)
Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Experimental comparison of
shortest path approaches for timetable information. In: Proceedings of the 6th
Workshop on Algorithm Engineering and Experiments (ALENEX 2004), pp. 88—
99. SIAM (2004)

Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient models for timetable
information in public transportation systems. ACM J. Exp. Algorithm. 12(24),
1-39 (2008)

Rice, M., Tsotras, V.: Bidirectional A* search with additive approximation
bounds. In: Proceedings of the 5th International Symposium on Combinatorial
Search (SoCS 2012), AAAI Press (2012)

Rice, M.N., Tsotras, V.J.: Exact graph search algorithms for generalized traveling
salesman path problems. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp.
344-355. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30850-5_30
Sanders, P., Mandow, L.: Parallel label-setting multi-objective shortest path
search. In: 27th International Parallel and Distributed Processing Symposium
(IPDPS 2013), pp. 215-224. IEEE Computer Society (2013)

Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568-579.
Springer, Heidelberg (2005). doi:10.1007/11561071_51

Sanders, P., Schultes, D.: Robust, almost constant time shortest-path queries in
road networks. In: The Shortest Path Problem: Ninth DIMACS Implementation
Challenge, DIMACS Book, vol. 74, pp. 193-218. American Mathematical Society
(2009)

Sanders, P., Schultes, D.: Engineering highway hierarchies. ACM J. Exp. Algo-
rithm. 17(1), 1-40 (2012)

Sanders, P., Schultes, D., Vetter, C.: Mobile route planning. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 732-743. Springer, Heidel-
berg (2008). doi:10.1007/978-3-540-87744-8_61

Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: Proceed-
ings of the 14th Meeting on Algorithm Engineering and Experiments (ALENEX
2012), pp. 16-29. SIAM (2012)

Sankaranarayanan, J., Alborzi, H., Samet, H.: Efficient query processing on spatial
networks. In: Proceedings of the 13th Annual ACM International Workshop on
Geographic Information Systems (GIS 2005), pp. 200-209 (2005)
Sankaranarayanan, J., Samet, H.: Query processing using distance oracles for
spatial networks. IEEE Trans. Knowl. Data Eng. 22(8), 1158-1175 (2010)

http://dx.doi.org/10.1007/978-3-642-30850-5_30
http://dx.doi.org/10.1007/11561071_51
http://dx.doi.org/10.1007/978-3-540-87744-8_61

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

Route Planning in Transportation Networks 79

Sankaranarayanan, J., Samet, H.: Roads belong in databases. IEEE Data Eng.
Bull. 33(2), 4-11 (2010)

Schilling, H.: TomTom navigation - How mathematics help getting through traffic
faster (2012). Talk given at ISMP

Schreiber, R.: A new implementation of sparse Gaussian elimination. ACM Trans.
Math. Softw. 8(3), 256-276 (1982)

Schultes, D.: Route planning in road networks. Ph.D. thesis, Universitat Karlsruhe
(TH), February 2008

Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.)
WEA 2007. LNCS, vol. 4525, pp. 66-79. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72845-0-6

Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: an empirical case
study from public railroad transport. ACM J. Exp. Algorithm. 5(12), 1-23 (2000)
Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable
information in railway systems. In: Mount, D.M., Stein, C. (eds.) ALENEX
2002. LNCS, vol. 2409, pp. 43-59. Springer, Heidelberg (2002). doi:10.1007/
3-540-45643-0-4

Sedgewick, R., Vitter, J.S.: Shortest paths in Euclidean graphs. Algorithmica
1(1), 31-48 (1986)

Sommer, C.: Shortest-path queries in static networks. ACM Comput. Surv. 46(4),
1-31 (2014)

Storandt, S.: Route planning for bicycles - exact constrained shortest paths made
practical via contraction hierarchy. In: Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Scheduling, pp. 234-242 (2012)
Storandt, S., Funke, S.: Cruising with a battery-powered vehicle and not getting
stranded. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence. AAAT Press (2012)

Storandt, S., Funke, S.: Enabling e-mobility: facility location for battery loading
stations. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence. AAAT Press (2013)

Strasser, B., Wagner, D.: Connection scan accelerated. In: Proceedings of the
16th Meeting on Algorithm Engineering and Experiments (ALENEX 2014), pp.
125-137. SIAM (2014)

Theune, D.: Robuste und effiziente Methoden zur Losung von Wegproblemen.
Ph.D. thesis, Universitdt Paderborn (1995)

Thorup, M.: Integer priority queues with decrease key in constant time and the
single source shortest paths problem. In: 35th ACM Symposium on Theory of
Computing, pp. 149-158. ACM, New York (2003)

Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM 51(6), 993-1024 (2004)

Tsaggouris, G., Zaroliagis, C.: Multiobjective optimization: improved FPTAS for
shortest paths and non-linear objectives with applications. Theory Comput. Syst.
45(1), 162-186 (2009)

Tulp, E., Sikléssy, L.: TRAINS, an active time-table searcher. ECAI 88, 170-175
(1988)

Tulp, E., Sikléssy, L.: Searching time-table networks. Artif. Intell. Eng. Des. Anal.
Manuf. 5(3), 189-198 (1991)

van Vliet, D.: Improved shortest path algorithms for transport networks. Transp.
Res. Part B: Methodol. 12(1), 7-20 (1978)

http://dx.doi.org/10.1007/978-3-540-72845-0_6
http://dx.doi.org/10.1007/978-3-540-72845-0_6
http://dx.doi.org/10.1007/3-540-45643-0_4
http://dx.doi.org/10.1007/3-540-45643-0_4

80

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.
260.

261.

262.

H. Bast et al.

Wagner, D., Willhalm, T.: Drawing graphs to speed up shortest-path computa-
tions. In: Proceedings of the 7th Workshop on Algorithm Engineering and Exper-
iments (ALENEX 2005), pp. 15-24. STAM (2005)

Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric containers for efficient
shortest-path computation. ACM J. Exp. Algorithm. 10(1.3), 1-30 (2005)
Weller, M.: Optimal hub labeling is NP-complete. CoRR, abs/1407.8373 (2014)
White, D.J.: Epsilon efficiency. J. Optim. Theory Appl. 49(2), 319-337 (1986)
Williams, J.W.J.: Algorithm 232: heapsort. J. ACM 7(6), 347-348 (1964)
Winter, S.: Modeling costs of turns in route planning. Geolnformatica 6(4), 345—
361 (2002)

Witt, S.: Trip-based public transit routing. In: Bansal, N., Finocchi, I. (eds.) ESA
2015. LNCS, vol. 9294, pp. 1025-1036. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48350-3_85

Lingkun, W., Xiao, X., Deng, D., Cong, G., Zhu, A.D., Zhou, S.: Shortest path
and distance queries on road networks: an experimental evaluation. Proc. VLDB
Endow. 5(5), 406-417 (2012)

Yu, H., Lu, F.: Advanced multi-modal routing approach for pedestrians. In: 2nd
International Conference on Consumer Electronics, Communications and Net-
works, pp. 2349-2352 (2012)

Zadeh, L.A.: Fuzzy logic. IEEE Comput. 21(4), 83-93 (1988)

Zhong, R., Li, G., Tan, K.-L., Zhou, L.: G-tree: an efficient index for KNN search
on road networks. In: Proceedings of the 22nd International Conference on Infor-
mation and Knowledge Management, pp. 39-48. ACM Press (2013)

Zhu, A.D., Ma, H., Xiao, X., Luo, S., Tang, Y., Zhou, S.: Shortest path, distance
queries on road networks: towards bridging theory and practice. In: Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data
(SIGMOD 2013), pp. 857-868. ACM Press (2013)

Zwick, U.: Exact and approximate distances in graphs — a survey. In: Heide,
F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33-48. Springer, Heidelberg (2001).
doi:10.1007/3-540-44676-1_3

http://dx.doi.org/10.1007/978-3-662-48350-3_85
http://dx.doi.org/10.1007/978-3-662-48350-3_85
http://dx.doi.org/10.1007/3-540-44676-1_3

Theoretical Analysis of the k-Means
Algorithm — A Survey

Johannes Blomer!, Christiane Lammersen?, Melanie Schmidt3®),
and Christian Sohler*

! Department of Computer Science, University of Paderborn, Paderborn, Germany
2 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
3 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
melanie.schmidt@tu-dortmund.de
4 Department of Computer Science, TU Dortmund University, Dortmund, Germany

Abstract. The k-means algorithm is one of the most widely used
clustering heuristics. Despite its simplicity, analyzing its running time
and quality of approximation is surprisingly difficult and can lead to
deep insights that can be used to improve the algorithm. In this paper
we survey the recent results in this direction as well as several extension
of the basic k-means method.

1 Introduction

Clustering is a basic process in data analysis. It aims to partition a set of objects
into groups called clusters such that, ideally, objects in the same group are
similar and objects in different groups are dissimilar to each other. There are
many scenarios where such a partition is useful. It may, for example, be used to
structure the data to allow efficient information retrieval, to reduce the data by
replacing a cluster by one or more representatives or to extract the main ‘themes’
in the data. There are many surveys on clustering algorithms, including well-
known classics [45,48] and more recent ones [24,47]. Notice that the title of [47] is
Data clustering: 50 years beyond K-means in reference to the k-means algorithm,
the probably most widely used clustering algorithm of all time. It was proposed
in 1957 by Lloyd [58] (and independently in 1956 by Steinhaus [70]) and is the
topic of this survey.

The k-means algorithm solves the problem of clustering to minimize the sum
of squared errors (SSE). In this problem, we are given a set of points P C R% in a
Euclidean space, and the goal is to find a set C' C R? of k points (not necessarily
included in P) such that the sum of the squared distances of the points in P
to their nearest center in C' is minimized. Thus, the objective function to be
minimized is

. : 2
cost(P,C) := ;gggl\p c|l?,

where || - ||? is the squared Euclidean distance. The points in C are called cen-
ters. The objective function may also be viewed as the attempt to minimize the
variance of the Euclidean distance of the points to their nearest cluster centers.

© Springer International Publishing AG 2016
L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 81-116, 2016.
DOI: 10.1007/978-3-319-49487-6_3

82 J. Blomer et al.

Also notice that when given the centers, the partition of the data set is implicitly
defined by assigning each point to its nearest center.

The above problem formulation assumes that the number of centers k is
known in advance. How to choose k might be apparent from the application at
hand, or from a statistical model that is assumed to be true. If it is not, then the
k-means algorithm is typically embedded into a search for the correct number
of clusters. It is then necessary to specify a measure that allows to compare
clusterings with different & (the SSE criterion is monotonely decreasing with k
and thus not a good measure). A good introduction to the topic is the overview by
Venkatasubramanian [75] as well as Sect. 5 in the paper by Tibshirani et al. [71]
and the summary by Gordon [39]. In this survey, we assume that k is provided
with the input.

As Jain [47] also notices, the k-means algorithm is still widely used for clus-
tering and in particular for solving the SSE problem. That is true despite a
variety of alternative options that have been developed in fifty years of research,
and even though the k-means algorithm has known drawbacks.

In this survey, we review the theoretical analysis that has been developed
for the k-means algorithm. Our aim is to give an overview on the properties of
the k-means algorithm and to understand its weaknesses, but also to point out
what makes the k-means algorithm such an attractive algorithm. In this survey
we mainly review theoretical aspects of the k-means algorithm, i.e. focus on
the deduction part of the algorithm engineering cycle, but we also discuss some
implementations with focus on scalability for big data.

1.1 The k-Means Algorithm

In order to solve the SSE problem heuristically, the k-means algorithm starts
with an initial candidate solution {cy,...,cx} C R?, which can be chosen arbi-
trarily (often, it is chosen as a random subset of P). Then, two steps are alter-
nated until convergence: First, for each c¢;, the algorithm calculates the set P; of
all points in P that are closest to ¢; (where ties are broken arbitrarily). Then,
for each 1 < i < k, it replaces ¢; by the mean of P;. Because of this calculation
of the ‘means’ of the sets P;, the algorithm is also called the k-means algorithm.

THE k-MEANS ALGORITHM
Input: Point set P C R?
number of centers k

1. Choose initial centers ci, ..., cy of from RY
2. repeat

3 P17 ey Pk — @

4 for each p € P do

5. Let i = argmin;—1__x [|p — ¢

6 Py — P U{p}

7 fort=1to k do

8 ifPZ-#Q)thenci:ﬁZpepip

9. until the centers do not change

Theoretical Analysis of the k-Means Algorithm — A Survey 83

The k-means algorithm is a local improvement heuristic, because replacing
the center of a set P; by its mean can only improve the solution (see Fact 1
below), and then reassigning the points to their closest center in C' again only
improves the solution. The algorithm converges, but the first important question
is how many iterations are necessary until an optimal or good solution is found.
The second natural question is how good the solution will be when the algorithm
stops. We survey upper and lower bounds on running time and quality in Sect. 2.
Since the quality of the computed solution depends significantly on the starting
solution, we discuss ways to choose the starting set of centers in a clever way
in Sect.3. Then, we survey variants of the basic k-means algorithm in Sect. 4
and alternatives to the k-means algorithm in Sect. 5. In Sect. 6, we consider the
complexity of the SSE problem. Finally, we describe results on the k-means prob-
lem and algorithm for Bregman divergences Sect. 7. Bregman divergences have
numerous applications and constitute the largest class of dissimilarity measure
for which the k-means algorithm can be applied.

2 Running Time and Quality of the Basic k-Means
Algorithm

In this section, we consider the two main theoretical questions about the k-
means algorithm: What is its running time, and does it provide a solution of a
guaranteed quality? We start with the running time.

2.1 Analysis of Running Time

The running time of the k-means algorithm depends on the number of iterations
and on the running time for one iteration. While the running time for one iter-
ation is clearly polynomial in n,d and k, this is not obvious (and in general not
true) for the number of iterations. Yet, in practice, it is often observed that the
k-means algorithm does not significantly improve after a relatively small number
of steps. Therefore, one often performs only a constant number of steps. It is
also common to just stop the algorithm after a given maximum number of iter-
ations, even if it has not converged. The running time analysis thus focuses on
two things. First, what the asymptotic running time of one iteration is and how
it can be accelerated for benign inputs. Second, whether there is a theoretical
explanation on why the algorithm tends to converge fast in practice.

Running Time of One Iteration. A straightforward implementation com-
putes O(nk) distances in each iteration in time ©(ndk) and runs over the com-
plete input point set. We denote this as the ‘naive’ implementation. Asymp-
totically, the running time for this is dominated by the number of iterations,
which is in general not polynomially bounded in n in the worst case (see next
subsection for details). However, in practice, the number of iterations is often
manually capped, and the running time of one iteration becomes the important
factor. We thus want to mention a few practical improvements.

84 J. Blomer et al.

The question is whether and how it can be avoided to always compute the
distances between all points and centers, even if this does not lead to an asymp-
totic improvement. Imagine the following pruning rule: Let ¢; be a center in the
current iteration. Compute the minimum distance A; between ¢; and any other
center in time ©(kd). Whenever the distance between a point p and ¢; is smaller
than A;/2, then the closest center to p is ¢; and computing the other k — 1
distances is not necessary. A common observation is that points often stay with
the same cluster as in the previous iteration. Thus, check first whether the point
is within the safe zone of its old center. More complicated pruning rules take
the movement of the points into account. If a point has not moved far compared
to the center movements, it keeps its center allocation. Rules like this aim at
accelerating the k-means algorithm while computing the same clustering as a
naive implementation. The example pruning rules are from [50].

Accelerating the algorithm can also be done by assigning groups of points
together using sufficient statistics. Assume that a subset P’ of points is assigned
to the same center. Then finding this center and later updating it based on
the new points can be done by only using three statistics on P’. These are
the sum of the points (which is a point itself), the sum of the squared lengths
of the points (and thus a constant) and the number of points. However, this
is only useful if the statistic is already precomputed. For low-dimensional data
sets, the precomputation can be done using kd-trees. These provide a hierarchical
subdivision of a point set. The idea now is to equip each inner node with sufficient
statistics on the point set represented by it. When reassigning points to centers,
pruning techniques can be used to decide whether all points belonging to an
inner node have the same center, or whether it is necessary to proceed to the
child nodes to compute the assignment. Different algorithms based on this idea
are given in [10,54,68]. Notice that sufficient statistics are used in other contexts,
too, e.g. as a building block of the well-known data stream clustering algorithm
BIRCH [76].

There are many ways more that help to accelerate the k-means algorithm.
For an extensive overview and more pointers to the literature, see [41].

Worst-Case Analysis. Now we take a closer look at the worst-case number of
iterations, starting with (large) general upper bounds and better upper bounds
in special cases. Then we review results for lower bounds on the number of
iterations and thus on the running time of the basic k-means algorithm. In the
next section, we have a look into work on smoothed analysis for the k-means
algorithm which gives indications on why the k-means algorithm often performs
so well in practice.

Upper Bounds. The worst-case running time to compute a k-clustering of n
points in R? by applying the k-means algorithm is upper bounded by O(ndk-T),
where T is the number of iterations of the algorithm. It is known that the
number of iterations of the algorithm is bounded by the number of partitionings
of the input points induced by a Voronoi-diagramm of k centers. This number

Theoretical Analysis of the k-Means Algorithm — A Survey 85

can be bounded by (’)(ndkz) because given a set of k centers, we can move
each of the O(k?) bisectors such that they coincide with d linearly independent
points without changing the partition. For the special case of d = 1 and k < 5,
Dasgupta [31] proved an upper bound of O(n) iterations. Later, for d = 1 and
any k, Har-Peled and Sadri [44] showed an upper bound of O(nA?) iterations,
where A is the ratio between the diameter and the smallest pairwise distance of
the input points.

Q1 Q2 Q3
- - 98- -H- 0 -06-0--0-0— -0 -0 - — — — — m----- - 9o -0-0--0-m--0 —-
Cc1 C2 C3
—>
S
Q1

Fig. 1. Illustration of the upper bound for the k-means algorithm [44].

In the following, we will explain the idea to obtain the upper bound given
in [44]. The input is a set P of n points with spread A from the Euclidean line
R. W.lo.g., we can assume that the minimum pairwise distance in P is 1 and
the diameter of P is A. For any natural number k and for any partition of P
into k sets, the clustering cost of P with the means of the subsets as centers is
bounded by O(nA?). In particular, this holds for the solution of the k-means
algorithm after the first iteration. Additionally, the clustering cost of P certainly
is w(1) as we assumed that the minimum pairwise distance in P is 1. Thus, if
we can show that each following iteration decreases the cost by at least some
constant amount, then we are done. Let us now consider the point of time in any
iteration of the k-means algorithm when the cluster centers have been moved to
the means of their respective clusters and the next step is to assign each point
to the new closest cluster center. In this step, there has to be a cluster that is
extended or shrunk from its right end. W.l.o.g. and as illustrated in Fig.1, let
us assume that the leftmost cluster @1 is extended from its right end. Let S be
the set of points that join cluster Q; to obtain cluster Q. Since the minimum
pairwise distance is 1, the distance of the mean of S to the leftmost point in S
is at least (S| —1)/2. Similarly, the distance of the mean of @; to the rightmost
point in Q1 is at least (]Q1|—1)/2. Furthermore, the distance between any point
in @1 and any point in S is at least 1. Let u(X) be the mean of any point set X.
Then, we have [[4(Q1) = u(S) | > (|Q1] = 1)/2+ (18] = 1)/2+ 1 = (|Qu| +|S])/2.
The movement of the mean of the leftmost cluster is at least

o= hon 1@u(@) + I81a(s)
@) u(Qo—Hu(@l) L)
s |

We will now need the following fact, which is proved in Sect.

86 J. Blomer et al.

Fact 1. Let

1
M~—WZP

peP

be the mean of a point set P, and let y € R% be any point. Then, we have

Sllp =yl =" llp—ull* + [P [ly — ull*.

peP peP

Due to this fact, the result of the above calculation is an improvement of
the clustering cost of at least 1/4, which shows that in each iteration the cost
decreases at least by some constant amount and hence there are at most O(nA?)
iterations.

Lower Bounds. Lower bounds on the worst-case running time of the k-means
algorithm have been studied in [13,31,72]. Dasgupta [31] proved that the k-
means algorithm has a worst-case running time of {2(n) iterations. Using a
construction in some 2(y/n)-dimensional space, Arthur and Vassilvitskii [13]
were able to improve this result to obtain a super-polynomial worst-case run-
ning time of 22(vV7) iterations. This has been simplified and further improved by
Vattani [72] who proved an exponential lower bound on the worst-case running
time of the k-means algorithm showing that k-means requires 22(") iterations
even in the plane. A modification of the construction shows that the k-means
algorithm has a worst-case running time that, besides being exponential in n, is
also exponential in the spread A of the d-dimensional input points for any d > 3.

In the following, we will give a high-level view on the construction presented
in [72]. Vattani uses a special set of n input points in R? and a set of k =
©(n) cluster centers adversarially chosen among the input points. The points
are arranged in a sequence of t = O(n) gadgets Go, G1,...,G¢—1. Except from
some scaling, the gadgets are identical. Each gadget contains a constant number
of points, has two clusters and hence two cluster centers, and can perform two
stages reflected by the positions of the two centers. In one stage, gadget G,
0 < < t, has one center in a certain position ¢, and, in the other stage, the
same center has left the position ¢; and has moved a little bit towards gadget
Git1. Once triggered by gadget G411, G; performs both of these stages twice in
a row. Performing these two stages happens as follows. The two centers of gadget
Gi+1 are assigned to the center of gravity of their clusters, which results in some
points of G4 are temporarily assigned to the center ¢ of G;. Now, the center
of G, located at ¢ and the centers of GG;; move, so that the points temporarily
assigned to a center of G; are again assigned to the centers of G;11. Then, again
triggered by G;t1, gadget G; performs the same two stages once more. There
is only some small modification in the arrangement of the two clusters of G;41.
Now, assume that all gadgets except G;_1 are stable and the centers of G;_; are
moved to the centers of gravity of their clusters. This triggers a chain reaction,
in which the gadgets perform 2(*) stages in total. Since, each stage of a gadget
corresponds to one iteration of the k-means algorithm, the algorithm needs 2%(")
iterations on the set of points contained in the gadgets.

Theoretical Analysis of the k-Means Algorithm — A Survey 87

Smoothed Analysis. Concerning the above facts, one might wonder why
k-means works so well in practice. To close this gap between theory and practice,
the algorithm has also been studied in the model of smoothed analysis [12,15,62].
This model is especially useful when both worst-case and average-case analysis
are not realistic and reflects the fact that real-world datasets are likely to con-
tain measurement errors or imprecise data. In case an algorithm has a low time
complexity in the smoothed setting, it is likely to have a small running time on
real-world datasets as well.

Next, we explain the model in more detail. For given parameters n and o, an
adversary chooses an input instance of size n. Then, each input point is perturbed
by adding some small amount of random noise using a Gaussian distribution with
mean 0 and standard deviation . The maximum expected running time of the
algorithm executed on the perturbed input points is measured.

Arthur and Vassilvitskii [15] showed that, in the smoothed setting, the
number of iterations of the k-means algorithm is at most poly(n¥,o~1). This
was improved by Manthey and Roglin [62] who proved the upper bounds

poly(n‘/g, 1/0) and k*¥-poly(n, 1/0) on the number of iterations. Finally, Arthur
et al. [12] showed that k-means has a polynomial-time smoothed complexity of
poly(n,1/0).

In the following, we will give a high-level view on the intricate analysis pre-
sented in [12]. Arthur et al. show that after the first iteration of k-means, the
cost of the current clustering is bounded by some polynomial in n, & and d. In
each further iteration, either some cluster centers move to the center of gravity of
their clusters or some points are assigned to a closer cluster center or even both
events happen. Obviously, the clustering cost is decreased after each iteration,
but how big is this improvement? Arthur et al. prove that, in expectation, an
iteration of k-means decreases the clustering cost by some amount polynomial
in 1/n and o. This results in a polynomial-time smoothed complexity.

The key idea to obtain the above lower bound on the minimum improvement
per iteration is as follows. Let us call a configuration of an iteration, defined by
a partition into clusters and a set of cluster centers, good if in the successive iter-
ation either a cluster center moves significantly or reassigning a point decreases
the clustering cost of the point significantly. Otherwise, the configuration is called
bad. Arthur et al. show an upper bound on the probability that a configuration
is bad. The problem is now that there are many possible configurations. So we
cannot take the union bound over all of these possible configurations to show
that the probability of the occurrence of any bad configuration during a run of
k-means is small. To avoid this problem, Arthur et al. group all configurations
into a small number of subsets and show that each subset contains either only
good configurations or only bad configurations. Finally, taking the union bound
over all subsets of configurations leads to the desired result, i.e., proving that
the occurrence of a bad configuration during a run of k-means is small.

88 J. Blomer et al.

2.2 Analysis of Quality

As mentioned above, the k-means algorithm is a local improvement heuristic. It
is known that the k-means algorithm converges to a local optimum [69] and that
no approximation ratio can be guaranteed [55]. Kanungo et al. [55] illustrate
the latter fact by the simple example given in Fig.2. In this example, we are
given four input points on the Euclidean line depicted by the first dashed line in
Fig. 2. The distances between the first and second, second and third and third
and fourth point are named x,y and z, respectively. We assume that ¢ < y < z,
so x is the smallest distance and placing two centers in the first two points and
one between the third and fourth costs 2 - 22/4 = 22/2, and this is the (unique)
optimal solution depicted on the second dashed line.

On the third dashed line, we see a solution that is clearly not optimal because
it costs y?/2 and y > x. The approximation ratio of this solution is y? /22, which
can be made arbitrarily bad by moving the first point to the left and thus
increasing y.

If we choose the initial centers randomly, it can happen that the k-means
algorithm encounters this solution (for example when we pick the first, third and
fourth point as initial centers and keep y < z while increasing y). When finding
the solution, the k-means algorithm will terminate because the assignment of
points to the three centers is unique and every center is the mean of the points
assigned to it.

Thus, the worst-case approximation guarantee of the k-means algorithm is
unbounded.

| y } 2 } z]
input points --@----------- ®--------—-—------ ®-------- o--
optimal centers --B----------- B m-------
heuristic centers -------- B-------mm - B-------- =--

Fig. 2. Example illustrating the fact that no approximation guarantee can be given for
the k-means algorithm [55].

3 Seeding Methods for the k-Means Algorithm

The k-means algorithm starts with computing an initial solution, which can
be done in a number of different ways. Since the k-means algorithm is a local
improvement strategy we can, in principle, start with an arbitrary solution and
then the algorithms runs until it converges to a local optimum. However, it is
also known that the algorithm is rather sensible to the choice of the starting
centers. For example, in the situation in Fig.2, no problem occurs if we choose
the first, second and third point as the starting centers.

Theoretical Analysis of the k-Means Algorithm — A Survey 89

Often one simply chooses the starting centers uniformly at random, but this
can lead to problems, for example, when there is a cluster that is far away from
the remaining points and that is so small that it is likely that no point of it is
randomly drawn as one of the initial centers. In such a case one must hope to
eventually converge to a solution that has a center in this cluster as otherwise
we would end up with a bad solution. Unfortunately, it is not clear that this
happens (in fact, one can assume that it will not).

Therefore, a better idea is to start with a solution that already satisfies some
approximation guarantees and let the k-means algorithm refine the solution. In
this section we will present methods that efficiently pick a relatively good initial
solution. As discussed later in Sect. 6 there are better approximation algorithms,
but they are relatively slow and the algorithms presented in this section present
a better trade-off between running time and quality of the initial solution.

3.1 Adaptive Sampling

Arthur and Vassilvitskii [14] proposed a seeding method for the k-means algo-
rithm which applies adaptive sampling. They construct an initial set C of k
centers in the following way: The first center is sampled uniformly at ran-
dom. For the ith center, each input point p is sampled with probability
Dz(p)/zqep D?(q), where P is the input point set, D*(p) = min., . _,
|[p — ci]|? is the cost of p in the current solution and cy,...c;_1 are the cen-
ters chosen so far. The sampling process is referred to as D2-sampling, and the
algorithm consisting of D2-sampling followed by the k-means algorithm is called
k-means++.

We study the progress of D?-sampling in comparison to a fixed optimal solu-
tion. An optimal set of centers partitions P into k optimal clusters. If we could
sample a center from each cluster uniformly at random, we would in expecta-
tion obtain a constant approximation. Since taking a point uniformly at random
can also be described as first choosing the cluster and then picking the point
uniformly at random, we know that the first point will be uniformly from one
(unknown) cluster, which is fine. We want to make sure that this will also approx-
imately be the case for the remaining clusters. The main problem is that there
is a significant probability to sample points from a cluster which we already hit
(especially, if these clusters contain a lot of points). In order to avoid this, we
now sample points with probability proportional to the squared distance from
the previously chosen cluster centers. In this way, it is much more likely to sam-
ple points from the remaining clusters since the reason that these points belong
to a different cluster is that otherwise they would incur a high cost. One can
show that in a typical situation, when one of the remaining clusters is far away
from the clusters we already hit, then conditioned on the fact that we hit this
cluster, the new center will be approximately uniformly distributed within the
cluster. In the end, this process leads to a set of k centers that is an expected
O(log k)-approximation [14].

Thus, D?-sampling is actually an approximation algorithm by itself (albeit
one with a worse approximation guarantee than other approximations). It has a
running time of O(kdn) and is easy to implement. In addition, it serves well as a

90 J. Blomer et al.

seeding method. Arthur and Vassilvitskii obtain experimental results indicating
that k-means++ outperforms the k-means algorithm in practice, both in quality
and running time. It also leads to better results than just using D?-sampling as
an independent algorithm.

In follow-up work, Aggarwal et al. [7] show that when sampling O(k) centers
instead of k centers, one obtains a constant-factor approximation algorithm for
SSE. This is a bicriteria approximation because in addition to the fact that the
clustering cost might not be optimal, the number of clusters is larger than k.

Adaptive Sampling Under Separation Conditions. Clustering under separation
conditions is an interesting research topic on its own. The idea is that the input to
a clustering problem should have some structure, otherwise, clustering it would
not be meaningful. Separation conditions assume that the optimal clusters can-
not have arbitrary close centers or a huge overlap.

We focus on initialization strategies for the k-means algorithm. In this para-
graph, we will see a result on adaptive sampling that uses a separation condition.
In Sect. 3.2, we will see another example for the use of separation conditions.
Other related work includes the paper by Balcan et al. [18], who proposed the
idea to recover a ‘true’ (but not necessarily optimal) clustering and introduced
assumptions under which this is possible. Their model is stronger than the model
by Ostrovsky et al. [67] that we will describe next and triggered a lot of follow-up
work on other clustering variants.

Ostrovsky et al. [67] analyze adaptive sampling under the following e-separa-
bility: The input is e-separated if clustering it (optimally) with k—1 instead of the
desired k clusters increases the cost by a factor of at least 1/¢2. Ostrovsky et al.
show that under this separation condition, an approach very similar to the above
k-means++ seedings performs well®. In their seeding method, the first center is
not chosen uniformly at random, but two centers are chosen simultaneously, and
the probability for each pair of centers is proportional to their distance. Thus,
the seeding starts by picking two centers with rather high distance instead of
choosing one center uniformly at random and then picking a center with rather
high distance to the first center. Ostrovsky et al. show that if the input is e-
separated, this seeding achieves a (14 f(g))-approximation for SSE where f () is
a function that goes to zero if € does so. The success probability of this algorithm
decreases exponentially in k (because there is a constant chance to miss the next
cluster in every step), so Ostrovsky et al. enhance their algorithm by sampling
O(k) clusters and using a greedy deletion process to reduce the number back
to k. Thereby, they gain a linear-time constant-factor approximation algorithm
(under their separation condition) that can be used as a seeding method.

Later, Awasthi et al. [16] improved this result by giving an algorithm where
the approximation guarantee and the separation condition are decoupled, i.e.,
parameterized by different parameters. Braverman et al. [25] developed a stream-
ing algorithm.

! Notice that though we present these results after [14] and [7] for reasons of presen-
tation, the work of Ostrovsky et al. [67] appeared first.

Theoretical Analysis of the k-Means Algorithm — A Survey 91

Note that e-separability scales with the number of clusters. Imagine k optimal
clusters with the same clustering cost C, i.e., the total clustering cost is k - C.
Then, e-separability requires that clustering with & — 1 clusters instead of k
clusters costs at least k - C/e2. Thus, for more clusters, the pairwise separation
has to be higher.

3.2 Singular Value Decomposition and Best-Fit Subspaces

In the remainder of this section, we will review a result from a different line
of research because it gives an interesting result for the SSE problem when we
make certain input assumptions.

Learning Miztures of Gaussians. In machine learning, clustering is often done
from a different perspective, namely as a problem of learning parameters of
mixture models. In this setting, a set of observations X is given (in our case,
points) together with a statistical model, i. e., a family of density functions over a
set of parameters © = {O',... O%}. It is assumed that X was generated by the
parameterized density function for one specific parameter set and the goal is to
recover these parameters. Thus, the desired output are parameters which explain
X best, e. g., because they lead to the highest likelihood that X was drawn.

For us, the special case that the density function is a mixture of Gaussian
distributions on R? is of special interest because it is very related to SSE. Here,
the set of observations X is a point set which we denote by P. On this topic,
there has been a lot of research lately, which started by Dasgupta [30] who
analyzed the problem under separation conditions. Several improvements were
made with separation conditions [1,11,26,28,33,53,74] and without separation
conditions [21-23,36,51,65]. The main reason why this work cannot be directly
applied to SSE is the assumption that the input data X is actually drawn from
the parameterized density function so that properties of these distributions can
be used and certain extreme examples become unlikely and can be ignored.
However, in [56], the authors prove a result which can be decoupled from this
assumption, and the paper proposes an initialization method for the k-means
algorithm. So, we take a closer look at this work.

Kumar and Kannan [56] assume a given target clustering which is to be
recovered and then show the following. If (1 —¢) - |P| points in P satisfy a special
condition which they call prozimity condition (which depends on the target
clustering), then applying a certain initialization method and afterwards running
the k-means algorithm leads to a partitioning of the points that misclassifies at
most O(k%en) points. Kumar and Kannan also show that in many scenarios
like learning of Gaussian mixtures, points satisfy their proximity condition with
high probability.

Notice that for € = 0 their result implies that all points are correctly classified,
i.e., the optimal partitioning is found. This in particular implies a result for the
k-means algorithm which is the second step of the algorithm by Kumar and
Kannan: It converges to the ‘true’ centers provided that the condition holds for
all points. We take a closer look at the separation condition.

92 J. Blomer et al.

Separation Condition. To define the proximity condition, consider the |P| x d
matrix A which has the points of P in its rows. Also define the matrix C by
writing the optimal center of the point in row i of A in row ¢ of C' (this implies
that there are only k different rows vectors in C). Now, let T7,...,Ty be the
target clustering, let u; be the mean of T;, and let n; be the number of points

in T;. Then, define
ck ck
Aps 1= A—
(2 + <=) ha-cls

foreach r # s withr,s € {1,..., k}, where ¢ is some constant. The term ||A—C/|s
is the spectral norm of the matrix A — C, defined by

o 2
[A=Clls = _max_[(A=0)-ul

A point p from cluster T, satisfies the prozimity condition if, for any s # r, the

projection of p onto the line between u, and ug is at least A, closer to u, than

to ps.

We have a closer look at the definition. The term A — C' is the matrix con-
sisting of the difference vectors, i. e., it gives the deviations of the points to their
centers. The term ||(A — C) - v||? is the projection of these distance vectors into
direction v, i.e., a measure on how much the data is scattered in this direction.
Thus, ||A—C||s/n is the largest average distance to the mean in any direction. It
is an upper bound on the variance of the optimal clusters. Assume that n; = n/k
for all i. Then, A%, = (2¢)?k?||A — C||%/n; is close to being the maximal aver-
age variance of the two clusters in any direction. It is actually larger, because
|A — C||s includes all clusters, so A,; and thus the separation of the points in
T, and T depends on all clusters even though it differs for different r, s.

Seeding Method. Given an input that is assumed to satisfy the above separa-
tion condition, Kumar and Kanan compute an initial solution by projecting
the points onto a lower-dimensional subspace and approximately solving the
low-dimensional instance. The computed centers form the seed to the k-means
method.

The lower-dimensional subspace is the best-fit subspace Vy, i. e., it minimizes
the expression »_ p minyey [[p — v||? among all k-dimensional subspaces V. It
is known that Vj is the subspace spanned by the first k eigenvectors of A, which
can be calculated by singular value decomposition (SVD)?, and that project-
ing points to Vi and solving the SSE optimally on the projected points yields
a 2-approximation. Any constant-factor approximation thus gives a constant
approximation for the original input.

In addition to these known facts, the result by Kumar and Kannan shows
that initializing the k-means algorithm with this solution even yields an optimal
solution as long as the optimal partition satisfies the proximity condition.

2 The computation of the SVD is a well-studied field of research. For an in-depth
introduction to spectral algorithms and singular value decompositions, see [52].

Theoretical Analysis of the k-Means Algorithm — A Survey 93

4 Variants and Extensions of the k-Means Algorithm

The k-means algorithm is a widely used algorithm, but not always in the form
given above. Naming all possible variations of the algorithm is beyond the scope
of this survey and may be impossible to do. We look at two theoretically analyzed
modifications.

Single Point Assignment Step. We call a point in a given clustering misclassified
if the distance to the cluster center it is currently assigned to is longer than
the distance to at least one of the other cluster centers. Hence, in each iteration
of the k-means algorithm, all misclassified points are assigned to their closest
cluster center and then all cluster centers are moved to the means of the updated
clusters. Har-Peled and Sadri [44] study a variant of the k-means algorithm in
which the assignment step assigns only one misclassified point to the closest
cluster center instead of all misclassified points at once as done in the original
algorithm. After such an assignment step, the centers of the two updated clusters
are moved to the means of the clusters. The algorithm repeats this until no
misclassified points exist. Har-Peled and Sadri call their variant SinglePnt. Given
a number of clusters k and a set P of n points with spread A from a Euclidean
space R?, they show that the number of iterations of SinglePnt is upper bounded
by some polynomial in n, A, and k.

In the following, we will describe the proof given in [44]. W.l.o.g., we can
assume that the minimum pairwise distance in P is 1 and the diameter of P is
A. As we have seen for the classical k-means algorithm, the cost of P is O(nA?)
after the first iteration of SinglePnt. The main idea is now to show that, in
each following iteration of SinglePnt, the improvement of the clustering cost is
lower bounded by some value dependent on the ratio between the distance of
the reassigned point to the two involved cluster centers and the size of the two
clusters. Based on this fact, we will prove that O(kn) iterations are sufficient to
decrease the clustering cost by some constant amount, which results in O(kn?A?)
iterations in total.

Let Q; and @; be any two clusters such that, in an assignment step, a point
g € Q; moves from cluster @); to cluster Q;, i.e., after this step we obtain the
two clusters @} = Q; U {¢} and Q) = @Q;\{q}. Let u(X) be the mean of any

point set X C R%. Then, the movement of the first cluster center is

@) = @ = @0 - (1 gm@0) +) | = 12

Similarly, we have [u(Q;) — p(Q))| = 1(Q;) — all/(|Q;] — 1). Due to Fact 1,
the movement of the first cluster center decreases the clustering cost of Q) by

(1Qil + DIn(@:) — w(Q)II* = 11(Q:) — qll/(IQi] + 1), and the movement of the
second cluster center decreases the clustering cost of Q’ by (|Q;| — 1)[|u(Q;) —

M(Q;)HQ = [|u(@Q;) — qll/(|Q;] — 1). It follows that the total decrease in the

clustering cost is at least (||u(Q:) — gl + [|1(Q;) — all)?/(2(1Qs] + 1Q;1))-
The reassignment of a point g € P is called good if the distance of ¢ to at

least one of the two centers of the involved clusters is bigger than 1/8. Otherwise,

94 J. Blomer et al.

the reassignment is called bad. If a reassignment is good, then it follows from
the above that the improvement of the clustering cost is at least (1/8)%/(2n) =
1/(128n). Thus, O(n) good reassignments are sufficient to improve the clustering
cost by some constant amount. Next, we show that one out of k+1 reassignments
must be good, which then completes the proof.

For each i € {1,...,k}, let B; be the ball with radius 1/8 whose center is
the i-th center in the current clustering. Since the minimum pairwise distance
in P is 1, each ball can contain at most one point of P. Observe that a point
q € P can only be involved in a bad reassignment if it is contained in more
than one ball. Let us consider the case that, due to a bad reassignment, a ball
B; loses its point ¢ € P and so has been moved a distance of at most 1/8
away from ¢. Since the minimum pairwise distance in P is 1, B; needs a good
reassignment, so that it can again contain a point from P. Next, observe that,
while performing only bad reassignments, a cluster); is changed by gaining or
losing the point ¢ contained in B;. Hence, if a cluster B; loses ¢, it cannot gain
it back. Otherwise, the clustering cost would be increased. It follows that the
total number of consecutive bad reassignments is at most k.

Generalization of Misclassification. Har-Peled and Sadri [44] study another vari-
ant of the k-means algorithm, which they call Lazy-k-Means. This variant works
exactly like the original algorithm except that each iteration reassigns only those
points which are significantly misclassified. More precisely, given a k-clustering
of a set P of n points from a Euclidean space R? and a precision parameter ¢,
0 <e <1, we call a point ¢ € P (1+ ¢)-misclassified if ¢ belongs to some cluster
@, and there is some other cluster @Q; with |j¢ — p(Q;)|| > (1 +¢)[lg — n(Q:)],
where £1(X) is the mean of some set X C R?. Each iteration of Lazy-k-Means
reassigns all (1 + ¢)-misclassified points to their closest cluster center and then
moves each cluster center to the mean of its updated cluster. This process is
repeated until there are no (1 + ¢)-misclassified points. Note that, for ¢ = 0,
Lazy-k-Means is equal to the k-means algorithm. For 0 < ¢ < 1, Har-Peled and
Sadri prove that the number of iteration of Lazy-k-Means is upper bounded by
some polynomial in n, A, and e~!, where A is the spread of the point set P.

In the following, we will sketch the proof given in [44]. W.l.0.g., we can assume
that the minimum pairwise distance in P is 1 and the diameter of P is A, so
the clustering cost is O(nA?) after the first iteration of Lazy-k-Means. The idea
is now to show that every two consecutive iterations lead to a cost improvement
of 2(¢3), which results in O(nA2z~3) iterations in total. The proof of the lower
bound on the cost improvement is based on the following known fact (see also
Fig. 3).

Fact 2. Given two points ¢, € R with ||c — | = ¢, all points ¢ € R?
with ||g — ¢|| > (1 +¢€)|lg — || are contained in the open ball whose radius is
R=4{4(1+¢)/(e(2+¢)) and whose center is on the line containing the segment
cc at distance R+ le/(2(2 + €)) from the bisector of c¢’ and on the same side
of the bisector as c'. The ball is called e-Apollonius ball for ¢’ with respect to c.

Theoretical Analysis of the k-Means Algorithm — A Survey 95

I
I
I

_ £(+e)
1 R=
I

; e(2+¢)
\<—f—>1
c 1l ¢
R —
Le
R+2(2+€)

Fig. 3. Illustration of the e-Apollonius ball for a point ¢’ with respect to a point c.

Let ¢ € P be any (1 +)-misclassified point that switches its assignment
from a center ¢ to another center ¢’ with £ = ||c — ¢/||. We also say that ¢ and
c are the switch centers of q. Then, based on the fact that the distance of g to
the bisector of ¢’ is at least fe/(2(2 + €)) (see Fact 2 and Fig. 3) and by using
Pythagorean equality, one can show that the improvement of the clustering cost
for ¢ is at least

e

2+¢’

We call any (1+¢)-misclassified point ¢ € P strongly misclassified if the distance
between its switch centers is at least £y := (2 4+ ¢)/(16(1 + ¢)). Otherwise, a
(14¢)-misclassified point is called weakly misclassified. It follows from the above
inequality that the improvement of the clustering cost caused by reassigning a
strongly misclassified point is at least f2¢/(2 4+ ¢) = 2(e3) for 0 < ¢ < 1. Thus,
if we can show that at least every second iteration of Lazy-k-Means reassigns
some strongly misclassified point, then we are done.

