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Preface

Algorithm Engineering is a methodology for algorithmic research that combines theory
with implementation and experimentation in order to obtain better algorithms with high
practical impact. Traditionally, the study of algorithms was dominated by mathematical
(worst-case) analysis. In Algorithm Engineering, algorithms are also implemented and
experiments conducted in a systematic way, sometimes resembling the experimentation
processes known from fields such as biology, chemistry, or physics. This helps in
counteracting an otherwise growing gap between theory and practice. The possible
benefits are manifold:

– We can identify practically good algorithms, even where theoretical analysis is
lacking or does not make an accurate enough statement. This can lead to successful
algorithms being recognized and put into practice even when they look mathe-
matically inaccessible. It can also lead to theoretically appealing algorithms being
recognized as less useful in practice. For example, suppose that we have one
algorithm with a quadratic worst-case running time and another with a cubic bound,
both proven by theory. Which of the two is faster in practice? This cannot be
answered by merely looking at the degrees of the polynomials.

– Experimentation can be supportive of design and analysis. It can help to identify
bottlenecks that could be eliminated by a re-design. It can help to build and to test
falsifiable hypotheses, e.g., whether a particular algorithm after a modification that
makes it faster will still deliver the same solution quality. This creates a feedback
loop where each particular sub-methodology benefits from the others.

– Observations of good performance in practice of an algorithm for which we only
know unsatisfactory theoretical guarantees have sparked new types of theoretical
algorithm analyses. In particular, smoothed analysis instead of the traditional
worst-case analysis has been shown to be successful. In smoothed analysis, the
input is first chosen as in worst-case analysis (i.e., we consider all possible inputs)
but then small random perturbations are performed. We then conduct an
average-case analysis using the resulting distribution on the set of instances.

– The requirement to implement and to experimentally evaluate algorithms motivates
algorithm designers to think about practicability and to consider more realistic
computational models. New possibilities and their restrictions given by modern
hardware are moved into focus, such as memory hierarchies and parallelism.

– Testing algorithms on real-world input stimulates the exchange and cooperation
between the algorithmics community and other fields where algorithms are used as
tools.

This volume reviews important algorithmic developments and results that were
made possible or were supported by Algorithm Engineering. Chapters are ordered
alphabetically by first author. This work emerged from the Priority Programme
“Algorithm Engineering” (1307) funded by the German Research Foundation (DFG),



which started in 2007 and lasted six years. In total, 28 projects received funding
through this program. In addition there were six associated projects. We gratefully
acknowledge this support.

Each submission for this volume was peer-reviewed. We sincerely thank the authors
and the reviewers for their work, diligence, and cooperation.

In total, we have 12 chapters, including extensive surveys and case studies:

Chapter 1 A simple but powerful stochastic local search algorithm for the SAT
problem is presented and analyzed. Experiments are used for tuning and for
comparison with other algorithms. It is concluded that when flipping a variable,
it is more important to pay attention to the number of newly unsatisfied clauses
than to the number of newly satisfied ones.

Chapter 2 is a survey on practical algorithms for routing in transportation networks,
including road networks, schedule-based public transport networks, as well as
multimodal scenarios. Experiments show that it is possible to find good jour-
neys within milliseconds in large-scale networks. Several of the described
approaches have been included in mainstream production systems.

Chapter 3 surveys different ways to theoretically analyze the k-means clustering
algorithm. Several of the theoretical activities, e.g., smoothed analysis, were
motivated by observations in experiments.

Chapter 4 surveys practical algorithms for balanced graph partitioning. A large
variety of different approaches are presented, and implementation aspects and
benchmarking are discussed.

Chapter 5 In randomized and derandomized rounding, for many applications it is
required that the solution satisfies certain constraints with probability one. In
order to obtain such solutions, there exist two very different algorithmic
approaches, which, however, have very similar theoretical properties. This
chapter surveys theoretical foundations, experimental studies, and applications
for those two original approaches and new ones derived from them.

Chapter 6 is a review of external-memory search for state space problems, giving
detailed descriptions of algorithms and data structures, complemented by
concrete examples. Implementation on a GPU is discussed and speedups are
substantiated by experiment.

Chapter 7 presents a framework for the development and evaluation of real-time
rendering algorithms. A central concept is a meta rendering algorithm that
automatically selects an algorithm for the visualization of highly complex
scenes.

Chapter 8 applies the Algorithm Engineering cycle of design, analysis, imple-
mentation, and experimentation to robust optimization. In such problems, the
exact data is not known but bounded by a set of possible realizations. The
importance of considering real-world applications is demonstrated.

Chapter 9 gives a survey on concepts and algorithms for finding clusters in net-
works that change over time. Data sets for experimentation, comprised of
real-world and synthetic data, are thoroughly discussed.

VI Preface



Chapter 10 Many industrial production planning problems have both sequencing
and allocation aspects. This chapter describes and experimentally evaluates a
framework based on genetic algorithms that can smoothly integrate both
aspects.

Chapter 11 A streaming algorithm for the bipartite matching problem is gradually
improved using experimentation. This finally results in a version that inherits all
the good theoretical properties of the original version while being much faster
in practice.

Chapter 12 is a survey and a unified, extensive experimental comparison of algo-
rithms for the art gallery problem – a classic and important problem from
computational geometry. Moreover, a new and superior implementation is
presented, which combines the best techniques identified in previous
approaches.

February 2016 Lasse Kliemann
Peter Sanders
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Engineering a Lightweight and Efficient Local
Search SAT Solver

Adrian Balint and Uwe Schöning(B)

Institute of Theoretical Computer Science, Ulm University,
89069 Ulm, Germany

{adrian.balint,uwe.schoening}@uni-ulm.de

Abstract. One important category of SAT solver implementations use
stochastic local search (SLS, for short). These solvers try to find a satis-
fying assignment for the input Boolean formula (mostly, required to be
in CNF) by modifying the (mostly randomly chosen) initial assignment
by bit flips until a satisfying assignment is possibly reached. Usually such
SLS type algorithms proceed in a greedy fashion by increasing the num-
ber of satisfied clauses until some local optimum is reached. Trying to
find its way out of such local optima typically requires the use of random-
ness. We present an easy, straightforward SLS type SAT solver, called
probSAT, which uses just one simple strategy being based on biased
probabilistic flips. Within an extensive empirical study we evaluate the
current state-of-the-art solvers on a wide range of SAT problems, and
show that our approach is able to exceed the performance of other solv-
ing techniques.

1 Introduction

The SAT problem is one of the most studied NP-complete problems in computer
science. One reason is the wide range of SAT’s practical applications ranging
from hardware verification to planning and scheduling. Given a propositional
formula in CNF with variables {x1, . . . , xn} the SAT-problem consists in finding
an assignment for the variables such that all clauses are satisfied.

Stochastic local search (SLS) solvers operate on complete assignments and
try to find a solution by flipping variables according to a given heuristic. Most
SLS solvers are based on the following scheme: Initially, a random assignment
is chosen. If the formula is satisfied by the assignment the solution is found. If
not, a variable is chosen according to a (possibly probabilistic) variable selection
heuristic, which is further called pickVar. The heuristics mostly depend on some
score, which counts the number of satisfied/unsatisfied clauses, as well as other
aspects like the “age” of variables, and others. It was believed that a good
flip heuristic should be designed in a very sophisticated way to obtain a really
efficient solver. We show in the following that it is worth to “come back to
the roots” since a very elementary and (as we think) elegant design principle

c© Springer International Publishing AG 2016
L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 1–18, 2016.
DOI: 10.1007/978-3-319-49487-6 1



2 A. Balint and U. Schöning

for the pickVar heuristic just based on probability distributions will do the job
extraordinary well.

It is especially popular (and successful) to pick the flip variable from an
unsatisfied clause. This is called focused local search in [14]. In each round, the
selected variable is flipped and the process starts over again until a solution is
eventually found.

Most important for the flip heuristic seems to be the score of an
assignment, i.e. the number of satisfied clauses. Considering the process of flip-
ping one variable, we get the relative score change produced by a candidate
variable for flipping as: (score after flipping minus score before flipping) which
is equal to make minus break. Here make means the number of newly satisfied
clauses which come about by flipping the variable, and break means the number
of clauses which become false by flipping the respective variable. To be more
precise, we will denote make(x, α) and break(x, α) as functions of the respec-
tive flip variable x and the actual assignment α (before flipping). Notice that
in case of focused flipping mentioned above the value of make is always
at least 1.

Most of the SLS solvers so far, if not all, follow the strategy that whenever
the score improves by flipping a certain variable from an unsatisfied clause, they
will indeed flip this variable without referring to probabilistic decisions. Only if
no improvement is possible as is the case in local minima, a probabilistic strat-
egy is performed. The winner of the SAT Competition 2011 category random
SAT, Sparrow, mainly follows this strategy but when it comes to a probabilistic
strategy it uses a probability distribution function [2]. The probability distribu-
tion in Sparrow is defined as an exponential function of the score value. In this
chapter we analyze several simple SLS solvers which are based only on proba-
bility distributions.

2 The New Algorithm Paradigm

We propose a new class of solvers here, called probSAT, which base their prob-
ability distributions for selecting the next flip variable solely on the make and
break values, but not necessarily on the value of the score = make − break, as
it was the case in Sparrow. Our experiments indicate that the influence of make
should be kept rather weak – it is even reasonable to ignore make completely,
like in implementations of WalkSAT [13]. The role of make and break in these
SLS-type algorithms should be seen in a new light. The new type of algorithm
presented here can also be applied for general constraint satisfaction problems
and works as follows.
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Algorithm 1. ProbSAT
Input : Formula F , maxTries, maxFlips
Output: satisfying assignment α or UNKNOWN

1 for i = 1 to maxTries do
2 α ← randomly generated assignment
3 for j = 1 to maxFlips do
4 if (α is model for F ) then
5 return α

6 Cu ← randomly selected unsatisfied clause
7 for x in Cu do
8 compute f(x, α)

9 var ← random variable x according to probability f(x,α)∑
z∈Cu

f(z,α)

10 α ← flip(var) in α

11 return UNKNOWN;

The idea here is that the function f should give a high value to variable
x if flipping x seems to be advantageous, and a low value otherwise. Using f
the probability distribution for the potential flip variables is calculated. The flip
probability for x is proportional to f(x, α). Letting f be a constant function
leads in the k-SAT case to the probabilities ( 1

k , . . . , 1
k ) morphing the probSAT

algorithm to the random walk algorithm that is theoretically analyzed in [15]. In
all our experiments with various functions f we made f depend on break(x, α)
and possibly on make(x, α), and no other properties of x and α nor the history
of previous search course. In the following we analyze experimentally the effect
of several functions to be plugged in for f .

2.1 An Exponential Function

First we considered an exponential decay, 2-parameter function:

f(x, α) =
(cm)make(x,α)

(cb)break(x,α)

The parameters of the function are cb and cm. Because of the exponential func-
tions used here (think of cx = e

1
T x) this is reminiscence of the way Metropolis-

like algorithms (see [17]) select a variable. Also, this is similar to the Softmax
probabilistic decision for actions in reinforcement learning [19]. We call this the
exp-algorithm. The separation into the two base constants cm and cb will allow
us to find out whether there is a different influence of the make and the break
value – and there is one, indeed.

It seems reasonable to try to maximize make and to minimize break. There-
fore, we expect cm > 1 and cb > 1 to be good choices for these parameters.
Actually, one might expect that cm should be identical to cb such that the above
formula simplifies to cmake−break = cscore for an appropriate parameter c.
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To get a picture on how the performance of the solver varies for different
values of cm and cb, we have done a uniform sampling of cb ∈ [1.0, 4.0] and
of cm ∈ [0.1, 2.0] for this exponential function and of cm ∈ [−1.0, 1.0] for the
polynomial function (see below). We have then run the solver with the different
parameter settings on a set of randomly generated 3-SAT instances with 1000
variables at a clause to variable ratio of 4.26. The cutoff limit was set to 10 s.
As a performance measure we use PAR10: penalized average runtime, where a
timeout of the solver is penalized with 10·(cutoff limit). A parameter setting
where the solver is not able to solve anything has a PAR10 value of 100 in
our case.

In the case of 3-SAT a very good choice of the parameters is cb > 1 (as
expected) and cm < 1 (totally unexpected), for example, cb = 3.6 and cm = 0.5
(see Fig. 1 left upper diagram and the survey in Table 1) with small variation

Fig. 1. Parameter space performance plot: The left plots show the performance
of different combinations of cb and cm for the exponential (upper left corner) and the
polynomial (lower left corner) functions. The darker the area the better the runtime of
the solver with that parameter settings. The right plots show the performance variation
if we ignore the make values (correspond to the cut in the left plots) by setting cm = 1
for the exponential function and cm = 0 for the polynomial function.
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depending on the considered set of benchmarks. In the interval cm ∈ [0.3, 1.8]
the optimal choice of parameters can be described by the hyperbola-like function
(cb − 1.3) · cm = 1.1. Almost optimal results were also obtained if cm is set to
1 (and cb to 2.5), see Fig. 1, both upper diagrams. In other words, the value of
make is not taken into account in this case.

As mentioned, it turns out that the influence of make is rather weak, there-
fore it is reasonable, and still leads to very good algorithms – also because the
implementation is simpler and has less overhead – if we ignore the make value
completely and consider the one-parameter function:

f(x, α) = (cb)−break(x,α)

We call this the break-only-exp-algorithm.

2.2 A Polynomial Function

Our experiments showed that the exponential decay in probability with growing
break value might be too strong in the case of 3-SAT. The above formulas have
an exponential decay in probability comparing different (say) break values. The
relative decay is the same when we compare break = 0 with break = 1, and
when we compare, say, break = 5 with break = 6. A “smoother” function for
high values would be a polynomial decay function. This led us to consider the
following, 2-parameter function (ε = 1 in all experiments):

f(x, α) =
(make(x, α))cm

(ε + break(x, α))cb

We call this the poly-algorithm. The best parameters in case of 3-SAT turned
out to be cm = −0.8 (notice the minus sign!) and cb = 3.1 (See Fig. 1, lower
part). In the interval cm ∈ [−1.0, 1.0] the optimal choice of parameters can be
described by the linear function cb + 0.9cm = 2.3. Without harm one can set
cm = 0, and then take cb = 2.3, and thus ignore the make value completely.

Ignoring the make value (i.e. setting cm = 0) brings us to the function

f(x, α) = (ε + break(x, α))−cb

We call this the break-only-poly-algorithm.

2.3 Some Remarks

As mentioned above, in both cases, the exp- and the poly-algorithm, it was a
good choice to ignore the make value completely (by setting cm = 1 in the
exp-algorithm, or by setting cm = 0 in the poly-algorithm). This corresponds to
the vertical lines in Fig. 1, left diagrams. But nevertheless, the optimal choice in
both cases, was to set cm = 0.5 and cb = 3.6 in the case of the exp-algorithm
(and similarly for the poly-algorithm.) We have 0.5make

3.6break ≈ 3.6−(break+make/2).
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This can be interpreted as follows: instead of the usual score = make − break a
better score measure is −(break + make/2).

The value of cb determines the greediness of the algorithm. We concentrate
on cb in this discussion since it seems to be the more important parameter.
The higher the value of cb, the more greedy is the algorithm. A low value of
cb (in the extreme, cb = 1 in the exp-algorithm) morphs the algorithm to a
random walk algorithm with flip probabilities ( 1

k , . . . 1
k ) like the one considered

in [15]. Examining Fig. 1, almost a phase-transition can be observed. If cb falls
under some critical value, like 2.0, the expected run time increases tremendously.
Turning towards the other side of the scale, increasing the value of cb, i.e. making
the algorithm more greedy, also degrades the performance but not with such an
abrupt rise of the running time as in the other case. These observations have
also been made empirically by Hoos in [9], where he proposed to approximate
the noise value from above, rather from below.

3 Experimental Analysis of the Functions

To determine the performance of our probability distribution based solver we
have designed a wide variety of experiments. In the first part of our experiments
we try to determine good settings for the parameters cb and cm by means of
automatic configuration procedures. In the second part we will compare our
solver to other state-of-the-art solvers.

3.1 The Benchmark Formulae

All random instances used in our settings are uniform random k-SAT problems
generated with different clause to variable ratios, denoted with r. The class
of random 3-SAT problems is the best studied class of random problems and
because of this reason we have four different sets of 3-SAT instances.

1. 3sat1k [21]: 103 variables at r = 4.26 (500 instances)
2. 3sat10k [21]: 104 variables at r = 4.2 (500 instances)
3. 3satComp1: all large 3-SAT instances from the SAT Competition 2011 cate-

gory random with variables range 2 · 103 . . . 5 · 104 at r = 4.2 (100 instances)
4. 3satExtreme: 105 . . . 5 · 105 variables at r = 4.2 (180 instances)

The 5-SAT and 7-SAT problems used in our experiments come from [21]: 5sat500
(500 variables at r = 20) and 7sat90 (90 variables at r = 85). The 3sat1k,
3sat10k, 5sat500 and 7sat90 instance classes are divided into two equal sized
classes called train and test. The train set is used to determine good parameters
for cb and cm and the second class is used to report the performance. Further
we also include the set of satisfiable random and crafted instances from the SAT
Competition 2011.

1 www.satcompetition.org.

www.satcompetition.org
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3.2 Good Parameter Setting

The problem that every solver designer is confronted with is the determination
of good parameters for its solvers. We have avoided to accomplish this task by
manual tuning but instead have used an automatic procedure.

As our parameter search space is relatively small, we have opted to use a mod-
ified version of the iterated F-Race [5] configurator, which we have implemented
in Java. The idea of F-race is relatively simple: good configurations should be
evaluated more often than poor ones which should be dropped as soon as possi-
ble. F-Race uses a familywise Friedman test (see Test 25 in [18] for more details
about the test) to check if there is a significant performance difference between
solver configurations. The test is conducted every time the solvers have run on
an instance. If the test is positive, poor configurations are dropped, and only
the good ones are further evaluated. The configurator ends when the number of
solvers left in the race is less than 2 times the number of parameters or if there
are no more instances to evaluate on.

To determine good values for cb and cm we have run our modified version
of F-Race on the training sets 3sat1k, 3sat10k, 5sat500 and 7sat90. The cutoff
time for the solvers were set to 10 s for 3sat1k and to 100 s for the rest. The best
parameter values returned by this procedure are listed in Table 1. Values for the
class of 3sat1k problems were also included, because the preliminary analysis of
the parameter search space was done on this class. The best parameter of the
break-only-exp-algorithm for k-SAT can be roughly described by the formula
cb = k0.8.

Table 1. Parameter setting for cb and cm: Each cell represents a good setting for
cb and cm dependent on the function used by the solver. Parameter values close to
these values have similar good performance.

3sat1k 3sat10k 5sat500 7sat90

exp(cb, cm) 3.6 0.5 3.97 0.3 3.1 1.3 3.2 1.4
poly(cb, cm) 3.1 −0.8 2.86 −0.81 - -
exp(cb) 2.50 2.33 3.6 4.4
poly(cb) 2.38 2.16 - -

4 Empirical Evaluation

In the second part of our experiments we compare the performance of our solvers
to that of the SAT Competition 2011 winners and also to WalkSAT [13]. An
additional comparison to a survey propagation algorithm will show how far our
probSAT local search solver can get.
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Soft- and Hardware. The solvers were run on a part of the bwGrid clusters [8]
(Intel Harpertown quad-core CPUs with 2.83 GHz and 8 GByte RAM). The
operating system was Scientific Linux. All experiments were conducted with
EDACC, a platform that distributes solver execution on clusters [1].

The Competitors. The WalkSAT solver is implemented within our own code
basis. We use our own implementation and not the original code (version 48)
provided by Henry Kautz2, because our implementation is approximately 1.35
times faster3.

We have used version 1.4 of the survey propagation solver provided by
Zecchina4, which was changed to be DIMACS conform. For all other solvers
we have used the binaries from the SAT Competition 20115.

Parameter Settings of Competitors. Sparrow is highly tuned on our target set of
instances and incorporates optimal settings for each set within its code. WalkSAT
[13] has only one single parameter, the walk probability wp. In case of 3-SAT
we took the optimal values for wp = 0.567 which have been established in an
extensive analysis in [11]. Because we could not find any settings for 5-SAT and 7-
SAT problems we have run our modified version of F-Race to find good settings.
For 5sat500 the configurator reported wp = 0.25 and for 7sat90 wp = 0.1. The
survey propagation solver was evaluated with the default settings reported in [6]
(fixing 5% of the variables per step).

Results. We have evaluated our solvers and the competitors on the test set of the
instance sets 3sat1k, 3sat10k, 5sat500 and 7sat90 (note that the training set was
used only for finding good parameters for the solvers). The parameter setting
for cb and cm are those from Table 1 (in case of 3-SAT we have always used the
parameters for 3sat10k). The results of the evaluations are listed in Table 2.

On the 3-SAT instances, the polynomial function yields the overall best per-
formance. On the 3-SAT competition set all of our solver variants exhibited the
most stable performance, being able to solve all problems within cutoff time.
The survey propagation solver has problems with the 3sat10k and the 3sat-
Comp problems (probably because of the relatively small number of variables).
The good performance of the break-only-poly-solver remains surprisingly good
even on the 3satExtreme set where the number of variables reaches 5 · 105 (ten
times larger than that from the SAT Competition 2011). From the class of SLS
solvers it exhibits the best performance on this set and is only approx. 2 times
slower than survey propagation. Note that a value of cb = 2.165 for the break-
only-poly solver further improved the runtime of the solver by approximately
30 % on the 3satExtreme set.

2 http://www.cs.rochester.edu/u/kautz/walksat/.
3 The latest version 50 of WalkSAT has been significantly improved, but was not

available at the time we have performed the experiments.
4 http://users.ictp.it/∼zecchina/SP/.
5 http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz.

http://www.cs.rochester.edu/u/kautz/walksat/
http://users.ictp.it/~zecchina/SP/
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz
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Table 2. Evaluation results: Each cell represents the PAR10 (Penalized average
runtime with penalization factor 10 - every unsuccessful run is penalized with 10 times
the maximum runtime.) runtime and the number of successful runs for the solvers on
the given instance set. Results are highlighted if the solver succeeded in solving all
instances within the cutoff time, or if it has the best PAR10 runtime. Cutoff times are
600 s for 3sat10k, 5sat500 and 7sat90 and 5000 s for the rest. The blank cells indicates
that we have no parameter setting worth evaluating.

3sat10k 3satComp 3satExtreme 5sat500 7sat90
exp(cb, cm) 46.6 93.84 - 12.49 201.68

(998) (500) (103) (974)
poly(cb, cm) 46.65 76.81 - - -

996 (500)

exp(cb) 53.02 126.59 - 7.84 134.06
(997) (500) (103) (984)

poly(cb) 22.80 54.37 1121.34 - -
(1000) (500) (180)

Sparrow 199.78 498.05 47419 9.52 14.94
(973) (498) (10) (103) (103)

WalkSAT 61.74 172.21 1751.77 14.71 69.34
(995) (499) (178) (103) (994)

sp 1.4 3146.17 18515.79 599.01 5856 6000
(116) (63) (180) (6) (0)

On the 5-SAT instances the exponential break-only-exp solver yields the
best performance being able to beat even Sparrow, which was the best solver for
5-SAT within the SAT Competition 2011. On the 7-SAT instances though the
performance of our solvers is relatively poor. We observed a very strong variance
of the run times on this set and it was relatively hard for the configurator to
cope with such high variances.

Overall the performance of our simple probability based solvers reaches state-
of-the-art performance and can even get into problem size regions where only
survey propagation could catch ground.

Scaling Behavior with the Number of Variables n. Experiments show that
the survey propagation algorithm scales linearly with n on formulas generated
near the threshold ratio. The same seems to hold for WalkSAT with optimal
noise as the results in [11] show. The 3satExtreme instance set contains very
large instances with varying n ∈ {105 . . . 5 ·105}. To analyze the scaling behavior
of probSAT in the break-only-poly variant we have computed for each run the
number of flips per variable performed by the solver until a solution was found.
The number of flips per variable remains constant at about 2 · 103 independent
of n. The same holds for WalkSAT, though WalkSAT seems to have a slightly
larger variance of the runtimes.
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Results on the SAT Competition 2011 Satisfiable Random Set. We have
compiled an adaptive version of probSAT and of WalkSAT, that first checks the
size of the clauses (i.e. k) and then sets the parameters accordingly (like Spar-
row does). We have ran these solvers on the complete satisfiable instances set
from the SAT Competition 2011 random category along with all other competi-
tion winning solvers from this category: Sparrow2011, sattime2011 and EagleUP.
Cutoff time was set to 5000 s. We report only the results on the large set, as the
medium set was completely solved by all solvers and the solvers had a median
runtime under one second. As can be seen from the results of the cactus plot in
Fig. 2, the adaptive version of probSAT would have been able to win the compe-
tition. Interestingly is to see that the adaptive version of WalkSAT would have
ranked third.
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number of solved instances

C
PU

 T
im

e 
(s

)

Sparrow2011 
EagleUP
WalkSAT adapt 
sattime2011
probSAT adapt 

Fig. 2. Results on the “large” set of the SAT Competition 2011 random instances
represented as a cactus plot. The x-axis represents the number of problems a solver
was able to solve ordered by runtime; the y-axis is the runtime. The lower a curve
(low runtimes) and the more it gets to the right (more problems solved) the better the
solver.

Results on the SAT Competition 2011 Satisfiable Crafted Set. We have
also run the different solvers on the satisfiable instances from the crafted set of
SAT Competition 2011 (with a cutoff time of 5000 s). The results are listed
in Table 3. We have also included the results of the best three complete solvers
from the crafted category. probSAT and WalkSAT performed best in their 7-SAT
break-only configuration solving 81 respectively 101 instances. The performance
of WalkSAT could not be improved by changing the walk probability. probSAT
though exhibited better performance with cb = 7 and a switch to the polynomial
break-only scheme, being then able to solve 93 instances. With such a high cb

value (very greedy) the probability of getting stuck in local minima is very high.
By adding a static restart strategy after 2 · 104 flips per variable probSAT was
then able to solve 99 instances (as listed in the table).
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Table 3. Results on the crafted satisfiable instances: Each cell reports the
number of solved instances within the cutoff time (5000 s). The first line shows the
results on the original instances and the second on the preprocessed instances.

Sattime Sparrow WalkSAT probSAT MPhaseSAT

(complete)

clasp

(complete)

Crafted 107 104 101 99 93 81

Crafted pre 86 97 101 95 98 80

The high greediness level needed for WalkSAT and probSAT to solve the
crafted instances indicates that this instances might be more similar to the
7-SAT instances (generally to higher k-SAT). A confirmation of this conjec-
ture is that Sparrow with fixed parameters for 7-SAT instances could solve 103
instances vs. 104 in the default setting (which adapts the parameters according
to the maximum clause length found in the problem). We suppose that improv-
ing SLS solvers for random instances with large clause length would also yield
improvements for non random instances.

To check whether the performance of SLS solvers can be improved by pre-
processing the instances first, we have run the preprocessor of lingeling [4],
which incorporates all main preprocessing techniques, to simplify the instances.
The results unluckily show the contrary of what would have been expected (see
Table 3). None of the SLS solvers could benefit from the preprocessing step, solv-
ing equal or less instances. These results motivated the analysis of preprocess-
ing techniques in more detail, which was performed in [3]. It turns out that
bounded variable elimination, which performs variable elimination through res-
olution rules up to certain bound is a good preprocessing technique for SLS
solvers and can indeed improve the performance of SLS solvers.

Results on the SAT Challenge 2012 Random Set. We have submitted
the probSAT solver (the adaptive version) to the SAT Challenge 2012 random
satisfiable category. The results of the best performing solvers can be seen as
a cactus plot in Fig. 3. probSAT was the second best solver on these instances
been only outperformed by CCAsat.

While the difference to all other competitors is significant in terms of a Mann-
Whitney-U test, the difference to CCAsat is not.

Results on the SAT Competition 2013 Satisfiable Random Set. We
have also submitted an improved version of probSAT to the SAT Competition
2013 to the Random Satisfiable category. The implementation of probSAT was
improved with respect to parameters, data structure and work flow.
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Fig. 3. Results of the best performing solvers on the SAT Challenge 2012 random
instances as a cactus plot. For details about cactus plot see Fig. 2.

The parameters of probSAT have been set as follows:

k fct cb ε

3 poly 2.06 0.9
4 exp 2.85 -
5 exp 3.7 -
6 exp 5.1 -
≥ 7 exp 5.4 -

where k is the size of the longest clause found in the problem during pars-
ing. These parameter values have been determined in different configuration
experiments.

All array data structures where ended by a sentinel6 (i.e. the last element
in the array is the stop value; in our case we have used 0). All for-loops have
been changed into while-loops that have no counter but only a sentinel check,
allowing us to save several memory dereferences and variables. As most of the
operations performed by SLS solvers are loops over some small sized arrays,
this optimization turns out to improve the performance of the solver between
10 %–25 % (dependent on the instances).

6 We would like to thank Armin Biere for this suggestion.
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Compared to the original version the version submitted to the competition
is not selecting an unsatisfied clause randomly but will iterate through the set
of unsatisfied clauses with the flip counter (i.e. instead of c=rand() modulo
numUnsat we use c=flipCounter modulo numUnsat). This scheme will reduce
the probability of undoing a change right in the next step. This small change
seems to improve in some cases the stagnation behavior of the solver giving it a
further boost7.

To measure the isolated effect of the different changes we have performed a
small experiment on the 3sat10k instance set. We start with the version that was
submitted to the SAT Challenge 2012 with new parameters (sc12(1)), then we
add the code optimizations (sc12(2)) and finally we remove the random selection
of a false clause (sc13). A further version was added to this evaluation that does
not cache the break values, but computes them on the fly. This version is denoted
with (nc) in the table and was analyzed only after the competition. The results
of the evaluation are listed in Table 4.

Table 4. The results of the evaluation of different implementation variants of the
probSAT solver on the 3sat10k instance set. The last column shows the speed up with
respect to the last row. Time is measured in seconds.

Solver Total
CPU time

Average
CPU time

Median
CPU time

Average
speedup

1 probSAT sc13 (nc) 4356.0729 17.4243 7.886 2.01x
2 probSAT sc13 4696.9674 18.7879 8.499 1.86x
3 probSAT sc12(2) 7632.1326 30.5285 10.695 1.15x
4 probSAT sc12(1) 8781.8255 35.1273 12.489 -

The code optimizations yielded an average speedup of 15 %, while the removal
of random clause selection is further improving the performance by around 70 %.
Further adding on the fly computation of the break values yields a twofold
speedup compared to the original version with new parameters.

probSAT sc13 was submitted to SAT Competition 20138. The results of the
best performing solvers submitted to SAT Competition 2013 can be seen as
a cactus plot in Fig. 4. probSAT is able to outperform all its competitors. The
instances used in SAT Competition 2013 contained randomly generated instances
on the phase transition point for k = 3, . . . , 7 and also a small set of huge
instances (in terms of number of variables). The last were intended to test the
robustness of the solvers. probSAT turns out to be a very robust solver, being
able to solve many of the huge instances 18 out of the 26 that have been solved
by some solver (out of a total of 36). From the set of phase transition instances
7 This might also be the case for the WalkSAT solver.
8 The code was compiled with the Intel R©Compiler 12.0 with the following parameters:
-O3 -xhost -static -unroll-aggressive -opt-prefetch -fast.
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0 20 40 60 80 100

0

1000

2000

3000

4000

5000

number of solved instances

C
PU

 T
im

e 
(s

)

probSAT SC13
WalkSATlm2013
CScoreSAT2013
vflipnum
FrwCB2013
CCA2013
BalancedZ
Ncca+
sattime2013

Fig. 4. Results of the best performing solvers on the SAT Competition 2013 random
satisfiable instances.

probSAT solved 81 out of 109 that could be solved by any solver. Altogether this
shows that the solving approach (and the parameter settings) used by probSAT
has an overall good performance.

5 Comparison with WalkSAT

In principle, WalkSAT [13] also uses a certain pattern of probabilities for flipping
one of the variables within a non-satisfied clause. But the probability distribution
does not depend on a single continuous function f as in our algorithms described
above, but uses some non-continuous if-then-else decisions as described in [13].

In Table 5 we compare the flipping probabilities in WalkSAT (setting the wp
parameter i.e. the noise value to wp = 0.567) with the break-only-poly-algorithm
(with cb = 2.06 and ε = 0.9) using several examples of break values combinations
that might occur within a 3-CNF clause.

Even though the probabilities look very similar, we think that the small
differences renders our approach to be more robust. Further, probSAT has the
PAC property [10, p. 153]. In each step every variable has a probability greater
zero to be picked for flipping. This is though not the case for WalkSAT. A variable
occurring in a clause where an other variable has a score of zero can not be
chosen for flipping. There is no published example for which WalkSAT gets
trapped in cycles. Though, during a talk given by Donald Knuth in Trento at the
SAT Conference in 2012 where he presented details about his implementation
of WalkSAT, he mentioned that Bram Cohen, the designer of WalkSAT, has
provided such an example.
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Table 5. Probability comparison of WalkSAT and probSAT: The first columns
show some possible break value combinations that occur within a clause in a 3-SAT
formula during the search. For the different solvers considered here the probabilities
for each of the 3 variables to be flipped are listed.

Breaks WalkSAT Break-only-poly

0 0 0 0.33 0.33 0.33 0.33 0.33 0.33
0 0 1 0.5 0.5 0 0.45 0.45 0.10
0 1 1 1.0 0 0 0.70 0.15 0.15
0 1 2 1.0 0 0 0.76 0.16 0.07
0 2 2 1.0 0 0 0.85 0.07 0.07
1 1 1 0.33 0.33 0.33 0.33 0.33 0.33
1 1 2 0.41 0.41 0.17 0.41 0.41 0.18
1 2 2 0.53 0.23 0.23 0.54 0.23 0.22
1 2 3 0.53 0.23 0.23 0.61 0.25 0.14

6 Implementation Variations

In the previous sections we have compared the solvers based on their runtime. As
a consequence the efficiency of the implementation plays a crucial role and the
best available implementation should be taken for comparison. Another possible
comparison measure is the number of flips the solver needs to perform to find
a solution. From a practical point of view this is not optimal. The number
of flips per second (denoted with flips/sec) is a key measure of SLS solvers
when it comes to compare algorithm implementations or two different similar
algorithms. In this Section we would like to address this problem by comparing
two different implementations of probSAT and WalkSAT on a set of very large
3-SAT problems.

All efficient implementations of SLS solvers are computing the scores of vari-
ables from scratch only within the initialization phase. During the search of the
solver, the scores are only updated. This is possible because only the score of
variables can change that are in the neighborhood of the variable being flipped.
This method is also known as caching (the scores of the variables are being
cached) in [10, p. 273] or incremental approach in [7].

The other method would be to compute the score of variables on the fly before
taking them into consideration for flipping. This method is called non-caching
or non-incremental approach. In case of probSAT or WalkSAT only the score of
variables from one single clause has to be computed as opposed to other solvers
where all variables from all unsatisfied clauses are taken into consideration for
flipping.

We have implemented two different versions of probSAT and WalkSAT within
the same code basis (i.e. the solvers are identical with exception of the pickVar
method), one that uses caching and one that does not. We have evaluated the



16 A. Balint and U. Schöning
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Fig. 5. Comparison of the different implementation variants of probSAT and WalkSAT
on extreme large 3-SAT problems (within the same code basis), with and without
caching of the break values. We also evaluate the best known WalkSAT implementation
(non-caching) from UBCSAT as a reference.

four different solvers on a set of 100 randomly generated 3-SAT problems with
106 variables and a ratio of 4.2. The results can be seen in Fig. 5.

Within the time limit of 1.5·104 s only the variants not using caching were able
to solve all problems. The implementation with caching solved only 72 (prob-
SAT) respectively 65 instances (WalkSAT). Note that all solvers started with
the same seed (i.e. they perform search on the exactly same search trajectory).
The difference between the different implementations in terms of performance
can be explained by the different number of flips/sec. While the version with
caching performs around 1.4 · 105 flips/sec the version without caching is able to
perform around 2.2·105 flips/sec. This explains the difference in runtime between
the two different implementations. Similar findings have also been observed in
[20, p. 27] and in [7].

The advantage of non-caching decreases with increasing k (for random gen-
erated k-SAT problems) and becomes even a disadvantage for 5-SAT problems
and upwards. As a consequence the latest version of probSAT uses caching for
3-SAT problems and non-caching for the other types of problems.

7 Conclusion and Future Work

We introduced a simple algorithmic design principle for a SLS solver which does
its job without heuristics and “tricks”. It just relies on the concept of probability
distribution and focused search. It is though flexible enough to allow plugging
in various functions f which guide the search.

Using this concept we were able to discover a non-symmetry regarding the
importance of the break and make values: the break value is the more important
one; one can even do without the make value completely.
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We have systematically used an automatic configurator to find the best para-
meters and to visualize the mutual dependency and impact of the parameters.

Furthermore, we observe a large variation regarding the running times even
on the same input formula. Therefore the issue of introducing an optimally cho-
sen restart point arises. Some initial experiments show that performing restarts,
even after a relatively short period of flips (e.g. 20n) gives favorable results on
hard instances. It seems that the probability distribution of the number of flips
until a solution is found, shows some strong heavy tail behavior (cf. [12,16]).

Finally, a theoretical analysis of the Markov chain convergence and speed of
convergence underlying this algorithm would be most desirable, extending the
results in [15].
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10. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco (2005)

11. Kroc, L., Sabharwal, A., Selman, B.: An empirical study of optimal noise and
runtime distributions in local search. In: Strichman, O., Szeider, S. (eds.) SAT
2010. LNCS, vol. 6175, pp. 346–351. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14186-7 31

12. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
In: ISTCS, pp. 128–133 (1993). http://dblp.uni-trier.de/db/conf/istcs/istcs1993.
html#LubySZ93

13. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search.
In: Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI 1997), pp. 321–326 (1997)

14. Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: Proceedings of
the 32nd Annual Symposium on Foundations of Computer Science (FOCS 1991),
pp. 163–169 (1991)
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Abstract. We survey recent advances in algorithms for route plan-
ning in transportation networks. For road networks, we show that one
can compute driving directions in milliseconds or less even at continen-
tal scale. A variety of techniques provide different trade-offs between
preprocessing effort, space requirements, and query time. Some algo-
rithms can answer queries in a fraction of a microsecond, while others
can deal efficiently with real-time traffic. Journey planning on public
transportation systems, although conceptually similar, is a significantly
harder problem due to its inherent time-dependent and multicriteria
nature. Although exact algorithms are fast enough for interactive queries
on metropolitan transit systems, dealing with continent-sized instances
requires simplifications or heavy preprocessing. The multimodal route
planning problem, which seeks journeys combining schedule-based trans-
portation (buses, trains) with unrestricted modes (walking, driving), is
even harder, relying on approximate solutions even for metropolitan
inputs.

1 Introduction

This survey is an introduction to the state of the art in the area of practical algo-
rithms for routing in transportation networks. Although a thorough survey by
Delling et al. [94] has appeared fairly recently, it has become outdated due to sig-
nificant developments in the last half-decade. For example, for continent-sized

This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and
Renato F. Werneck were at Microsoft Research Silicon Valley.
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road networks, newly-developed algorithms can answer queries in a few hun-
dred nanoseconds; others can incorporate current traffic information in under
a second on a commodity server; and many new applications can now be dealt
with efficiently. While Delling et al. focused mostly on road networks, this sur-
vey has a broader scope, also including schedule-based public transportation
networks as well as multimodal scenarios (combining schedule-based and unre-
stricted modes).

Section 2 considers shortest path algorithms for static networks; although
it focuses on methods that work well on road networks, they can be applied to
arbitrary graphs. Section 3 then considers the relative performance of these algo-
rithms on real road networks, as well as how they can deal with other transporta-
tion applications. Despite recent advances in routing in road networks, there is
still no “best” solution for the problems we study, since solution methods must
be evaluated according to different measures. They provide different trade-offs in
terms of query times, preprocessing effort, space usage, and robustness to input
changes, among other factors. While solution quality was an important factor
when comparing early algorithms, it is no longer an issue: as we shall see, all
current state-of-the-art algorithms find provably exact solutions. In this survey,
we focus on algorithms that are not clearly dominated by others. We also dis-
cuss approaches that were close to the dominance frontier when they were first
developed, and influenced subsequent algorithms.