Let us assume that there are only weakly misclassified points, and ¢ is one of
these points with switch centers ¢ and ¢’. We know that the distance £ between
c and ¢ is less than £y, which is less than 1/8 for 0 < ¢ < 1. Furthermore, it
follows from ¢ < £y that the radius of the e-Apollonius ball for ¢’ with respect
to ¢ is less than 1/16 (see also Fig.4). Since ¢ is contained in this e-Apollonius
ball, the distance between ¢’ and ¢ is less than 1/8. Hence, both switch centers
have a distance of less than 1/4 from ¢. Since the minimum pairwise distance
in P is 1, every center can serve as a switch center for at most one weakly
misclassified point.

Let us consider any weakly misclassified point ¢ with switch centers ¢ and ¢/,
where ¢ belongs to the cluster that loses ¢ and ¢’ belongs to the cluster that
gains ¢. As explained above, both centers have a distance of less than 1/4 from gq.
Hence, due to reassigning ¢, center ¢ is moved by a distance of less than 1/4.
It follows that, after the considered iteration, the distance between ¢ and ¢
is less than 1/2. Since the minimum pairwise distance in P is 1, every other
point in P has a distance of more than 1/2 to ¢. Thus, ¢ can only be a switch
center for strongly misclassified points in the next iteration. Furthermore, due
to reassigning ¢, the gaining center ¢’ is moved towards ¢q. Since the distance of

lg—cll> = llg— <> >

96 J. Blomer et al.

<
c

[—
L<ly<1/8

Fig. 4. Illustration of the fact that each center can serve as a switch center for at most
one weakly misclassified point.

q to all the other points in P is at least 1, no other center can move closer to
g than ¢’ due to a reassignment of a weakly misclassified point. This means in
the next iteration ¢’ will still be the closest cluster center to ¢ and g will not be
(1 + €)-misclassified. As a result, either there are no (1 + ¢)-misclassified points
left and the algorithm terminates or there are some strongly misclassified points.
Thus, at least every second iteration reassigns some strongly misclassified points,
which completes the proof.

5 Alternatives to the k-Means Algorithm for Big Data

Again, naming all alternative clustering algorithms that have been proposed is
beyond the scope of this survey. However, we will take a short look at algorithms,
that are developed starting from a theoretical analysis (with respect to the SSE
problem), but that are also implemented and shown to be viable in practice.
We have already discussed one prime example for this type of algorithm, the
k-means++ algorithm by Arthur and Vassilvitskii [14]. The running time of the
seeding is comparable to one iteration of the k-means algorithm (when assum-
ing that drawing random numbers is possible in constant time), so using it as a
seeding method does not have a significant influence on the running time asymp-
totically or in practice. However, it turns the k-means algorithm into an expected
O(log k)-approximation algorithm. A similar example is the local search algo-
rithm by Kanungo et al. [54] that we describe in more detail in Sect. 6. It has
a polynomial worst case running time and provides a constant approximation.
Additionally, it was implemented and showed very good practical behavior when
combined with the k-means algorithm.

However, the research we have discussed in Sect.2.1 aiming at accelerating
the iterations of the k-means algorithm shows that there is interest in being faster

Theoretical Analysis of the k-Means Algorithm — A Survey 97

than the k-means algorithm (and the constant approximation algorithms), and
this interest increases with the availability of larger and larger amounts of data.
The problem of solving the SSE problem for big data has been researched from a
practical as well as from a theoretical side and in this section, we are interested
in the intersection.

The theoretical model of choice is streaming. The data stream model assumes
that the data can only be read once and in a given order, and that the algorithm
is restricted to small space, e.g. polylogarithmic in the input it processes, but
still computes an approximation. One-pass algorithms and low memory usage are
certainly also desirable from a practical point of view, since random access to the
data is a major slowdown for algorithms, and small memory usage might mean
that all stored information actually fits into the main memory. The k-means
algorithm reads the complete data set in each iteration, and a straightforward
implementation of the k-means++ reads the data about k times for the seeding
alone, and these are reasons why the algorithms do not scale so well for large
inputs.

An old variant of the k-means algorithm, proposed independently of Lloyd’s
work by MacQueen [59], gives a very fast alternative to the k-means algorithm.
It processes the data once, assigns each new data point to its closest center
and updates this center to be the centroid of the points assigned to it. Thus, it
never reassigns points. MacQueen’s k-means algorithm clearly satisfies the first
two requirements for a streaming algorithm, but not the third. Indeed, it is not
surprising that MacQueen’s algorithm does not necessarily converge to a good
solution, and that the solution depends heavily on the start centers and the
order of the input points. The famous streaming algorithm BIRCH [76] is also
very fast and is perceived as producing better clusterings, yet, it still shares the
property that there is no approximation guarantee [37].

Various data stream algorithms for the SSE problem have been proposed, see
for example [29,34,35,38,42,43], achieving (1 + ¢)-approximations in one pass
over the data for constant k (and constant d, for some of the algorithms). We
now look at algorithms which lie in between practical and theoretical results.

Local Search and the Stream Framework. Guha et al. [40] develop a frame-
work for clustering algorithms in the data stream setting that they call Stream.
They combine it with a constant factor approximation based on local search.
The resulting algorithm is named StreamLS®. It computes a constant approx-
imation in the data stream setting. StreamLS has originally been designed for
the variant of the SSE problem where the distances are not squared (also called
the k-median problem), but it is stated to work for the SSE problem as well with
worse constants.

The Stream framework reads data in blocks of size m. For each block, it
computes a set of ¢ - k centers that are a constant factor approximation for
the SSE problem with k centers (c is a constant) by using an approximation

3 http://infolab.stanford.edu/~loc/.

http://infolab.stanford.edu/~loc/

98 J. Blomer et al.

algorithm A. It thus reduces m points to ¢ - k points, where m is at least n® for
some € > 0. This is repeated until the number of computed centers reaches m,
i.e. it is repeated for m/(ck) blocks. Then, m?/(ck) points have been be reduced
to m points. These are then again reduced to ck points, i.e. the computed centers
are treated like as input to the same procedure, one level higher in a computation
tree. On the ith level of this tree, ck points represent (m/ck)® input blocks. Thus,
the height of the computation tree is at most O(log,, .k 1/m) € O(log, n).
This is actually a constant, since

logn 1

logne/(ck) n = W = g

Thus, the computation tree has constant height. It stores at most m points
on each level, so the storage requirement of the algorithm is ©(m) = O(n°)
under the assumption that A requires space that is linear in its input size. The
running time of the algorithm is O(ndk) under the assumption that A has linear
running time. Whenever an actual solution to the SSE problem is queried, it
can be produced from the O(m) stored centers by computing a constant factor
approximation by a different algorithm A’. Guha et al. show that the result is a
constant factor approximation for the original input data.

Guha et al. also develop the algorithm LSEARCH which they use as the
algorithm A within their framework. The algorithm StreamLS is the combination
of the Stream framework with the algorithm LSEARCH. LSEARCH is a local
search based algorithm that is based on algorithms for a related problem, the
facility location problem. It is allowed to computed more than k centers, but
additional centers are penalized. The main purpose of LSEARCH is an expected
speed-up compared to other local search based methods with O(n?) running
time.

The experiments included in [40] actually use the SSE criterion to evalu-
ate their results, since the intention is to compare with the k-means algorithm,
which is optimized for SSE. The data sets are around fifty thousand points and
forty dimensions. First, LSEARCH is compared to the k-means algorithm and
found to be about three times slower than the k-means algorithm while pro-
ducing results that are much better. Then, StreamLS is compared to BIRCH
and to StreamKM, the algorithm resulting from embedding the k-means algo-
rithm into the Stream framework. StreamLS and StreamKM compute solutions
of much higher quality than BIRCH, with StreamLS computing the best solu-
tions. BIRCH on the other hand is significantly faster, in particular, its running
time per input point increases much less with increasing stream length.

Adaptions of k-Means++. Ailon et al. [8] use the Stream framework and
combine it with different approximation algorithms. The main idea is to extend
the seeding part of the k-means+-+ algorithm to an algorithm called k-means#
and to use this algorithm within the above Stream framework description. Recall
that the seeding in k-means++ is done by D?-sampling. This method iteratively
samples k centers. The first one is sampled uniformly at random. For the ith

Theoretical Analysis of the k-Means Algorithm — A Survey 99

center, each input point p is sampled with probability D?(p)/ > gcP D?(q), where
P is the input point set, D?(p) = min,, ., , |[p — ¢|[? is the cost of p in the
current solution and cy,...c;_1 are the centers chosen so far. A set of k centers
chosen in this way is an expected O(log k)-approximation.

The algorithm k-means# starts with choosing 3logk centers uniformly at
random and then performs k —1 iterations, each of which samples 3 log k centers
according to the above given probability distribution. This is done to ensure that
for an arbitrary optimal clustering of the points, each of the clusters is ‘hit” with
constant probability by at least one center. Ailon et al. show that the O(klog k)
centers computed by k-means# are a constant factor approximation for the SSE
criterion with high probability?.

To obtain the final algorithm, the Stream framework is used. Recall that
the framework uses two approximation algorithms A and A’. While A can be
a bicriteria approximation that computes a constant factor approximation with
¢+ k centers, A’ has to compute an approximative solution with k& centers. The
approximation guarantee of the final algorithm is the guarantee provided by A’.

Ailon et al. sample k centers by D2-sampling for A’, thus, the overall result
is an expected O(log k) approximation. For A, k-means# is ran 3logn times to
reduce the error probability sufficiently and then the best clustering is reported.
The overall algorithm needs n® memory for a constant € > 0.

The overall algorithm is compared to the k-means algorithm and to
MacQueen’s k-means algorithm on data sets with up to ten thousand points
in up to sixty dimensions. While it produces solutions of better quality than the
two k-means versions, it is slower than both.

Ackermann et al. [6] develop a streaming algorithm based on k-means++
motivated from a different line of work®. The ingredients of their algorithms
look very much alike the basic building blocks of the algorithm by Ailon et al.:
sampling more than k points according to the k-means++ sampling method,
organizing the computations in a binary tree and computing the final clustering
with k-means-++. There are key differences, though.

Firstly, their work is motivated from the point of view of coresets for the
SSE problem. A coreset S for a point set P is a smaller and weighted set of
points that has approximately the same clustering cost as P for any choice of
k centers. It thus satisfies a very strong property. Ackermann et al. show that
sampling sufficiently many points according to the k-means++ sampling results
in a coreset. For constant dimension d, they show that O(k - (logn)°(")) points
guarantee that the clustering cost of the sampled points is within an e-error from
the true cost of P for any set of k centers®.

Coresets can be embedded into a streaming setting very nicely by using a
technique called merge-and-reduce. It works similar as the computation tree of

* As briefly discussed in Sect. 3.1, it is sufficient to sample O(k) centers to obtain a
constant factor approximation as later discovered by Aggarwal et al. [7].

® http://www.cs.uni- paderborn.de/fachgebiete/ag-bloemer /forschung/abgeschlossene
/clustering-dfg-schwerpunktprogramm-1307 /streamkmpp.html.

5 This holds with constant probability and for any constant .

http://www.cs.uni-paderborn.de/fachgebiete/ag-bloemer/forschung/abgeschlossene/clustering-dfg-schwerpunktprogramm-1307/streamkmpp.html
http://www.cs.uni-paderborn.de/fachgebiete/ag-bloemer/forschung/abgeschlossene/clustering-dfg-schwerpunktprogramm-1307/streamkmpp.html

100 J. Blomer et al.

the Stream framework: It reads blocks of data, computes a coreset for each
block and merges and reduces these coresets in a binary computation tree. Now
the advantage is that this tree can have superconstant height since this can be
cancelled out by adjusting the error € of each coreset computation. A maximum
height of ©(logn) means that the block size on the lowest level can be much
smaller than above (recall that in the algorithm by Ailon et al., the block size
was n¢). For the above algorithm, a height of ©(logn) would mean that the
approximation ratio would be 2(c!°¢™) € 2(n). By embedding their coreset
construction into the merge-and-reduce technique, Ackermann et al. provide a
streaming algorithm that needs O(k - (logn)?") space and computes a coreset
of similar size for SSE problem. They obtain a solution for the problem by
running k-means++ on the coreset. Thus, the solution is an expected O(log k)-
approximation.

Secondly, Ackermann et al. significantly speed up the k-means++ sampling
approach. Since the sampling is applied again and again, this has a major impact
on the running time. Notice that it is necessary for the sampling to compute D(p)
for all p and to update this after each center that was drawn. When computing
a coreset of m points for a point of ¢ points, a vanilla implementation of this
sampling needs ©(dmf) time. Ackermann et al. develop a data structure called
coreset tree which allows to perform the sampling much faster. It does, however,
change the sampling procedure slightly, such that the theoretically proven bound
does not necessarily hold any more.

In the actual implementation, the sample size and thus the coreset size is set
to 200 £ and thus much smaller than it is supported by the theoretical analysis.
However, experiments support that the algorithm still produces solutions of high
quality, despite these two heuristic changes. The resulting algorithm is called
StreamKM++.

Ackermann et al. test their algorithm on data sets with up to eleven
million points in up to 68 dimensions and compare the performance to BIRCH,
StreamLS, the k-means algorithm and k-means++. They find that StreamLS
and StreamKM++ compute solutions of comparable quality, and much better
than BIRCH. BIRCH is the fastest algorithm. However, StreamKM++ beats
the running time of StreamLS by far and can e.g. compute a solution for the
largest data set and k = 30 in 27 % of the running time of StreamLS. For small
dimensions or higher k, the speed up is even larger. The k-means algorithm and
k-means++ are much slower than StreamLS and thus also than StreamKM++.
It is to be expected that StreamKM++ is faster than the variant by Ailon et al.
as well.

Sufficient Statistics. The renown algorithm BIRCH’ [76] computes a clus-
tering in one pass over the data by maintaining a preclustering. It uses a data
structure called clustering feature tree, where the term clustering feature denotes
the sufficient statistics for the SSE problem. The leaves of the tree represent sub-
sets of the input data by their sufficient statistics. At the arrival of each new

" http:/ /pages.cs.wisc.edu/vganti/birchcode/.

http://pages.cs.wisc.edu/vganti/birchcode/

Theoretical Analysis of the k-Means Algorithm — A Survey 101

point, BIRCH decides whether to add the point to an existing subset or not. If
s0, then it applies a rule to choose one of the subsets and to add the point to it
by updating the sufficient statistics. This can be done in constant time. If not,
then the tree grows and represents a partitioning with one more subset.

BIRCH has a parameter for the maximum size of the tree. If the size of the
tree exceeds this threshold, then it rebuilds the tree. Notice that a subset repre-
sented by its sufficient statistics cannot be split up. Thus, rebuilding means that
some subsets are merged to obtain a smaller tree. After reading the input data,
BIRCH represents each subset in the partitioning by a weighted point (which is
obtained from the sufficient statistics) and then runs a clustering algorithm on
the weighted point set.

The algorithm is very fast since updating the sufficient statistics is highly
efficient and rebuilding does not occur too often. However, the solutions com-
puted by BIRCH are not guaranteed to have a low cost with respect to the SSE
cost function.

Fichtenberger et al. [37] develop the algorithm BICO®. The name is a combi-
nation of the words BIRCH and coreset. BICO also maintains a tree which stores
a representation of a partitioning. Each node of this tree represents a subset by
its sufficient statistics.

The idea of BICO is to improve the decision if and where to add a point to a
subset in order to decrease the error of the summary. For this, BICO maintains
a maximum error value T. A subset is forbidden to induce more error than 7.
The error of a subset is measured by the squared distances of all points in the
subset to the centroid because in the end of the computation, the subset will be
represented by the centroid.

For a new point, BICO searches for the subset whose centroid is closest to
the point. BICO first checks whether the new point lies within a certain radius
of this centroid since it wants to avoid to use all the allowed error of a subset for
one point. If the point lies outside of the radius, a new node is created directly
beneath the root of the tree for the new point. Otherwise, the point is added to
this subset if the error keeps being bounded by 7. If the point does not pass this
check, then it is passed on to the child node of the current node whose centroid
is closest. If no child node exists or the point lies without the nodes radius, then
a new child node is created based on the new point.

If the tree gets too large, then T is doubled and the tree is rebuilt by merging
subsets whose error as a combined subset is below the new T'.

For constant dimension d, Fichtenberger et al. show that the altered method
is guaranteed to compute a summary that satisfies the coreset property for a
threshold value that lies in ©(k -logn). Combined with k-means+-+, BICO gives
an expected O(log k)-approximation.

The implementation of BICO faces the same challenge as StreamKM-++4,
k-means or k-means+-, namely, it needs to again and again compute the dis-
tance between a point and its closest neighbor in a stored point set. BICO
has one advantage, though, since it is only interested in this neighbor if it

8 http://ls2-www.cs.uni-dortmund.de/bico.

http://ls2-www.cs.uni-dortmund.de/bico

102 J. Blomer et al.

lies within a certain radius of the new point. This helps in developing heuris-
tics to speed up the insertion process. The method implemented in BICO has
the same worst case behavior as iterating through all stored points but can be
much faster.

Fichtenberger et al. compare BICO to StreamKM++, BIRCH and Mac-
Queen’s k-means algorithm on the same data sets as in [6] and one additional
128-dimensional data set. In all experiments, the summary size of BICO is set
to 200 k, thus the summary is not necessarily a coreset. The findings are that
BICO and StreamKM++ compute the best solutions, while BIRCH and Mac-
Queen are the fastest algorithms. However, for small k, the running time of
BICO is comparable to BIRCH and MacQueen. The running time of BICO is
O(ndm), where m is the chosen summary size, thus, the increase in the running
time for larger k£ stems from the choice m = 200k. For larger k, the running
time can be decreased to lie below the running time of BIRCH by reducing m
at the cost of worse solutions. In the tested instances, the quality was then still
higher than for BIRCH and MacQueen.

6 Complexity of SSE

Before we consider variants of the k-means algorithm that deal with objective
functions different from SSE, we conclude our SSE related study by looking at
the complexity of SSE in general. We start by delivering a proof to the following
fact which we already used above. We also reflect on the insights that it gives
us on the structure of optimal solutions of the SSE problem.

Fact 3. Let pu := ﬁ Zpepp be the mean of a point set P, and let y € R? be
any point. Then, we have

Sollp=yll> = lp—pll* +[P| - lly — ull*.

peEP peEP

Proof. The result is well known and the proof is contained in many papers. We
in particular follow [55]. First note that

Slip=yllP=> lp—p+p—yl?

peP peP
=Y lp—pl?+2(u—9)"> (0= +1P -y - ul*
peEP peEP

Thus, the statement follows from
1
tp-mw=>_p—IPl-p=> p- Pl > p=o.
peP peP peP peP

The first consequence of Fact 3 is that the SSE problem can be solved analyt-
ically for k¥ = 1: The mean g minimizes the cost function, and the optimal cost

Theoretical Analysis of the k-Means Algorithm — A Survey 103

is > ep |lp — pll*. For k > 2, the optimal solution induces a partitioning of the
input point set P into subsets of P with the same closest center. These subsets
are called clusters. The center of a cluster is the mean of the points contained
in the cluster (otherwise, exchanging the center by the mean would improve the
solution). At the same time, every partitioning of the point set induces a feasible
solution by computing the mean of each subset of the partitioning. This gives
a new representation of an optimal solution as a partitioning of the input point
set that minimizes the induced clustering cost.

Notice that we cannot easily enumerate all possible centers as there are infi-
nitely many possibilities. By our new view on optimal solutions, we can instead
iterate over all possible partitionings. However, the number of possible parti-
tionings is exponential in n for every constant k > 2. We get the intuition that
the problem is hard, probably even for small k. Next, we see a proof that this is
indeed the case. Notice that there exist different proofs for the fact that SSE is
NP-hard [9,32,60] and the proof presented here is the one due to Aloise et al. [9].

NP-Hardness of SSE. We reduce the following problem to SSE with k£ = 2.
Given a graph G = (V, E), a cut is a partitioning of the nodes V into subsets
X C V and V\X C V. By the density of a cut (X,V\X), we mean the ratio
|[E(X)|/(|X] - [VAX]), where E(X) is the set of edges having one endpoint in
X and the other endpoint in V\X. Now, our version of the densest cut problem
asks for the cut with the highest density. This problem is NP-hard because it
is equivalent to finding the cut with minimal density in the complement graph,
which is known to be NP-hard due to [64].

We define a type of incidence matrix M in the following way. In a |V| x | E|-
matrix, the entry in row ¢ and column j is 0 if edge j is not incident to vertex 1.
Otherwise, let i’ be the other vertex to which j is incident. Then, we arbitrarily
set one of the two entries (¢,7) and (¢,) to 1 and the other one to —1. For an
example, see Fig.5(a) and (b). We interpret the rows of M as points in RIZ!
and name the set of these points P(V'). Each subset X C V then corresponds
to a subset P(X) C P(V), and a cut (X, V\X) corresponds to a partitioning
(P(X), P(X\V)) of these points and thus to a 2-clustering. We take a closer look
at the cost of cluster P(X) which is the sum of the costs of all points in it. For
each point, the cost is the squared distance to the mean of P(X), and this cost
can be calculated by summing up the squared differences in each coordinate.
Remember that the coordinates correspond to edges in E. Thus, one way to
analyze the cost is to figure out how much cost is caused by a specific edge.
For each edge e; = (x,y), there are three possibilities for the clustering cost: If
z,y € X, then the mean of P(X) has a 0 in the jth coordinate, and thus the
squared distance is 0 for all coordinates except those corresponding to = and y,
and it is 1 for these two. If z,y ¢ X, then the mean of P(X) also has a 0 in
the jth coordinate, and as all points in P(X) also have 0 at the jth coordinate,
this coordinate contributes nothing to the total cost. If either z € X,y ¢ X
orz ¢ X,y € X and thus ¢; € E(X), then the mean has £1/|X| as its jth
coordinate, which induces a squared distance of (0 — 1/|X|)? for |X| — 1 of the

104 J. Blomer et al.

€2
U2 U3 €1 €2 €3 €4
V1
€1 €3 1 0 0 -1
vz -11 0 0
V3 0-11 0
v o Y 0 0 -11

(a) A simple example, (b) its corresponding matrix

€1 (D) €3 €4
v
' 10 0 -1
v3 0 -11 0
V2 -1 1 0 0
V4 00-11

(c) and the cut X = {v1,vs}.

Fig. 5. An example for the reduction from our densest cut problem to SSE.

points, and a squared distance of (1 —1/|X|)? for the one endpoint that is in X.
Thus, the total cost of P(X) is

> zr % Xy + 0 UKD

ej=(z,y)EL,x,yeX ej=(z,y)€EE(X)

= > 2+|E(X)|(1—|X1|).

e;j=(z,y)€E,x,ycX

This analysis holds for the clustering cost of P(V\X) analogously. Addition-
ally, every edge is either in E(X), or it has both endpoints in either P(X) or
P(V\V). Thus, the total cost of the 2-clustering induced by X is

EX[- V]

218 - IECOD + 1BCO1 (2= 1~ e) = 281~ g

X X

Finding the optimal 2-clustering means that we minimize the above term.
As 2|E| and |V] are the same for all possible 2-clusterings, this corresponds to
finding the clustering which maximizes |E(X)|/(|X| - |[V\X]). Thus, finding the
best 2-clustering is equivalent to maximizing the density.

Notice that the above transformation produces clustering inputs which are
|E|-dimensional. Thus, SSE is hard for constant k and arbitrary dimension. It
is also hard for constant dimension d and arbitrary & [60]. For small dimension
and a small number of clusters k, the problem can be solved in polynomial time
by the algorithm of Inaba et al. [46].

Theoretical Analysis of the k-Means Algorithm — A Survey 105

Approzimation Algorithms. This section is devoted to the existence of approx-
imation algorithms for SSE. First, we convince ourselves that there is indeed
hope for approximation algorithms with polynomial running time even if k or
d is large. Above, we stated that we cannot solve the problem by enumerating
all possible centers as there are infinitely many of them. But what if we choose
centers only from the input point set? This does not lead to an optimal solution:
Consider k£ = 1 and a point set lying on the boundary of a circle. Then the
optimal solution is inside the circle (possibly its center) and is definitely not in
the point set. However, the solution cannot be arbitrarily bad. Let k = 1 and let
¢ € P be a point p € P which minimizes ||p — u||?, i.e., it is the point closest to
the optimal center (breaking ties arbitrarily). Then,

2 Fact 1 2 2
cost(P, {e}) = Zpep Ip = el "L S pep (I = pll? + lle = ll?)
2 2

< Sper (I —ull? + lIp = ul?) = 2cost(P, {}).

Thus, a 2-approximated solution to the l-means problem can be found in
quadratic time by iterating through all input points. For k£ > 1, the calcu-
lation holds for each cluster in the optimal solution, and thus there exists a
2-approximate solution consisting of k£ input points. By iterating through all
O(n*) possible ways to choose k points from P, this gives a polynomial-time
approximation algorithm for constant k.

For arbitrary k, we need a better way to explore the search space, i.e., the
possible choices of centers out of P to gain a constant-factor approximation
algorithm with polynomial running time. Kanungo et al. [55] show that a simple
swapping algorithm suffices. Consider a candidate solution, i.e., a set C C P
with |C| = k. The swapping algorithm repeatedly searches for points ¢ € C
and p € P\C with cost(P,C) > cost(P,C U {p}\{c}), and then replaces ¢ by p.
Kanungo et al. prove that if no such swapping pair is found, then the solution
is a 25-approximation of the best possible choice of centers from P. Thus, the
swapping algorithm converges to a 50-approximation®. In addition, they show
that in polynomial time by always taking swaps that significantly improve the
solution, one only loses a (1+¢)-factor in the approximation guarantee. This gives
a very simple local search algorithm with constant approximation guarantee.
Kanungo et al. also refine their algorithm in two ways: First, they use a result
by Matousek [63] that says that one can find a set S of size O(ne~%log(1/¢)) in
time O(nlogn + ne~%log(1/¢)) such that the best choice of centers from S is
a (1 + e)-approximation of the best choice of centers from R¢. This set is used
to choose the centers from instead of simply using P. Second, they use g-swaps
instead of the 1-swaps described before. Here, ¢/ < g centers are simultaneously
replaced by a set of ¢’ new centers. They show that this leads to a (9 + ¢)-
approximation and also give a tight example showing that 9 is the best possible
approximation ratio for swapping-based algorithms.

The work of Kanungo et al. is one step in a series of papers developing
approximation algorithms for SSE. The first constant approximation algorithm

® Note that Kanungo et al. use a better candidate set and thus give a (25 + ¢)-
approximation.

106 J. Blomer et al.

was given by Jain and Vazirani [49] who developed a primal dual approxima-
tion algorithm for a related problem and extended it to the SSE setting. Inaba
et al. [46] developed the first polynomial-time (1+¢)-approximation algorithm for
the case of k = 2 clusters. Matusek [63] improved this and obtained a polynomial-
time (1 + ¢)-approximation algorithm for constant k and d with running time
O(nlog® n) if ¢ is also fixed. Further (1 + ¢)-approximations were for example
given by [29,34,38,43,57,73]. Notice that all cited (1 + ¢)-approximation algo-
rithms are exponential in the number of clusters k and in some cases additionally
in the dimension d.

Inapproximability Results. Algorithms with a (1 + ¢)-guarantee are only known
for the case that k is a constant (and e has to be a constant, too). Recently,
Awasthi et al. [17] showed that there exists an € such that it is NP-hard to
approximate SSE within a factor of (1 4 ¢) for arbitrary k& and d. Their proof
holds for a very small value of €, and a larger inapproximability result is not yet
known.

7 k-Means with Bregman Divergences

The k-means problem can be defined for any dissimilarity measure. An important
class of dissimilarity measures are Bregman divergences. Bregman divergences
have numerous applications in machine learning, data compression, speech and
image analysis, data mining, or pattern recognition. We review mainly results
known for the k-means algorithm when applied to Bregman divergences. As we
will see, for Bregman divergences the k-means method can be applied almost
without modifications to the algorithm.

To define Bregman divergences, let D C R, and let @ : D — R be a strictly
convex function that is differentiable on the relative interior ri(D). The Bregman
divergence dg : D X ri(D) — R> U {oo} is defined as

de(x,c) = &(x) — D(c) — (z —)T VP(c),

where V@(c) is the gradient of ¢ at c¢. The squared Euclidean distance is a
Bregman divergence. Other Bregman divergences that are used in various appli-
cations are shown on Fig. 6.

Bregman divergences have a simple geometric interpretation that is shown in
Fig. 7. For c fixed, let f. : R? — R be defined by f.(z) : &(c) + (z — c)TVP(c).
The function f. is a linear approximation to @ at point c¢. Then dg(z,c) is
the difference between the true function value @(x) and the value f.(x) of the
linear approximation to @ at c. Bregman divergences usually are asymmetric and
violate the triangle inequality. In fact, the only symmetric Bregman divergences
are the Mahalanobis divergences (see Fig. 6).

As one can see from Fig.6, for some Bregman divergences dg there exist
points z, ¢ such that dg(x,c) = co. We call these pairs of points singularities. In
most results and algorithms that we describe these singularities require special
treatment or have to be defined away.

Theoretical Analysis of the k-Means Algorithm — A Survey

ldomain D‘@(m)

‘ddi(p? q)

|

squared f>-norm squared Euclidean distance
R? |l lla — cll3
generalized norm Mahalanobis distance
R |27 Az (x—c)TA(x —¢)
neg. Shannon entropy|Kullback-Leibler divergence
(0,114 > z;In(x) >_ciln($h)
Burg entropy Itakura-Saito divergence
R |y —In(x) S In(S) — 1
harmonic (a > 0) harmonic divergence (o > 0)
]R.d 1 1 o+l ac;
+ ¥ c z + 2zt
norm-like (a > 2) norm-like divergence (a > 2)
RE >y Sei+ (o —Daf + acizd™?
exponential Exponential loss
RY [De¥ et — (¢; —x + 1)e™
Hellinger-like Hellinger-like divergence
(-1, D)% |3 —y/1— a2 %—Ml—ﬁ

Fig. 6. Some Bregman divergences.

P

Fig. 7. Geometric interpretation of Bregman divergences

107

k-Means with Bregman Divergences. Similar to SSE we can define the minimum
sum-of-Bregman-errors clustering problem (SBE). In this problem we are given
a fixed Bregman divergence dg with domain D and a set of points P C D. The

108 J. Blomer et al.

aim is to find a set C' C ri(D) of k points (not necessarily included in P) such
that the sum of the Bregman divergences of the points in P to their nearest
center in C is minimized. Thus, the cost function to be minimized is

coste (P, C) Z mm dg(p, c
pEP

The points in C are called centers. Because of the (possible) asymmetry of dg
the order of arguments in dg(z, ¢) is important.

For any Bregman divergence the optimal solution for £k = 1 is given by
the mean of the points in P. More precisely, Fact 1 completely carries over to
Bregman divergences (see [20]).

Fact 4. Let dg : D x 1i(D) — R>o U {oo} be a Bregman divergence and P C D,

|P| < oo and let
w=
G

be the mean of set P. For any y € ri(D):

> dae(py) = da(p,) + P - do (1,).

peEP peEP

Proof. Tt suffices to show the final statement of the Fact.

Y da(py) =Y P(p) - Dy) — (x - 5)"Ve(y)

peEP peP

=S)+ D(p) — Bly) — (z — s)TVd(y)
peP
T

=Y (2(p) — (W) + |PI(S(w) — D) — | Y_0—y)| V()

peEP peEP

=Y (@(p) = P(1) + [PI(@(n) — B(y) — (u — y)"V(y))

- Z d@ pv + ‘P‘ dqf‘(;“’v)a
peEP

where the last equality follows from

Y p=mw"=0 and Y (p—)" VeE(u)=0.

peEP peP

Moreover, for all Bregman divergences, any set of input points P, and any set of
k centers {1, ..., pur}, the optimal partitions for SBE induced by the centers /i,
can be separated by hyperplanes. This was first explicitly stated in [20]. More
precisely, the Bregman bisector {z € D | dg(,c1) = do(w,c2)} between any two

Theoretical Analysis of the k-Means Algorithm — A Survey 109

points ¢1,co € D C R? is always a hyperplane. i.e. for any pair of points ¢y, co
there are a € R%,b € R such that

{zeD|de(z,c1) = do(z,c2)} = {x €D |a"z =b}. (1)

As a consequence, SBE can be solved for any Bregman divergence in time
O(nkzd). Hence for fixed k and d, SBE is solvable in polynomial time. However,
in general SBE is an NP-hard problem. This was first observed in [4] and can
be shown in two steps. First, let the Bregman divergence dg be a Mahalanobis
divergence for a symmetric, positive definite matrix A. Then there is a unique
symmetric, positive definite matrix B such that A = BT B, i.e. for any p, q

do(p.q) = (p—)" Alp — q) = | Bp — Bq||*. (2)

Therefore, SBE with dg is just SSE for a linearly transformed input set. This
immediately implies that for Mahalanobis divergences SBE is NP-hard. Next, if
@ is sufficiently smooth, the Hessian V2&t of @ at point ¢ € ri(D) is a symmetric,
positive definite matrix. Therefore, dg locally behaves like a Mahalanobis diver-
gence. This can used to show that with appropriate restriction on the strictly
convex function ¢ SBE is NP-hard.

Approzimation Algorithms and p-Similarity. No provable approximation algo-
rithms for general Bregman divergences are known. Approximation algorithms
either work for specific Bregman divergences or for restricted classes of Bregman
divergences. Chaudhuri and McGregor [27] give an O(log(n)) approximation
algorithm for the Kullback-Leibler divergence (n is the size of the input set P).
They obtain this result by exploiting relationships between the Kullback-Leibler
divergence and the so-called Hellinger distortion and between the Hellinger dis-
tortion and the squared Euclidean distance.

The largest subclass of Bregman divergences for which approximation algo-
rithms are known to exist consists of p-similar Bregman divergences. A Bregman
divergence dg defined on domain D x ri(D) is called p-similar if there is a sym-
metric, positive definite matrix A and a constant 0 < g < 1 such that for all
(z,y) € D x ri(D)

,LL'dA(.T,y) Sd‘b(xvy) SdA(x’y)' (3)

Some Bregman divergences are (trivially) p-similar. Others, like the Kullback-
Leibler divergence or the Itakura-Saito divergence become p-similar if one
restricts the domain on which they are defined. For example, if we restrict
the Kullback-Leibler divergence to D = [\,v]¢ for 0 < A < v < 1, then
the Kullback-Leibler divergence is %—similar. This can be shown by looking
at the first order Taylor series expansion of the negative Shannon entropy
D(x1,...,2q) = > x; In(x;).

p-similar Bregman divergences approximately behave like Mahalanobis diver-
gences. Due to (2) Mahalanobis divergences behave like the squared Euclid-

ean distance. Hence, one can hope that p-similar Bregman divergences behave

110 J. Blomer et al.

roughly like the squared Euclidean distance. In fact, it is not too difficult to
show that the swapping algorithm of Kanungo et al. [55] can be generalized to
p-similar Bregman divergences to obtain approximation algorithms with approx-
imation factor 18/u? + ¢ for arbitrary € > 0. Whether one can combine the tech-
nique of Kanungo et al. with Matousek’s technique [63] to obtain better constant
factor approximation algorithms is not known.

In the work of Ackermann et al. [5], u-similarity has been used to obtain
a probabilistic (1 + €)-approximation algorithm for SBE, whose running time
is exponential in k,d,1/e, and 1/u, but linear in |P|. Building upon results
in [57], Ackermann et al. describe and analyze an algorithm to solve the
k-median problem for metric and non-metric distance measures D that satisfy
the following conditions.

(1) For k = 1, optimal solutions to the k-median problem with respect to dis-
tance D can be computed efficiently.

(2) For every 4,7+ > 0 there is a constant mgs, such that for any set P, with
probability 1 — ¢ the optimal 1-median of a random sample S of size ms
from P is a (1 4 «)-approximation to the 1-median for set P.

Together, (1) and (2) are called the [y, d]-sampling property. Using the same
algorithm as in [57] but a combinatorial rather than geometric analysis,
Ackermann et al. show that for any distance measure D satisfying the [y,]-
sampling property and any € > 0 there is an algorithm that with constant prob-
ability returns a (1 + €)-approximation to the k-median problem with distance
measure D. The running time of the algorithm is linear in n, the number of input
points, and exponential in k,1/e, and the parameter m; /3 from the sampling
property. Finally, Ackermann et al. show that any p-similar Bregman divergence
satisfies the [d, v]-sampling property with parameter ms~ = ﬁ. Overall, this
yields a (1+4¢) algorithm for SBE for y-similar Bregman divergences with running
time linear in n, and exponential in k,1/¢, 1/ pu.

The k-Means Algorithm for Bregman Divergences. The starting point for much
of the recent research on SBE for Bregman divergences is the work by Banerjee
et al. [20]. They were the first to explicitly state Fact 4 and describe the k-means
algorithm (see page 2) as a generic algorithm to solve SBE for arbitrary Bregman
divergences. Surprisingly, the k-means algorithm cannot be generalized beyond
Bregman divergences. In [19] it is shown, that under some mild smoothness con-
ditions, any divergence that satisfies Fact 4 is a Bregman divergence. Of course,
this does not imply that variants or modifications of the k-means algorithm can-
not be used for distance measures other than Bregman divergences. However,
in these generalizations cluster centroids cannot be used as optimizers in the
second step, the re-estimation step.

Banerjee et al. already showed that for any Bregman divergence the k-means
algorithm terminates after a finite number of steps. In fact, using the linear
separability of intermediate solutions computed by the k-means algorithm (see
Eq.1), for any Bregman divergence the number of iterations of the k-means

Theoretical Analysis of the k-Means Algorithm — A Survey 111

algorithm can be bounded by (’)(nkzd). Since the squared Euclidean distance is
a Bregman divergence it is clear that no approximation guarantees can be given
for the solutions the k-means algorithm finds for SBE.

1. Lower Bounds. Manthey and Roglin extended Vattani’s exponential lower
bound for the running time of the k-means algorithm to any Bregman diver-
gence dg defined by a sufficiently smooth function @. In their proof they use an
approach similar to the approach used by Ackerman et al. to show that SBE is
NP-hard. Using (2) Manthey and Roéglin first extend Vattani’s lower bound to
any Mahalanobis divergence. Then, using the fact that any Bregman divergence
de with sufficiently smooth @ locally resembles some Mahalanobis divergence
da, Manthey and Roglin show that a lower bound for the Mahalanobis diver-
gence d4 carries over to a lower bound for the Bregman divergence dg. Hence,
for any smooth Bregman divergence the k-means algorithm has exponential run-
ning time. Moreover, Manthey and Roglin show that for the k-means algorithm
the squared Euclidean distance, and more generally Mahalanobis divergences,
are the easiest Bregman divergences.

2. Smoothed Analysis. Recall that the smoothed complexity of the k-means algo-
rithm is polynomial in n and 1/0, when each input point is perturbed by random
noise generated using a Gaussian distribution with mean 0 and standard devia-
tion o, a result due to Arthur, Manthey, and Roglin [12]. So far, this result has not
been generalized to Bregman divergences. For almost any Bregman divergence
dg Manthey and Réglin [61] prove two upper bounds on the smoothed complex-

ity of the k-means algorithm. The first bound is of the form poly(n\/%, 1/0), the
second is of the form k*¢ - poly(n,1/c). These bounds match bounds that Man-
they and Régin achieved for the squared Euclidean distance in [62]. Instead of
reviewing their proofs, we will briefly review two technical difficulties Manthey
and Roglin had to account for.

Bregman divergences dg : D X ri(D) — R>o U {00} like the Kullback-Leibler
divergence are defined on a bounded subset of some R?. Therefore perturb-
ing a point in D may yield a point for which the Bregman divergence is not
defined. Moreover, whereas the Gaussian noise is natural for the squared Euclid-
ean distance this is by no means clear for all Bregman divergences. In fact,
Banerjee et al. [20] already showed a close connection between Bregman diver-
gences and exponential families, indicating that noise chosen according to an
exponential distribution may be appropriate for some Bregman divergences.
Manthey and Roglin deal with these issues by first introducing a general and
abstract perturbation model parametrized by some o € (0,1]. Then Manthey
and Roglin give a smoothed analysis of the k-means algorithm for Bregman
divergences with respect to this abstract model. It is important to note that as
in the squared Euclidean case, the parameter o measures the amount of random-
ness in the perturbation. Finally, for Bregman divergences like the Mahalanobis
divergences, the Kullback-Leibler divergence, or the Itakura-Saito Manthey and
Roglin instantiate the abstract perturbation model with some perturbations
schemes using explicit distributions.

112 J. Blomer et al.

Singularities of Bregman divergences are the second technical difficulty that
Manthey and Roglin have to deal with. For each Bregman divergence dg they
introduce two parameters 0 < ¢ < 1 and £ > 1 that in some sense measures
how far away de is from being a Mahalanobis divergence. This resembles the
p-similarity introduced by Ackermann et al. [5]. Whereas for many Bregman
divergences the parameter y can only be defined by restricting the domain of
the divergence, this is not necessary in the approach by Manthey and Rogin.
However, their upper bounds on the smoothed complexity of the k-means algo-
rithm for Bregman divergences are not uniform, instead for any specific Bregman
divergence the bound depends (polynomially) on the values £ and 1/¢.

It is still an open problem whether the polynomial bound of Arthur et al. [12]
on the smoothed complexity of the k-means algorithm can be generalized to
Bregman divergences. Surprisingly, even for general Mahalanobis divergences
this is not known. As Manthey and Roéglin mention, at this point polynomial
bounds on the smoothed complexity of the k-means algorithm can only be
achieved for Mahalanobis divergences d4 and input sets P, where the largest
eigenvalue of A is bounded by a polynomial in |P].

3. Seeding Methods. In [2] the k-means++ randomized seeding algorithm by
Arthur and Vassilvitskii [14] is generalized to p-similar Bregman divergences.
Ackermann and Blémer show that for a py-similar Bregman divergence this gen-
eralization, called Bregman++-, yields a (’)(,u_2 log(k))—approximation for SBE.
In [3] Ackermann and Blomer generalize the result by Ostrovsky et al. [67] on
adaptive sampling for e-separable instances to Bregman divergences.

Nock et al. [66] generalize k-means++ to certain symmetrized versions of
Bregman divergences dg, called mized Bregman divergences. They prove approx-
imation factors of the form (’)(pw log k), where py is some parameter depending
on dg, that roughly measures how much dg violates the triangle inequality. Note,
however, that the mixed Bregman divergences introduced by Nock et al. are not
proper Bregman divergences.

References

1. Achlioptas, D., McSherry, F.: On spectral learning of mixtures of distributions.
In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 458-469.
Springer, Heidelberg (2005). doi:10.1007/11503415_31

2. Ackermann, M.R., Blomer, J.: Coresets and approximate clustering for Breg-
man divergences. In: Proceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2009), pp. 1088-1097. Society for Industrial and
Applied Mathematics (STAM) (2009). http://www.cs.uni-paderborn.de/uploads/
tx_sibibtex/CoresetsAnd ApproximateClusteringForBregmanDivergences.pdf

3. Ackermann, M.R., Blomer, J.: Bregman clustering for separable instances. In:
Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 212-223. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13731-0_21

4. Ackermann, M.R., Blomer, J., Scholz, C.: Hardness and non-approximability of
Bregman clustering problems. In: Electronic Colloquium on Computational Com-
plexity (ECCC), vol. 18, no. 15, pp. 1-20 (2011). http://eccc.uni-trier.de/report/
2011/015/, report no. TR11-015

http://dx.doi.org/10.1007/11503415_31
http://www.cs.uni-paderborn.de/uploads/tx_sibibtex/CoresetsAndApproximateClusteringForBregmanDivergences.pdf
http://www.cs.uni-paderborn.de/uploads/tx_sibibtex/CoresetsAndApproximateClusteringForBregmanDivergences.pdf
http://dx.doi.org/10.1007/978-3-642-13731-0_21
http://eccc.uni-trier.de/report/2011/015/
http://eccc.uni-trier.de/report/2011/015/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Theoretical Analysis of the k-Means Algorithm — A Survey 113

Ackermann, M.R., Blomer, J., Sohler, C.: Clustering for metric and non-metric dis-
tance measures. ACM Trans. Algorithms 6(4), Article No. 59:1-26 (2010). Special
issue on SODA 2008

Ackermann, M.R., Martens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler,
C.: Streamkm++: a clustering algorithm for data streams. ACM J. Exp. Algorith-
mics 17, Article No. 4, 1-30 (2012)

Aggarwal, A., Deshpande, A., Kannan, R.: Adaptive sampling for k-means clus-
tering. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM
-2009. LNCS, vol. 5687, pp. 15-28. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03685-9_2

Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming k-means approximation. In: Pro-
ceedings of the 22nd Annual Conference on Neural Information Processing Systems,
pp. 10-18 (2009)

Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-
of-squares clustering. Mach. Learn. 75(2), 245-248 (2009)

Alsabti, K., Ranka, S., Singh, V.: An efficient k-means clustering algorithm. In:
Proceeding of the First Workshop on High-Performance Data Mining (1998)
Arora, S., Kannan, R.: Learning mixtures of separated nonspherical Gaussians.
Ann. Appl. Probab. 15(1A), 69-92 (2005)

Arthur, D., Manthey, B., Roglin, H.: k-means has polynomial smoothed complexity.
In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2009), pp. 405-414. IEEE Computer Society (2009)

Arthur, D., Vassilvitskii, S.: How slow is the k-means method? In: Proceedings of
the 22nd ACM Symposium on Computational Geometry (SoCG 2006), pp. 144-153
(2006)

Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2007), pp. 1027-1035. Society for Industrial and Applied Mathematics
(2007)

Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algo-
rithm, with an application to the k-means method. SIAM J. Comput. 39(2), 766—
782 (2009)

Awasthi, P., Blum, A., Sheffet, O.: Stability yields a PTAS for k-median and k-
means clustering. In: FOCS, pp. 309-318 (2010)

Awasthi, P., Charikar, M., Krishnaswamy, R., Sinop, A.K.: The hardness of approx-
imation of Euclidean k-means. In: SoCG 2015 (2015, accepted)

Balcan, M.F., Blum, A., Gupta, A.: Approximate clustering without the approxi-
mation. In: SODA, pp. 1068-1077 (2009)

Banerjee, A., Guo, X., Wang, H.: On the optimality of conditional expectation as
a Bregman predictor. IEEE Trans. Inf. Theory 51(7), 2664-2669 (2005)
Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman diver-
gences. J. Mach. Learn. Res. 6, 1705-1749 (2005)

Belkin, M., Sinha, K.: Toward learning Gaussian mixtures with arbitrary separa-
tion. In: COLT, pp. 407-419 (2010)

Belkin, M., Sinha, K.: Learning Gaussian mixtures with arbitrary separation.
CoRR abs/0907.1054 (2009)

Belkin, M., Sinha, K.: Polynomial learning of distribution families. In: FOCS, pp.
103-112 (2010)

Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas,
C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25—71. Springer, Hei-
delberg (2006)

http://dx.doi.org/10.1007/978-3-642-03685-9_2
http://dx.doi.org/10.1007/978-3-642-03685-9_2

114

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

J. Blomer et al.

Braverman, V., Meyerson, A., Ostrovsky, R., Roytman, A., Shindler, M., Tagiku,
B.: Streaming k-means on well-clusterable data. In: SODA, pp. 26-40 (2011)
Brubaker, S.C., Vempala, S.: Isotropic PCA and affine-invariant clustering. In:
FOCS, pp. 551-560 (2008)

Chaudhuri, K., McGregor, A.: Finding metric structure in information theoretic
clustering. In: COLT, pp. 391-402. Citeseer (2008)

Chaudhuri, K., Rao, S.: Learning mixtures of product distributions using correla-
tions and independence. In: COLT, pp. 9-20 (2008)

Chen, K.: On coresets for k-median and k-means clustering in metric and Euclidean
spaces and their applications. STAM J. Comput. 39(3), 923-947 (2009)
Dasgupta, S.: Learning mixtures of Gaussians. In: FOCS, pp. 634-644 (1999)
Dasgupta, S.: How fast Is k-means? In: Scholkopf, B., Warmuth, M.K. (eds.)
COLT-Kernel 2003. LNCS (LNAI), vol. 2777, p. 735. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45167-9_56

Dasgupta, S.: The hardness of k-means clustering. Technical report CS2008-0916,
University of California (2008)

Dasgupta, S., Schulman, L.J.: A probabilistic analysis of EM for mixtures of sep-
arated, spherical Gaussians. J. Mach. Learn. Res. 8, 203-226 (2007)

Feldman, D., Langberg, M.: A unified framework for approximating and clustering
data. In: Proceedings of the 43th Annual ACM Symposium on Theory of Comput-
ing (STOC), pp. 569-578 (2011)

Feldman, D., Monemizadeh, M., Sohler, C.: A PTAS for k-means clustering based
on weak coresets. In: Proceedings of the 23rd ACM Symposium on Computational
Geometry (SoCG), pp. 11-18 (2007)

Feldman, J., O’Donnell, R., Servedio, R.A.: Learning mixtures of product distrib-
utions over discrete domains. SIAM J. Comput. 37(5), 1536-1564 (2008)
Fichtenberger, H., Gillé, M., Schmidt, M., Schwiegelshohn, C., Sohler, C.: BICO:
BIRCH meets coresets for k-means clustering. In: Bodlaender, H.L., Italiano, G.F.
(eds.) ESA 2013. LNCS, vol. 8125, pp. 481-492. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40450-4_41

Frahling, G., Sohler, C.: Coresets in dynamic geometric data streams. In: Proceed-
ings of the 37th STOC, pp. 209-217 (2005)

Gordon, A.: Null models in cluster validation. In: Gaul, W., Pfeifer, D. (eds.)
From Data to Knowledge: Theoretical and Practical Aspects of Classification, Data
Analysis, and Knowledge Organization, pp. 32—44. Springer, Heidelberg (1996)
Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering
data streams: theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515-528
(2003)

Hamerly, G., Drake, J.: Accelerating Lloyd’s algorithm for k-means clustering. In:
Celebi, M.E. (ed.) Partitional Clustering Algorithms, pp. 41-78. Springer, Cham
(2015)

Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering.
Discrete Comput. Geom. 37(1), 3-19 (2007)

Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering.
In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC 2004), pp. 291-300 (2004)

Har-Peled, S., Sadri, B.: How fast is the k-means method? In: SODA, pp. 877-885
(2005)

Hartigan, J.A.: Clustering Algorithms. Wiley, Hoboken (1975)

http://dx.doi.org/10.1007/978-3-540-45167-9_56
http://dx.doi.org/10.1007/978-3-642-40450-4_41
http://dx.doi.org/10.1007/978-3-642-40450-4_41

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Theoretical Analysis of the k-Means Algorithm — A Survey 115

Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and
randomization to variance-based k-clustering (extended abstract). In: Symposium
on Computational Geometry (SoCG 1994), pp. 332-339 (1994)

Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8),
651-666 (2010)

Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264-323 (1999)

Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM 48(2), 274-296 (2001)

Judd, D., McKinley, P.K., Jain, A.K.: Large-scale parallel data clustering. IEEE
Trans. Pattern Anal. Mach. Intell. 20(8), 871-876 (1998)

Kalai, A.T., Moitra, A., Valiant, G.: Efficiently learning mixtures of two Gaussians.
In: STOC, pp. 553-562 (2010)

Kannan, R., Vempala, S.: Spectral algorithms. Found. Trends Theoret. Comput.
Sci. 4(3-4), 157-288 (2009)

Kannan, R., Salmasian, H., Vempala, S.: The spectral method for general mixture
models. SIAM J. Comput. 38(3), 1141-1156 (2008)

Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: An efficient k-means clustering algorithm: analysis and implementation.
IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881-892 (2002)

Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: A local search approximation algorithm for k-means clustering. Comput.
Geom. 28(2-3), 89-112 (2004)

Kumar, A., Kannan, R.: Clustering with spectral norm and the k-means algorithm.
In: Proceedings of the 51st Annual Symposium on Foundations of Computer Sci-
ence (FOCS 2010), pp. 299-308. IEEE Computer Society (2010)

Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clus-
tering problems in any dimensions. J. ACM 57(2), Article No. 5 (2010)

Lloyd, S.P.: Least squares quantization in PCM. Bell Laboratories Technical Mem-
orandum (1957)

MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281-297. University of California Press (1967)
Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is
NP-hard. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp.
274-285. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00202-1_24
Manthey, B., Roglin, H.: Worst-case and smoothed analysis of k-means clustering
with Bregman divergences. JoCG 4(1), 94-132 (2013)

Manthey, B., Rolin, H.: Improved smoothed analysis of the k-means method. In:
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 461-470. Society for Industrial and Applied Mathematics (2009)
Matousek, J.: On approximate geometric k-clustering. Discrete Comput. Geom.
24(1), 61-84 (2000)

Matula, D.W., Shahrokhi, F.: Sparsest cuts and bottlenecks in graphs. Discrete
Appl. Math. 27, 113-123 (1990)

Moitra, A., Valiant, G.: Settling the polynomial learnability of mixtures of Gaus-
sians. In: FOCS 2010 (2010)

http://dx.doi.org/10.1007/978-3-642-00202-1_24

116

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

J. Blomer et al.

Nock, R., Luosto, P., Kivinen, J.: Mixed Bregman clustering with approximation
guarantees. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008.
LNCS (LNAI), vol. 5212, pp. 154-169. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-87481-2_11

Ostrovsky, R., Rabani, Y., Schulman, L.J., Swamy, C.: The effectiveness of Lloyd-
type methods for the k-means problem. In: FOCS, pp. 165-176 (2006)

Pelleg, D., Moore, A.W.: Accelerating exact k-means algorithms with geometric
reasoning. In: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 277-281 (1999)

Selim, S.Z., Ismail, M.A.: k-means-type algorithms: a generalized convergence the-
orem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach.
Intell. (PAMI) 6(1), 81-87 (1984)

Steinhaus, H.: Sur la division des corps matériels en parties. Bulletin de I’Académie
Polonaise des Sciences IV (12), 801-804 (1956)

Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a
dataset via the gap statistic. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63, 411-423
(2001)

Vattani, A.: k-means requires exponentially many iterations even in the plane. In:
Proceedings of the 25th ACM Symposium on Computational Geometry (SoCG
2009), pp. 324-332. Association for Computing Machinery (2009)

de la Vega, W.F., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes
for clustering problems. In: Proceedings of the 35th Annual ACM Symposium on
Theory of Computing (STOC 2003), pp. 50-58 (2003)

Vempala, S., Wang, G.: A spectral algorithm for learning mixture models. J. Com-
put. Syst. Sci. 68(4), 841-860 (2004)

Venkatasubramanian, S.: Choosing the number of clusters I-III (2010). http://blog.
geomblog.org/p/conceptual-view-of-clustering.html. Accessed 30 Mar 2015
Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: a new data clustering algorithm
and its applications. Data Min. Knowl. Disc. 1(2), 141-182 (1997)

http://dx.doi.org/10.1007/978-3-540-87481-2_11
http://dx.doi.org/10.1007/978-3-540-87481-2_11
http://blog.geomblog.org/p/conceptual-view-of-clustering.html
http://blog.geomblog.org/p/conceptual-view-of-clustering.html

Recent Advances in Graph Partitioning

Aydin Buluc!, Henning Meyerhenke?, Ilya Safro®, Peter Sanders?,
and Christian Schulz2®)

1 Computational Research Division,
Lawrence Berkeley National Laboratory, Berkeley, USA
2 Institute of Theoretical Informatics,
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
christian.schulz@kit.edu
3 School of Computing, Clemson University, Clemson, SC, USA

Abstract. We survey recent trends in practical algorithms for balanced
graph partitioning, point to applications and discuss future research
directions.

1 Introduction

Graphs are frequently used by computer scientists as abstractions when mod-
eling an application problem. Cutting a graph into smaller pieces is one of the
fundamental algorithmic operations. Even if the final application concerns a dif-
ferent problem (such as traversal, finding paths, trees, and flows), partitioning
large graphs is often an important subproblem for complexity reduction or par-
allelization. With the advent of ever larger instances in applications such as
scientific simulation, social networks, or road networks, graph partitioning (GP)
therefore becomes more and more important, multifaceted, and challenging. The
purpose of this paper is to give a structured overview of the rich literature, with
a clear emphasis on explaining key ideas and discussing recent work that is
missing in other overviews. For a more detailed picture on how the field has
evolved previously, we refer the interested reader to a number of surveys. Bichot
and Siarry [22] cover studies on GP within the area of numerical analysis. This
includes techniques for GP, hypergraph partitioning and parallel methods. The
book discusses studies from a combinatorial viewpoint as well as several applica-
tions of GP such as the air traffic control problem. Schloegel et al. [191] focus on
fast graph partitioning techniques for scientific simulations. In their account of
the state of the art in this area around the turn of the millennium, they describe
geometric, combinatorial, spectral, and multilevel methods and how to combine
them for static partitioning. Load balancing of dynamic simulations, parallel
aspects, and problem formulations with multiple objectives or constraints are
also considered. Monien et al. [156] discuss heuristics and approximation algo-
rithms used in the multilevel GP framework. In their description they focus
mostly on coarsening by matching and local search by node-swapping heuristics.
Kim et al. [119] cover genetic algorithms.

© Springer International Publishing AG 2016
L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 117-158, 2016.
DOI: 10.1007/978-3-319-49487-6 4

118 A. Bulug et al.

Our survey is structured as follows. First, Sect. 2 introduces the most impor-
tant variants of the problem and their basic properties such as NP-hardness.
Then Sect. 3 discusses exemplary applications including parallel processing, road
networks, image processing, VLSI design, social networks, and bioinformatics.
The core of this overview concerns the solution methods explained in Sects. 4, 5,
6 and 7. They involve a surprising variety of techniques. We begin in Sect. 4 with
basic, global methods that “directly” partition the graph. This ranges from very
simple algorithms based on breadth first search to sophisticated combinatorial
optimization methods that find exact solutions for small instances. Also meth-
ods from computational geometry and linear algebra are being used. Solutions
obtained in this or another way can be improved using a number of heuristics
described in Sect. 5. Again, this ranges from simple-minded but fast heuristics
for moving individual nodes to global methods, e.g., using flow or shortest path
computations. The most successful approach to partitioning large graphs — the
multilevel method — is presented in Sect. 6. It successively contracts the graph to
a more manageable size, solves the base instance using one of the techniques from
Sect. 4, and — using techniques from Sect.5 — improves the obtained partition
when uncontracting to the original input. Metaheuristics are also important. In
Sect. 7 we describe evolutionary methods that can use multiple runs of other
algorithms (e.g., multilevel) to obtain high quality solutions. Thus, the best
GP solvers orchestrate multiple approaches into an overall system. Since all of
this is very time consuming and since the partitions are often used for parallel
computing, parallel aspects of GP are very important. Their discussion in Sect. 8
includes parallel solvers, mapping onto a set of parallel processors, and migration
minimization when repartitioning a dynamic graph. Section 9 describes issues of
implementation, benchmarking, and experimentation. Finally, Sect. 10 points to
future challenges.

2 Preliminaries

Given a number k£ € N5 and an undirected graph G = (V| E) with non-negative
edge weights, w : E — Rs, the graph partitioning problem (GPP) asks for a
partition IT of V with blocks of nodes IT = (V4,...,V):

L. iu-—-UWV =V
2. VNV, =0 Vi#j.

A balance constraint demands that all blocks have about equal weights. More
precisely, it requires that, Vi € {1,...,k} : |Vi|] < Lmax:= (1 +)[|V|/k] for
some imbalance parameter € € R>g. In the case of € = 0, one also uses the term
perfectly balanced. Sometimes we also use weighted nodes with node weights
c:V — Rsg. Weight functions on nodes and edges are extended to sets of such
objects by summing their weights. A block V; is overloaded if |V;| > Lyax. A clus-
tering is also a partition of the nodes. However, k is usually not given in advance,
and the balance constraint is removed. Note that a partition is also a clustering of

Recent Advances in Graph Partitioning 119

a graph. In both cases, the goal is to minimize or maximize a particular objective
function. We recall well-known objective functions for GPP in Sect. 2.1. A node v
is a neighbor of node w if there is an edge {u, v} € E. If anode v € V; has a neigh-
bor w € Vj, i # j, then it is called boundary node. An edge that runs between
blocks is also called cut edge. The set E;;:= {{u,v} € E:u e V;,v € V;}is the
set of cut edges between two blocks V; and V;. An abstract view of the par-
titioned graph is the so called quotient graph or communication graph, where
nodes represent blocks, and edges are induced by connectivity between blocks.
There is an edge in the quotient graph between blocks V; and V; if and only if
there is an edge between a node in V; and a node in Vj in the original, parti-
tioned graph. The degree d(v) of a node v is the number of its neighbors. An
adjacency matriz of a graph is a |V| x |V| matrix describing node connectivity.
The element a,, of the matrix specifies the weight of the edge from node u to
node v. It is set to zero if there is no edge between these nodes. The Laplacian
matriz of a graph G is defined as L = D — A, where D is the diagonal matrix
expressing node degrees, and A is the adjacency matrix. A cycle in a directed
graph with negative weight is also called negative cycle. A matching M C E is
a set of edges that do not share any common nodes, i.e., the graph (V, M) has
maximum degree one.

2.1 Objective Functions

In practice, one often seeks to find a partition that minimizes (or maximizes) an
objective. Probably the most prominent objective function is to minimize the

total cut
> w(Ey). (1)
i<j
Other formulations of GPP exist. For instance when GP is used in parallel com-
puting to map the graph nodes to different processors, the communication volume
is often more appropriate than the cut [100]. For a block V;, the communica-
tion volume is defined as comm(V;) := }_, y. ¢(v)D(v), where D(v) denotes the
number of different blocks in which v has a neighbor node, excluding V;. The
mazximum communication volume is then defined as max; comm(V;), whereas
the total communication volume is defined as) -, comm(V;). The maximum com-
munication volume was used in one subchallenge of the 10th DIMACS Challenge
on Graph Partitioning and Graph Clustering [13]. Although some applications
profit from other objective functions such as the communication volume or block
shape (formalized by the block’s aspect ratio [56], minimizing the cut size has
been adopted as a kind of standard. One reason is that cut optimization seems to
be easier in practice. Another one is that for graphs with high structural locality
the cut often correlates with most other formulations but other objectives make
it more difficult to use a multilevel approach.
There are also GP formulations in which balance is not directly encoded in the
problem description but integrated into the objective function. For example, the

120 A. Bulug et al.

expansion of anon-trivial cut (V1, V) is defined as w(FE12)/ min(c(V1), ¢(Va)). Sim-
ilarly, the conductance of such a cut is defined as w(FE12)/ min(vol(V7), vol(12)),
where vol(S) :=) s d(v) denotes the volume of the set S.

As an extension to the problem, when the application graph changes over
time, repartitioning becomes necessary. Due to changes in the underlying appli-
cation, a graph partition may become gradually imbalanced due to the introduc-
tion of new nodes (and edges) and the deletion of others. Once the imbalance
exceeds a certain threshold, the application should call the repartitioning rou-
tine. This routine is to compute a new partition II’ from the old one, II. In
many applications it is favorable to keep the changes between IT and I’ small.
Minimizing these changes simultaneously to optimizing 1T’ with respect to the
cut (or a similar objective) leads to multiobjective optimization. To avoid the
complexity of the latter, a linear combination of both objectives seems feasible
in practice [193].

2.2 Hypergraph Partitioning

A hypergraph H = (V, E) is a generalization of a graph in which an edge (usu-
ally called hyperedge or met) can connect any number of nodes. As with graphs,
partitioning a hypergraph also means to find an assignment of nodes to differ-
ent blocks of (mostly) equal size. The objective function, however, is usually
expressed differently. A straightforward generalization of the edge cut to hyper-
graphs is the hyperedge cut. It counts the number of hyperedges that connect
different blocks. In widespread use for hypergraph partitioning, however, is the
so-called (A —1) metric, CV(H,II) =} . p(A(e, IT) — 1), where A(e, IT) denotes
the number of distinct blocks connected by the hyperedge e and I the partition
of H’s vertex set.

One drawback of hypergraph partitioning compared to GP is the necessity
of more complex algorithms—in terms of implementation and running time,
not necessarily in terms of worst-case complexity. Paying this price seems only
worthwhile if the underlying application profits significantly from the difference
between the graph and the hypergraph model.

To limit the scope, we focus in this paper on GP and forgo a more
detailed treatment of hypergraph partitioning. Many of the techniques we
describe, however, can be or have been transferred to hypergraph partition-
ing as well [33,34,66,162,208]. One important application area of hypergraph
partitioning is VLSI design (see Sect. 3.5).

2.3 Hardness Results and Approximation

Partitioning a graph into k£ blocks of roughly equal size such that the cut met-
ric is minimized is NP-complete (as decision problem) [79,106]. Andreev and
Récke [4] have shown that there is no constant-factor approximation for the per-
fectly balanced version (e = 0) of this problem on general graphs. If € € (0, 1],
then an O(log2 n) factor approximation can be achieved. In case an even larger
imbalance € > 1 is allowed, an approximation ratio of O(logn) is possible [65].

Recent Advances in Graph Partitioning 121

The minimum weight k-cut problem asks for a partition of the nodes into k£ non-
empty blocks without enforcing a balance constraint. Goldschmidt et al. [88]
proved that, for a fixed k, this problem can be solved optimally in O(nkz). The
problem is NP-complete [88] if & is not part of the input.

For the unweighted minimum bisection problem, Feige and Krauthgamer [68]
have shown that there is an O(log1‘5 n) approximation algorithm and an O(logn)
approximation for minimum bisection on planar graphs. The bisection problem
is efficiently solvable if the balance constraint is dropped — in this case it is
the minimum cut problem. Wagner et al. [211] have shown that the minimum
bisection problem becomes harder the more the balance constraint is tightened
towards the perfectly balanced case. More precisely, if the block weights are
bounded from below by a constant, i.e., |V;| > C, then the problem is solvable
in polynomial time. The problem is NP-hard if the block weights are constrained
by |Vi| > an® for some a,§ > 0 or if |V;| = Z. The case |V;| > alogn for some
a > 0 is open. Note that the case |V;| > an® also implies that the general GPP
with similar lower bounds on the block weights is NP-hard.

If the balance constraint of the problem is dropped and one uses a different
objective function such as sparsest cut, then there are better approximation
algorithms. The sparsest cut objective combines cut and balance into a single
objective function. For general graphs and the sparsest cut metric, Arora et al.
[7,8] achieve an approximation ratio of O(y/Iogn) in O(n?) time.

Being of high theoretical importance, most of the approximation algorithms
are not implemented, and the approaches that implement approximation algo-
rithms are too slow to be used for large graphs or are not able to compete with
state-of-the-art GP solvers. Hence, mostly heuristics are used in practice.

3 Applications of Graph Partitioning

We now describe some of the applications of GP. For brevity this list is not
exhaustive.

3.1 Parallel Processing

Perhaps the canonical application of GP is the distribution of work to processors
of a parallel machine. Scientific computing applications such as sparse direct
and iterative solvers extensively use GP to ensure load balance and minimize
communication. When the problem domain does not change as the computation
proceeds, GP can be applied once in the beginning of the computation. This is
known as static partitioning.

Periodic repartitioning, explained in Sect. 2.1, proved to be useful for scientific
computing applications with evolving computational domains such as Adaptive
Mesh Refinement (AMR) or volume rendering [11]. The graph model can be
augmented with additional edges and nodes to model the migration costs, as
done for parallel direct volume rendering of unstructured grids [11], an important
problem in scientific visualization.

122 A. Bulug et al.

Parallel Graph Computations. GP is also used to partition graphs for parallel
processing, for problems such as graph eigenvalue computations [25], breadth-
first search [31], triangle listing [43], PageRank and connected components [181].
In computationally intensive graph problems, such as finding the eigenvectors
and eigenvalues of graphs, multilevel methods that are tailored to the character-
istics of real graphs are suitable [1].

Mesh Partitioning. A mesh or grid approximates a geometric domain by dividing
it into smaller subdomains. Hendrickson defines it as “the scaffolding upon which
a function is decomposed into smaller pieces” [96]. Mesh partitioning involves
mapping the subdomains of the mesh to processors for parallel processing, with
the objective of minimizing communication and load imbalance. A partial dif-
ferential equation (PDE) that is discretized over a certain grid can be solved by
numerous methods such as the finite differences method or the finite elements
method. The discretization also defines a system of linear equations that can be
represented by a sparse matrix. While it is always possible to use that sparse
matrix to do the actual computation over the mesh or grid, sometimes this can
be wasteful when the matrix need not be formed explicitly. In the absence of
an explicit sparse matrix, the GP solvers first define a graph from the mesh.
The right mesh entity to use as the nodes of the graph can be ambiguous and
application dependent. Common choices are mesh nodes, groups of mesh nodes
that need to stay together, and the dual of mesh nodes. Choosing groups of
mesh nodes (such as small regular meshes [74]) with appropriate weighting as
graph nodes makes GP cost effective for large problem sizes when the over-
head for per-node partitioned graphs would be too big. Recent work by Zhou
et al. [222] gives a thorough treatment of extreme-scale mesh partitioning and
dynamic repartitioning using graph models. A variety of solution methodologies
described in Sect. 6, such as the multilevel and geometric methods, has been
successfully applied to mesh partitioning.

3.2 Complex Networks

In addition to the previously mentioned task of network data distribution across
a cluster of machines for fast parallel computations, complex networks introduced
numerous further applications of GPP. A common task in these applications is to
identify groups of similar entities whose similarity and connectivity is modeled
by the respective networks. The quality of the localizations is quantified with
different domain-relevant objectives. Many of them are based on the principle of
finding groups of entities that are weakly connected to the rest of the network.
In many cases such connectivity also represents similarity. In the context of
optimization problems on graphs, by complex networks we mean weighted graphs
with non-trivial structural properties that were created by real-life or modelling
processes [159]. Often, models and real-life network generation processes are not
well understood, so designing optimization algorithms for such graphs exhibit a
major bottleneck in many applications.

Recent Advances in Graph Partitioning 123

Power Grids. Disturbances and cascading failures are among the central prob-
lems in power grid systems that can cause catastrophic blackouts. Splitting a
power network area into self-sufficient islands is an approach to prevent the
propagation of cascading failures [132]. Often the cut-based objectives of the
partitioning are also combined with the load shedding schemes that enhance the
robustness of the system and minimize the impact of cascading events [133].
Finding vulnerabilities of power systems by GPP has an additional difficulty.
In some applications, one may want to find more than one (nearly) minimum
partitioning because of the structural difference between the solutions. Spectral
GP (see Sect. 4.2) is also used to detect contingencies in power grid vulnerability
analysis by splitting the network into regions with excess generation and excess
load [60].

Geographically Embedded Networks. Recent advances of location-aware devices
(such as GPS) stimulated a rapid growth of streaming spatial network data
that has to be analyzed by extremely fast algorithms. These networks model
entities (nodes) tied to geographic places and links that represent flows such as
migrations, vehicle trajectories, and activities of people [54]. In problems related
to spatial data and geographical networks, the cut-based objective of GP (and
clustering) is often reinforced by the spatial contiguity constraints.

Biological Networks. Many complex biological systems can be modeled by graph-
theoretic representations. Examples include protein-protein interactions, and
gene co-expression networks. In these networks nodes are biological entities (such
as genes and proteins) and edges correspond to their common participation in
some biological process. Such processes can vary from simple straightforward
interactions (such as protein-protein interaction and gene-gene co-expression) to
more complex relationships in which more than two entities are involved. Parti-
tioning and clustering of such networks may have several goals. One of them is
related to data reduction given an assumption that clustered nodes behave bio-
logically similarly to each other. Another one is the detection of some biological
processes by finding clusters of involved nodes. For details see [109,154].

Social Networks. Identification of community structure is among the most
popular topics in social network science. In contrast to the traditional GPP,
community detection problems rarely specify the number of clusters a priori.
Notwithstanding this difference, GP methods contributed a lot of their tech-
niques to the community detection algorithms [76]. Moreover, GP solvers are
often used as first approximations for them. We refer the reader to examples of
methods where GP is used for solving the community detection problem [158].

3.3 Road Networks

GP is a very useful technique to speed up route planning [48,52,118,129,138,
153]. For example, edges could be road segments and nodes intersections.

1 Sometimes more complex models are used to model lanes, turn costs etc.

124 A. Bulug et al.

Lauther [129] introduced the arc-flags algorithm, which uses a geometric
partitioning approach as a preprocessing step to reduce the search space of
Dijkstra’s algorithm. Méhring et al. [153] improved this method in several ways.
Using high quality graph partitions turns out to be one key improvement here
since this reduces the preprocessing cost drastically. One reason is that road
networks can be partitioned using surprisingly small cuts but these are not easy
to find.

Schulz et al. [196] propose a multilevel algorithm for routing based on pre-
computing connections between border nodes of a graph partition. This was one
of the first successful speedup technique for shortest paths. It was outclassed
later by other hierarchy based methods, and, somewhat surprisingly resurfaced
after Delling et al. [48,52] did thorough algorithm engineering for this approach.
Again, a key improvement was to use high quality graph partitions. Since the
approach excels at fast recomputation of the preprocessing information when the
edge weights change, the method is now usually called customizable route plan-
ning. Luxen and Schieferdecker [138] use GP to efficiently compute candidate
sets for alternative routes in road networks and Kieritz et al. [118] parallelize
shortest-path preprocessing and query algorithms. Maue et al. [141] show how
to use precomputed distances between blocks of a partition to make the search
goal directed. Here, block diameter seems more relevant than cut size, however.

3.4 Image Processing

Image segmentation is a fundamental task in computer vision for which GP and
clustering methods have become among the most attractive solution techniques.
The goal of image segmentation is to partition the pixels of an image into groups
that correspond to objects. Since the computations preceding segmentation are
often relatively cheap and since the computations after segmentation work on a
drastically compressed representation of the image (objects rather than pixels),
segmentation is often the computationally most demanding part in an image
processing pipeline. The image segmentation problem is not well-posed and can
usually imply more than one solution. During the last two decades, graph-based
representations of an image became very popular and gave rise to many cut-
based approaches for several problems including image segmentation. In this
representation each image pixel (or in some cases groups of pixels) corresponds to
a node in a graph. Two nodes are connected by a weighted edge if some similarity
exists between them. Usually, the criteria of similarity is a small geodesic distance
which can result in mesh-like graphs with four or more neighbors for each node.
The edge weights represent another measure of (dis)similarity between nodes
such as the difference in the intensity between the connected pixels (nodes).
GP can be formulated with different objectives that can explicitly reflect
different definitions of the segmented regions depending on the applications.
The classical minimum cut formulation of the GP objective (1) can lead in
practice to finding too small segmented objects. One popular modification of the
objective that was adopted in image segmentation, called normalized cut, is given
by ncut(A, B) = w(Eap)/vol(A) + w(Eap)/vol(B). This objective is similar to

Recent Advances in Graph Partitioning 125

the conductance objective described in Sect. 2.1. Many eflicient algorithms were
proposed for solving GPP with the normalized cut objective. Among the most
successful are spectral and multilevel approaches. Another relevant formulation
of the partitioning objective which is useful for image segmentation is given by
optimizing the isoperimetric ratio for sets [89]. For more information on graph
partitioning and image segmentation see [32,169].

3.5 VLSI Physical Design

Physical design of digital circuits for very large-scale integration (VLSI) systems
has a long history of being one of the most important customers of graph and
hypergraph partitioning, often reinforced by several additional domain relevant
constraints. The partitioning should be accomplished in a reasonable compu-
tation time, even for circuits with millions of modules, since it is one of the
bottlenecks of the design process. The goal of the partitioning is to reduce the
VLSI design complexity by partitioning it into smaller components (that can
range from a small set of field-programmable gate arrays to fully functional inte-
grated circuits) as well as to keep the total length of all the wires short. The
typical optimization objective (see (1)) is to minimize the total weight of connec-
tions between subcircuits (blocks), where nodes are the cells, i.e., small logical or
functional units of the circuit (such as gates), and edges are the wires. Because
the gates are connected with wires with more than two endpoints, hypergraphs
model the circuit more accurately. Examples of additional constraints for the
VLSI partitioning include information on the I/O of the circuit, sets of cells that
must belong to the same blocks, and maximum cut size between two blocks. For
more information about partitioning of VLSI circuits see [45,110].

4 Global Algorithms

We begin our discussion of the wide spectrum of GP algorithms with methods
that work with the entire graph and compute a solution directly. These algo-
rithms are often used for smaller graphs or are applied as subroutines in more
complex methods such as local search or multilevel algorithms. Many of these
methods are restricted to bipartitioning but can be generalized to k-partitioning
for example by recursion.

After discussing exact methods in Sect.4.1 we turn to heuristic algorithms.
Spectral partitioning (Sect. 4.2) uses methods from linear algebra. Graph growing
(Sect. 4.3) uses breadth first search or similar ways to directly add nodes to a
block. Flow computations are discussed in Sect.4.4. Section 4.5 summarizes a
wide spectrum of geometric techniques. Finally, Sect. 4.5 introduces streaming
algorithms which work with a very limited memory footprint.

4.1 Exact Algorithms

There is a large amount of literature on methods that solve GPP optimally. This
includes methods dedicated to the bipartitioning case [5,6,28,49,51,69,70,93,94,

126 A. Bulug et al.

111,134,197] and some methods that solve the general GPP [71,198]. Most of
the methods rely on the branch-and-bound framework [126].

Bounds are derived using various approaches: Karisch et al. [111] and
Armbruster [5] use semi-definite programming, and Sellman et al. [197] and
Sensen [198] employ multi-commodity flows. Linear programming is used by
Brunetta et al. [28], Ferreira et al. [71], Lisser and Rendl [134] and by Arm-
bruster et al. [6]. Hager et al. [93,94] formulate GPP in form of a continuous
quadratic program on which the branch and bound technique is applied. The
objective of the quadratic program is decomposed into convex and concave com-
ponents. The more complicated concave component is then tackled by an SDP
relaxation. Felner [70] and Delling et al. [49,51] utilize combinatorial bounds.
Delling et al. [49,51] derive the bounds by computing minimum s-¢ cuts between
partial assignments (4, B), i.e., A,B C V and AN B = (. The method can
partition road networks with more than a million nodes, but its running time
highly depends on the bisection width of the graph.

In general, depending on the method used, two alternatives can be observed.
Either the bounds derived are very good and yield small branch-and-bound trees
but are hard to compute. Or the bounds are somewhat weaker and yield larger
trees but are faster to compute. The latter is the case when using combinatorial
bounds. On finite connected subgraphs of the two dimensional grid without holes,
the bipartitioning problem can be solved optimally in O(n4) time [69]. Recent
work by Bevern et al. [19] looks at the parameterized complexity for computing
balanced partitions in graphs.

All of these methods can typically solve only very small problems while having
very large running times, or if they can solve large bipartitioning instances using
a moderate amount of time [49,51], highly depend on the bisection width of
the graph. Methods that solve the general GPP [71,198] have immense running
times for graphs with up to a few hundred nodes. Moreover, the experimental
evaluation of these methods only considers small block numbers k& < 4.

4.2 Spectral Partitioning

One of the first methods to split a graph into two blocks, spectral bisection,
is still in use today. Spectral techniques were first used by Donath and Hoff-
man [58,59] and Fiedler [73], and have been improved subsequently by others
[15,26,98,172,200]. Spectral bisection infers global information of the connectiv-
ity of a graph by computing the eigenvector corresponding to the second smallest
eigenvalue of the Laplacian matrix L of the graph. This eigenvector z; is also
known as Fiedler vector; it is the solution of a relaxed integer program for cut
optimization. A partition is derived by determining the median value 7 in zo
and assigning all nodes with an entry smaller or equal to m to V7 and all others
to V5.

The second eigenvector can be computed using a modified Lanczos
algorithm [125]. However, this method is expensive in terms of running time.
Barnard and Simon [15] use a multilevel method to obtain a fast approxima-
tion of the Fiedler vector. The algorithmic structure is similar to the multilevel

Recent Advances in Graph Partitioning 127

method explained in Sect. 6, but their method coarsens with independent node
sets and performs local improvement with Rayleigh quotient iteration. Hendrick-
son and Leland [98] extend the spectral method to partition a graph into more
than two blocks by using multiple eigenvectors; these eigenvectors are compu-
tationally inexpensive to obtain. The method produces better partitions than
recursive bisection, but is only useful for the partitioning of a graph into four
or eight blocks. The authors also extended the method to graphs with node and
edge weights.

4.3 Graph Growing

A very simple approach for obtaining a bisection of a graph is called graph
growing [81,113]. Most of its variants are based on breadth-first search. Its sim-
plest version works as follows. Starting from a random node v, the nodes are
assigned to block V; using a breadth-first search (BFS) starting at v. The search
is stopped after half of the original node weights are assigned to this block and
Vs is set to V\Vi. This method can be combined with a local search algorithm
to improve the partition. Multiple restarts of the algorithm are important to get
a good solution. One can also try to find a good starting node by looking at a
node that has maximal distance from a random seed node [81]. Variations of the
algorithm always add the node to the block that results in the smallest increase
in the cut [113]. An extension to k > 2 blocks and with iterative improvement
is described in Sect. 5.5.

4.4 Flows

The well-known max-flow min-cut theorem [75] can be used to separate two node
sets in a graph by computing a maximum flow and hence a minimum cut between
them. This approach completely ignores balance, and it is not obvious how to
apply it to the balanced GPP. However, at least for random regular graphs with
small bisection width this can be done [29]. Maximum flows are also often used
as a subroutine. Refer to Sect.5.4 for applications to improve a partition and
to Sect. 6.4 for coarsening in the context of the multilevel framework. There are
also applications of flow computations when quality is measured by expansion
or conductance [3,127].

4.5 Geometric Partitioning

Partitioning can utilize the coordinates of the graph nodes in space, if avail-
able. This is especially useful in finite element models and other geometrically-
defined graphs from traditional scientific computing. Here, geometrically
“compact” regions often correspond to graph blocks with small cut. Partition-
ing using nodal coordinates comes in many flavors, such as recursive coordinate
bisection (RCB) [200] and inertial partitioning [67,221]. In each step of its recur-
sion, RCB projects graph nodes onto the coordinate axis with the longest expan-
sion of the domain and bisects them through the median of their projections.

128 A. Bulug et al.

The bisecting plane is orthogonal to the coordinate axis, which can create par-
titions with large separators in case of meshes with skewed dimensions. Inertial
partitioning can be interpreted as an improvement over RCB in terms of worst
case performance because its bisecting plane is orthogonal to a plane L that
minimizes the moments of inertia of nodes. In other words, the projection plane
L is chosen such that it minimizes the sum of squared distances to all nodes.

The random spheres algorithm of Miller et al. [83,152] generalizes the RCB
algorithm by stereographically projecting the d dimensional nodes to a random
d + 1 dimensional sphere which is bisected by a plane through its center point.
This method gives performance guarantees for planar graphs, k-nearest neighbor
graphs, and other “well-behaved” graphs.

Other representatives of geometry-based partitioning algorithms are space-
filling curves [14,105,171,223] which reduce d-dimensional partitioning to the
one-dimensional case. Space filling curves define a bijective mapping from V'
to {1,...,|V|}. This mapping aims at the preservation of the nodes’ locality in
space. The partitioning itself is simpler and cheaper than RCB once the bijective
mapping is constructed. A generalization of space-filling curves to general graphs
can be done by so-called graph-filling curves [190].

A recent work attempts to bring information on the graph structure into the
geometry by embedding arbitrary graphs into the coordinate space using a mul-
tilevel graph drawing algorithm [121]. For a more detailed, albeit not very recent,
treatment of geometric methods, we refer the interested reader to Schloegel
et al. [191].

4.6 Streaming Graph Partitioning (SGP)

Streaming data models are among the most popular recent trends in big data
processing. In these models the input arrives in a data stream and has to be
processed on the fly using much less space than the overall input size. SGP
algorithms are very fast. They are even faster than multilevel algorithms but give
lower solution quality. Nevertheless, many applications that require extremely
fast repartitioning methods (such as those that deal with dynamic networks) can
still greatly benefit from the SGP algorithms when an initial solution obtained
by a stronger (static data) algorithm is supplied as an initial ordering. For details
on SGP we refer the reader to [160,203,209].

5 Iterative Improvement Heuristics

Most high quality GP solvers iteratively improve starting solutions. We outline
a variety of methods for this purpose, moving from very fine-grained localized
approaches to more global techniques.

5.1 Node-Swapping Local Search

Local search is a simple and widely used metaheuristic for optimization that iter-
atively changes a solution by choosing a new one from a neighborhood. Defining

Recent Advances in Graph Partitioning 129

the neighborhood and the selection strategy allows a wide variety of techniques.
Having the improvement of paging properties of computer programs in mind,
Kernighan and Lin [117] were probably the first to define GPP and to provide
a local search method for this problem. The selection strategy finds the swap of
node assignments that yields the largest decrease in the total cut size. Note that
this “decrease” is also allowed to be negative. A round ends when all nodes have
been moved in this way. The solution is then reset to the best solution encoun-
tered in this round. The algorithm terminates when a round has not found an
improvement.

A major drawback of the KL method is that it is expensive in terms of
asymptotic running time. The implementation assumed in [117] takes time
O(n?logn) and can be improved to O(mmax(logn, A)) where A denotes the
maximum degree [64]. A major breakthrough is the modification by Fiduccia and
Mattheyses [72]. Their carefully designed data structures and adaptations yield
the KL/FM local search algorithm, whose asymptotic running time is O(m).
Bob Darrow was the first who implemented the KL/FM algorithm [72].

Karypis and Kumar [114] further accelerated KL/FM by only allowing
boundary nodes to move and by stopping a round when the edge cut does not
decrease after x node moves. They improve quality by random tie breaking and
by allowing additional rounds even when no improvements have been found.

A highly localized version of KL /FM is considered in [161]. Here, the search
spreads from a single boundary node. The search stops when a stochastic model
of the search predicts that a further improvement has become unlikely. This
strategy has a better chance to climb out of local minima and yields improved
cuts for the GP solvers KaSPar [161] and KaHIP [183].

Rather than swapping nodes, Holtgrewe et al. move a single node at a
time allowing more flexible tradeoffs between reducing the cut or improving
balance [102].

Helpful Sets by Diekmann et al. [55,155] introduce a more general neigh-
borhood relation in the bipartitioning case. These algorithms are inspired by a
proof technique of Hromkovié and Monien [103] for proving upper bounds on
the bisection width of a graph. Instead of migrating single nodes, whole sets of
nodes are exchanged between the blocks to improve the cut. The running time
of the algorithm is comparable to the KL/FM algorithm, while solution quality
is often better than other methods [155].

5.2 Extension to k-way Local Search

It has been shown by Simon and Teng [201] that, due to the lack of global
knowledge, recursive bisection can create partitions that are very far away from
the optimal partition so that there is a need for k-way local search algorithms.
There are multiple ways of extending the KL /FM algorithm to get a local search
algorithm that can improve a k-partition.

One early extension of the KL/FM algorithm to k-way local search uses
k(k — 1) priority queues, one for each type of move (source block, target block)

130 A. Bulug et al.

[97,182]. For a single movement one chooses the node that maximizes the gain,
breaking ties by the improvement in balance.

Karypis and Kumar [114] present a k-way version of the KL /FM algorithm
that runs in linear time O(m). They use a single global priority queue for all
types of moves. The priority used is the maximum local gain, i. e., the maximum
reduction in the cut when the node is moved to one of its neighboring blocks.
The node that is selected for movement yields the maximum improvement for
the objective and maintains or improves upon the balance constraint.