Section 4 considers algorithms for journey planning on schedule-based pub-
lic transportation systems (consisting of buses, trains, and trams, for example),
which is quite different from routing in road networks. Public transit systems
have a time-dependent component, so we must consider multiple criteria for
meaningful results, and known preprocessing techniques are not nearly as effec-
tive. Approximations are thus sometimes still necessary to achieve acceptable
performance. Advances in this area have been no less remarkable, however: in
a few milliseconds, it is now possible to find good journeys within public trans-
portation systems at a very large scale.

Section 5 then considers a true multimodal scenario, which combines schedule-
based means of transportation with less restricted ones, such as walking and
cycling. This problem is significantly harder than its individual components, but
reasonable solutions can still be found.

A distinguishing feature of the methods we discuss in this survey is that they
quickly made real-life impact, addressing problems that need to be solved by
interactive systems at a large scale. This demand facilitated technology transfer
from research prototypes to practice. As our concluding remarks (Sect. 6) will
explain, several algorithms we discuss have found their way into mainstream
production systems serving millions of users on a daily basis.

This survey considers research published until January 2015. We refer to the
final (journal) version of a result, citing conference publications only if a journal
version is not yet available. The reader should keep in mind that the journal
publications we cite often report on work that first appeared (at a conference)
much earlier.
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2 Shortest Paths Algorithms

Let G = (V,A) be a (directed) graph with a set V of vertices and a set A of arcs.
Each arc (u, v) ∈ A has an associated nonnegative length �(u, v). The length of
a path is the sum of its arc lengths. In the point-to-point shortest path problem,
one is given as input the graph G, a source s ∈ V , and a target t ∈ V , and
must compute the length of the shortest path from s to t in G. This is also
denoted as dist(s, t), the distance between s and t. The one-to-all problem is to
compute the distances from a given vertex s to all vertices of the graph. The
all-to-one problem is to find the distances from all vertices to s. The many-to-
many problem is as follows: given a set S of sources and a set T of targets, find
the distances dist(s, t) for all s ∈ S, t ∈ T . For S = T = V we have the all pairs
shortest path problem.

In addition to the distances, many applications need to find the corresponding
shortest paths. An out-shortest path tree is a compact representation of one-to-
all shortest paths from the root r. (Likewise, the in-shortest path tree represents
the all-to-one paths.) For each vertex u ∈ V , the path from r to u in the tree is
the shortest path.

In this section, we focus on the basic point-to-point shortest path problem
under the basic server model. We assume that all data fits in RAM. How-
ever, locality matters, and algorithms with fewer cache misses run faster. For
some algorithms, we consider multi-core and machine-tailored implementations.
In our model, preprocessing may be performed on a more powerful machine
than queries (e.g., a machine with more memory). While preprocessing may
take a long time (e.g., hours), queries need to be fast enough for interactive
applications.

In this section, we first discuss basic techniques, then those using preprocess-
ing. Since all methods discussed could in principle be applied to arbitrary graphs,
we keep the description as general as possible. For intuition, however, it pays to
keep road networks in mind, considering that they were the motivating applica-
tion for most approaches we consider. We will explicitly consider road networks,
including precise performance numbers, in Sect. 3.

2.1 Basic Techniques

The standard solution to the one-to-all shortest path problem is Dijkstra’s
algorithm [108]. It maintains a priority queue Q of vertices ordered by (ten-
tative) distances from s. The algorithm initializes all distances to infinity,
except dist(s, s) = 0, and adds s to Q. In each iteration, it extracts a vertex u
with minimum distance from Q and scans it, i. e., looks at all arcs a = (u, v) ∈ A
incident to u. For each such arc, it determines the distance to v via arc a by com-
puting dist(s, u) + �(a). If this value improves dist(s, v), the algorithm performs
an arc relaxation: it updates dist(s, v) and adds vertex v with key dist(s, v) to
the priority queue Q. Dijkstra’s algorithm has the label-setting property: once a
vertex u ∈ V is scanned (settled), its distance value dist(s, u) is correct. There-
fore, for point-to-point queries, the algorithm may stop as soon as it scans the
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Fig. 1. Schematic search spaces of Dijkstra’s algorithm (left), bidirectional search (mid-
dle), and the A* algorithm (right).

target t. We refer to the set of vertices S ⊆ V scanned by the algorithm as its
search space. See Fig. 1 for an illustration.

The running time of Dijkstra’s algorithm depends on the priority queue used.
The running time is O((|V | + |A|) log |V |) with binary heaps [254], improving
to O(|A| + |V | log |V |) with Fibonacci heaps [129]. For arbitrary (non-integral)
costs, generalized versions of binary heaps (such as 4-heaps or 8-heaps) tend to
work best in practice [61]. If all arc costs are integers in the range [0, C], multi-
level buckets [103] yield a running time of O(|A| + |V |√log C) [8,62] and work
well in practice. For the average case, one can get an O(|V | + |A|) (linear) time
bound [147,192]. Thorup [244] has improved the theoretical worst-case bound of
Dijkstra’s algorithm to O(|A| + |V | log log min{|V | , C}), but the required data
structure is rather involved and unlikely to be faster in practice.

In practice, one can reduce the search space using bidirectional search [67],
which simultaneously runs a forward search from s and a backward search from t.
The algorithm may stop as soon as the intersection of their search spaces prov-
ably contains a vertex x on the shortest path from s to t. For road networks,
bidirectional search visits roughly half as many vertices as the unidirectional
approach.

An alternative method for computing shortest paths is the Bellman-Ford
algorithm [46,127,198]. It uses no priority queue. Instead, it works in rounds,
each scanning all vertices whose distance labels have improved. A simple FIFO
queue can be used to keep track of vertices to scan next. It is a label-correcting
algorithm, since each vertex may be scanned multiple times. Although it runs
in O(|V | |A|) time in the worst case, it is often much faster, making it competitive
with Dijkstra’s algorithm in some scenarios. In addition, it works on graphs with
negative edge weights.

Finally, the Floyd-Warshall algorithm [126] computes distances between all
pairs of vertices in Θ(|V |3) time. For sufficiently dense graphs, this is faster
than |V | calls to Dijkstra’s algorithm.

2.2 Goal-Directed Techniques

Dijkstra’s algorithm scans all vertices with distances smaller than dist(s, t). Goal-
directed techniques, in contrast, aim to “guide” the search toward the target by
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avoiding the scans of vertices that are not in the direction of t. They either
exploit the (geometric) embedding of the network or properties of the graph
itself, such as the structure of shortest path trees toward (compact) regions of
the graph.

A* Search. A classic goal-directed shortest path algorithm is A* search [156]. It
uses a potential function π : V → R on the vertices, which is a lower bound on
the distance dist(u, t) from u to t. It then runs a modified version of Dijkstra’s
algorithm in which the priority of a vertex u is set to dist(s, u) + π(u). This
causes vertices that are closer to the target t to be scanned earlier during the
algorithm. See Fig. 1. In particular, if π were an exact lower bound (π(u) =
dist(u, t)), only vertices along shortest s–t paths would be scanned. More vertices
may be visited in general but, as long as the potential function is feasible (i. e.,
if �(v, w) − π(v) + π(w) ≥ 0 for (v, w) ∈ E), an s–t query can stop with the
correct answer as soon as it is about to scan the target vertex t.

The algorithm can be made bidirectional, but some care is required to ensure
correctness. A standard approach is to ensure that the forward and backward
potential functions are consistent. In particular, one can combine two arbitrary
feasible functions πf and πr into consistent potentials by using (πf − πr)/2
for the forward search and (πr − πf )/2 for the backward search [163]. Another
approach, which leads to similar results in practice, is to change the stopping
criterion instead of making the two functions consistent [148,166,216,220].

Fig. 2. Triangle
inequalities for
ALT.

In road networks with travel time metric, one can use
the geographical distance [217,237] between u and t divided
by the maximum travel speed (that occurs in the network)
as the potential function. Unfortunately, the corresponding
bounds are poor, and the performance gain is small or non-
existent [148]. In practice, the algorithm can be accelerated
using more aggressive bounds (for example, a smaller denom-
inator), but correctness is no longer guaranteed. In practice,
even when minimizing travel distances in road networks, A*
with geographical distance bound performs poorly compared
to other modern methods.

One can obtain much better lower bounds (and pre-
serve correctness) with the ALT (A*, landmarks, and trian-
gle inequality) algorithm [148]. During a preprocessing phase,
it picks a small set L ⊆ V of landmarks and stores the dis-
tances between them and all vertices in the graph. During an s–t query, it
uses triangle inequalities involving the landmarks to compute a valid lower
bound on dist(u, t) for any vertex u. More precisely, for any landmark li,
both dist(u, t) ≥ dist(u, li) − dist(t, li) and dist(u, t) ≥ dist(li, t) − dist(li, u)
hold. If several landmarks are available, one can take the maximum overall
bound. See Fig. 2 for an illustration. The corresponding potential function is
feasible [148].

The quality of the lower bounds (and thus query performance) depends on
which vertices are chosen as landmarks during preprocessing. In road networks,
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picking well-spaced landmarks close to the boundary of the graph leads to the
best results, with acceptable query times on average [112,150]. For a small (but
noticeable) fraction of the queries, however, speedups relative to bidirectional
Dijkstra are minor.

Geometric Containers. Another goal-directed method is Geometric Containers.
It precomputes, for each arc a = (u, v) ∈ A, an arc label L(a) that encodes
the set Va of vertices to which a shortest path from u begins with the arc a.
Instead of storing Va explicitly, L(a) approximates this set by using geometric
information (i. e., the coordinates) of the vertices in Va. During a query, if the
target vertex t is not in L(a), the search can safely be pruned at a. Schulz
et al. [235] approximate the set Va by an angular sector (centered at u) that
covers all vertices in Va. Wagner et al. [251] consider other geometric containers,
such as ellipses and the convex hull, and conclude that bounding boxes perform
consistently well. For graphs with no geometric information, one can use graph
layout algorithms and then create the containers [55,250]. A disadvantage of
Geometric Containers is that its preprocessing essentially requires an all-pairs
shortest path computation, which is costly.

Arc Flags. The Arc Flags approach [157,178] is somewhat similar to Geometric
Containers, but does not use geometry. During preprocessing, it partitions the
graph into K cells that are roughly balanced (have similar number of vertices)
and have a small number of boundary vertices. Each arc maintains a vector of K
bits (arc flags), where the i-th bit is set if the arc lies on a shortest path to some
vertex of cell i. The search algorithm then prunes arcs which do not have the
bit set for the cell containing t. For better query performance, arc flags can be
extended to nested multilevel partitions [197]. Whenever the search reaches the
cell that contains t, it starts evaluating arc flags with respect to the (finer) cells
of the level below. This approach works best in combination with bidirectional
search [157].

The arc flags for a cell i are computed by growing a backward shortest path
tree from each boundary vertex (of cell i), setting the i-th flag for all arcs of
the tree. Alternatively, one can compute arc flags by running a label-correcting
algorithm from all boundary vertices simultaneously [157]. To reduce preprocess-
ing space, one can use a compression scheme that flips some flags from zero to
one [58], which preserves correctness. As Sect. 3 will show, Arc Flags currently
have the fastest query times among purely goal-directed methods for road net-
works. Although high preprocessing times (of several hours) have long been a
drawback of Arc Flags, the recent PHAST algorithm (cf. Sect. 2.7) can make
this method more competitive with other techniques [75].

Precomputed Cluster Distances. Another goal-directed technique is Precomputed
Cluster Distances (PCD) [188]. Like Arc Flags, it is based on a (preferably bal-
anced) partition C = (C1, . . . , CK) with K cells (or clusters). The preprocessing
algorithm computes the shortest path distances between all pairs of cells.
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Fig. 3. Left: Multilevel overlay graph with two levels. The dots depict separator vertices
in the lower and upper level. Right: Overlay graph constructed from arc separators.
Each cell contains a full clique between its boundary vertices, and cut arcs are thicker.

The query algorithm is a pruned version of Dijkstra’s algorithm. For any
vertex u visited by the search, a valid lower bound on its distance to the target
is dist(s, u) + dist(C(u), C(t)) + dist(v, t), where C(u) is the cell containing u
and v is the boundary vertex of C(t) that is closest to t. If this bound exceeds the
best current upper bound on dist(s, t), the search is pruned. For road networks,
PCD has similar query times to ALT, but requires less space.

Compressed Path Databases. The Compressed Path Databases (CPD) [52,53]
method implicitly stores all-pairs shortest path information so that shortest
paths can be quickly retrieved during queries. Each vertex u ∈ V maintains
a label L(u) that stores the first move (the arc incident to u) of the shortest
path toward every other vertex v of the graph. A query from s simply scans L(u)
for t, finding the first arc (s, u) of the shortest path (to t); it then recurses on u

until it reaches t. Explicitly storing the first arc of every shortest path (in Θ(|V |2)
space) would be prohibitive. Instead, Botea and Harabor [53] propose a lossless
data compression scheme that groups vertices that share the same first move (out
of u) into nonoverlapping geometric rectangles, which are then stored with u.
Further optimizations include storing the most frequent first move as a default
and using more sophisticated compression techniques. This leads to fast queries,
but space consumption can be quite large; the method is thus dominated by
other approaches. CPD can be seen as an evolution of the Spatially Induced
Linkage Cognizance (SILC) algorithm [228], and both can be seen as stronger
versions of Geometric Containers.

2.3 Separator-Based Techniques

Planar graphs have small (and efficiently-computable) separators [181]. Although
road networks are not planar (think of tunnels or overpasses), they have been
observed to have small separators as well [79,123,227]. This fact is exploited by
the methods in this section.
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Vertex Separators. We first consider algorithms based on vertex separators.
A vertex separator is a (preferably small) subset S ⊂ V of the vertices whose
removal decomposes the graph G into several (preferably balanced) cells (com-
ponents). This separator can be used to compute an overlay graph G′ over S.
Shortcut arcs [249] are added to the overlay such that distances between any
pair of vertices from S are preserved, i. e., they are equivalent to the distance
in G. The much smaller overlay graph can then be used to accelerate (parts of)
the query algorithm.

Schulz et al. [235] use an overlay graph over a carefully chosen subset S (not
necessarily a separator) of “important” vertices. For each pair of vertices u, v ∈
S, an arc (u, v) is added to the overlay if the shortest path from u to v in G
does not contain any other vertex w from S. This approach can be further
extended [160,236] to multilevel hierarchies. In addition to arcs between sepa-
rator vertices of the same level, the overlay contains, for each cell on level i,
arcs between the confining level i separator vertices and the interior level (i− 1)
separator vertices. See Fig. 3 for an illustration.

Other variants of this approach offer different trade-offs by adding many
more shortcuts to the graph during preprocessing, sometimes across different
levels [151,164]. In particular High-Performance Multilevel Routing (HPML) [83]
substantially reduces query times but significantly increases the total space usage
and preprocessing time. A similar approach, based on path separators for pla-
nar graphs, was proposed by Thorup [245] and implemented by Muller and
Zachariasen [205]. It works reasonably well to find approximate shortest paths
on undirected, planarized versions of road networks.

Arc Separators. The second class of algorithms we consider uses arc sepa-
rators to build the overlay graphs. In a first step, one computes a parti-
tion C = (C1, . . . , Ck) of the vertices into balanced cells while attempting to
minimize the number of cut arcs (which connect boundary vertices of different
cells). Shortcuts are then added to preserve the distances between the boundary
vertices within each cell.

An early version of this approach is the Hierarchical MulTi (HiTi)
method [165]. It builds an overlay graph containing all boundary vertices and
all cut arcs. In addition, for each pair u, v of boundary vertices in Ci, HiTi adds
to the overlay a shortcut (u, v) representing the shortest path from u to v in G
restricted to Ci. The query algorithm then (implicitly) runs Dijkstra’s algorithm
on the subgraph induced by the cells containing s and t plus the overlay. This
approach can be extended to use nested multilevel partitions. HiTi has only been
tested on grid graphs [165], leading to modest speedups. See also Fig. 3.

The recent Customizable Route Planning (CRP) [76,78] algorithm uses a
similar approach, but is specifically engineered to meet the requirements of real-
world systems operating on road networks. In particular, it can handle turn costs
and is optimized for fast updates of the cost function (metric). Moreover, it uses
PUNCH [79], a graph partitioning algorithm tailored to road networks. Finally,
CRP splits preprocessing in two phases: metric-independent preprocessing and
customization. The first phase computes, besides the multilevel partition, the
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topology of the overlays, which are represented as matrices in contiguous memory
for efficiency. Note that the partition does not depend on the cost function. The
second phase (which takes the cost function as input) computes the costs of
the clique arcs by processing the cells in bottom-up fashion and in parallel.
To process a cell, it suffices to run Dijkstra’s algorithm from each boundary
vertex, but the second phase is even faster using the Bellman-Ford algorithm
paired with (metric-independent) contraction [100] (cf. Sect. 2.4), at the cost of
increased space usage. Further acceleration is possible using GPUs [87]. Queries
are bidirectional searches in the overlay graph, as in HiTi.

2.4 Hierarchical Techniques

Hierarchical methods aim to exploit the inherent hierarchy of road networks.
Sufficiently long shortest paths eventually converge to a small arterial network
of important roads, such as highways. Intuitively, once the query algorithm is far
from the source and target, it suffices to only scan vertices of this subnetwork.
In fact, using input-defined road categories in this way is a popular heuris-
tic [115,158], though there is no guarantee that it will find exact shortest paths.
Fu et al. [130] give an overview of early approaches using this technique. Since
the algorithms we discuss must find exact shortest paths, their correctness must
not rely on unverifiable properties such as input classifications. Instead, they use
the preprocessing phase to compute the importance of vertices or arcs according
to the actual shortest path structure.

Contraction Hierarchies. An important approach to exploiting the hierarchy is
to use shortcuts. Intuitively, one would like to augment G with shortcuts that
could be used by long-distance queries to skip over “unimportant” vertices.

Fig. 4. Illustrating a Contraction
Hierarchies query.

The Contraction Hierarchies (CH) algo-
rithm, proposed by Geisberger et al. [142],
implements this idea by repeatedly executing a
vertex contraction operation. To contract a ver-
tex v, it is (temporarily) removed from G, and
a shortcut is created between each pair u,w of
neighboring vertices if the shortest path from u
to w is unique and contains v. During pre-
processing, CH (heuristically) orders the ver-
tices by “importance” and contracts them from
least to most important.

The query stage runs a bidirectional search
from s and t on G augmented by the shortcuts
computed during preprocessing, but only visits
arcs leading to vertices of higher ranks (importance). See Fig. 4 for an illustra-
tion. Let ds(u) and dt(u) be the corresponding distance labels obtained by these
upward searches (set to ∞ for vertices that are not visited). It is easy to show
that ds(u) ≥ dist(s, u) and dt(u) ≥ dist(u, t); equality is not guaranteed due to
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pruning. Nevertheless, Geisberger et al. [142] prove that the highest-ranked ver-
tex u∗ on the original s–t path will be visited by both searches, and that both its
labels will be exact, i. e., ds(u∗) = dist(s, u∗) and dt(u∗) = dist(u∗, t). Therefore,
among all vertices u visited by both searches, the one minimizing ds(u) + dt(u)
represents the shortest path. Note that, since u∗ is not necessarily the first vertex
that is scanned by both searches, they cannot stop as soon as they meet.

Query times depend on the vertex order. During preprocessing, the ver-
tex order is usually determined online and bottom-up. The overall (heuristic)
goal is to minimize the number of edges added during preprocessing. One typ-
ically selects the vertex to be contracted next by considering a combination
of several factors, including the net number of shortcuts added and the num-
ber of nearby vertices already contracted [142,168]. Better vertex orders can
be obtained by combining the bottom-up algorithm with (more expensive) top-
down offline algorithms that explicitly classify vertices hitting many shortest
paths as more important [5,77]. Since road networks have very small separa-
tors [79], one can use nested dissection to obtain reasonably good orders that
work for any length function [100,107]. Approximate CH has been considered as
a way to accommodate networks with less inherent hierarchy [143].

CH is actually a successor of Highway Hierarchies [225] and Highway Node
Routing [234], which are based on similar ideas. CH is not only faster, but also
conceptually simpler. This simplicity has made it quite versatile, serving as a
building block not only for other point-to-point algorithms [4,15,40,100], but
also for extended queries (cf. Sect. 2.7) and applications (cf. Sect. 3.2).

Reach. An earlier hierarchical approach is Reach [154]. Reach is a centrality
measure on vertices. Let P be a shortest s–t path that contains vertex u. The
reach r(u, P ) of u with respect to P is defined as min{dist(s, u),dist(u, t)}.
The (global) reach of u in the graph G is the maximum reach of u over all
shortest paths that contain u. Like other centrality measures [54], reach cap-
tures the importance of vertices in the graph, with the advantage that it can be
used to prune a Dijkstra-based search.

A reach-based s–t query runs Dijkstra’s algorithm, but prunes the search
at any vertex u for which both dist(s, u) > r(u) and dist(u, t) > r(u) hold;
the shortest s–t path provably does not contain u. To check these condi-
tions, it suffices [149] to run bidirectional searches, each using the radius of
the opposite search as a lower bound on dist(u, t) (during the forward search)
or dist(s, u) (backward search).

Reach values are determined during the preprocessing stage. Computing
exact reaches requires computing shortest paths for all pairs of vertices, which
is too expensive on large road networks. But the query is still correct if r(u)
represents only an upper bound on the reach of u. Gutman [154] has shown that
such bounds can be obtained faster by computing partial shortest path trees.
Goldberg et al. [149] have shown that adding shortcuts to the graph effectively
reduces the reaches of most vertices, drastically speeding up both queries and
preprocessing and making the algorithm practical for continent-sized networks.
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2.5 Bounded-Hop Techniques

The idea behind bounded-hop techniques is to precompute distances between
pairs of vertices, implicitly adding “virtual shortcuts” to the graph. Queries can
then return the length of a virtual path with very few hops. Furthermore, they
use only the precomputed distances between pairs of vertices, and not the input
graph. A näıve approach is to use single-hop paths, i. e., precompute the distances
among all pairs of vertices u, v ∈ V . A single table lookup then suffices to
retrieve the shortest distance. While the recent PHAST algorithm [75] has made
precomputing all-pairs shortest paths feasible, storing all Θ(|V |2) distances is
prohibitive already for medium-sized road networks. As we will see in this section,
considering paths with slightly more hops (two or three) leads to algorithms with
much more reasonable trade-offs.

Fig. 5. Illustrating hub
labels of vertices s (dia-
monds) and t (squares).

Labeling Algorithms. We first consider labeling algo-
rithms [215]. During preprocessing, a label L(u) is
computed for each vertex u of the graph, such that,
for any pair u, v of vertices, the distance dist(u, v)
can be determined by only looking at the labels L(u)
and L(v). A natural special case of this approach is
Hub Labeling (HL) [64,135], in which the label L(u)
associated with vertex u consists of a set of ver-
tices (the hubs of u), together with their distances
from u. These labels are chosen such that they
obey the cover property : for any pair (s, t) of ver-
tices, L(s)∩L(t) must contain at least one vertex on
the shortest s–t path. Then, the distance dist(s, t)
can be determined in linear (in the label size) time
by evaluating dist(s, t) = min{dist(s, u) + dist(u, t) | u ∈ L(s) and u ∈ L(t)}.
See Fig. 5 for an illustration. For directed graphs, the label associated with u is
actually split in two: the forward label Lf (u) has distances from u to the hubs,
while the backward label Lb(u) has distances from the hubs to u; the shortest s–t
path has a hub in Lf (s) ∩ Lb(t).

Although the required average label size can be Θ(|V |) in general [135], it
can be significantly smaller for some graph classes. For road networks, Abraham
et al. [4] have shown that one can obtain good results by defining the label of
vertex u as the (upward) search space of a CH query from u (with suboptimal
entries removed). In general, any vertex ordering fully defines a labeling [5], and
an ordering can be converted into the corresponding labeling efficiently [5,12].
The CH-induced order works well for road networks. For even smaller labels,
one can pick the most important vertices greedily, based on how many shortest
paths they hit [5]. A sampling version of this greedy approach works efficiently
for a wide range of graph classes [77].

Note that, if labels are sorted by hub ID, a query consists of a linear sweep
over two arrays, as in mergesort. Not only is this approach very simple, but
it also has an almost perfect locality of access. With careful engineering, one
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does not even have to look at all the hubs in a label [4]. As a result, HL has
the fastest known queries for road networks, taking roughly the time needed
for five accesses to main memory (see Sect. 3.1). One drawback is space usage,
which, although not prohibitive, is significantly higher than for competing meth-
ods. By combining common substructures that appear in multiple labels, Hub
Label Compression (HLC) [82] (see also [77]) reduces space usage by an order of
magnitude, at the expense of higher query times.

Fig. 6. Illustrating a TNR query. The
access nodes of s (t) are indicated by
three (two) dots. The arrows point
to the respective rows/columns of
the distance table. The highlighted
entries correspond to the access nodes
which minimize the combined s–t
distance.

Transit Node Routing. The Transit Node
Routing (TNR) [15,28,30,224] technique
uses distance tables on a subset of the
vertices. During preprocessing, it selects
a small set T ⊆ V of transit nodes and
computes all pairwise distances between
them. From those, it computes, for each
vertex u ∈ V \ T , a relevant set of access
nodes A(u) ⊆ T . A transit node v ∈ T is an
access node of u if there is a shortest path P
from u in G such that v is the first tran-
sit node contained in P . In addition to the
vertex itself, preprocessing also stores the
distances between u and its access nodes.

An s–t query uses the distance table
to select the path that minimizes the com-
bined s–a(s)–a(t)–t distance, where a(s) ∈
A(s) and a(t) ∈ A(t) are access nodes. Note
that the result is incorrect if the shortest
path does not contain a vertex from T .

To account for such cases, a locality filter decides whether the query might be
local (i. e., does not contain a vertex from T ). In that case, a fallback short-
est path algorithm (typically CH) is run to compute the correct distance. Note
that TNR is still correct even if the locality filter occasionally misclassifies a
global query as local. See Fig. 6 for an illustration of a TNR query. Interestingly,
global TNR queries (which use the distance tables) tend to be faster than local
ones (which perform graph searches). To accelerate local queries, TNR can be
extended to multiple (hierarchical) layers of transit (and access) nodes [28,224].

The choice of the transit node set is crucial to the performance of the algo-
rithm. A natural approach is to select vertex separators or boundary vertices
of arc separators as transit nodes. In particular, using grid-based separators
yields natural locality filters and works well enough in practice for road net-
works [28]. (Although an optimized preprocessing routine for this grid-based
approach was later shown to have a flaw that could potentially result in sub-
optimal queries [257], the version with slower preprocessing reported in [28] is
correct and achieves the same query times.)

For better performance [3,15,142,224], one can pick as transit nodes vertices
that are classified as important by a hierarchical speedup technique (such as CH).
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Locality filters are less straightforward in such cases: although one can still
use geographical distances [142,224], a graph-based approach considering the
Voronoi regions [189] induced by transit nodes tends to be significantly more
accurate [15]. A theoretically justified TNR variant [3] also picks important
vertices as transit nodes and has a natural graph-based locality filter, but is
impractical for large networks.

Pruned Highway Labeling. The Pruned Highway Labeling (PHL) [11] algorithm
can be seen as a hybrid between pure labeling and transit nodes. Its preprocessing
routine decomposes the input into disjoint shortest paths, then computes a label
for each vertex v containing the distance from v to vertices in a small subset of
such paths. The labels are such that any shortest s–t path can be expressed as
s–u–w–t, where u–w is a subpath of a path P that belongs to the labels of
s and t. Queries are thus similar to HL, finding the lowest-cost intersecting path.
For efficient preprocessing, the algorithm uses the pruned labeling technique [12].
Although this method has some similarity with Thorup’s distance oracle for
planar graphs [245], it does not require planarity. PHL has only been evaluated
on undirected graphs, however.

2.6 Combinations

Since the individual techniques described so far exploit different graph proper-
ties, they can often be combined for additional speedups. This section describes
such hybrid algorithms. In particular, early results [161,235] considered the com-
bination of Geometric Containers, multilevel overlay graphs, and (Euclidean-
based) A* on transportation networks, resulting in speedups of one or two orders
of magnitude over Dijkstra’s algorithm.

More recent studies have focused on combining hierarchical methods (such as
CH or Reach) with fast goal-directed techniques (such as ALT or Arc Flags). For
instance, the REAL algorithm combines Reach and ALT [149]. A basic combina-
tion is straightforward: one simply runs an ALT query with additional pruning
by reach (using the ALT lower bounds themselves for reach evaluations). A more
sophisticated variant uses reach-aware landmarks: landmarks and their distances
are only precomputed for vertices with high reach values. This saves space (only
a small fraction of the graph needs to store landmark distances), but requires
two-stage queries (goal direction is only used when the search is far enough from
both source and target).

A similar space-saving approach is used by Core-ALT [40,88]. It first com-
putes an overlay graph for the core graph, a (small) subset (e. g., 1 %) of ver-
tices (which remain after “unimportant” ones are contracted), then computes
landmarks for the core vertices only. Queries then work in two stages: first plain
bidirectional search, then ALT is applied when the search is restricted to the core.
The (earlier) HH* approach [95] is similar, but uses Highway Hierarchies [225]
to determine the core.

Another approach with two-phase queries is ReachFlags [40]. During pre-
processing, it first computes (approximate) reach values for all vertices in G,
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then extracts the subgraph H induced by all vertices whose reach value exceeds
a certain threshold. Arc flags are then only computed for H, to be used in the
second phase of the query.

The SHARC algorithm [39] combines the computation of shortcuts with
multilevel arc flags. The preprocessing algorithm first determines a partition
of the graph and then computes shortcuts and arc flags in turn. Shortcuts are
obtained by contracting unimportant vertices with the restriction that shortcuts
never span different cells of the partition. The algorithm then computes arc
flags such that, for each cell C, the query uses a shortcut arc if and only if the
target vertex is not in C. Space usage can be reduced with various compression
techniques [58]. Note that SHARC is unidirectional and hierarchical: arc flags not
only guide the search toward the target, but also vertically across the hierarchy.
This is useful when the backward search is not well defined, as in time-dependent
route planning (discussed in Sect. 2.7).

Combining CH with Arc Flags results in the CHASE algorithm [40]. Dur-
ing preprocessing, a regular contraction hierarchy is computed and the search
graph that includes all shortcuts is assembled. The algorithm then extracts the
subgraph H induced by the top k vertices according to the contraction order.
Bidirectional arc flags (and the partition) are finally computed on the restricted
subgraph H. Queries then run in two phases. Since computing arc flags was
somewhat slow, k was originally set to a small fraction (about 5 %) of the total
number |V | of vertices [40]. More recently, Delling et al. showed that PHAST (see
Sect. 2.7) can compute arc flags fast enough to allow k to be set to |V |, making
CHASE queries much simpler (single-pass), as well as faster [75].

Finally, Bauer et al. [40] combine Transit Node Routing with Arc Flags to
obtain the TNR+AF algorithm. Recall that the bottleneck of the TNR query is
performing the table lookups between pairs of access nodes from A(s) and A(t).
To reduce the number of lookups, TNR+AF’s preprocessing decomposes the set
of transit nodes T into k cells. For each vertex s and access node u ∈ A(s), it
stores a k-bit vector, with bit i indicating whether there exists a shortest path
from s to cell i through u. A query then only considers the access nodes from s
that have their bits set with respect to the cells of A(t). A similar pruning is
done at the target.

2.7 Extensions

In various applications, one is often interested in more than just the length of
the shortest path between two points in a static network. Most importantly,
one should also be able to retrieve the shortest path itself. Moreover, many of
the techniques considered so far can be adapted to compute batched shortest
paths (such as distance tables), to more realistic scenarios (such as dynamic
networks), or to deal with multiple objective functions. In the following, we
briefly discuss each of these extensions.

Path Retrieval. Our descriptions so far have focused on finding only the length
of the shortest path. The algorithms we described can easily be augmented to
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provide the actual list of edges or vertices on the path. For techniques that do
not use shortcuts (such as Dijkstra’s algorithm, A* search, or Arc Flags), one
can simply maintain a parent pointer for each vertex v, updating it whenever
the distance label of v changes. When shortcuts are present (such as in CH,
SHARC, or CRP), this approach gives only a compact representation of the
shortest path (in terms of shortcuts). The shortcuts then need to be unpacked.
If each shortcut is the concatenation of two other arcs (or shortcuts), as in CH,
storing the middle vertex [142] of each shortcut allows for an efficient (linear-
time) recursive unpacking of all shortcuts on the output path. If shortcuts are
built from multiple arcs (as for CRP or SHARC), one can either store the entire
sequence for each shortcut [225] or run a local (bidirectional) Dijkstra search from
its endpoints [78]. These two techniques can be used for bounded-hop algorithms
as well.

Batched Shortest Paths. Some applications require computing multiple paths
at once. For example, advanced logistics applications may need to compute all
distances between a source set S and a target set T . This can be trivially done
with |S| · |T | point-to-point shortest-path computations. Using a hierarchical
speedup technique (such as CH), this can be done in time comparable to O(|S|+
|T |) point-to-point queries in practice, which is much faster. First, one runs a
backward upward search from each ti ∈ T ; for each vertex u scanned during
the search from ti, one stores its distance label dti(u) in a bucket β(u). Then,
one runs a forward upward search from each sj ∈ S. Whenever such a search
scans a vertex v with a non-empty bucket, one searches the bucket and checks
whether dsj (v)+dti(v) improves the best distance seen so far between sj and ti.
This bucket-based approach was introduced for Highway Hierarchies [172], but
can be used with any other hierarchical speedup technique (such as CH) and
even with hub labels [81]. When the bucket-based approach is combined with
a separator-based technique (such as CRP), it is enough to keep buckets only
for the boundary vertices [99]. Note that this approach can be used to compute
one-to-many or many-to-many distances.

Some applications require one-to-all computations, i. e., finding the distances
from a source vertex s to all other vertices in the graph. For this problem,
Dijkstra’s algorithm is optimal in the sense that it visits each edge exactly once,
and hence runs in essentially linear time [147]. However, Dijkstra’s algorithm
has bad locality and is hard to parallelize, especially for sparse graphs [186,193].
PHAST [75] builds on CH to improve this. The idea is to split the search in two
phases. The first is a forward upward search from s, and the second runs a linear
scan over the shortcut-enriched graph, with distance values propagated from
more to less important vertices. Since the instruction flow of the second phase
is (almost) independent of the source, it can be engineered to exploit parallelism
and improve locality. In road networks, PHAST can be more than an order of
magnitude faster than Dijkstra’s algorithm, even if run sequentially, and can
be further accelerated using multiple cores and even GPUs. This approach can
also be extended to the one-to-many problem, i. e., computing distances from
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a source to a subset of predefined targets [81]. Similar techniques can also be
applied with graph separators (instead of CH), yielding comparable query times
but with faster (metric-dependent) preprocessing [113].

Dynamic Networks. Transportation networks tend to be dynamic, with
unpredictable delays, traffic, or closures. If one assumes that the modified net-
work is stable for the foreseeable future, the obvious approach for speedup tech-
niques to deal with this is to rerun the preprocessing algorithm. Although this
ensures queries are as fast as in the static scenario, it can be quite costly. As a
result, four other approaches have been considered.

It is often possible to just “repair” the preprocessed data instead of rebuild-
ing it from scratch. This approach has been tried for various techniques, includ-
ing Geometric Containers [251], ALT [96], Arc Flags [66], and CH [142,234],
with varying degrees of success. For CH, for example, one must keep track of
dependencies between shortcuts, partially rerunning the contraction as needed.
Changes that affect less important vertices can be dealt with faster.

Another approach is to adapt the query algorithms to work around the
“wrong” parts of the preprocessing phase. In particular, ALT is resilient to
increases in arc costs (due to traffic, for example): queries remain correct with
the original preprocessing, though query times may increase [96]. Less trivially,
CH queries can also be modified to deal with dynamic changes to the net-
work [142,234] by allowing the search to bypass affected shortcuts by going
“down” the hierarchy. This is useful when queries are infrequent relative to
updates.

A third approach is to make the preprocessing stage completely metric-
independent, shifting all metric-dependent work to the query phase. Funke
et al. [131] generalize the multilevel overlay graph approach to encode
all k-hop paths (for small k) in an overlay graph. Under the assumption that
edge costs are defined by a small number of physical parameters (as in simplified
road networks) this allows setting the edge costs at query time, though queries
become significantly slower.

For more practical queries, the fourth approach splits the preprocessing phase
into metric-independent and metric-dependent stages. The metric-independent
phase takes as input only the network topology, which is fairly stable. When edge
costs change (which happens often), only the (much cheaper) metric-dependent
stage must be rerun, partially or in full. This concept can again be used for
various techniques, with ALT, CH, and CRP being the most prominent. For ALT,
one can keep the landmarks, and just recompute the distances to them [96,112].
For CH, one can keep the ordering, and just rerun contraction [107,142]. For
CRP, one can keep the partitioning and the overlay topology, and just recompute
the shortcut lengths using a combination of contraction and graph searches [78].
Since the contraction is metric-independent, one can precompute and store the
sequence of contraction operations and reexecute them efficiently whenever edge
lengths change [78,87]. The same approach can be used for CH with metric-
independent orders [107].
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Time-Dependence. In real transportation networks, the best route often
depends on the departure time in a predictable way [102]. For example, cer-
tain roads are consistently congested during rush hours, and certain buses
or trains run with different frequencies during the day. When one is inter-
ested in the earliest possible arrival given a specified departure time (or, sym-
metrically, the latest departure), one can model this as the time-dependent
shortest path problem, which assigns travel time functions to (some of) the
edges, representing how long it takes to traverse them at each time of the day.
Dijkstra’s algorithm still works [65] as long as later departures cannot lead to ear-
lier arrivals; this non-overtaking property is often called first-in first-out (FIFO).
Although one must deal with functions instead of scalars, the theoretical run-
ning time of Dijkstra-based algorithms can still be bounded [71,128]. Moreover,
many of the techniques described so far work in this scenario, including bidi-
rectional ALT [88,207], CH [32], or SHARC [72]. Recently, Kontogiannis and
Zaroliagis [175] have introduced a theoretical (approximate) distance oracle with
sublinear running time. Other scenarios (besides FIFO with no waiting at ver-
tices) have been studied [69,70,208,209], but they are less relevant for trans-
portation networks.

There are some challenges, however. In particular, bidirectional search
becomes more complicated (since the time of arrival is not known), requiring
changes to the backward search [32,207]. Another challenge is that shortcuts
become more space-consuming (they must model a more complicated travel time
function), motivating compression techniques that do not sacrifice correctness,
as demonstrated for SHARC [58] or CH [32]. Batched shortest paths can be
computed in such networks efficiently as well [141].

Time-dependent networks motivate some elaborate (but still natural) queries,
such as finding the best departure time in order to minimize the total time
in transit. Such queries can be dealt with by range searches, which compute
the travel time function between two points. There exist Dijkstra-based algo-
rithms [71] for this problem, and most speedup techniques can be adapted to
deal with this as well [32,72].

Unfortunately, even a slight deviation from the travel time model, where total
cost is a linear combination of travel time and a constant cost offset, makes the
problem NP-hard [9,33]. However, a heuristic adaptation of time-dependent CH
shows negligible errors in practice [33].

Multiple Objective Functions. Another natural extension is to consider mul-
tiple cost functions. For example, certain vehicle types cannot use all segments
of the transportation network. One can either adapt the preprocessing such that
these edge restrictions can be applied during query time [140], or perform a
metric update for each vehicle type.

Also, the search request can be more flexible. For example, one may be will-
ing to take a more scenic route even if the trip is slightly longer. This can be
dealt with by performing a multicriteria search. In such a search, two paths
are incomparable if neither is better than the other in all criteria. The goal is
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to find a Pareto set, i. e., a maximum set of incomparable paths. Such sets of
shortest paths can be computed by extensions of Dijkstra’s algorithm; see [117]
for a survey on multicriteria combinatorial optimization. More specifically, the
Multicriteria Label-Setting (MLS) algorithm [155,187,196,243] extends Dijk-
stra’s algorithm by keeping, for each vertex, a bag of nondominated labels. Each
label is represented as a tuple, with one entry per optimization criterion. The
priority queue maintains labels instead of vertices, typically ordered lexicograph-
ically. In each iteration, it extracts the minimum label L and scans the incident
arcs a = (u, v) of the vertex u associated with L. It does so by adding the cost
of a to L and then merging L into the bag of v, eliminating possibly dominated
labels on the fly. In contrast, the Multi-Label-Correcting (MLC) algorithm [68,98]
considers the whole bag of nondominated labels associated with u at once when
scanning the vertex u. Hence, individual labels of u may be scanned multiple
times during one execution of the algorithm.