Most current local search algorithms exchange nodes between blocks of the
partition trying to decrease the cut size while also maintaining balance. This
highly restricts the set of possible improvements. Sanders and Schulz [186,195]
relax the balance constraint for node movements but globally maintain (or
improve) balance by combining multiple local searches. This is done by reducing
the combination problem to finding negative cycles in a graph, exploiting the
existence of efficient algorithms for this problem.

5.3 Tabu Search

A more expensive k-way local search algorithm is based on tabu search [86,87],
which has been applied to GP by [16-18,78,175]. We briefly outline the method
reported by Galinier et al. [78]. Instead of moving a node exactly once per
round, as in the traditional versions of the KL/FM algorithms, specific types of
moves are excluded only for a number of iterations. The number of iterations
that a move (v, block) is excluded depends on an aperiodic function f and the
current iteration 4. The algorithm always moves a non-excluded node with the
highest gain. If the node is in block A, then the move (v, A) is excluded for f(7)
iterations after the node is moved to the block yielding the highest gain, i.e.,
the node cannot be put back to block A for f(i) iterations.

5.4 Flow Based Improvement

Sanders and Schulz [183,185] introduce a max-flow min-cut based technique to
improve the edge cut of a given bipartition (and generalize this to k-partitioning
by successively looking at pairs of blocks that are adjacent in the quotient graph).
The algorithm constructs an s-t flow problem by growing an area around the
given boundary nodes/cut edges. The area is chosen such that each s-t cut
in this area corresponds to a feasible bipartition of the original graph, i.e., a
bipartition that fulfills the balance constraint. One can then apply a max-flow
min-cut algorithm to obtain a min-cut in this area and hence a nondecreased cut
between the blocks. There are multiple improvements to extend this method, for
example, by iteratively applying the method, searching in larger areas for feasible
cuts, or applying a heuristic to output better balanced minimum cuts by using
the given max-flow.

Recent Advances in Graph Partitioning 131

5.5 Bubble Framework

Diekmann et al. [57] extend graph growing and previous ideas [216] to obtain
an iterative procedure called Bubble framework, which is capable of partitioning
into £ > 2 well-shaped blocks. Some applications profit from good geometric
block shapes, e. g., the convergence rate of certain iterative linear solvers.

Graph growing is extended first by carefully selecting k seed nodes that
are evenly distributed over the graph. The key property for obtaining a good
quality, however, is an iterative improvement within the second and the third
step — analogous to Lloyd’s k-means algorithm [135]. Starting from the k seed
nodes, k breadth-first searches grow the blocks analogous to Sect. 4.3, only that
the breadth-first searches are scheduled such that the smallest block receives the
next node. Local search algorithms are further used within this step to balance
the load of the blocks and to improve the cut of the resulting partition, which may
result in unconnected blocks. The final step of one iteration computes new seed
nodes for the next round. The new center of a block is defined as the node that
minimizes the sum of the distances to all other nodes within its block. To avoid
their expensive computation, approximations are used. The second and the third
step of the algorithm are iterated until either the seed nodes stop changing or no
improved partition was found for more than 10 iterations. Figure 1 illustrates the
three steps of the algorithm. A drawback of the algorithm is its computational
complexity O(km).

Subsequently, this approach has been improved by using distance measures
that better reflect the graph structure [144,151,189]. For example, Schamberger
[189] introduced the usage of diffusion as a growing mechanism around the initial
seeds and extended the method to weighted graphs. More sophisticated diffusion
schemes, some of which have been employed within the Bubble framework, are
discussed in Sect. 5.6.

5.6 Random Walks and Diffusion

A random walk on a graph starts on a node v and then chooses randomly the
next node to visit from the set of neighbors (possibly including v itself) based
on transition probabilities. The latter can for instance reflect the importance of
an edge. This iterative process can be repeated an arbitrary number of times.

—

W

Fig. 1. The three steps of the Bubble framework. Black nodes indicate the seed nodes.
On the left hand side, seed nodes are found. In the middle, a partition is found by
performing breadth-first searches around the seed nodes and on the right hand side
new seed nodes are found.

132 A. Bulug et al.

It is governed by the so-called transition matrix P, whose entries denote the
edges’ transition probabilities. More details can be found in Lovasz’s random
walk survey [136].

Diffusion, in turn, is a natural process describing a substance’s desire to
distribute evenly in space. In a discrete setting on graphs, diffusion is an iterative
process which exchanges splittable entities between neighboring nodes, usually
until all nodes have the same amount. Diffusion is a special random walk; thus,
both can be used to identify dense graph regions: Once a random walk reaches
a dense region, it is likely to stay there for a long time, before leaving it via one
of the relatively few outgoing edges. The relative size of me}, the probability of
a random walk that starts in u to be located on v after ¢ steps, can be exploited
for assigning v and v to the same or different clusters. This fact is used by many
authors for graph clustering, cf. Schaeffer’s survey [188].

Due to the difficulty of enforcing balance constraints, works employing these
approaches for partitioning are less numerous. Meyerhenke et al. [148] present
a similarity measure based on diffusion that is employed within the Bubble
framework. This diffusive approach bears some conceptual resemblance to spec-
tral partitioning, but with advantages in quality [150]. Balancing is enforced by
two different procedures that are only loosely coupled to the actual partitioning
process. The first one is an iterative procedure that tries to adapt the amount of
diffusion load in each block by multiplying it with a suitable scalar. Underloaded
blocks receive more load, overloaded ones less. It is then easier for underloaded
blocks to “flood” other graph areas as well. In case the search for suitable scalars
is unsuccessful, the authors employ a second approach that extends previous
work [219]. It computes a migrating flow on the quotient graph of the partition.
The flow value f;; between blocks ¢ and j specifies how many nodes have to be
migrated from ¢ to j in order to balance the partition. As a key and novel prop-
erty for obtaining good solutions, to determine which nodes should be migrated
in which order, the diffusive similarity values computed before within the Bubble
framework are used [146,148].

Diffusion-based partitioning has been subsequently improved by Pellegrini
[165], who combines KL /FM and diffusion for bipartitioning in the tool Scotch.
He speeds up previous approaches by using band graphs that replace unimpor-
tant graph areas by a single node. An extension of these results to k-way parti-
tioning with further adaptations has been realized within the tools DibaP [143]
and PDibaP for repartitioning [147]. Integrated into a multilevel method, dif-
fusive partitioning is able to compute high-quality solutions, in particular with
respect to communication volume and block shape. It remains further work to
devise a faster implementation of the diffusive approach without running time
dependence on k.

6 Multilevel Graph Partitioning

Clearly the most successful heuristic for partitioning large graphs is the multi-
level graph partitioning approach. It consists of the three main phases outlined

Recent Advances in Graph Partitioning 133

in Fig. 2: coarsening, initial partitioning, and uncoarsening. The main goal of the
coarsening (in many multilevel approaches implemented as contraction) phase is
to gradually approximate the original problem and the input graph with fewer
degrees of freedom. In multilevel GP solvers this is achieved by creating a hier-
archy of successively coarsened graphs with decreasing sizes in such a way that
cuts in the coarse graphs reflect cuts in the fine graph. There are multiple pos-
sibilities to create graph hierarchies. Most methods used today contract sets of
nodes on the fine level. Contracting U C V amounts to replacing it with a single
node u with ¢(u) := > oy ¢(w). Contraction (and other types of coarsening)
might produce parallel edges which are replaced by a single edge whose weight
accumulates the weights of the parallel edges (see Fig. 3). This implies that bal-
anced partitions on the coarse level represent balanced partitions on the fine
level with the same cut value.

Coarsening is usually stopped when the graph is sufficiently small to be
initially partitioned using some (possibly expensive) algorithm. Any of the basic
algorithms from Sect.4 can be used for initial partitioning as long as they are
able to handle general node and edge weights. The high quality of more expensive
methods that can be applied at the coarsest level does not necessarily translate
into quality at the finest level, and some GP multilevel solvers rather run several
faster but diverse methods repeatedly with different random tie breaking instead
of applying expensive global optimization techniques.

Uncoarsening consists of two stages. First, the solution obtained on the coarse
level graph is mapped to the fine level graph. Then the partition is improved, typ-
ically by using some variants of the improvement methods described in Sect. 5.
This process of uncoarsening and local improvement is carried on until the
finest hierarchy level has been processed. One run of this simple coarsening-
uncoarsening scheme is also called a V-cycle (see Fig. 2).

There are at least three intuitive reasons why the multilevel approach works
so well: First, at the coarse levels we can afford to perform a lot of work per node
without increasing the overall execution time by a lot. Furthermore, a single node
move at a coarse level corresponds to a big change in the final solution. Hence,
we might be able to find improvements easily that would be difficult to find on
the finest level. Finally, fine level local improvements are expected to run fast
since they already start from a good solution inherited from the coarse level. Also

a

V-Cycle
o input) b Y
(o]
% graph) patitia §
§_ match ¥ local improvement & >
| (53 @l i i
hel [
3 4 8
& | contract ¥ A §
=
E

initi uncontract
In_m:" F-Cycle
partitioning

Fig. 2. The multilevel approach to GP. The left figure shows a two-level contraction-
based scheme. The right figure shows different chains of coarsening-uncoarsening in the
multilevel frameworks.

134 A. Bulug et al.

multilevel methods can benefit from their iterative application (such as chains
of V-cycles) when the previous iteration’s solution is used to improve the qual-
ity of coarsening. Moreover, (following the analogy to multigrid schemes) the
inter-hierarchical coarsening-uncoarsening iteration can also be reconstructed
in such way that more work will be done at the coarser levels (see F-, and
W-cycles in Fig.2, and [183,212]). An important technical advantage of mul-
tilevel approaches is related to parallelization. Because multilevel approaches
achieve a global solution by local processing only (though applied at different
levels of coarseness) they are naturally parallelization-schemes friendly.

6.1 Contracting a Single Edge

A minimalistic approach to coarsening is to
contract only two nodes connected by a sin-
gle edge in the graph. Since this leads to a
hierarchy with (almost) n levels, this method
is called n-level GP [161]. Together with a
k-way variant of the highly localized local Fig, 3. An example matching and
search from Sect.5.1, this leads to a very contraction of the matched edges.
simple way to achieve high quality parti-

tions. Compared to other techniques, n-level partitioning has some overhead
for coarsening, mainly because it needs a priority queue and a dynamic graph
data structure. On the other hand, for graphs with enough locality (e.g. from
scientific computing), the n-level method empirically needs only sublinear work
for local improvement.

6.2 Contracting a Matching

The most widely used contraction strategy contracts (large) matchings, i. e., the
contracted sets are pairs of nodes connected by edges and these edges are not
allowed to be incident to each other. The idea is that this leads to a geomet-
rically decreasing size of the graph and hence a logarithmic number of levels,
while subsequent levels are “similar” so that local improvement can quickly find
good solutions. Assuming linear-time algorithms on all levels, one then gets
linear overall execution time. Conventional wisdom is that a good matching con-
tains many high weight edges since this decreases the weight of the edges in the
coarse graph and will eventually lead to small cuts. However, one also wants a
certain uniformity in the node weights so that it is not quite clear what should
be the objective of the matching algorithm. A successful recent approach is to
delegate this tradeoff between edge weights and uniformity to an edge rating

function [1,102]. For example, the function f(u,v) = “C’((i;‘czju})) works very well

[102,183] (also for n-level partitioning [161]). The concept of algebraic distance
yields further improved edge ratings [179].

The weighted matching problem itself has attracted a lot of interest moti-
vated to a large extent by its application for coarsening. Although the maximum

Recent Advances in Graph Partitioning 135

weight matching problem can be solved optimally in polynomial time, optimal
algorithms are too slow in practice. There are very fast heuristic algorithms like
(Sorted) Heavy Edge Matching, Light Edge Matching, Random Matching, etc.
[113,191] that do not give any quality guarantees however. On the other hand,
there are (near) linear time matching algorithms that are slightly more expensive
but give approximation guarantees and also seem to be more robust in practice.
For example, a greedy algorithm considering the edges in order of descending
edge weight guarantees half of the optimal edge weight. Preis’ algorithm [173]
and the Path Growing Algorithm [61] have a similar flavor but avoid sorting
and thus achieve linear running time for arbitrary edge weights. The Global
Path Algorithm (GPA) [140] is a synthesis of Greedy and Path Growing achiev-
ing somewhat higher quality in practice and is not a performance bottleneck in
many cases. GPA is therefore used in KaHIP [183,186,187]. Linear time algo-
rithms with better approximation guarantee are available [62,63,140,170] and
the simplest of them seem practical [140]. However, it has not been tried yet
whether they are worth the additional effort for GP.

6.3 Coarsening for Scale-Free Graphs

Matching-based graph coarsening methods are well-suited for coarsening graphs
arising in scientific computing. On the other hand, matching-based approaches
can fail to create good hierarchies for graphs with irregular structure. Consider
the extreme example that the input graph is a star. In this case, a matching
algorithm can contract only one edge per level, which leads to a number of levels
that is undesirable in most cases.

Abou-Rjeili and Karypis [1] modify a large set of matching algorithms such
that an unmatched node can potentially be matched with one of its neighbors
even if it is already matched. Informally speaking, instead of matchings, whole
groups of nodes are contracted to create the graph hierarchies. These approaches
significantly improve partition quality on graphs having a power-law degree dis-
tribution.

Another approach has been presented by Auer and Bisseling [10]. The authors
create graph hierarchies for social networks by allowing pairwise merges of nodes
that have the same neighbors and by merging multiple nodes, i.e., collapsing
multiple neighbors of a high degree node with this node.

Meyerhenke et al. [145,149] presented an approach that uses a modification
of the original label propagation algorithm [174] to compute size-constrained
clusterings which are then contracted to compute good multilevel hierarchies for
such graphs. The same algorithm is used as a very simple greedy local search
algorithm.

Glantz et al. [85] introduce an edge rating based on how often an edge appears
in relatively balanced light cuts induced by spanning trees. Intriguingly, this
cut-based approach yields partitions with very low communication volume for
scale-free graphs.

136 A. Bulug et al.

6.4 Flow Based Coarsening

Using max-flow computations, Delling et al. [50] find “natural cuts” separating
heuristically determined regions from the remainder of the graph. Components
cut by none of these cuts are then contracted reducing the graph size by up to
two orders of magnitude. They use this as the basis of a two-level GP solver that
quickly gives very good solutions for road networks.

6.5 Coarsening with Weighted Aggregation

Aggregation-based coarsening identifies nodes on the fine level that survive in the
coarsened graph. All other nodes are assigned to these coarse nodes. In the general
case of weighted aggregation, nodes on a fine level belong to nodes on the coarse
level with some probability. This approach is derived from a class of hierarchical
linear solvers called Algebraic Multigrid (AMG) methods [41,144]. First results
on the bipartitioning problem were obtained by Ron et al. in [176]. As AMG lin-
ear solvers have shown, weighted aggregation is important in order to express the
likelihood of nodes to belong together. The accumulated likelihoods “smooth the
solution space” by eliminating from it local minima that will be detected instante-
neously by the local processing at the uncoarsening phase. This enables a relaxed
formulation of coarser levels and avoids making hardened local decisions, such
as edge contractions, before accumulating relevant global information about the
graph.

Weighted aggregation can lead to significantly denser coarse graphs. Hence,
only the most efficient AMG approaches can be adapted to graph partitioning
successfully. Furthermore one has to avoid unbalanced node weights. In [179]
algebraic distance [38] is used as a measure of connectivity between nodes to
obtain sparse and balanced coarse levels of high quality. These principles and
their relevance to AMG are summarized in [178].

Lafon and Lee [124] present a related coarsening framework whose goal is
to retain the spectral properties of the graph. They use matrix-based argu-
ments using random walks (for partitioning methods based on random walks see
Sect. 5.6) to derive approximation guarantees on the eigenvectors of the coarse
graph. The disadvantage of this approach is the rather expensive computation
of eigenvectors.

7 Evolutionary Methods and Further Metaheuristics

In recent years a number of metaheuristics have been applied to GPP. Some of
these works use concepts that have already been very popular in other applica-
tion domains such as genetic or evolutionary algorithms. For a general overview
of genetic/evolutionary algorithms tackling GPP, we refer the reader to the
overview paper by Kim et al. [119]. In this section we focus on the descrip-
tion of hybrid evolutionary approaches that combine evolutionary ideas with the
multilevel GP framework [16,17,202]. Other well-known metaheuristics such as

Recent Advances in Graph Partitioning 137

multi-agent and ant-colony optimization [44,122], and simulated annealing [108]
are not covered here. Neither do we discuss the recently proposed metaheuris-
tics PROBE by Chardaire et al. [37] (a genetic algorithm without selection) and
Fusion-Fission by Bichot [23] (inspired by nuclear processes) in detail. Most of
these algorithms are able to produce solutions of a very high quality, but only if
they are allowed to run for a very long time. Hybrid evolutionary algorithms are
usually able to compute partitions with considerably better quality than those
that can be found by using a single execution of a multilevel algorithm.

The first approach that combined evolutionary ideas with a multilevel GP
solver was by Soper et al. [202]. The authors define two main operations, a
combine and a mutation operation. Both operations modify the edge weights
of the graph depending on the input partitions and then use the multilevel
partitioner Jostle, which uses the modified edge weights to obtain a new partition
of the original graph. The combine operation first computes node weight biases
based on the two input partitions/parents of the population and then uses those
to compute random perturbations of the edge weights which help to mimic the
input partitions. While producing partitions of very high quality, the authors
report running times of up to one week. A similar approach based on edge
weight perturbations is used by Delling et al. [50].

A multilevel memetic algorithm for the perfectly balanced graph partition
problem, i.e., e = 0, was proposed by Benlic and Hao [16,17]. The main idea of
their algorithm is that among high quality solutions a large number of nodes
will always be grouped together. In their work the partitions represent the
individuals. We briefly sketch the combination operator for the case that two
partitions are combined. First the algorithm selects two individuals/partitions
from the population using a A-tournament selection rule, i.e., choose A random
individuals from the population and select the best among those if it has not
been selected previously. Let the selected partitions be Py = (Vi,...,V,) and
Py = (Wy,...,Wy). Then sets of nodes that are grouped together, i.e.,

U = {{Vl N Wa’(l)}7 ey {Vk N Wa‘(k)}}

are computed. This is done such that the number of nodes that are grouped
together, i.e., Z?Zl |V N Wy, is maximum among all permutations o of
{1,...,k}. An offspring is created as follows. Sets of nodes in &/ will be grouped
within a block of the offspring. That means if a node is in on of the sets of U,
then it is assigned to the same block to which it was assigned to in P;. Other-
wise, it is assigned to a random block, such that the balance constraint remains
fulfilled. Local search is then used to improve the computed offspring before it is
inserted into the population. Benlic and Hao [17] combine their approach with
tabu search. Their algorithms produce partitions of very high quality, but cannot
guarantee that the output partition fulfills the desired balance constraint.
Sanders and Schulz introduced a distributed evolutionary algorithm, KaFF-
PaE (KaFFPaEvolutionary) [184]. They present a general combine operator
framework, which means that a partition P can be combined with another
partition or an arbitrary clustering of the graph, as well as multiple mutation

138 A. Bulug et al.

operators to ensure diversity in the population. The combine operation uses a
modified version of the multilevel GP solver within KaHIP [183] that will not
contract edges that are cut in one of the input partitions/clusterings. In contrast
to the other approaches, the combine operation can ensure that the resulting off-
spring/partition is at least as good as the input partition P. The algorithm is
equipped with a scalable communication protocol similar to randomized rumor
spreading and has been able to improve the best known partitions for many
inputs.

8 Parallel Aspects of Graph Partitioning

In the era of stalling CPU clock speeds, exploiting parallelism is probably the
most important way to accelerate computer programs from a hardware perspec-
tive. When executing parallel graph algorithms without shared memory, a good
distribution of the graph onto the PEs is very important. Since parallel com-
puting is a major purpose for GP, we discuss in this section several techniques
beneficial for parallel scenarios. (i) Parallel GP algorithms are often necessary
due to memory constraints: Partitioning a huge distributed graph on a single PE
is often infeasible. (ii) When different PEs communicate with different speeds
with each other, techniques for mapping the blocks communication-efficiently
onto the PEs become important. (iii) When the graph changes over time (as
in dynamic simulations), so does its partition. Once the imbalance becomes too
large, one should find a new partition that unifies three criteria for this purpose:
balance, low communication, and low migration.

8.1 Parallel Algorithms

Parallel GP algorithms are becoming more and more important since parallel
hardware is now ubiquitous and networks grow. If the underlying application is
in parallel processing, finding the partitions in parallel is even more compelling.
The difficulty of parallelization very much depends on the circumstances. It is
relatively easy to run sequential GP solvers multiple times with randomized tie
breaking in all available decisions. Completely independent runs quickly lead to
a point of diminishing return but are a useful strategy for very simple initial
partitioners as the one described in Sect.4.3. Evolutionary GP solvers are more
effective (thanks to very good combination operators) and scale very well, even
on loosely coupled distributed machines [184].

Most of the geometry-based algorithms from Sect. 4.5 are parallelizable and
perhaps this is one of the main reasons for using them. In particular, one can use
them to find an initial distribution of nodes to processors in order to improve the
locality of a subsequent graph based parallel method [102]. If such a “reasonable”
distribution of a large graph over the local memories is available, distributed
memory multilevel partitioners using MPI can be made to scale [40,102,112,213].
However, loss of quality compared to the sequential algorithms is a constant
concern. A recent parallel matching algorithm allows high quality coarsening,

Recent Advances in Graph Partitioning 139

though [24]. If k coincides with the number of processors, one can use parallel
edge coloring of the quotient graph to do pairwise refinement between neighbor-
ing blocks. At least for mesh-like graphs this scales fairly well [102] and gives
quality comparable to sequential solvers. This comparable solution quality also
holds for parallel JOSTLE as described by Walshaw and Cross [214].

Parallelizing local search algorithms like KL/FM is much more difficult since
local search is inherently sequential and since recent results indicate that it
achieves best quality when performed in a highly localized way [161,183]. When
restricting local search to improving moves, parallelization is possible, though
[2,116,128,149]. In a shared memory context, one can also use speculative
parallelism [205]. The diffusion-based improvement methods described in
Sect. 5.6 are also parallelizable without loss of quality since they are formulated
in a naturally data parallel way [147,168].

8.2 Mapping Techniques

Fundamentals. Parallel computing on graphs is one major application area of
GP, see Sect.3.1. A partition with a small communication volume translates
directly into an efficient application if the underlying hardware provides uniform
communication speed between each pair of processing elements (PEs). Most
of today’s leading parallel systems, however, are built as a hierarchy of PEs,
memory systems, and network connections [142]. Communicating data between
PEs close to each other is thus usually less expensive than between PEs with a
high distance. On such architectures it is important to extend GPP by a flexible
assignment of blocks to PEs [207].

Combining partitioning and mapping to PEs is often done in two different
ways. In the first one, which we term architecture-aware partitioning, the cost
of communicating data between a pair of PEs is directly incorporated into the
objective function during the partitioning process. As an example, assuming that
block (or process) i is run on PE 4, the communication-aware edge cut function
is >, ;w(Bij) - wp(i, j), where wy (i, j) specifies the cost of communicating a
unit item from PE ¢ to PE j [218]. This approach uses a network cost matrix
(NCM) to store the distance function w, [218, p. 603ff.]. Since the entries are
queried frequently during partitioning, a recomputation of the matrix would be
too costly. For large systems one must find a way around storing the full NCM
on each PE, as the storage size scales quadratically with the number of PEs. A
similar approach with emphasis on modeling heterogeneous communication costs
in grid-based systems is undertaken by the software PaGrid [104]. Moulitsas and
Karypis [157] perform architecture-aware partitioning in two phases. Their so-
called predictor-corrector approach concentrates in the first phase only on the
resources of each PE and computes an according partition. In the second phase
the method corrects previous decisions by modifying the partition according to
the interconnection network characteristics, including heterogeneity.

An even stronger decoupling takes place for the second problem formu-
lation, which we refer to as the mapping problem. Let G. = (V., E.,w.) be
the communication graph that models the application’s communication, where

140 A. Bulug et al.

(u,v) € E. denotes how much data process u sends to process v. Let furthermore
Gp = (Vp, Ep,wp) be the processor graph, where (i,j) € E, specifies the band-
width (or the latency) between PE i and PE j. We now assume that a partition
has already been computed, inducing a communication graph G.. The task after
partitioning is then to find a communication-optimal mapping 7 : V, — V.

Different objective functions have been proposed for this mapping problem.
Since it is difficult to capture the deciding hardware characteristics, most authors
concentrate on simplified cost functions — similar to the simplification of the edge
cut for graph partitioning. Apparently small variations in the cost functions
rarely lead to drastic variations in application running time. For details we refer
to Pellegrini’s survey on static mapping [167] (which we wish to update with this
section, not to replace) and the references therein. Global sum type cost functions
do not have the drawback of requiring global updates. Moreover, discontinuities
in their search space, which may inhibit metaheuristics to be effective, are usually
less pronounced than for maximum-based cost functions. Commonly used is the
sum, for all edges of G, of their weight multiplied by the cost of a unit-weight
communication in G, [167]: f(Ge, Gy,) := 32, y)ep, We(u,v) - wp(m(u), 7(v)).

The accuracy of the distance function w, depends on several factors, one
of them being the routing algorithm, which determines the paths a message
takes. The maximum length over all these paths is called the dilation of the
embedding 7. One simplifying assumption can be that the routing algorithm
is oblivious [101] and, for example, uses always shortest paths. When multiple
messages are exchanged at the same time, the same communication link may be
requested by multiple messages. This congestion of edges in G, can therefore be
another important factor to consider and whose maximum (or average) over all
edges should be minimized. Minimizing the maximum congestion is NP-hard, cf.
Garey and Johnson [80] or more recent work [101,120].

Algorithms. Due to the problem’s complexity, exact mapping methods are only
practical in special cases. Leighton’s book [130] discusses embeddings between
arrays, trees, and hypercubic topologies. One can apply a wide range of opti-
mization techniques to the mapping problem, also multilevel algorithms. Their
general structure is very similar to that described in Sect.6. The precise dif-
ferences of the single stages are beyond our scope. Instead we focus on very
recent results — some of which also use hierarchical approaches. For pointers to
additional methods we refer the reader to Pellegrini [167] and Aubanel’s short
summary [9] on resource-aware load balancing,.

Greedy approaches such as the one by Brandfass et al. [27] map the node v,
of G, with the highest total communication cost w.r.t. to the already mapped
nodes onto the node v, of G, with the smallest total distance w.r.t. to the
already mapped nodes. Some variations exist that improve this generic approach
in certain settings [84,101].

Hoefler and Snir [101] employ the reverse Cuthill-McKee (RCM) algorithm
as a mapping heuristic. Originally, RCM has been conceived for the problem
of minimizing the bandwidth of a sparse matrix [81]. In case both G. and G,

Recent Advances in Graph Partitioning 141

are sparse, the simultaneous optimization of both graph layouts can lead to
reasonable mapping results, also cf. Pellegrini [166].

Many metaheuristics have been used to solve the mapping problem. Ucar et
al. [210] implement a large variety of methods within a clustering approach, among
them genetic algorithms, simulated annealing, tabu search, and particle swarm
optimization. Brandfass et al. [27] present local search and evolutionary algo-
rithms. Their experiments confirm that metaheuristics are significantly slower
than problem-specific heuristics, but obtain high-quality solutions [27,210].

Another common approach is to partition G, — or the application graph itself
— simultaneously together with G, into the same number of blocks &’. This is
for example done in SCOTCH [164]. For this approach %’ is chosen small enough
so that it is easy to test which block in G, is mapped onto which block in G),.
Since this often implies k' < k, the partitioning is repeated recursively. When the
number of nodes in each block is small enough, the mapping within each block
is computed by brute force. If ¥’ = 2 and the two graphs to be partitioned are
the application graph and G, the method is called dual recursive bipartitioning.
Recently, schemes that model the processor graph as a tree have emerged [306]
in this algorithmic context and in similar ones [107].

Hoefler and Snir [101] compare the greedy, RCM, and dual recursive (bi)par-
titioning mapping techniques experimentally. On a 3D torus and two other real
architectures, their results do not show a clear winner. However, they confirm
previous studies [167] in that performing mapping at all is worthwhile. Bhatele
et al. [21] discuss topology-aware mappings of different communication patterns
to the physical topology in the context of MPI on emerging architectures. Better
mappings avoid communication hot spots and reduce communication times sig-
nificantly. Geometric information can also be helpful for finding good mappings
on regular architectures such as tori [20].

8.3 Migration Minimization During Repartitioning

Repartitioning involves a tradeoff between the quality of the new partition and
the migration volume. Larger changes between the old partition IT and the new
one II’, necessary to obtain a small communication volume in II’, result in a
higher migration volume. Different strategies have been explored in the literature
to address this tradeoff. Two simple ones and their limitations are described by
Schloegel et al. [192]. One approach is to compute a new partition I’ from
scratch and determine a migration-minimal mapping between IT and IT’. This
approach delivers good partitions, but the migration volume is often very high.
Another strategy simply migrates nodes from overloaded blocks to underloaded
ones, until a new balanced partition is reached. While this leads to optimal
migration costs, it often delivers poor partition quality. To improve these simple
schemes, Schloegel et al. [193] combine the two and get the best of both in their
tool ParMetis.

Migration minimization with virtual nodes has been used in the repartition-
ing case by, among others, Hendrickson et al. [99]. For each block, an additional

142 A. Bulug et al.

node is added, which may not change its affiliation. It is connected to each node
v of the block by an edge whose weight is proportional to the migration cost for
v. Thus, one can account for migration costs and partition quality at the same
time. A detailed discussion of this general technique was made by Walshaw [217].
Recently, this technique has been extended to heterogeneous architectures by
Fourestier and Pellegrini [77].

Diffusion-based partitioning algorithms are particularly strong for repar-
titioning. PDibaP yields about 30-50% edge cut improvement compared to
ParMetis and about 15% improvement on parallel Jostle with a comparable
migration volume [147] (a short description of these tools can be found in
Sect. 9.3). Hypergraph-based repartitioning is particularly important when the
underlying problem has a rather irregular structure [34].

9 Implementation and Evaluation Aspects

The two major factors that make up successful GP algorithms are speed and
quality. It depends on the application if one of them is favored over the other
and what quality means. Speed requires an appropriate implementation, for
which we discuss the most common graph data structures in practice first in
this section. Then, we discuss GP benchmarks to assess different algorithms
and implementations, some widely used, others with potential. Finally, relevant
software tools for GP are presented.

9.1 Sparse Graph Data Structures

The graph data structure used by most partitioning software is the Compressed
Sparse Rows (CSR) format, also known as adjacency arrays. CSR is a cache and
storage efficient data structure for representing static graphs. The CSR represen-
tation of a graph can be composed of two, three, or four arrays, depending upon
whether edges or nodes are weighted. The node array (V) is of size n + 1 and
holds the node pointers. The edge array and the edge weights array, if present,
are of size m each. Each entry in the edge array (E) holds the node id of the
target node, while the corresponding entry in the edge weights array (W) holds
the weight of the edge. The node array holds the offsets to the edge array, mean-
ing that the target nodes of the outgoing edges of the ith node are accessible
from E(V(i)) to E(V(i + 1) — 1) and their respective weights are accessible from
W(V (7)) to W(V(i4+1)—1). Both Metis and Scotch use a CSR-like data structure.
Since nodes can also be weighted in graph partitioning, an additional vector of
size n is often used to store node weights in that case. The CSR format can
further be improved and reinforced by rearranging the nodes with one of the
cache-oblivious layouts such as the minimum logarithmic arrangement [42,180].

Among distributed-memory GP solvers, ParMetis and PT-Scotch use a 1D
node distribution where each processor owns approximately n/p nodes and their
corresponding edges. By contrast, Zoltan uses a 2D edge distribution that has
lower communication requirements in theory.

Recent Advances in Graph Partitioning 143

9.2 Benchmarking

The Walshaw benchmark? was created in 2000 by Soper et al. [202]. This public
domain archive, maintained by Chris Walshaw, contains 34 real-world graphs
stemming from applications such as finite element computations, matrix compu-
tations, VLSI Design and shortest path computations. More importantly, it also
contains for each graph the partitions with the smallest cuts found so far. Sub-
missions are sought that achieve improved cut values for k € {2,4, 8,16, 32,64}
and balance parameters e € {0,0.01,0.03,0.05}, while running time is not an
issue. Currently, solutions of over 40 algorithms have been submitted to the
archive. It is the most popular GP benchmark in the literature.

There are many other very valuable sources of graphs for experimental
evaluations: the 10th DIMACS Implementation Challenge [12,13], the Florida
Sparse Matrix Collection [46], the Laboratory of Web Algorithms [220], the
Koblenz Network Collection [123], and the Stanford Large Network Dataset
Collection [131]. Many of the graphs are available at the website of the 10th
DIMACS Implementation Challenge [12,13] in the graph format that is used by
many GP software tools.

Aubanel et al. [82] present a different kind of partitioning benchmark. Instead
of measuring the edge cut of the partitions, the authors evaluate the execution
time of a parallel PDE solver to benchmark the partitions produced by differ-
ent GP solvers. The crucial module of the benchmark is parallel matrix-vector
multiplication, which is meaningful for other numerical routines as well.

Many fast methods for GPP are based on approaches in which finding a
global solution is done by local operations only. Testing if such methods are
robust against falling into local optima obtained by the local processing is a
very important task. In [179] a simple strategy for checking the quality of such
methods was presented. To construct a potentially hard instance, one may con-
sider a mixture of graphs with very different structures that are weakly connected
with each other. For example, in multilevel algorithms these graphs can force the
algorithm to contract incorrect edges that lead to uneven coarsening; also, they
can attract a “too strong” refinement to reach a local optimum, which can con-
tradict better optima at finer levels. Examples of real graphs that contain such
mixtures of structures include multi-mode networks [206] and logistics multi-
stage system networks [204]. Hardness of particular structures for GP solvers is
confirmed by generating graphs that are similar to the given ones at both coarse
and/or fine resolutions [91].

9.3 Software Tools

There are a number of software packages that implement the described algo-
rithms. One of the first publicly available software packages called Chaco is
due to Hendrickson and Leland [95]. As most of the publicly available soft-
ware packages, Chaco implements the multilevel approach outlined in Sect.6

2 http:/ /staffweb.cms.gre.ac.uk/~wc06 /partition /.

http://staffweb.cms.gre.ac.uk/~wc06/partition/

144 A. Bulug et al.

and basic local search algorithms. Moreover, they implement spectral partition-
ing techniques. Probably the fastest and best known system is the Metis family
by Karypis and Kumar [113,114]. kMetis [114] is focused on partitioning speed
and hMetis [115], which is a hypergraph partitioner, aims at partition quality.
PaToH [35] is also a widely used hypergraph partitioner that produces high qual-
ity partitions. ParMetis is a widely used parallel implementation of the Metis
GP algorithm [112]. Scotch [39,40,163] is a GP framework by Pellegrini. It uses
recursive multilevel bisection and includes sequential as well as parallel partition-
ing techniques. Jostle [213,215] is a well-known sequential and parallel GP solver
developed by Chris Walshaw. The commercialised version of this partitioner is
known as NetWorks. It has been able to hold most of the records in the Walshaw
Benchmark for a long period of time. If a model of the communication network
is available, then Jostle and Scotch are able to take this model into account for
the partitioning process. Party [57,155] implements the Bubble/shape-optimized
framework and the Helpful Sets algorithm. The software packages DibaP and its
MPI-parallel variant PDibaP by Meyerhenke [143,147] implement the Bubble
framework using diffusion; DibaP also uses AMG-based techniques for coarsen-
ing and solving linear systems arising in the diffusive approach. Recently, Sanders
and Schulz [186,187] released the GP package KaHIP (Karlsruhe High Quality
Partitioning) which implements for example flow-based methods, more-localized
local searches and several parallel and sequential meta-heuristics. KaHIP scored
most of the points in the GP subchallenge of the 10th DIMACS Implemen-
tation Challenge [13] and currently holds most of the entries in the Walshaw
Benchmark.

To address the load balancing problem in parallel applications, distrib-
uted versions of the established sequential partitioners Metis, Jostle and
Scotch [168,194,215] have been developed. The tools Parkway by Trifunovic and
Knottenbelt [208] as well as Zoltan by Devine et al. [53] focus on hypergraph
partitioning. Recent results of the 10th DIMACS Implementation Challenge [13]
suggest that scaling current hypergraph partitioners to very large systems is
even more challenging than graph partitioners.

10 Future Challenges

It is an interesting question to what extent the multitude of results sketched
above have reached a state of maturity where future improvements become less
and less likely. On the one hand, if you consider the Walshaw benchmark with
its moderately sized static graphs with mostly regular structure, the quality
obtained using the best current systems is very good and unlikely to improve
much in the future. One can already get very good quality with a careful appli-
cation of decade old techniques like KL/FM local search and the multilevel
approach. On the other hand, as soon as you widen your view in some direction,
there are plenty of important open problems.

Bridging Gaps Between Theory and Practice. We are far from understanding
why (or when) the heuristic methods used in practice produce solutions very

Recent Advances in Graph Partitioning 145

close to optimal. This is particularly striking for bipartitioning, where recent
exact results suggest that heuristics often find the optimal solution. In contrast,
theoretical results state that we cannot even find constant-factor approximations
in polynomial time. On the other hand, the sophisticated theoretical methods
developed to obtain approximation guarantees are currently not used in the most
successful solvers. It would be interesting to see to what extent these techniques
can yield a practical contribution. There is a similar problem for exact solvers,
which have made rapid progress for the case k = 2. However, it remains unclear
how to use them productively for larger graphs or in case k > 2, for example
as initial partitioners in a multilevel system or for pair-wise local improvement
of subgraphs. What is surprisingly successful, is the use of solvers with perfor-
mance guarantees for subproblems that are easier than partitioning. For exam-
ple, KaHIP [187] uses weighted matching, spanning trees, edge coloring, BF'S,
shortest paths, diffusion, maximum flows, and strongly connected components.
Further research into this direction looks promising.

Difficult Instances. The new “complex network” applications described in
Sect. 3.2 result in graphs that are not only very large but also difficult to han-
dle for current graph partitioners. This difficulty results from an uneven degree
distribution and much less locality than observed in traditional inputs. Here,
improved techniques within known frameworks (e.g., better coarsening schemes)
and even entirely different approaches can give substantial improvements in
speed or quality.

Another area where large significant quality improvements are possible are for
large k. Already for the largest value of k considered in the Walshaw benchmark
(64), the spread between different approaches is considerable. Considering graphs
with billions of nodes and parallel machines reaching millions of processors,
k < 64 increasingly appears like a special case. The multilevel method loses
some of its attractiveness for large k since even initial partitioning must solve
quite large instances. Hence new ideas are required.

Multilevel Approach. While the multilevel paradigm has been extremely suc-
cessful for GP, there are still many algorithmic challenges ahead. The variety
of continuous systems multilevel algorithms (such as various types of multigrid)
turned into a separate field of applied mathematics, and optimization. Yet, mul-
tilevel algorithms for GPP still consist in practice of a very limited number
of multilevel techniques. The situation with other combinatorial optimization
problems is not significantly different. One very promising direction is bridging
the gaps between the theory and practice of multiscale computing and multi-
level GP such as introducing nonlinear coarsening schemes. For example, a novel
multilevel approach for the minimum vertex separator problem was recently pro-
posed using the continuous bilinear quadratic program formulation [92], and a
hybrid of the geometric multigrid, and full approzimation scheme for continuous
problem was used for graph drawing, and VLSI placement problems [45,177].
Development of more sophisticated coarsening schemes, edge ratings, and met-
rics of nodes’ similarity that can be propagated throughout the hierarchies are

146 A. Bulug et al.

among the future challenges for graph partitioning as well as any attempt of
their rigorous analysis.

Parallelism and Other Hardware Issues. Scalable high quality GP (with qual-
ity comparable to sequential partitioners) remains an open problem. With the
advent of exascale machines with millions of processors and possibly billions
of threads, the situation is further aggravated. Traditional “flat” partitions of
graphs for processing on such machines implies a huge number of blocks. It is
unclear how even sequential partitioners perform for such instances. Resorting to
recursive partitioning brings down k and also addresses the hierarchical nature
of such machines. However, this means that we need parallel partitioners where
the number of available processors is much bigger than k. It is unclear how to
do this with high quality. Approaches like the band graphs from PT-Scotch are
interesting but likely to fail for complex networks.

Efficient implementation is also a big issue since complex memory hierar-
chies and heterogeneity (e.g., GPUs or FPGAs) make the implementation com-
plicated. In particular, there is a mismatch between the fine-grained discrete
computations predominant in the best sequential graph partitioners and the
massive data parallelism (SIMD-instructions, GPUs,...) in high performance
computing which better fits highly regular numeric computations. It is therefore
likely that high quality GP will only be used for the higher levels of the machine
hierarchy, e.g., down to cluster nodes or CPU sockets. At lower levels of the
architectural hierarchy, we may use geometric partitioning or even regular grids
with dummy values for non-existing cells (e.g. [74]).

While exascale computing is a challenge for high-end applications, many
more applications can profit from GP in cloud computing and using tools for
high productivity such as Map/Reduce [47], Pregel [139], GraphLab [137], Com-
binatorial BLAS [30], or Parallel Boost Graph Library [90]. Currently, none of
these systems uses sophisticated GP software.

These changes in architecture also imply that we are no longer interested in
algorithms with little computations but rather in data access with high locality
and good energy efficiency.

Beyond Balanced k-partitioning with Cut Minimization. We have intentionally
fixed our basic model assumptions above to demonstrate that even the classi-
cal setting has a lot of open problems. However, these assumption become less
and less warranted in the context of modern massively parallel hardware and
huge graphs with complex structure. For example, it looks like the assump-
tions that low total cut is highly correlated with low bottleneck cut or com-
munication volume (see Sect.2.1) is less warranted for complex network [31].
Eventually, we would like a dynamic partition that adapts to the communica-
tion requirements of a computation such as PageRank or BFS with changing
sets of active nodes and edges. Also, the fixed value for k becomes questionable
when we want to tolerate processor failures or achieve “malleable” computations
that adapt their resource usage to the overall situation, e.g., to the arrival or
departure of high priority jobs. Techniques like overpartitioning, repartitioning

Recent Advances in Graph Partitioning 147

(with changed k), and (re)mapping will therefore become more important. Even
running time as the bottom-line performance goal might be replaced by energy
consumption [199].

Acknowledgements. We express our gratitude to Bruce Hendrickson, Dominique
LaSalle, and George Karypis for many valuable comments on a preliminary draft of
the manuscript.

References

10.

11.

12.

13.

14.

. Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law

graphs. In: 20th International Parallel and Distributed Processing Symposium
(IPDPS). IEEE (2006)

. Akhremtsev, Y., Sanders, P., Schulz, C.: (Semi-)external algorithms for graph

partitioning and clustering. In: 15th Workshop on Algorithm Engineering and
Experimentation (ALENEX), pp. 33-43 (2015)

Andersen, R., Lang, K.J.: An algorithm for improving graph partitions. In: 19th
ACM-SIAM Symposium on Discrete Algorithms, pp. 651-660 (2008)

Andreev, K., Réacke, H.: Balanced graph partitioning. Theory Comput. Syst.
39(6), 929-939 (2006)

Armbruster, M.: Branch-and-cut for a semidefinite relaxation of large-scale min-
imum bisection problems. Ph.D. thesis, U. Chemnitz (2007)

Armbruster, M., Fiigenschuh, M., Helmberg, C., Martin, A.: A comparative
study of linear and semidefinite branch-and-cut methods for solving the mini-
mum graph bisection problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.)
IPCO 2008. LNCS, vol. 5035, pp. 112-124. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-68891-4_8

Arora, S., Hazan, E., Kale, S.: O(y/logn) approximation to sparsest cut in O(nQ)
time. SIAM J. Comput. 39(5), 1748-1771 (2010)

Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. In: 36th ACM Symposium on the Theory of Computing (STOC),
pp. 222-231 (2004)

Aubanel, E.: Resource-aware load balancing of parallel applications. In: Udoh, E.,
Wang, F.Z. (eds.) Handbook of Research on Grid Technologies and Utility Com-
puting: Concepts for Managing Large-Scale Applications, pp. 12—21. Information
Science Reference - Imprint of: IGI Publishing, May 2009

Auer, B.F., Bisseling, R.H.: Graph coarsening and clustering on the GPU. In:
Bader et al. [13], pp. 19-36

Aykanat, C., Cambazoglu, B.B., Findik, F., Kurc, T.: Adaptive decomposi-
tion and remapping algorithms for object-space-parallel direct volume render-
ing of unstructured grids. J. Parallel Distrib. Comput. 67(1), 77-99 (2007).
http://dx.doi.org/10.1016 /j.jpdc.2006.05.005

Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.:
Benchmarking for graph clustering and graph partitioning. In: Encyclopedia of
Social Network Analysis and Mining (to appear)

Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partitioning
and Graph Clustering — 10th DIMACS Impl. Challenge, Contemporary Mathe-
matics, vol. 588. AMS, Boston (2013)

Bader, M.: Space-Filling Curves. Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-540-68891-4_8
http://dx.doi.org/10.1007/978-3-540-68891-4_8
http://dx.doi.org/10.1016/j.jpdc.2006.05.005

148

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

A. Bulug et al.

Barnard, S.T., Simon, H.D.: A fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. In: 6th SIAM Conference on
Parallel Processing for Scientific Computing, pp. 711-718 (1993)

Benlic, U., Hao, J.K.: An effective multilevel memetic algorithm for balanced
graph partitioning. In: 22nd IEEE International Conference on Tools with Arti-
ficial Intelligence (ICTAI), pp. 121-128 (2010)

Benlic, U., Hao, J.K.: A multilevel memetic approach for improving graph k-
partitions. IEEE Trans. Evol. Comput. 15(5), 624642 (2011)

Benlic, U., Hao, J.K.: An effective multilevel tabu search approach for balanced
graph partitioning. Comput. Oper. Res. 38(7), 1066-1075 (2011)

van Bevern, R., Feldmann, A.E., Sorge, M., Suchy, O.: On the parameterized com-
plexity of computing balanced partitions in graphs. CoRR abs/1312.7014 (2013).
http://arxiv.org/abs/1312.7014

Bhatele, A., Kale, L.: Heuristic-based techniques for mapping irregular commu-
nication graphs to mesh topologies. In: 13th Conference on High Performance
Computing and Communications (HPCC), pp. 765-771 (2011)

Bhatele, A., Jain, N., Gropp, W.D., Kale, L.V.: Avoiding hot-spots on two-level
Direct networks. In: ACM/IEEE Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pp. 76:1-76:11. ACM (2011)

Bichot, C., Siarry, P. (eds.): Graph Partitioning. Wiley, Hoboken (2011)

Bichot, C.E.: A new method, the fusion fission, for the relaxed k-way graph par-
titioning problem, and comparisons with some multilevel algorithms. J. Math.
Model. Algorithms 6(3), 319-344 (2007)

Birn, M., Osipov, V., Sanders, P., Schulz, C., Sitchinava, N.: Efficient paral-
lel and external matching. In: Wolf, F., Mohr, B., Mey, D. (eds.) Euro-Par
2013. LNCS, vol. 8097, pp. 659-670. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40047-6_66

Boman, E.G., Devine, K.D., Rajamanickam, S.: Scalable matrix computations on
large scale-free graphs using 2D graph partitioning. In: ACM/IEEE Conference
for High Performance Computing, Networking, Storage and Analysis (SC) (2013)
Boppana, R.B.: Eigenvalues and graph bisection: an average-case analysis. In:
28th Symposium on Foundations of Computer Science (FOCS), pp. 280-285
(1987)

Brandfass, B., Alrutz, T., Gerhold, T.: Rank reordering for MPI
communication optimization. Comput. Fluids 80, 372-380 (2013).
http://www.sciencedirect.com/science/article/pii/S004579301200028 X

Brunetta, L., Conforti, M., Rinaldi, G.: A branch-and-cut algorithm for the equi-
cut problem. Math. Program. 78(2), 243-263 (1997)

Bui, T., Chaudhuri, S., Leighton, F., Sipser, M.: Graph bisection algorithms with
good average case behavior. Combinatorica 7, 171-191 (1987)

Bulug, A., Gilbert, J.R.: The combinatorial BLAS: design, implementation, and
applications. Int. J. High Perform. Comput. Appl. 25(4), 496-509 (2011)

Bulug, A., Madduri, K.: Graph partitioning for scalable distributed graph com-
putations. In: Bader et al. [13], pp. 83-102

Camilus, K.S., Govindan, V.K.: A review on graph based segmentation. IJIGSP
4, 1-13 (2012)

Catalyurek, U., Aykanat, C.: A hypergraph-partitioning approach for coarse-
grain decomposition. In: ACM/IEEE Conference on Supercomputing (SC). ACM
(2001)

http://arxiv.org/abs/1312.7014
http://dx.doi.org/10.1007/978-3-642-40047-6_66
http://dx.doi.org/10.1007/978-3-642-40047-6_66
http://www.sciencedirect.com/science/article/pii/S004579301200028X

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Recent Advances in Graph Partitioning 149

Catalyurek, U., Boman, E., et al.: Hypergraph-based dynamic load balancing for
adaptive scientific computations. In: 21st International Parallel and Distributed
Processing Symposium (IPDPS). IEEE (2007)

Catalyiirek, U., Aykanat, C.: PaToH: partitioning tool for hypergraphs. In: Padua,
D. (ed.) Encyclopedia of Parallel Computing. Springer, Heidelberg (2011)

Chan, S.Y., Ling, T.C., Aubanel, E.: The impact of heterogeneous multi-core
clusters on graph partitioning: an empirical study. Cluster Comput. 15(3), 281—
302 (2012)

Chardaire, P., Barake, M., McKeown, G.P..: A PROBE-based heuristic for graph
partitioning. IEEE Trans. Comput. 56(12), 1707-1720 (2007)

Chen, J., Safro, I.: Algebraic distance on graphs. STAM J. Sci. Comput. 33(6),
3468-3490 (2011)

Chevalier, C., Pellegrini, F.: Improvement of the efficiency of genetic algorithms
for scalable parallel graph partitioning in a multi-level framework. In: Nagel, W.E.,
Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 243-252.
Springer, Heidelberg (2006). doi:10.1007/11823285_25

Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering.
Parallel Comput. 34(6), 318-331 (2008)

Chevalier, C., Safro, I.: Comparison of coarsening schemes for multi-level graph
partitioning. In: Proceedings Learning and Intelligent Optimization (2009)
Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A.,
Raghavan, P.: On compressing social networks. In: 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 219-228 (2009)
Chu, S., Cheng, J.: Triangle listing in massive networks and its applications. In:
17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
672-680 (2011)

Comellas, F., Sapena, E.: A multiagent algorithm for graph partitioning. In: Roth-
lauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E.,
Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H.
(eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 279-285. Springer, Heidelberg
(2006). doi:10.1007/11732242_25

Cong, J., Shinnerl, J.: Multilevel Optimization in VLSICAD. Springer, Heidelberg
(2003)

Davis, T.: The University of Florida Sparse Matrix Collection (2008). http://
www.cise.ufl.edu/research/sparse/matrices/

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: 6th Symposium on Operating System Design and Implementation (OSDI), pp.
137-150. USENIX (2004)

Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376-387. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20662-7_32
Delling, D., Goldberg, A.V., Razenshteyn, 1., Werneck, R.F.: Exact combina-
torial branch-and-bound for graph bisection. In: 12th Workshop on Algorithm
Engineering and Experimentation (ALENEX), pp. 30—44 (2012)

Delling, D., Goldberg, A.V., et al.: Graph partitioning with natural cuts. In:
25th International Parallel and Distributed Processing Symposium (IPDPS), pp.
1135-1146 (2011)

Delling, D., Werneck, R.F.: Better bounds for graph bisection. In: Epstein, L.,
Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 407-418. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33090-2_36

http://dx.doi.org/10.1007/11823285_25
http://dx.doi.org/10.1007/11732242_25
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
http://dx.doi.org/10.1007/978-3-642-20662-7_32
http://dx.doi.org/10.1007/978-3-642-33090-2_36

150

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

A. Bulug et al.

Delling, D., Werneck, R.F.: Faster customization of road networks. In: Bonifaci,
V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 30—42. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38527-8_5
Devine, K.D., Boman, E.G., Heaphy, R.T., Bisseling, R.H., Catalyurek, U.V.: Par-
allel hypergraph partitioning for scientific computing. In: Proceedings of the IEEE
International Parallel and Distributed Processing Symposium, p. 124. IPDPS 2006
(2006). http://dl.acm.org/citation.cfm?id=1898953.1899056

Guo, D., Ke Liao, H.J.: Power system reconfiguration based on multi-level graph
partitioning. In: 7th International Conference, GIScience 2012 (2012)
Diekmann, R., Monien, B., Preis, R.: Using helpful sets to improve graph bisec-
tions. In: Interconnection Networks and Mapping and Scheduling Parallel Com-
putations, vol. 21, pp. 57-73 (1995)

Diekmann, R., Preis, R., Schlimbach, F.; Walshaw, C.: Shape-optimized mesh
partitioning and load balancing for parallel adaptive FEM. Parallel Comput. 26,
1555-1581 (2000)

Diekmann, R., Preis, R., Schlimbach, F., Walshaw, C.: Shape-optimized mesh par-
titioning and load balancing for parallel adaptive FEM. Parallel Comput. 26(12),
1555-1581 (2000)

Donath, W.E., Hoffman, A.J.: Algorithms for partitioning of graphs and computer
logic based on eigenvectors of connection matrices. IBM Tech. Discl. Bull. 15(3),
938-944 (1972)

Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. IBM
J. Res. Dev. 17(5), 420-425 (1973)

Donde, V., Lopez, V., Lesieutre, B., Pinar, A., Yang, C., Meza, J.: Identification
of severe multiple contingencies in electric power networks. In: 37th N. A. Power
Symposium, pp. 59-66. IEEE (2005)

Drake, D., Hougardy, S.: A simple approximation algorithm for the weighted
matching problem. Inf. Process. Lett. 85, 211-213 (2003)

Drake Vinkemeier, D.E., Hougardy, S.: A linear-time approximation algorithm
for weighted matchings in graphs. ACM Trans. Algorithms 1(1), 107-122 (2005)
Duan, R., Pettie, S., Su, H.H.: Scaling Algorithms for Approximate and Exact
Maximum Weight Matching. CoRR abs/1112.0790 (2011)

Dutt, S.: New faster Kernighan-Lin-type graph-partitioning algorithms. In: 4th
IEEE/ACM Conference on Computer-Aided Design, pp. 370-377 (1993)

Even, G., Naor, J.S., Rao, S., Schieber, B.: Fast approximate graph partitioning
algorithms. SIAM J. Comput. 28(6), 21872214 (1999)

Fagginger Auer, B.O., Bisseling, R.H.: Abusing a hypergraph partitioner for
unweighted graph partitioning. In: Bader et al. [13], pp. 19-35

Farhat, C., Lesoinne, M.: Automatic partitioning of unstructured meshes for the
parallel solution of problems in computational mechanics. J. Numer. Methods
Eng. 36(5), 745-764 (1993). http://dx.doi.org/10.1002/nme.1620360503

Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the minimum
bisection. STAM J. Comput. 31(4), 1090-1118 (2002)

Feldmann, A.E., Widmayer, P.: An O(n*) time algorithm to compute the bisection
width of solid grid graphs. In: Demetrescu, C., Halldérsson, M.M. (eds.) ESA
2011. LNCS, vol. 6942, pp. 143-154. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23719-5_13

Felner, A.: Finding optimal solutions to the graph partitioning problem with
heuristic search. Ann. Math. Artif. Intell. 45, 293-322 (2005)

http://dx.doi.org/10.1007/978-3-642-38527-8_5
http://dl.acm.org/citation.cfm?id=1898953.1899056
http://dx.doi.org/10.1002/nme.1620360503
http://dx.doi.org/10.1007/978-3-642-23719-5_13
http://dx.doi.org/10.1007/978-3-642-23719-5_13

71.

72.

73.

74.

75.

76.
7.

78.

79.

80.

81.

82.

83.

84.

85.

86.
87.
88.
89.

90.

91.

Recent Advances in Graph Partitioning 151

Ferreira, C.E., Martin, A., De Souza, C.C., Weismantel, R., Wolsey, L.A.: The
node capacitated graph partitioning problem: a computational study. Math. Pro-
gram. 81(2), 229-256 (1998)

Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network
partitions. In: 19th Conference on Design Automation, pp. 175-181 (1982)
Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and
its application to graph theory. Czech. Math. J. 25(4), 619-633 (1975)

Fietz, J., Krause, M.J., Schulz, C., Sanders, P., Heuveline, V.: Optimized
hybrid parallel lattice Boltzmann fluid flow simulations on complex geome-
tries. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par
2012. LNCS, vol. 7484, pp. 818-829. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32820-6_81

Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8(3),
399-404 (1956)

Fortunato, S.: Community Detection in Graphs. CoRR abs/0906.0612 (2009)
Fourestier, S., Pellegrini, F.: Adaptation au repartitionnement de graphes d’une
méthode d’optimisation globale par diffusion. In: RenPar’20 (2011)

Galinier, P., Boujbel, Z., Fernandes, M.C.: An efficient memetic algorithm for the
graph partitioning problem. Ann. Oper. Res. 191(1), 1-22 (2011)

Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete prob-
lems. In: 6th ACM Symposium on Theory of Computing, pp. 47-63. STOC, ACM
(1974)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Upper Saddle River (1981)

Ghazinour, K., Shaw, R.E., Aubanel, E.E., Garey, L.E.: A linear solver for bench-
marking partitioners. In: 22nd IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), pp. 1-8 (2008)

Gilbert, J.R., Miller, G.L., Teng, S.H.: Geometric mesh partitioning: implemen-
tation and experiments. SIAM J. Sci. Comput. 19(6), 2091-2110 (1998)

Glantz, R., Meyerhenke, H., Noe, A.: Algorithms for mapping parallel processes
onto grid and torus architectures. In: Proceedings of the 23rd Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based Processing (2015,
to appear). Preliminary version: http://arxiv.org/abs/1411.0921

Glantz, R., Meyerhenke, H., Schulz, C.: Tree-based coarsening and partition-
ing of complex networks. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 364-375. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-07959-2_31

Glover, F.: Tabu search — part I. ORSA J. Comput. 1(3), 190-206 (1989)
Glover, F.: Tabu search — part II. ORSA J. Comput. 2(1), 4-32 (1990)
Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the k-cut problem
for fixed k. Math. Oper. Res. 19(1), 24-37 (1994)

Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmenta-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 28, 469-475 (2006)

Gregor, D., Lumsdaine, A.: The parallel BGL: a generic library for distributed
graph computations. In: Parallel Object-Oriented Scientific Computing (POOSC)
(2005)

Gutfraind, A., Meyers, L.A., Safro, I.: Multiscale Network Generation. CoRR
abs/1207.4266 (2012)

http://dx.doi.org/10.1007/978-3-642-32820-6_81
http://dx.doi.org/10.1007/978-3-642-32820-6_81
http://arxiv.org/abs/1411.0921
http://dx.doi.org/10.1007/978-3-319-07959-2_31
http://dx.doi.org/10.1007/978-3-319-07959-2_31

152

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.
110.

111.

A. Bulug et al.

Hager, W.W., Hungerford, J.T., Safro, I.. A multilevel bilinear program-
ming algorithm for the vertex separator problem. CoRR abs/1410.4885 (2014).
arXiv:1410.4885

Hager, W.W., Krylyuk, Y.: Graph partitioning and continuous quadratic pro-
gramming. SIAM J. Discrete Math. 12(4), 500-523 (1999)

Hager, W.W., Phan, D.T., Zhang, H.: An exact algorithm for graph partitioning.
Math. Program. 137(1-2), 531-556 (2013)

Hendrickson, B.: Chaco: Software for Partitioning Graphs. http://www.cs.sandia.
gov/bahendr/chaco.html

Hendrickson, B.: Graph partitioning and parallel solvers: has the emperor no
clothes? In: Ferreira, A., Rolim, J., Simon, H., Teng, S.-H. (eds.) IRREGULAR
1998. LNCS, vol. 1457, pp. 218-225. Springer, Heidelberg (1998). do0i:10.1007/
BFb0018541

Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In:
ACM/IEEE Conference on Supercomputing 1995 (1995)

Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm
for mapping parallel computations. STAM J. Sci. Comput. 16(2), 452-469 (1995)
Hendrickson, B., Leland, R., Driessche, R.V.: Enhancing data locality by using
terminal propagation. In: 29th Hawaii International Conference on System Sci-
ences (HICSS 2009), vol. 1, p. 565. Software Technology and Architecture (1996)
Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing.
Parallel Comput. 26(12), 1519-1534 (2000)

Hoefler, T., Snir, M.: Generic topology mapping strategies for large-scale parallel
architectures. In: ACM International Conference on Supercomputing (ICS 2011),
pp- 75-85. ACM (2011)

Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a scalable high quality graph
partitioner. In: 24th IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), pp. 1-12 (2010)

Hromkovié, J., Monien, B.: The bisection problem for graphs of degree 4 (config-
uring transputer systems). In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp.
211-220. Springer, Heidelberg (1991). doi:10.1007/3-540-54345-7_64

Huang, S., Aubanel, E., Bhavsar, V.C.: PaGrid: a mesh partitioner for computa-
tional grids. J. Grid Comput. 4(1), 71-88 (2006)

Hungershofer, J., Wierum, J.-M.: On the quality of partitions based on space-
filling curves. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.)
ICCS 2002. LNCS, vol. 2331, pp. 36-45. Springer, Heidelberg (2002). doi:10.1007/
3-540-47789-6_4

Hyafil, L., Rivest, R.: Graph partitioning and constructing optimal decision trees
are polynomial complete problems. Technical report 33, IRIA - Laboratoire de
Recherche en Informatique et Automatique (1973)

Jeannot, E., Mercier, G., Tessier, F.: Process placement in multicore clusters:
algorithmic issues and practical techniques. IEEE Trans. Parallel Distrib. Syst.
PP(99), 1-1 (2013)

Jerrum, M., Sorkin, G.B.: The metropolis algorithm for graph bisection. Discret.
Appl. Math. 82(1-3), 155-175 (1998)

Junker, B., Schreiber, F.: Analysis of Biological Networks. Wiley, Hoboken (2008)
Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design - From Graph
Partitioning to Timing Closure. Springer, Heidelberg (2011)

Karisch, S.E., Rendl, F., Clausen, J.: Solving graph bisection problems with semi-
definite programming. INFORMS J. Comput. 12(3), 177-191 (2000)

http://arxiv.org/abs/1410.4885
http://www.cs.sandia.gov/bahendr/chaco.html
http://www.cs.sandia.gov/bahendr/chaco.html
http://dx.doi.org/10.1007/BFb0018541
http://dx.doi.org/10.1007/BFb0018541
http://dx.doi.org/10.1007/3-540-54345-7_64
http://dx.doi.org/10.1007/3-540-47789-6_4
http://dx.doi.org/10.1007/3-540-47789-6_4

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

Recent Advances in Graph Partitioning 153

Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irreg-
ular graphs. In: ACM/IEEE Supercomputing 1996 (1996)

Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359-392 (1998)

Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
J. Parallel Distrib. Comput. 48(1), 96-129 (1998)

Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. In: 36th
ACM/IEEE Design Automation Conference, pp. 343-348. ACM (1999)

Karypis, G., Kumar, V.: Parallel multilevel series k-way partitioning scheme for
irregular graphs. SIAM Rev. 41(2), 278-300 (1999)

Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(1), 291-307 (1970)

Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent con-
traction hierarchies. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 83-93.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13193-6_8

Kim, J., Hwang, 1., Kim, Y.H., Moon, B.R.: Genetic approaches for graph par-
titioning: a survey. In: 13th Genetic and Evolutionary Computation (GECCO),
pp. 473-480. ACM (2011). http://doi.acm.org/10.1145/2001576.2001642

Kim, Y.M., Lai, T.H.: The complexity of congestion-1 embed-
ding in a hypercube. J. Algorithms 12(2), 246-280 (1991).
http://www.sciencedirect.com/science/article/pii/0196677491900041

Kirmani, S., Raghavan, P.: Scalable parallel graph partitioning. In: High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2013. ACM (2013)
Korosec, P., Silc, J., Robic, B.: Solving the mesh-partitioning problem with an
ant-colony algorithm. Parallel Comput. 30(5-6), 785-801 (2004)

Kunegis, J.: KONECT - the Koblenz network collection. In: Web Observatory
Workshop, pp. 1343-1350 (2013)

Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: a unified framework for
dimensionality reduction, graph partioning and data set parametrization. IEEE
Trans. Pattern Anal. Mach. Intell. 28(9), 1393-1403 (2006)

Lanczos, C.: An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. Natl Bur. Stand. 45(4), 255-282
(1950)

Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497-520 (1960)

Lang, K., Rao, S.: A flow-based method for improving the expansion or
conductance of graph cuts. In: Bienstock, D., Nemhauser, G. (eds.) IPCO
2004. LNCS, vol. 3064, pp. 325-337. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25960-2_25

Lasalle, D., Karypis, G.: Multi-threaded graph partitioning. In: 27th International
Parallel and Distributed Processing Symposium (IPDPS), pp. 225-236 (2013)
Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Minster GI-Days (2004)

Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, Burlington (1992)

Lescovec, J.: Stanford network analysis package (SNAP). http://snap.stanford.
edu/index.html

Li, H., Rosenwald, G., Jung, J., Liu, C.C.: Strategic power infrastructure defense.
Proc. IEEE 93(5), 918-933 (2005)

Li, J., Liu, C.C.: Power system reconfiguration based on multilevel graph parti-
tioning. In: PowerTech, pp. 1-5 (2009)

http://dx.doi.org/10.1007/978-3-642-13193-6_8
http://doi.acm.org/10.1145/2001576.2001642
http://www.sciencedirect.com/science/article/pii/019667749190004I
http://dx.doi.org/10.1007/978-3-540-25960-2_25
http://dx.doi.org/10.1007/978-3-540-25960-2_25
http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html

154

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

A. Bulug et al.

Lisser, A., Rendl, F.: Graph partitioning using linear and semidefinite program-
ming. Math. Program. 95(1), 91-101 (2003)

Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129-137 (1982)

Lovész, L.: Random walks on graphs: a survey. Comb. Paul Erdos is Eighty 2,
1-46 (1993)

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning in the cloud. PVLDB
5(8), 716-727 (2012)

Luxen, D., Schieferdecker, D.: Candidate sets for alternative routes in road net-
works. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 260-270. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30850-5_23

Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: ACM SIGMOD
International Conference on Management of Data (SIGMOD), pp. 135-146. ACM
(2010)

Maue, J., Sanders, P.: Engineering algorithms for approximate weighted matching.
In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 242-255. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-72845-0_19

Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using
precomputed cluster distances. ACM J. Exp. Algorithmics 14, 3.2:1-3.2:27 (2009)
Meuer, H., Strohmaier, E., Simon, H., Dongarra, J.: June 2013 — TOP500 super-
computer sites. http://top.500.org/lists/2013/06/

Meyerhenke, H., Monien, B., Sauerwald, T.: A new diffusion-based multilevel
algorithm for computing graph partitions. J. Parallel Distrib. Comput. 69(9),
750-761 (2009)

Meyerhenke, H., Monien, B., Schamberger, S.: Accelerating shape optimizing load
balancing for parallel FEM simulations by algebraic multigrid. In: 20th IEEE
International Parallel and Distributed Processing Symposium (IPDPS), p. 57
(CD) (2006)

Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via
size-constrained clustering. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 351-363. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-07959-2_30

Meyerhenke, H.: Disturbed diffusive processes for solving partitioning problems
on graphs. Ph.D. thesis, Universitdt Paderborn (2008)

Meyerhenke, H.: Shape optimizing load balancing for MPI-parallel adaptive
numerical simulations. In: Bader et al. [13], pp. 67-82

Meyerhenke, H., Monien, B., Schamberger, S.: Graph partitioning and disturbed
diffusion. Parallel Comput. 35(10-11), 544-569 (2009)

Meyerhenke, H., Sanders, P., Schulz, C.: Parallel graph partitioning for complex
networks. In: Proceeding of the 29th IEEE International Parallel & Distributed
Processing Symposium, (IPDPS 2015) (2015 to appear). Preliminary version:
http://arxiv.org/abs/1404.4797

Meyerhenke, H., Sauerwald, T.: Beyond good partition shapes: an analysis of
diffusive graph partitioning. Algorithmica 64(3), 329-361 (2012)

Meyerhenke, H., Schamberger, S.: Balancing parallel adaptive FEM computations
by solving systems of linear equations. In: Cunha, J.C., Medeiros, P.D. (eds.)
Euro-Par 2005. LNCS, vol. 3648, pp. 209-219. Springer, Heidelberg (2005). doi:10.
1007/11549468_-26

http://dx.doi.org/10.1007/978-3-642-30850-5_23
http://dx.doi.org/10.1007/978-3-540-72845-0_19
http://top.500.org/lists/2013/06/
http://dx.doi.org/10.1007/978-3-319-07959-2_30
http://dx.doi.org/10.1007/978-3-319-07959-2_30
http://arxiv.org/abs/1404.4797
http://dx.doi.org/10.1007/11549468_26
http://dx.doi.org/10.1007/11549468_26

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.
164.

165.

166.

167.

168.

169.

170.

Recent Advances in Graph Partitioning 155

Miller, G., Teng, S.H., Vavasis, S.: A unified geometric approach to graph sep-
arators. In: 32nd Symposium on Foundations of Computer Science (FOCS), pp.
538-547 (1991)

Moéhring, R.H., Schilling, H., Schiitz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speedup Dijkstra’s algorithm. ACM J. Exp. Algorithmics 11, 1-29
(2006, 2007)

Mondaini, R.: Biomat 2009: International Symposium on Mathematical and Com-
putational Biology, Brasilia, Brazil, 1-6. World Scientific (2010). http://books.
google.es/books?id=3tiILMKtXiZwC

Monien, B., Schamberger, S.: Graph partitioning with the party library: helpful-
sets in practice. In: 16th Symposium on Computer Architecture and High Perfor-
mance Computing, pp. 198-205 (2004)

Monien, B., Preis, R., Schamberger, S.: Approximation algorithms for multilevel
graph partitioning. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algo-
rithms and Metaheuristics, chap. 60, pp. 60-1-60-15. Taylor & Francis, Abingdon
(2007)

Moulitsas, 1., Karypis, G.: Architecture aware partitioning algorithms. In: Bour-
geois, A.G., Zheng, S.Q. (eds.) ICA3PP 2008. LNCS, vol. 5022, pp. 42-53.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-69501-1_6

Newman, M.E.J.: Community detection and graph partitioning. CoRR
abs/1305.4974 (2013)

Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York
(2010)

Nishimura, J., Ugander, J.: Restreaming graph partitioning: simple versatile algo-
rithms for advanced balancing. In: 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD) (2013)

Osipov, V., Sanders, P.: n-level graph partitioning. In: Berg, M., Meyer, U. (eds.)
ESA 2010. LNCS, vol. 6346, pp. 278-289. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15775-2_24

Papa, D.A., Markov, I.L.: Hypergraph partitioning and clustering. In: Gonzalez,
T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, chap. 61,
pp. 61-1-61-19. CRC Press, Boca Raton (2007)

Pellegrini, F.: Scotch home page. http://www.labri.fr/pelegrin/scotch

Pellegrini, F.: Static mapping by dual recursive bipartitioning of process and archi-
tecture graphs. In: Scalable High-Performance Computing Conference (SHPCC),
pp. 486—493. IEEE, May 1994

Pellegrini, F.: A parallelisable multi-level banded diffusion scheme for computing
balanced partitions with smooth boundaries. In: Kermarrec, A.-M., Bougé, L.,
Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 195-204. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74466-5_22

Pellegrini, F.: Scotch and libScotch 5.0 user’s guide. Technical report, LaBRI,
Université Bordeaux I, December 2007

Pellegrini, F.: Static mapping of process graphs. In: Bichot, C.E., Siarry, P. (eds.)
Graph Partitioning, chap. 5, pp. 115-136. Wiley, Hoboken (2011)

Pellegrini, F.: Scotch and PT-Scotch graph partitioning software: an overview. In:
Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing, pp. 373-406.
CRC Press, Boca Raton (2012)

Peng, B., Zhang, L., Zhang, D.: A survey of graph theoretical approaches to image
segmentation. Pattern Recognit. 46(3), 1020-1038 (2013)

Pettie, S., Sanders, P.: A simpler linear time 2/3 — € approximation for maximum
weight matching. Inf. Process. Lett. 91(6), 271-276 (2004)

http://books.google.es/books?id=3tiLMKtXiZwC
http://books.google.es/books?id=3tiLMKtXiZwC
http://dx.doi.org/10.1007/978-3-540-69501-1_6
http://dx.doi.org/10.1007/978-3-642-15775-2_24
http://dx.doi.org/10.1007/978-3-642-15775-2_24
http://www.labri.fr/pelegrin/scotch
http://dx.doi.org/10.1007/978-3-540-74466-5_22

156

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

A. Bulug et al.

Pilkington, J.R., Baden, S.B.: Partitioning with space-filling curves. Technical
report CS94-349, UC San Diego, Department of Computer Science and Engineer-
ing (1994)

Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvec-
tors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430-452 (1990)

Preis, R.: Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS,
vol. 1563, pp. 259-269. Springer, Heidelberg (1999). d0i:10.1007/3-540-49116-3-24
Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E 76(3) (2007)
Rolland, E., Pirkul, H., Glover, F.: Tabu search for graph partitioning. Ann. Oper.
Res. 63(2), 209-232 (1996)

Ron, D., Wishko-Stern, S., Brandt, A.: An algebraic multigrid based algorithm
for bisectioning general graphs. Technical report MCS05-01, Department of Com-
puter Science and Applied Mathematics, The Weizmann Institute of Science
(2005)

Ron, D., Safro, I., Brandt, A.: A fast multigrid algorithm for energy minimization
under planar density constraints. Multiscale Model. Simul. 8(5), 15991620 (2010)
Ron, D., Safro, I., Brandt, A.: Relaxation-based coarsening and multiscale graph
organization. Multiscale Model. Simul. 9(1), 407-423 (2011)

Safro, 1., Sanders, P., Schulz, C.: Advanced coarsening schemes for graph parti-
tioning. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 369-380. Springer,
Heidelberg (2012)

Safro, I., Temkin, B.: Multiscale approach for the network compression-friendly
ordering. J. Discret. Algorithms 9(2), 190-202 (2011)

Salihoglu, S., Widom, J.: GPS: a graph processing system. In: Proceedings of
the 25th International Conference on Scientific and Statistical Database Man-
agement, SSDBM, pp. 22:1-22:12. ACM (2013). http://doi.acm.org/10.1145/
2484838.2484843

Sanchis, L.A.: Multiple-way network partitioning. IEEE Trans. Comput. 38(1),
62-81 (1989)

Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In:
Demetrescu, C., Halldérsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469—
480. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23719-5_40

Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: 12th
Workshop on Algorithm Engineering and Experimentation (ALENEX), pp. 16-29
(2012)

Sanders, P., Schulz, C.: High quality graph partitioning. In: Bader et al. [13], pp.
19-36

Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph parti-
tioning. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA
2013. LNCS, vol. 7933, pp. 164-175. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38527-8_16

Sanders, P., Schulz, C.: KaHIP - Karlsruhe High Quality Partitioning Homepage.
http://algo2.iti.kit.edu/documents/kahip/index.html

Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27-64. http://dx.doi.
org/10.1016 /j.cosrev.2007.05.001

Schamberger, S.: On partitioning FEM graphs using diffusion. In: HPGC Work-
shop of the 18th International Parallel and Distributed Processing Symposium
(IPDPS 2004). IEEE Computer Society (2004)

http://dx.doi.org/10.1007/3-540-49116-3_24
http://doi.acm.org/10.1145/2484838.2484843
http://doi.acm.org/10.1145/2484838.2484843
http://dx.doi.org/10.1007/978-3-642-23719-5_40
http://dx.doi.org/10.1007/978-3-642-38527-8_16
http://dx.doi.org/10.1007/978-3-642-38527-8_16
http://algo2.iti.kit.edu/documents/kahip/index.html
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1016/j.cosrev.2007.05.001

190.

191.

192.

193.

194.

195.
196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

Recent Advances in Graph Partitioning 157

Schamberger, S., Wierum, J.M.: A locality preserving graph ordering approach
for implicit partitioning: graph-filling curves. In: 17th International Conference
on Parallel and Distributed Computing Systems (PDCS), ISCA, pp. 51-57 (2004)
Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high-performance
scientific simulations. In: Dongarra, J., Foster, 1., Fox, G., Gropp, W., Kennedy,
K., Torczon, L., White, A. (eds.) Sourcebook of parallel computing, pp. 491-541.
Morgan Kaufmann Publishers, Burlington (2003)

Schloegel, K., Karypis, G., Kumar, V.: Multilevel diffusion schemes for reparti-
tioning of adaptive meshes. J. Parallel Distrib. Comput. 47(2), 109-124 (1997)
Schloegel, K., Karypis, G., Kumar, V.: A unified algorithm for load-balancing
adaptive scientific simulations. In: Supercomputing 2000, p. 59 (CD). IEEE Com-
puter Society (2000)

Schloegel, K., Karypis, G., Kumar, V.: Parallel static and dynamic multi-
constraint graph partitioning. Concurr. Comput.: Pract. Exp. 14(3), 219-240
(2002)

Schulz, C.: High quality graph partititioning. Ph.D. thesis. epubli GmbH (2013)
Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable
information in railway systems. In: Mount, D.M., Stein, C. (eds.) ALENEX
2002. LNCS, vol. 2409, pp. 43-59. Springer, Heidelberg (2002). doi:10.1007/
3-540-45643-0-4

Sellmann, M., Sensen, N., Timajev, L.: Multicommodity flow approximation
used for exact graph partitioning. In: Battista, G., Zwick, U. (eds.) ESA
2003. LNCS, vol. 2832, pp. 752-764. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39658-1_67

Sensen, N.: Lower bounds and exact algorithms for the graph partitioning problem
using multicommodity flows. In: Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161,
pp. 391-403. Springer, Heidelberg (2001). doi:10.1007/3-540-44676-1_33

Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges.
In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR
2010. LNCS, vol. 6449, pp. 1-25. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19328-6_1

Simon, H.D.: Partitioning of unstructured problems for parallel processing. Com-
put. Syst. Eng. 2(2), 135-148 (1991)

Simon, H.D., Teng, S.H.: How good is recursive bisection? STAM J. Sci. Comput.
18(5), 1436-1445 (1997)

Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multi-
level optimisation approach to graph-partitioning. J. Glob. Optim. 29(2), 225-241
(2004)

Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs.
In: 18th ACM SIGKDD International Conference on Knowledge discovery and
data mining (KDD), pp. 1222-1230. ACM (2012)

Stock, L.: Strategic logistics management. Cram101 Textbook Outlines, Lightning
Source Inc. (2006). http://books.google.com/books?id=1LyCAQAACAAJ

Sui, X., Nguyen, D., Burtscher, M., Pingali, K.: Parallel graph partitioning on
multicore architectures. In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.)
LCPC 2010. LNCS, vol. 6548, pp. 246-260. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19595-2_17

Tang, L., Liu, H., Zhang, J., Nazeri, Z.: Community evolution in dynamic multi-
mode networks. In: 14th ACM SIGKDD International Conference on Knowledge
discovery and data mining (KDD), pp. 677-685. ACM (2008)

http://dx.doi.org/10.1007/3-540-45643-0_4
http://dx.doi.org/10.1007/3-540-45643-0_4
http://dx.doi.org/10.1007/978-3-540-39658-1_67
http://dx.doi.org/10.1007/978-3-540-39658-1_67
http://dx.doi.org/10.1007/3-540-44676-1_33
http://dx.doi.org/10.1007/978-3-642-19328-6_1
http://dx.doi.org/10.1007/978-3-642-19328-6_1
http://books.google.com/books?id=1LyCAQAACAAJ
http://dx.doi.org/10.1007/978-3-642-19595-2_17
http://dx.doi.org/10.1007/978-3-642-19595-2_17

158

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

A. Bulug et al.

Teresco, J., Beall, M., Flaherty, J., Shephard, M.: A hierarchical partition
model for adaptive finite element computation. Comput. Method. Appl. Mech.
Eng. 184(2-4), 269285 (2000). http://www.sciencedirect.com/science/article/
pii/S0045782599002315

Trifunovié, A., Knottenbelt, W.J.: Parallel multilevel algorithms for hypergraph
partitioning. J. Parallel Distrib. Comput. 68(5), 563—581 (2008)

Tsourakakis, C.E., Gkantsidis, C., Radunovic, B., Vojnovic, M.: Fennel: streaming
graph partitioning for massive scale graphs. Technical report MSR-TR-2012-113,
Microsoft Research (2000)

Ucar, B., Aykanat, C., Kaya, K., Ikinci, M.: Task assignment in heterogeneous
computing systems. J. Parallel Distrib. Comput. 66(1), 32-46 (2006). http://
www.sciencedirect.com/science/article/pii/S0743731505001577

Wagner, D., Wagner, F.: Between min cut and graph bisection. In: Borzyszkowski,
A.M., Sokotowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 744-750. Springer,
Heidelberg (1993). doi:10.1007/3-540-57182-5_65

Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Ann.
Oper. Res. 131(1), 325-372 (2004)

Walshaw, C., Cross, M.: Mesh partitioning: a multilevel balancing and refinement
algorithm. SIAM J. Sci. Comput. 22(1), 63-80 (2000)

Walshaw, C., Cross, M.: Parallel mesh partitioning on distributed memory sys-
tems. In: Topping, B. (ed.) Computational Mechanics Using High Performance
Computing, pp. 59-78. Saxe-Coburg Publications, Stirling (2002). Invited chapter
Walshaw, C., Cross, M.: JOSTLE: parallel multilevel graph-partitioning software -
an overview. In: Mesh Partitioning Techniques and Domain Decomposition Tech-
niques, pp. 27-58. Civil-Comp Ltd. (2007)

Walshaw, C., Cross, M., Everett, M.G.: A localized algorithm for optimizing
unstructured mesh partitions. J. High Perform. Comput. Appl. 9(4), 280-295
(1995)

Walshaw, C.: Variable partition inertia: graph repartitioning and load balancing
for adaptive meshes. In: Parashar, M., Li, X. (eds.) Advanced Computational
Infrastructures for Parallel and Distributed Adaptive Applications, pp. 357-380.
Wiley Online Library, Hoboken (2010)

Walshaw, C., Cross, M.: Multilevel mesh partitioning for heterogeneous commu-
nication networks. Future Gener. Comp. Syst. 17(5), 601-623 (2001)

Walshaw, C., Cross, M., Everett, M.G.: Dynamic load-balancing for parallel adap-
tive unstructured meshes. In: Proceedings of the 8th STAM Conference on Parallel
Processing for Scientific Computing (PPSC 1997) (1997)

Laboratory of Web Algorithms, University of Macedonia: Datasets. http://law.
dsi.unimi.it/datasets.php, http://law.dsi.unimi.it/datasets.php

Williams, R.D.: Performance of dynamic load balancing algorithms for unstruc-
tured mesh calculations. Concurr.: Pract. Exp. 3(5), 457-481 (1991)

Zhou, M., Sahni, O., et al.: Controlling unstructured mesh partitions for massively
parallel simulations. STAM J. Sci. Comput. 32(6), 3201-3227 (2010)

Zumbusch, G.: Parallel Multilevel Methods: Adaptive Mesh Refinement and Load-
balancing. Teubner, Stuttgart (2003)

http://www.sciencedirect.com/science/article/pii/S0045782599002315
http://www.sciencedirect.com/science/article/pii/S0045782599002315
http://www.sciencedirect.com/science/article/pii/S0743731505001577
http://www.sciencedirect.com/science/article/pii/S0743731505001577
http://dx.doi.org/10.1007/3-540-57182-5_65
http://law.dsi.unimi.it/datasets.php
http://law.dsi.unimi.it/datasets.php
http://law.dsi.unimi.it/datasets.php

How to Generate Randomized Roundings with
Dependencies and How to Derandomize Them

Benjamin Doerr! and Magnus Wahlstrom?(>)
1 Ecole Polytechnique de Paris, Palaiseau, France
2 Royal Holloway, University of London, London, UK
Magnus.Wahlstrom@rhul.ac.uk

Abstract. We give a brief survey on how to generate randomized round-
ings that satisfy certain constraints with probability one and how to
compute roundings of comparable quality deterministically (derandom-
ized randomized roundings). The focus of this treatment of this broad
topic is on how to actually compute these randomized and derandom-
ized roundings and how the different algorithms with similar proven
performance guarantees compare in experiments and the applications
of computing low-discrepancy point sets, low-congestion routing, the
max-coverage problem in hypergraphs, and broadcast scheduling. While
mostly surveying results of the last 5 years, we also give a simple, unified
proof for the correctness of the different dependent randomized rounding
approaches.

1 Introduction

Randomized rounding is a core primitive of randomized algorithmics (see, e.g.,
the corresponding chapter in the textbook [40]). One central application going
back to Raghavan and Thompson [47,48] is to round non-integral solutions of
linear systems to integer ones. By rounding the variables independently, large
deviations bounds of Chernoff-Hoeffding type can be exploited, leading to good
performance guarantees and low rounding errors. This has been successfully
applied to a broad set of algorithmic problems.

More recently, a need for roundings that also satisfy certain hard constraints
was observed. Here, independent randomized rounding performs not so well—
the chance that a single such constraint is satisfied can easily be as low as
O(1/+/n), where n is the number of variables. Repeatedly generating indepen-
dent randomized roundings, even for a single constraint and when one is will-
ing to pay an O(y/n) runtime loss, is surprisingly not admissible as noted by
Srinivasan [56]. Consequently, the better solution is to generate the random-
ized roundings not independently, but in a way that they immediately satisfy

Work done while both authors were affiliated with the Max Planck Institute for
Informatics, Saarbriicken, Germany. Supported by the German Science Foundation
(DFG) through grants DO 749/4-1, DO 749/4-2, and DO 749/4-3 in the priority
programme SPP 1307 “Algorithm Engineering”.

© Springer International Publishing AG 2016

L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 159-184, 2016.
DOI: 10.1007/978-3-319-49487-6_5

160 B. Doerr and M. Wahlstrom

the desired constraints. This was most successfully done by Srinivasan in his
seminal paper [56], who showed a way to generate randomized roundings that
satisfy the constraint that the sum of all variables is not changed in the rounding
process (provided, of course, that the sum of the original variables is integral).!
These roundings provably satisfy the same large deviation bounds that were
known to hold for independent randomized rounding. This work extended to
hard constraints of the bipartite edge weight rounding type in [35,36], how-
ever for restricted applications of large deviation bounds. A completely different
approach to generating randomized roundings respecting hard constraints was
proposed in [16]. Tt satisfies the same large deviation bounds, hence yields the
same guarantees on rounding errors and approximation ratios as the previous
approach, but had the additional feature that it could be derandomized easily.
Further extensions followed, see, e.g., Chekuri et al. [9,10]. Throughout these
works, several applications of the roundings were given, in particular to LP-
rounding based approximation algorithms.

The existence of two very different algorithms for this important problem that
from the proven performance guarantees look very similar spurred a sequence
of algorithm engineering works. While mostly experimental in nature, both con-
cerning test problems and classic algorithmic problems, these works also led to
a derandomization of the approach of [36] and to the invention of a hybrid app-
roach (both for the randomized and derandomized setting) combining features
of both previous ones. The aim of this work is to survey these results, which cur-
rently are spread mostly over several conference papers. By presenting them in
a concise and coherent manner, we hope to make these methods easily accessible
also to the non-expert. To complete the picture, we also review some applica-
tions of the tools to concrete problems (as opposed to studying the roundings
in isolation). Furthermore, we also give an elementary and unified proof that all
three approaches to generate randomized roundings with cardinality constraints
are actually correct. For this, only separate proofs, all quite technical, existed
so far.