Both MLS and MLC are fast enough as long as the Pareto sets are
small [109,204]. Unfortunately, Pareto sets may contain exponentially many solu-
tions, even for the restricted case of two optimization criteria [155], which makes
it hard to achieve large speedups [47,97]. To reduce the size of Pareto sets, one
can relax domination. In particular, (1 + ε)-Pareto sets have provable polyno-
mial size [212] and can be computed efficiently [182,246,253]. Moreover, large
Pareto sets open up a potential for parallelization that is not present for a single
objective function [124,222].

A reasonable alternative [138] to multicriteria search is to optimize a linear
combination αc1 + (1 − α)c2 of two criteria (c1, c2), with the parameter α set at
query time. Moreover, it is possible to efficiently compute the values of α where
the path actually changes. Funke and Storandt [133] show that CH can handle
such functions with polynomial preprocessing effort, even with more than two
criteria.

2.8 Theoretical Results

Most of the algorithms mentioned so far were developed with practical perfor-
mance in mind. Almost all methods we surveyed are exact: they provably find
the exact shortest path. Their performance (in terms of both preprocessing and
queries), however, varies significantly with the input graph. Most algorithms
work well for real road networks, but are hardly faster than Dijkstra’s algorithm
on some other graph classes. This section discusses theoretical work that helps
understand why the algorithms perform well and what their limitations are.

Most of the algorithms considered have some degree of freedom during pre-
processing (such as which partition, which vertex order, or which landmarks to
choose). An obvious question is whether one could efficiently determine the best
such choices for a particular input so as to minimize the query search space (a
natural proxy for query times). Bauer et al. [36] have determined that finding
optimal landmarks for ALT is NP-hard. The same holds for Arc Flags (with
respect to the partition), SHARC (with respect to the shortcuts), Multilevel
Overlay Graphs (with respect to the separator), Contraction Hierarchies (with



Route Planning in Transportation Networks 37

respect to the vertex order), and Hub Labels (with respect to the hubs) [252].
In fact, minimizing the number of shortcuts for CH is APX-hard [36,194]. For
SHARC, however, a greedy factor-k approximation algorithm exists [38]. Decid-
ing which k shortcuts (for fixed k) to add to a graph in order to minimize the
SHARC search space is also NP-hard [38]. Bauer et al. [35] also analyze the pre-
processing of Arc Flags in more detail and on restricted graph classes, such as
paths, trees, and cycles, and show that finding an optimal partition is NP-hard
even for binary trees.

Besides complexity, theoretical performance bounds for query algorithms,
which aim to explain their excellent practical performance, have also been con-
sidered. Proving better running time bounds than those of Dijkstra’s algorithm
is unlikely for general graphs; in fact, there are inputs for which most algorithms
are ineffective. That said, one can prove nontrivial bounds for specific graph
classes. In particular, various authors [37,194] have independently observed a
natural relationship between CH and the notions of filled graphs [214] and elim-
ination trees [232]. For planar graphs, one can use nested dissection [180] to
build a CH order leading to O(|V | log |V |) shortcuts [37,194]. More generally,
for minor-closed graph classes with balanced O(

√|V |)-separators, the search
space is bounded by O(

√|V |) [37]. Similarly, on graphs with treewidth k, the
search space of CH is bounded by O(k log |V |) [37].

Road networks have motivated a large amount of theoretical work on algo-
rithms for planar graphs. In particular, it is known that planar graphs have sepa-
rators of size O(

√|V |) [180,181]. Although road networks are not strictly planar,
they do have small separators [79,123], so theoretically efficient algorithms for
planar graphs are likely to also perform well in road networks. Sommer [238]
surveys several approximate methods with various trade-offs. In practice, the
observed performance of most speedup techniques is much better on actual road
networks than on arbitrary planar graphs (even grids). A theoretical explanation
of this discrepancy thus requires a formalization of some property related to key
features of real road networks.

One such graph property is Highway Dimension, proposed by Abraham
et al. [3] (see also [1,7]). Roughly speaking, a graph has highway dimension h if,
at any scale r, one can hit all shortest paths of length at least r by a hitting set S
that is locally sparse, in the sense that any ball of radius r has at most h elements
from S. Based on previous experimental observations [30], the authors [7] con-
jecture that road networks have small highway dimension. Based on this notion,
they establish bounds on the performance of (theoretically justified versions of)
various speedup techniques in terms of h and the graph diameter D, assuming
the graph is undirected and that edge lengths are integral. More precisely, after
running a polynomial-time preprocessing routine, which adds O(h log h log D)
shortcuts to G, Reach and CH run in O((h log h log D)2) time. Moreover, they
also show that HL runs in O(h log h log D) time and long-range TNR queries
take O(h2) time. In addition, Abraham et al. [3] show that a graph with high-
way dimension h has doubling dimension log(h + 1), and Kleinberg et al. [171]
show that landmark-based triangulation yields good bounds for most pairs of
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vertices of graphs with small doubling dimension. This gives insight into the
good performance of ALT in road networks.

The notion of highway dimension is an interesting application of the scientific
method. It was originally used to explain the good observed performance of
CH, Reach, and TNR, and ended up predicting that HL (which had not been
implemented yet) would have good performance in practice.

Generative models for road networks have also been proposed and analyzed.
Abraham et al. [3,7] propose a model that captures some of the properties of
road networks and generates graphs with provably small highway dimension.
Bauer e al. [42] show experimentally that several speedup techniques are indeed
effective on graphs generated according to this model, as well as according to
a new model based on Voronoi diagrams. Models with a more geometric flavor
have been proposed by Eppstein and Goodrich [123] and by Eisenstat [118].

Besides these results, Rice and Tsotras [220] analyze the A* algorithm and
obtain bounds on the search space size that depend on the underestimation
error of the potential function. Also, maintaining and updating multilevel overlay
graphs have been theoretically analyzed in [57]. For Transit Node Routing, Eisner
and Funke [120] propose instance-based lower bounds on the size of the transit
node set. For labeling algorithms, bounds on the label size for different graph
classes are given by Gavoille et al. [135]. Approximation algorithms to compute
small labels have also been studied [16,64,80]; although they can find slightly
better labels than faster heuristics [5,77], their running time is prohibitive [80].

Because the focus of this work is on algorithm engineering, we refrain from
going into more detail about the available theoretical work. Instead, we refer the
interested reader to overview articles with a more theoretical emphasis, such as
those by Sommer [238], Zwick [262], and Gavoille and Peleg [134].

3 Route Planning in Road Networks

In this section, we experimentally evaluate how the techniques discussed so far
perform in road networks. Moreover, we discuss applications of some of the
techniques, as well as alternative settings such as databases or mobile devices.

3.1 Experimental Results

Our experimental analysis considers carefully engineered implementations, which
is very important when comparing running times. They are written in C++ with
custom-built data structures. Graphs are represented as adjacency arrays [190],
and priority queues are typically binary heaps, 4-heaps, or multilevel buckets.
As most arcs in road networks are bidirectional, state-of-the-art implementations
use edge compression [233]: each road segment is stored at both of its endpoints,
and each occurrence has two flags indicating whether the segment should be
considered as an incoming and/or outgoing arc. This representation is compact
and allows efficient iterations over incoming and outgoing arcs.
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We give data for two models. The simplified model ignores turn restrictions
and penalties, while the realistic model includes the turn information [255]. There
are two common approaches to deal with turns. The arc-based representation [59]
blows up the graph so that roads become vertices and feasible turns become arcs.
In contrast, the compact representation [76,144] keeps intersections as vertices,
but with associated turn tables. One can save space by sharing turn tables among
many vertices, since the number of intersection types in a road network is rather
limited. Most speedup techniques can be used as is for the arc-based represen-
tation, but may need modification to work on the compact model.

Most experimental studies are restricted to the simplified model. Since some
algorithms are more sensitive to how turns are modeled than others, it is hard
to extrapolate these results to more realistic networks. We therefore consider
experimental results for each model separately.

Simplified Model. An important driving force behind the research on speedup
techniques for Dijkstra’s algorithm was its application to road networks. A key
aspect for the success of this research effort was the availability of continent-
sized benchmark instances. The most widely used instance has been the road
network of Western Europe from PTV AG, with 18.0 million vertices and 42.5
million directed arcs. Besides ferries (for which the traversal time was given),
it has 13 road categories. Category i has been assigned an average speed of
10i km/h. This synthetic assignment is consistent with more realistic propri-
etary data [78,82]. Another popular (and slightly bigger) instance, represent-
ing the TIGER/USA road network, is undirected and misses several important
road segments [6]. Although the inputs use the simplified model, they allowed
researchers from various groups to run their algorithms on the same instance,
comparing their performance. In particular, both instances were tested during
the DIMACS Challenge on Shortest Paths [101].

Figure 7 succinctly represents the performance of previously published imple-
mentations of various point-to-point algorithms on the Western Europe instance,
using travel time as the cost function. For each method, the plot relates its pre-
processing and average query times. Queries compute the length of the short-
est path (but not its actual list of edges) between sources and targets picked
uniformly at random from the full graph. For readability, space consumption
(a third important quality measure) is not explicitly represented.1 We repro-
duce the numbers reported by Bauer et al. [40] for Reach, HH, HNR, ALT,
(bidirectional) Arc Flags, REAL, HH*, SHARC, CALT, CHASE, ReachFlags
and TNR+AF. For CHASE and Arc Flags, we also consider variants with
quicker PHAST-based preprocessing [75]. In addition, we consider the recent
ALT implementation by Efentakis and Pfoser [112]. Moreover, we report results
for several variants of TNR [15,40], Hub Labels [5,82], HPML [83], Contraction
Hierarchies (CH) [142], and Customizable Contraction Hierarchies (CCH) [107].
CRP (and the corresponding PUNCH) figures [78] use a more realistic graph
1 The reader is referred to Sommer [238] for a similar plot (which inspired ours) relating

query times to preprocessing space.
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Fig. 7. Preprocessing and average query time performance for algorithms with available
experimental data on the road network of Western Europe, using travel times as edge
weights. Connecting lines indicate different trade-offs for the same algorithm. The figure
is inspired by [238].

model that includes turn costs. For reference, the plot includes unidirectional and
bidirectional implementations of Dijkstra’s algorithm using a 4-heap. (Note that
one can obtain a 20 % improvement when using a multilevel bucket queue [147].)
Finally, the table-lookup figure is based on the time of a single memory access
in our reference machine and the precomputation time of |V | shortest path trees
using PHAST [75]. Note that a machine with more than one petabyte of RAM (as
required by this algorithm) would likely have slower memory access times.

Times in the plot are on a single core of an Intel X5680 3.33 GHz CPU,
a mainstream server at the time of writing. Several of the algorithms in
the plot were originally run on this machine [5,75,78,82]; for the remaining,
we divide by the following scaling factors: 2.322 for [40,83], 2.698 for [142],
1.568 for [15], 0.837 for [107], and 0.797 for [112]. These were obtained from
a benchmark (developed for this survey) that measures the time of computing
several shortest path trees on the publicly available USA road network with
travel times [101]. For the machines we did not have access to, we asked the
authors to run the benchmark for us [112]. The benchmark is available from



Route Planning in Transportation Networks 41

http://algo.iti.kit.edu/∼pajor/survey/, and we encourage future works to use it
as a base to compare (sequential) running times with existing approaches.

The figure shows that there is no best technique. To stress this point, tech-
niques with at least one implementation belonging to the Pareto set (considering
preprocessing time, query time, and space usage) are drawn as solid circles; hol-
low entries are dominated. The Pareto set is quite large, with various methods
allowing for a wide range of space-time trade-offs. Moreover, as we shall see when
examining more realistic models, these three are not the only important criteria
for real-world applications.

Table 1. Performance of various speedup techniques on Western Europe. Column
source indicates the implementation tested for this survey.

Algorithm Impl.
source

Data structures Queries

Space [GiB] Time [h:m] Scanned vertices Time [µs]

Dijkstra [75] 0.4 – 9 326 696 2 195 080

Bidir. Dijkstra [75] 0.4 – 4 914 804 1 205 660

CRP [78] 0.9 1:00 2 766 1 650

Arc Flags [75] 0.6 0:20 2 646 408

CH [78] 0.4 0:05 280 110

CHASE [75] 0.6 0:30 28 5.76

HLC [82] 1.8 0:50 – 2.55

TNR [15] 2.5 0:22 – 2.09

TNR+AF [40] 5.4 1:24 – 0.70

HL [82] 18.8 0:37 – 0.56

HL-∞ [5] 17.7 60:00 – 0.25

table lookup [75] 1 208 358.7 145:30 – 0.06

Table 1 has additional details about the methods in the Pareto set, includ-
ing two versions of Dijkstra’s algorithm, one Dijkstra-based hierarchical tech-
nique (CH), three non-graph-based algorithms (TNR, HL, HLC), and two com-
binations (CHASE and TNR+AF). For reference, the table also includes a goal-
directed technique (Arc Flags) and a separator-based algorithm (CRP), even
though they are dominated by other methods. All algorithms were rerun for
this survey on the reference machine (Intel X5680 3.33 GHz CPU), except those
based on TNR, for which we report scaled results. All runs are single-threaded for
this experiment, but note that all preprocessing algorithms could be accelerated
using multiple cores (and, in some cases, even GPUs) [75,144].

For each method, Table 1 reports the total amount of space required by all
data structures (including the graph, if needed, but excluding extra information
needed for path unpacking), the total preprocessing time, the number of vertices

http://algo.iti.kit.edu/~pajor/survey/
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scanned by an average query (where applicable) and the average query time.
Once again, queries consist of pairs of vertices picked uniformly at random. We
note that all methods tested can be parametrized (typically within a relatively
narrow band) to achieve different trade-offs between query time, preprocessing
time, and space. For simplicity, we pick a single “reasonable” set of parameters
for each method. The only exception is HL-∞, which achieves the fastest reported
query times but whose preprocessing is unreasonably slow.

Observe that algorithms based on any one of the approaches considered in
Sect. 2 can answer queries in milliseconds or less. Separator-based (CRP), hierar-
chical (CH), and goal-directed (Arc Flags) methods do not use much more space
than Dijkstra’s algorithm, but are three to four orders of magnitude faster. By
combining hierarchy-based pruning and goal direction, CHASE improves query
times by yet another order of magnitude, visiting little more than the shortest
path itself. Finally, when a higher space overhead is acceptable, non-graph-based
methods can be more than a million times faster than the baseline. In particular,
HL-∞ is only 5 times slower than the trivial table-lookup method, where a query
consists of a single access to main memory. Note that the table-lookup method
itself is impractical, since it would require more than one petabyte of RAM.

The experiments reported so far consider only random queries, which tend to
be long-range. In a real system, however, most queries tend to be local. For that
reason, Sanders and Schultes [223] introduced a methodology based on Dijkstra
ranks. When running Dijkstra’s algorithm from a vertex s, the rank of a vertex u
is the order in which it is taken from the priority queue. By evaluating pairs of
vertices for Dijkstra ranks 21, 22, . . . , 2�log|V |� for some randomly chosen sources,
all types (local, mid-range, global) of queries are evaluated. Figure 8 reports
the median running times for all techniques from Table 1 (except TNR+AF, for
which such numbers have never been published) for 1 000 random sources and
Dijkstra ranks ≥ 26. As expected, algorithms based on graph searches (including
Dijkstra, CH, CRP, and Arc Flags) are faster for local queries. This is not true
for bounded-hop algorithms. For TNR, in particular, local queries must actually
use a (significantly slower) graph-based approach. HL is more uniform overall
because it never uses a graph.

Realistic Setting. Although useful, the results shown in Table 1 do not capture
all features that are important for real-world systems. First, systems providing
actual driving directions must account for turn costs and restrictions, which the
simplified graph model ignores. Second, systems must often support multiple
metrics (cost functions), such as shortest distances, avoid U-turns, avoid/prefer
freeways, or avoid ferries; metric-specific data structures should therefore be
as small as possible. Third, query times should be robust to the choice of cost
functions: the system should not time out if an unfriendly cost function is chosen.
Finally, one should be able to incorporate a new cost function quickly to account
for current traffic conditions (or even user preferences).

CH has the fastest preprocessing among the algorithms in Table 1 and its
queries are fast enough for interactive applications. Its performance degrades
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Fig. 8. Performance of speedup techniques for various Dijkstra ranks.

under realistic constraints [78], however. In contrast, CRP was developed with
these constraints in mind. As explained in Sect. 2.3, it splits its preprocessing
phase in two: although the initial metric-independent phase is relatively slow (as
shown in Table 1), only the subsequent (and fast) metric-dependent customiza-
tion phase must be rerun to incorporate a new metric. Moreover, since CRP is
based on edge separators, its performance is (almost) independent of the cost
function.

Table 2 (reproduced from [78]) compares CH and CRP with and without turn
costs, as well as for travel distances. The instance tested is the same in Table 1,
augmented by turn costs (set to 100 seconds for U-turns and zero otherwise).
This simple change makes it almost as hard as fully realistic (proprietary) map
data used in production systems [78]. The table reports metric-independent pre-
processing and metric-dependent customization separately; “DS” refers to the
data structures shared by all metrics, while “custom” refers to the additional
space and time required by each individual metric. Unlike in Table 1, space con-
sumption also includes data structures used for path unpacking. For queries,
we report the time to get just the length of the shortest path (dist), as well
as the total time to retrieve both the length and the full path (path). More-
over, preprocessing (and customization) times refer to multi-threaded executions
on 12 cores; queries are still sequential.

As the table shows, CRP query times are very robust to the cost function and
the presence of turns. Also, a new cost function can be applied in roughly 370 ms,
fast enough to even support user-specific cost functions. Customization times can
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Table 2. Performance of Contraction Hierarchies and CRP on a more realistic instance,
using different graph representations. Preprocessing and customization times are given
for multi-threaded execution on a 12-core server, while queries are run single-threaded.

Metric Turn info CH CRP

DS Queries DS Custom Queries

Time

[h:m]

Space

[GiB]

Nmb.

scans

Dist

[ms]

Path

[ms]

Time

[h:m]

Space

[GiB]

Time

[s]

Space

[GiB]

Nmb.

scans

Dist.

[ms]

Path

[ms]

Dist None 0:12 0.68 858 0.87 1.07 0:12 3.11 0.37 0.07 2942 1.91 2.49

Time None 0:02 0.60 280 0.11 0.21 0:12 3.11 0.37 0.07 2766 1.65 1.81

Arc-based 0:23 3.14 404 0.20 0.30 – – – – – – –

Compact 0:29 1.09 1998 2.27 2.37 0:12 3.11 0.37 0.07 3049 1.67 1.85

be even reduced to 36 ms with GPUs [87], also reducing the amount of data stored
in main memory by a factor of 6. This is fast enough for setting the cost function
at query time, enabling realistic personalized driving directions on continental
scale. If GPUs are not available or space consumption is an issue, one can drop
the contraction-based customization. This yields customization times of about
one second on a 12-core CPU, which is still fast enough for many scenarios.
In contrast, CH performance is significantly worse on metrics other than travel
times without turn costs.

We stress that not all applications have the same requirements. If only good
estimates on travel times (and not actual paths) are needed, ignoring turn costs
and restrictions is acceptable. In particular, ranking POIs according to travel
times (but ignoring turn costs) already gives much better results than ranking
based on geographic distances. Moreover, we note that CH has fast queries even
with fully realistic turn costs. If space (for the expanded graph) is not an issue,
it can still provide a viable solution to the static problem; the same holds for
related methods such as HL and HLC [82]. For more dynamic scenarios, CH
preprocessing can be made parallel [144] or even distributed [168]; even if run
sequentially, it is fast enough for large metropolitan areas.

3.2 Applications

As discussed in Sect. 2.7, many speedup techniques can handle more than plain
point-to-point shortest path computations. In particular, hierarchical techniques
such as CH or CRP tend to be quite versatile, with many established extensions.

Some applications may involve more than one path between a source and
a target. For example, one may want to show the user several “reasonable”
paths (in addition to the shortest one) [60]. In general, these alternative paths
should be short, smooth, and significantly different from the shortest path (and
other alternatives). Such paths can either be computed directly as the concate-
nation of partial shortest paths [6,60,78,173,184] or compactly represented as
a small graph [17,174,213]. A related problem is to compute a corridor [86]
of paths between source and target, which allows deviations from the best
route (while driving) to be handled without recomputing the entire path.
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These robust routes can be useful in mobile scenarios with limited connectivity.
Another useful tool to reduce communication overhead in such cases is route
compression [31].

Extensions that deal with nontrivial cost functions have also been considered.
In particular, one can extend CH to handle flexible arc restrictions [140] (such
as height or weight limitations) or even multiple criteria [133,138] (such as opti-
mizing costs and travel time). Minimizing the energy consumption of electric
vehicles [43,44,122,152,240,241] is another nontrivial application, since batteries
are recharged when the car is going downhill. Similarly, optimal cycling routes
must take additional constraints (such as the amount of uphill cycling) into
account [239].

The ability of computing many (batched) shortest paths fast enables inter-
esting new applications. By quickly analyzing multiple candidate shortest paths,
one can efficiently match GPS traces to road segments [119,121]. Traffic simu-
lations also benefit from acceleration techniques [183], since they must consider
the likely routes taken by all drivers in a network. Another application is route
prediction [177]: one can estimate where a vehicle is (likely) headed by mea-
suring how good its current location is as a via point towards each candidate
destination. Fast routing engines allow more locations to be evaluated more fre-
quently, leading to better predictions [2,121,162,176]. Planning placement of
charging stations can also benefit from fast routing algorithms [132]. Another
important application is ride sharing [2,110,139], in which one must match a
ride request with the available offer in a large system, typically by minimizing
drivers’ detours.

Finally, batched shortest-path computations enable a wide range of point-of-
interest queries [2,99,114,119,137,179,221,260]. Typical examples include find-
ing the closest restaurant to a given location, picking the best post office to stop
on the way home, or finding the best meeting point for a group of friends. Typ-
ically using the bucket-based approach (cf. Sect. 2.7), fast routing engines allow
POIs to be ranked according to network-based cost functions (such as travel
time) rather than geographic distances. This is crucial for accuracy in areas
with natural (or man-made) obstacles, such as mountains, rivers, or rail tracks.
Note that more elaborate POI queries must consider concatenations of shortest
paths. One can handle these efficiently using an extension of the bucket-based
approach that indexes pairs of vertices instead of individual ones [2,99].

3.3 Alternative Settings

So far, we have assumed that shortest path computations take place on a stan-
dard server with enough main memory to hold the input graph and the auxiliary
data. In practice, however, it is often necessary to run (parts of) the routing algo-
rithm in other settings, such as mobile devices, clusters, or databases. Many of
the methods we discuss can be adapted to such scenarios.

Of particular interest are mobile devices, which typically are slower and (most
importantly) have much less available RAM. This has motivated external mem-
ory implementation of various speedup techniques, such as ALT [150], CH [226],
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and time-dependent CH [167]. CH in particular is quite practical, supporting
interactive queries by compressing the routing data structures and optimizing
their access patterns.

Relational databases are another important setting in practice, since they
allow users to formulate complex queries on the data in SQL, a popular and
expressive declarative query language [230].

Unfortunately, the table-based computational model makes it hard (and inef-
ficient) to implement basic data structures such as graphs or even priority queues.
Although some distance oracles based on geometric information could be imple-
mented on a database [229], they are approximate and very expensive in terms
of time and space, limiting their applicability to small instances. A better solu-
tion is to use HL, whose queries can very easily be expressed in SQL, allowing
interactive applications based on shortest path computations entirely within a
relational database [2].

For some advanced scenarios, such as time-dependent networks, the pre-
processing effort increases quite a lot compared to the time-independent sce-
nario. One possible solution is to run the preprocessing in a distributed fashion.
One can achieve an almost linear speedup as the number of machine increases,
for both CH [168] and CRP [116].

4 Journey Planning in Public Transit Networks

This section considers journey planning in (schedule-based) public transit net-
works. In this scenario, the input is given by a timetable. Roughly speaking, a
timetable consists of a set of stops (such as bus stops or train platforms), a set
of routes (such as bus or train lines), and a set of trips. Trips correspond to
individual vehicles that visit the stops along a certain route at a specific time of
the day. Trips can be further subdivided into sequences of elementary connec-
tions, each given as a pair of (origin/destination) stops and (departure/arrival)
times between which the vehicle travels without stopping. In addition, footpaths
model walking connections (transfers) between nearby stops.

A key difference to road networks is that public transit networks are inher-
ently time-dependent, since certain segments of the network can only be traversed
at specific, discrete points in time. As such, the first challenge concerns modeling
the timetable appropriately in order to enable the computation of journeys, i.e.,
sequences of trips one can take within a transportation network. While in road
networks computing a single shortest path (typically the quickest journey) is
often sufficient, in public transit networks it is important to solve more involved
problems, often taking several optimization criteria into account. Section 4.1 will
address such modeling issues.

Accelerating queries for efficient journey planning is a long-standing prob-
lem [45,235,247,248]. A large number of algorithms have been developed not
only to answer basic queries fast, but also to deal with extended scenarios that
incorporate delays, compute robust journeys, or optimize additional criteria,
such as monetary cost.
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4.1 Modeling

The first challenge is to model the timetable in order to enable algorithms that
compute optimal journeys. Since the shortest-path problem is well understood
in the literature, it seems natural to build a graph G = (V,A) from the timetable
such that shortest paths in G correspond to optimal journeys. This section
reviews the two main approaches to do so (time-expanded and time-dependent),
as well as the common types of problems one is interested to solve. For a more
detailed overview of these topics, we refer the reader to an overview article by
Müller-Hannemann et al. [203].

Time-Expanded Model. Based on the fact that a timetable consists of time-
dependent events (e. g., a vehicle departing at a stop) that happen at discrete
points in time, the idea of the time-expanded model is to build a space-time
graph (often also called an event graph) [211] that “unrolls” time. Roughly
speaking, the model creates a vertex for every event of the timetable and uses
arcs to connect subsequent events in the direction of time flow. A basic ver-
sion of the model [196,235] contains a vertex for every departure and arrival
event, with consecutive departure and arrival events connected by connection (or
travel) arcs. To enable transfers between vehicles, all vertices at the same stop
are (linearly, in chronological order) interlinked by transfer (or waiting) arcs.
Müller-Hannemann and Weihe [204] extend the model to distinguish trains (to
optimize the number of transfers taken during queries) by subdividing each con-
nection arc by a new vertex, and then interlinking the vertices of each trip (in
order of travel). Pyrga et al. [218,219] and Müller-Hannemann and Schnee [200]
extend the time-expanded model to incorporate minimum change times (given
by the input) that are required as buffer when changing trips at a station. Their
realistic model introduces an additional transfer vertex per departure event, and

Fig. 9. Realistic time-expanded (left) and time-dependent (right) models. Differ-
ent vertex types are highlighted by shape: diamond (arrival), circle (transfer) and
square (departure) for the left figure; and circle (stop) and square (route) for the right
figure. Connection arcs in the time-expanded model are annotated with its trips ti, and
route arcs in the time-dependent model with its routes ri.



48 H. Bast et al.

connects each arrival vertex to the first transfer vertex that obeys the minimum
change time constraints. See Fig. 9 for an illustration. If there is a footpath from
stop pi to stop pj , then for each arrival event at stop pi one adds an arc to
the earliest reachable transfer vertex at pj . This model has been further engi-
neered [90] to reduce the number of arcs that are explored “redundantly” during
queries.

A timetable is usually valid for a certain period of time (up to one year).
Since the timetables of different days of the year are quite similar, a space-
saving technique (compressed model) is to consider events modulo their traffic
days [202,219].

Time-Dependent Model. The main disadvantage of the time-expanded model
is that the resulting graphs are quite large [218]. For smaller graphs, the time-
dependent approach (see Sect. 2.7) has been considered by Brodal and Jacob [56].
In their model, vertices correspond to stops, and an arc is added from u to v if
there is at least one elementary connection serving the corresponding stops in
this order. Precise departure and arrival times are encoded by the travel time
function associated with the arc (u, v). Fig. 10 shows the typical shape of a travel
time function: each filled circle represents an elementary connection; the line
segments (with slope −1) reflect not only the travel time, but also the waiting
time until the next departure. Pyrga et al. [219] further extended this basic
model to enable minimum change times by creating, for each stop p and each
route that serves p, a dedicated route vertex. Route vertices at p are connected to
a common stop vertex by arcs with constant cost depicting the minimum change
time of p. Trips are distributed among route arcs that connect the subsequent
route vertices of a route, as shown in Fig. 9. They also consider a model that
allows arbitrary minimum change times between pairs of routes within each
stop [219]. Footpaths connecting nearby stops are naturally integrated into the
time-dependent model [109]. For some applications, one may merge route vertices
of the same stop as long as they never connect trips such that a transfer between
them violates the minimum change time [85].

Frequency-Based Model. In real-world timetables trips often operate according
to specific frequencies at times of the day. For instance, a bus may run every

Fig. 10. Travel time function on an arc.
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5 min during rush hour, and every 10 min otherwise. Bast and Storandt [27]
exploit this fact in the frequency-based model : as in the time-dependent approach,
vertices correspond to stops, and an arc between a pair of stops (u, v) is added
if there is at least one elementary connection from u to v. However, instead of
storing the departures of an arc explicitly, those with coinciding travel times are
compressed into a set of tuples consisting of an initial departure time τdep, a time
interval Δ, and a frequency f . The corresponding original departures can thus be
reconstructed by computing each τdep + fi for those i ∈ Z≥0 that satisfy τdep +
fi ≤ τdep + Δ. Bast and Storandt compute these tuples by covering the set
of departure times by a small set of overlapping arithmetic progressions, then
discarding duplicate entries (occurring after decompression) at query time [27].

Problem Variants. Most research on road networks has focused on computing
the shortest path according to a given cost function (typically travel times).
For public transit networks, in contrast, there is a variety of natural problem
formulations.

The simplest variant is the earliest arrival problem. Given a source stop ps,
a target stop pt, and a departure time τ , it asks for a journey that departs ps
no earlier than τ and arrives at pt as early as possible. A related variant is the
range (or profile) problem [206], which replaces the departure time by a time
range (e. g. 8–10 am, or the whole day). This problem asks for a set of journeys
of minimum travel time that depart within that range.

Both the earliest arrival and the range problems only consider (arrival or
travel) time as optimization criterion. In public-transit networks, however, other
criteria (such as the number of transfers) are just as important, which leads to the
multicriteria problem [204]. Given source and target stops ps, pt and a departure
time τ as input, it asks for a (maximal) Pareto set J of nondominating journeys
with respect to the optimization criteria considered. A journey J1 is said to
dominate journey J2 if J1 is better than or equal to J2 in all criteria. Further
variants of the problem relax or strengthen these domination rules [200].

4.2 Algorithms Without Preprocessing

This section discusses algorithms that can answer queries without a preprocess-
ing phase, which makes them a good fit for dynamic scenarios that include delays,
route changes, or train cancellations. We group the algorithms by the problems
they are meant to solve.

Earliest Arrival Problem. Earliest arrival queries on the time-expanded model
can be answered in a straightforward way by Dijkstra’s algorithm [235], in
short TED (time-expanded Dijkstra). It is initialized with the vertex that cor-
responds to the earliest event of the source stop ps that occurs after τ (in the
realistic model, a transfer vertex must be selected). The first scanned vertex
associated with the target stop pt then represents the earliest arrival s–t jour-
ney. In the compressed time-expanded model, slight modifications to Dijkstra’s
algorithm are necessary because an event vertex may appear several times on
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the optimal shortest path (namely for different consecutive days). One possible
solution is to use a bag of labels for each vertex as in the multicriteria variants
described below. Another solution is described in Pyrga et al. [219].

On time-dependent graphs, Dijkstra’s algorithm can be augmented to com-
pute shortest paths [65,111], as long as the cost functions are nonnegative and
FIFO [208,209]. The only modification is that, when the algorithm scans an
arc (u, v), the arc cost is evaluated at time τ + dist(s, u). Note that the algo-
rithm retains the label-setting property, i. e., each vertex is scanned at most once.
In the time-dependent public transit model, the query is run from the stop vertex
corresponding to ps and the algorithm may stop as soon as it extracts pt from
the priority queue. The algorithm is called TDD (time-dependent Dijkstra).

Another approach is to exploit the fact that the time-expanded graph is
directed and acyclic. (Note that overnight connections can be handled by
unrolling the timetable for several consecutive periods.) By scanning vertices
in topological order, arbitrary queries can be answered in linear time. This sim-
ple and well-known observation has been applied for journey planning by Mellouli
and Suhl [191], for example. While this idea saves the relatively expensive pri-
ority queue operations of Dijkstra’s algorithm, one can do even better by not
maintaining the graph structure explicitly, thus improving locality and cache
efficiency. The recently developed Connection Scan Algorithm (CSA) [105] orga-
nizes the elementary connections of the timetable in a single array, sorted by
departure time. The query then only scans this array once, which is very effi-
cient in practice. Note that CSA requires footpaths in the input to be closed
under transitivity to ensure correctness.

Range Problem. The range problem can be solved on the time-dependent model
by variants of Dijkstra’s algorithm. The first variant [68,206] maintains, at each
vertex u, a travel-time function (instead of a scalar label) representing the opti-
mal travel times from s to u for the considered time range. Whenever the algo-
rithm relaxes an arc (u, v), it first links the full travel-time function associated
with u to the (time-dependent) cost function of the arc (u, v), resulting in a func-
tion that represents the times to travel from s to v via u. This function is then
merged into the (tentative) travel time function associated with v, which corre-
sponds to taking the element-wise minimum of the two functions. The algorithm
loses the label-setting property, since travel time functions cannot be totally
ordered. As a result the algorithm may reinsert vertices into the priority queue
whenever it finds a journey that improves the travel time function of an already
scanned vertex.

Another algorithm [34] exploits the fact that trips depart at discrete points
in time, which helps to avoid redundant work when propagating travel time
functions. When it relaxes an arc, it does not consider the full function, but
each of its encoded connections individually. It then only propagates the parts
of the function that have improved.

The Self-Pruning Connection Setting algorithm (SPCS) [85] is based on the
observation that any optimal journey from s to t has to start with one of the trips
departing from s. It therefore runs, for each such trip, Dijkstra’s algorithm from s
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at its respective departure time. SPCS performs these runs simultaneously using
a shared priority queue whose entries are ordered by arrival time. Whenever
the algorithm scans a vertex u, it checks if u has been already scanned for an
associated (departing) trip with a later departure time (at s), in which case it
prunes u. Moreover, SPCS can be parallelized by assigning different subsets of
departing trips from s to different CPU cores.

Bast and Storandt [27] propose an extension of Dijkstra’s algorithm that
operates on the (compressed) frequency-based model directly. It maintains with
every vertex u a set of tuples consisting of a time interval, a frequency, and the
travel time. Hence, a single tuple may represent multiple optimal journeys, each
departing within the tuple’s time interval. Whenever the algorithm relaxes an
arc (u, v), it first extends the tuples from the bag at u with the ones stored at the
arc (u, v) in the compressed graph. The resulting tentative bag of tuples (rep-
resenting all optimal journeys to v via u) is then merged into the bag of tuples
associated with v. The main challenge of this algorithm is efficiently merging
tuples with incompatible frequencies and time intervals [27].

Finally, the Connection Scan Algorithm has been extended to the range prob-
lem [105]. It uses the same array of connections, ordered by departure time, as
for earliest arrival queries. It still suffices to scan this array once, even to obtain
optimal journeys to all stops of the network.

Multicriteria Problem. Although Pareto sets can contain exponentially many
solutions (see Sect. 2.7), they are often much smaller for public transit route
planning, since common optimization criteria are positively correlated. For exam-
ple, for the case of optimizing earliest arrival time and number of transfers, the
Layered Dijkstra (LD) algorithm [56,219] is efficient. Given an upper bound K
on the number of transfers, it (implicitly) copies the timetable graph into K
layers, rewiring transfer arcs to point to the next higher level. It then suffices to
run a time-dependent (single criterion) Dijkstra query from the lowest level to
obtain Pareto sets.

In the time-expanded model, Müller-Hannemann and Schnee [200] consider
the Multicriteria Label-Setting (MLS) algorithm (cf. Sect. 2.7) to optimize arrival
time, ticket cost, and number of transfers. In the time-dependent model, Pyrga
et al. [219] compute Pareto sets of journeys for arrival time and number of
transfers. Disser et al. [109] propose three optimizations to MLS that reduce the
number of queue operations: hopping reduction, label forwarding, and dominance
by early results (or target pruning). Bast and Storandt [27] extend the frequency-
based range query algorithm to also include number of transfers as criterion.

A different approach is RAPTOR (Round-bAsed Public Transit Optimized
Router) [92]. It is explicitly developed for public transit networks and its basic
version optimizes arrival time and the number of transfers taken. Instead of
using a graph, it organizes the input as a few simple arrays of trips and routes.
Essentially, RAPTOR is a dynamic program: it works in rounds, with round i
computing earliest arrival times for journeys that consist of exactly i transfers.
Each round takes as input the stops whose arrival time improved in the previous
round (for the first round this is only the source stop). It then scans the routes
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served by these stops. To scan route r, RAPTOR traverses its stops in order of
travel, keeping track of the earliest possible trip (of r) that can be taken. This
trip may improve the tentative arrival times at subsequent stops of route r. Note
that RAPTOR scans each route at most once per round, which is very efficient in
practice (even faster than Dijkstra’s algorithm with a single criterion). Moreover,
RAPTOR can be parallelized by distributing non-conflicting routes to different
CPU cores. It can also be extended to handle range queries (rRAPTOR) and
additional optimization criteria (McRAPTOR). Note that, like CSA, RAPTOR
also requires footpaths in the input to be closed under transitivity.

Trip-Based Routing [256] accelerates RAPTOR by executing a BFS-like
search on a network of trips and precomputed sensible transfers.

4.3 Speedup Techniques

This section presents an overview of preprocessing-based speedup techniques for
journey planning in public transit networks. A natural (and popular) approach
is to adapt methods that are effective on road networks (see Fig. 7). Unfortu-
nately, the speedups observed in public transit networks are several orders of
magnitude lower than in road networks. This is to some extent explained by the
quite different structural properties of public transit and road networks [22]. For
example, the neighborhood of a stop can be much larger than the number of road
segments incident to an intersection. Even more important is the effect of the
inherent time-dependency of public transit networks. Thus, developing efficient
preprocessing-based methods for public transit remains a challenge.

Some road network methods were tested on public transit graphs without per-
forming realistic queries (i. e., according to one of the problems from Sect. 4.1).
Instead, such studies simply perform point-to-point queries on public-transit
graphs. In particular, Holzer et al. [161] evaluate basic combinations of bidirec-
tional search, goal directed search, and Geometric Containers on a simple stop
graph (with average travel times). Bauer et al. [41] also evaluated bidirectional
search, ALT, Arc Flags, Reach, REAL, Highway Hierarchies, and SHARC on
time-expanded graphs. Core-ALT, CHASE, and Contraction Hierarchies have
also been evaluated on time-expanded graphs [40].

A* Search. On public transit networks, basic A* search has been applied to
the time-dependent model [109,219]. In the context of multicriteria optimiza-
tion, Disser et al. [109] determine lower bounds for each vertex u to the target
stop pt (before the query) by running a backward search (from pt) using the (con-
stant) lower bounds of the travel time functions as arc cost.

ALT. The (unidirectional) ALT [148] algorithm has been adapted to both the
time-expanded [90] and the time-dependent [207] models for computing earliest
arrival queries. In both cases, landmark selection and distance precomputation
is performed on an auxiliary stop graph, in which vertices correspond to stops
and an arc is added between two stops pi, pj if there is an elementary connection
from pi to pj in the input. Arc costs are lower bounds on the travel time between
their endpoints.
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Geometric Containers. Geometric containers [235,251] have been extensively
tested on the time-expanded model for computing earliest arrival queries. In
fact, they were developed in the context of this model. As mentioned in Sect. 2,
bounding boxes perform best [251].

Arc Flags and SHARC. Delling et al. [90] have adapted Arc Flags [157,178] to
the time-expanded model as follows. First, they compute a partition on the stop
graph (defined as in ALT). Then, for each boundary stop p of cell C, and each of
its arrival vertices, a backward search is performed on the time-expanded graph.
The authors observe that public transit networks have many paths of equal
length between the same pair of vertices [90], making the choice of tie-breaking
rules important. Furthermore, Delling et al. [90] combine Arc Flags, ALT, and
a technique called Node Blocking, which avoids exploring multiple arcs from the
same route.