The field of non-independent randomized rounding and related topics has
seen several other breakthrough results in the last years. We mention them
here, but for reasons of brevity have to point the reader to the relevant litera-
ture. These include the algorithmic breakthroughs for the Lovasz local lemma by
Moser and Tardos [42, 58] and for Spencer’s combinatorial discrepancy result [54]
by Bansal [5,6], both of which represent efficient algorithms for computing
objects whose existence was previously only guaranteed by non-constructive
probabilistic methods. There are also several variants of rounding procedures
which are out of scope for the present chapter, including the entropy round-
ing method [51], iterative rounding [33,41] and the problem-specific polytope
rounding used by Saha and Srinivasan for resource allocation problems [52].

! Note that some earlier solutions for special cases exist, e.g., for sums of variables
adding up to one [47] or the hypergraph discrepancy problem [14,15], which is the
rounding problem with all variables being 1/2 and the rounding errors defined by a
binary matrix.

Randomized Roundings with Dependencies 161

Finally, approximation algorithms based on semi-definite programming fre-
quently contain rounding steps which are quite different in nature from the
above; see, e.g., [3,39,49,50].

2 Classical Independent Randomized Rounding and Its
Derandomization

Randomized rounding as a method to transform non-integral solutions of linear
systems into integer ones, was introduced by Raghavan and Thompson [47,48]
already in the late eighties. The key idea is to round the variables to adjacent
integers with the probability of rounding upward being equal to the fractional
part of the number. By this, the expectation of the new random variable equals
the original value. By linearity of expectation, this extends to linear combinations
of variables. When each variable is rounded independently, then, in addition,
Chernoff-type large deviation inequalities allow to bound deviations from the
mean for such linear combinations.

To make things precise, for a number x € R, we denote by |z| its integral
part and by {x} = x — | x| its fractional part. We say that a random variable y
is a randomized rounding of x when
Pr|
Pr|

[z]] =1 —{a},
[z] +1] = {z}.

Often, we can assume without loss of generality that « € [0,1]. In this case, a
randomized rounding y of z is one with probability z and zero otherwise. As
said already, we have E[y] = = in any case.?

For a family ¢ = (z1,...,2,) of numbers, we say that y = (y1,...,yn)
is a randomized rounding of x when each y; is a randomized rounding of ;.
By linearity of expectation, this implies B[} o1 a;y;] = > ¢ ajz; for all
coefficients a; € R.

When thinking of = as a solution of a linear system Az = b, then our aim is
to keep the rounding errors (Ay); — (Ax); small. Note first that these rounding
errors are independent of the integral part of x, which is why we often assume
x € [0,1)". When y is an independent randomized rounding of x, that is, the
random variables y1, . .., y, are mutually independent, then the usual Chernoff-
Hoeffding large deviation bounds can be used to bound the rounding errors. For
example, when A € [0,1]™*™ and § € [0, 1], we have

Y
Y

Pr[|(Ay); — (Az);| > §(Az);] < 2exp(—d%(Ax);/3).

By the union bound, this implies that with constant probability the round-

ing errors are bounded by O(max{y/(Az);logm,logm}) for all rows ¢
simultaneously.

2 Note that, in fact, E[y] = and y € {|z], [¢]} is equivalent to saying that y is a
randomized rounding of x.

162 B. Doerr and M. Wahlstrom

Randomized rounding can be derandomized, that is, there is a way to deter-
ministically compute roundings that satisfy large deviations bounds essentially
with the same deviations that the randomized version would satisfy with posi-
tive probability. This comes, however, at the price of an increased computational
complexity of at least £2(mn). Note that Raghavan’s derandomization works for
arbitrary A € (QNJ0, 1])™*™ only when we assume that exponentials of rational
numbers can be computed with arbitrary precision, otherwise, e.g., in the RAM
model of computation, it only works for binary A. In [57], a method was given to
obtain the same large deviations also for general A, however in O(mn? log(mn))
time. In [17], a method was presented that gives large deviations larger by a
constant factor, but computationally simpler and with a complexity of O(mn)
when the entries of A have a finite length binary representation.

3 Randomized Rounding Under Constraints

Before we go into the engineering aspects, let us review the problem of random-
ized rounding under hard constraints from the perspective of what can theoret-
ically be achieved.

In the general situation, we have a family fractional variables x = (21, ..., 2,)
(where we assume that z; € [0,1]; see Sect.2) and (optionally) sets of hard
and soft constraints that all hold for x, and we wish to generate a randomized
rounding y of z such that all hard constraints hold for y with certainty, while
the violation of the soft constraints is as small as possible (usually achieved via
Chernoff-Hoeffding-style concentration bounds on the latter). Additionally, one
can also consider the derandomization problem, where the goal is to determinis-
tically generate a point y satisfying all hard constraints, with bounded violation
of the soft constraints. Depending on the type of hard constraints, this task can
be either impossible (e.g., if the hard constraints are unsatisfiable by an integral
solution), or possible with various restrictions on the supported types of soft
constraints.

Two frameworks for describing hard constraints (in this context) have been
considered in the literature. In the more general, the hard constraints are
described as a polytope P C [0,1]™, where the constraint is € P. Naturally,
P should be an integral polytope, i.e., with all vertices in {0,1}", to guarantee
that integral roundings y exist. The second framework is a special case of this,
where the hard constraints take the form of a collection of equality or cardinality
constraints), ¢ = ;e ¥i, S C [n] :={1,...,n} (optionally, we can accept
rounding errors less than 1, if the left hand side is not integral). This perspective
will mostly suffice for the rest of this chapter, but in this section we will need
the polytope perspective.

Let us first observe that there is a certain inevitable tradeoff between the
types of hard and soft constraints. On the one hand, if there are no hard con-
straints, then one may simply apply independent randomized rounding (or one
of its derandomizations) and get Chernoff-Hoeffding concentration bounds for
any collection of linear soft constraints as in Sect. 2.

Randomized Roundings with Dependencies 163

On the other hand, we can easily create systems of hard constraints where
randomized rounding is possible, but which only allow for extremely limited
concentration bounds. Consider an integral polytope P and a fractional point
x € P, and let z be expressed as a convex combination), a;p; over vertices p; of
P (i.e.,0 < a; <1foreachi,and), o; = 1); note that such an expression always
exists. If we can compute such an expression for any x € P, then we can produce
a randomized rounding by simply letting © = p; with probability «; for each 1.
Such a blunt rounding algorithm would in general not allow for any interesting
concentration bounds. (See [23] for the corresponding statement in the setting
of hard cardinality constraints.) Concretely, we may consider a polytope with
only two integral points (0,1,0,1,...),(1,0,1,0,...) € [0,1]™; this may also be
described via cardinality constraints (z; + 2,01 = 1) for 1 < i < n. Given a
fractional point x = (£,1—¢,&, .. .), we can create a randomized rounding y of
by letting y = (1,0, 1,0, ...) with probability £, and y = (0,1,0,1,...) otherwise.
It is clear that this produces a randomized rounding of x, but the procedure
only allows for very specific and restricted concentration bounds. To get useful
concentration bounds, we must consider weaker classes of hard constraints.

Cases with Complete Negative Correlation. Having seen that when no
hard constraints are present, independent randomized rounding allows large
deviation inequalities on all variables, a natural question is for which systems of
hard constraints in general we can obtain unrestricted large deviation bounds.
The standard approach to this is via negative correlation. A set of variables
y = {y1,.-.,ynt € {0,1}" are negatively correlated (over all subsets, also
referred to as complete negative correlation) if, for each S C [n] and each b = 0,1

it holds that
Pr[/\ yi =0 < [[Prly: = b].
€S €S

Since negative correlation suffices for the classic large deviation bounds to
hold [46], the question is which hard constraints allow randomized rounding
in a way that the rounded variables are negatively correlated. Chekuri et al. [9]
showed that this is possible for every point in a polytope P exactly when P is a
kind of matroid polytope. Specifically, they show the following.

Theorem 1 ([9]). Let P be a polytope with vertices in {0,1}V. Then the fol-
lowing two properties are equivalent:

1. For any x € P, there exists a probability distribution over vertices of P such
that a random vertex y drawn from this distribution satisfies Ely] = x and
the coordinates {y;}icv are negatively correlated.

2. P is a projection of a matroid base polytope, in the sense that there is a
matroid M = (V') such that V C V' and p is a vertex of P iff p = 1pnv
for some base B of M.

Additionally, their algorithm provides a guarantee of sharp concentration
bounds for any submodular function; see [9]. While this is a very powerful result,
it requires the use of algorithms of forbidding complexity (both in terms of

164 B. Doerr and M. Wahlstrom

implementation and running time); see Sect. 4.4. Interesting special cases include
spanning trees (e.g., [4]) and cardinality constraints. The latter is covered in
detail in Sect. 4.

Partial Negative Correlation. To gain more expressive power in the hard
constraints, we have to give up some generality for the soft constraints. The first
result in this direction was by Gandhi et al. [35,36], who covered the case of edge-
rounding in bipartite graphs, with hard cardinality constraints (and negative
correlation) over sets of edges incident on a common vertex; see Sect. 5 for details.
This was generalized by Chekuri et al. to matroid intersection constraints, with
negative correlation over subsets of variables corresponding to equivalence classes
of the matroids; see [9]. Unlike for complete negative correlation, we have no
complete characterization for this case (i.e., no “only if” statement corresponding
to the second part of Theorem 1).

Further Extensions. Chekuri et al. [10] showed that by relaxing the condi-
tions slightly, one can achieve roundings that are in a sense almost randomized
roundings (up to a factor (1 — €) for a given € > 0), which satisfy a set of
hard constraints generalizing all cases above, and such that Chernoff-Hoeffding
concentration bounds apply for any linear function over the variables (i.e., not
restricted to certain variable subsets). In particular, they show the following.

Theorem 2. Let P be either a matroid intersection polytope or a (not neces-
sarily bipartite) graph matching polytope. For every fized 0 < & < %, there is
an efficient randomized rounding procedure, such that given a point x € P it
outputs a random feasible solution R corresponding to an (integer) vertex of
P, such that E[}_R] = (1 — €)Y, x;, and such that for any linear function
a(R) = > ,cp @i, with a; € [0,1] and Ela(R)] = p, exponential concentration
bounds apply to E[a(R)]. The bounds are dimensionless, i.e., the coefficients in
the concentration bounds depend on e and p, but not on n = |z|.

See [10] for details. They mention that the results can be further generalized
to non-bipartite b-matching. Since cardinality constraints are special cases of
bipartite b-matchings, and since both matroid intersection and non-bipartite b-
matching are covered by the above result, this result properly generalizes all the
above-given results (except for the factor (1 — ¢) and the exact factors involved
in the concentration bounds).

4 Disjoint Cardinality Constraints

In this section, we describe methods for generating dependent randomized round-
ings subject to disjoint hard cardinality constraints and admitting the usual large
deviation bounds on arbitrary subsets of the variables (complete negative cor-
relation). This includes a simple proof uniformly showing the correctness of all
approaches proposed so far.

To ease the presentation, we shall assume that there is only a single global
cardinality constraint, that is, that we do not tolerate any rounding error in the

Randomized Roundings with Dependencies 165

sum of all variables (this implies that we assume that Y .., z; is integral). It will
be immediately clear how to extend all of the below to disjoint cardinality con-
straints (that is, more than one and possibly not covering all variables), and even
to cardinality constraints forming a laminar system (for each two constraints,
the two sets of variables concerned are disjoint or one is a subset of the other).

4.1 Algorithms

We now describe three algorithms that have been proposed for generating ran-
domized roundings with a global cardinality constraint [16,30,56]. All three
approaches (as well as the preliminary works [14,15]) use the same basic idea
of breaking down the rounding process to suitably rounding pairs of variables.
We thus first describe this common core, then fill in the details of how each
algorithm works. (The rounding algorithm for matroid constraints of Chekuri
et al. [9] can also be phrased in this framework, though it is not the perspective
taken in [9].)

Pair Roundings. Let (z;,z;) be a pair of fractional variables in z. A pair-
rounding step is to take such a pair (x;, z;) and modify their values as follows. Let
67,87 > 0 be two values chosen by the respective algorithm, and adjust (z;, z;)
to (z; + 8,z — 0), with § € {67, =6} chosen randomly so that E[§] = 0. The
values 6,6~ and the choice of the pair (2;, ;) vary according to the algorithm;
see below. Clearly, each pair-rounding step preserves the sum of all values, keeps
x; in [0,1] and does not change the expectation of x; (hence the final y; is a
randomized rounding of z;). Negative correlation also follows, as shown next.

Theorem 3. Let x € [0,1]" be rounded by a sequence of pair-rounding steps to
some y € {0,1}" (with 67,8 chosen throughout so that all coordinates remain
in the range [0,1]). Then |y . x; — >, yi| < 1 and y is a randomized rounding
of x with negative correlation over all sets of coordinates.

Proof. The first two claims are clear; we need to show that for any S C [n] we
have Pr[A\,cq i = b] < [[,cq Prly: = b] for b = 0, 1. We give a proof via induction
over the number of pair-rounding steps. As a base case, assume that no pair-
rounding steps are taken. In that case x is integral, y = z, and for each choice
of S and b, Pr[A\,cq % = b] = [[;cg[v:i = b]; thus the statements hold. For the
inductive case, let S C [n] be an arbitrary set and consider P := Pr[A,.g ¢ = 1].
Let (z;,x;) be the pair of variables in the first pair-rounding step, and observe
Pr[é = 6] = (5;5#. Also let S" = S\ {z4,z;} and P’ = Pr[\,cq zs = 1] <
[l;cs ¢, by the inductive hypothesis. Now the statement follows by simple
manipulations. If |S N {x;,z;}| =1, say z; € S, then
o~ ot

P = (m(%‘ + 0"+ ——(x; —07))P =z, P';

166 B. Doerr and M. Wahlstrom

if S =5, then P = P’ and we are done. Otherwise, we have

_ 9 + + " - -2\ p!
P—(6++5_(x1+6 W z;—0)+6++6_(x1 0)zj+67))P
+(5-)2 —(5+)2
:(a:ixj—é (5) 0 (6))P’gxiij’.

St +6— St 46

The case of A\, g x; = 0 is analogous, replacing each x; by 1 — ;.

Srinivasan’s Method. In [56], the details of the above scheme are filled in as
follows. Let (x;,x;) be a pair of fractional variables (chosen arbitrarily), and
let 67 = min(1 — 2;,z;) and §~ = min(x;,1 — z;). Working through the above
description of the choice of §, we find that § = §+ with probability 6= /(6T +47),
and § = —¢~ with complementary probability. Observe that in each case, at
least one of the new values x; + 6, x; — d is integral, and will hence not be chosen
for further rounding steps. In particular, this implies that there are only O(n)
rounding steps. While the choice of pairs (z;, z;) has no impact on the theoretical
behavior of the algorithm, in practice it had some importance; see below.

Bitwise Roundings. A different approach to dependent rounding was taken
by Doerr [16]. For this method, we must assume that the variables {z1,...,z,}
have finite bit-depth ¢, i.e., that each variable x; can be written as ¢; - 2~¢ for
some integers ¢; and £. In this case, we round variables as follows. Let (z;, ;) be
a pair of variables with the least significant bit (LSB) set to 1 (i.e., ¢; mod 2 =
¢; mod 2 = 1). If no such variables exist, we may rewrite z with a shorter bit-
depth ¢ < /; also note that under the assumption that the total cardinality
>, x; is integral, there cannot be only a single variable z; with non-zero LSB.
We round (z;, z;) as described above by letting § = +2~¢ with equal probability;
note that after this step, both variables will have a LSB of 0, regardless of choice
of 4. Hence, after O(n) rounding steps there will be no further variables with
non-zero LSB, and we may consider our variables to have a smaller bit-depth
¢ — 1. After £ such phases, and consequently O(nf) rounding steps, all variables
will be integral.

The advantage and original motivation of this scheme is that the ¢ rounding
phases are (arguably) simpler than the previous case, both to implement and to
analyze. In [16], each individual rounding phase was performed in a plug-in fash-
ion by the independent randomized rounding method of Raghavan and Thomp-
son, allowing for the first announced derandomized algorithm for this problem.
However, later it was observed (in [31]) that the standard method of pessimistic
estimators can be applied directly to all these schemes (see below). The complex-
ity of O(nf) is noticeably worse than the O(n) of Srinivasan’s method, except for
variables with small, constant bit-depth, but the approach of bit-wise rounding
turned out useful for the more general case of bipartite graphs; see Sect. 5.

A Hybrid Scheme. Motivated by differences observed in running time and
solution quality for the case of bipartite graphs (see Sect.5), a third variant of
rounding scheme was considered in [30]. In brief, this variant consists of picking

Randomized Roundings with Dependencies 167

pairs of variables (z;,x;) as in bitwise rounding, but picking the adjustment § as
in Srinivasan’s method (i.e., so that one of x; and x; becomes integral). Observe
that this adjustment § will inevitably have a LSB of 1, implying that in each
rounding step, we both fix one variable as integral and decrease the bit-depth of
the other. The correctness of this method (in particular the negative correlation)
follows directly from Srinivasan [56], as the only technical difference between the
two is the choice of variable pairs, which is left unspecified in [56].

4.2 Derandomization

All of the above rounding schemes can be derandomized using the methods
developed by Raghavan for classical randomized rounding [47]. Let us outline
how these methods work for the independent rounding case before we review
how they can be adapted to cases of dependent rounding.

The first ingredient is known as method of conditional probabilities [32,47,55].
Let x be as above, and let P(x) be the probability of some undesirable event, e.g.,
the probability that an independent randomized rounding y of x has a rounding
error larger than some bound p. Assume that P can be efficiently computed,
and that P(z) < 1. We can then produce a rounding y of z by iteratively
rounding each variable x; in turn, at each step picking the value y; € {0,1} that
minimizes P(-). Let 2’ resp. 2 be x modified as z; < 1 resp. x; < 0. Then
P(z) = z;P(2')+ (1 — 2;) P(2"), as P(z') and P(z") are simply the conditional
probabilities of failure given ;. Hence min(P(2’), P(z")) < P(x) < 1, and we
maintain the invariant that P(z*) < 1 for every generated point z*. By induction
we have P(y) < 1, where y is the final rounding of x generated this way, and
since y is integral we conclude that P(y) = 0, e.g., y produces a rounding error
less than our bound p, and we are done.

To extend this to cases where P(x) is unknown or too expensive to compute
(as is the case for rounding errors in a linear system Ax = b), we may use a
pessimistic estimator F(x) in place of P(x). Such an estimator is an efficiently
computable function F(z) such that F(z) > P(x) for all z, F(z) < 1 for the
initial point z, and for every two modifications z’, " of a point z as above,
min(F(2'), F(z")) < F(x). By identical arguments as above, using a pessimistic
estimator F'(z) in place of the probability P(z), we may deterministically pro-
duce a rounding y of z which satisfies our condition. The art, or course, is
finding such pessimistic estimators. Raghavan [47] showed that certain technical
expressions occurring in the proof of Chernoff-Hoeffding bounds are pessimistic
estimators. This has the advantage that they can applied to systems Az = b
of soft linear constraints whenever the corresponding Chernoff-Hoeffding bound
shows that with positive probability a solution with a certain rounding error
exists; see Sect. 2, and [47] for details.

To adapt the above to the dependent cases, we proceed as follows. Let z
be a point, and consider a pair-rounding step on variables x;,z;. Recall that
here we adjust «— x + d§(e; — ¢;) for some 6 € {61,07}. Let F(z) be the
above pessimistic estimator, and define f(0) = F(x + d(e; — €;)). It was shown
in [31] that f() is a concave function, meaning that for any pair §+,6~ > 0,

168 B. Doerr and M. Wahlstrom

at least one of the values f(61), f(—07) is at most F(z). We may now proceed
greedily, as above, at every pair-rounding step selecting that value of ¢ which
minimizes F'(x). As before, this can be done in O(mn) time, for n variables and
m soft constraints. (Similarly to Theorem 3, this can be used to derandomize
any pair-rounding-based algorithm with the same guarantee for the rounding
erTors.)

Historically, the derandomization of the bit-wise method progressed through
several generations, from the initial derandomization in [16] with significantly
worse constant factors in the rounding error guarantees, via a partial improve-
ment given in [31], until the general form of the above method was realized [30].

In practice, though the pessimistic estimators are far from perfect (e.g., due
to the use of a union bound), the greedy aspect of the derandomization process
makes for a powerful heuristic, as points with smaller value F'(x) also tend to lead
to smaller rounding errors. Although the theoretical guarantees for the resulting
rounding error are comparable to the expected outcome of a randomized process,
in applications and experiments we repeatedly find that derandomized, greedy
methods significantly outperform randomized ones. (See the experiments in this
section for more.)

Implementation Notes. A few potential issues suggest themselves with respect
to implementation of the above. The first is the source of randomness for the
randomized methods. While we did not have access to a “real” (hardware) ran-
domness source, we found no indication in our experiments that the choice of
pseudo-random number generator would have a very powerful impact on the
results. The second potential issue lies in the use of floating-point arithmetics.
As noted in Sect. 2, exact computation of pessimistic estimators is only possi-
ble in the Real RAM model, and alternatives for the standard model are very
costly. Instead, our implementation (as is usual) uses CPU-native floating point
arithmetics. While this “usually” works “reasonably” well, there are potential
issues of accumulated imprecision (in particular since the pessimistic estimators
become repeatedly adjusted throughout the process). However, in experiments
we found no indication of such problems within the scope of this and the next
section.

4.3 Experimental Evaluations

Seemingly, not much experimental work on randomized rounding, even with-
out constraints, is published. Consequently, we include independent randomized
rounding in the following summary of experimental comparisons of the above
algorithms. They are mainly from [31], augmented by [29,30], which relate to
later developments (the hybrid rounding scheme and improvements in deran-
domization). For all details, we refer to these papers. All conclusions below are
supported for the latest versions of the respective programs (unless explicitly
stated otherwise). All experiments reported below use inputs of full bit-depth.
First, regarding the running time and general program feasibility (code com-
plexity and numerical stability), the conclusions are generally positive; the ran-
domized versions of independent rounding and Srinivasan’s method rounded

Randomized Roundings with Dependencies 169

1,000,000 variables in 0.05-0.14s, with the bit-wise method being slower at
approximately one second. For the derandomized versions, rounding 10,000
variables subject to 10,000 soft constraints took 52s for independent round-
ing, 75s for Srinivasan’s method, and in excess of ten minutes with bit-wise
rounding. Later engineering of the code base reduced these times, eventually
allowing derandomization instances for a geometric discrepancy problem with
215 = 32, 768 variables and an equal number of soft constraints to be rounded in
37s (with special-purpose code) [28]; see Sect. 6.1. No issues of numerical stabil-
ity were encountered. The hybrid method was not tested here, but based on the
results in [30] there is no reason to expect that the outcome would be noticeably
different from the other applications of Srinivasan’s method tested here.

Next, we consider solution quality (i.e., rounding errors). All considered
methods have identical theoretical concentration bounds (in the randomized
case) respectively identical theoretical upper bounds (in the derandomized case),
including the classical independent, non-constraint-preserving roundings. For the
bit-wise method, as noted above, the derandomization used in [31] had a worse
constant factor than the latest versions, thus we focus first on the other meth-
ods. Taking the performance of independent randomized rounding as a reference
(100%), the experiments of [31] showed that adding a cardinality constraint led
to no worse rounding errors, and in some cases to a reduction of rounding errors if
the soft constraints have large cardinality (e.g., on instances with a dense random
matrix of soft constraints, a hard cardinality constraint reduced rounding errors
by 15%). No clear difference between the dependent randomized methods was
found. Using a derandomization reduced the rounding error by approximately
50% on random instances; more on structured instances stemming from experi-
ments reported in Sect. 6.1. Comparing the independent derandomized rounding
with Srinivasan’s method revealed no clear difference, though perhaps an advan-
tage for Srinivasan’s method of a few percent. In particular, there seemed to be
no significant “price of hard constraints” in terms of solution quality. All algo-
rithms outperformed their theoretical bounds on rounding error by a factor of
2-3 (presumably due to the latter’s use of union bounds).

This data supports the general expectation that derandomized methods pro-
duce significantly smaller rounding errors, a conclusion that was consistently
arrived at in all our experiments. This advantage persisted when compared to
generating a large number of random solutions and keeping the best one (note
that computing the rounding error requires O(nm) time).

Finally, regarding the derandomized bit-wise method, the version used in [31]
performed worse than the other two (with rounding errors at 55-65% of those of
randomized rounding). Experiments in [29,30] (see later) using newer versions
tend to confirm a (modest) advantage of the derandomization of Srinivasan’s
method over that of the bit-wise method, though we have no good explanation
for this. However, we did find that particular combinations of soft constraints and
order of variable comparison led to very poor quality solutions for Srinivasan’s
method; see [31] regarding tree shape (but note that in later investigations, the
effect has been found to be less general than originally implied). In this respect,

170 B. Doerr and M. Wahlstrom

the hybrid method (viewed as a tweak on Srinivasan’s method) always creates
the balanced tree shape recommended in [31].

4.4 Extension: Matroid Constraints

As noted in Sect. 3, the above methods can be extended to the setting of matroid
constraints [9]. Matroids are powerful objects, whose usage unifies many results
from combinatorics (see, e.g., [45,53]); hence this extension is a powerful result.
However, it comes with a significant impact to practicality. While the algorithm
of [9] is reasonable (being combinatorial in nature), it works on the basis of a
decomposition of the input point x € R™ into a convex combination of matroid
bases, and such a decomposition is difficult to obtain, both in terms of compu-
tational complexity (the best bound for the general case being O(n°) time [11])
and in terms of implementation difficulty. Using a more traditional pair-rounding
approach (in line with the algorithms of Sect.4.1; see [8]) would save us from
having to provide an explicit decomposition, but instead requires the ability to
test the fractional membership of a point x in the corresponding polytope; for the
general case, this is again as difficult as obtaining a decomposition [11]. (Chekuri
et al. [9] note that in some applications, such a decomposition is provided along
with the point z, in which case these objections do not apply.)

One particularly interesting special case of this result are spanning tree con-
straints, i.e., creating a random spanning tree for a graph according to some
given edge probabilities. This was used in the breakthrough O(logn/loglogn)-
approximation result for Asymmetric TSP of Asadpour et al. [4] (although [4]
used the heavy machinery of maximum entropy sampling). However, the cost
of the above-noted primitives for the spanning tree polytope is still non-trivial,
e.g., decomposition requires O(n?) calls to a max-flow algorithm [34]. The best
present bound for max-flow is O(nm) time due to Orlin [44].

5 Pipage Rounding: Rounding in Bipartite Graphs

In this section, we move on to a more general constraint type, which can be
described either as rounding fractional edges in a bipartite graph (e.g., bipartite
b-matching) or as rounding a fractional point = subject to membership in the
assignment polytope. We will employ the bipartite graph perspective. Dependent
randomized roundings for this setting were provided by Gandhi et al. [35,36] and
by Doerr [16]. In this setting, the hard constraints are represented by a bipartite
graph G = (UUV, E), with edge set E = {e1,...,e,}, and with one variable
x; € [0,1] for every edge e;. Let © = (21,...,) denote the family of variables,
and for a vertex w € U UV let §(w) denote the edges incident on w. The hard
constraints that we must observe are then to preserve the values of Zeie 8(w) Lis
for all vertices w € U U V; in other words, we are rounding the values of the
fractional edges e;, subject to preserving the fractional degree in every vertex.
We refer to these constraints as vertez constraints §(w). For ease of presentation,

Randomized Roundings with Dependencies 171

we assume that each vertex constraint é(w) is integral, by adding two dummy
vertices ug, vo and up to [U| + |V| + 1 dummy edges [30].

We will not be able to guarantee complete negative correlation, as may be
realized by considering, e.g., an even cycle Cy,, of %—edges. There are exactly two
rounded solutions for this instance, and if the edges are numbered ey, es, ..., eq,
in order, in each solution we have r1 = x3 = ... = T9,_1 and o =24 = ... =
To,. However, the above results show that one can generate roundings subject to
the above, with negative correlation within all subsets d(w) for w € UUV. We
will review the above algorithms, and recall the conclusions of some experiments,
both in general terms and for particular applications. We also briefly report on
theoretical results that extend the above situation, again to a matroid setting.

5.1 Algorithms

As in Sect. 4, three different rounding schemes are available for solving the prob-
lem, corresponding to the three schemes of Sect. 4.1, with a common algorithmic
core referred to as pipage rounding. Thus we first describe this common core,
then review how each rounding scheme can be applied to it.

Pipage Rounding. The common principle behind these algorithms is the idea
of pipage rounding, due to Ageev and Sviridenko [1]. Let C C F be a set of edges
that induce a simple cycle in E; w.l.o.g. assume that C' = {eq, ..., ea }, numbered
in order along the cycle C, and let ¢ = {z1,...,22:} be the corresponding set
of variables. We will perform a pair-rounding step at every vertex incident to
C, similarly as in Sect.4, but this time, in order to maintain all cardinality
constraints d(w) the adjustments need to cascade. Concretely, for some 0 €
(=1, 1) we will adjust the values x; for all edges e; € C so that xg;_1 «— x2;_1+9
and wo; < x9; — d; the adjustment § is chosen randomly as § € {67, -5~} with
E[6] = 0. The choice of §*,6~ and the cycle C is algorithm-specific. We refer to
such an adjustment as a pipage rounding step. We review the effects of applying
the various rounding schemes to this outline. Note that when considering §(w)
in isolation, w € U UV, the above scheme acts exactly like a pair-rounding
algorithm, implying both negative correlation and derandomization as in Sect. 4.

Gandhi et al. In [35,36], the details are chosen much as in Srinivasan’s method
for pair-rounding. That is, 67 and §~ are defined as the largest values such that
using an adjustment of § = % (resp. § = —d~) leaves all variables z; € [0, 1];
necessarily, at least one variable x; must become integral in such an adjustment.
Each time, the cycle C' is chosen arbitrarily among the edges that still have
fractional values. (By the integrality of each vertex constraint, no vertex is inci-
dent to exactly one fractional edge, hence such a cycle always exists.) We get an
upper bound of O(m) pipage rounding steps; as each step may involve a cycle
C of O(n) edges, the total running time (pessimistically) becomes O(nm). (A
better bound may be O(mp), where p is the average cycle length, but this is
hard to estimate theoretically.)

Bit-Wise. In [16], the bit-wise rounding scheme is applied to the above. Con-
cretely, we assume that each variable xz; has a finite bit-depth of ¢. Let E, be

172 B. Doerr and M. Wahlstrom

the set of all edges e; whose corresponding variables x; have an LSB of 1. By
the integrality of the vertex constraints, these edges Ey form an even graph,
which hence decomposes into cycles. Let C' be an arbitrary cycle in the graph
formed by Ey, and pick 6 = +2~¢ uniformly at random. Now note that every
edge e; € C gets an LSB of 0 after such an adjustment, hence for each bit level,
each edge is adjusted at most once. Consequently, the total work over all pipage
rounding steps is simply O(m/), which compares favorably to the bound O(mn)
for the previous method.

Hybrid. Finally, we consider the hybrid method, developed in [30] for this case.
Here, the cycle C is chosen as in the bit-wise method, while the values 6,6~
are chosen as in Gandhi et al. Again we find that both 6T and 6~ have an LSB
of 1, hence after each pipage rounding step, we both decrease the bit-depth of
all adjusted edges and make at least one edge variable integral. In practice, this
method proves to be faster than both the above methods (see below).

Derandomization and Implementation Notes. All these algorithms can
be derandomized, in the same sense as in Sect. 4, assuming that each soft con-
straint has its support contained in ¢(w) for some vertex w; as noted above, we
may simply use the same pessimistic estimators as in Sect.4.2. As for imple-
mentation notes, we found that there is some undesirable interaction between
the derandomization and the hard constraints, if one uses inexact (e.g., floating-
point) arithmetics. In many applications we may have hard cardinality con-
straints which make the solutions to the problem more costly (e.g., the limits on
broadcasting in Sect. 6.3). If a cardinality constraint of, say, 2 is misinterpreted
as a fractional constraint of 2 + ¢ (where € > 0 is some small number stemming
from floating point imprecision), then a greedy derandomized algorithm may opt
to “round” this constraint up to 3. (Note that this would be extremely unlikely
for a randomized algorithm.) Based on our experiences in [30], rather than trying
to “plug” such holes in an ad-hoc manner, we recommend to transform the input
to fixed precision (say, 64-bit integers) before commencing any rounding. (This
64-bit data will need to be cleaned up for integrality after the transformation,
but this only has to be done once.)

5.2 Experimental Evaluations

We now report briefly on conclusions from [30] on random bipartite graphs,
regarding running time and solution quality; an application to broadcast schedul-
ing is covered in Sect. 6.3.

As noted above, the method of Gandhi et al. needs O(mp) time where p is
the average cycle length, while the bit-wise method needs O(mf¢) time where ¢
is the bit-depth (and the hybrid method needs the smaller of these). The deran-
domized versions incur an additional cost due to the need to update pessimistic
estimators; with the implementation used in [30], this cost is roughly propor-
tional to the total number of pessimistic estimators for all methods. (With a
more advanced implementation, it should be possible to reduce this factor to
the number of affected pessimistic estimators, which should further boost the

Randomized Roundings with Dependencies 173

differences in running times; however, this was not attempted.) Naturally, the
value of p depends on the graph structure; in experiments with random 5-regular
bipartite graphs with n vertices, we found that the total number of edge visits
for the method of Gandhi et al. scaled as O(n!-37), while it remained linear for
the two other methods. (The difference in running time scaled proportionally
to this.) In concrete numbers, for 5-regular graphs on 1000 vertices, the average
running times for the derandomized versions were 14.6s, 10.2s, resp. 8s for the
method of Gandhi et al., bit-wise, resp. the hybrid method; for 20-regular graphs
on 1000 vertices the times were 109, 67 s, resp. 65s; and for random graphs with
m = 20,000 and n = 400, the times were 56s, 465, resp. 33s. In other words,
for this range of m, the order of Gandhi - bit-wise - hybrid is stable, with a
total gap of roughly factor of two. The randomized methods were roughly two
orders of magnitude faster on these instances, which though noteworthy is a less
drastic difference than in Sect.4. In terms of rounding error, the general order
was that the method of Gandhi et al. produced smaller rounding errors, and the
bit-wise method larger errors, e.g., for the random graphs with m = 20,000 and
n = 400, the average rounding errors were 4.38 for Gandhi et al., 6.09 for the
bit-wise method, and 5.43 for the hybrid method. However, in the application
experiments (reported in Sect. 6.3), this order was not preserved (there, instead,
the hybrid was both fastest and produced the best-quality solutions). The ran-
domized methods again produced rounding errors similar to each other, up to
twice as large as the derandomized methods.

5.3 Extension: Matroid Intersection

As noted in Sect. 3, there is a far-reaching generalization of the above into so-
called matroid intersection constraints [9]. The algorithm, as in Sect. 4.4, is based
on a convex decomposition of the input point x, though the individual steps are
more complicated (being pipage rounding steps rather than simple pair-rounding
steps). However, the extent of negative correlation is more limited (covering ver-
tex constraints as above, but perhaps not much beyond this). In a further exten-
sion, the authors also produce “approximate roundings” for settings including
matroid intersection; see Sect. 3 and [10]. (An interesting future question is how
the concentration bounds of these “approximate” roundings play out in prac-
tice against other methods.) Naturally, the complexity drawbacks reported in
Sect. 4.4 apply equally strongly here.

6 Some Applications

To get a feeling for the behavior of the algorithms “in practice,” we now review
some work on applying the above methods to (real or artificial) instances of con-
crete optimization problems. We cover three topics: Low-discrepancy pointsets
(in Sect.6.1), routing and covering problems (in Sect.6.2), and problems of
broadcast scheduling (in Sect.6.3). These represent various areas where meth-
ods of dependent randomized rounding have been proposed for approximation

174 B. Doerr and M. Wahlstrom

algorithms. Additionally, we report on advances in randomized rumor spreading
(Sect. 6.4), which not only has a natural interpretation as rounding problem, but
moreover turned out to be a very useful test-case to investigate the influence of
additional dependencies in the random experiment.

6.1 Low-Discrepancy Point Sets

The first application is from the area of geometric discrepancy. Specifically, we
consider the following discrepancy problem. Let P be a set on n points in [0, 1]9.
The L -star discrepancy of P (star discrepancy for short) is defined as d%_(P) =
SUP,eqo,1)4 |27 N [0, 2] — vol[0, z[|, where [0,z] is the d-dimensional half-open
box [0,z1[X ... x [0,z4[; that is, the star discrepancy is defined with respect
to a range space of boxes anchored in 0. Our task is to create a point set P
for given values of n and d, with d%_ (P) as small as possible. Such point sets
have important applications in numerical integration, in particular in financial
mathematics; see, e.g., [43]. In [22], a randomized method is proposed for this
problem. They define a subdivision of [0,1]? into a (non-regular) grid of k¢ grid
bozes, for some k = k(d,n) chosen by the algorithm. The point sets P are then
created in a two-stage process, where in the first stage it is decided how many
points each grid box should contain, and in the second stage the placement of
these points inside the boxes are chosen. The first stage naturally corresponds to
a dependent rounding problem, with one variable x; for each box B; of the grid,
with initial value ; = n - vol(B;), and with a hard constraint), z; = n. Note
that this can be done in a randomized or derandomized manner, as the range
space above reduces to the set of all k% corner-anchored boxes one can form from
the grid, each of which can be treated as a soft constraint. This leaves the design
of the grid, for which see [22], and the choice of the parameter k = k(d,n).
In [22], k was chosen so as to balance the contribution to the discrepancy of
the two stages, based on theoretical bounds on the rounding and placement
errors. The resulting bounds were superior to previous work for a domain of
intermediate dimension d and relatively few points n. (For a related method,
see [26,27].)

In [28], this was tried out experimentally. In line with the experiences
reported in Sect. 4.3, the immediate experiences were that contrary to theory,
there was a very big difference in rounding error between the derandomized
and randomized methods, and even the randomized methods produced round-
ing errors significantly smaller than the union bound-based theoretical bound.
On tests with d = 7, n &~ 150, the median rounding error (using Srinivasan’s
method) was 0.026, while the median star discrepancy was 0.139, i.e., five times
larger; tests with d = 9, n ~ 90 revealed even larger differences. Therefore, the
recommendation would be to pick a larger k than k(n,d), perhaps up to the
limits formed by the growth of the number of variables k%.

To enable larger tests, the derandomization code was carefully engineered,
and special-purpose code was written for the case k& = 2, enabling derandom-
ization of instances with k = 2, d = 20 (with over a million variables and soft
constraints), taking 10.5h to compute. However, the investigation was hindered

Randomized Roundings with Dependencies 175

by the difficulty of computing discrepancies. Note that the formula for d* (P)
discretizes into O(n?) tests, which is highly impractical. Unfortunately, though
improvements exist [13,38], no practical method for upper-bounding d_(P) for
larger d is known, and it is now known that computing d*_(P) in time O(n°®)
would contradict certain complexity-theoretical assumptions [37]. Therefore, the
final conclusions of the experiments remain tentative.

6.2 Routing and Covering Problems

We now move on to more typical approximation applications of randomized
rounding. We briefly review two applications, namely a low-congestion routing
problem and max coverage in hypergraphs; the results are taken from [29]. Both
problems are classical examples of the randomized rounding approach to approx-
imation algorithms, involving solving an LP-relaxation of the problem, rounding
it randomly to an integral solution, and using probabilistic arguments to show
that this integral solution is with good probability a good approximation. For
both problems, we find that the proposed algorithms work well in practice, but
furthermore we find that various heuristic improvements can be used to improve
the result quite significantly. We cover each problem in turn.

Low-Congestion Routing. The routing problem we considered is the follow-
ing variant. We are given a (directed) network G = (V, E) and a set of k routing
requests consisting of a source vertex s;, a sink vertex t¢;, and a demand r;. The
objective is to find a set of paths (i.e., an integral multi-commodity flow) such
that for each ¢ € [k], r; units of commodity ¢ are routed from s; to ¢;. The
optimization goal is to minimize the congestion, i.e., the maximum total amount
of flow over any single edge. This variant, where every r; is an integer, is also
called integer-splittable flow. Raghavan and Thompson [48] gave an approxima-
tion algorithm for the case where all demands are 1, using randomized rounding;
Srinivasan [56] extended this to integer demands using dependent rounding. The
algorithm works as follows. First, we solve an LP relaxation of the problem; this
is simply the usual multi-commodity flow LP, with km variables x; . for ¢ € [k],
e € F, and with a flow-conservation constraint for each commodity ¢ and each
vertex v (properly adjusted for the vertices s; and ¢;). The LP is solved with
an optimization goal of minimizing the congestion C = max.cg Zie[k] x;.e (note
that this is easily implemented in an LP, using C' as an extra variable). This
gives a set of fractional variables x; . which will be the basis for the solution.
Next, we apply path stripping to these variables, creating for each i € [k] a
finite set P; of fractional paths from s; to t¢;, of total weight r;. For each such
fractional path P, we let z(P) denote the weight that P was given in the path
stripping; hence) pp #(P) = r; for each i € [k]. Finally, we round these frac-
tional weights z(P) to integers y(P), using > pcp. #(P), i € [k] as a collection of
(disjoint) hard cardinality constraints. Effectively, this means that we select for
each i € [k] a collection of integral paths from s; to ¢;, of total weight r;, creating
a solution for the problem. As for the congestion, observe that for every e € E
the congestion over e is simply > ... p 2(P), i.e., the congestion can be treated

176 B. Doerr and M. Wahlstrom

as a set of m soft linear constraints, and as long as the congestion C' of the LP
solution is not too low, large deviation bounds imply that the congestion of the
integral solution y is on expectation close to C' (e.g., the expected congestion is
C + O(y/Clogm) if C > logm). The derandomized version of this works out of
the box with pessimistic estimators, giving the same approximation guarantee.

So far the theory; let us now focus on the algorithm engineering perspective.
In [29], the above was tested with the following setup. As instances, we used
n X n-size bidirectional grids with randomly generated requests, with demands
around r; = 3 (the details of placements of requests (s;,t;) and choice of r; were
not found to affect the outcome too much). In the experiments, we found that
the proposed algorithms generally work well and tend to perform better than
the theoretical upper bound, and that (once again) the derandomized versions
clearly outperform the randomized versions by a factor of two or more (in terms
of rounding error relative to the fractional solution). Although the derandom-
ized versions were slower than the randomized ones, both running times were
completely dwarfed by the time required to solve the LP, making a strong rec-
ommendation towards using the derandomizations. Inspired by inspection of the
structure of the fractional and integral solutions, we also proposed a heuristic
modification of the LP, intended to produce fractional solutions that are easier
to round (e.g., with fewer edges at maximum initial congestion C); see [29] for
details. This modification, while making the LP still more expensive to solve,
paid off in terms of still further reduced rounding errors for all methods. Con-
cretely, for a 15 x 15 grid with 75 requests, with the basic LP the randomized
methods produced over 40% overhead and the derandomizations produced 25.8%
(bitwise) resp. 18.2% (Srinivasan) overhead; with the improvement, the numbers
were 28.5% (randomized) resp. 12.9% (derandomized Srinivasan).