SHARC, which combines Arc Flags with shortcuts [39], has been tested on
the time-dependent model with earliest arrival queries by Delling [72]. Moreover,
Arc Flags with shortcuts for the Multi-Label-Setting algorithm (MLS) have been
considered for computing full (i. e., using strict domination) Pareto sets using
arrival time and number of transfers as criteria [47]. In time-dependent graphs,
a flag must be set if its arc appears on a shortest path toward the correspond-
ing cell at least once during the time horizon [72]. For better performance, one
can use different sets of flags for different time periods (e. g., every two hours).
The resulting total speedup is still below 15, from which it is concluded that
“accelerating time-dependent multicriteria timetable information is harder than
expected” [47]. Slight additional speedups can be obtained if one restricts the
search space to only those solutions in the Pareto set for which the travel time
is within an interval defined by the earliest arrival time and some upper bound.
Berger et al. [49] observed that in such a scenario optimal substructure in com-
bination with lower travel time bounds can be exploited and yield additional
pruning during search. It is worth noting that this method does not require any
preprocessing and is therefore well-suited for a dynamic scenario.

Overlay Graphs. To accelerate earliest arrival queries, Schulz et al. [235] compute
single-level overlays between “important” hub stations in the time-expanded
model, with importance values given as input. More precisely, given a subset
of important stations, the overlay graph consists of all vertices (events) that
are associated with these stations. Edges in the overlay are computed such that
distances between any pair of vertices (events) are preserved. Extending this
approach to overlay graphs over multiple levels of hub stations (selected by
importance or degree) results in speedups of about 11 [236].

Separator-based techniques. Strasser and Wagner [242] combine the Connection
Scan Algorithm [105] with ideas of customizable route planning (CRP) [78] result-
ing in the Accelerated Connection Scan Algorithm (ACSA). It is designed for both
earliest arrival and range queries. ACSA first computes a multilevel partition of
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stops, minimizing the number of elementary connections with endpoints in dif-
ferent cells. Then, it precomputes for each cell the partial journeys (transit con-
nections) that cross the respective cell. For queries, the algorithm essentially runs
CSA restricted to the elementary connections of the cells containing the source or
target stops, as well as transit connections of other (higher-level) cells. As shown
in Sect. 4.5, it achieves excellent query and preprocessing times on country-sized
instances.

Contraction Hierarchies. The Contraction Hierarchies algorithm [142] has been
adapted to the realistic time-dependent model with minimum change times for
computing earliest arrival and range queries [136]. It turns out that simply apply-
ing the algorithm to the route model graph results in too many shortcuts to be
practical. Therefore, contraction is performed on a condensed graph that con-
tains only a single vertex per stop. Minimum change times are then ensured by
the query algorithm, which must maintain multiple labels per vertex.

Transfer Patterns. A speedup technique specifically developed for public transit
networks is called Transfer Patterns [24]. It is based on the observation that
many optimal journeys share the same transfer pattern, defined as the sequence
of stops where a transfer occurs. Conceptually, these transfer patterns are pre-
computed using range queries for all pairs of stops and departure times. At query
time, a query graph is built as the union of the transfer patterns between the
source and target stops. The arcs in the query graph represent direct connections
between stops (without transfers), and can be evaluated very fast. Dijkstra’s
algorithm (or MLS) is then applied to this much smaller query graph.

If precomputing transfer patterns between all pairs of stops is too expen-
sive, one may resort to the following two-level approach. It first selects a subset
of (important) hub stops. From the hubs, global transfer patterns are precom-
puted to all other stops. For the non-hubs, local transfer patterns are computed
only towards relevant hub stops. This approach is similar to TNR, but the idea is
applied asymmetrically: transfer patterns are computed from all stops to the hub
stops, and from the hub stops to everywhere. If preprocessing is still impractical,
one can restrict the local transfer patterns to at most three legs (two transfers).
Although this restriction is heuristic, the algorithm still almost always finds the
optimal solution in practice, since journeys requiring more than two transfers to
reach a hub station are rare [24].

TRANSIT. Finally, Transit Node Routing [28,30,224] has been adapted to pub-
lic transit journey planning in [14]. Preprocessing of the resulting TRANSIT
algorithm uses the (small) stop graph to determine a set of transit nodes (with
a similar method as in [28]), between which it maintains a distance table that
contains sets of journeys with minimal travel time (over the day). Each stop p
maintains, in addition, a set of access nodes A(p), which is computed on the
time-expanded graph by running local searches from each departure event of p
toward the transit stops. The query then uses the access nodes of ps and pt and



Route Planning in Transportation Networks 55

the distance table to resolve global requests. For local requests, it runs goal-
directed A* search. Queries are slower than for Transfer Patterns.

4.4 Extended Scenarios

Besides computing journeys according to one of the problems from Sect. 4.1,
extended scenarios (such as incorporating delays) have been studied as well.

Uncertainty and Delays. Trains, buses and other means of transport are often
prone to delays in the real world. Thus, handling delays (and other sources
of uncertainty) is an important aspect of a practical journey planning system.
Firmani et al. [125] recently presented a case study for the public transport
network of the metropolitan area of Rome. They provide strong evidence that
computing journeys according to the published timetable often fails to deliver
optimal or even high-quality solutions. However, incorporating real-time GPS
location data of vehicles into the journey planning algorithm helps improve the
journey quality (e. g., in terms of the experienced delay) [13,84].

Müller-Hannemann and Schnee [201] consider the online problem where
delays, train cancellations, and extra trains arrive as a continuous stream of
information. They present an approach which quickly updates the time-expanded
model to enable queries according to current conditions. Delling et al. [74] also
discuss updating the time-dependent model and compare the required effort with
the time-expanded model. Cionini et al. [63] propose a new graph-based model
which is tailored to handle dynamic updates, and they experimentally show its
effectiveness in terms of both query and update times. Berger et al. [48] pro-
pose a realistic stochastic model that predicts how delays propagate through
the network. In particular, this model is evaluated using real (delay) data from
Deutsche Bahn. Bast et al. [25] study the robustness of Transfer Patterns with
respect to delays. They show that the transfer patterns computed for a scenario
without any delays give optimal results for 99 % of queries, even when large and
area-wide (random) delays are injected into the networks.

Disser et al. [109] and Delling et al. [93] study the computation of reliable
journeys via multicriteria optimization. The reliability of a transfer is defined as a
function of the available buffer time for the transfer. Roughly speaking, the larger
the buffer time, the more likely it is that the transfer will be successful. According
to this notion, transfers with a high chance of success are still considered reliable
even if there is no backup alternative in case they fail.

To address this issue, Dibbelt et al. [105] minimize the expected arrival
time (with respect to a simple model for the probability that a transfer breaks).
Instead of journeys, their method (which is based on the CSA algorithm) outputs
a decision graph representing optimal instructions to the user at each point of
their journey, including cases in which a connecting trip is missed. Interestingly,
minimizing the expected arrival time implicitly helps minimizing the number of
transfers, since each “unnecessary” transfer introduces additional uncertainty,
hurting the expected arrival time.
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Finally, Goerigk et al. [146] study the computation of robust journeys, con-
sidering both strict robustness (i. e., computing journeys that are always feasible
for a given set of delay scenarios) and light robustness (i. e., computing journeys
that are most reliable when given some extra slack time). While strict robustness
turns out to be too conservative in practice, the notion of light robustness seems
more promising. Recoverable robust journeys (which can always be updated when
delays occur) have recently been considered in [145]. A different, new robustness
concept has been proposed by Böhmová et al. [51]. In order to propose solutions
that are robust for typical delays, past observations of real traffic situations are
used. Roughly speaking, a route is more robust the better it has performed in
the past under different scenarios.

Night Trains. Gunkel et al. [153] have considered the computation of overnight
train journeys, whose optimization goals are quite different from regular “day-
time” journeys. From a customer’s point of view, the primary objective is usu-
ally to have a reasonably long sleeping period. Moreover, arriving too early in
the morning at the destination is often not desired. Gunkel et al. present two
approaches to compute overnight journeys. The first approach explicitly enu-
merates all overnight trains (which are given by the input) and computes, for
each such train, the optimal feeding connections. The second approach runs
multicriteria search with sleeping time as a maximization criterion.

Fares. Müller-Hannemann and Schnee [199] have analyzed several pricing sche-
mes, integrating them as an optimization criterion (cost) into MOTIS, a mul-
ticriteria search algorithm that works on the time-expanded model. In general,
however, optimizing exact monetary cost is a challenging problem, since real-
world pricing schemes are hard to capture by a mathematical model [199].

Delling et al. [92] consider computing Pareto sets of journeys that optimize
fare zones with the McRAPTOR algorithm. Instead of using (monetary) cost
as an optimization criterion directly, they compute all nondominated journeys
that traverse different combinations of fare zones, which can then be evaluated
by cost in a quick postprocessing step.

Guidebook Routing. Bast and Storandt [26] introduce Guidebook Routing, where
the user specifies only source and target stops, but neither a day nor a time of
departure. The desired answer is then a set of routes, each of which is given
by a sequence of train or bus numbers and transfer stations. For example, an
answer may read like take bus number 11 towards the bus stop at X, then change
to bus number 13 or 14 (whichever comes first) and continue to the bus stop
at Y. Guidebook routes can be computed by first running a multicriteria range
query, and then extracting from the union of all Pareto-optimal time-dependent
paths a subset of routes composed by arcs which are most frequently used. The
Transfer Patterns algorithm lends itself particularly well to the computation
of such guidebook routes. For practical guidebook routes (excluding “exotic”
connections at particular times), the preprocessing space and query times of
Transfer Patterns can be reduced by a factor of 4 to 5.
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4.5 Experiments and Comparison

This section compares the performance of some of the journey planning algo-
rithms discussed in this section. As in road networks, all algorithms have been
carefully implemented in C++ using mostly custom-built data structures.

Table 3 summarizes the results. Running times are obtained from a sequential
execution on one core of a dual 8-core Intel Xeon E5-2670 machine clocked at
2.6 GHz with 64 GiB of DDR3-1600 RAM. The exceptions are Transfer Patterns
and Contraction Hierarchies, for which we reproduce the values reported in the
original publication (obtained on a comparable machine).

For each algorithm, we report the instance on which it has been evaluated,
as well as its total number of elementary connections (a proxy for size) and the
number of consecutive days covered by the connections. Unfortunately, realistic
benchmark data of country scale (or larger) has not been widely available to the
research community. Some metropolitan transit agencies have recently started
making their timetable data publicly available, mostly using the General Transit
Feed format2. Still, research groups often interpret the data differently, making it
hard to compare the performance of different algorithms. The largest metropoli-
tan instance currently available is the full transit network of London3. It contains
approximately 21 thousand stops, 2.2 thousand routes, 133 thousand trips, 46
thousand footpaths, and 5.1 million elementary connections for one full day. We
therefore use this instance for the evaluation of most algorithms. The instances
representing Germany and long-distance trains in Europe are generated in a
similar way, but from proprietary data.

The table also contains the preprocessing time (where applicable), the aver-
age number of label comparisons per stop, the average number of journeys com-
puted by the algorithm, and its running time in milliseconds. Note that the
number of journeys can be below 1 because some stops are unreachable for cer-
tain late departure times. References indicate the publications from which the
figures are taken (which may differ from the first publication); TED was run by
the authors for this survey. (Our TED implementation uses a single-level bucket
queue [104] and stops as soon as a vertex of the target stop has been extracted.)
The columns labeled “criteria” indicate whether the algorithm minimizes arrival
time (arr), number of transfers (tran), fare zones (fare), reliability (rel), and
whether it computes range queries (rng) over the full timetable period of 1, 2,
or 7 days. Methods with multiple criteria compute Pareto sets.

Among algorithms without preprocessing, we observe that those that do not
use a graph (RAPTOR and CSA) are consistently faster than their graph-based
counterparts. Moreover, running Dijkstra’s algorithm on the time-expanded
graph model (TED) is significantly slower than running it on the time-dependent
graph model (TDD), since time-expanded graphs are much larger. For earliest
arrival queries on metropolitan areas, CSA is the fastest algorithm without pre-
processing, but preprocessing-based methods (such as Transfer Patterns) can

2 https://developers.google.com/transit/gtfs/.
3 http://data.london.gov.uk/.

https://developers.google.com/transit/gtfs/
http://data.london.gov.uk/
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Table 3. Performance of various public transit algorithms on random queries. For
each algorithm, the table indicates the implementation tested (which may not be the
publication introducing the algorithm), the instance it was tested on, its total number
of elementary connections (in millions) as well as the number of consecutive days they
cover. A “p” indicates that the timetable is periodic (with a period of one day). The
table then shows the criteria that are optimized (a subset of arrival times, transfers,
full range, fares, and reliability), followed by total preprocessing time, average number
of comparisons per stop, average number of journeys in the Pareto set, and average
query times in milliseconds. Missing entries either do not apply (–) or are well-defined
but not available (n/a).

Algorithm Impl. input criteria query

Name Conn.

[106]

Dy. Arr. Tran. Rng. Fare Rel. Prep [h] Comp./

stop

jn Time

[ms]

TED London 5.1 1 • ◦ ◦ ◦ ◦ – 50.6 0.9 44.8

TDD [93] London 5.1 1 • ◦ ◦ ◦ ◦ – 7.4 0.9 11.0

CH [136] Europe (lng) 1.7 p • ◦ ◦ ◦ ◦ < 0.1 < 0.1 n/a 0.3

CSA [105] London 4.9 1 • ◦ ◦ ◦ ◦ – 26.6 n/a 2.0

ACSA [242] Germany 46.2 2 • ◦ ◦ ◦ ◦ – n/a n/a 8.7

T. Patterns [27] Germany 90.4 7 • ◦ ◦ ◦ ◦ 541 – 1.0 0.4

LD [93] London 5.1 1 • • ◦ ◦ ◦ – 15.6 1.8 28.7

MLS [93] London 5.1 1 • • ◦ ◦ ◦ – 23.7 1.8 50.0

RAPTOR [93] London 5.1 1 • • ◦ ◦ ◦ – 10.9 1.8 5.4

T. Patterns [27] Germany 90.4 7 • • ◦ ◦ ◦ 566 – 2.0 0.8

CH [136] Europe (lng) 1.7 p • ◦ • ◦ ◦ < 0.1 < 0.1 n/a 3.7

SPCS [105] London 4.9 1 • ◦ • ◦ ◦ – 372.5 98.2 843.0

CSA [105] London 4.9 1 • ◦ • ◦ ◦ – 436.9 98.2 161.0

ACSA [242] Germany 46.2 2 • ◦ • ◦ ◦ 8 n/a n/a 171.0

T. Patterns [27] Germany 90.4 7 • ◦ • ◦ ◦ 541 – 121.2 22.0

rRAPTOR [105] London 4.9 1 • • • ◦ ◦ – 1634.0 203.4 922.0

CSA [105] London 4.9 1 • • • ◦ ◦ – 3824.9 203.4 466.0

T. Patterns [27] Germany 90.4 7 • • • ◦ ◦ 566 – 226.0 39.6

MLS [93] London 5.1 1 • • ◦ • ◦ – 818.2 8.8 304.2

McRAPTOR [93] London 5.1 1 • • ◦ • ◦ – 277.5 8.8 100.9

MLS [93] London 5.1 1 • • ◦ ◦ • – 286.6 4.7 239.8

McRAPTOR [93] London 5.1 1 • • ◦ ◦ • – 89.6 4.7 71.9

be even faster. For longer-range transit networks, preprocessing-based methods
scale very well. CH takes 210 seconds to preprocess the long-distance train con-
nections of Europe, while ACSA takes 8 hours to preprocess the full transit net-
work of Germany. Transfer Patterns takes over 60 times longer to preprocess (a
full week of) the full transit network of Germany, but has considerably lower
query times.

For multicriteria queries, RAPTOR is about an order of magnitude faster
than Dijkstra-based approaches like LD and MLS. RAPTOR is twice as fast as
TDD, while computing twice as many journeys on average. Adding further crite-
ria (such as fares and reliability) to MLS and RAPTOR increases the Pareto set,
but performance is still reasonable for metropolitan-sized networks. Thanks to
preprocessing, Transfer Patterns has the fastest queries overall, by more than an
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order of magnitude. Note that in public transit networks the optimization crite-
ria are often positively correlated (such as arrival time and number of transfers),
which keeps the Pareto sets at a manageable size. Still, as the number of criteria
increases, exact real-time queries become harder to achieve.

The reported figures for Transfer Patterns are based on preprocessing lever-
aging the frequency-based model with traffic days compression, which makes
quadratic (in the number of stops) preprocessing effort feasible. Consequently,
hub stops and the three-leg heuristic are not required, and the algorithm is guar-
anteed to find the optimal solution. The data produced by the preprocessing is
shown to be robust against large and area-wide delays, resulting in much less
than 1 % of suboptimal journeys [25] (not shown in the table).

For range queries, preprocessing-based techniques (CH, ACSA, Transfer Pat-
terns) scale better than CSA or SPCS. For full multicriteria range queries (con-
sidering transfers), Transfer Patterns is by far the fastest method, thanks to
preprocessing. Among search-based methods, CSA is faster than rRAPTOR by
a factor of two, although it does twice the amount of work in terms of label
comparisons. Note, however, that while CSA cannot scale to smaller time ranges
by design [105], the performance of rRAPTOR depends linearly on the num-
ber of journeys departing within the time range [92]. For example, for 2-hour
range queries rRAPTOR computes 15.9 journeys taking only 61.3 ms on aver-
age [93] (not reported in the table). Guidebook routes covering about 80 % of
the optimal results (for the full period) can be computed in a fraction of a
millisecond [26].

5 Multimodal Journey Planning

We now consider journey planning in a multimodal scenario. Here, the gen-
eral problem is to compute journeys that reasonably combine different modes
of transportation by a holistic algorithmic approach. That is, not only does an
algorithm consider each mode of transportation in isolation, but it also opti-
mizes the choice (and sequence) of transportation modes in some integrated
way. Transportation modes that are typically considered include (unrestricted)
walking, (unrestricted) car travel, (local and long-distance) public transit, flight
networks, and rental bicycle schemes. We emphasize that our definition of “mul-
timodal” requires some diversity from the transportation modes, i. e., both unre-
stricted and schedule-based variants should be considered by the algorithm. For
example, journeys that only use buses, trams, or trains are not truly multi-
modal (according to our definition), since these transportation modes can be
represented as a single public transit schedule and dealt with by algorithms
from Sect. 4.

In fact, considering modal transfers explicitly by the algorithm is crucial in
practice, since the solutions it computes must be feasible, excluding sequences of
transportation modes that are impossible for the user to take (such as a private
car between train rides). Ideally, even user preferences should be respected. For
example, some users may prefer taxis over public transit at certain parts of the
journey, while others may not.
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A general approach to obtain a multimodal network is to first build an
individual graph for each transportation mode, then merge them into a sin-
gle multimodal graph with link arcs (or vertices) added to enable modal
transfers [89,210,258]. Typical examples [89,210] model car travel and walk-
ing as time-independent (static) graphs, public transit networks using the real-
istic time-dependent model [219], and flight networks using a dedicated flight
model [91]. Beyond that, Kirchler et al. [169,170] compute multimodal journeys
in which car travel is modeled as a time-dependent network in order to incorpo-
rate historic data on rush hours and traffic congestion (see Sect. 2.7 for details).

Overview. The remainder of this section discusses three different approaches to
the multimodal problem. The first (Sect. 5.1) considers a combined cost function
of travel time with some penalties to account for modal transfers. The second
approach (Sect. 5.2) uses the label-constrained shortest path problem to obtain
journeys that explicitly include (or exclude) certain sequences of transportation
modes. The final approach (Sect. 5.3) computes Pareto sets of multimodal jour-
neys using a carefully chosen set of optimization criteria that aims to provide
diverse (regarding the transportation modes) alternative journeys.

5.1 Combining Costs

To aim for journeys that reasonably combine different transport modes, one
may use penalties in the objective function of the algorithm. These penalties
are often considered as a linear combination with the primary optimization
goal (typically travel time). Examples for this approach include Aifadopoulou
et al. [10], who present a linear program that computes multimodal journeys.
The TRANSIT algorithm [14] also uses a linear utility function and incorporates
travel time, ticket cost, and “inconvenience” of transfers. Finally, Modesti and
Sciomachen [195] consider a combined network of unrestricted walking, unre-
stricted car travel, and public transit, in which journeys are optimized according
to a linear combination of several criteria, such as cost and travel time. More-
over, their utility function incorporates user preferences on the transportation
modes.

5.2 Label-Constrained Shortest Paths

The label-constrained shortest paths [21] approach computes journeys that explic-
itly obey certain constraints on the modes of transportation. It defines an alpha-
bet Σ of modes of transportation and labels each arc of the graph by the
appropriate symbol from Σ. Then, given a language L over Σ as additional
input to the query, any journey (path) must obey the constraints imposed by
the language L, i. e., the concatenation of the labels along the path must sat-
isfy L. The problem of computing shortest label-constrained paths is tractable
for regular languages [21], which suffice to model reasonable transport mode
constraints in multimodal journey planning [18,20]. Even restricted classes of
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regular languages can be useful, such as those that impose a hierarchy of trans-
port modes [50,89,169,170,210,258] or Kleene languages that can only globally
exclude (and include) certain transport modes [140].

Barrett et al. [21] have proven that the label-constrained shortest path prob-
lem is solvable in deterministic polynomial time. The corresponding algorithm,
called label-constrained shortest path problem Dijkstra (LCSPP-D), first builds a
product network G of the input (the multimodal graph) and the (possibly non-
deterministic) finite automaton that accepts the regular language L. For given
source and target vertices s, t (referring to the original input), the algorithm
determines origin and destination sets of product vertices from G, containing
those product vertices that refer to s/t and an initial/final state of the automa-
ton. Dijkstra’s algorithm is then run on G between these two sets of product
vertices. In a follow-up experimental study, Barrett et al. [20] evaluate this algo-
rithm using linear regular languages, a special case.

Basic speedup techniques, such as bidirectional search [67], A* [156], and
heuristic A* [237] have been evaluated in the context of multimodal journey
planning in [159] and [19]. Also, Pajor [210] combines the LCSPP-D algorithm
with time-dependent Dijkstra [65] to compute multimodal journeys that con-
tain a time-dependent subnetwork. He also adapts and analyzes bidirectional
search [67], ALT [148], Arc Flags [157,178], and shortcuts [249] with respect to
LCSPP.

Access-Node Routing. The Access-Node Routing (ANR) [89] algorithm is a
speedup technique for the label-constrained shortest path problem (LCSPP). It
handles hierarchical languages, which allow constraints such as restricting walk-
ing and car travel to the beginning and end of the journey. It works similarly
to Transit Node Routing [28–30,224] and precomputes for each vertex u of the
road (walking and car) network its relevant set of entry (and exit) points (access
nodes) to the public transit and flight networks. More precisely, for any shortest
path P originating from vertex u (of the road network) that also uses the public
transit network, the first vertex v of the public transit network on P must be an
access node of u. The query may skip over the road network by running a multi-
source multi-target algorithm on the (much smaller) transit network between
the access nodes of s and t, returning the journey with earliest combined arrival
time.

The Core-Based ANR [89] method further reduces preprocessing space and
time by combining ANR with contraction. As in Core-ALT [40,88], it precom-
putes access nodes only for road vertices in a much smaller core (overlay) graph.
The query algorithm first (quickly) determines the relevant core vertices of s
and t (i. e., those covering the branches of the shortest path trees rooted at s
and t), then runs a multi-source multi-target ANR query between them.

Access-Node Routing has been evaluated on multimodal networks of intercon-
tinental size that include walking, car travel, public transit, and flights. Queries
run in milliseconds, but preprocessing time strongly depends on the density of
the public transit and flight networks [89]. Moreover, since the regular language
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is used during preprocessing, it can no longer be specified at query time without
loss of optimality.

State-Dependent ALT. Another multimodal speedup technique for LCSPP is
State-Dependent ALT (SDALT) [170]. It augments the ALT algorithm [148] to
overcome the fact that lower bounds from a vertex u may depend strongly on the
current state q of the automaton (expressing the regular language) with which u
is scanned. SDALT thus uses the automaton to precompute state-dependent
distances, providing lower bound values per vertex and state. For even bet-
ter query performance, SDALT can be extended to use more aggressive (and
potentially incorrect) bounds to guide the search toward the target, relying on a
label-correcting algorithm (which may scan vertices multiple times) to preserve
correctness [169]. SDALT has been evaluated [169,170] on a realistic multimodal
network covering the Île-de-France area (containing Paris) incorporating rental
and private bicycles, public transit, walking, and a time-dependent road network
for car travel. The resulting speedups are close to 30. Note that SDALT, like
ANR, also predetermines the regular language constraints during preprocessing.

Contraction Hierarchies. Finally, Dibbelt et al. [106] have adapted Contraction
Hierarchies [142] to LCSPP, handling arbitrary mode sequence constraints. The
resulting User-Constrained Contraction Hierarchies (UCCH) algorithm works
by (independently) only contracting vertices whose incident arcs belong to the
same modal subnetwork. All other vertices are kept uncontracted. The query
algorithm runs in two phases. The first runs a regular CH query in the subnet-
works given as initial or final transport modes of the sequence constraints until
the uncontracted core graph is reached. Between these entry and exit vertices,
the second phase then runs a regular LCSPP-Dijkstra restricted to the (much
smaller) core graph. Query performance of UCCH is comparable to Access-Node
Routing, but with significantly less preprocessing time and space. Also, in con-
trast to ANR, UCCH also handles arbitrary mode sequence constraints at query
time.

5.3 Multicriteria Optimization

While label constraints are useful to define feasible journeys, computing the (sin-
gle) shortest label-constrained path has two important drawbacks. First, in order
to define the constraints, users must know the characteristics of the particular
transportation network; second, alternative journeys that combine the available
transportation modes differently are not computed. To obtain a set of diverse
alternatives, multicriteria optimization has been considered.

The criteria optimized by these methods usually include arrival time and, for
each mode of transportation, some mode-dependent optimization criterion [23,
73]. The resulting Pareto sets will thus contain journeys with different usage of
the available transportation modes, from which users can choose their favorites.

Delling et al. [73] consider networks of metropolitan scale and use the follow-
ing criteria as proxies for “convenience”: number of transfers in public transit,
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walking duration for the pedestrian network, and monetary cost for taxis. They
observe that simply applying the MLS algorithm [155,187,196,243] to a compre-
hensive multimodal graph turns out to be slow, even when partial contraction
is applied to the road and pedestrian networks, as in UCCH [106]. To get bet-
ter query performance, they extend RAPTOR [92] to the multimodal scenario,
which results in the multimodal multicriteria RAPTOR algorithm (MCR) [73].
Like RAPTOR, MCR operates in rounds (one per transfer) and computes Pareto
sets of optimal journeys with exactly i transfers in round i. It does so by running,
in each round, a dedicated subalgorithm (RAPTOR for public transit; MLS for
walking and taxi) which obtains journeys with the respective transport mode as
their last leg.

Since with increasing number of optimization criteria the resulting Pareto
sets tend to get very large, Delling et al. identify the most significant journeys in
a quick postprocessing step by a scoring method based on fuzzy logic [259]. For
faster queries, MCR-based heuristics (which relax domination during the algo-
rithm) successfully find the most significant journeys while avoiding the compu-
tation of insignificant ones in the first place.

Bast et al. [23] use MLS with contraction to compute multimodal multicri-
teria journeys at a metropolitan scale. To identify the significant journeys of the
Pareto set, they propose a method called Types aNd Thresholds (TNT). The
method is based on a set of simple axioms that summarize what most users
would consider as unreasonable multimodal paths. For example, if one is willing
to take the car for a large fraction of the trip, one might as well take it for
the whole trip. Three types of reasonable trips are deduced from the axioms:
(1) only car, (2) arbitrarily much transit and walking with no car, and (3) arbi-
trarily much transit with little or no walking and car. With a concrete threshold
for “little” (such as 10 min), the rules can then be applied to filter the reasonable
journeys. As in [73], filtering can be applied during the algorithm to prune the
search space and reduce query time. The resulting sets are fairly robust with
respect to the choice of threshold.

6 Final Remarks

The last decade has seen astonishing progress in the performance of shortest
path algorithms on transportation networks. For routing in road networks, in
particular, modern algorithms can be up to seven orders of magnitude faster
than standard solutions. Successful approaches exploit different properties of
road networks that make them easier to deal with than general graphs, such
as goal direction, a strong hierarchical structure, and the existence of small
separators. Although some early acceleration techniques relied heavily on geom-
etry (road networks are after all embedded on the surface of the Earth), no
current state-of-the-art algorithm makes explicit use of vertex coordinates (see
Table 1). While one still sees the occasional development (and publication) of
geometry-based algorithms they are consistently dominated by established tech-
niques. In particular, the recent Arterial Hierarchies [261] algorithm is compared
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to CH (which has slightly slower queries), but not to other previously published
techniques (such as CHASE, HL, and TNR) that would easily dominate it. This
shows that results in this rapidly-evolving area are often slow to reach some
communities; we hope this survey will help improve this state of affairs.

Note that experiments on real data are very important, as properties of
production data are not always accurately captured by simplified models and
folklore assumptions. For example, the common belief that an algorithm can
be augmented to include turn penalties without significant loss in performance
turned out to be wrong for CH [76].

Another important lesson from recent developments is that careful engineer-
ing is essential to unleash the full computational power of modern computer
architectures. Algorithms such as CRP, CSA, HL, PHAST, and RAPTOR, for
example, achieve much of their good performance by carefully exploiting locality
of reference and parallelism (at the level of instructions, cores, and even GPUs).

The ultimate validation of several of the approaches described here is that
they have found their way into systems that serve millions of users every day.
Several authors of papers cited in this survey have worked on routing-related
projects for companies like Apple, Esri, Google, MapBox, Microsoft, Nokia,
PTV, TeleNav, TomTom, and Yandex. Although companies tend to be secretive
about the actual algorithms they use, in some cases this is public knowledge.
TomTom uses a variant of Arc Flags with shortcuts to perform time-dependent
queries [231]. Microsoft’s Bing Maps4 use CRP for routing in road networks.
OSRM [185], a popular route planning engine using OpenStreetMap data, uses
CH for queries. The Transfer Patterns [24] algorithm has been in use for public-
transit journey planning on Google Maps5 since 2010. RAPTOR is currently in
use by OpenTripPlanner6.

These recent successes do not mean that all problems in this area are solved.
The ultimate goal, a worldwide multimodal journey planner, has not yet been
reached. Systems like Rome2Rio7 provide a simplified first step, but a more useful
system would take into account real-time traffic and transit information, historic
patterns, schedule constraints, and monetary costs. Moreover, all these elements
should be combined in a personalized manner. Solving such a general problem
efficiently seems beyond the reach of current algorithms. Given the recent pace
of progress, however, a solution may be closer than expected.

4 http://www.bing.com/blogs/site blogs/b/maps/archive/2012/01/05/
bing-maps-new-routing-engine.aspx.

5 http://www.google.com/transit.
6 http://opentripplanner.com.
7 http://www.rome2rio.com.

http://www.bing.com/blogs/site_blogs/b/maps/archive/2012/01/05/bing-maps-new-routing-engine.aspx
http://www.bing.com/blogs/site_blogs/b/maps/archive/2012/01/05/bing-maps-new-routing-engine.aspx
http://www.google.com/transit
http://opentripplanner.com
http://www.rome2rio.com
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ing in urban public transportation: how to find reliable journeys based on past
observations. In: Proceedings of the 13th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems (ATMOS 2013), Ope-
nAccess Series in Informatics (OASIcs), pp. 27–41 (2013)

52. Botea, A.: Ultra-fast optimal pathfinding without runtime search. In: Proceedings
of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE 2011), pp. 122–127. AAAI Press (2011)

53. Botea, A., Harabor, D.: Path planning with compressed all-pairs shortest paths
data. In: Proceedings of the 23rd International Conference on Automated Plan-
ning and Scheduling, AAAI Press (2013)

54. Brandes, U., Erlebach, T.: Network Analysis: Methodological Foundations. The-
oretical Computer Science and General Issues, vol. 3418. Springer, Heidelberg
(2005)

55. Brandes, U., Schulz, F., Wagner, D., Willhalm, T.: Travel planning with self-made
maps. In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153,
pp. 132–144. Springer, Heidelberg (2001). doi:10.1007/3-540-44808-X 10

56. Brodal, G., Jacob, R.: Time-dependent networks as models to achieve fast exact
time-table queries. In: Proceedings of the 3rd Workshop on Algorithmic Methods
and Models for Optimization of Railways (ATMOS 2003), Electronic Notes in
Theoretical Computer Science, vol. 92, pp. 3–15 (2004)

57. Bruera, F., Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D.: Dynamic
multi-level overlay graphs for shortest paths. Math. Comput. Sci. 1(4), 709–736
(2008)

58. Brunel, E., Delling, D., Gemsa, A., Wagner, D.: Space-efficient SHARC-routing.
In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 47–58. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13193-6 5

59. Caldwell, T.: On finding minimum routes in a network with turn penalties. Com-
mun. ACM 4(2), 107–108 (1961)

60. Cambridge Vehicle Information Technology Ltd. Choice routing (2005). http://
www.camvit.com

61. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms. Math.
Programm. Ser. A 73, 129–174 (1996)

http://dx.doi.org/10.1007/978-3-642-13193-6_4
http://dx.doi.org/10.1007/3-540-44808-X_10
http://dx.doi.org/10.1007/978-3-642-13193-6_5
http://www.camvit.com
http://www.camvit.com


Route Planning in Transportation Networks 69

62. Cherkassky, B.V., Goldberg, A.V., Silverstein, C.: Buckets, heaps, lists, and
monotone priority queues. In: Proceedings of the 8th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 1997), pp. 83–92. IEEE Computer Society
Press (1997)

63. Cionini, A., D’Angelo, G., D’Emidio, M., Frigioni, D., Giannakopoulou, K.,
Paraskevopoulos, A.: Engineering graph-based models for dynamic timetable
information systems. In: Proceedings of the 14th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS
2014), OpenAccess Series in Informatics (OASIcs), pp. 46–61 (2014)

64. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

65. Cooke, K., Halsey, E.: The shortest route through a network with time-dependent
intermodal transit times. J. Math. Anal. Appl. 14(3), 493–498 (1966)

66. D’Angelo, G., D’Emidio, M., Frigioni, D., Vitale, C.: Fully dynamic maintenance
of arc-flags in road networks. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276,
pp. 135–147. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30850-5 13

67. George, B.D.: Linear Programming and Extensions. Princeton University Press,
Princeton (1962)

68. Dean, B.C.: Continuous-time dynamic shortest path algorithms. Master’s thesis,
Massachusetts Institute of Technology (1999)

69. Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks with
waiting policies. Networks 44(1), 41–46 (2004)

70. Dean, B.C.: Shortest paths in FIFO time-dependent networks: theory and algo-
rithms. Technical report, Massachusetts Institute Of Technology (2004)

71. Dehne, F., Omran, M.T., Sack, J.-R.: Shortest paths in time-dependent FIFO
networks. Algorithmica 62, 416–435 (2012)

72. Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60–94 (2011)
73. Delling, D., Dibbelt, J., Pajor, T., Wagner, D., Werneck, R.F.: Computing

multimodal journeys in practice. In: Bonifaci, V., Demetrescu, C., Marchetti-
Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 260–271. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38527-8 24

74. Delling, D., Giannakopoulou, K., Wagner, D., Zaroliagis, C.: Timetable informa-
tion updating in case of delays: modeling issues. Technical report 133, Arrival
Technical report (2008)

75. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: Hardware-
accelerated shortest path trees. J. Parallel Distrib. Comput. 73(7), 940–952 (2013)

76. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376–387. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20662-7 32

77. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust distance queries on
massive networks. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737,
pp. 321–333. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44777-2 27

78. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning in road networks. Transp. Sci. (2015)

79. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partition-
ing with natural cuts. In: 25th International Parallel and Distributed Processing
Symposium (IPDPS 2011), pp. 1135–1146. IEEE Computer Society (2011)

80. Delling, D., Goldberg, A.V., Savchenko, R., Werneck, R.F.: Hub labels: theory and
practice. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504,
pp. 259–270. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07959-2 22

http://dx.doi.org/10.1007/978-3-642-30850-5_13
http://dx.doi.org/10.1007/978-3-642-38527-8_24
http://dx.doi.org/10.1007/978-3-642-20662-7_32
http://dx.doi.org/10.1007/978-3-662-44777-2_27
http://dx.doi.org/10.1007/978-3-319-07959-2_22


70 H. Bast et al.

81. Delling, D., Goldberg, A.V., Werneck, R.F.: Faster batched shortest paths in road
networks. In: Proceedings of the 11th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS 2011), OpenAc-
cess Series in Informatics (OASIcs), vol. 20, pp. 52–63 (2011)

82. Delling, D., Goldberg, A.V., Werneck, R.F.: Hub label compression. In: Bonifaci,
V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 18–29. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38527-8 4

83. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D., High-performance
multi-level routing. In: The Shortest Path Problem: Ninth DIMACS Implemen-
tation Challenge, DIMACS Book, vol. 74, pp. 73–92. American Mathematical
Society (2009)

84. Delling, D., Italiano, G.F., Pajor, T., Santaroni, F.: Better transit routing by
exploiting vehicle GPS data. In: Proceedings of the 7th ACM SIGSPATIAL
International Workshop on Computational Transportation Science. ACM Press,
November 2014

85. Delling, D., Katz, B., Pajor, T.: Parallel computation of best connections in public
transportation networks. ACM J. Exp. Algorithm. 17(4), 4. 1–4. 26 (2012)

86. Delling, D., Kobitzsch, M., Luxen, D., Werneck, R.F.: Robust mobile route plan-
ning with limited connectivity. In: Proceedings of the 14th Meeting on Algorithm
Engineering and Experiments (ALENEX 2012), pp. 150–159. SIAM (2012)

87. Delling, D., Kobitzsch, M., Werneck, R.F.: Customizing driving directions
with GPUs. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014.
LNCS, vol. 8632, pp. 728–739. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-09873-9 61

88. Delling, D., Nannicini, G.: Core routing on dynamic time-dependent road net-
works. Informs J. Comput. 24(2), 187–201 (2012)

89. Delling, D., Pajor, T., Wagner, D.: Accelerating multi-modal route planning by
access-nodes. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
587–598. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04128-0 53

90. Delling, D., Pajor, T., Wagner, D.: Engineering time-expanded graphs for faster
timetable information. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.)
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135. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J.
Algorithms 53, 85–112 (2004)

136. Geisberger, R.: Contraction of timetable networks with realistic transfers. In:
Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 71–82. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13193-6 7

137. Geisberger, R.: Advanced route planning in transportation networks. Ph.D. thesis,
Karlsruhe Institute of Technology, February 2011

138. Geisberger, R., Kobitzsch, M., Sanders, P.: Route planning with flexible objective
functions. In: Proceedings of the 12th Workshop on Algorithm Engineering and
Experiments (ALENEX 2010), pp. 124–137. SIAM (2010)

139. Geisberger, R., Luxen, D., Sanders, P., Neubauer, S., Volker, L.: Fast detour com-
putation for ride sharing. In: Proceedings of the 10th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS
2010), OpenAccess Series in Informatics (OASIcs), vol. 14, pp. 88–99 (2010)

140. Geisberger, R., Rice, M., Sanders, P., Tsotras, V.: Route planning with flexible
edge restrictions. ACM J. Exp. Algorithm. 17(1), 1–20 (2012)

141. Geisberger, R., Sanders, P.: Engineering time-dependent many-to-many short-
est paths computation. In: Proceedings of the 10th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS
2010), OpenAccess Series in Informatics (OASIcs), vol. 14 (2010)

142. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

143. Geisberger, R., Schieferdecker, D.: Heuristic contraction hierarchies with approx-
imation guarantee. In: Proceedings of the 3rd International Symposium on Com-
binatorial Search (SoCS 2010). AAAI Press (2010)

144. Geisberger, R., Vetter, C.: Efficient routing in road networks with turn costs. In:
Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 100–111.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20662-7 9

145. Goerigk, M., Heße, S., Müller-Hannemann, M., Schmidt, M.: Recoverable robust
timetable information. In: Proceedings of the 13th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS
2013), OpenAccess Series in Informatics (OASIcs), pp. 1–14 (2013)

http://dx.doi.org/10.1007/978-3-642-13193-6_7
http://dx.doi.org/10.1007/978-3-642-20662-7_9


74 H. Bast et al.

146. Goerigk, M., Knoth, M., Müller-Hannemann, M., Schmidt, M., Schöbel, A.: The
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157. Hilger, M., Köhler, E., Möhring, R.H., Schilling, H., Fast point-to-point shortest
path computations with arc-flags. In: The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, DIMACS Book, vol. 74, pp. 41–72. American Mathe-
matical Society (2009)
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Abstract. The k-means algorithm is one of the most widely used
clustering heuristics. Despite its simplicity, analyzing its running time
and quality of approximation is surprisingly difficult and can lead to
deep insights that can be used to improve the algorithm. In this paper
we survey the recent results in this direction as well as several extension
of the basic k-means method.