Max Coverage. We next consider a different problem. Let S = {S1,...,S,}
be a collection of subsets of some ground set U; without loss of generality, let
U = [m]. In the basic version of the problem, we are given a budget L, and
asked to select L sets of S to maximize the size of the union; in the weighted
version, we additionally have a cost ¢; associated with every set S;, and a profit
w; associated with every element i € U of the ground set. Two algorithms
have been proposed for this problem, both with approximation guarantees of
(1—1/e); unless P =NP, this is also the best possible approximation guarantee.
The first algorithm is the greedy algorithm, which (for the basic variant) simply
repeatedly selects the set S; which would cover the largest number of so-far
uncovered elements. To adapt this for the weighted case, we may instead select
the set S; to maximise the profit/cost ratio. (To guarantee a good approximation
ratio for the weighted case, special care must be taken with sets of very large
cost; however, the instances in our experiments did not include any such sets.)
The second algorithm is an LP-rounding algorithm, which solves the natural
LP-relaxation of the problem and produces a solution by dependent rounding,
developed in [1,56]. Concretely, the LP has variables z;, i € [n], signifying that
set .S; is taken, and e;, 7 € U, signifying that element 7 is covered; the constraints
are the budget constraint ZZ ciz; < L, and coverage constraints e; < 3 jiies, L

Randomized Roundings with Dependencies 177

for each i € U; the optimization goal is max), w;e;. For the basic variant, for
the rounding case we can simply treat the values x; as values to be rounded,
subject to a hard constraint), x; = L. Let y € {0,1}" be the rounded version
of z. For a single element i € U, the probability that i is covered by y equals

1-Pr[\ y=0]=1-] Prly; =0 =1-] @ -y

j:iGSj j:iGSj jZiGSj

the inequality is due to the negative correlation of the rounding. By standard
methods, it follows that Pr[e; is covered] > (1 — 1/e)y;, and the approximation
ratio follows by linearity of expectation. To adapt this for the weighted case, we
must replace the simple cardinality constraint by a weighted constraint y_, c;z; <
L + §, where § is a noise term bounded by the cost of the most expensive set.
Such budget-preserving roundings are given in [29,35]. For derandomization, we
simply use as guide the function

Flz)=Y wi(1—] Q=)

iceU JHi€S;

representing the expected solution value for an independent randomized round-
ing of z. With similar arguments as in Sect.4.1 regarding concavity, we can
show that it is possible to keep the value of F(z) non-decreasing during the
rounding process, meaning that we end up with a final profit of F(y) > F(z) >
(1—1/e) >, wse;. For details, see [29]. Again, some further care must be taken
if there are sets of very large cost, but we will ignore this aspect.

In [29], we implemented the above, and tested it on instances adapted from
facility location problems. As before, the results were generally positive; all algo-
rithms listed above performed well, and produced good-quality outputs (at least
compared to the theoretical guarantees), derandomized rounding significantly
outperformed randomized rounding, and the running time requirement for solv-
ing the LP generally dominated all other computation steps. (Observe that the
expected outcome for a randomized rounding is simply F(z). An alternate ran-
domized strategy of producing 1000 random outputs and keeping the best solu-
tion was tried, but found to be both slower than derandomized rounding and
producing worse-quality solutions.) However, it was also found that the greedy
algorithm frequently produced very high-quality solutions, and was partially
complementary to the LP-rounding algorithm. For this reason, we considered
several ways of incorporating further greedy aspects into the LP-rounding algo-
rithm. In particular, we complemented the pair-rounding step with a greedy
selection of the particular pair (z;,z;) of variables to round (i.e., we make
that adjustment (z;,z;) < (z; + 0,2; —) which locally best improves the
value of F(z)). Thanks to the nature of the function F(z), this decision may
be taken based on the gradients OF(x)/dz;, which in turn can be computed
and updated efficiently; see [29] for details. In experiments, this gradient-based
rounding performed impressively well, outperforming both the greedy and basic
LP-rounding algorithms, at no significant practical cost to the running time.
Concretely, for the instance br818-400 (see [29]), the initial F(z) = 22,157,

178 B. Doerr and M. Wahlstrom

greedy achieves 28054, derandomized Srinivasan 27,397, and the gradient deran-
domization 28,448. Optimum was found via exhaustive search to be 28, 709.
We also considered an alternate way of combining greedy and LP-rounding, of
seeding the LP-algorithm by using some fraction €L of the budget for greedy
pre-selection before solving the remaining instance as above; this was found in
some cases to further improve solution quality.

6.3 Broadcast Scheduling

Finally, we briefly cover some problems in broadcast scheduling, where the bipar-
tite edge roundings of Sect. 5 have found approximation applications; this mate-
rial is from [30,36]. In this problem, a server has a set of pages P and a set of
requests for pages; each request has an issue date, a weight, and optionally a
deadline after which it cannot be satisfied. Time is divided into discrete slots,
and the server is able to transmit (broadcast) one page (or a bounded number of
pages) per time slot; each broadcast satisfies all requests that are live at the time
(i.e., between issue date and deadline). Different optimization goals are possible;
we will focus mostly on the max throughput case, where the goal is to maximize
the weight of the satisfied requests. We are considering the offline setting, i.e.,
all requests are known in advance.

The reduction of the max throughput problem into bipartite edge round-
ing goes as follows. We first solve an LP-relaxation of the problem, creating a
fractional schedule z¥; here a variable z¥, for a time slot ¢ and page p € P,
represents the decision that page p is to be broadcast at time slot ¢. These are
constrained so that > px{ =1 for each time slot ¢. (The LP formulation also
contains further variables to keep track of the optimization goal. Concretely, for
each request ¢ we have a variable r; signifying that the request is satisfied; if
request ¢ is for page p; to be transmitted between time slots ¢; and d;, then we
have a constraint r; < Zf:t xl'. The goal is max ZZ w;T; where w; is the weight
of request 7.) This fractional schedule is then converted into a bipartite graph as
follows. First, for every page p, the transmissions {t : ¥ > 0} of p are split into
consecutive windows Wf , such that in each window except the first and the last,
the page p is transmitted exactly once by the schedule. (Note that to achieve
this, we may have to split a single transmission z¥ between two windows WJP ,
W?,,.) Call those windows which are not the first or the last window internal
windows. The amount by which p is broadcast during its first window W7} is
decided by a random variable z. Next, we form a graph G = (U UV, E), where
U contains one vertex u; for each time slot ¢, and V' contains one vertex v;,
for each window ij formed above; the edges E connect the windows and the
time slots in the natural way, with values based on z!. In summary, this gives
us a weighted bipartite graph where every vertex representing a time slot or an
internal window is incident to edges of weight exactly 1. The first window of
each page is incident to edges of weight exactly z, where z € (0,1] is a page
shift value chosen uniformly at random. This graph G is then put through the
rounding procedure, and in the end this produces a schedule where each time
slot is incident to exactly one integral edge, and each page is transmitted once

Randomized Roundings with Dependencies 179

for each internal window (and possibly up to twice more). It is shown in [36]
that each request satisfied in the LP-solution has a chance of at least 3/4 to be
satisfied in the integral solution, leading in particular to a 3/4-approximation
assuming that there is a fractional solution which satisfies all requests.

In [30], this algorithm was implemented and tested, on broadcast scheduling
instances derived from Wikipedia access logs (see the paper for details). We com-
plemented the randomized algorithm above with a simple greedy algorithm and
a derandomization of the above. The greedy algorithm simply proceeds time slot
by time slot, and in each time slot broadcasts that page which would satisfy the
greatest number of remaining requests. For the derandomization, observe that
there are two randomized aspects to the above algorithm, namely the choice of
shifts and the decisions in the pipage rounding. The latter can be derandomized
via ad-hoc pessimistic estimators; the former can be derandomized by select-
ing for each page p that value z, which maximizes the sum of its associated
pessimistic estimators. In the experiments, we found that the greedy algorithm
performed the worst (unlike in Sect. 6.2, where it was quite competitive), and
that the two aspects of the derandomization (choice of z and using derandom-
ized pipage rounding) both strongly improved the solution quality. Concretely,
for the larger instance tested in [30], the greedy algorithm and the randomized
algorithms all achieve a value of 24.6, while derandomizing both aspects gives
value 26.6 (bitwise), 27 (Gandhi et al.), resp. 27.3 (hybrid). The LP has a value
of 27.5. (However, it should be noted that in all derandomized versions, the orig-
inal “fairness” condition that each request has a 3/4 chance of being satisfied
naturally no longer holds.)

We also tested the goal of minimum average delay, which was also covered
n [36]. However, for this goal, the LP-rounding approach does not seem to be
warranted, as the greedy algorithm was found to be both much faster and to
produce better solutions.

6.4 Randomized Rumor Spreading

While the main focus of this survey is how to efficiently generate random-
ized roundings with dependencies, there is the equally important question what
dependencies to use. For many applications it is simple the desired solution that
makes it obvious which dependencies to add. However, our experiments sketched
in Sect. 4.3 also suggest that adding dependencies even where not demanded by
the structure of the solution can improve the performance. To gain more insight
into this phenomenon, we exemplarily regarded the classic push-protocol to dis-
seminate a piece of information in a network (“randomized rumor spreading”).
This has a natural interpretation as randomized rounding problem. Due to its
simple structure, several dependent approaches suggest itself. Interestingly, the
most astonishing improvement was achieved on preferential attachment graph,
hence on networks trying to imitate the structure of real-world networks.
Randomized rumor spreading is a basic process to disseminate a piece of
information in a network. Initiated by a node wanting to spread a piece of
information (“rumor”), this round-based protocol works as follows. In each round

180 B. Doerr and M. Wahlstrom

of the process, each node knowing the rumor already calls a random neighbor
and gossips the rumor to it. This process has been observed to be a very robust
and scalable method to disseminate information, consequently if found many
applications both in replicated databases [12] and wireless sensor networks [2].

Randomized rumor spreading has a natural interpretation as randomized
rounding problem. Note that for a node u of degree d at each time step for each
neighbor v the probability that w calls v is x4, = 1/d. An actual run of the
protocol leads to a rounding y, defined by w4, = 1 if and only if u actually
called v in round t. This rounding problem comes with the natural dependency
Zv Yty = ZU T4, = 1, but as we shall see, adding further dependencies can be
useful.

In [24,25], it was suggested that nodes should not take independent actions
over time, but rather it should be avoided, e.g., that a node calls the same other
node twice in a row. To keep the bookkeeping effort low, it was proposed that
each node has a cyclic permutation of his neighbors. When first informed, it
chooses a random starting point in this cyclic order, but from then on determin-
istically follows the order of the list. Note that this also massively reduced the
number of random bits needed by the process. Despite using much less random-
ness, this process was proven to have a mostly similar or slightly better perfor-
mance than the classic independent rumor spreading. In [21], an experimental
investigation was undertaken that confirmed speed-ups for several settings where
the theoretical works could not prove a difference of the protocols. Also, it was
observed that the particular choice of the lists can make a difference, e.g., for 2D
grids with diagonal adjacencies a low-discrepancy order to serve the directions
was shown to be much better than a clock-wise order.

Interestingly, the most significant improvement stemming from dependen-
cies (and in fact very low dependencies) was found on preferential attachment
graphs [18,20]. These graphs were introduced by Barabdsi and Albert [7] as
a model for real-world networks. For these graphs, surprisingly, a very minor
fine-tuning turned out to change the asymptotic runtime [18,20]. While classic
protocol with high probability needs £2(logn) rounds to inform all vertices, this
changes to O(logn/loglogn) when the independent choice is replaced by talk-
ing to a neighbor chosen uniformly at random from all neighbors except the one
called in the very previous round. That this asymptotic improvement is visible
also for realistic network sizes was shown in [19]. We are not aware of previous
results showing that such a minor fine-tuning of a randomized algorithm can
lead to such gains for real-world network structures.

7 Conclusions

All results presented in the article indicate that randomized rounding and its
derandomization can be adapted to respect additional hard cardinality con-
straints without incurring significant losses compared to classical independent
randomized rounding as introduced by Raghavan and Thomspon [47,48]. For
disjoint cardinality constraints, when using Srinivasan’s approach or the hybrid

Randomized Roundings with Dependencies 181

approach, we did not observe that generating the roundings or the derandom-
izations took more time or was significantly more complicated. Also, we gen-
erally did not observe larger rounding errors when additional hard constraints
were present (rather the opposite, in particular, adding a global cardinality con-
straint may in fact slightly descrease the rounding errors). For the choice of
the rounding method to be used, the experimental results clearly indicate that
for disjoint cardinality constraints, Srinivasan’s or the hybrid approach should
be preferred, where as for the bipartite edge weight setting, the bit-wise or the
hybrid approach are more efficient.

Acknowledgements. The authors are grateful to the German Science Foundation for
generously supporting this research through their priority programme Algorithm Engi-
neering, both financially and by providing scientific infrastructure. We are thankful to
our colleagues in the priority programme for many stimulation discussions. A partic-
ular thank goes to our collaborators and associated members of the project, namely
Carola Doerr née Winzen (University of Kiel, then MPI Saarbriicken, now Université
Pierre et Marie Curie—Paris 6), Tobias Friedrich (MPI Saarbriicken, now University
of Jena), Michael Gnewuch (University of Kiel, now University of Kaiserslautern),
Peter Kritzer (University of Linz), Marvin Kinnemann (MPI Saarbriicken), Friedrich
Pillichshammer (University of Linz), and Thomas Sauerwald (MPI Saarbriicken, now
University of Cambridge).

References

1. Ageev, A.A., Sviridenko, M.: Pipage rounding: a new method of constructing algo-
rithms with proven performance guarantee. J. Comb. Optim. 8(3), 307-328 (2004)

2. Al-Karaki, J.N.,; Kamal, A.E.: Routing techniques in wireless sensor networks: a
survey. Wirel. Commun. IEEE 11(6), 6-28 (2004)

3. Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and
graph partitioning. J. ACM 56(2) (2009)

4. Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.0O., Saberi, A.: An O(log n/
log log n)-approximation algorithm for the asymmetric traveling salesman problem.
In: SODA, pp. 379-389 (2010)

5. Bansal, N.: Constructive algorithms for discrepancy minimization. In: FOCS, pp.
3-10 (2010)

6. Bansal, N., Spencer, J.: Deterministic discrepancy minimization. Algorithmica
67(4), 451-471 (2013)

7. Barabdsi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509-512 (1999)

8. Chekuri, C., Vondrak, J., Zenklusen, R.: Dependent randomized rounding for
matroid polytopes and applications (2009). http://arxiv.org/pdf/0909.4348v2.pdf

9. Chekuri, C., Vondrak, J., Zenklusen, R.: Dependent randomized rounding via
exchange properties of combinatorial structures. In: FOCS, pp. 575-584 (2010)

10. Chekuri, C., Vondrak, J., Zenklusen, R.: Multi-budgeted matchings and matroid
intersection via dependent rounding. In: SODA, pp. 1080-1097 (2011)

11. Cunningham, W.H.: Testing membership in matroid polyhedra. J. Comb. Theory
Ser. B 36(2), 161-188 (1984)

http://arxiv.org/pdf/0909.4348v2.pdf

182

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

B. Doerr and M. Wahlstrom

Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,
H.E., Swinehart, D.C., Terry, D.B.: Epidemic algorithms for replicated database
maintenance. Oper. Syst. Rev. 22, 8-32 (1988)

Dobkin, D.P., Eppstein, D., Mitchell, D.P.: Computing the discrepancy with appli-
cations to supersampling patterns. ACM Trans. Graph. 15(4), 354-376 (1996)
Doerr, B.: Multi-color discrepancies. dissertation, Christian-Albrechts-Universitit
zu Kiel (2000)

Doerr, B.: Structured randomized rounding and coloring. In: Freivalds, R. (ed.)
FCT 2001. LNCS, vol. 2138, pp. 461-471. Springer, Heidelberg (2001). doi:10.
1007/3-540-44669-9_53

Doerr, B.: Generating randomized roundings with cardinality constraints and
derandomizations. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol.
3884, pp. 571-583. Springer, Heidelberg (2006). doi:10.1007/11672142_47

Doerr, B.: Randomly rounding rationals with cardinality constraints and deran-
domizations. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp.
441-452. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70918-3_38

Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic
time. In: STOC, pp. 21-30. ACM (2011)

Doerr, B., Fouz, M., Friedrich, T.: Experimental analysis of rumor spreading in
social networks. In: MedAlg, pp. 159-173 (2012)

Doerr, B., Fouz, M., Friedrich, T.: Why rumors spread so quickly in social networks.
Communun. ACM 55, 70-75 (2012)

Doerr, B., Friedrich, T., Kiinnemann, M., Sauerwald, T.: Quasirandom rumor
spreading: an experimental analysis. JEA 16. Article 3.3 (2011)

Doerr, B., Gnewuch, M.: Construction of low-discrepancy point sets of small size
by bracketing covers and dependent randomized rounding. In: Keller, A., Heinrich,
S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp.
299-312. Springer, Heidelberg (2008)

Doerr, B.: Non-independent randomized rounding. In: SODA, pp. 506-507 (2003)
Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading. In: SODA,
pp. 773-781 (2008)

Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading: expanders,
push vs. pull, and robustness. In: ICALP, pp. 366-377 (2009)

Doerr, B., Gnewuch, M., Kritzer, P., Pillichshammer, F.: Component-by-
component construction of low-discrepancy point sets of small size. Monte Carlo
Meth. Appl. 14(2), 129-149 (2008)

Doerr, B., Gnewuch, M., Wahlstréom, M.: Implementation of a component-by-
component algorithm to generate small low-discrepancy samples. In: L’Ecuyer,
P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp.
323-338. Springer, Heidelberg (2009)

Doerr, B., Gnewuch, M., Wahlstrom, M.: Algorithmic construction of low-
discrepancy point sets via dependent randomized rounding. J. Complex. 26(5),
490-507 (2010)

Doerr, B., Kiinnemann, M., Wahlstrém, M.: Randomized rounding for routing
and covering problems: experiments and improvements. In: Festa, P. (ed.) SEA
2010. LNCS, vol. 6049, pp. 190-201. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13193-6_17

Doerr, B., Kiinnemann, M., Wahlstrom, M.: Dependent randomized rounding: the
bipartite case. In: ALENEX, pp. 96-106 (2011)

Doerr, B., Wahlstrém, M.: Randomized rounding in the presence of a cardinality
constraint. In: ALENEX, pp. 162-174 (2009)

http://dx.doi.org/10.1007/3-540-44669-9_53
http://dx.doi.org/10.1007/3-540-44669-9_53
http://dx.doi.org/10.1007/11672142_47
http://dx.doi.org/10.1007/978-3-540-70918-3_38
http://dx.doi.org/10.1007/978-3-642-13193-6_17
http://dx.doi.org/10.1007/978-3-642-13193-6_17

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Randomized Roundings with Dependencies 183

Erdds, P., Selfridge, J.L.: On a combinatorial game. J. Combinatorial Theory Ser.
A 14, 298-301 (1973)

Fleischer, L., Jain, K., Williamson, D.P.: Iterative rounding 2-approximation algo-
rithms for minimum-cost vertex connectivity problems. J. Comput. Syst. Sci.
72(5), 838-867 (2006)

Gabow, H.N., Manu, K.S.: Packing algorithms for arborescences (and spanning
trees) in capacitated graphs. Math. Program. 82, 83-109 (1998)

Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding in
bipartite graphs. In: FOCS, pp. 323-332 (2002)

Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding
and its applications to approximation algorithms. J. ACM 53, 324-360 (2006)
Giannopoulos, P., Knauer, C., Wahlstrom, M., Werner, D.: Hardness of discrepancy
computation and epsilon-net verification in high dimension. J. Complexity 28(2),
162-176 (2012)

Gnewuch, M., Wahlstrom, M., Winzen, C.: A new randomized algorithm to approx-
imate the star discrepancy based on threshold accepting. STAM J. Numerical Anal.
50(2), 781-807 (2012)

Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115-1145 (1995)

Hromkovi¢, J.: Design and Analysis of Randomized Algorithms. Introduction to
Design Paradigms. Texts in Theoretical Computer Science An EATCS Series.
Springer, Berlin (2005)

Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica 21(1), 39-60 (2001)

Moser, R.A., Tardos, G.: A constructive proof of the general Lovész local lemma.
J. ACM 57(2) (2010)

Niederreiter, H.: Random number generation and Quasi-Monte Carlo methods. In:
CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

Orlin, J.B.: Max flows in O(nm) time, or better. In: STOC, pp. 765-774 (2013)
Oxley, J.: Matroid Theory. Oxford Graduate Texts in Mathematics. OUP Oxford,
Oxford (2011)

Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring via an exten-
sion of the Chernoff-Hoeflding bounds. SIAM J. Comput. 26, 350-368 (1997)
Raghavan, P.: Probabilistic construction of deterministic algorithms: approximat-
ing packing integer programs. J. Comput. Syst. Sci. 37, 130-143 (1988)
Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7, 365-374 (1987)
Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP?
In: STOC, pp. 245-254 (2008)

Raghavendra, P., Steurer, D.: How to round any CSP. In: FOCS, pp. 586-594
(2009)

Rothvof; T.: The entropy rounding method in approximation algorithms. In:
SODA, pp. 356-372 (2012)

Saha, B., Srinivasan, A.: A new approximation technique for resource-allocation
problems. In: ICS, pp. 342-357 (2010)

Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and Combinatorics, vol. 24. Springer, Heidelberg (2003)

Spencer, J.: Six standard deviations suffice. Trans. Amer. Math. Soc. 289, 679-706
(1985)

184 B. Doerr and M. Wahlstrom

55. Spencer, J.: Ten Lectures on the Probabilistic Method. STAM, Philadelphia (1987)

56. Srinivasan, A.: Distributions on level-sets with applications to approximations algo-
rithms. In: FOCS, pp. 588-597 (2001)

57. Srivastav, A., Stangier, P.: Algorithmic Chernoff-Hoeffding inequalities in integer
programming. Random Struct. Algorithms 8, 27-58 (1996)

58. Szegedy, M.: The Lovész local lemma - a survey. In: CSR, pp. 1-11 (2013)

External-Memory State Space Search

Stefan Edelkamp®™)

Fakultdt Mathematik Und Informatik, Universitat Bremen,
Am Fallturm 1, 28359 Bremen, Germany
edelkamp@tzi.de

Abstract. Many state spaces are so big that even in compressed form
they fail to fit into main memory. As a result, during the execution of a
search algorithm, only a part of the state space can be processed in main
memory at a time; the remainder is stored on a disk.

In this paper we survey research efforts in external-memory search
for solving state space problems, where the state space is generated by
applying rules. We study different form of expressiveness and the effect of
guiding the search into the direction of the goal. We consider outsourcing
the search to disk as well as its additional parallelization to many-core
processing units. We take the sliding-tile puzzle as a running example.

1 Introduction

A multitude of algorithmic tasks in a variety of application domains can be
formalized as a state space problem. A typical example is the sliding-tile puzzle —
in square arrangement called the (n? —1)-puzzle (see Fig. 1). Numbered tiles in a
rectangular grid have to be moved to a designated goal location by successively
sliding tiles into the only empty square. The state space grows rapidly: the
8-puzzle has 181,440, the 15-puzzle 20,922, 789, 888,000/2 = 10 trillion, and the
24-puzzle 15,511, 210,043, 330, 985, 984, 000,000/2 ~ 7.75 x 10%° states.

More generally, a state space problem P = (S, A,s,T) consists of a set of
states S, an initial state s € S, a set of goal states T C S, and a finite set
of actions A where each a € A transforms a state into another one. Usually,
a subset of actions A(u) C A is applicable in each state u. A solution 7 is an
ordered sequence of actions a; € A, i € {1,...,k} that transforms the initial
state s into one of the goal states ¢ € T, i.e., there exists a sequence of states
u; € 5,1 €{0,...,k}, with ug = s, up, =t and w; is the outcome of applying a;
to wi—1, 4 € {1,...,k}. A cost (or weight) function w : A — IR>o induces the
cost of a solution consisting of actions ai,...,ar as Zle w(a;). In the usual
case of unit-cost domains, for all @ € A we have w(a) = 1. A solution is optimal
if it has minimum cost among all solutions.

A state space problem graph G = (V,E,s,T) for the state space problem
P = (S,A,s,T) is defined by V = S as the set of nodes, s € S as the initial
node, T as the set of goal nodes, and E C V' x V as the set of edges that connect
nodes to nodes with (u,v) € E if and only if there exists an a € A with a(u) = v.
Solving state space problems, however, is best characterized as a search in an

© Springer International Publishing AG 2016
L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 185-225, 2016.
DOI: 10.1007/978-3-319-49487-6_6

186 S. Edelkamp

1]2]3]a]s
1[2]3]4

1]2]3 6/7[8] 9]0
6|7]s

11[12]1314]15
9 [10[11]12

6|5 16[17[18]19] 20
13[14[15 [}

2122] 2324 [}

Fig. 1. (n® — 1)-puzzle instances: 8-puzzle, 15-puzzle, 24-puzzle.

implicit graph. The difference is that not all edges have to be explicitly stored, but
are generated by a set of rules (such as in games). We have an initial node s € V,
a set of goal nodes determined by a predicate Goal: V — IB = {false,true}.
The basic operation is called node expansion (a.k.a., node exploration), which
means generation of all neighbors of a node u. The resulting nodes are called
successors (a.k.a., children) of u, and u is called a parent or predecessor. We will
write Succ(u) = {v € S| Ja € A(u) | a(u) = v} for the successor set.

In more general state-space search models, by applying one action the suc-
cessor of a state is no longer unique. For the non-deterministic case, we have
Succ(u,a) = {v € S| a € A(u)}. For a Markov decision problem (MDPs) with
probabilities p(v | u,a) we additionally impose Evesucc(u’a)p(v | u,a) = 1.

All nodes have to be reached at least once on a path from the initial node
through successor generation. Consequently, we can divide the set of reached
nodes into the set of expanded nodes and the set of generated nodes that are not
yvet expanded. In AT literature the former set is often referred to as the Closed
list or the search frontier, and the latter set as the Open list. The denotation
as a list refers to the legacy of the first implementation, namely as a simple
linked list. However, realizing them using the right data structures (e.g., a hash
table for duplicate elimination and a priority queue for best-first exploration) is
crucial for the search algorithm’s characteristics and performance.

Refined algorithms have led to first optimal solutions for challenging com-
binatorial games. Besides computation time, space is a crucial computational
resource. For the Rubik’s Cube with 43,252,003,274,489,856,000 states the exact
diameter is 20 moves [73]. The computation for the lower bound took 35 CPU
years on several computers using (pattern) databases [62]. Rokicki et al. [83] par-
titioned the states into 2,217,093,120 sets of 19,508,428,800 states each, reduced
the count of sets needed to solve to 55,882,296 using symmetry and set covering.
Only solutions of length of at most 20 were found with a program that solved
a single set in about 20s. The Towers-of-Hanoi problem (with 4 pegs and 30
disks) spawns a space of 1,152,921,504,606,846,976 states and was solved in 17
days using 400 GBs of disk space [67]. To show that Checkers is draw (assum-
ing optimal play) [86,87], endgame databases of up to 10 pieces were built, for
any combination of kings and checkers. The database size amounts to 39 tril-
lion states. The number of states in the proof for a particular opening took
about one month on an average of 7 processors, with a longest line of 67 moves.
The standard problem for Connect 4 has 4,531,985,219,092 reachable states [31].

External-Memory State Space Search 187

It is won for the first player [4,5]. Most other states have been classified via an
external-memory hybrid of explicit-state and symbolic retrograde analysis [33].

Current domain-independent action planning systems solve Blocksworld
problems with 50 blocks and more, and produce close-to cost-optimal plans in
Logistics with hundreds of steps [24,49,50,52,82]. For planning with numbers,
potentially infinite search spaces have to be explored [48,52]. With the external-
memory search, in some cases, optimal plans can be obtained [54].

External-memory search algorithms have also helped finding bugs in soft-
ware [8,26,34,35,54,74,92]. Different model checkers have been externalized and
enhanced by directing the search toward system errors. Search heuristics accel-
erate symbolic model checkers for analyzing hardware, on-the-fly verifiers for
analyzing compiled software units, and industrial tools for exploring real-time
domains and finding resource-optimal schedules. Given a large and dynamically
changing state vector, external-memory and parallel exploration scaled best.
A sweep-line scans the search space according to a given partial order [71], while
[65] implements a model-checking algorithm on top of external-memory A*, [56]
provides a distributed implementation of the algorithm of [55] for model check-
ing safety properties, while [27] extends the approach to general (LTL) proper-
ties. Iterative broadening has been suggested in the context of model checking
real-time domains by [26], and some recent algorithms include perfect hash func-
tions [12,13] in what has been denoted as semi-external-memory search [35,36].

External-memory search is also among the best-known methods for opti-
mally solving multiple sequence alignment problems [69,88,96]. The graphs for
the some challenging problems required days of CPU time to be explored [30].
Monte-Carlo tree search [17,60,84] is effective especially for post-hoc optimiza-
tion [42].

The text kicks off with introducing external-memory search algorithms
(Sect.2) and continues with engineering the delayed detection (and elimina-
tion) of duplicates (Sect.3). It then turns to pattern databases (Sect. 4), before
addressing more general state space formalisms (Sect.5), as well as paralleliza-
tion options on CPUs (Sect. 6) and GPUs (Sect. 7). The work refers to prior pub-
lications of the author. E.g., Sects. 2.1 and 2.5 contain content from [29], Sect. 5
refers to [28], Sects. 6.1 and 6.3 are based on [56], Sect. 6.4 is based on [32], and
Sect. 7 contains content from [37,40].

2 External-Memory Search

The commonly used model for comparing the performance of external algorithms
consists of a single processor, a small internal memory that can hold up to M
data items, and an unlimited secondary memory. The size of the input problem
(in terms of the number of records) is abbreviated by N. Moreover, the block
size B governs the bandwidth of memory transfers. It is usually assumed that
at the beginning of the algorithm, the input data is stored in contiguous blocks
on external memory, and the same must hold for the output. Only the number
of block read and writes are counted, computations in internal memory do not
incur any cost (see Fig. 2).

188 S. Edelkamp

CPU

Internal Memory

M
T

Fig. 2. The external memory model.

It is convenient to express the complexity of external-memory algorithms
using two frequently occurring primitive operations [1,85]. The simplest oper-
ation is external scanning, reading a stream of IV records stored consecutively
on secondary memory. In this case, it is trivial to exploit disk (D) and block
(B) parallelism. The number of I/Os is scan(N) = N/DB. External sorting
is essential to arrange similar states together, for example, in order to find
duplicates. Although we will mainly be concerned only with the case of a sin-
gle disk (D = 1), it is possible to make optimal use of multiple disks with
sort(N) = O((N/DB)logy;/5(N/B)) 1/Os. In practice, one pass in a multi-way
merging process suffices so that we have sort(N) = O(scan(N)).

The advantage of state space search is that the (implicit) problem graph
G = (V, E) is generated on-the-fly by a set of rules, and, hence, no disk accesses
for the adjacency lists are required. Moreover, considering the I/O complexities,
bounds like those that include |V| are rather misleading, since we often avoid
generating the entire state space.

Many external-memory algorithms arrange the data flow in a directed acyclic
graph, with nodes representing physical sources. Every node writes or reads
streams of elements. Pipelining, a technique inherited from the database com-
munity, improves algorithms that reads data from and writes data to buffered
files [2]. It enables a procedure to feed the output as a data stream directly to
the algorithm that consumes the output, rather than writing it to the disk first.

2.1 External-Memory Breadth-First Search

There is no fundamental difference in the external-memory BFS algorithm by
Munagala and Ranade [77] for explicit and implicit unweighted graphs. How-
ever, the access efforts are by far larger for the explicit graphs, even though the
extension by Mehlhorn and Meyer [76] was successful in breaking the O(|V|]) 1/O
barrier for explicit graphs. The variant of Munagala and Ranade’s algorithm
in implicit graphs has been coined with the term delayed duplicate detection
(DDD) [63,70]. The algorithm maintains BFS layers on disk. Layer Open(i — 1)
is scanned and the set of successors are put into a buffer of size close to the
main memory capacity. If the buffer becomes full, internal sorting followed by a
duplicate elimination phase generates a sorted duplicate-free node sequence in

External-Memory State Space Search 189

the buffer that is flushed to disk. The outcome of this phase are k pre-sorted
files. Note that duplicate elimination can be improved by using hash tables for
the blocks before flushed to disk. Since the node set in the hash table has to be
stored anyway, the savings by early duplicate detection are considerably small.

In the next step, external-memory (multi-way) merging is applied to unify
the files into Open(i) by a simultaneous scan. The size of the output files is
chosen such that a single pass suffices. Duplicates are eliminated (even though
semantically more insightful for the ease of notation not renaming the files into
Closed). Since the files were pre-sorted, the complexity is given by the scanning
time of all files. One also has to eliminate Open(i — 1) and Open(i — 2) from
Open(i) to avoid re-computations; that is, nodes extracted from the disk-based
queue are not immediately deleted, but kept until the layer has been completely
generated and sorted, at which point duplicates can be eliminated using a parallel
scan. The process is repeated until Open(i — 1) becomes empty, or the goal has
been found. The algorithm applies O(sort(|Suce(Open(i—1))|)+ scan(|Open(i—
1)| +|Open(i—2)|)) I/Os. By 3_; |Succ(Open(i))| = O(|E|) and }_; |Open(i)| =
O(]V]), the total execution time is O(sort(|E|) + scan(|V])) I/Os.

In search problems with bounded branching factor we have |E| = O(|V|), and
thus the complexity for external-memory BFS reduces to O(sort(|V])) I/Os. If we
keep each Open(t) in a separate file for sparse problem graphs (e.g. simple chains)
file opening and closing would accumulate to O(|V]) 1/Os. The solution for this
case is to store the nodes in Open(i), Open(i + 1), and so forth consecutively in
internal memory. Therefore, I/O is needed, only if a level has at most B nodes.

Let s be the initial node, and Succ be the successor generation function.
The algorithm extends to integer weighted graphs G = (V, E,w) with bounded
locality locg = max{d(s,u) — d(s,v) + w(u,v) | u € S,v € Succ(u)}, where
0(s,u) is the shortest path distance from s to u. The locality determines the
thickness of the search frontier needed to prevent duplicates in the search.

In external-memory search the exploration fully resides on disk. As pointers
are not available solutions are reconstructed by saving the predecessor together
with every state, by scanning with decreasing depth the stored files, and by
looking for matching predecessors. Any reached node that is a predecessor of
the current node is its predecessor on an optimal solution path. This results in a
I/O complexity of O(scan(|V|)). Even if conceptually simpler, there is no need
to store the the search frontier Open(i), ¢ € {0,1,...,k}, in different files.

By completely enumerating the state space the external-memory BFS explo-
ration results showed that an instance of the 15-puzzle requires at most 80
steps [68]. The result has been validated in [80] on a distributed-memory system
with 32 nodes (128 CPUs) in 66h.

2.2 External-Memory Breadth-First Branch-and-Bound

With general cost functions we hardly can omit states in the search. However, if
f = g+h with current path cost g and a consistent heuristic h, with h(u)—h(v) <
w(u, v) for all successors v of u, we may prune the exploration. For the domains
where cost f = g+ h is monotonically increasing, external-memory breadth-first

190 S. Edelkamp

branch-and-bound (external-memory BFBnB) (with DDD) does not prune any
node that is on the optimal solution path and ultimately finds the best solution.
External BFBnB simulates memory-limited breadth-first heuristic search [93].
Let U be an upper bound on the solution cost. States with f(v) > U are pruned
and the expansion of states with f(v) < U induce an updated bound.

In external-memory BFBnB with cost function f = g 4+ h, where g is the
depth of the search and h a consistent search heuristic, every duplicate with a
smaller depth has been explored with a smaller f-value. This is simple to see as
the h-values of the query node and the duplicate node match, and BFS generates
duplicate with smaller g-value first. Moreover, u is safely pruned if f(u) exceeds
the current threshold, as an extension of the path to u to a solution will have a
larger f-value. External BFBnB is optimal, since expands all nodes u with f(u)
smaller than the optimal solution cost f*.

2.3 External-Memory Enforced Hill Climbing

Enforced hill climbing (EHC) [53] is a conservative variant of hill-climbing search.
Given that the estimated goal distance value, often called heuristic in the area Al
search, is minimized, the term enforced downhill would be a better fit. EHC has
been adapted to both propositional and numerical planning by [52]. Starting from
the initial state, a (breadth-first) search for a successor with a better heuristic
value is started. As soon as such a successor is found, the hash tables are cleared
and a fresh search is started. The process continues until the goal with distance
value zero is reached (see Fig. 3, left). Since the algorithm performs a complete
search on every seed state and will end up with a strictly better heuristic value, it
is guaranteed to find a solution in directed graphs without dead-ends. In directed
search spaces it can be trapped without finding a solution. Moreover, while often
good, its results are not provably optimal.

Having external-memory BFS in hand, an external algorithm for EHC can
easily be derived by utilizing the heuristic estimates. Figure3 considers parts
of an exploration for solving a planning problem in a histogram showing the
number of nodes in BFS layers for external EHC in a typical search problem.

Let h(s) be the heuristic estimate of the initial state s then the I/O com-
plexity is bounded by the number of calls to BFS times the I/O complexity of
each run, i.e., by O(h(s) - (scan(|V|) + sort(|E]))) I/Os.

2.4 External-Memory A*

In the following, we study how to extend external-memory BFS to A* [47]. The
main advantage of A* with respect to BFS is that, due to the use of a lower bound
on the goal distance, it often traverses a much smaller part of the search space
to establish an optimal solution. Since A* only changes the traversal ordering,
it is advantageous to BFS only if both algorithms terminate at a goal node.

In A*, the cost for node u is f(u) = g(u) + h(u), with g being the cost of the
path from the initial node to u and h(u) being the estimate of the remaining costs
from u to the goal. In each step, a node w with minimum f-value is removed

External-Memory State Space Search 191

1e+07

1e+06 |

100000

10000
h
1000 |
| ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 20 40 60 80 100 120 140
BFS Layer

Nodes

Fig. 3. Schematic view of enforced hill climbing, incrementally queuing down to better
goal distance values, restarting each time the exit of a plateau is reached (left). Typical
memory profile in external-memory enforced hill climbing of a particular benchmark
planning problem (right): the z-axis provides an index for the concatenatenation of all
the BFS-layers encountered during the search, while the y-axis denotes the number of
states stored and expanded (height of bars), for the according index (on log scale).

from Open, and the new value f(v) of a successor v of u is updated to the
minimum of its current value and f(v) = g(v) + h(v) = g(u) + w(u,v) + h(v) =
f(u) +w(u,v) — h(u) + h(v); in this case, it is inserted into Open itself.

In our algorithm, we first assume a consistent heuristic, where for all u and
v we have w(u,v) > h(u) — h(v), and a uniformly weighted undirected prob-
lem graph. These conditions are often met in practice, since many problem
graphs in single-agent search, e.g., in Rubik’s cube and sliding-tile puzzles are
uniformly weighted and undirected and many heuristics, e.g., pattern database
estimates [66] are consistent. Under these assumptions, we have h(u) < h(v) +1
for every node u and every successor v of u. Since the problem graph is undirected
this implies |h(u) — h(v)| < 1 and h(v) — h(u) € {—1,0,1}. If the heuristic is
consistent, then on each search path, the evaluation function f is non-decreasing.
No successor will have a smaller f-value than the current one. Therefore, A*,
which traverses the node set in f-order, expands each node at most once.

In the (n? — 1)-puzzle, for example, the Manhattan distance is defined as the
sum of the horizontal and vertical differences between actual and goal configu-
rations, for all tiles. The heuristic is consistent, since for two successive nodes u
and v the difference of the according estimate evaluations h(v) — h(u) is either
—1 or 1. The f-values of nodes u and successor nodes v of are either the same
or f(v) = f(u) +2.

As above, external-memory A* [29] maintains the search frontier on disk,
possibly partitioned into main-memory-sized sequences. In fact, the disk files
correspond to a bucket implementation of a priority queue data structure. In
the course of the algorithm, each bucket addressed with index ¢ contains all
nodes u in the set Open that have priority f(u) = ¢. A disk-based representation
of this data structure will store each bucket in a different file [64].

192 S. Edelkamp

We introduce a refinement of the data structure that distinguishes between
nodes with different g-values, and designates bucket Open(i,j) to all nodes u
with path length g(u) = i and heuristic estimate h(u) = j. Similar to external-
memory BFS, we do not change the identifier Open (to Closed) to separate
generated from expanded nodes. During the execution of A*, bucket Open(s, j)
may refer to elements that are in the current search frontier or belong to the
set of expanded nodes. During the exploration process, only nodes from one
currently active bucket Open(i,j) with i + j = fin are expanded, up to its
exhaustion. Buckets are selected in lexicographic order for (i, j); then, the buck-
ets Open(i, j') with i/ < i and ¢/ 4+ j' = fiin are closed, whereas the buckets
Open(i', ") with i’ 4+ j° > fmin or with ¢ > ¢ and ¢’ + j' = fuin are open. Nodes
in the active bucket are either open or closed. Successors of Open(g, h) fall into
Open(g+ 1,h — 1), Open(g + 1,h), or Open(g + 1, h + 1), so that the number of
buckets needed is bounded by O((f*)?) with f* being the optimal solution cost.

By the restriction of f-values in the (n? — 1)-puzzle only about half the
number of buckets have to be allocated. Figure4 shows the memory profile of
external-memory A* on a 35-puzzle puzzle instance (with 14 tiles permuted).
The exploration starts in bucket (50,0) and terminated while expanding bucket
(77,1). Similar to external-memory BFS but in difference to ordinary A*,
external-memory A* terminates while generating the goal, since all frontier states
with smaller g-value have already been expanded.

We can restrict the removal of duplicates to buckets of the same h-value. since
for all 4,7/, 7, 5" with j # j we have Open(i, 7) N Open(?’,j’) = (. In undirected
problem graphs duplicates of a node with BFS-level ¢ can at most occur in levels
1,1 —1 and ¢ — 2. In addition, if u = v we have h(u) = h(v).

For ease of describing the algorithm, we consider each bucket for the Open
list as a different file. Very sparse graphs can lead to bad I/O performance, as
they may lead to buckets that contain by far less than B elements and dominate
I/O access. Hence, we generally assume graphs with (f*)? = O(scan(|V])).

Algorithm 1.1 depicts the pseudo-code of the external-memory A* algorithm
for consistent estimates and uniform graphs. The algorithm maintains the two
values gmin and fumin to address the currently considered buckets. The buckets
of fumin are traversed for increasing gmin up to fumin. According to their differ-
ent h-values, successors are arranged into three different frontier lists A(fimin),
A(fmin + 1), and A(fmin + 2); hence, at each instance only four buckets have
to be accessed by I/O operations. For each of them, we keep a separate buffer
of size B/4; this will reduce the internal memory requirements to B. If a buffer
becomes full then it is flushed to disk. As in BF'S it is practical to pre-sort buffers
in one bucket immediately by an efficient internal algorithm to ease merging, but
we could equivalently sort the unsorted buffers for one bucket externally.

There can be two cases that can give rise to duplicates within an active
bucket (see Fig.5, black bucket): two different nodes of the same predecessor
bucket generating a common successor, and two nodes belonging to different
predecessor buckets generating a duplicate. These two cases can be dealt with by
merging all the pre-sorted buffers corresponding to the same bucket, resulting in

External-Memory State Space Search 193

Bytes External-A* ——

1e+12
1e+10
1e+08

1e+06

10000
I ‘

100 r

o

50
203040 h-value
10 20 10
60 70 80 ©

g-value

Fig. 4. Typical memory profile of external-memory A* in a selected sliding-tile bench-
mark problem instance. The (g, h)-value surface is a grid of buckets, and each bucket
corresponds to a file. The search starts with g-value zero, ends with h-value zero, and
progresses is made in expanding all states within a bucket with increasing g 4+ h-value,
tie breaking on a lower g-value. The height of the bars (log scale) denotes the file sizes
(each state correspond to a fixed number of bytes).

one sorted file. This file can then be scanned to remove the duplicate nodes from
it. In fact, both the merging and duplicates removal can be done simultaneously.