1 Introduction

Clustering is a basic process in data analysis. It aims to partition a set of objects
into groups called clusters such that, ideally, objects in the same group are
similar and objects in different groups are dissimilar to each other. There are
many scenarios where such a partition is useful. It may, for example, be used to
structure the data to allow efficient information retrieval, to reduce the data by
replacing a cluster by one or more representatives or to extract the main ‘themes’
in the data. There are many surveys on clustering algorithms, including well-
known classics [45,48] and more recent ones [24,47]. Notice that the title of [47] is
Data clustering: 50 years beyond K-means in reference to the k-means algorithm,
the probably most widely used clustering algorithm of all time. It was proposed
in 1957 by Lloyd [58] (and independently in 1956 by Steinhaus [70]) and is the
topic of this survey.

The k-means algorithm solves the problem of clustering to minimize the sum
of squared errors (SSE). In this problem, we are given a set of points P ⊂ Rd in a
Euclidean space, and the goal is to find a set C ⊂ Rd of k points (not necessarily
included in P ) such that the sum of the squared distances of the points in P
to their nearest center in C is minimized. Thus, the objective function to be
minimized is

cost(P,C) :=
∑

p∈P

min
c∈C

‖p − c‖2,

where ‖ · ‖2 is the squared Euclidean distance. The points in C are called cen-
ters. The objective function may also be viewed as the attempt to minimize the
variance of the Euclidean distance of the points to their nearest cluster centers.
c© Springer International Publishing AG 2016
L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 81–116, 2016.
DOI: 10.1007/978-3-319-49487-6 3
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Also notice that when given the centers, the partition of the data set is implicitly
defined by assigning each point to its nearest center.

The above problem formulation assumes that the number of centers k is
known in advance. How to choose k might be apparent from the application at
hand, or from a statistical model that is assumed to be true. If it is not, then the
k-means algorithm is typically embedded into a search for the correct number
of clusters. It is then necessary to specify a measure that allows to compare
clusterings with different k (the SSE criterion is monotonely decreasing with k
and thus not a good measure). A good introduction to the topic is the overview by
Venkatasubramanian [75] as well as Sect. 5 in the paper by Tibshirani et al. [71]
and the summary by Gordon [39]. In this survey, we assume that k is provided
with the input.

As Jain [47] also notices, the k-means algorithm is still widely used for clus-
tering and in particular for solving the SSE problem. That is true despite a
variety of alternative options that have been developed in fifty years of research,
and even though the k-means algorithm has known drawbacks.

In this survey, we review the theoretical analysis that has been developed
for the k-means algorithm. Our aim is to give an overview on the properties of
the k-means algorithm and to understand its weaknesses, but also to point out
what makes the k-means algorithm such an attractive algorithm. In this survey
we mainly review theoretical aspects of the k-means algorithm, i.e. focus on
the deduction part of the algorithm engineering cycle, but we also discuss some
implementations with focus on scalability for big data.

1.1 The k-Means Algorithm

In order to solve the SSE problem heuristically, the k-means algorithm starts
with an initial candidate solution {c1, . . . , ck} ⊂ Rd, which can be chosen arbi-
trarily (often, it is chosen as a random subset of P ). Then, two steps are alter-
nated until convergence: First, for each ci, the algorithm calculates the set Pi of
all points in P that are closest to ci (where ties are broken arbitrarily). Then,
for each 1 ≤ i ≤ k, it replaces ci by the mean of Pi. Because of this calculation
of the ‘means’ of the sets Pi, the algorithm is also called the k-means algorithm.

The k-Means Algorithm
Input: Point set P ⊆ Rd

number of centers k
1. Choose initial centers c1, . . . , ck of from Rd

2. repeat
3. P1, . . . , Pk ← ∅
4. for each p ∈ P do
5. Let i = arg mini=1,...,k ‖p − ci‖2

6. Pi ← Pi ∪ {p}
7. for i = 1 to k do
8. if Pi 
= ∅ then ci = 1

|Pi|
∑

p∈Pi
p

9. until the centers do not change
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The k-means algorithm is a local improvement heuristic, because replacing
the center of a set Pi by its mean can only improve the solution (see Fact 1
below), and then reassigning the points to their closest center in C again only
improves the solution. The algorithm converges, but the first important question
is how many iterations are necessary until an optimal or good solution is found.
The second natural question is how good the solution will be when the algorithm
stops. We survey upper and lower bounds on running time and quality in Sect. 2.
Since the quality of the computed solution depends significantly on the starting
solution, we discuss ways to choose the starting set of centers in a clever way
in Sect. 3. Then, we survey variants of the basic k-means algorithm in Sect. 4
and alternatives to the k-means algorithm in Sect. 5. In Sect. 6, we consider the
complexity of the SSE problem. Finally, we describe results on the k-means prob-
lem and algorithm for Bregman divergences Sect. 7. Bregman divergences have
numerous applications and constitute the largest class of dissimilarity measure
for which the k-means algorithm can be applied.

2 Running Time and Quality of the Basic k-Means
Algorithm

In this section, we consider the two main theoretical questions about the k-
means algorithm: What is its running time, and does it provide a solution of a
guaranteed quality? We start with the running time.

2.1 Analysis of Running Time

The running time of the k-means algorithm depends on the number of iterations
and on the running time for one iteration. While the running time for one iter-
ation is clearly polynomial in n, d and k, this is not obvious (and in general not
true) for the number of iterations. Yet, in practice, it is often observed that the
k-means algorithm does not significantly improve after a relatively small number
of steps. Therefore, one often performs only a constant number of steps. It is
also common to just stop the algorithm after a given maximum number of iter-
ations, even if it has not converged. The running time analysis thus focuses on
two things. First, what the asymptotic running time of one iteration is and how
it can be accelerated for benign inputs. Second, whether there is a theoretical
explanation on why the algorithm tends to converge fast in practice.

Running Time of One Iteration. A straightforward implementation com-
putes Θ(nk) distances in each iteration in time Θ(ndk) and runs over the com-
plete input point set. We denote this as the ‘naive’ implementation. Asymp-
totically, the running time for this is dominated by the number of iterations,
which is in general not polynomially bounded in n in the worst case (see next
subsection for details). However, in practice, the number of iterations is often
manually capped, and the running time of one iteration becomes the important
factor. We thus want to mention a few practical improvements.
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The question is whether and how it can be avoided to always compute the
distances between all points and centers, even if this does not lead to an asymp-
totic improvement. Imagine the following pruning rule: Let ci be a center in the
current iteration. Compute the minimum distance Δi between ci and any other
center in time Θ(kd). Whenever the distance between a point p and ci is smaller
than Δi/2, then the closest center to p is ci and computing the other k − 1
distances is not necessary. A common observation is that points often stay with
the same cluster as in the previous iteration. Thus, check first whether the point
is within the safe zone of its old center. More complicated pruning rules take
the movement of the points into account. If a point has not moved far compared
to the center movements, it keeps its center allocation. Rules like this aim at
accelerating the k-means algorithm while computing the same clustering as a
näıve implementation. The example pruning rules are from [50].

Accelerating the algorithm can also be done by assigning groups of points
together using sufficient statistics. Assume that a subset P ′ of points is assigned
to the same center. Then finding this center and later updating it based on
the new points can be done by only using three statistics on P ′. These are
the sum of the points (which is a point itself), the sum of the squared lengths
of the points (and thus a constant) and the number of points. However, this
is only useful if the statistic is already precomputed. For low-dimensional data
sets, the precomputation can be done using kd-trees. These provide a hierarchical
subdivision of a point set. The idea now is to equip each inner node with sufficient
statistics on the point set represented by it. When reassigning points to centers,
pruning techniques can be used to decide whether all points belonging to an
inner node have the same center, or whether it is necessary to proceed to the
child nodes to compute the assignment. Different algorithms based on this idea
are given in [10,54,68]. Notice that sufficient statistics are used in other contexts,
too, e.g. as a building block of the well-known data stream clustering algorithm
BIRCH [76].

There are many ways more that help to accelerate the k-means algorithm.
For an extensive overview and more pointers to the literature, see [41].

Worst-Case Analysis. Now we take a closer look at the worst-case number of
iterations, starting with (large) general upper bounds and better upper bounds
in special cases. Then we review results for lower bounds on the number of
iterations and thus on the running time of the basic k-means algorithm. In the
next section, we have a look into work on smoothed analysis for the k-means
algorithm which gives indications on why the k-means algorithm often performs
so well in practice.

Upper Bounds. The worst-case running time to compute a k-clustering of n
points in Rd by applying the k-means algorithm is upper bounded by O(ndk ·T ),
where T is the number of iterations of the algorithm. It is known that the
number of iterations of the algorithm is bounded by the number of partitionings
of the input points induced by a Voronoi-diagramm of k centers. This number
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can be bounded by O(ndk2
) because given a set of k centers, we can move

each of the O(k2) bisectors such that they coincide with d linearly independent
points without changing the partition. For the special case of d = 1 and k < 5,
Dasgupta [31] proved an upper bound of O(n) iterations. Later, for d = 1 and
any k, Har-Peled and Sadri [44] showed an upper bound of O(nΔ2) iterations,
where Δ is the ratio between the diameter and the smallest pairwise distance of
the input points.

Q1

S

Q′
1

Q2 Q3

c1 c2 c3

Fig. 1. Illustration of the upper bound for the k-means algorithm [44].

In the following, we will explain the idea to obtain the upper bound given
in [44]. The input is a set P of n points with spread Δ from the Euclidean line
R. W.l.o.g., we can assume that the minimum pairwise distance in P is 1 and
the diameter of P is Δ. For any natural number k and for any partition of P
into k sets, the clustering cost of P with the means of the subsets as centers is
bounded by O(nΔ2). In particular, this holds for the solution of the k-means
algorithm after the first iteration. Additionally, the clustering cost of P certainly
is ω(1) as we assumed that the minimum pairwise distance in P is 1. Thus, if
we can show that each following iteration decreases the cost by at least some
constant amount, then we are done. Let us now consider the point of time in any
iteration of the k-means algorithm when the cluster centers have been moved to
the means of their respective clusters and the next step is to assign each point
to the new closest cluster center. In this step, there has to be a cluster that is
extended or shrunk from its right end. W.l.o.g. and as illustrated in Fig. 1, let
us assume that the leftmost cluster Q1 is extended from its right end. Let S be
the set of points that join cluster Q1 to obtain cluster Q′

1. Since the minimum
pairwise distance is 1, the distance of the mean of S to the leftmost point in S
is at least (|S|− 1)/2. Similarly, the distance of the mean of Q1 to the rightmost
point in Q1 is at least (|Q1|−1)/2. Furthermore, the distance between any point
in Q1 and any point in S is at least 1. Let μ(X) be the mean of any point set X.
Then, we have ‖μ(Q1)−μ(S)‖ ≥ (|Q1| − 1)/2+ (|S| − 1)/2+1 = (|Q1|+ |S|)/2.
The movement of the mean of the leftmost cluster is at least

‖μ(Q1) − μ(Q′
1)‖ =

∥∥
∥∥μ(Q1) − |Q1|μ(Q1) + |S|μ(S)

|Q1| + |S|
∥∥
∥∥

=
|S|

|Q1| + |S| ‖μ(Q1) − μ(S)‖ ≥ |S|
2

≥ 1
2
.

We will now need the following fact, which is proved in Sect. 6.
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Fact 1. Let
μ :=

1
|P |

∑

p∈P

p

be the mean of a point set P , and let y ∈ Rd be any point. Then, we have
∑

p∈P

‖p − y‖2 =
∑

p∈P

‖p − μ‖2 + |P | · ‖y − μ‖2.

Due to this fact, the result of the above calculation is an improvement of
the clustering cost of at least 1/4, which shows that in each iteration the cost
decreases at least by some constant amount and hence there are at most O(nΔ2)
iterations.

Lower Bounds. Lower bounds on the worst-case running time of the k-means
algorithm have been studied in [13,31,72]. Dasgupta [31] proved that the k-
means algorithm has a worst-case running time of Ω(n) iterations. Using a
construction in some Ω(

√
n)-dimensional space, Arthur and Vassilvitskii [13]

were able to improve this result to obtain a super-polynomial worst-case run-
ning time of 2Ω(

√
n) iterations. This has been simplified and further improved by

Vattani [72] who proved an exponential lower bound on the worst-case running
time of the k-means algorithm showing that k-means requires 2Ω(n) iterations
even in the plane. A modification of the construction shows that the k-means
algorithm has a worst-case running time that, besides being exponential in n, is
also exponential in the spread Δ of the d-dimensional input points for any d ≥ 3.

In the following, we will give a high-level view on the construction presented
in [72]. Vattani uses a special set of n input points in R2 and a set of k =
Θ(n) cluster centers adversarially chosen among the input points. The points
are arranged in a sequence of t = Θ(n) gadgets G0, G1, . . . , Gt−1. Except from
some scaling, the gadgets are identical. Each gadget contains a constant number
of points, has two clusters and hence two cluster centers, and can perform two
stages reflected by the positions of the two centers. In one stage, gadget Gi,
0 ≤ i < t, has one center in a certain position c∗

i , and, in the other stage, the
same center has left the position c∗

i and has moved a little bit towards gadget
Gi+1. Once triggered by gadget Gi+1, Gi performs both of these stages twice in
a row. Performing these two stages happens as follows. The two centers of gadget
Gi+1 are assigned to the center of gravity of their clusters, which results in some
points of Gi+1 are temporarily assigned to the center c∗

i of Gi. Now, the center
of Gi located at c∗

i and the centers of Gi+1 move, so that the points temporarily
assigned to a center of Gi are again assigned to the centers of Gi+1. Then, again
triggered by Gi+1, gadget Gi performs the same two stages once more. There
is only some small modification in the arrangement of the two clusters of Gi+1.
Now, assume that all gadgets except Gt−1 are stable and the centers of Gt−1 are
moved to the centers of gravity of their clusters. This triggers a chain reaction,
in which the gadgets perform 2Ω(t) stages in total. Since, each stage of a gadget
corresponds to one iteration of the k-means algorithm, the algorithm needs 2Ω(n)

iterations on the set of points contained in the gadgets.
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Smoothed Analysis. Concerning the above facts, one might wonder why
k-means works so well in practice. To close this gap between theory and practice,
the algorithm has also been studied in the model of smoothed analysis [12,15,62].
This model is especially useful when both worst-case and average-case analysis
are not realistic and reflects the fact that real-world datasets are likely to con-
tain measurement errors or imprecise data. In case an algorithm has a low time
complexity in the smoothed setting, it is likely to have a small running time on
real-world datasets as well.

Next, we explain the model in more detail. For given parameters n and σ, an
adversary chooses an input instance of size n. Then, each input point is perturbed
by adding some small amount of random noise using a Gaussian distribution with
mean 0 and standard deviation σ. The maximum expected running time of the
algorithm executed on the perturbed input points is measured.

Arthur and Vassilvitskii [15] showed that, in the smoothed setting, the
number of iterations of the k-means algorithm is at most poly(nk, σ−1). This
was improved by Manthey and Röglin [62] who proved the upper bounds
poly(n

√
k, 1/σ) and kkd ·poly(n, 1/σ) on the number of iterations. Finally, Arthur

et al. [12] showed that k-means has a polynomial-time smoothed complexity of
poly(n, 1/σ).

In the following, we will give a high-level view on the intricate analysis pre-
sented in [12]. Arthur et al. show that after the first iteration of k-means, the
cost of the current clustering is bounded by some polynomial in n, k and d. In
each further iteration, either some cluster centers move to the center of gravity of
their clusters or some points are assigned to a closer cluster center or even both
events happen. Obviously, the clustering cost is decreased after each iteration,
but how big is this improvement? Arthur et al. prove that, in expectation, an
iteration of k-means decreases the clustering cost by some amount polynomial
in 1/n and σ. This results in a polynomial-time smoothed complexity.

The key idea to obtain the above lower bound on the minimum improvement
per iteration is as follows. Let us call a configuration of an iteration, defined by
a partition into clusters and a set of cluster centers, good if in the successive iter-
ation either a cluster center moves significantly or reassigning a point decreases
the clustering cost of the point significantly. Otherwise, the configuration is called
bad. Arthur et al. show an upper bound on the probability that a configuration
is bad. The problem is now that there are many possible configurations. So we
cannot take the union bound over all of these possible configurations to show
that the probability of the occurrence of any bad configuration during a run of
k-means is small. To avoid this problem, Arthur et al. group all configurations
into a small number of subsets and show that each subset contains either only
good configurations or only bad configurations. Finally, taking the union bound
over all subsets of configurations leads to the desired result, i.e., proving that
the occurrence of a bad configuration during a run of k-means is small.
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2.2 Analysis of Quality

As mentioned above, the k-means algorithm is a local improvement heuristic. It
is known that the k-means algorithm converges to a local optimum [69] and that
no approximation ratio can be guaranteed [55]. Kanungo et al. [55] illustrate
the latter fact by the simple example given in Fig. 2. In this example, we are
given four input points on the Euclidean line depicted by the first dashed line in
Fig. 2. The distances between the first and second, second and third and third
and fourth point are named x, y and z, respectively. We assume that x < y < z,
so x is the smallest distance and placing two centers in the first two points and
one between the third and fourth costs 2 · x2/4 = x2/2, and this is the (unique)
optimal solution depicted on the second dashed line.

On the third dashed line, we see a solution that is clearly not optimal because
it costs y2/2 and y > x. The approximation ratio of this solution is y2/x2, which
can be made arbitrarily bad by moving the first point to the left and thus
increasing y.

If we choose the initial centers randomly, it can happen that the k-means
algorithm encounters this solution (for example when we pick the first, third and
fourth point as initial centers and keep y < z while increasing y). When finding
the solution, the k-means algorithm will terminate because the assignment of
points to the three centers is unique and every center is the mean of the points
assigned to it.

Thus, the worst-case approximation guarantee of the k-means algorithm is
unbounded.

y z x

input points

optimal centers

heuristic centers

Fig. 2. Example illustrating the fact that no approximation guarantee can be given for
the k-means algorithm [55].

3 Seeding Methods for the k-Means Algorithm

The k-means algorithm starts with computing an initial solution, which can
be done in a number of different ways. Since the k-means algorithm is a local
improvement strategy we can, in principle, start with an arbitrary solution and
then the algorithms runs until it converges to a local optimum. However, it is
also known that the algorithm is rather sensible to the choice of the starting
centers. For example, in the situation in Fig. 2, no problem occurs if we choose
the first, second and third point as the starting centers.
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Often one simply chooses the starting centers uniformly at random, but this
can lead to problems, for example, when there is a cluster that is far away from
the remaining points and that is so small that it is likely that no point of it is
randomly drawn as one of the initial centers. In such a case one must hope to
eventually converge to a solution that has a center in this cluster as otherwise
we would end up with a bad solution. Unfortunately, it is not clear that this
happens (in fact, one can assume that it will not).

Therefore, a better idea is to start with a solution that already satisfies some
approximation guarantees and let the k-means algorithm refine the solution. In
this section we will present methods that efficiently pick a relatively good initial
solution. As discussed later in Sect. 6 there are better approximation algorithms,
but they are relatively slow and the algorithms presented in this section present
a better trade-off between running time and quality of the initial solution.

3.1 Adaptive Sampling

Arthur and Vassilvitskii [14] proposed a seeding method for the k-means algo-
rithm which applies adaptive sampling. They construct an initial set C of k
centers in the following way: The first center is sampled uniformly at ran-
dom. For the ith center, each input point p is sampled with probability
D2(p)/

∑
q∈P D2(q), where P is the input point set, D2(p) = minc1,...,ci−1

||p − ci||2 is the cost of p in the current solution and c1, . . . ci−1 are the cen-
ters chosen so far. The sampling process is referred to as D2-sampling, and the
algorithm consisting of D2-sampling followed by the k-means algorithm is called
k-means++.

We study the progress of D2-sampling in comparison to a fixed optimal solu-
tion. An optimal set of centers partitions P into k optimal clusters. If we could
sample a center from each cluster uniformly at random, we would in expecta-
tion obtain a constant approximation. Since taking a point uniformly at random
can also be described as first choosing the cluster and then picking the point
uniformly at random, we know that the first point will be uniformly from one
(unknown) cluster, which is fine. We want to make sure that this will also approx-
imately be the case for the remaining clusters. The main problem is that there
is a significant probability to sample points from a cluster which we already hit
(especially, if these clusters contain a lot of points). In order to avoid this, we
now sample points with probability proportional to the squared distance from
the previously chosen cluster centers. In this way, it is much more likely to sam-
ple points from the remaining clusters since the reason that these points belong
to a different cluster is that otherwise they would incur a high cost. One can
show that in a typical situation, when one of the remaining clusters is far away
from the clusters we already hit, then conditioned on the fact that we hit this
cluster, the new center will be approximately uniformly distributed within the
cluster. In the end, this process leads to a set of k centers that is an expected
O(log k)-approximation [14].

Thus, D2-sampling is actually an approximation algorithm by itself (albeit
one with a worse approximation guarantee than other approximations). It has a
running time of O(kdn) and is easy to implement. In addition, it serves well as a
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seeding method. Arthur and Vassilvitskii obtain experimental results indicating
that k-means++ outperforms the k-means algorithm in practice, both in quality
and running time. It also leads to better results than just using D2-sampling as
an independent algorithm.

In follow-up work, Aggarwal et al. [7] show that when sampling O(k) centers
instead of k centers, one obtains a constant-factor approximation algorithm for
SSE. This is a bicriteria approximation because in addition to the fact that the
clustering cost might not be optimal, the number of clusters is larger than k.

Adaptive Sampling Under Separation Conditions. Clustering under separation
conditions is an interesting research topic on its own. The idea is that the input to
a clustering problem should have some structure, otherwise, clustering it would
not be meaningful. Separation conditions assume that the optimal clusters can-
not have arbitrary close centers or a huge overlap.

We focus on initialization strategies for the k-means algorithm. In this para-
graph, we will see a result on adaptive sampling that uses a separation condition.
In Sect. 3.2, we will see another example for the use of separation conditions.
Other related work includes the paper by Balcan et al. [18], who proposed the
idea to recover a ‘true’ (but not necessarily optimal) clustering and introduced
assumptions under which this is possible. Their model is stronger than the model
by Ostrovsky et al. [67] that we will describe next and triggered a lot of follow-up
work on other clustering variants.

Ostrovsky et al. [67] analyze adaptive sampling under the following ε-separa-
bility: The input is ε-separated if clustering it (optimally) with k−1 instead of the
desired k clusters increases the cost by a factor of at least 1/ε2. Ostrovsky et al.
show that under this separation condition, an approach very similar to the above
k-means++ seedings performs well1. In their seeding method, the first center is
not chosen uniformly at random, but two centers are chosen simultaneously, and
the probability for each pair of centers is proportional to their distance. Thus,
the seeding starts by picking two centers with rather high distance instead of
choosing one center uniformly at random and then picking a center with rather
high distance to the first center. Ostrovsky et al. show that if the input is ε-
separated, this seeding achieves a (1+f(ε))-approximation for SSE where f(ε) is
a function that goes to zero if ε does so. The success probability of this algorithm
decreases exponentially in k (because there is a constant chance to miss the next
cluster in every step), so Ostrovsky et al. enhance their algorithm by sampling
O(k) clusters and using a greedy deletion process to reduce the number back
to k. Thereby, they gain a linear-time constant-factor approximation algorithm
(under their separation condition) that can be used as a seeding method.

Later, Awasthi et al. [16] improved this result by giving an algorithm where
the approximation guarantee and the separation condition are decoupled, i. e.,
parameterized by different parameters. Braverman et al. [25] developed a stream-
ing algorithm.

1 Notice that though we present these results after [14] and [7] for reasons of presen-
tation, the work of Ostrovsky et al. [67] appeared first.
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Note that ε-separability scales with the number of clusters. Imagine k optimal
clusters with the same clustering cost C, i. e., the total clustering cost is k · C.
Then, ε-separability requires that clustering with k − 1 clusters instead of k
clusters costs at least k · C/ε2. Thus, for more clusters, the pairwise separation
has to be higher.

3.2 Singular Value Decomposition and Best-Fit Subspaces

In the remainder of this section, we will review a result from a different line
of research because it gives an interesting result for the SSE problem when we
make certain input assumptions.

Learning Mixtures of Gaussians. In machine learning, clustering is often done
from a different perspective, namely as a problem of learning parameters of
mixture models. In this setting, a set of observations X is given (in our case,
points) together with a statistical model, i. e., a family of density functions over a
set of parameters Θ = {Θ1, . . . , Θ�}. It is assumed that X was generated by the
parameterized density function for one specific parameter set and the goal is to
recover these parameters. Thus, the desired output are parameters which explain
X best, e. g., because they lead to the highest likelihood that X was drawn.

For us, the special case that the density function is a mixture of Gaussian
distributions on R

d is of special interest because it is very related to SSE. Here,
the set of observations X is a point set which we denote by P . On this topic,
there has been a lot of research lately, which started by Dasgupta [30] who
analyzed the problem under separation conditions. Several improvements were
made with separation conditions [1,11,26,28,33,53,74] and without separation
conditions [21–23,36,51,65]. The main reason why this work cannot be directly
applied to SSE is the assumption that the input data X is actually drawn from
the parameterized density function so that properties of these distributions can
be used and certain extreme examples become unlikely and can be ignored.
However, in [56], the authors prove a result which can be decoupled from this
assumption, and the paper proposes an initialization method for the k-means
algorithm. So, we take a closer look at this work.

Kumar and Kannan [56] assume a given target clustering which is to be
recovered and then show the following. If (1−ε) · |P | points in P satisfy a special
condition which they call proximity condition (which depends on the target
clustering), then applying a certain initialization method and afterwards running
the k-means algorithm leads to a partitioning of the points that misclassifies at
most O(k2εn) points. Kumar and Kannan also show that in many scenarios
like learning of Gaussian mixtures, points satisfy their proximity condition with
high probability.

Notice that for ε = 0 their result implies that all points are correctly classified,
i. e., the optimal partitioning is found. This in particular implies a result for the
k-means algorithm which is the second step of the algorithm by Kumar and
Kannan: It converges to the ‘true’ centers provided that the condition holds for
all points. We take a closer look at the separation condition.
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Separation Condition. To define the proximity condition, consider the |P | × d
matrix A which has the points of P in its rows. Also define the matrix C by
writing the optimal center of the point in row i of A in row i of C (this implies
that there are only k different rows vectors in C). Now, let T1, . . . , Tk be the
target clustering, let μi be the mean of Ti, and let ni be the number of points
in Ti. Then, define

Δrs :=
(

ck√
nr

+
ck√
ns

)
‖A − C‖S

for each r 
= s with r, s ∈ {1, . . . , k}, where c is some constant. The term ‖A−C‖S

is the spectral norm of the matrix A − C, defined by

‖A − C‖S := max
v∈Rd,‖v‖=1

‖(A − C) · v‖2.

A point p from cluster Tr satisfies the proximity condition if, for any s 
= r, the
projection of p onto the line between μr and μs is at least Δrs closer to μr than
to μs.

We have a closer look at the definition. The term A − C is the matrix con-
sisting of the difference vectors, i. e., it gives the deviations of the points to their
centers. The term ‖(A − C) · v‖2 is the projection of these distance vectors into
direction v, i. e., a measure on how much the data is scattered in this direction.
Thus, ‖A−C‖S/n is the largest average distance to the mean in any direction. It
is an upper bound on the variance of the optimal clusters. Assume that ni = n/k
for all i. Then, Δ2

rs = (2c)2k2‖A − C‖2
S/ni is close to being the maximal aver-

age variance of the two clusters in any direction. It is actually larger, because
‖A − C‖S includes all clusters, so Δrs and thus the separation of the points in
Tr and Ts depends on all clusters even though it differs for different r, s.

Seeding Method. Given an input that is assumed to satisfy the above separa-
tion condition, Kumar and Kanan compute an initial solution by projecting
the points onto a lower-dimensional subspace and approximately solving the
low-dimensional instance. The computed centers form the seed to the k-means
method.

The lower-dimensional subspace is the best-fit subspace Vk, i. e., it minimizes
the expression

∑
p∈P minv∈V ‖p − v‖2 among all k-dimensional subspaces V . It

is known that Vk is the subspace spanned by the first k eigenvectors of A, which
can be calculated by singular value decomposition (SVD)2, and that project-
ing points to Vk and solving the SSE optimally on the projected points yields
a 2-approximation. Any constant-factor approximation thus gives a constant
approximation for the original input.

In addition to these known facts, the result by Kumar and Kannan shows
that initializing the k-means algorithm with this solution even yields an optimal
solution as long as the optimal partition satisfies the proximity condition.
2 The computation of the SVD is a well-studied field of research. For an in-depth

introduction to spectral algorithms and singular value decompositions, see [52].
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4 Variants and Extensions of the k-Means Algorithm

The k-means algorithm is a widely used algorithm, but not always in the form
given above. Naming all possible variations of the algorithm is beyond the scope
of this survey and may be impossible to do. We look at two theoretically analyzed
modifications.

Single Point Assignment Step. We call a point in a given clustering misclassified
if the distance to the cluster center it is currently assigned to is longer than
the distance to at least one of the other cluster centers. Hence, in each iteration
of the k-means algorithm, all misclassified points are assigned to their closest
cluster center and then all cluster centers are moved to the means of the updated
clusters. Har-Peled and Sadri [44] study a variant of the k-means algorithm in
which the assignment step assigns only one misclassified point to the closest
cluster center instead of all misclassified points at once as done in the original
algorithm. After such an assignment step, the centers of the two updated clusters
are moved to the means of the clusters. The algorithm repeats this until no
misclassified points exist. Har-Peled and Sadri call their variant SinglePnt. Given
a number of clusters k and a set P of n points with spread Δ from a Euclidean
space Rd, they show that the number of iterations of SinglePnt is upper bounded
by some polynomial in n, Δ, and k.

In the following, we will describe the proof given in [44]. W.l.o.g., we can
assume that the minimum pairwise distance in P is 1 and the diameter of P is
Δ. As we have seen for the classical k-means algorithm, the cost of P is O(nΔ2)
after the first iteration of SinglePnt. The main idea is now to show that, in
each following iteration of SinglePnt, the improvement of the clustering cost is
lower bounded by some value dependent on the ratio between the distance of
the reassigned point to the two involved cluster centers and the size of the two
clusters. Based on this fact, we will prove that O(kn) iterations are sufficient to
decrease the clustering cost by some constant amount, which results in O(kn2Δ2)
iterations in total.

Let Qi and Qj be any two clusters such that, in an assignment step, a point
q ∈ Qj moves from cluster Qj to cluster Qi, i. e., after this step we obtain the
two clusters Q′

i = Qi ∪ {q} and Q′
j = Qj\{q}. Let μ(X) be the mean of any

point set X ⊂ Rd. Then, the movement of the first cluster center is

‖μ(Qi) − μ(Q′
i)‖ =

∥∥
∥∥μ(Qi) −

( |Qi|
|Qi| + 1

μ(Qi) +
1

|Qi| + 1
q

)∥∥
∥∥ =

‖μ(Qi) − q‖
|Qi| + 1

.

Similarly, we have ‖μ(Qj) − μ(Q′
j)‖ = ‖μ(Qj) − q‖/(|Qj | − 1). Due to Fact 1,

the movement of the first cluster center decreases the clustering cost of Q′
i by

(|Qi| + 1)‖μ(Qi) − μ(Q′
i)‖2 = ‖μ(Qi) − q‖/(|Qi| + 1), and the movement of the

second cluster center decreases the clustering cost of Q′
j by (|Qj | − 1)‖μ(Qj) −

μ(Q′
j)‖2 = ‖μ(Qj) − q‖/(|Qj | − 1). It follows that the total decrease in the

clustering cost is at least (‖μ(Qi) − q‖ + ‖μ(Qj) − q‖)2/(2(|Qi| + |Qj |)).
The reassignment of a point q ∈ P is called good if the distance of q to at

least one of the two centers of the involved clusters is bigger than 1/8. Otherwise,
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the reassignment is called bad. If a reassignment is good, then it follows from
the above that the improvement of the clustering cost is at least (1/8)2/(2n) =
1/(128n). Thus, O(n) good reassignments are sufficient to improve the clustering
cost by some constant amount. Next, we show that one out of k+1 reassignments
must be good, which then completes the proof.

For each i ∈ {1, . . . , k}, let Bi be the ball with radius 1/8 whose center is
the i-th center in the current clustering. Since the minimum pairwise distance
in P is 1, each ball can contain at most one point of P . Observe that a point
q ∈ P can only be involved in a bad reassignment if it is contained in more
than one ball. Let us consider the case that, due to a bad reassignment, a ball
Bi loses its point q ∈ P and so has been moved a distance of at most 1/8
away from q. Since the minimum pairwise distance in P is 1, Bi needs a good
reassignment, so that it can again contain a point from P . Next, observe that,
while performing only bad reassignments, a cluster Qi is changed by gaining or
losing the point q contained in Bi. Hence, if a cluster Bi loses q, it cannot gain
it back. Otherwise, the clustering cost would be increased. It follows that the
total number of consecutive bad reassignments is at most k.

Generalization of Misclassification. Har-Peled and Sadri [44] study another vari-
ant of the k-means algorithm, which they call Lazy-k-Means. This variant works
exactly like the original algorithm except that each iteration reassigns only those
points which are significantly misclassified. More precisely, given a k-clustering
of a set P of n points from a Euclidean space Rd and a precision parameter ε,
0 ≤ ε ≤ 1, we call a point q ∈ P (1+ ε)-misclassified if q belongs to some cluster
Qj and there is some other cluster Qi with ‖q − μ(Qj)‖ > (1 + ε)‖q − μ(Qi)‖,
where μ(X) is the mean of some set X ⊂ Rd. Each iteration of Lazy-k-Means
reassigns all (1 + ε)-misclassified points to their closest cluster center and then
moves each cluster center to the mean of its updated cluster. This process is
repeated until there are no (1 + ε)-misclassified points. Note that, for ε = 0,
Lazy-k-Means is equal to the k-means algorithm. For 0 < ε ≤ 1, Har-Peled and
Sadri prove that the number of iteration of Lazy-k-Means is upper bounded by
some polynomial in n, Δ, and ε−1, where Δ is the spread of the point set P .

In the following, we will sketch the proof given in [44]. W.l.o.g., we can assume
that the minimum pairwise distance in P is 1 and the diameter of P is Δ, so
the clustering cost is O(nΔ2) after the first iteration of Lazy-k-Means. The idea
is now to show that every two consecutive iterations lead to a cost improvement
of Ω(ε3), which results in O(nΔ2ε−3) iterations in total. The proof of the lower
bound on the cost improvement is based on the following known fact (see also
Fig. 3).

Fact 2. Given two points c, c′ ∈ Rd with ‖c − c′‖ = �, all points q ∈ Rd

with ‖q − c‖ > (1 + ε)‖q − c′‖ are contained in the open ball whose radius is
R = �(1 + ε)/(ε(2 + ε)) and whose center is on the line containing the segment
cc′ at distance R + �ε/(2(2 + ε)) from the bisector of cc′ and on the same side
of the bisector as c′. The ball is called ε-Apollonius ball for c′ with respect to c.
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R = �(1+ε)
ε(2+ε)

R + �ε
2(2+ε)

c c′

�

Fig. 3. Illustration of the ε-Apollonius ball for a point c′ with respect to a point c.

Let q ∈ P be any (1 + ε)-misclassified point that switches its assignment
from a center c to another center c′ with � = ‖c − c′‖. We also say that c and
c′ are the switch centers of q. Then, based on the fact that the distance of q to
the bisector of cc′ is at least �ε/(2(2 + ε)) (see Fact 2 and Fig. 3) and by using
Pythagorean equality, one can show that the improvement of the clustering cost
for q is at least

‖q − c‖2 − ‖q − c′‖2 ≥ �2ε

2 + ε
.

We call any (1+ε)-misclassified point q ∈ P strongly misclassified if the distance
between its switch centers is at least �0 := ε(2 + ε)/(16(1 + ε)). Otherwise, a
(1+ε)-misclassified point is called weakly misclassified. It follows from the above
inequality that the improvement of the clustering cost caused by reassigning a
strongly misclassified point is at least �20ε/(2 + ε) = Ω(ε3) for 0 < ε ≤ 1. Thus,
if we can show that at least every second iteration of Lazy-k-Means reassigns
some strongly misclassified point, then we are done.

Let us assume that there are only weakly misclassified points, and q is one of
these points with switch centers c and c′. We know that the distance � between
c and c′ is less than �0, which is less than 1/8 for 0 < ε ≤ 1. Furthermore, it
follows from � < �0 that the radius of the ε-Apollonius ball for c′ with respect
to c is less than 1/16 (see also Fig. 4). Since q is contained in this ε-Apollonius
ball, the distance between c′ and q is less than 1/8. Hence, both switch centers
have a distance of less than 1/4 from q. Since the minimum pairwise distance
in P is 1, every center can serve as a switch center for at most one weakly
misclassified point.

Let us consider any weakly misclassified point q with switch centers c and c′,
where c belongs to the cluster that loses q and c′ belongs to the cluster that
gains q. As explained above, both centers have a distance of less than 1/4 from q.
Hence, due to reassigning q, center c is moved by a distance of less than 1/4.
It follows that, after the considered iteration, the distance between c and q
is less than 1/2. Since the minimum pairwise distance in P is 1, every other
point in P has a distance of more than 1/2 to c. Thus, c can only be a switch
center for strongly misclassified points in the next iteration. Furthermore, due
to reassigning q, the gaining center c′ is moved towards q. Since the distance of
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R < 1
16

c c′

� < �0 < 1/8

1/8
q

Fig. 4. Illustration of the fact that each center can serve as a switch center for at most
one weakly misclassified point.

q to all the other points in P is at least 1, no other center can move closer to
q than c′ due to a reassignment of a weakly misclassified point. This means in
the next iteration c′ will still be the closest cluster center to q and q will not be
(1 + ε)-misclassified. As a result, either there are no (1 + ε)-misclassified points
left and the algorithm terminates or there are some strongly misclassified points.
Thus, at least every second iteration reassigns some strongly misclassified points,
which completes the proof.

5 Alternatives to the k-Means Algorithm for Big Data

Again, naming all alternative clustering algorithms that have been proposed is
beyond the scope of this survey. However, we will take a short look at algorithms,
that are developed starting from a theoretical analysis (with respect to the SSE
problem), but that are also implemented and shown to be viable in practice.
We have already discussed one prime example for this type of algorithm, the
k-means++ algorithm by Arthur and Vassilvitskii [14]. The running time of the
seeding is comparable to one iteration of the k-means algorithm (when assum-
ing that drawing random numbers is possible in constant time), so using it as a
seeding method does not have a significant influence on the running time asymp-
totically or in practice. However, it turns the k-means algorithm into an expected
O(log k)-approximation algorithm. A similar example is the local search algo-
rithm by Kanungo et al. [54] that we describe in more detail in Sect. 6. It has
a polynomial worst case running time and provides a constant approximation.
Additionally, it was implemented and showed very good practical behavior when
combined with the k-means algorithm.

However, the research we have discussed in Sect. 2.1 aiming at accelerating
the iterations of the k-means algorithm shows that there is interest in being faster
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than the k-means algorithm (and the constant approximation algorithms), and
this interest increases with the availability of larger and larger amounts of data.
The problem of solving the SSE problem for big data has been researched from a
practical as well as from a theoretical side and in this section, we are interested
in the intersection.

The theoretical model of choice is streaming. The data stream model assumes
that the data can only be read once and in a given order, and that the algorithm
is restricted to small space, e.g. polylogarithmic in the input it processes, but
still computes an approximation. One-pass algorithms and low memory usage are
certainly also desirable from a practical point of view, since random access to the
data is a major slowdown for algorithms, and small memory usage might mean
that all stored information actually fits into the main memory. The k-means
algorithm reads the complete data set in each iteration, and a straightforward
implementation of the k-means++ reads the data about k times for the seeding
alone, and these are reasons why the algorithms do not scale so well for large
inputs.

An old variant of the k-means algorithm, proposed independently of Lloyd’s
work by MacQueen [59], gives a very fast alternative to the k-means algorithm.
It processes the data once, assigns each new data point to its closest center
and updates this center to be the centroid of the points assigned to it. Thus, it
never reassigns points. MacQueen’s k-means algorithm clearly satisfies the first
two requirements for a streaming algorithm, but not the third. Indeed, it is not
surprising that MacQueen’s algorithm does not necessarily converge to a good
solution, and that the solution depends heavily on the start centers and the
order of the input points. The famous streaming algorithm BIRCH [76] is also
very fast and is perceived as producing better clusterings, yet, it still shares the
property that there is no approximation guarantee [37].

Various data stream algorithms for the SSE problem have been proposed, see
for example [29,34,35,38,42,43], achieving (1 + ε)-approximations in one pass
over the data for constant k (and constant d, for some of the algorithms). We
now look at algorithms which lie in between practical and theoretical results.

Local Search and the Stream Framework. Guha et al. [40] develop a frame-
work for clustering algorithms in the data stream setting that they call Stream.
They combine it with a constant factor approximation based on local search.
The resulting algorithm is named StreamLS3. It computes a constant approx-
imation in the data stream setting. StreamLS has originally been designed for
the variant of the SSE problem where the distances are not squared (also called
the k-median problem), but it is stated to work for the SSE problem as well with
worse constants.

The Stream framework reads data in blocks of size m. For each block, it
computes a set of c · k centers that are a constant factor approximation for
the SSE problem with k centers (c is a constant) by using an approximation

3 http://infolab.stanford.edu/∼loc/.

http://infolab.stanford.edu/~loc/
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algorithm A. It thus reduces m points to c · k points, where m is at least nε for
some ε > 0. This is repeated until the number of computed centers reaches m,
i.e. it is repeated for m/(ck) blocks. Then, m2/(ck) points have been be reduced
to m points. These are then again reduced to ck points, i.e. the computed centers
are treated like as input to the same procedure, one level higher in a computation
tree. On the ith level of this tree, ck points represent (m/ck)i input blocks. Thus,
the height of the computation tree is at most O(logm/(ck) n/m) ∈ O(lognε n).
This is actually a constant, since

lognε/(ck) n =
log n

log nε
=

1
ε
.

Thus, the computation tree has constant height. It stores at most m points
on each level, so the storage requirement of the algorithm is Θ(m) = O(nε)
under the assumption that A requires space that is linear in its input size. The
running time of the algorithm is O(ndk) under the assumption that A has linear
running time. Whenever an actual solution to the SSE problem is queried, it
can be produced from the O(m) stored centers by computing a constant factor
approximation by a different algorithm A′. Guha et al. show that the result is a
constant factor approximation for the original input data.

Guha et al. also develop the algorithm LSEARCH which they use as the
algorithm A within their framework. The algorithm StreamLS is the combination
of the Stream framework with the algorithm LSEARCH. LSEARCH is a local
search based algorithm that is based on algorithms for a related problem, the
facility location problem. It is allowed to computed more than k centers, but
additional centers are penalized. The main purpose of LSEARCH is an expected
speed-up compared to other local search based methods with O(n2) running
time.

The experiments included in [40] actually use the SSE criterion to evalu-
ate their results, since the intention is to compare with the k-means algorithm,
which is optimized for SSE. The data sets are around fifty thousand points and
forty dimensions. First, LSEARCH is compared to the k-means algorithm and
found to be about three times slower than the k-means algorithm while pro-
ducing results that are much better. Then, StreamLS is compared to BIRCH
and to StreamKM, the algorithm resulting from embedding the k-means algo-
rithm into the Stream framework. StreamLS and StreamKM compute solutions
of much higher quality than BIRCH, with StreamLS computing the best solu-
tions. BIRCH on the other hand is significantly faster, in particular, its running
time per input point increases much less with increasing stream length.

Adaptions of k-Means++. Ailon et al. [8] use the Stream framework and
combine it with different approximation algorithms. The main idea is to extend
the seeding part of the k-means++ algorithm to an algorithm called k-means#
and to use this algorithm within the above Stream framework description. Recall
that the seeding in k-means++ is done by D2-sampling. This method iteratively
samples k centers. The first one is sampled uniformly at random. For the ith
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center, each input point p is sampled with probability D2(p)/
∑

q∈P D2(q), where
P is the input point set, D2(p) = minc1,...,ci−1 ||p − ci||2 is the cost of p in the
current solution and c1, . . . ci−1 are the centers chosen so far. A set of k centers
chosen in this way is an expected O(log k)-approximation.

The algorithm k-means# starts with choosing 3 log k centers uniformly at
random and then performs k−1 iterations, each of which samples 3 log k centers
according to the above given probability distribution. This is done to ensure that
for an arbitrary optimal clustering of the points, each of the clusters is ‘hit’ with
constant probability by at least one center. Ailon et al. show that the O(k log k)
centers computed by k-means# are a constant factor approximation for the SSE
criterion with high probability4.

To obtain the final algorithm, the Stream framework is used. Recall that
the framework uses two approximation algorithms A and A′. While A can be
a bicriteria approximation that computes a constant factor approximation with
c · k centers, A′ has to compute an approximative solution with k centers. The
approximation guarantee of the final algorithm is the guarantee provided by A′.

Ailon et al. sample k centers by D2-sampling for A′, thus, the overall result
is an expected O(log k) approximation. For A, k-means# is ran 3 log n times to
reduce the error probability sufficiently and then the best clustering is reported.
The overall algorithm needs nε memory for a constant ε > 0.

The overall algorithm is compared to the k-means algorithm and to
MacQueen’s k-means algorithm on data sets with up to ten thousand points
in up to sixty dimensions. While it produces solutions of better quality than the
two k-means versions, it is slower than both.

Ackermann et al. [6] develop a streaming algorithm based on k-means++
motivated from a different line of work5. The ingredients of their algorithms
look very much alike the basic building blocks of the algorithm by Ailon et al.:
sampling more than k points according to the k-means++ sampling method,
organizing the computations in a binary tree and computing the final clustering
with k-means++. There are key differences, though.

Firstly, their work is motivated from the point of view of coresets for the
SSE problem. A coreset S for a point set P is a smaller and weighted set of
points that has approximately the same clustering cost as P for any choice of
k centers. It thus satisfies a very strong property. Ackermann et al. show that
sampling sufficiently many points according to the k-means++ sampling results
in a coreset. For constant dimension d, they show that O(k · (log n)O(1)) points
guarantee that the clustering cost of the sampled points is within an ε-error from
the true cost of P for any set of k centers6.

Coresets can be embedded into a streaming setting very nicely by using a
technique called merge-and-reduce. It works similar as the computation tree of

4 As briefly discussed in Sect. 3.1, it is sufficient to sample O(k) centers to obtain a
constant factor approximation as later discovered by Aggarwal et al. [7].

5 http://www.cs.uni-paderborn.de/fachgebiete/ag-bloemer/forschung/abgeschlossene
/clustering-dfg-schwerpunktprogramm-1307/streamkmpp.html.

6 This holds with constant probability and for any constant ε.

http://www.cs.uni-paderborn.de/fachgebiete/ag-bloemer/forschung/abgeschlossene/clustering-dfg-schwerpunktprogramm-1307/streamkmpp.html
http://www.cs.uni-paderborn.de/fachgebiete/ag-bloemer/forschung/abgeschlossene/clustering-dfg-schwerpunktprogramm-1307/streamkmpp.html
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the Stream framework: It reads blocks of data, computes a coreset for each
block and merges and reduces these coresets in a binary computation tree. Now
the advantage is that this tree can have superconstant height since this can be
cancelled out by adjusting the error ε of each coreset computation. A maximum
height of Θ(log n) means that the block size on the lowest level can be much
smaller than above (recall that in the algorithm by Ailon et al., the block size
was nε). For the above algorithm, a height of Θ(log n) would mean that the
approximation ratio would be Ω(clog n) ∈ Ω(n). By embedding their coreset
construction into the merge-and-reduce technique, Ackermann et al. provide a
streaming algorithm that needs O(k · (log n)O(1)) space and computes a coreset
of similar size for SSE problem. They obtain a solution for the problem by
running k-means++ on the coreset. Thus, the solution is an expected O(log k)-
approximation.

Secondly, Ackermann et al. significantly speed up the k-means++ sampling
approach. Since the sampling is applied again and again, this has a major impact
on the running time. Notice that it is necessary for the sampling to compute D(p)
for all p and to update this after each center that was drawn. When computing
a coreset of m points for a point of � points, a vanilla implementation of this
sampling needs Θ(dm�) time. Ackermann et al. develop a data structure called
coreset tree which allows to perform the sampling much faster. It does, however,
change the sampling procedure slightly, such that the theoretically proven bound
does not necessarily hold any more.

In the actual implementation, the sample size and thus the coreset size is set
to 200 k and thus much smaller than it is supported by the theoretical analysis.
However, experiments support that the algorithm still produces solutions of high
quality, despite these two heuristic changes. The resulting algorithm is called
StreamKM++.

Ackermann et al. test their algorithm on data sets with up to eleven
million points in up to 68 dimensions and compare the performance to BIRCH,
StreamLS, the k-means algorithm and k-means++. They find that StreamLS
and StreamKM++ compute solutions of comparable quality, and much better
than BIRCH. BIRCH is the fastest algorithm. However, StreamKM++ beats
the running time of StreamLS by far and can e.g. compute a solution for the
largest data set and k = 30 in 27% of the running time of StreamLS. For small
dimensions or higher k, the speed up is even larger. The k-means algorithm and
k-means++ are much slower than StreamLS and thus also than StreamKM++.
It is to be expected that StreamKM++ is faster than the variant by Ailon et al.
as well.

Sufficient Statistics. The renown algorithm BIRCH7 [76] computes a clus-
tering in one pass over the data by maintaining a preclustering. It uses a data
structure called clustering feature tree, where the term clustering feature denotes
the sufficient statistics for the SSE problem. The leaves of the tree represent sub-
sets of the input data by their sufficient statistics. At the arrival of each new
7 http://pages.cs.wisc.edu/vganti/birchcode/.

http://pages.cs.wisc.edu/vganti/birchcode/
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point, BIRCH decides whether to add the point to an existing subset or not. If
so, then it applies a rule to choose one of the subsets and to add the point to it
by updating the sufficient statistics. This can be done in constant time. If not,
then the tree grows and represents a partitioning with one more subset.

BIRCH has a parameter for the maximum size of the tree. If the size of the
tree exceeds this threshold, then it rebuilds the tree. Notice that a subset repre-
sented by its sufficient statistics cannot be split up. Thus, rebuilding means that
some subsets are merged to obtain a smaller tree. After reading the input data,
BIRCH represents each subset in the partitioning by a weighted point (which is
obtained from the sufficient statistics) and then runs a clustering algorithm on
the weighted point set.

The algorithm is very fast since updating the sufficient statistics is highly
efficient and rebuilding does not occur too often. However, the solutions com-
puted by BIRCH are not guaranteed to have a low cost with respect to the SSE
cost function.

Fichtenberger et al. [37] develop the algorithm BICO8. The name is a combi-
nation of the words BIRCH and coreset. BICO also maintains a tree which stores
a representation of a partitioning. Each node of this tree represents a subset by
its sufficient statistics.

The idea of BICO is to improve the decision if and where to add a point to a
subset in order to decrease the error of the summary. For this, BICO maintains
a maximum error value T . A subset is forbidden to induce more error than T .
The error of a subset is measured by the squared distances of all points in the
subset to the centroid because in the end of the computation, the subset will be
represented by the centroid.

For a new point, BICO searches for the subset whose centroid is closest to
the point. BICO first checks whether the new point lies within a certain radius
of this centroid since it wants to avoid to use all the allowed error of a subset for
one point. If the point lies outside of the radius, a new node is created directly
beneath the root of the tree for the new point. Otherwise, the point is added to
this subset if the error keeps being bounded by T . If the point does not pass this
check, then it is passed on to the child node of the current node whose centroid
is closest. If no child node exists or the point lies without the nodes radius, then
a new child node is created based on the new point.

If the tree gets too large, then T is doubled and the tree is rebuilt by merging
subsets whose error as a combined subset is below the new T .

For constant dimension d, Fichtenberger et al. show that the altered method
is guaranteed to compute a summary that satisfies the coreset property for a
threshold value that lies in Θ(k · log n). Combined with k-means++, BICO gives
an expected O(log k)-approximation.

The implementation of BICO faces the same challenge as StreamKM++,
k-means or k-means++, namely, it needs to again and again compute the dis-
tance between a point and its closest neighbor in a stored point set. BICO
has one advantage, though, since it is only interested in this neighbor if it

8 http://ls2-www.cs.uni-dortmund.de/bico.

http://ls2-www.cs.uni-dortmund.de/bico
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lies within a certain radius of the new point. This helps in developing heuris-
tics to speed up the insertion process. The method implemented in BICO has
the same worst case behavior as iterating through all stored points but can be
much faster.

Fichtenberger et al. compare BICO to StreamKM++, BIRCH and Mac-
Queen’s k-means algorithm on the same data sets as in [6] and one additional
128-dimensional data set. In all experiments, the summary size of BICO is set
to 200 k, thus the summary is not necessarily a coreset. The findings are that
BICO and StreamKM++ compute the best solutions, while BIRCH and Mac-
Queen are the fastest algorithms. However, for small k, the running time of
BICO is comparable to BIRCH and MacQueen. The running time of BICO is
O(ndm), where m is the chosen summary size, thus, the increase in the running
time for larger k stems from the choice m = 200 k. For larger k, the running
time can be decreased to lie below the running time of BIRCH by reducing m
at the cost of worse solutions. In the tested instances, the quality was then still
higher than for BIRCH and MacQueen.

6 Complexity of SSE

Before we consider variants of the k-means algorithm that deal with objective
functions different from SSE, we conclude our SSE related study by looking at
the complexity of SSE in general. We start by delivering a proof to the following
fact which we already used above. We also reflect on the insights that it gives
us on the structure of optimal solutions of the SSE problem.

Fact 3. Let μ := 1
|P |

∑
p∈P p be the mean of a point set P , and let y ∈ Rd be

any point. Then, we have
∑

p∈P

‖p − y‖2 =
∑

p∈P

‖p − μ‖2 + |P | · ‖y − μ‖2.

Proof. The result is well known and the proof is contained in many papers. We
in particular follow [55]. First note that

∑

p∈P

‖p − y‖2 =
∑

p∈P

‖p − μ + μ − y‖2

=
∑

p∈P

‖p − μ‖2 + 2(μ − y)T
∑

p∈P

(p − μ) + |P | · ‖y − μ‖2.

Thus, the statement follows from

∑

p∈P

(p − μ) =
∑

p∈P

p − |P | · μ =
∑

p∈P

p − |P | 1
|P |

∑

p∈P

p = 0.

The first consequence of Fact 3 is that the SSE problem can be solved analyt-
ically for k = 1: The mean μ minimizes the cost function, and the optimal cost
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is
∑

p∈P ‖p − μ‖2. For k ≥ 2, the optimal solution induces a partitioning of the
input point set P into subsets of P with the same closest center. These subsets
are called clusters. The center of a cluster is the mean of the points contained
in the cluster (otherwise, exchanging the center by the mean would improve the
solution). At the same time, every partitioning of the point set induces a feasible
solution by computing the mean of each subset of the partitioning. This gives
a new representation of an optimal solution as a partitioning of the input point
set that minimizes the induced clustering cost.

Notice that we cannot easily enumerate all possible centers as there are infi-
nitely many possibilities. By our new view on optimal solutions, we can instead
iterate over all possible partitionings. However, the number of possible parti-
tionings is exponential in n for every constant k ≥ 2. We get the intuition that
the problem is hard, probably even for small k. Next, we see a proof that this is
indeed the case. Notice that there exist different proofs for the fact that SSE is
NP-hard [9,32,60] and the proof presented here is the one due to Aloise et al. [9].

NP-Hardness of SSE. We reduce the following problem to SSE with k = 2.
Given a graph G = (V,E), a cut is a partitioning of the nodes V into subsets
X ⊂ V and V \X ⊂ V . By the density of a cut (X,V \X), we mean the ratio
|E(X)|/(|X| · |V \X|), where E(X) is the set of edges having one endpoint in
X and the other endpoint in V \X. Now, our version of the densest cut problem
asks for the cut with the highest density. This problem is NP-hard because it
is equivalent to finding the cut with minimal density in the complement graph,
which is known to be NP-hard due to [64].

We define a type of incidence matrix M in the following way. In a |V | × |E|-
matrix, the entry in row i and column j is 0 if edge j is not incident to vertex i.
Otherwise, let i′ be the other vertex to which j is incident. Then, we arbitrarily
set one of the two entries (i, j) and (i′, j) to 1 and the other one to −1. For an
example, see Fig. 5(a) and (b). We interpret the rows of M as points in R|E|

and name the set of these points P (V ). Each subset X ⊆ V then corresponds
to a subset P (X) ⊆ P (V ), and a cut (X,V \X) corresponds to a partitioning
(P (X), P (X\V )) of these points and thus to a 2-clustering. We take a closer look
at the cost of cluster P (X) which is the sum of the costs of all points in it. For
each point, the cost is the squared distance to the mean of P (X), and this cost
can be calculated by summing up the squared differences in each coordinate.
Remember that the coordinates correspond to edges in E. Thus, one way to
analyze the cost is to figure out how much cost is caused by a specific edge.
For each edge ej = (x, y), there are three possibilities for the clustering cost: If
x, y ∈ X, then the mean of P (X) has a 0 in the jth coordinate, and thus the
squared distance is 0 for all coordinates except those corresponding to x and y,
and it is 1 for these two. If x, y /∈ X, then the mean of P (X) also has a 0 in
the jth coordinate, and as all points in P (X) also have 0 at the jth coordinate,
this coordinate contributes nothing to the total cost. If either x ∈ X, y /∈ X
or x /∈ X, y ∈ X and thus ej ∈ E(X), then the mean has ±1/|X| as its jth
coordinate, which induces a squared distance of (0 − 1/|X|)2 for |X| − 1 of the
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(a) A simple example,

e1 e2 e3 e4

v1

v2

v3

v4

⎛
⎜⎜⎝

1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

⎞
⎟⎟⎠

(b) its corresponding matrix

e1 e2 e3 e4

v1

v2

v3

v4

⎛
⎜⎜⎝

1 0 0 −1
0 −1 1 0

−1 1 0 0
0 0 −1 1

⎞
⎟⎟⎠

(c) and the cut X = {v1, v3}.

Fig. 5. An example for the reduction from our densest cut problem to SSE.

points, and a squared distance of (1− 1/|X|)2 for the one endpoint that is in X.
Thus, the total cost of P (X) is

∑

ej=(x,y)∈E,x,y∈X

2 +
∑

ej=(x,y)∈E(X)

[
(|X| − 1)

1
|X|2 + (1 − 1/|X|)2

]

=
∑

ej=(x,y)∈E,x,y∈X

2 + |E(X)|
(

1 − 1
|X|

)
.

This analysis holds for the clustering cost of P (V \X) analogously. Addition-
ally, every edge is either in E(X), or it has both endpoints in either P (X) or
P (V \V ). Thus, the total cost of the 2-clustering induced by X is

2(|E| − |E(X)|) + |E(X)|
(

2 − 1
|X| − 1

|V \X|
)

= 2|E| − |E(X)| · |V |
|X| · |V \X| .

Finding the optimal 2-clustering means that we minimize the above term.
As 2|E| and |V | are the same for all possible 2-clusterings, this corresponds to
finding the clustering which maximizes |E(X)|/(|X| · |V \X|). Thus, finding the
best 2-clustering is equivalent to maximizing the density.

Notice that the above transformation produces clustering inputs which are
|E|-dimensional. Thus, SSE is hard for constant k and arbitrary dimension. It
is also hard for constant dimension d and arbitrary k [60]. For small dimension
and a small number of clusters k, the problem can be solved in polynomial time
by the algorithm of Inaba et al. [46].
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Approximation Algorithms. This section is devoted to the existence of approx-
imation algorithms for SSE. First, we convince ourselves that there is indeed
hope for approximation algorithms with polynomial running time even if k or
d is large. Above, we stated that we cannot solve the problem by enumerating
all possible centers as there are infinitely many of them. But what if we choose
centers only from the input point set? This does not lead to an optimal solution:
Consider k = 1 and a point set lying on the boundary of a circle. Then the
optimal solution is inside the circle (possibly its center) and is definitely not in
the point set. However, the solution cannot be arbitrarily bad. Let k = 1 and let
c ∈ P be a point p ∈ P which minimizes ‖p − μ‖2, i. e., it is the point closest to
the optimal center (breaking ties arbitrarily). Then,

cost(P, {c}) =
∑

p∈P ‖p − c‖2 Fact 1
=
∑

p∈P

(
‖p − μ‖2 + ‖c − μ‖2

)

≤ ∑
p∈P

(
‖p − μ‖2 + ‖p − μ‖2

)
= 2 cost(P, {μ}).

Thus, a 2-approximated solution to the 1-means problem can be found in
quadratic time by iterating through all input points. For k > 1, the calcu-
lation holds for each cluster in the optimal solution, and thus there exists a
2-approximate solution consisting of k input points. By iterating through all
O(nk) possible ways to choose k points from P , this gives a polynomial-time
approximation algorithm for constant k.

For arbitrary k, we need a better way to explore the search space, i. e., the
possible choices of centers out of P to gain a constant-factor approximation
algorithm with polynomial running time. Kanungo et al. [55] show that a simple
swapping algorithm suffices. Consider a candidate solution, i. e., a set C ⊆ P
with |C| = k. The swapping algorithm repeatedly searches for points c ∈ C
and p ∈ P\C with cost(P,C) > cost(P,C ∪ {p}\{c}), and then replaces c by p.
Kanungo et al. prove that if no such swapping pair is found, then the solution
is a 25-approximation of the best possible choice of centers from P . Thus, the
swapping algorithm converges to a 50-approximation9. In addition, they show
that in polynomial time by always taking swaps that significantly improve the
solution, one only loses a (1+ε)-factor in the approximation guarantee. This gives
a very simple local search algorithm with constant approximation guarantee.
Kanungo et al. also refine their algorithm in two ways: First, they use a result
by Matoušek [63] that says that one can find a set S of size O(nε−d log(1/ε)) in
time O(n log n + nε−d log(1/ε)) such that the best choice of centers from S is
a (1 + ε)-approximation of the best choice of centers from Rd. This set is used
to choose the centers from instead of simply using P . Second, they use q-swaps
instead of the 1-swaps described before. Here, q′ ≤ q centers are simultaneously
replaced by a set of q′ new centers. They show that this leads to a (9 + ε)-
approximation and also give a tight example showing that 9 is the best possible
approximation ratio for swapping-based algorithms.

The work of Kanungo et al. is one step in a series of papers developing
approximation algorithms for SSE. The first constant approximation algorithm
9 Note that Kanungo et al. use a better candidate set and thus give a (25 + ε)-

approximation.
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was given by Jain and Vazirani [49] who developed a primal dual approxima-
tion algorithm for a related problem and extended it to the SSE setting. Inaba
et al. [46] developed the first polynomial-time (1+ε)-approximation algorithm for
the case of k = 2 clusters. Matušek [63] improved this and obtained a polynomial-
time (1 + ε)-approximation algorithm for constant k and d with running time
O(n logk n) if ε is also fixed. Further (1 + ε)-approximations were for example
given by [29,34,38,43,57,73]. Notice that all cited (1 + ε)-approximation algo-
rithms are exponential in the number of clusters k and in some cases additionally
in the dimension d.

Inapproximability Results. Algorithms with a (1 + ε)-guarantee are only known
for the case that k is a constant (and ε has to be a constant, too). Recently,
Awasthi et al. [17] showed that there exists an ε such that it is NP-hard to
approximate SSE within a factor of (1 + ε) for arbitrary k and d. Their proof
holds for a very small value of ε, and a larger inapproximability result is not yet
known.

7 k-Means with Bregman Divergences

The k-means problem can be defined for any dissimilarity measure. An important
class of dissimilarity measures are Bregman divergences. Bregman divergences
have numerous applications in machine learning, data compression, speech and
image analysis, data mining, or pattern recognition. We review mainly results
known for the k-means algorithm when applied to Bregman divergences. As we
will see, for Bregman divergences the k-means method can be applied almost
without modifications to the algorithm.

To define Bregman divergences, let D ⊆ Rd, and let Φ : D → R be a strictly
convex function that is differentiable on the relative interior ri(D). The Bregman
divergence dΦ : D × ri(D) → R≥0 ∪ {∞} is defined as

dΦ(x, c) = Φ(x) − Φ(c) − (x − c)T ∇Φ(c),

where ∇Φ(c) is the gradient of Φ at c. The squared Euclidean distance is a
Bregman divergence. Other Bregman divergences that are used in various appli-
cations are shown on Fig. 6.

Bregman divergences have a simple geometric interpretation that is shown in
Fig. 7. For c fixed, let fc : Rd → R be defined by fc(x) : Φ(c) + (x − c)T ∇Φ(c).
The function fc is a linear approximation to Φ at point c. Then dΦ(x, c) is
the difference between the true function value Φ(x) and the value fc(x) of the
linear approximation to Φ at c. Bregman divergences usually are asymmetric and
violate the triangle inequality. In fact, the only symmetric Bregman divergences
are the Mahalanobis divergences (see Fig. 6).

As one can see from Fig. 6, for some Bregman divergences dΦ there exist
points x, c such that dΦ(x, c) = ∞. We call these pairs of points singularities. In
most results and algorithms that we describe these singularities require special
treatment or have to be defined away.
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domain D Φ(x) dΦ(p, q)

squared �2-norm squared Euclidean distance
d ‖x‖2

2 ‖x − c‖2
2

generalized norm Mahalanobis distance
d xT Ax (x − c)T A(x − c)

neg. Shannon entropy Kullback-Leibler divergence

[0, 1]d
∑

xi ln(xi)
∑

ci ln( ci
xi

)

Burg entropy Itakura-Saito divergence
d
+

∑ − ln(xi)
∑ ci

xi
− ln( ci

xi
) − 1

harmonic (α > 0) harmonic divergence (α > 0)
d
+

∑
1

xα
i

∑
1

cα
i

− α+1
xα

i
+ αci

xα+1
i

norm-like (α ≥ 2) norm-like divergence (α ≥ 2)
d
+

∑
xα

i

∑
ci + (α − 1)xα

i + αcix
α−1
i

exponential Exponential loss
d ∑

exi
∑

eci − (ci − xi + 1)exi

Hellinger-like Hellinger-like divergence

(−1, 1)d ∑ −√
1 − x2

i

∑ 1−cixi√
1−x2

i

− √
1 − c2i

Fig. 6. Some Bregman divergences.

Φ

fc(x) = Φ(c) + (x − c)T ∇Φ(c)

dΦ(x, c)

c x

Fig. 7. Geometric interpretation of Bregman divergences

k-Means with Bregman Divergences. Similar to SSE we can define the minimum
sum-of-Bregman-errors clustering problem (SBE). In this problem we are given
a fixed Bregman divergence dΦ with domain D and a set of points P ⊂ D. The
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aim is to find a set C ⊂ ri(D) of k points (not necessarily included in P ) such
that the sum of the Bregman divergences of the points in P to their nearest
center in C is minimized. Thus, the cost function to be minimized is

costΦ(P,C) :=
∑

p∈P

min
c∈C

dΦ(p, c).

The points in C are called centers. Because of the (possible) asymmetry of dΦ

the order of arguments in dΦ(x, c) is important.
For any Bregman divergence the optimal solution for k = 1 is given by

the mean of the points in P . More precisely, Fact 1 completely carries over to
Bregman divergences (see [20]).

Fact 4. Let dΦ : D × ri(D) → R≥0 ∪ {∞} be a Bregman divergence and P ⊂ D,
|P | < ∞ and let

μ =
1

|P |
∑

p∈P

be the mean of set P . For any y ∈ ri(D):
∑

p∈P

dΦ(p, y) =
∑

p∈P

dΦ(p, μ) + |P | · dΦ(μ, y).

Proof. It suffices to show the final statement of the Fact.
∑

p∈P

dΦ(p, y) =
∑

p∈P

Φ(p) − Φ(y) − (x − s)T ∇Φ(y)

=
∑

p∈P

Φ(p) − Φ(μ) + Φ(μ) − Φ(y) − (x − s)T ∇Φ(y)

=
∑

p∈P

(Φ(p) − Φ(μ)) + |P |(Φ(μ) − Φ(y)) −
⎛

⎝
∑

p∈P

(p − y)

⎞

⎠

T

∇Φ(y)

=
∑

p∈P

(Φ(p) − Φ(μ)) + |P |(Φ(μ) − Φ(y) − (μ − y)T ∇Φ(y)
)

=
∑

p∈P

dΦ(p, μ) + |P | · dΦ(μ, y),

where the last equality follows from
∑

p∈P

(p − μ)T = 0 and
∑

p∈P

(p − μ)T ∇Φ(μ) = 0.

Moreover, for all Bregman divergences, any set of input points P , and any set of
k centers {μ1, . . . , μk}, the optimal partitions for SBE induced by the centers μj

can be separated by hyperplanes. This was first explicitly stated in [20]. More
precisely, the Bregman bisector

{
x ∈ D | dΦ(x, c1) = dΦ(x, c2)

}
between any two
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points c1, c2 ∈ D ⊆ Rd is always a hyperplane. i.e. for any pair of points c1, c2

there are a ∈ Rd, b ∈ R such that
{
x ∈ D | dΦ(x, c1) = dΦ(x, c2)

}
=

{
x ∈ D | aT x = b

}
. (1)

As a consequence, SBE can be solved for any Bregman divergence in time
O(nk2d). Hence for fixed k and d, SBE is solvable in polynomial time. However,
in general SBE is an NP-hard problem. This was first observed in [4] and can
be shown in two steps. First, let the Bregman divergence dΦ be a Mahalanobis
divergence for a symmetric, positive definite matrix A. Then there is a unique
symmetric, positive definite matrix B such that A = BT B, i.e. for any p, q

dΦ(p, q) = (p − q)T A(p − q) = ‖Bp − Bq‖2. (2)

Therefore, SBE with dΦ is just SSE for a linearly transformed input set. This
immediately implies that for Mahalanobis divergences SBE is NP-hard. Next, if
Φ is sufficiently smooth, the Hessian ∇2Φt of Φ at point t ∈ ri(D) is a symmetric,
positive definite matrix. Therefore, dΦ locally behaves like a Mahalanobis diver-
gence. This can used to show that with appropriate restriction on the strictly
convex function Φ SBE is NP-hard.

Approximation Algorithms and μ-Similarity. No provable approximation algo-
rithms for general Bregman divergences are known. Approximation algorithms
either work for specific Bregman divergences or for restricted classes of Bregman
divergences. Chaudhuri and McGregor [27] give an O(log(n)) approximation
algorithm for the Kullback-Leibler divergence (n is the size of the input set P ).
They obtain this result by exploiting relationships between the Kullback-Leibler
divergence and the so-called Hellinger distortion and between the Hellinger dis-
tortion and the squared Euclidean distance.

The largest subclass of Bregman divergences for which approximation algo-
rithms are known to exist consists of μ-similar Bregman divergences. A Bregman
divergence dΦ defined on domain D × ri(D) is called μ-similar if there is a sym-
metric, positive definite matrix A and a constant 0 < μ ≤ 1 such that for all
(x, y) ∈ D × ri(D)

μ · dA(x, y) ≤ dΦ(x, y) ≤ dA(x, y). (3)

Some Bregman divergences are (trivially) μ-similar. Others, like the Kullback-
Leibler divergence or the Itakura-Saito divergence become μ-similar if one
restricts the domain on which they are defined. For example, if we restrict
the Kullback-Leibler divergence to D = [λ, ν]d for 0 < λ < ν ≤ 1, then
the Kullback-Leibler divergence is λ

ν -similar. This can be shown by looking
at the first order Taylor series expansion of the negative Shannon entropy
Φ(x1, . . . , xd) =

∑
xi ln(xi).

μ-similar Bregman divergences approximately behave like Mahalanobis diver-
gences. Due to (2) Mahalanobis divergences behave like the squared Euclid-
ean distance. Hence, one can hope that μ-similar Bregman divergences behave
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roughly like the squared Euclidean distance. In fact, it is not too difficult to
show that the swapping algorithm of Kanungo et al. [55] can be generalized to
μ-similar Bregman divergences to obtain approximation algorithms with approx-
imation factor 18/μ2 + ε for arbitrary ε > 0. Whether one can combine the tech-
nique of Kanungo et al. with Matoušek’s technique [63] to obtain better constant
factor approximation algorithms is not known.

In the work of Ackermann et al. [5], μ-similarity has been used to obtain
a probabilistic (1 + ε)-approximation algorithm for SBE, whose running time
is exponential in k, d, 1/ε, and 1/μ, but linear in |P |. Building upon results
in [57], Ackermann et al. describe and analyze an algorithm to solve the
k-median problem for metric and non-metric distance measures D that satisfy
the following conditions.

(1) For k = 1, optimal solutions to the k-median problem with respect to dis-
tance D can be computed efficiently.

(2) For every δ, γ > 0 there is a constant mδ,γ such that for any set P , with
probability 1 − δ the optimal 1-median of a random sample S of size mδ,γ

from P is a (1 + γ)-approximation to the 1-median for set P .

Together, (1) and (2) are called the [γ, δ]-sampling property. Using the same
algorithm as in [57] but a combinatorial rather than geometric analysis,
Ackermann et al. show that for any distance measure D satisfying the [γ, δ]-
sampling property and any ε > 0 there is an algorithm that with constant prob-
ability returns a (1 + ε)-approximation to the k-median problem with distance
measure D. The running time of the algorithm is linear in n, the number of input
points, and exponential in k, 1/ε, and the parameter mδ,ε/3 from the sampling
property. Finally, Ackermann et al. show that any μ-similar Bregman divergence
satisfies the [δ, γ]-sampling property with parameter mδ,γ = 1

γδμ . Overall, this
yields a (1+ε) algorithm for SBE for μ-similar Bregman divergences with running
time linear in n, and exponential in k, 1/ε, 1/μ.

The k-Means Algorithm for Bregman Divergences. The starting point for much
of the recent research on SBE for Bregman divergences is the work by Banerjee
et al. [20]. They were the first to explicitly state Fact 4 and describe the k-means
algorithm (see page 2) as a generic algorithm to solve SBE for arbitrary Bregman
divergences. Surprisingly, the k-means algorithm cannot be generalized beyond
Bregman divergences. In [19] it is shown, that under some mild smoothness con-
ditions, any divergence that satisfies Fact 4 is a Bregman divergence. Of course,
this does not imply that variants or modifications of the k-means algorithm can-
not be used for distance measures other than Bregman divergences. However,
in these generalizations cluster centroids cannot be used as optimizers in the
second step, the re-estimation step.

Banerjee et al. already showed that for any Bregman divergence the k-means
algorithm terminates after a finite number of steps. In fact, using the linear
separability of intermediate solutions computed by the k-means algorithm (see
Eq. 1), for any Bregman divergence the number of iterations of the k-means
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algorithm can be bounded by O(nk2d). Since the squared Euclidean distance is
a Bregman divergence it is clear that no approximation guarantees can be given
for the solutions the k-means algorithm finds for SBE.

1. Lower Bounds. Manthey and Röglin extended Vattani’s exponential lower
bound for the running time of the k-means algorithm to any Bregman diver-
gence dΦ defined by a sufficiently smooth function Φ. In their proof they use an
approach similar to the approach used by Ackerman et al. to show that SBE is
NP-hard. Using (2) Manthey and Röglin first extend Vattani’s lower bound to
any Mahalanobis divergence. Then, using the fact that any Bregman divergence
dΦ with sufficiently smooth Φ locally resembles some Mahalanobis divergence
dA, Manthey and Röglin show that a lower bound for the Mahalanobis diver-
gence dA carries over to a lower bound for the Bregman divergence dΦ. Hence,
for any smooth Bregman divergence the k-means algorithm has exponential run-
ning time. Moreover, Manthey and Röglin show that for the k-means algorithm
the squared Euclidean distance, and more generally Mahalanobis divergences,
are the easiest Bregman divergences.

2. Smoothed Analysis. Recall that the smoothed complexity of the k-means algo-
rithm is polynomial in n and 1/σ, when each input point is perturbed by random
noise generated using a Gaussian distribution with mean 0 and standard devia-
tion σ, a result due to Arthur, Manthey, and Röglin [12]. So far, this result has not
been generalized to Bregman divergences. For almost any Bregman divergence
dΦ Manthey and Röglin [61] prove two upper bounds on the smoothed complex-
ity of the k-means algorithm. The first bound is of the form poly(n

√
k, 1/σ), the

second is of the form kkd · poly(n, 1/σ). These bounds match bounds that Man-
they and Rögin achieved for the squared Euclidean distance in [62]. Instead of
reviewing their proofs, we will briefly review two technical difficulties Manthey
and Röglin had to account for.

Bregman divergences dΦ : D× ri(D) → R≥0 ∪ {∞} like the Kullback-Leibler
divergence are defined on a bounded subset of some Rd. Therefore perturb-
ing a point in D may yield a point for which the Bregman divergence is not
defined. Moreover, whereas the Gaussian noise is natural for the squared Euclid-
ean distance this is by no means clear for all Bregman divergences. In fact,
Banerjee et al. [20] already showed a close connection between Bregman diver-
gences and exponential families, indicating that noise chosen according to an
exponential distribution may be appropriate for some Bregman divergences.
Manthey and Röglin deal with these issues by first introducing a general and
abstract perturbation model parametrized by some σ ∈ (0, 1]. Then Manthey
and Röglin give a smoothed analysis of the k-means algorithm for Bregman
divergences with respect to this abstract model. It is important to note that as
in the squared Euclidean case, the parameter σ measures the amount of random-
ness in the perturbation. Finally, for Bregman divergences like the Mahalanobis
divergences, the Kullback-Leibler divergence, or the Itakura-Saito Manthey and
Röglin instantiate the abstract perturbation model with some perturbations
schemes using explicit distributions.
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Singularities of Bregman divergences are the second technical difficulty that
Manthey and Röglin have to deal with. For each Bregman divergence dΦ they
introduce two parameters 0 < ζ ≤ 1 and ξ ≥ 1 that in some sense measures
how far away dΦ is from being a Mahalanobis divergence. This resembles the
μ-similarity introduced by Ackermann et al. [5]. Whereas for many Bregman
divergences the parameter μ can only be defined by restricting the domain of
the divergence, this is not necessary in the approach by Manthey and Rögin.
However, their upper bounds on the smoothed complexity of the k-means algo-
rithm for Bregman divergences are not uniform, instead for any specific Bregman
divergence the bound depends (polynomially) on the values ξ and 1/ζ.

It is still an open problem whether the polynomial bound of Arthur et al. [12]
on the smoothed complexity of the k-means algorithm can be generalized to
Bregman divergences. Surprisingly, even for general Mahalanobis divergences
this is not known. As Manthey and Röglin mention, at this point polynomial
bounds on the smoothed complexity of the k-means algorithm can only be
achieved for Mahalanobis divergences dA and input sets P , where the largest
eigenvalue of A is bounded by a polynomial in |P |.
3. Seeding Methods. In [2] the k-means++ randomized seeding algorithm by
Arthur and Vassilvitskii [14] is generalized to μ-similar Bregman divergences.
Ackermann and Blömer show that for a μ-similar Bregman divergence this gen-
eralization, called Bregman++, yields a O(

μ−2 log(k)
)
-approximation for SBE.

In [3] Ackermann and Blömer generalize the result by Ostrovsky et al. [67] on
adaptive sampling for ε-separable instances to Bregman divergences.

Nock et al. [66] generalize k-means++ to certain symmetrized versions of
Bregman divergences dΦ, called mixed Bregman divergences. They prove approx-
imation factors of the form O(

ρψ log k
)
, where ρψ is some parameter depending

on dΦ, that roughly measures how much dΦ violates the triangle inequality. Note,
however, that the mixed Bregman divergences introduced by Nock et al. are not
proper Bregman divergences.
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Abstract. We survey recent trends in practical algorithms for balanced
graph partitioning, point to applications and discuss future research
directions.