Another special case of the duplicate nodes exists when the nodes that have
already been evaluated in the upper layers are generated again (see Fig. 5). These
duplicate nodes have to be removed by a file subtraction process for the next
active bucket Open(gmin + 1, hmax — 1) by removing any node that has appeared
in Open(gmin, hmax — 1) and Open(gmin — 1, hmax — 1) (Buckets shaded in light
gray). This file subtraction can be done by a mere parallel scan of the pre-sorted
files and by using a temporary file in which the intermediate result is stored.
It suffices to remove duplicates only in the bucket that is expanded next, i.e.,
Open(gmin + 17 hmax - 1)

When merging the pre-sorted sets with the previously existing Open buckets
(both residing on disk), duplicates are eliminated, leaving the sets Open(gmin +
1, hmax — 1), Open(gmin + 1, Amax) and Open(gmin + 1, Amax + 1) duplicate-free.
Then the next active bucket Open(gmin+1, Amax—1) is refined not to contain any
node in Open(gmin — 1, hmax — 1) or Open(gmin, Amax — 1). This can be achieved
through a parallel scan of the pre-sorted files and by using a temporary file
in which the intermediate result is stored, before Open(gmin + 1, hmax — 1) is
updated. It suffices to perform file subtraction lazily only for the bucket that is

194 S. Edelkamp

Fig. 5. External-memory A* with consistent heuristic in a uniform undirected graph.
The arrow indicates the order of matrix traversal, the buckets shaded in dark gray the
current file, the shaded buckets below the successor files, and the shaded buckets above
the files are used for duplicate elimination.

expanded next. Since external-memory A* only modifies the order of states with
the same f-value, completeness and optimality are inherited from internal A*.

By simulating internal A*, DDD ensures that each edge in the problem graph
is looked at most once, so that O(sort(|Succ(Open(gmin+1, Amax—1))|) I/Os are
needed to eliminate duplicates in the successor lists. Since each node is expanded
at most once, this adds O(sort(|E|)) 1/Os to the overall run time. Filtering,
evaluating nodes, and merging lists is available in scanning time of all buckets
in consideration. During the exploration, each bucket Open will be referred to
at most six times, once for expansion, at most three times as a successor bucket
and at most two times for duplicate elimination as a predecessor of the same
h-value as the currently active bucket. Therefore, evaluating, merging and file
subtraction add O(scan(|V]) + scan(|E|)) I/Os to the overall run time.

If |E| = O(]V]) the complexity reduces to O(sort(|V])) I/Os. It is not difficult
to generalize the result to directed graphs with bounded locality, since in this
case subtraction amounts to O(locg - scan(|V])) = O(scan(|V])) 1/Os.

By setting the weight of all edges (u,v) to h(u) — h(v) + 1 for a consistent
heuristic h, A* can be cast as a variant of Dijkstra’s algorithm. To reconstruct
a solution path, we store predecessor information with each node on disk (thus
doubling the state vector size), and apply backward chaining, starting with the
target node. However, this is not strictly necessary: For a node in depth g, we
intersect the set of possible predecessors with the buckets of depth ¢ — 1. Any
node that is in the intersection is reachable on an optimal solution path, so that
we can iterate the construction process. Time is bounded by O(scan(|V])) I/Os.

Let us consider how to externally solve 15-puzzle problem instances that can-
not be solved internally with A* and the Manhattan distance estimate. Internal
sorting is implemented by applying Quicksort [51]. Multi-way external-memory

External-Memory State Space Search 195

Procedure External-Memory A*
Input: Problem graph with start node s
Output: Optimal solution path

Open(0, h(s)) «— {s} ;; Initialize frontier bucket
Sfmin — h(s) ;; Initialize merit
while (Smin # 00) ;; Termination criterion for full exploration
Gmin < min{i | Open(i, fmin — 1) # 0} ;; Determine minimal depth
while (gmin < fmin) ;; As far as merit not exceeded
Pmax < fmin — gmin ;; Determine corresponding h-value
A(fmin), A(fmin + 1), A(fmin + 2) «— Succ(Open(gmin, hmax)) ;; Successors
Open(gmin + 1, hmax + 1) «— A(fmin + 2) ;; New bucket
Open(gmin + 1, hmax) < A(fmin + 1) U Open(gmin + 1, Amax) ;; Merge
Open(gmin + 1, hmax — 1) < A(fmin) U Open(gmin + 1, Amax — 1) ;; Merge

if (Goal(Open(gmin + 1, hmax — 1))) ;; Terminal state in set
return Construct(Open(gmin + 1, hmax — 1)) ;; Generate solution path
Open(gmin + 1, hmax — 1) «— ;3 Simplify list
RemoveDuplicates(Open(gmin + 1, Amax — 1)) ;; Sort/scan
Open(gmin + 1, hmax — 1) < Open(gmin + 1, Amax — 1)\ ;; Omit duplicates from
(Open(gmin, hmax — 1) U Open(gmin — 1, hmax — 1)) ;; ... previous levels

Gmin = Gmin + 1 ;; Increase depth

Smin < min{é 4+ j > fmin | Open(i,j) # 0} U {oo} ;; Find minimal f-value

Algorithm 1.1. External-memory A* for consistent and integer heuristics.

merging maintains file pointers for every flushed buffer and joins them into a
single sorted file. Internally, a heap is used (its engineered implementation is
crucial for the efficiency of the sorting). Duplicate removal and bucket subtrac-
tion are performed on single passes through the bucket file. Table1 illustrates
the impact of duplicate removal (dr) and bucket subtraction (sub) on the num-
ber of generated states for problem instances of increasing complexity. In some
cases, the experiment is terminated because of the limited hard disk capacity.
One interesting feature of our approach from a practical point of view is the
ability to pause and resume the program execution in large problem instances.
This is desirable, e.g. in the case when the limits of secondary storage are reached,
as one can resume the execution with more disk space. External sorting can be
avoided to some extent, by a single or a selection of hash functions that splits
larger files into smaller pieces until they fit into main memory. As with the h-
value in the above case a node and its duplicate will have the same hash address.
While external-memory A* requires a constant amount of memory for the
internal read and write buffers, iterative-deepening A* (IDA*) [61] that applies
depth-first bounded searches with an increasing optimal solution cost threshold,
requires very little memory that scales linear with the search depth. External-
memory A* removes all duplicates from the search, but require slow disk to
succeed. Moreover, in search practice disk space is limited, too. Therefore, one

196 S. Edelkamp

Table 1. Impact of duplicate removal and bucket subtraction.

Instance | States Statesg, Statesqr+sub
1 530,401 2,800 1,654

2 71,751,166 611,116 493,990

3 <out of disk space> | 7,532,113 5,180,710

4 <out of disk space> | <out of disk space> | 297,583,236
5 <out of disk space> | <out of disk space> | 2,269,240,000
6 <out of disk space> | <out of disk space> |2,956,384,330

Table 2. Combining IDA* with external-memory A* in a 24-puzzle problem.

Split at f-value | Solution length | Nodes generated
68 (IDA*) 82 94,769,462

72 (Hybrid) 82 127,777,529

76 (Hybrid) 82 63,733,384

80 (Hybrid) 82 96,612,234

84 (External A*) |82 171,814,208

option is to combine the advantages of IDA* and external-memory A*. Starting
with external-memory A*, the buckets up to a predefined f-value f,, (the split
value) are generated. Then, with increasing depth, all buckets on the f,, diagonal
are read, and all states contained in the buckets are fed into IDA* as initial states,
which is initialized to an anticipated solution length U = f,,. As a side effect of
all such runs being pairwise independent they can be easily distributed.

Table 2 shows results of solving a 24-puzzle instance according to different
f-value splits to document the potential of such hybrid algorithm. By its breadth-
first ordering, external A* expands the entire f*-diagonal, while IDA* stops at
the first goal generated. Another instance (with an optimal plan of 100 moves)
and a split value of 94 generated 367,243,074,706 nodes using 4.9 GB disk, while
split value of 98 resulted in 451,034,974,741 generated nodes and 169 GB disk.

2.5 Non-uniformly Weighted Graphs

For integer weights in {1,...,C}, due to consistency of the heuristic, it holds for
every node u and every successor v of u that h(v) > h(u) — w(u,v). Moreover,
since the graph is undirected, we equally have h(u) > h(v) — w(u,v), or h(v) <
h(u) + w(u,v); hence, |h(u) — h(v)| < w(u,v), so that The I/O complexity for
external A* in an implicit unweighted and undirected graph, where the weights
are in {1,...,C}, with a consistent estimate, is bounded by O(sort(|E|) + C -
scan(|V])). The difference to the uniform case is that each bucket is referred
to at most 2C' + 1 times for bucket subtraction and expansion, so that each

External-Memory State Space Search 197

edge in the problem graph is considered at most once. If we do not impose a
bound C on the maximum integer weight, or if we allow directed graphs, the
run time increases to O(sort(|E|) + f* - scan(|V])) I/Os. For larger edge weights,
small-sized buckets have to be handled with care.

3 Duplicate Detection

We have seen that sorting-based duplicate detection is essential for disk-based
search, as ordinary hash functions are not access-locality preserving. This effect
is known as thrashing, the computer’s virtual memory subsystem is in a constant
state of paging, rapidly exchanging data in memory for data on disk.

3.1 Hash-Based Duplicate Detection

Hash-based duplicate detection is designed to avoid the complexity of sorting.
It is based on either one or two orthogonal hash functions. The primary hash
function distributes the nodes to different files. Once a file of successors has been
generated, duplicates are eliminated. The assumption is that all nodes with the
same primary hash address fit into main memory. The secondary hash function
(if available) maps all duplicates to the same hash address. This approach can
be illustrated by sorting a card deck of 52 cards. For 13 internal memory places
the best strategy is to hash cards to different files based on their suit in one
scan. Next, we individually read each of the files to main memory to sort the
cards or search for duplicates.

By iterating this Bucket Sort process we obtain an external-memory ver-
sion of Radix Sort that scans the files more than once according to a radix
representation of the key values. For the 15-puzzle problem in ordinary vector
representation with a number for each board position, we have 16 phases for
radix sort using 16 buckets.

3.2 Structured Duplicate Detection

Structured duplicate detection (SDD) [94] incorporates a hash function that
maps nodes into an abstract problem graph; this reduces the successor scope of
nodes that have to be kept in main memory. Such hash projections are state
space homomorphisms, such that for each pair of consecutive abstract nodes the
pair of original nodes is also connected. A bucket now corresponds to the set of
original states, which all map to the same abstract state. In difference to DDD,
SDD detects duplicates early; as soon as they are generated. Before expand-
ing a bucket, not only the bucket itself, but all buckets that are potentially
affected by successor generation have to be loaded and, consequently, fit into
main memory. This gives rise to a different definition of locality, which deter-
mines a handle for the duplicate-detection scope. In difference to the locality for
DDD the locality for SDD is defined as the the maximum node branching factor

198 S. Edelkamp

Internal External

4 5 6 7 /

Fig. 6. Example for structured duplicate detection; problem instance (left) is mapped
to one node in the abstract graph (right). For expanding all states mapped to an
abstract node, for the elimination of duplicates only states stored in the abstract suc-
cessors nodes need to be loaded in main memory.

bmax = MaXyeq(s) |[Succ(v)| in the abstract state space ¢(S). If there are differ-
ent abstractions to choose from, we take those that have the smallest ratio of
maximum node branching factor byax and abstract state space size |¢(5)]. The
idea is that smaller abstract state space sizes should be preferred but usually
lead to larger branching factors.

In the example of the 15-puzzle (see Fig.6), the projection is based on nodes
that have the same blank position. This state-space abstraction also preserves
the additional property that the successor set and the expansion sets are disjoint,
yielding no self-loops in the abstract problem graph. The duplicate scope defines
the successor buckets that have to be read into main memory.

The method is crucially dependent on the availability and selection of suit-
able abstraction functions ¢ that adapt to the internal memory constraints. In
contrast, DDD does not rely on any partitioning beside the heuristic function
and it does not require the duplicate scope to fit in main memory. A time-space
trade-off refinement called edge partitioning [97] generates successors only along
one edge at a time.

SDD is compatible with ordinary and hash-based duplicate detection, as in
case the files that have to be loaded into main memory do no longer fit, we have
to delay. However, the structured partitioning may have truncated the file sizes
for duplicate detection to a manageable number. Each heuristic or hash function
defines a partitioning of the search space but not all partitions provide a good
locality with respect to the successor or predecessor states.

4 External-Memory Pattern Databases

While earlier versions of heuristic search via abstraction generate heuristics esti-
mates on demand, pattern databases precompute and store the goal distances
for the entire abstract search space in a lookup table [20]. Successful approaches
additionally combine the heuristics of multiple smaller pattern databases, either
by maximizing, or by cumulating the values, which is admissible under certain
disjointness conditions [66]. To save space, the computation of the database can

External-Memory State Space Search 199

H : N

7
11 819110
121311415 121311415

Fig. 7. Fringe and corner target pattern for the 15-puzzle.

Table 3. Effect of pattern databases in the 15-puzzle.

Heuristic Nodes Mean heuristic value
Manhattan distance 401,189,630 | 36.942
Linear conflict heuristic | 40,224,625 | 38.788
5-tile pattern database |5,722,922 |41.562
6-tile pattern database |3,788,680 |42.924

be restricted using an upper bound on the length of an optimal solution path;
and by exploiting specialized data compression schemes.

For the (n? — 1)-puzzle problem abstraction consists of ignoring a selected
subset of tiles on the board. Their labels are replaced by a special don’t care
symbol; the remaining set of tiles is referred to as the pattern (see Fig. 7).

In experiments it has been showed that taking the maximum of the Manhat-
tan distance and a singleton pattern database reduces the number of expanded
nodes by two orders of magnitude of the algorithm using only the Manhattan
distance. Using both databases together even leads to an improvement accord-
ing to three orders of magnitude. Table 3 shows some exploration results for the
15-puzzle in reducing the number of search nodes and in increasing the mean of
the heuristic value.

Larger pattern databases correspond to complete explorations of abstract
state spaces that don’t fit into main memory. Most frequently they correspond to
external-memory BFS with DDD. The construction of external-memory pattern
databases is especially suited to frontier search, as no solution path has to be
reconstructed. They have been used together with SDD [95] and in different
representations [25].

During the construction each BFS-layer ¢ has been assigned to an individual
file B;. All states in B; have the same goal distance, and all states that map
to a state in ¢ share the heuristic estimate i. For determining the h-value for
some given state u in algorithms we first have to scan the files to find u. As
this is a cost-intensive operation, whenever possible, pattern database lookup
should be delayed, so that the heuristic estimates for a larger set of states can
be retrieved in one scan. For example, external-memory A* distributes the set
of successor states of each bucket according to their heuristic estimates. Hence,
it can be adapted to delayed lookup, intersecting the set of successor states with
(the state set represented by) the abstract states in the file of a given h-value.

200 S. Edelkamp

To keep the pattern database partitioned, we assume that the number of files
that can be opened simultaneously does not exceed A = max{h(v) — h(u)} +
1| u,v € Suce(u)}, i.e., A matches the locality of the abstract state space graph.

If a heuristic estimate is needed as soon as a node is generated, an appro-
priate choice for creating external-memory pattern databases is a backwards
BFS with SDD, as SDD already provides locality with respect to a state space
abstraction function. After the construction patterns are arranged according to
pattern blocks, one for each abstract state. When a concrete heuristic search
algorithm expands nodes, it must check if the pattern form the pattern-lookup
scope are in main memory, and, if not, it reads them from disk. Pattern blocks
that do not belong to the current pattern-lookup scope are removed. When the
part of internal memory is full, the search algorithm must decide, which pattern
block to remove, e.g., by adopting the least-recently used strategy.

Larger pattern databases provide better bounds and thus allow more guid-
ance in the search. For the 15-puzzle puzzle, a 10-tile 28 GB pattern database has
been built [81], while [23] computed 9-9-6, 9-8-7, and 8-8-8 pattern database sets
for the 24-puzzle that are up to three orders of magnitude larger (up to 1.4 TB)
than the standard 6-6-6-6 pattern database set. This was possible by perform-
ing a parallel breadth-first search in the compressed pattern space. Experiments
indicate an average 8-fold improvement of the 9-9-6 set over the 6-6-6-6 set. Com-
bining several large pattern databases yielded on average a 13-fold improvement.
A massive parallel search based on the map-and-reduce paradigm [21] using these
databases was proposed by [89].

If we consider the example of the 35-puzzle with x tiles in the pattern, the
abstract state space consists of 36!/(36 — x)! states. A perfect hash-table for the
35-puzzle has space requirements of 43.14 MB (x = 5), 1.3 GB (z = 6), and 39.1
GB (z = 7). The latter has successfully been constructed on disk by [32].

5 External-Memory Value Iteration

We now discuss an approach for extending the search model to cover uncertainty.
More precisely, we extend the value iteration procedure to work on large state
spaces that cannot fit into the RAM. There is a tight relation to the shortest-
paths algorithm of Bellman and Ford (see [19]). Different guidance heuristics for
improving the update have been proposed [7,10,45].

A Markov decision process problem (MDP) is a tuple (S, A, w,p), where S is
the underlying state space, A is the set of actions, w : S x A — IR is the cost
or immediate reward function and p(v | u,a) is the probability that action a in
state u will lead to state v. The goal is to minimize the (expected or discounted)
accumulated costs or, equivalently, to maximize the (expected or discounted)
accumulated rewards.

A common way of calculating an optimal policy is by means of dynamic
programming using value iteration based on the Bellman equation

F* () = mm{w(u,a) + 3 p(v | ua)- f*(v)}-

€A
“ veS

External-Memory State Space Search 201

In some cases, we apply a discount § to allow assigning values to infi-
nite paths. Roughly speaking, we can define the value of a state as the total
reward/cost an agent can expect to accumulate when traversing the graph
according to its policy, starting from that state. The discount factor defines how
much more we should value immediate costs/rewards, compared to costs/rewards
that are only attainable after two or more steps. Formally, the corresponding
equation according to the principle of optimality is

f*(w) = min {w(wa) +6-3 pv | u,a)- f*(v)}~

ac
vES

Value iteration improves the estimated cost-to-go function f by successively
performing the following operation for each state w:

f(w) <—mi}r41{w(u,a)—|—2p(v | u,a)~f(v)}.

aec
veS

The algorithm exits if an error bound on the policy evaluation falls below a
user-supplied threshold €, or a maximum number of iterations have been exe-
cuted. If the optimal cost f* is known for each state, the optimal policy can
be easily extracted by choosing an operation according to a single application
of the Bellman equation. The procedure takes a heuristic i for initializing the
value function as an additional parameter.

The error bound on the value function is also called the residual, and can
for example be computed in form max,eg |fi(u) — fi—1(u)|. A residual of zero
denotes that the process has converged. An advantage of other methods like
policy iteration is that it converges to the exact optimum, while value iteration
usually only reaches an approximation. On the other hand, the latter technique
is usually more efficient on large state spaces.

For implicit search graphs, value iteration proceed in two phases. In the first
phase, the whole state space is generated from the initial state s. In this process,
an entry in a hash table (or vector) is allocated in order to store the f-value for
each state u; this value is initialized to the cost of u if u € T', or to a given (non-
necessarily admissible) heuristic estimate (or zero if no estimate is available) if
u is non-terminal. In the second phase, iterative scans of the state space are
performed updating the values of non-terminal states u as:

flu) = aglAlgL)q(u,a), (1)
where ¢(u, a), which depends on the search model.

Value iteration converges to the solution optimal value function provided that
its values are finite for all uw € S. In the case of MDPs, which may have cyclic
solutions, the number of iterations is not bounded and value iteration typically
only converges in the limit. For this reason, for MDPs, value iteration is often
terminated after a predefined bound of t,,,, iterations are performed, or when
the residual falls below a given € > 0.

202 S. Edelkamp

For external-memory value iteration [28] instead of working on states, we
work on edges for reasons that shall become clear soon. In our case, an edge
is a 4-tuple (u,v,a, f(v)), where u is called the predecessor state, v the stored
state, a the action that transforms v into v, and f(v) is the current assignment
of the value function to v. Clearly, v must belong to Succ(a, u). In deterministic
problems, v is determined by u and a and so it can be completely dropped, but
for the non-deterministic problems, it is a necessity. Similarly to the internal
value iteration, the external-memory version works in two phases. A forward
phase, where the state space is generated, and a backward phase, where the
heuristic values are repeatedly updated until an e-optimal policy is computed,
or tyay iterations are performed.

Forward Phase: State Space Generation. Typically, a state space is generated
by a depth-first or a breadth-first exploration that uses a hash table to avoid re-
expansion of states. We choose an external breadth-first exploration to handle
large state spaces. Since in an external setting a hash table is not affordable,
we rely on DDD. It consists of two phases, first removing duplicates within the
newly generated layer, and then removing duplicates with respect to previously
generated layers. Note that an edge (u,v,a, f(v)) is a duplicate, if and only if
its predecessor u, its state v, and the action a match an existing edge. Thus, in
undirected graphs, there are two different edges for each undirected edge. In our
case, sorting-based DDD is best suited as the sorted order is further exploited
during the backward phase. For each depth value d the algorithm maintains the
BF'S layers Layer(d) on disk. The first phase ends up by concatenating all layers
into one Open list that contains all edges reachable from s. For bounded locality,
the complexity of this phase is O(sort(|E|)) 1/0Os.

Backward Phase: Update of Values. This is the most critical part of the approach
and deserves more attention. To perform the update on the value of state v,
we have to bring together the value of its successor states. As they both are
contained in one file, and there is no arrangement that can bring all successor
states close to their predecessor states, we make a copy of the entire graph (file)
and deal with the current state and its successor differently. To establish the
adjacencies, the second copy, called Temp, is sorted with respect to the node wu.
Remember that Open is sorted with respect to the node v.

A vparallel scan of files Open and Temp gives us access to all the successors
and values needed to perform the update on the value of v. This scenario is
shown in Fig. 8 for the graph in the example. The contents of Temp and Open,,
for t = 0, are shown along with the heuristic values computed so far for each
edge (u,v). The arrows show the flow of information (alternation between dotted
and dashed arrows is just for clarity). The results of the updates are written to
the file Open,,, containing the new values for each state after ¢ + 1 iterations.
Once Open,; is computed, the file Open, can be removed as it is no longer
needed.

External-Memory State Space Search 203

®
I %g\@/g
o @\

h(v) = 3 2 2 2 2 1 2 0 1 1 1 1 0 0 0 0
Temp {(0.1), (12), (1.3), (L4), (23), (25), (3.4). (38). (46), (5.6). (5.7), (6.9), (78). (7.10), (9.8), (9.10)}

sorted on pred.

=

< paa a P PO 17
Openg {(0, 1), (1,2), (1,3), (2,3), (1,4), (3.4), (2,5), (4,6), (5,6), (5,7), (3.8), (7.8), (9,8), (6,9), (7,10), (9,10)}
hv)= 3 gt L U 0 g0
Openy {(0, 1 5), (4.,6), (5,6), (5,7), (3.8), (7.8), (9.8), (6,9), (7,10), (9,10)}
hv)=" 3 2 2 2 1 0 0 0 1 0 0

sorted on state

Fig. 8. An example graph with initial f-values and one backward phase in external-
memory value iteration. A parallel scan of Open, and Temp is done from left to right.
The file Open, is the result of the first update; f-values that changed in the first update
are shown with bold underline typeface.

The backward update algorithms first copies the Open, list in Temp using
buffered I/0 operations, and sorts the new T'emp list according to the predeces-
sor states u. The algorithm then iterates on all edges from Open, and searches
for the successors in T'emp. Since Open, is sorted with respect to states v, the
algorithm mever goes back and forth in any of the Open; or Temp files. Note
that all reads and writes are buffered and thus can be carried out very efficiently
by always doing I/O operations in blocks. Four different cases arise when an edge
(u,v,a, f(v)) is read from Open,. (States from Fig. 8 are referred in parentheses.)

— Case I: v is terminal (states 8 &10). Since no update is necessary, the edge
can be written to Open, ;.

— Case II: v is the same as the last updated state (state 3). Write the edge to
Open,,, with such last value. (Case shown in Fig.8 with curved arrows.)

— Case III: v has no successors. That means that v is a terminal state and so is
handled by case I.

— Case IV: v has one or more successors (remaining states). For each action a €
A(v), compute the value g(a,v) by summing the products of the probabilities
and the stored values. Such value is kept in the array ¢(a).

For edges (z,y,ad’, f’) read from Temp, we have

— Case A: y is the initial state, implying = ptyset. Skip this edge since there is
nothing to do. By taking ptyset as the smallest element, the sorting of Temp
brings all such edges to the front of the file. (Case not shown.)

204 S. Edelkamp

Table 4. Performance of external-memory value iteration on deterministic (p = 1) and
probabilistic variants (p = 0.9) of the 8-puzzle with and without initialization to the
Manhattan distance heuristic.

Algorithm p ||S|/|E| |Tteration | Updates |h(s) | f*(s) RAM
VI (h = 0) 1.0 181,440 27 4,898,880 0 | 14.00 | 21M
External-VI (h = 0) 1.01483,839 | 32 5,806,048 | 0 14.00 | 11M
VI (harp) 1.0 181,440 | 20 3,628,800 10 | 14.00 | 21M
External-VI (harp) 1.0 483,839 28 5,080,292 10 | 14.00 11M
VI (h =0) 0.9 181,440 | 37 6,713,280 |0 15.55 | 21M
External — VI (h =0)|0.9 967,677 | 45 8,164,755 |0 15.55 | 12M
VI (hap) 0.9]181,440 | 35 6,350,400 |10 |15.55 |21M
Ext-VI (hap) 0.9 967,677 | 43 7.801,877 10 |15.55 12M

— Case B: x = v, i.e. the predecessor of this edge matches the current state from
Open,. This calls for an update in the g(a)-value.

The array ¢ : A — IR is initialized to the edge weight w(a, v), for each a € A(v).
Once all the successors are processed, the new value for v is the minimum of the
values stored in the g-array for all applicable actions.

The backward phase performs at most ¢, iterations. Each iteration consists
of one sorting and two scanning operations for a total of O(tmax - sort(|E|)) I/Os.

For the sliding-tile puzzles we performed two experiments: one with determin-
istic moves, and the other with noisy actions that achieve their intended effects
with probability p = 0.9 and no effect with probability 1 — p. Table4 shows the
results for random instances of the 8-puzzle for both experiments. The rectan-
gular 3 x 4 sliding-tile puzzle with p = 0.9 cannot be solved with internal value
iteration because the state space did not fit in RAM. External-memory value
iteration generated a total of 1,357,171,197 edges taking 45 GBs of disk space.
The backward update finished successfully after 21 days in 72 iterations using
1.4 GBs RAM. The value function for initial state converged to 28.8889 with a
residual smaller than e = 1074,

6 Parallel External-Memory Search

Combined parallel and disk-based search executes an exploration in distributed
environments like multi-processor machines and workstation clusters.

Recent parallel implementation of A* and its derivatives on multi-core
machines have been proposed by [59] with a subsequent scaling analysis in [58]
and by [15,16]. Our focus is the interplay of parallel and external-memory search.

External-Memory State Space Search 205

Fig. 9. Externally stored state space with parent and children files.

6.1 Parallel External-Memory Breadth-First Search

In parallel external-memory breadth-first search the state space is partitioned
into different files using a global hash function. For example in state spaces like
the 15-puzzle that are regular permutation games, each node can be perfectly
hashed to a unique index, and some prefix of the state vector can be used to for
partitioning. If state spaces are undirected, frontier search [70] can distinguish
neighboring nodes that have already been explored from those that have not,
in order to omit the Closed list. Figure 9 depicts the layered exploration on the
external partition of the state space. A hash function partitions both the current
parent layer and the children layer for the successors into files. If a layer is done,
children files are renamed into parent files to iterate the exploration.

Even on a single processor, multiple threads maximize the performance of
the disks. The reason is that a single-threaded implementation will block until
the read from or write to disk has completed.

Hash-based duplicate detection generates a suitable partition for the 15-
puzzle. Within one iteration, most file accesses can be performed independently.
Only if one simultaneously expands two parent files have a children file in com-
mon, the two processes will be in conflict. To realize parallel processing a work
queue is maintained, which contains parent files waiting to be expanded, and
child files waiting to be merged. At the start of each iteration, the queue is ini-
tialized to contain all parent files. Once all parents of a child file are expanded,
the child file is inserted into the queue for early merging.

Each process works as follows. It first locks the work queue. The algorithm
checks whether the first parent file conflicts with any other file expansion. If so,
it scans the queue for a parent file with no conflicts. It swaps the position of
that file with the one at the head of the queue, grabs the non-conflicting file,
unlocks the queue, and expands the file. For each file it generates, it checks if all
of its parents have been expanded. If so, it puts the children file at the head of
the queue for expansion, and then returns to the queue for more work. If there
is no more work in the queue, any idle process wait for the current iteration
to complete. At the end of each iteration the work queue is re-initialized to
contain all parent files for the next iteration. Algorithm 1.2 shows a pseudo-code
implementation.

206 S. Edelkamp

Procedure Parallel-External-Memory-BFS

Input: Undirected problem graph with start node s, number of processes N
hash function ¥

Output: Partitioned BFS layers Open, (i), i € {0,1,...,k}, j € {0,1,...,N}

g<—20 ;; Master initializes layer
Openy(g) — {s} ;; Master initializes search
while (UL, Open,(g) = 0) ;; Search not terminated
for each j € {1,..., N} in parallel ;; Distribute computation
if (Goal(Open;(g)) ;; Terminal state in set
return Announce(GoalFound) ;; Generate solution path

Aj « Succ(Open;(g)) ;; Generated successors
RemoveDuplicates(A;) ;; Sorting/Scanning current elements

for each j € {1,..., N} in parallel ;; Distribute computation
A —{ve UNL A | (v) =5} ;; Acquire nodes to sort
RemoveDuplicates(A}) ;; Sorting/scanning
Open;(g + 1) « A} \ (Open;(g) U Open;(g — 1)) ;; Frontier subtraction
g—g+1 ;; Increase depth

return Open, (i), i € {0,1,...,k}, j € {0,1,..., N}

Algorithm 1.2. Parallel external-memory breadth-first search for state space enu-
meration.

6.2 Parallel Structured Duplicate Detection

SDD performs early duplicate detection in the RAM. Each abstract state rep-
resents a file containing every concrete states mapping to it. As all adjacent
abstract states were load into main memory, duplicate detection for concrete
successor states remains in the RAM. We assume breadth-first heuristic search
as the underlying algorithm, which generates the search space with increasing
depth, but prunes it with respect to the f-value, provided that the optimal
solution length is known. If not, external-memory A* applies.

SDD extends nicely to a parallel implementation. In parallel SDD [98]
abstract states together with their abstract neighbors are assigned to a process.
We assume that the parallelization takes care of synchronization after one
breadth-first search iteration has been completed, as a concurrent expansion
in different depths likely affects the algorithm’s optimality.

If in one BFS-layer, two abstract nodes together with their successor do
not overlap, their expansion can be executed fully independently on different
processors. More formally, let ¢(u1) and ¢(usz) be the two abstract nodes, then
the scopes of ¢(u1) and ¢(us) are disjoint if Succ(¢d(u1)) N Succ(d(uz)) = 0.
This parallelization maintains locks only for the abstract space. No locks for
individual states are needed.

The approach applies to both, shared and distributed memory architectures.
In the shared implementation each processor has a private memory pool. As soon
as this is exhausted it asks the master process (that has spawned it as a child

External-Memory State Space Search 207

2

z g %2
0

2
P4 P3 P4 P3 P4

o

P

Pl P2 P1 P2
3

Fig. 10. Example for parallel SDD with 4 processes: before P; releases its work, after
Py has released his work, after P; has allocated new work.

process) for more memory that might have been released using a completed
exploration by some other process. For a proper (conflict-free) distribution of
work, numbers I(¢(u)) were assigned to each abstract node ¢(u), denoting the
accumulated influence that currently imposed to this node by running processes.
If I(¢(u)) = 0 the abstract node ¢(u) can be picked for expansion from every
processor that is currently idle. Function I is updated as follows. In a first
step, for all ¢(v) # ¢(u) with ¢(u) € Succ(p(v)) value ¢(v) is incremented by
one: all abstract nodes that include ¢(u) in their scope cannot be expanded,
since ¢(u) is chosen for expansion. In a second step, for all ¢(v) # ¢(u) with
o (v) € Suce(p(u)) and all p(w) # ¢(v) with ¢p(w) € Suce(p(v)) value ¢(v) is
incremented by one: all abstract nodes that include any ¢(v) as a successor of
¢(u) cannot be expanded, since they are also assigned to the processor.

Figure 10 illustrates the working of parallel structural duplicate detection
for the 15-puzzle with the currently expanded abstract nodes shaded. The left-
most part of figure shows the abstract problem graph together with 4 processes
working independently at expanding abstract states. The numbers I(¢(u)) are
associated with each abstract node ¢(u). The middle part of the figure depicts
the situation after one process has finished, the right part shows the situation
after process has been assigned to a new abstract state.

6.3 Parallel External-Memory A*

The distributed version of external-memory A*, called parallel-external-memory
A* is based on the observation that the internal work in each individual bucket
of external-memory A* can be parallelized among different processes. More
precisely each two states in a bucket Open(g,h) can be expanded in differ-
ent processes at the same time. An illustration is given in Fig. 11, indicating
a uniform partition available for each Open(g, h)-bucket. We discuss disk-based
message queues to distribute the load among different processes.

To organize the communication between the processes a work queue is main-
tained on disk. The work queue contains the requests for exploring parts of
a (g, h)-bucket together with the part of the file that has to be considered (as
processes may have different computational power and processes can dynamically

208 S. Edelkamp

h—value

g—value

Fig. 11. Partitioning of buckets in parallel external-memory A*.

join and leave the exploration, the size of the state space partition does not
necessarily have to match the number of processes. By utilizing a queue, one
also may expect a process to access a bucket multiple times. However, for the
ease of a first understanding, it is simpler to assume that the jobs are distrib-
uted uniformly among the processes.) For improving the efficiency, we assume
a distributed environment with one master and several slave processes. In the
implementation, the master is in fact an ordinary process defined as the one that
finalized the work for a bucket. The applies to both the cases when each slave
has its own hard disk or if they work together on one hard disk e.g. residing on
the master. We do not expect all processes to run on one machine, but allow
slaves to log-on the master machine, suitable for workstation clusters. Message
passing between the master and slave processes is purely done on files, so that
all processes are fully autonomous. Even if slave processes are killed, their work
can be re-done by any other idle process that is available.

One file that we call the expand-queue, contains all current requests for explor-
ing a node set that is contained in a file. The filename consists of the current
g- and h-value. In case of larger files, file-pointers for processing parts of a file
are provided, to allow for better load balancing. There are different strategies
to split a file into equi-distance parts or into chunks depending on the number
and performance of logged-on slaves. As we want to keep the exploration process
distributed, we select the file pointer windows into equidistant parts of a fixed
number of C bytes for the nodes to be expanded. For improved I/0, the number
C is supposed to divide the system’s block size B. As concurrent read operations
are allowed for most operating systems, multiple processes reading the same file
impose no concurrency conflicts.

The expand-queue is generated by the master process and is initialized with
the first block to be expanded. Additionally, we maintain the total number of
requests, i.e., the size of the queue, and the current number of satisfied requests.

External-Memory State Space Search 209

Any logged-on slave reads a request and increases the count once it finishes.
During the expansion process, in a subdirectory indexed by the slave’s name it
generates files that are indexed by the g- and h-value of the successor nodes.

The other queue is the refine-queue also generated by the master process
once all processes are done. It is organized in a similar fashion as the expand
queue and allows slaves to request work. The refine-queue contains filenames
that have been generated above, namely the slave-name (that does not have
to match with the one of the current process), the block number, and the g-
and h-value. For a suitable processing the master process will move the files
from subdirectories indexed by the slave’s name to ones that are indexed by the
block number. As this is a sequential operation executed by the master thread,
changing the file locations is fast in practice. To avoid redundant work, each
process eliminates the requests from the queue. Moreover, after finishing the
job, it writes an acknowledge to an associated file, so that each process can
access the current status of the exploration, and determine if a bucket has been
completely explored or sorted.

All communication between different processes can be shared files, so that a
message passing unit is not required. However, a mechanism for mutual exclusion
is necessary. A rather simple but efficient method to avoid concurrent writes
accesses is the following. Whenever a process has to write on a shared file, it
issues an operating system command to rename the file. If the command fails,
it implies that the file is currently being used by another process.

For each bucket that is under consideration, we establish four stages in the
algorithm with a pseudo-code shown in Algorithm 1.3. The four phases are visu-
alized in Fig. 12 (top to bottom). Zig-zag curves illustrate the order of the nodes
in the files wrt. the comparison function used. As the states are presorted in
internal memory, every peak correspond to a flushed buffer. The sorting criteria
itself is defined first by the node’s hash key and then by the low-level comparison
based on the (compressed) state vector.

In the exploration stage (generating the first row in the figure), each process
p flushes the successors with a particular g- and h-value to its own file (g, h, p).
Each process has its own hash table and eliminates some duplicates already in
main memory. The hash table is based on chaining, with chains sorted along
the node comparison function. However, if the output buffer exceeds memory
capacity it writes the entire hash table to disk. By the use of the sorting criteria
as given above, this can be done using a mere scan of the hash table.

— In the first sorting stage (generating the second row in the figure), each process
sorts its own file. In the distributed setting we exploit the advantage that the
files can be sorted in parallel, reducing internal processing time. Moreover, the
number of file pointers needed is restricted by the number of flushed buffers,
illustrated by the number of peaks in the figure. Based on this restriction, we
only need a merge of different sorted buffers.

— In the distribution stage (generating the third row in the figure), all nodes in
the presorted files are distributed according to the hash value’s range. As all
input files are presorted this is a mere scan. No all-including file is generated,

210 S. Edelkamp

Expansion

Py Py
phase: newly
gen. buffers
sorted on Sorted buffers in processors’ files
partition order
Full bucket
sorting on
parition
order
Distribution
stage
Sorting on
state vectors Externally sorted local files

Fig. 12. Stages of bucket expansions in parallel external-memory A*.

Distributed in M disjoint hash
partitions by scanning

Py
”I;ocal ﬁlos cxtcr’r’nrally smtod 2

keeping the individual file sizes small. This stage can be a bottleneck to the
parallel execution, as processes have to wait until the distribution stage is
completed. However, if we expect the files to reside on different hard drives,
traffic for file copying can be parallelized.

— In the second sorting stage (generating the last row in the figure), processes
resort the files (with buffers presorted wrt. the hash value’s range), to find
further duplicates. The number of peaks in each individual file is limited by
the number of input files (=number of processes), and the number of output
files is determined by the selected partitioning of the hash index range. Using
the hash index as the sorting key we establish that the concatenation of files
is sorted.

Figure 13 shows the distribution of a bucket among three processors.

6.4 Parallel Pattern Database Search

Disjoint pattern databases can be constructed embarrassingly parallel. The sub-
sequent search, however, faces the problem of high memory consumption due
to many large pattern databases, since loading pattern databases on demand
significantly slows down the performance.

One solution is to distribute the lookup to multiple processes. For external-
memory A* this works as follows. As buckets are fully expanded, the order in
a bucket does not matter, so that we can distribute the work for expansion,
evaluation and duplicate elimination. For the 35-puzzle we choose one master
to distribute generated states to 35 client processes P;, each one responsible for

External-Memory State Space Search 211

Procedure Parallel-External-Memory-A*

Input: Undirected problem graph with start node s, predicate Goal, N processes
hash function v

Output: Optimal solution path

g <— 0; h — h(s) ;; Initial bucket
Opengy (g, h) — {s} ;; Master initializes search
while not (goalFound) ;; Search not terminated
for each j € {1,..., N} in parallel ;; Distribute computation
if (Goal(Open,;(g, h)) ;; Terminal state in set
return Announce(GoalFound) ;; Generate solution path
Aj(h = 1), Aj(h), Aj(h + 1) « Succ(Open, (g, h)) ;; Generated successors
Open;(g+1,h+1) « A;(h+1) ;; Prepare next level
Open;(g+1,h) «— A;(h) U Open;(g+ 1, h) ;; Prepare next level
RemoveDuplicates(A;(h — 1)) ;3 Sorting/Scanning
for each j € {1,..., N} in parallel ;; Distribute computation
Aj(h—1) — {u e UL, Ai(h — 1) | ¢p(u) = j} ;; Allocate work
Open;(g+1,h — 1) «— A(h — 1)U Open;(g + 1,h — 1) ;; Prepare next level
RemoveDuplicates(Open;(g +1,h — 1)) ;; Sorting/scanning
Open;(g+1,h — 1) « Open;(g+1,h — 1)\ ;; Eliminate duplicates
(Open;(g,h — 1) U Open;(g — 1,h — 1))
f—min{k+1| UX, Open,(k,1) # 0} ;; Update f-value
g+ min{l | U, Open,(I, f —1) # By h f—g ;; Next non-empty bucket

Algorithm 1.3. Parallel external-memory A* for consistent and integral heuristics.

one tile ¢ for ¢ € {1,...,35}. All client processes operate individually on different
processing nodes and communicate via shared files.

During the expansion of a bucket (see Fig.14), the master writes a file T;
for each client process P;, i € {1,...,35}. Once it has finished the expansion
of a bucket, the master P,, announces that each P; should start evaluating T;.
Additionally, the client is informed on the current g- and h-value. After that,
the master P,, is suspended, and waits for all P;’s to complete their task. To
relieve the master from load, no sorting takes place during distribution. Next,
the client processes start evaluating T;, putting their results into E;(h — 1) or
E;(h+1), depending on the observed difference in the h-values. All files E; are
additionally sorted to eliminate duplicates; internally (when a buffer is flushed)
and externally (for each generated buffer). As only 3 buckets are opened at a
time (1 for reading and 2 for writing) the associated internal buffers can be large.

After the evaluation phase is completed, each process P; is suspended. When
all clients are done, the master P,, is resumed and merges the E;(h — 1) and
E;(h+1) files into E,,(h—1) and E,,(h+1). The merging preserves the order in
the files E;(h — 1) and E;(h + 1), so that the files E,,(h —1) and E,,,(h + 1) are
already sorted with all duplicates within the bucket eliminated. The subtraction

212 S. Edelkamp

hs)
0 1 2 3 4 5. h
>
" ENN
! TLLTLETTL
RED-SY SN
: L L J |
DR SN
3 IS I Y O et
D S [O
! L]

/ (2,3)

Py Py Py

— Tl G Gd successors
5 [f] 1 = =3 Asort

[——1merge

T distribute | 5

Fig. 13. Distribution of buckets in parallel external-memory A*.

of the bucket (¢ — 1,h — 1) from E,,(h — 1) and (g — 1,h + 1) from E,,(h + 1)
now eliminates duplicates from the search using a parallel scan of both files.
Besides the potential for speeding up the evaluation, the chosen distribution
mainly saves space. On the one hand, the master process does not need any
additional memory for loading pattern databases. It can invest all its available
memory for internal buffers required for the distribution, merging and subtrac-
tion of nodes. On the other hand, during the lifetime of client process P, it
maintains only the pattern database D; that includes tile 4 in its pattern.

7 Parallel Search on the GPU

In the last few years there has been a remarkable increase in the performance
and capabilities of the graphics processing unit (GPU). Modern GPUs are not
only powerful, but also parallel programmable processors featuring high arith-
metic capabilities and memory bandwidths. High-level programming interfaces
have been designed for using GPUs as ordinary computing devices. These efforts
in general purpose GPU programming (GPGPU) has positioned the GPU as a
compelling alternative to traditional microprocessors in high-performance com-
puting. The GPU’s rapid increase in both programmability and capability has
inspired researchers to map computationally demanding, complex problems to
it. Since the memory transfer between the card and main board on the express
bus is extremely fast, GPUs have become an apparent candidate to speed-up
large-scale computations. GPUs have several cores, but the programming and

External-Memory State Space Search 213

Py

expand

distribute

P,

evaluate

subtract

(g+1.h+1)

Fig. 14. Distributed expansion/evaluation of one bucket.

computational model are different from the ones on the CPU. A core is a stream-
ing processor with some floating point and arithmetic logic units. Together with
some special function units, streaming processor are grouped together to form
streaming multiprocessors. Programming a GPU requires a special compiler,
which translates the code to native GPU instructions. The GPU architecture
mimics a single instruction multiply data computer with the same instructions
running on all processors. It supports different layers for accessing memory.
GPUs forbid simultane