1 Introduction

Graphs are frequently used by computer scientists as abstractions when mod-
eling an application problem. Cutting a graph into smaller pieces is one of the
fundamental algorithmic operations. Even if the final application concerns a dif-
ferent problem (such as traversal, finding paths, trees, and flows), partitioning
large graphs is often an important subproblem for complexity reduction or par-
allelization. With the advent of ever larger instances in applications such as
scientific simulation, social networks, or road networks, graph partitioning (GP)
therefore becomes more and more important, multifaceted, and challenging. The
purpose of this paper is to give a structured overview of the rich literature, with
a clear emphasis on explaining key ideas and discussing recent work that is
missing in other overviews. For a more detailed picture on how the field has
evolved previously, we refer the interested reader to a number of surveys. Bichot
and Siarry [22] cover studies on GP within the area of numerical analysis. This
includes techniques for GP, hypergraph partitioning and parallel methods. The
book discusses studies from a combinatorial viewpoint as well as several applica-
tions of GP such as the air traffic control problem. Schloegel et al. [191] focus on
fast graph partitioning techniques for scientific simulations. In their account of
the state of the art in this area around the turn of the millennium, they describe
geometric, combinatorial, spectral, and multilevel methods and how to combine
them for static partitioning. Load balancing of dynamic simulations, parallel
aspects, and problem formulations with multiple objectives or constraints are
also considered. Monien et al. [156] discuss heuristics and approximation algo-
rithms used in the multilevel GP framework. In their description they focus
mostly on coarsening by matching and local search by node-swapping heuristics.
Kim et al. [119] cover genetic algorithms.
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Our survey is structured as follows. First, Sect. 2 introduces the most impor-
tant variants of the problem and their basic properties such as NP-hardness.
Then Sect. 3 discusses exemplary applications including parallel processing, road
networks, image processing, VLSI design, social networks, and bioinformatics.
The core of this overview concerns the solution methods explained in Sects. 4, 5,
6 and 7. They involve a surprising variety of techniques. We begin in Sect. 4 with
basic, global methods that “directly” partition the graph. This ranges from very
simple algorithms based on breadth first search to sophisticated combinatorial
optimization methods that find exact solutions for small instances. Also meth-
ods from computational geometry and linear algebra are being used. Solutions
obtained in this or another way can be improved using a number of heuristics
described in Sect. 5. Again, this ranges from simple-minded but fast heuristics
for moving individual nodes to global methods, e.g., using flow or shortest path
computations. The most successful approach to partitioning large graphs – the
multilevel method – is presented in Sect. 6. It successively contracts the graph to
a more manageable size, solves the base instance using one of the techniques from
Sect. 4, and – using techniques from Sect. 5 – improves the obtained partition
when uncontracting to the original input. Metaheuristics are also important. In
Sect. 7 we describe evolutionary methods that can use multiple runs of other
algorithms (e.g., multilevel) to obtain high quality solutions. Thus, the best
GP solvers orchestrate multiple approaches into an overall system. Since all of
this is very time consuming and since the partitions are often used for parallel
computing, parallel aspects of GP are very important. Their discussion in Sect. 8
includes parallel solvers, mapping onto a set of parallel processors, and migration
minimization when repartitioning a dynamic graph. Section 9 describes issues of
implementation, benchmarking, and experimentation. Finally, Sect. 10 points to
future challenges.

2 Preliminaries

Given a number k ∈ N>1 and an undirected graph G = (V,E) with non-negative
edge weights, ω : E → R>0, the graph partitioning problem (GPP) asks for a
partition Π of V with blocks of nodes Π = (V1, . . . , Vk):

1. V1 ∪ · · · ∪ Vk = V

2. Vi ∩ Vj = ∅ ∀i �= j.

A balance constraint demands that all blocks have about equal weights. More
precisely, it requires that, ∀i ∈ {1, . . . , k} : |Vi| ≤ Lmax:= (1 + ε)
|V |/k� for
some imbalance parameter ε ∈ R≥0. In the case of ε = 0, one also uses the term
perfectly balanced. Sometimes we also use weighted nodes with node weights
c : V → R>0. Weight functions on nodes and edges are extended to sets of such
objects by summing their weights. A block Vi is overloaded if |Vi| > Lmax. A clus-
tering is also a partition of the nodes. However, k is usually not given in advance,
and the balance constraint is removed. Note that a partition is also a clustering of
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a graph. In both cases, the goal is to minimize or maximize a particular objective
function. We recall well-known objective functions for GPP in Sect. 2.1. A node v
is a neighbor of node u if there is an edge {u, v} ∈ E. If a node v ∈ Vi has a neigh-
bor w ∈ Vj , i �= j, then it is called boundary node. An edge that runs between
blocks is also called cut edge. The set Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj} is the
set of cut edges between two blocks Vi and Vj . An abstract view of the par-
titioned graph is the so called quotient graph or communication graph, where
nodes represent blocks, and edges are induced by connectivity between blocks.
There is an edge in the quotient graph between blocks Vi and Vj if and only if
there is an edge between a node in Vi and a node in Vj in the original, parti-
tioned graph. The degree d(v) of a node v is the number of its neighbors. An
adjacency matrix of a graph is a |V | × |V | matrix describing node connectivity.
The element au,v of the matrix specifies the weight of the edge from node u to
node v. It is set to zero if there is no edge between these nodes. The Laplacian
matrix of a graph G is defined as L = D − A, where D is the diagonal matrix
expressing node degrees, and A is the adjacency matrix. A cycle in a directed
graph with negative weight is also called negative cycle. A matching M ⊆ E is
a set of edges that do not share any common nodes, i. e., the graph (V,M) has
maximum degree one.

2.1 Objective Functions

In practice, one often seeks to find a partition that minimizes (or maximizes) an
objective. Probably the most prominent objective function is to minimize the
total cut ∑

i<j

ω(Eij). (1)

Other formulations of GPP exist. For instance when GP is used in parallel com-
puting to map the graph nodes to different processors, the communication volume
is often more appropriate than the cut [100]. For a block Vi, the communica-
tion volume is defined as comm(Vi) :=

∑
v∈Vi

c(v)D(v), where D(v) denotes the
number of different blocks in which v has a neighbor node, excluding Vi. The
maximum communication volume is then defined as maxi comm(Vi), whereas
the total communication volume is defined as

∑
i comm(Vi). The maximum com-

munication volume was used in one subchallenge of the 10th DIMACS Challenge
on Graph Partitioning and Graph Clustering [13]. Although some applications
profit from other objective functions such as the communication volume or block
shape (formalized by the block’s aspect ratio [56], minimizing the cut size has
been adopted as a kind of standard. One reason is that cut optimization seems to
be easier in practice. Another one is that for graphs with high structural locality
the cut often correlates with most other formulations but other objectives make
it more difficult to use a multilevel approach.

There are also GP formulations in which balance is not directly encoded in the
problem description but integrated into the objective function. For example, the
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expansion of a non-trivial cut (V1, V2) is defined as ω(E12)/min(c(V1), c(V2)). Sim-
ilarly, the conductance of such a cut is defined as ω(E12)/min(vol(V1), vol(V2)),
where vol(S) :=

∑
v∈S d(v) denotes the volume of the set S.

As an extension to the problem, when the application graph changes over
time, repartitioning becomes necessary. Due to changes in the underlying appli-
cation, a graph partition may become gradually imbalanced due to the introduc-
tion of new nodes (and edges) and the deletion of others. Once the imbalance
exceeds a certain threshold, the application should call the repartitioning rou-
tine. This routine is to compute a new partition Π ′ from the old one, Π. In
many applications it is favorable to keep the changes between Π and Π ′ small.
Minimizing these changes simultaneously to optimizing Π ′ with respect to the
cut (or a similar objective) leads to multiobjective optimization. To avoid the
complexity of the latter, a linear combination of both objectives seems feasible
in practice [193].

2.2 Hypergraph Partitioning

A hypergraph H = (V,E) is a generalization of a graph in which an edge (usu-
ally called hyperedge or net) can connect any number of nodes. As with graphs,
partitioning a hypergraph also means to find an assignment of nodes to differ-
ent blocks of (mostly) equal size. The objective function, however, is usually
expressed differently. A straightforward generalization of the edge cut to hyper-
graphs is the hyperedge cut. It counts the number of hyperedges that connect
different blocks. In widespread use for hypergraph partitioning, however, is the
so-called (λ−1) metric, CV (H,Π) =

∑
e∈E(λ(e,Π)−1), where λ(e,Π) denotes

the number of distinct blocks connected by the hyperedge e and Π the partition
of H’s vertex set.

One drawback of hypergraph partitioning compared to GP is the necessity
of more complex algorithms—in terms of implementation and running time,
not necessarily in terms of worst-case complexity. Paying this price seems only
worthwhile if the underlying application profits significantly from the difference
between the graph and the hypergraph model.

To limit the scope, we focus in this paper on GP and forgo a more
detailed treatment of hypergraph partitioning. Many of the techniques we
describe, however, can be or have been transferred to hypergraph partition-
ing as well [33,34,66,162,208]. One important application area of hypergraph
partitioning is VLSI design (see Sect. 3.5).

2.3 Hardness Results and Approximation

Partitioning a graph into k blocks of roughly equal size such that the cut met-
ric is minimized is NP-complete (as decision problem) [79,106]. Andreev and
Räcke [4] have shown that there is no constant-factor approximation for the per-
fectly balanced version (ε = 0) of this problem on general graphs. If ε ∈ (0, 1],
then an O

(
log2 n

)
factor approximation can be achieved. In case an even larger

imbalance ε > 1 is allowed, an approximation ratio of O(log n) is possible [65].
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The minimum weight k-cut problem asks for a partition of the nodes into k non-
empty blocks without enforcing a balance constraint. Goldschmidt et al. [88]
proved that, for a fixed k, this problem can be solved optimally in O(nk2

). The
problem is NP-complete [88] if k is not part of the input.

For the unweighted minimum bisection problem, Feige and Krauthgamer [68]
have shown that there is an O

(
log1.5 n

)
approximation algorithm and an O(log n)

approximation for minimum bisection on planar graphs. The bisection problem
is efficiently solvable if the balance constraint is dropped – in this case it is
the minimum cut problem. Wagner et al. [211] have shown that the minimum
bisection problem becomes harder the more the balance constraint is tightened
towards the perfectly balanced case. More precisely, if the block weights are
bounded from below by a constant, i. e., |Vi| ≥ C, then the problem is solvable
in polynomial time. The problem is NP-hard if the block weights are constrained
by |Vi| ≥ αnδ for some α, δ > 0 or if |Vi| = n

2 . The case |Vi| ≥ α log n for some
α > 0 is open. Note that the case |Vi| ≥ αnδ also implies that the general GPP
with similar lower bounds on the block weights is NP-hard.

If the balance constraint of the problem is dropped and one uses a different
objective function such as sparsest cut, then there are better approximation
algorithms. The sparsest cut objective combines cut and balance into a single
objective function. For general graphs and the sparsest cut metric, Arora et al.
[7,8] achieve an approximation ratio of O

(√
log n

)
in Õ(n2) time.

Being of high theoretical importance, most of the approximation algorithms
are not implemented, and the approaches that implement approximation algo-
rithms are too slow to be used for large graphs or are not able to compete with
state-of-the-art GP solvers. Hence, mostly heuristics are used in practice.

3 Applications of Graph Partitioning

We now describe some of the applications of GP. For brevity this list is not
exhaustive.

3.1 Parallel Processing

Perhaps the canonical application of GP is the distribution of work to processors
of a parallel machine. Scientific computing applications such as sparse direct
and iterative solvers extensively use GP to ensure load balance and minimize
communication. When the problem domain does not change as the computation
proceeds, GP can be applied once in the beginning of the computation. This is
known as static partitioning.

Periodic repartitioning, explained in Sect. 2.1, proved to be useful for scientific
computing applications with evolving computational domains such as Adaptive
Mesh Refinement (AMR) or volume rendering [11]. The graph model can be
augmented with additional edges and nodes to model the migration costs, as
done for parallel direct volume rendering of unstructured grids [11], an important
problem in scientific visualization.
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Parallel Graph Computations. GP is also used to partition graphs for parallel
processing, for problems such as graph eigenvalue computations [25], breadth-
first search [31], triangle listing [43], PageRank and connected components [181].
In computationally intensive graph problems, such as finding the eigenvectors
and eigenvalues of graphs, multilevel methods that are tailored to the character-
istics of real graphs are suitable [1].

Mesh Partitioning. A mesh or grid approximates a geometric domain by dividing
it into smaller subdomains. Hendrickson defines it as “the scaffolding upon which
a function is decomposed into smaller pieces” [96]. Mesh partitioning involves
mapping the subdomains of the mesh to processors for parallel processing, with
the objective of minimizing communication and load imbalance. A partial dif-
ferential equation (PDE) that is discretized over a certain grid can be solved by
numerous methods such as the finite differences method or the finite elements
method. The discretization also defines a system of linear equations that can be
represented by a sparse matrix. While it is always possible to use that sparse
matrix to do the actual computation over the mesh or grid, sometimes this can
be wasteful when the matrix need not be formed explicitly. In the absence of
an explicit sparse matrix, the GP solvers first define a graph from the mesh.
The right mesh entity to use as the nodes of the graph can be ambiguous and
application dependent. Common choices are mesh nodes, groups of mesh nodes
that need to stay together, and the dual of mesh nodes. Choosing groups of
mesh nodes (such as small regular meshes [74]) with appropriate weighting as
graph nodes makes GP cost effective for large problem sizes when the over-
head for per-node partitioned graphs would be too big. Recent work by Zhou
et al. [222] gives a thorough treatment of extreme-scale mesh partitioning and
dynamic repartitioning using graph models. A variety of solution methodologies
described in Sect. 6, such as the multilevel and geometric methods, has been
successfully applied to mesh partitioning.

3.2 Complex Networks

In addition to the previously mentioned task of network data distribution across
a cluster of machines for fast parallel computations, complex networks introduced
numerous further applications of GPP. A common task in these applications is to
identify groups of similar entities whose similarity and connectivity is modeled
by the respective networks. The quality of the localizations is quantified with
different domain-relevant objectives. Many of them are based on the principle of
finding groups of entities that are weakly connected to the rest of the network.
In many cases such connectivity also represents similarity. In the context of
optimization problems on graphs, by complex networks we mean weighted graphs
with non-trivial structural properties that were created by real-life or modelling
processes [159]. Often, models and real-life network generation processes are not
well understood, so designing optimization algorithms for such graphs exhibit a
major bottleneck in many applications.
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Power Grids. Disturbances and cascading failures are among the central prob-
lems in power grid systems that can cause catastrophic blackouts. Splitting a
power network area into self-sufficient islands is an approach to prevent the
propagation of cascading failures [132]. Often the cut-based objectives of the
partitioning are also combined with the load shedding schemes that enhance the
robustness of the system and minimize the impact of cascading events [133].
Finding vulnerabilities of power systems by GPP has an additional difficulty.
In some applications, one may want to find more than one (nearly) minimum
partitioning because of the structural difference between the solutions. Spectral
GP (see Sect. 4.2) is also used to detect contingencies in power grid vulnerability
analysis by splitting the network into regions with excess generation and excess
load [60].

Geographically Embedded Networks. Recent advances of location-aware devices
(such as GPS) stimulated a rapid growth of streaming spatial network data
that has to be analyzed by extremely fast algorithms. These networks model
entities (nodes) tied to geographic places and links that represent flows such as
migrations, vehicle trajectories, and activities of people [54]. In problems related
to spatial data and geographical networks, the cut-based objective of GP (and
clustering) is often reinforced by the spatial contiguity constraints.

Biological Networks. Many complex biological systems can be modeled by graph-
theoretic representations. Examples include protein-protein interactions, and
gene co-expression networks. In these networks nodes are biological entities (such
as genes and proteins) and edges correspond to their common participation in
some biological process. Such processes can vary from simple straightforward
interactions (such as protein-protein interaction and gene-gene co-expression) to
more complex relationships in which more than two entities are involved. Parti-
tioning and clustering of such networks may have several goals. One of them is
related to data reduction given an assumption that clustered nodes behave bio-
logically similarly to each other. Another one is the detection of some biological
processes by finding clusters of involved nodes. For details see [109,154].

Social Networks. Identification of community structure is among the most
popular topics in social network science. In contrast to the traditional GPP,
community detection problems rarely specify the number of clusters a priori.
Notwithstanding this difference, GP methods contributed a lot of their tech-
niques to the community detection algorithms [76]. Moreover, GP solvers are
often used as first approximations for them. We refer the reader to examples of
methods where GP is used for solving the community detection problem [158].

3.3 Road Networks

GP is a very useful technique to speed up route planning [48,52,118,129,138,
153]. For example, edges could be road segments and nodes intersections.1

1 Sometimes more complex models are used to model lanes, turn costs etc.
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Lauther [129] introduced the arc-flags algorithm, which uses a geometric
partitioning approach as a preprocessing step to reduce the search space of
Dijkstra’s algorithm. Möhring et al. [153] improved this method in several ways.
Using high quality graph partitions turns out to be one key improvement here
since this reduces the preprocessing cost drastically. One reason is that road
networks can be partitioned using surprisingly small cuts but these are not easy
to find.

Schulz et al. [196] propose a multilevel algorithm for routing based on pre-
computing connections between border nodes of a graph partition. This was one
of the first successful speedup technique for shortest paths. It was outclassed
later by other hierarchy based methods, and, somewhat surprisingly resurfaced
after Delling et al. [48,52] did thorough algorithm engineering for this approach.
Again, a key improvement was to use high quality graph partitions. Since the
approach excels at fast recomputation of the preprocessing information when the
edge weights change, the method is now usually called customizable route plan-
ning. Luxen and Schieferdecker [138] use GP to efficiently compute candidate
sets for alternative routes in road networks and Kieritz et al. [118] parallelize
shortest-path preprocessing and query algorithms. Maue et al. [141] show how
to use precomputed distances between blocks of a partition to make the search
goal directed. Here, block diameter seems more relevant than cut size, however.

3.4 Image Processing

Image segmentation is a fundamental task in computer vision for which GP and
clustering methods have become among the most attractive solution techniques.
The goal of image segmentation is to partition the pixels of an image into groups
that correspond to objects. Since the computations preceding segmentation are
often relatively cheap and since the computations after segmentation work on a
drastically compressed representation of the image (objects rather than pixels),
segmentation is often the computationally most demanding part in an image
processing pipeline. The image segmentation problem is not well-posed and can
usually imply more than one solution. During the last two decades, graph-based
representations of an image became very popular and gave rise to many cut-
based approaches for several problems including image segmentation. In this
representation each image pixel (or in some cases groups of pixels) corresponds to
a node in a graph. Two nodes are connected by a weighted edge if some similarity
exists between them. Usually, the criteria of similarity is a small geodesic distance
which can result in mesh-like graphs with four or more neighbors for each node.
The edge weights represent another measure of (dis)similarity between nodes
such as the difference in the intensity between the connected pixels (nodes).

GP can be formulated with different objectives that can explicitly reflect
different definitions of the segmented regions depending on the applications.
The classical minimum cut formulation of the GP objective (1) can lead in
practice to finding too small segmented objects. One popular modification of the
objective that was adopted in image segmentation, called normalized cut, is given
by ncut(A,B) = ω(EAB)/vol(A) + ω(EAB)/vol(B). This objective is similar to
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the conductance objective described in Sect. 2.1. Many efficient algorithms were
proposed for solving GPP with the normalized cut objective. Among the most
successful are spectral and multilevel approaches. Another relevant formulation
of the partitioning objective which is useful for image segmentation is given by
optimizing the isoperimetric ratio for sets [89]. For more information on graph
partitioning and image segmentation see [32,169].

3.5 VLSI Physical Design

Physical design of digital circuits for very large-scale integration (VLSI) systems
has a long history of being one of the most important customers of graph and
hypergraph partitioning, often reinforced by several additional domain relevant
constraints. The partitioning should be accomplished in a reasonable compu-
tation time, even for circuits with millions of modules, since it is one of the
bottlenecks of the design process. The goal of the partitioning is to reduce the
VLSI design complexity by partitioning it into smaller components (that can
range from a small set of field-programmable gate arrays to fully functional inte-
grated circuits) as well as to keep the total length of all the wires short. The
typical optimization objective (see (1)) is to minimize the total weight of connec-
tions between subcircuits (blocks), where nodes are the cells, i.e., small logical or
functional units of the circuit (such as gates), and edges are the wires. Because
the gates are connected with wires with more than two endpoints, hypergraphs
model the circuit more accurately. Examples of additional constraints for the
VLSI partitioning include information on the I/O of the circuit, sets of cells that
must belong to the same blocks, and maximum cut size between two blocks. For
more information about partitioning of VLSI circuits see [45,110].

4 Global Algorithms

We begin our discussion of the wide spectrum of GP algorithms with methods
that work with the entire graph and compute a solution directly. These algo-
rithms are often used for smaller graphs or are applied as subroutines in more
complex methods such as local search or multilevel algorithms. Many of these
methods are restricted to bipartitioning but can be generalized to k-partitioning
for example by recursion.

After discussing exact methods in Sect. 4.1 we turn to heuristic algorithms.
Spectral partitioning (Sect. 4.2) uses methods from linear algebra. Graph growing
(Sect. 4.3) uses breadth first search or similar ways to directly add nodes to a
block. Flow computations are discussed in Sect. 4.4. Section 4.5 summarizes a
wide spectrum of geometric techniques. Finally, Sect. 4.5 introduces streaming
algorithms which work with a very limited memory footprint.

4.1 Exact Algorithms

There is a large amount of literature on methods that solve GPP optimally. This
includes methods dedicated to the bipartitioning case [5,6,28,49,51,69,70,93,94,
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111,134,197] and some methods that solve the general GPP [71,198]. Most of
the methods rely on the branch-and-bound framework [126].

Bounds are derived using various approaches: Karisch et al. [111] and
Armbruster [5] use semi-definite programming, and Sellman et al. [197] and
Sensen [198] employ multi-commodity flows. Linear programming is used by
Brunetta et al. [28], Ferreira et al. [71], Lisser and Rendl [134] and by Arm-
bruster et al. [6]. Hager et al. [93,94] formulate GPP in form of a continuous
quadratic program on which the branch and bound technique is applied. The
objective of the quadratic program is decomposed into convex and concave com-
ponents. The more complicated concave component is then tackled by an SDP
relaxation. Felner [70] and Delling et al. [49,51] utilize combinatorial bounds.
Delling et al. [49,51] derive the bounds by computing minimum s-t cuts between
partial assignments (A,B), i. e., A,B ⊆ V and A ∩ B = ∅. The method can
partition road networks with more than a million nodes, but its running time
highly depends on the bisection width of the graph.

In general, depending on the method used, two alternatives can be observed.
Either the bounds derived are very good and yield small branch-and-bound trees
but are hard to compute. Or the bounds are somewhat weaker and yield larger
trees but are faster to compute. The latter is the case when using combinatorial
bounds. On finite connected subgraphs of the two dimensional grid without holes,
the bipartitioning problem can be solved optimally in O

(
n4

)
time [69]. Recent

work by Bevern et al. [19] looks at the parameterized complexity for computing
balanced partitions in graphs.

All of these methods can typically solve only very small problems while having
very large running times, or if they can solve large bipartitioning instances using
a moderate amount of time [49,51], highly depend on the bisection width of
the graph. Methods that solve the general GPP [71,198] have immense running
times for graphs with up to a few hundred nodes. Moreover, the experimental
evaluation of these methods only considers small block numbers k ≤ 4.

4.2 Spectral Partitioning

One of the first methods to split a graph into two blocks, spectral bisection,
is still in use today. Spectral techniques were first used by Donath and Hoff-
man [58,59] and Fiedler [73], and have been improved subsequently by others
[15,26,98,172,200]. Spectral bisection infers global information of the connectiv-
ity of a graph by computing the eigenvector corresponding to the second smallest
eigenvalue of the Laplacian matrix L of the graph. This eigenvector z2 is also
known as Fiedler vector ; it is the solution of a relaxed integer program for cut
optimization. A partition is derived by determining the median value m in z2
and assigning all nodes with an entry smaller or equal to m to V1 and all others
to V2.

The second eigenvector can be computed using a modified Lanczos
algorithm [125]. However, this method is expensive in terms of running time.
Barnard and Simon [15] use a multilevel method to obtain a fast approxima-
tion of the Fiedler vector. The algorithmic structure is similar to the multilevel
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method explained in Sect. 6, but their method coarsens with independent node
sets and performs local improvement with Rayleigh quotient iteration. Hendrick-
son and Leland [98] extend the spectral method to partition a graph into more
than two blocks by using multiple eigenvectors; these eigenvectors are compu-
tationally inexpensive to obtain. The method produces better partitions than
recursive bisection, but is only useful for the partitioning of a graph into four
or eight blocks. The authors also extended the method to graphs with node and
edge weights.

4.3 Graph Growing

A very simple approach for obtaining a bisection of a graph is called graph
growing [81,113]. Most of its variants are based on breadth-first search. Its sim-
plest version works as follows. Starting from a random node v, the nodes are
assigned to block V1 using a breadth-first search (BFS) starting at v. The search
is stopped after half of the original node weights are assigned to this block and
V2 is set to V \V1. This method can be combined with a local search algorithm
to improve the partition. Multiple restarts of the algorithm are important to get
a good solution. One can also try to find a good starting node by looking at a
node that has maximal distance from a random seed node [81]. Variations of the
algorithm always add the node to the block that results in the smallest increase
in the cut [113]. An extension to k > 2 blocks and with iterative improvement
is described in Sect. 5.5.

4.4 Flows

The well-known max-flow min-cut theorem [75] can be used to separate two node
sets in a graph by computing a maximum flow and hence a minimum cut between
them. This approach completely ignores balance, and it is not obvious how to
apply it to the balanced GPP. However, at least for random regular graphs with
small bisection width this can be done [29]. Maximum flows are also often used
as a subroutine. Refer to Sect. 5.4 for applications to improve a partition and
to Sect. 6.4 for coarsening in the context of the multilevel framework. There are
also applications of flow computations when quality is measured by expansion
or conductance [3,127].

4.5 Geometric Partitioning

Partitioning can utilize the coordinates of the graph nodes in space, if avail-
able. This is especially useful in finite element models and other geometrically-
defined graphs from traditional scientific computing. Here, geometrically
“compact” regions often correspond to graph blocks with small cut. Partition-
ing using nodal coordinates comes in many flavors, such as recursive coordinate
bisection (RCB) [200] and inertial partitioning [67,221]. In each step of its recur-
sion, RCB projects graph nodes onto the coordinate axis with the longest expan-
sion of the domain and bisects them through the median of their projections.
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The bisecting plane is orthogonal to the coordinate axis, which can create par-
titions with large separators in case of meshes with skewed dimensions. Inertial
partitioning can be interpreted as an improvement over RCB in terms of worst
case performance because its bisecting plane is orthogonal to a plane L that
minimizes the moments of inertia of nodes. In other words, the projection plane
L is chosen such that it minimizes the sum of squared distances to all nodes.

The random spheres algorithm of Miller et al. [83,152] generalizes the RCB
algorithm by stereographically projecting the d dimensional nodes to a random
d + 1 dimensional sphere which is bisected by a plane through its center point.
This method gives performance guarantees for planar graphs, k-nearest neighbor
graphs, and other “well-behaved” graphs.

Other representatives of geometry-based partitioning algorithms are space-
filling curves [14,105,171,223] which reduce d-dimensional partitioning to the
one-dimensional case. Space filling curves define a bijective mapping from V
to {1, . . . , |V |}. This mapping aims at the preservation of the nodes’ locality in
space. The partitioning itself is simpler and cheaper than RCB once the bijective
mapping is constructed. A generalization of space-filling curves to general graphs
can be done by so-called graph-filling curves [190].

A recent work attempts to bring information on the graph structure into the
geometry by embedding arbitrary graphs into the coordinate space using a mul-
tilevel graph drawing algorithm [121]. For a more detailed, albeit not very recent,
treatment of geometric methods, we refer the interested reader to Schloegel
et al. [191].

4.6 Streaming Graph Partitioning (SGP)

Streaming data models are among the most popular recent trends in big data
processing. In these models the input arrives in a data stream and has to be
processed on the fly using much less space than the overall input size. SGP
algorithms are very fast. They are even faster than multilevel algorithms but give
lower solution quality. Nevertheless, many applications that require extremely
fast repartitioning methods (such as those that deal with dynamic networks) can
still greatly benefit from the SGP algorithms when an initial solution obtained
by a stronger (static data) algorithm is supplied as an initial ordering. For details
on SGP we refer the reader to [160,203,209].

5 Iterative Improvement Heuristics

Most high quality GP solvers iteratively improve starting solutions. We outline
a variety of methods for this purpose, moving from very fine-grained localized
approaches to more global techniques.

5.1 Node-Swapping Local Search

Local search is a simple and widely used metaheuristic for optimization that iter-
atively changes a solution by choosing a new one from a neighborhood. Defining
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the neighborhood and the selection strategy allows a wide variety of techniques.
Having the improvement of paging properties of computer programs in mind,
Kernighan and Lin [117] were probably the first to define GPP and to provide
a local search method for this problem. The selection strategy finds the swap of
node assignments that yields the largest decrease in the total cut size. Note that
this “decrease” is also allowed to be negative. A round ends when all nodes have
been moved in this way. The solution is then reset to the best solution encoun-
tered in this round. The algorithm terminates when a round has not found an
improvement.

A major drawback of the KL method is that it is expensive in terms of
asymptotic running time. The implementation assumed in [117] takes time
O

(
n2 log n

)
and can be improved to O(m max(log n,Δ)) where Δ denotes the

maximum degree [64]. A major breakthrough is the modification by Fiduccia and
Mattheyses [72]. Their carefully designed data structures and adaptations yield
the KL/FM local search algorithm, whose asymptotic running time is O(m).
Bob Darrow was the first who implemented the KL/FM algorithm [72].

Karypis and Kumar [114] further accelerated KL/FM by only allowing
boundary nodes to move and by stopping a round when the edge cut does not
decrease after x node moves. They improve quality by random tie breaking and
by allowing additional rounds even when no improvements have been found.

A highly localized version of KL/FM is considered in [161]. Here, the search
spreads from a single boundary node. The search stops when a stochastic model
of the search predicts that a further improvement has become unlikely. This
strategy has a better chance to climb out of local minima and yields improved
cuts for the GP solvers KaSPar [161] and KaHIP [183].

Rather than swapping nodes, Holtgrewe et al. move a single node at a
time allowing more flexible tradeoffs between reducing the cut or improving
balance [102].

Helpful Sets by Diekmann et al. [55,155] introduce a more general neigh-
borhood relation in the bipartitioning case. These algorithms are inspired by a
proof technique of Hromkovič and Monien [103] for proving upper bounds on
the bisection width of a graph. Instead of migrating single nodes, whole sets of
nodes are exchanged between the blocks to improve the cut. The running time
of the algorithm is comparable to the KL/FM algorithm, while solution quality
is often better than other methods [155].

5.2 Extension to k-way Local Search

It has been shown by Simon and Teng [201] that, due to the lack of global
knowledge, recursive bisection can create partitions that are very far away from
the optimal partition so that there is a need for k-way local search algorithms.
There are multiple ways of extending the KL/FM algorithm to get a local search
algorithm that can improve a k-partition.

One early extension of the KL/FM algorithm to k-way local search uses
k(k − 1) priority queues, one for each type of move (source block, target block)
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[97,182]. For a single movement one chooses the node that maximizes the gain,
breaking ties by the improvement in balance.

Karypis and Kumar [114] present a k-way version of the KL/FM algorithm
that runs in linear time O(m). They use a single global priority queue for all
types of moves. The priority used is the maximum local gain, i. e., the maximum
reduction in the cut when the node is moved to one of its neighboring blocks.
The node that is selected for movement yields the maximum improvement for
the objective and maintains or improves upon the balance constraint.

Most current local search algorithms exchange nodes between blocks of the
partition trying to decrease the cut size while also maintaining balance. This
highly restricts the set of possible improvements. Sanders and Schulz [186,195]
relax the balance constraint for node movements but globally maintain (or
improve) balance by combining multiple local searches. This is done by reducing
the combination problem to finding negative cycles in a graph, exploiting the
existence of efficient algorithms for this problem.

5.3 Tabu Search

A more expensive k-way local search algorithm is based on tabu search [86,87],
which has been applied to GP by [16–18,78,175]. We briefly outline the method
reported by Galinier et al. [78]. Instead of moving a node exactly once per
round, as in the traditional versions of the KL/FM algorithms, specific types of
moves are excluded only for a number of iterations. The number of iterations
that a move (v, block) is excluded depends on an aperiodic function f and the
current iteration i. The algorithm always moves a non-excluded node with the
highest gain. If the node is in block A, then the move (v,A) is excluded for f(i)
iterations after the node is moved to the block yielding the highest gain, i. e.,
the node cannot be put back to block A for f(i) iterations.

5.4 Flow Based Improvement

Sanders and Schulz [183,185] introduce a max-flow min-cut based technique to
improve the edge cut of a given bipartition (and generalize this to k-partitioning
by successively looking at pairs of blocks that are adjacent in the quotient graph).
The algorithm constructs an s-t flow problem by growing an area around the
given boundary nodes/cut edges. The area is chosen such that each s-t cut
in this area corresponds to a feasible bipartition of the original graph, i. e., a
bipartition that fulfills the balance constraint. One can then apply a max-flow
min-cut algorithm to obtain a min-cut in this area and hence a nondecreased cut
between the blocks. There are multiple improvements to extend this method, for
example, by iteratively applying the method, searching in larger areas for feasible
cuts, or applying a heuristic to output better balanced minimum cuts by using
the given max-flow.
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5.5 Bubble Framework

Diekmann et al. [57] extend graph growing and previous ideas [216] to obtain
an iterative procedure called Bubble framework, which is capable of partitioning
into k > 2 well-shaped blocks. Some applications profit from good geometric
block shapes, e. g., the convergence rate of certain iterative linear solvers.

Graph growing is extended first by carefully selecting k seed nodes that
are evenly distributed over the graph. The key property for obtaining a good
quality, however, is an iterative improvement within the second and the third
step – analogous to Lloyd’s k-means algorithm [135]. Starting from the k seed
nodes, k breadth-first searches grow the blocks analogous to Sect. 4.3, only that
the breadth-first searches are scheduled such that the smallest block receives the
next node. Local search algorithms are further used within this step to balance
the load of the blocks and to improve the cut of the resulting partition, which may
result in unconnected blocks. The final step of one iteration computes new seed
nodes for the next round. The new center of a block is defined as the node that
minimizes the sum of the distances to all other nodes within its block. To avoid
their expensive computation, approximations are used. The second and the third
step of the algorithm are iterated until either the seed nodes stop changing or no
improved partition was found for more than 10 iterations. Figure 1 illustrates the
three steps of the algorithm. A drawback of the algorithm is its computational
complexity O(km).

Subsequently, this approach has been improved by using distance measures
that better reflect the graph structure [144,151,189]. For example, Schamberger
[189] introduced the usage of diffusion as a growing mechanism around the initial
seeds and extended the method to weighted graphs. More sophisticated diffusion
schemes, some of which have been employed within the Bubble framework, are
discussed in Sect. 5.6.

5.6 Random Walks and Diffusion

A random walk on a graph starts on a node v and then chooses randomly the
next node to visit from the set of neighbors (possibly including v itself) based
on transition probabilities. The latter can for instance reflect the importance of
an edge. This iterative process can be repeated an arbitrary number of times.

Fig. 1. The three steps of the Bubble framework. Black nodes indicate the seed nodes.
On the left hand side, seed nodes are found. In the middle, a partition is found by
performing breadth-first searches around the seed nodes and on the right hand side
new seed nodes are found.
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It is governed by the so-called transition matrix P, whose entries denote the
edges’ transition probabilities. More details can be found in Lovasz’s random
walk survey [136].

Diffusion, in turn, is a natural process describing a substance’s desire to
distribute evenly in space. In a discrete setting on graphs, diffusion is an iterative
process which exchanges splittable entities between neighboring nodes, usually
until all nodes have the same amount. Diffusion is a special random walk; thus,
both can be used to identify dense graph regions: Once a random walk reaches
a dense region, it is likely to stay there for a long time, before leaving it via one
of the relatively few outgoing edges. The relative size of Pt

u,v, the probability of
a random walk that starts in u to be located on v after t steps, can be exploited
for assigning u and v to the same or different clusters. This fact is used by many
authors for graph clustering, cf. Schaeffer’s survey [188].

Due to the difficulty of enforcing balance constraints, works employing these
approaches for partitioning are less numerous. Meyerhenke et al. [148] present
a similarity measure based on diffusion that is employed within the Bubble
framework. This diffusive approach bears some conceptual resemblance to spec-
tral partitioning, but with advantages in quality [150]. Balancing is enforced by
two different procedures that are only loosely coupled to the actual partitioning
process. The first one is an iterative procedure that tries to adapt the amount of
diffusion load in each block by multiplying it with a suitable scalar. Underloaded
blocks receive more load, overloaded ones less. It is then easier for underloaded
blocks to “flood” other graph areas as well. In case the search for suitable scalars
is unsuccessful, the authors employ a second approach that extends previous
work [219]. It computes a migrating flow on the quotient graph of the partition.
The flow value fij between blocks i and j specifies how many nodes have to be
migrated from i to j in order to balance the partition. As a key and novel prop-
erty for obtaining good solutions, to determine which nodes should be migrated
in which order, the diffusive similarity values computed before within the Bubble
framework are used [146,148].

Diffusion-based partitioning has been subsequently improved by Pellegrini
[165], who combines KL/FM and diffusion for bipartitioning in the tool Scotch.
He speeds up previous approaches by using band graphs that replace unimpor-
tant graph areas by a single node. An extension of these results to k-way parti-
tioning with further adaptations has been realized within the tools DibaP [143]
and PDibaP for repartitioning [147]. Integrated into a multilevel method, dif-
fusive partitioning is able to compute high-quality solutions, in particular with
respect to communication volume and block shape. It remains further work to
devise a faster implementation of the diffusive approach without running time
dependence on k.

6 Multilevel Graph Partitioning

Clearly the most successful heuristic for partitioning large graphs is the multi-
level graph partitioning approach. It consists of the three main phases outlined
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in Fig. 2: coarsening, initial partitioning, and uncoarsening. The main goal of the
coarsening (in many multilevel approaches implemented as contraction) phase is
to gradually approximate the original problem and the input graph with fewer
degrees of freedom. In multilevel GP solvers this is achieved by creating a hier-
archy of successively coarsened graphs with decreasing sizes in such a way that
cuts in the coarse graphs reflect cuts in the fine graph. There are multiple pos-
sibilities to create graph hierarchies. Most methods used today contract sets of
nodes on the fine level. Contracting U ⊂ V amounts to replacing it with a single
node u with c(u) :=

∑
w∈U c(w). Contraction (and other types of coarsening)

might produce parallel edges which are replaced by a single edge whose weight
accumulates the weights of the parallel edges (see Fig. 3). This implies that bal-
anced partitions on the coarse level represent balanced partitions on the fine
level with the same cut value.

Coarsening is usually stopped when the graph is sufficiently small to be
initially partitioned using some (possibly expensive) algorithm. Any of the basic
algorithms from Sect. 4 can be used for initial partitioning as long as they are
able to handle general node and edge weights. The high quality of more expensive
methods that can be applied at the coarsest level does not necessarily translate
into quality at the finest level, and some GP multilevel solvers rather run several
faster but diverse methods repeatedly with different random tie breaking instead
of applying expensive global optimization techniques.

Uncoarsening consists of two stages. First, the solution obtained on the coarse
level graph is mapped to the fine level graph. Then the partition is improved, typ-
ically by using some variants of the improvement methods described in Sect. 5.
This process of uncoarsening and local improvement is carried on until the
finest hierarchy level has been processed. One run of this simple coarsening-
uncoarsening scheme is also called a V-cycle (see Fig. 2).

There are at least three intuitive reasons why the multilevel approach works
so well: First, at the coarse levels we can afford to perform a lot of work per node
without increasing the overall execution time by a lot. Furthermore, a single node
move at a coarse level corresponds to a big change in the final solution. Hence,
we might be able to find improvements easily that would be difficult to find on
the finest level. Finally, fine level local improvements are expected to run fast
since they already start from a good solution inherited from the coarse level. Also
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Fig. 2. The multilevel approach to GP. The left figure shows a two-level contraction-
based scheme. The right figure shows different chains of coarsening-uncoarsening in the
multilevel frameworks.



134 A. Buluç et al.

multilevel methods can benefit from their iterative application (such as chains
of V-cycles) when the previous iteration’s solution is used to improve the qual-
ity of coarsening. Moreover, (following the analogy to multigrid schemes) the
inter-hierarchical coarsening-uncoarsening iteration can also be reconstructed
in such way that more work will be done at the coarser levels (see F-, and
W-cycles in Fig. 2, and [183,212]). An important technical advantage of mul-
tilevel approaches is related to parallelization. Because multilevel approaches
achieve a global solution by local processing only (though applied at different
levels of coarseness) they are naturally parallelization-schemes friendly.

6.1 Contracting a Single Edge

a+b

A+B

a b

A B

Fig. 3. An example matching and
contraction of the matched edges.

A minimalistic approach to coarsening is to
contract only two nodes connected by a sin-
gle edge in the graph. Since this leads to a
hierarchy with (almost) n levels, this method
is called n-level GP [161]. Together with a
k-way variant of the highly localized local
search from Sect. 5.1, this leads to a very
simple way to achieve high quality parti-
tions. Compared to other techniques, n-level partitioning has some overhead
for coarsening, mainly because it needs a priority queue and a dynamic graph
data structure. On the other hand, for graphs with enough locality (e.g. from
scientific computing), the n-level method empirically needs only sublinear work
for local improvement.

6.2 Contracting a Matching

The most widely used contraction strategy contracts (large) matchings, i. e., the
contracted sets are pairs of nodes connected by edges and these edges are not
allowed to be incident to each other. The idea is that this leads to a geomet-
rically decreasing size of the graph and hence a logarithmic number of levels,
while subsequent levels are “similar” so that local improvement can quickly find
good solutions. Assuming linear-time algorithms on all levels, one then gets
linear overall execution time. Conventional wisdom is that a good matching con-
tains many high weight edges since this decreases the weight of the edges in the
coarse graph and will eventually lead to small cuts. However, one also wants a
certain uniformity in the node weights so that it is not quite clear what should
be the objective of the matching algorithm. A successful recent approach is to
delegate this tradeoff between edge weights and uniformity to an edge rating
function [1,102]. For example, the function f(u, v) = ω({u,v})

c(v)c(u) works very well
[102,183] (also for n-level partitioning [161]). The concept of algebraic distance
yields further improved edge ratings [179].

The weighted matching problem itself has attracted a lot of interest moti-
vated to a large extent by its application for coarsening. Although the maximum
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weight matching problem can be solved optimally in polynomial time, optimal
algorithms are too slow in practice. There are very fast heuristic algorithms like
(Sorted) Heavy Edge Matching, Light Edge Matching, Random Matching, etc.
[113,191] that do not give any quality guarantees however. On the other hand,
there are (near) linear time matching algorithms that are slightly more expensive
but give approximation guarantees and also seem to be more robust in practice.
For example, a greedy algorithm considering the edges in order of descending
edge weight guarantees half of the optimal edge weight. Preis’ algorithm [173]
and the Path Growing Algorithm [61] have a similar flavor but avoid sorting
and thus achieve linear running time for arbitrary edge weights. The Global
Path Algorithm (GPA) [140] is a synthesis of Greedy and Path Growing achiev-
ing somewhat higher quality in practice and is not a performance bottleneck in
many cases. GPA is therefore used in KaHIP [183,186,187]. Linear time algo-
rithms with better approximation guarantee are available [62,63,140,170] and
the simplest of them seem practical [140]. However, it has not been tried yet
whether they are worth the additional effort for GP.

6.3 Coarsening for Scale-Free Graphs

Matching-based graph coarsening methods are well-suited for coarsening graphs
arising in scientific computing. On the other hand, matching-based approaches
can fail to create good hierarchies for graphs with irregular structure. Consider
the extreme example that the input graph is a star. In this case, a matching
algorithm can contract only one edge per level, which leads to a number of levels
that is undesirable in most cases.

Abou-Rjeili and Karypis [1] modify a large set of matching algorithms such
that an unmatched node can potentially be matched with one of its neighbors
even if it is already matched. Informally speaking, instead of matchings, whole
groups of nodes are contracted to create the graph hierarchies. These approaches
significantly improve partition quality on graphs having a power-law degree dis-
tribution.

Another approach has been presented by Auer and Bisseling [10]. The authors
create graph hierarchies for social networks by allowing pairwise merges of nodes
that have the same neighbors and by merging multiple nodes, i. e., collapsing
multiple neighbors of a high degree node with this node.

Meyerhenke et al. [145,149] presented an approach that uses a modification
of the original label propagation algorithm [174] to compute size-constrained
clusterings which are then contracted to compute good multilevel hierarchies for
such graphs. The same algorithm is used as a very simple greedy local search
algorithm.

Glantz et al. [85] introduce an edge rating based on how often an edge appears
in relatively balanced light cuts induced by spanning trees. Intriguingly, this
cut-based approach yields partitions with very low communication volume for
scale-free graphs.
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6.4 Flow Based Coarsening

Using max-flow computations, Delling et al. [50] find “natural cuts” separating
heuristically determined regions from the remainder of the graph. Components
cut by none of these cuts are then contracted reducing the graph size by up to
two orders of magnitude. They use this as the basis of a two-level GP solver that
quickly gives very good solutions for road networks.

6.5 Coarsening with Weighted Aggregation

Aggregation-based coarsening identifies nodes on the fine level that survive in the
coarsened graph. All other nodes are assigned to these coarse nodes. In the general
case of weighted aggregation, nodes on a fine level belong to nodes on the coarse
level with some probability. This approach is derived from a class of hierarchical
linear solvers called Algebraic Multigrid (AMG) methods [41,144]. First results
on the bipartitioning problem were obtained by Ron et al. in [176]. As AMG lin-
ear solvers have shown, weighted aggregation is important in order to express the
likelihood of nodes to belong together. The accumulated likelihoods “smooth the
solution space” by eliminating from it local minima that will be detected instante-
neously by the local processing at the uncoarsening phase. This enables a relaxed
formulation of coarser levels and avoids making hardened local decisions, such
as edge contractions, before accumulating relevant global information about the
graph.

Weighted aggregation can lead to significantly denser coarse graphs. Hence,
only the most efficient AMG approaches can be adapted to graph partitioning
successfully. Furthermore one has to avoid unbalanced node weights. In [179]
algebraic distance [38] is used as a measure of connectivity between nodes to
obtain sparse and balanced coarse levels of high quality. These principles and
their relevance to AMG are summarized in [178].

Lafon and Lee [124] present a related coarsening framework whose goal is
to retain the spectral properties of the graph. They use matrix-based argu-
ments using random walks (for partitioning methods based on random walks see
Sect. 5.6) to derive approximation guarantees on the eigenvectors of the coarse
graph. The disadvantage of this approach is the rather expensive computation
of eigenvectors.

7 Evolutionary Methods and Further Metaheuristics

In recent years a number of metaheuristics have been applied to GPP. Some of
these works use concepts that have already been very popular in other applica-
tion domains such as genetic or evolutionary algorithms. For a general overview
of genetic/evolutionary algorithms tackling GPP, we refer the reader to the
overview paper by Kim et al. [119]. In this section we focus on the descrip-
tion of hybrid evolutionary approaches that combine evolutionary ideas with the
multilevel GP framework [16,17,202]. Other well-known metaheuristics such as
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multi-agent and ant-colony optimization [44,122], and simulated annealing [108]
are not covered here. Neither do we discuss the recently proposed metaheuris-
tics PROBE by Chardaire et al. [37] (a genetic algorithm without selection) and
Fusion-Fission by Bichot [23] (inspired by nuclear processes) in detail. Most of
these algorithms are able to produce solutions of a very high quality, but only if
they are allowed to run for a very long time. Hybrid evolutionary algorithms are
usually able to compute partitions with considerably better quality than those
that can be found by using a single execution of a multilevel algorithm.

The first approach that combined evolutionary ideas with a multilevel GP
solver was by Soper et al. [202]. The authors define two main operations, a
combine and a mutation operation. Both operations modify the edge weights
of the graph depending on the input partitions and then use the multilevel
partitioner Jostle, which uses the modified edge weights to obtain a new partition
of the original graph. The combine operation first computes node weight biases
based on the two input partitions/parents of the population and then uses those
to compute random perturbations of the edge weights which help to mimic the
input partitions. While producing partitions of very high quality, the authors
report running times of up to one week. A similar approach based on edge
weight perturbations is used by Delling et al. [50].

A multilevel memetic algorithm for the perfectly balanced graph partition
problem, i. e., ε = 0, was proposed by Benlic and Hao [16,17]. The main idea of
their algorithm is that among high quality solutions a large number of nodes
will always be grouped together. In their work the partitions represent the
individuals. We briefly sketch the combination operator for the case that two
partitions are combined. First the algorithm selects two individuals/partitions
from the population using a λ-tournament selection rule, i. e., choose λ random
individuals from the population and select the best among those if it has not
been selected previously. Let the selected partitions be P1 = (V1, . . . , Vk) and
P2 = (W1, . . . ,Wk). Then sets of nodes that are grouped together, i. e.,

U :=
{{V1 ∩ Wσ(1)}, . . . , {Vk ∩ Wσ(k)}

}

are computed. This is done such that the number of nodes that are grouped
together, i. e.,

∑k
j=1 |Vj ∩ Wσ(j)|, is maximum among all permutations σ of

{1, . . . , k}. An offspring is created as follows. Sets of nodes in U will be grouped
within a block of the offspring. That means if a node is in on of the sets of U ,
then it is assigned to the same block to which it was assigned to in P1. Other-
wise, it is assigned to a random block, such that the balance constraint remains
fulfilled. Local search is then used to improve the computed offspring before it is
inserted into the population. Benlic and Hao [17] combine their approach with
tabu search. Their algorithms produce partitions of very high quality, but cannot
guarantee that the output partition fulfills the desired balance constraint.

Sanders and Schulz introduced a distributed evolutionary algorithm, KaFF-
PaE (KaFFPaEvolutionary) [184]. They present a general combine operator
framework, which means that a partition P can be combined with another
partition or an arbitrary clustering of the graph, as well as multiple mutation
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operators to ensure diversity in the population. The combine operation uses a
modified version of the multilevel GP solver within KaHIP [183] that will not
contract edges that are cut in one of the input partitions/clusterings. In contrast
to the other approaches, the combine operation can ensure that the resulting off-
spring/partition is at least as good as the input partition P. The algorithm is
equipped with a scalable communication protocol similar to randomized rumor
spreading and has been able to improve the best known partitions for many
inputs.

8 Parallel Aspects of Graph Partitioning

In the era of stalling CPU clock speeds, exploiting parallelism is probably the
most important way to accelerate computer programs from a hardware perspec-
tive. When executing parallel graph algorithms without shared memory, a good
distribution of the graph onto the PEs is very important. Since parallel com-
puting is a major purpose for GP, we discuss in this section several techniques
beneficial for parallel scenarios. (i) Parallel GP algorithms are often necessary
due to memory constraints: Partitioning a huge distributed graph on a single PE
is often infeasible. (ii) When different PEs communicate with different speeds
with each other, techniques for mapping the blocks communication-efficiently
onto the PEs become important. (iii) When the graph changes over time (as
in dynamic simulations), so does its partition. Once the imbalance becomes too
large, one should find a new partition that unifies three criteria for this purpose:
balance, low communication, and low migration.

8.1 Parallel Algorithms

Parallel GP algorithms are becoming more and more important since parallel
hardware is now ubiquitous and networks grow. If the underlying application is
in parallel processing, finding the partitions in parallel is even more compelling.
The difficulty of parallelization very much depends on the circumstances. It is
relatively easy to run sequential GP solvers multiple times with randomized tie
breaking in all available decisions. Completely independent runs quickly lead to
a point of diminishing return but are a useful strategy for very simple initial
partitioners as the one described in Sect. 4.3. Evolutionary GP solvers are more
effective (thanks to very good combination operators) and scale very well, even
on loosely coupled distributed machines [184].

Most of the geometry-based algorithms from Sect. 4.5 are parallelizable and
perhaps this is one of the main reasons for using them. In particular, one can use
them to find an initial distribution of nodes to processors in order to improve the
locality of a subsequent graph based parallel method [102]. If such a “reasonable”
distribution of a large graph over the local memories is available, distributed
memory multilevel partitioners using MPI can be made to scale [40,102,112,213].
However, loss of quality compared to the sequential algorithms is a constant
concern. A recent parallel matching algorithm allows high quality coarsening,
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though [24]. If k coincides with the number of processors, one can use parallel
edge coloring of the quotient graph to do pairwise refinement between neighbor-
ing blocks. At least for mesh-like graphs this scales fairly well [102] and gives
quality comparable to sequential solvers. This comparable solution quality also
holds for parallel Jostle as described by Walshaw and Cross [214].

Parallelizing local search algorithms like KL/FM is much more difficult since
local search is inherently sequential and since recent results indicate that it
achieves best quality when performed in a highly localized way [161,183]. When
restricting local search to improving moves, parallelization is possible, though
[2,116,128,149]. In a shared memory context, one can also use speculative
parallelism [205]. The diffusion-based improvement methods described in
Sect. 5.6 are also parallelizable without loss of quality since they are formulated
in a naturally data parallel way [147,168].

8.2 Mapping Techniques

Fundamentals. Parallel computing on graphs is one major application area of
GP, see Sect. 3.1. A partition with a small communication volume translates
directly into an efficient application if the underlying hardware provides uniform
communication speed between each pair of processing elements (PEs). Most
of today’s leading parallel systems, however, are built as a hierarchy of PEs,
memory systems, and network connections [142]. Communicating data between
PEs close to each other is thus usually less expensive than between PEs with a
high distance. On such architectures it is important to extend GPP by a flexible
assignment of blocks to PEs [207].

Combining partitioning and mapping to PEs is often done in two different
ways. In the first one, which we term architecture-aware partitioning, the cost
of communicating data between a pair of PEs is directly incorporated into the
objective function during the partitioning process. As an example, assuming that
block (or process) i is run on PE i, the communication-aware edge cut function
is

∑
i<j ω(Eij) · ωp(i, j), where ωp(i, j) specifies the cost of communicating a

unit item from PE i to PE j [218]. This approach uses a network cost matrix
(NCM) to store the distance function ωp [218, p. 603ff.]. Since the entries are
queried frequently during partitioning, a recomputation of the matrix would be
too costly. For large systems one must find a way around storing the full NCM
on each PE, as the storage size scales quadratically with the number of PEs. A
similar approach with emphasis on modeling heterogeneous communication costs
in grid-based systems is undertaken by the software PaGrid [104]. Moulitsas and
Karypis [157] perform architecture-aware partitioning in two phases. Their so-
called predictor-corrector approach concentrates in the first phase only on the
resources of each PE and computes an according partition. In the second phase
the method corrects previous decisions by modifying the partition according to
the interconnection network characteristics, including heterogeneity.

An even stronger decoupling takes place for the second problem formu-
lation, which we refer to as the mapping problem. Let Gc = (Vc, Ec, ωc) be
the communication graph that models the application’s communication, where
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(u, v) ∈ Ec denotes how much data process u sends to process v. Let furthermore
Gp = (Vp, Ep, ωp) be the processor graph, where (i, j) ∈ Ep specifies the band-
width (or the latency) between PE i and PE j. We now assume that a partition
has already been computed, inducing a communication graph Gc. The task after
partitioning is then to find a communication-optimal mapping π : Vc �→ Vp.

Different objective functions have been proposed for this mapping problem.
Since it is difficult to capture the deciding hardware characteristics, most authors
concentrate on simplified cost functions – similar to the simplification of the edge
cut for graph partitioning. Apparently small variations in the cost functions
rarely lead to drastic variations in application running time. For details we refer
to Pellegrini’s survey on static mapping [167] (which we wish to update with this
section, not to replace) and the references therein. Global sum type cost functions
do not have the drawback of requiring global updates. Moreover, discontinuities
in their search space, which may inhibit metaheuristics to be effective, are usually
less pronounced than for maximum-based cost functions. Commonly used is the
sum, for all edges of Gc, of their weight multiplied by the cost of a unit-weight
communication in Gp [167]: f(Gc, Gp, π) :=

∑
(u,v)∈Ec

ωc(u, v) · ωp(π(u), π(v)).
The accuracy of the distance function ωp depends on several factors, one

of them being the routing algorithm, which determines the paths a message
takes. The maximum length over all these paths is called the dilation of the
embedding π. One simplifying assumption can be that the routing algorithm
is oblivious [101] and, for example, uses always shortest paths. When multiple
messages are exchanged at the same time, the same communication link may be
requested by multiple messages. This congestion of edges in Gp can therefore be
another important factor to consider and whose maximum (or average) over all
edges should be minimized. Minimizing the maximum congestion is NP-hard, cf.
Garey and Johnson [80] or more recent work [101,120].

Algorithms. Due to the problem’s complexity, exact mapping methods are only
practical in special cases. Leighton’s book [130] discusses embeddings between
arrays, trees, and hypercubic topologies. One can apply a wide range of opti-
mization techniques to the mapping problem, also multilevel algorithms. Their
general structure is very similar to that described in Sect. 6. The precise dif-
ferences of the single stages are beyond our scope. Instead we focus on very
recent results – some of which also use hierarchical approaches. For pointers to
additional methods we refer the reader to Pellegrini [167] and Aubanel’s short
summary [9] on resource-aware load balancing.

Greedy approaches such as the one by Brandfass et al. [27] map the node vc

of Gc with the highest total communication cost w. r. t. to the already mapped
nodes onto the node vp of Gp with the smallest total distance w. r. t. to the
already mapped nodes. Some variations exist that improve this generic approach
in certain settings [84,101].

Hoefler and Snir [101] employ the reverse Cuthill-McKee (RCM) algorithm
as a mapping heuristic. Originally, RCM has been conceived for the problem
of minimizing the bandwidth of a sparse matrix [81]. In case both Gc and Gp
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are sparse, the simultaneous optimization of both graph layouts can lead to
reasonable mapping results, also cf. Pellegrini [166].

Many metaheuristics have been used to solve the mapping problem. Uçar et
al. [210] implement a large variety of methods within a clustering approach, among
them genetic algorithms, simulated annealing, tabu search, and particle swarm
optimization. Brandfass et al. [27] present local search and evolutionary algo-
rithms. Their experiments confirm that metaheuristics are significantly slower
than problem-specific heuristics, but obtain high-quality solutions [27,210].

Another common approach is to partition Gc – or the application graph itself
– simultaneously together with Gp into the same number of blocks k′. This is
for example done in Scotch [164]. For this approach k′ is chosen small enough
so that it is easy to test which block in Gc is mapped onto which block in Gp.
Since this often implies k′ < k, the partitioning is repeated recursively. When the
number of nodes in each block is small enough, the mapping within each block
is computed by brute force. If k′ = 2 and the two graphs to be partitioned are
the application graph and Gp, the method is called dual recursive bipartitioning.
Recently, schemes that model the processor graph as a tree have emerged [36]
in this algorithmic context and in similar ones [107].

Hoefler and Snir [101] compare the greedy, RCM, and dual recursive (bi)par-
titioning mapping techniques experimentally. On a 3D torus and two other real
architectures, their results do not show a clear winner. However, they confirm
previous studies [167] in that performing mapping at all is worthwhile. Bhatele
et al. [21] discuss topology-aware mappings of different communication patterns
to the physical topology in the context of MPI on emerging architectures. Better
mappings avoid communication hot spots and reduce communication times sig-
nificantly. Geometric information can also be helpful for finding good mappings
on regular architectures such as tori [20].

8.3 Migration Minimization During Repartitioning

Repartitioning involves a tradeoff between the quality of the new partition and
the migration volume. Larger changes between the old partition Π and the new
one Π ′, necessary to obtain a small communication volume in Π ′, result in a
higher migration volume. Different strategies have been explored in the literature
to address this tradeoff. Two simple ones and their limitations are described by
Schloegel et al. [192]. One approach is to compute a new partition Π ′ from
scratch and determine a migration-minimal mapping between Π and Π ′. This
approach delivers good partitions, but the migration volume is often very high.
Another strategy simply migrates nodes from overloaded blocks to underloaded
ones, until a new balanced partition is reached. While this leads to optimal
migration costs, it often delivers poor partition quality. To improve these simple
schemes, Schloegel et al. [193] combine the two and get the best of both in their
tool ParMetis.

Migration minimization with virtual nodes has been used in the repartition-
ing case by, among others, Hendrickson et al. [99]. For each block, an additional
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node is added, which may not change its affiliation. It is connected to each node
v of the block by an edge whose weight is proportional to the migration cost for
v. Thus, one can account for migration costs and partition quality at the same
time. A detailed discussion of this general technique was made by Walshaw [217].
Recently, this technique has been extended to heterogeneous architectures by
Fourestier and Pellegrini [77].

Diffusion-based partitioning algorithms are particularly strong for repar-
titioning. PDibaP yields about 30–50% edge cut improvement compared to
ParMetis and about 15% improvement on parallel Jostle with a comparable
migration volume [147] (a short description of these tools can be found in
Sect. 9.3). Hypergraph-based repartitioning is particularly important when the
underlying problem has a rather irregular structure [34].

9 Implementation and Evaluation Aspects

The two major factors that make up successful GP algorithms are speed and
quality. It depends on the application if one of them is favored over the other
and what quality means. Speed requires an appropriate implementation, for
which we discuss the most common graph data structures in practice first in
this section. Then, we discuss GP benchmarks to assess different algorithms
and implementations, some widely used, others with potential. Finally, relevant
software tools for GP are presented.

9.1 Sparse Graph Data Structures

The graph data structure used by most partitioning software is the Compressed
Sparse Rows (CSR) format, also known as adjacency arrays. CSR is a cache and
storage efficient data structure for representing static graphs. The CSR represen-
tation of a graph can be composed of two, three, or four arrays, depending upon
whether edges or nodes are weighted. The node array (V) is of size n + 1 and
holds the node pointers. The edge array and the edge weights array, if present,
are of size m each. Each entry in the edge array (E) holds the node id of the
target node, while the corresponding entry in the edge weights array (W) holds
the weight of the edge. The node array holds the offsets to the edge array, mean-
ing that the target nodes of the outgoing edges of the ith node are accessible
from E(V(i)) to E(V(i + 1) − 1) and their respective weights are accessible from
W(V(i)) to W(V(i+1)−1). Both Metis and Scotch use a CSR-like data structure.
Since nodes can also be weighted in graph partitioning, an additional vector of
size n is often used to store node weights in that case. The CSR format can
further be improved and reinforced by rearranging the nodes with one of the
cache-oblivious layouts such as the minimum logarithmic arrangement [42,180].

Among distributed-memory GP solvers, ParMetis and PT-Scotch use a 1D
node distribution where each processor owns approximately n/p nodes and their
corresponding edges. By contrast, Zoltan uses a 2D edge distribution that has
lower communication requirements in theory.
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9.2 Benchmarking

The Walshaw benchmark2 was created in 2000 by Soper et al. [202]. This public
domain archive, maintained by Chris Walshaw, contains 34 real-world graphs
stemming from applications such as finite element computations, matrix compu-
tations, VLSI Design and shortest path computations. More importantly, it also
contains for each graph the partitions with the smallest cuts found so far. Sub-
missions are sought that achieve improved cut values for k ∈ {2, 4, 8, 16, 32, 64}
and balance parameters ε ∈ {0, 0.01, 0.03, 0.05}, while running time is not an
issue. Currently, solutions of over 40 algorithms have been submitted to the
archive. It is the most popular GP benchmark in the literature.

There are many other very valuable sources of graphs for experimental
evaluations: the 10th DIMACS Implementation Challenge [12,13], the Florida
Sparse Matrix Collection [46], the Laboratory of Web Algorithms [220], the
Koblenz Network Collection [123], and the Stanford Large Network Dataset
Collection [131]. Many of the graphs are available at the website of the 10th
DIMACS Implementation Challenge [12,13] in the graph format that is used by
many GP software tools.

Aubanel et al. [82] present a different kind of partitioning benchmark. Instead
of measuring the edge cut of the partitions, the authors evaluate the execution
time of a parallel PDE solver to benchmark the partitions produced by differ-
ent GP solvers. The crucial module of the benchmark is parallel matrix-vector
multiplication, which is meaningful for other numerical routines as well.

Many fast methods for GPP are based on approaches in which finding a
global solution is done by local operations only. Testing if such methods are
robust against falling into local optima obtained by the local processing is a
very important task. In [179] a simple strategy for checking the quality of such
methods was presented. To construct a potentially hard instance, one may con-
sider a mixture of graphs with very different structures that are weakly connected
with each other. For example, in multilevel algorithms these graphs can force the
algorithm to contract incorrect edges that lead to uneven coarsening; also, they
can attract a “too strong” refinement to reach a local optimum, which can con-
tradict better optima at finer levels. Examples of real graphs that contain such
mixtures of structures include multi-mode networks [206] and logistics multi-
stage system networks [204]. Hardness of particular structures for GP solvers is
confirmed by generating graphs that are similar to the given ones at both coarse
and/or fine resolutions [91].

9.3 Software Tools

There are a number of software packages that implement the described algo-
rithms. One of the first publicly available software packages called Chaco is
due to Hendrickson and Leland [95]. As most of the publicly available soft-
ware packages, Chaco implements the multilevel approach outlined in Sect. 6

2 http://staffweb.cms.gre.ac.uk/∼wc06/partition/.

http://staffweb.cms.gre.ac.uk/~wc06/partition/
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and basic local search algorithms. Moreover, they implement spectral partition-
ing techniques. Probably the fastest and best known system is the Metis family
by Karypis and Kumar [113,114]. kMetis [114] is focused on partitioning speed
and hMetis [115], which is a hypergraph partitioner, aims at partition quality.
PaToH [35] is also a widely used hypergraph partitioner that produces high qual-
ity partitions. ParMetis is a widely used parallel implementation of the Metis
GP algorithm [112]. Scotch [39,40,163] is a GP framework by Pellegrini. It uses
recursive multilevel bisection and includes sequential as well as parallel partition-
ing techniques. Jostle [213,215] is a well-known sequential and parallel GP solver
developed by Chris Walshaw. The commercialised version of this partitioner is
known as NetWorks. It has been able to hold most of the records in the Walshaw
Benchmark for a long period of time. If a model of the communication network
is available, then Jostle and Scotch are able to take this model into account for
the partitioning process. Party [57,155] implements the Bubble/shape-optimized
framework and the Helpful Sets algorithm. The software packages DibaP and its
MPI-parallel variant PDibaP by Meyerhenke [143,147] implement the Bubble
framework using diffusion; DibaP also uses AMG-based techniques for coarsen-
ing and solving linear systems arising in the diffusive approach. Recently, Sanders
and Schulz [186,187] released the GP package KaHIP (Karlsruhe High Quality
Partitioning) which implements for example flow-based methods, more-localized
local searches and several parallel and sequential meta-heuristics. KaHIP scored
most of the points in the GP subchallenge of the 10th DIMACS Implemen-
tation Challenge [13] and currently holds most of the entries in the Walshaw
Benchmark.

To address the load balancing problem in parallel applications, distrib-
uted versions of the established sequential partitioners Metis, Jostle and
Scotch [168,194,215] have been developed. The tools Parkway by Trifunovic and
Knottenbelt [208] as well as Zoltan by Devine et al. [53] focus on hypergraph
partitioning. Recent results of the 10th DIMACS Implementation Challenge [13]
suggest that scaling current hypergraph partitioners to very large systems is
even more challenging than graph partitioners.

10 Future Challenges

It is an interesting question to what extent the multitude of results sketched
above have reached a state of maturity where future improvements become less
and less likely. On the one hand, if you consider the Walshaw benchmark with
its moderately sized static graphs with mostly regular structure, the quality
obtained using the best current systems is very good and unlikely to improve
much in the future. One can already get very good quality with a careful appli-
cation of decade old techniques like KL/FM local search and the multilevel
approach. On the other hand, as soon as you widen your view in some direction,
there are plenty of important open problems.

Bridging Gaps Between Theory and Practice. We are far from understanding
why (or when) the heuristic methods used in practice produce solutions very
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close to optimal. This is particularly striking for bipartitioning, where recent
exact results suggest that heuristics often find the optimal solution. In contrast,
theoretical results state that we cannot even find constant-factor approximations
in polynomial time. On the other hand, the sophisticated theoretical methods
developed to obtain approximation guarantees are currently not used in the most
successful solvers. It would be interesting to see to what extent these techniques
can yield a practical contribution. There is a similar problem for exact solvers,
which have made rapid progress for the case k = 2. However, it remains unclear
how to use them productively for larger graphs or in case k > 2, for example
as initial partitioners in a multilevel system or for pair-wise local improvement
of subgraphs. What is surprisingly successful, is the use of solvers with perfor-
mance guarantees for subproblems that are easier than partitioning. For exam-
ple, KaHIP [187] uses weighted matching, spanning trees, edge coloring, BFS,
shortest paths, diffusion, maximum flows, and strongly connected components.
Further research into this direction looks promising.

Difficult Instances. The new “complex network” applications described in
Sect. 3.2 result in graphs that are not only very large but also difficult to han-
dle for current graph partitioners. This difficulty results from an uneven degree
distribution and much less locality than observed in traditional inputs. Here,
improved techniques within known frameworks (e.g., better coarsening schemes)
and even entirely different approaches can give substantial improvements in
speed or quality.

Another area where large significant quality improvements are possible are for
large k. Already for the largest value of k considered in the Walshaw benchmark
(64), the spread between different approaches is considerable. Considering graphs
with billions of nodes and parallel machines reaching millions of processors,
k ≤ 64 increasingly appears like a special case. The multilevel method loses
some of its attractiveness for large k since even initial partitioning must solve
quite large instances. Hence new ideas are required.

Multilevel Approach. While the multilevel paradigm has been extremely suc-
cessful for GP, there are still many algorithmic challenges ahead. The variety
of continuous systems multilevel algorithms (such as various types of multigrid)
turned into a separate field of applied mathematics, and optimization. Yet, mul-
tilevel algorithms for GPP still consist in practice of a very limited number
of multilevel techniques. The situation with other combinatorial optimization
problems is not significantly different. One very promising direction is bridging
the gaps between the theory and practice of multiscale computing and multi-
level GP such as introducing nonlinear coarsening schemes. For example, a novel
multilevel approach for the minimum vertex separator problem was recently pro-
posed using the continuous bilinear quadratic program formulation [92], and a
hybrid of the geometric multigrid, and full approximation scheme for continuous
problem was used for graph drawing, and VLSI placement problems [45,177].
Development of more sophisticated coarsening schemes, edge ratings, and met-
rics of nodes’ similarity that can be propagated throughout the hierarchies are
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among the future challenges for graph partitioning as well as any attempt of
their rigorous analysis.

Parallelism and Other Hardware Issues. Scalable high quality GP (with qual-
ity comparable to sequential partitioners) remains an open problem. With the
advent of exascale machines with millions of processors and possibly billions
of threads, the situation is further aggravated. Traditional “flat” partitions of
graphs for processing on such machines implies a huge number of blocks. It is
unclear how even sequential partitioners perform for such instances. Resorting to
recursive partitioning brings down k and also addresses the hierarchical nature
of such machines. However, this means that we need parallel partitioners where
the number of available processors is much bigger than k. It is unclear how to
do this with high quality. Approaches like the band graphs from PT-Scotch are
interesting but likely to fail for complex networks.

Efficient implementation is also a big issue since complex memory hierar-
chies and heterogeneity (e.g., GPUs or FPGAs) make the implementation com-
plicated. In particular, there is a mismatch between the fine-grained discrete
computations predominant in the best sequential graph partitioners and the
massive data parallelism (SIMD-instructions, GPUs,. . . ) in high performance
computing which better fits highly regular numeric computations. It is therefore
likely that high quality GP will only be used for the higher levels of the machine
hierarchy, e.g., down to cluster nodes or CPU sockets. At lower levels of the
architectural hierarchy, we may use geometric partitioning or even regular grids
with dummy values for non-existing cells (e.g. [74]).

While exascale computing is a challenge for high-end applications, many
more applications can profit from GP in cloud computing and using tools for
high productivity such as Map/Reduce [47], Pregel [139], GraphLab [137], Com-
binatorial BLAS [30], or Parallel Boost Graph Library [90]. Currently, none of
these systems uses sophisticated GP software.

These changes in architecture also imply that we are no longer interested in
algorithms with little computations but rather in data access with high locality
and good energy efficiency.

Beyond Balanced k-partitioning with Cut Minimization. We have intentionally
fixed our basic model assumptions above to demonstrate that even the classi-
cal setting has a lot of open problems. However, these assumption become less
and less warranted in the context of modern massively parallel hardware and
huge graphs with complex structure. For example, it looks like the assump-
tions that low total cut is highly correlated with low bottleneck cut or com-
munication volume (see Sect. 2.1) is less warranted for complex network [31].
Eventually, we would like a dynamic partition that adapts to the communica-
tion requirements of a computation such as PageRank or BFS with changing
sets of active nodes and edges. Also, the fixed value for k becomes questionable
when we want to tolerate processor failures or achieve “malleable” computations
that adapt their resource usage to the overall situation, e.g., to the arrival or
departure of high priority jobs. Techniques like overpartitioning, repartitioning
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(with changed k), and (re)mapping will therefore become more important. Even
running time as the bottom-line performance goal might be replaced by energy
consumption [199].

Acknowledgements. We express our gratitude to Bruce Hendrickson, Dominique
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the manuscript.
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4. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory Comput. Syst.
39(6), 929–939 (2006)

5. Armbruster, M.: Branch-and-cut for a semidefinite relaxation of large-scale min-
imum bisection problems. Ph.D. thesis, U. Chemnitz (2007)
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30. Buluç, A., Gilbert, J.R.: The combinatorial BLAS: design, implementation, and
applications. Int. J. High Perform. Comput. Appl. 25(4), 496–509 (2011)
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207. Teresco, J., Beall, M., Flaherty, J., Shephard, M.: A hierarchical partition
model for adaptive finite element computation. Comput. Method. Appl. Mech.
Eng. 184(2–4), 269–285 (2000). http://www.sciencedirect.com/science/article/
pii/S0045782599002315
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Abstract. We give a brief survey on how to generate randomized round-
ings that satisfy certain constraints with probability one and how to
compute roundings of comparable quality deterministically (derandom-
ized randomized roundings). The focus of this treatment of this broad
topic is on how to actually compute these randomized and derandom-
ized roundings and how the different algorithms with similar proven
performance guarantees compare in experiments and the applications
of computing low-discrepancy point sets, low-congestion routing, the
max-coverage problem in hypergraphs, and broadcast scheduling. While
mostly surveying results of the last 5 years, we also give a simple, unified
proof for the correctness of the different dependent randomized rounding
approaches.

1 Introduction

Randomized rounding is a core primitive of randomized algorithmics (see, e.g.,
the corresponding chapter in the textbook [40]). One central application going
back to Raghavan and Thompson [47,48] is to round non-integral solutions of
linear systems to integer ones. By rounding the variables independently, large
deviations bounds of Chernoff-Hoeffding type can be exploited, leading to good
performance guarantees and low rounding errors. This has been successfully
applied to a broad set of algorithmic problems.

More recently, a need for roundings that also satisfy certain hard constraints
was observed. Here, independent randomized rounding performs not so well—
the chance that a single such constraint is satisfied can easily be as low as
O(1/

√
n), where n is the number of variables. Repeatedly generating indepen-

dent randomized roundings, even for a single constraint and when one is will-
ing to pay an O(

√
n) runtime loss, is surprisingly not admissible as noted by

Srinivasan [56]. Consequently, the better solution is to generate the random-
ized roundings not independently, but in a way that they immediately satisfy
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the desired constraints. This was most successfully done by Srinivasan in his
seminal paper [56], who showed a way to generate randomized roundings that
satisfy the constraint that the sum of all variables is not changed in the rounding
process (provided, of course, that the sum of the original variables is integral).1

These roundings provably satisfy the same large deviation bounds that were
known to hold for independent randomized rounding. This work extended to
hard constraints of the bipartite edge weight rounding type in [35,36], how-
ever for restricted applications of large deviation bounds. A completely different
approach to generating randomized roundings respecting hard constraints was
proposed in [16]. It satisfies the same large deviation bounds, hence yields the
same guarantees on rounding errors and approximation ratios as the previous
approach, but had the additional feature that it could be derandomized easily.
Further extensions followed, see, e.g., Chekuri et al. [9,10]. Throughout these
works, several applications of the roundings were given, in particular to LP-
rounding based approximation algorithms.

The existence of two very different algorithms for this important problem that
from the proven performance guarantees look very similar spurred a sequence
of algorithm engineering works. While mostly experimental in nature, both con-
cerning test problems and classic algorithmic problems, these works also led to
a derandomization of the approach of [36] and to the invention of a hybrid app-
roach (both for the randomized and derandomized setting) combining features
of both previous ones. The aim of this work is to survey these results, which cur-
rently are spread mostly over several conference papers. By presenting them in
a concise and coherent manner, we hope to make these methods easily accessible
also to the non-expert. To complete the picture, we also review some applica-
tions of the tools to concrete problems (as opposed to studying the roundings
in isolation). Furthermore, we also give an elementary and unified proof that all
three approaches to generate randomized roundings with cardinality constraints
are actually correct. For this, only separate proofs, all quite technical, existed
so far.

The field of non-independent randomized rounding and related topics has
seen several other breakthrough results in the last years. We mention them
here, but for reasons of brevity have to point the reader to the relevant litera-
ture. These include the algorithmic breakthroughs for the Lovász local lemma by
Moser and Tardos [42,58] and for Spencer’s combinatorial discrepancy result [54]
by Bansal [5,6], both of which represent efficient algorithms for computing
objects whose existence was previously only guaranteed by non-constructive
probabilistic methods. There are also several variants of rounding procedures
which are out of scope for the present chapter, including the entropy round-
ing method [51], iterative rounding [33,41] and the problem-specific polytope
rounding used by Saha and Srinivasan for resource allocation problems [52].

1 Note that some earlier solutions for special cases exist, e.g., for sums of variables
adding up to one [47] or the hypergraph discrepancy problem [14,15], which is the
rounding problem with all variables being 1/2 and the rounding errors defined by a
binary matrix.
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Finally, approximation algorithms based on semi-definite programming fre-
quently contain rounding steps which are quite different in nature from the
above; see, e.g., [3,39,49,50].

2 Classical Independent Randomized Rounding and Its
Derandomization

Randomized rounding as a method to transform non-integral solutions of linear
systems into integer ones, was introduced by Raghavan and Thompson [47,48]
already in the late eighties. The key idea is to round the variables to adjacent
integers with the probability of rounding upward being equal to the fractional
part of the number. By this, the expectation of the new random variable equals
the original value. By linearity of expectation, this extends to linear combinations
of variables. When each variable is rounded independently, then, in addition,
Chernoff-type large deviation inequalities allow to bound deviations from the
mean for such linear combinations.

To make things precise, for a number x ∈ R, we denote by �x� its integral
part and by {x} = x − �x� its fractional part. We say that a random variable y
is a randomized rounding of x when

Pr[y = �x�] = 1 − {x},

Pr[y = �x� + 1] = {x}.

Often, we can assume without loss of generality that x ∈ [0, 1]. In this case, a
randomized rounding y of x is one with probability x and zero otherwise. As
said already, we have E[y] = x in any case.2

For a family x = (x1, . . . , xn) of numbers, we say that y = (y1, . . . , yn)
is a randomized rounding of x when each yj is a randomized rounding of xj .
By linearity of expectation, this implies E[

∑
j∈[n] ajyj ] =

∑
j∈[n] ajxj for all

coefficients aj ∈ R.
When thinking of x as a solution of a linear system Ax = b, then our aim is

to keep the rounding errors (Ay)i − (Ax)i small. Note first that these rounding
errors are independent of the integral part of x, which is why we often assume
x ∈ [0, 1]n. When y is an independent randomized rounding of x, that is, the
random variables y1, . . . , yn are mutually independent, then the usual Chernoff-
Hoeffding large deviation bounds can be used to bound the rounding errors. For
example, when A ∈ [0, 1]m×n and δ ∈ [0, 1], we have

Pr[|(Ay)i − (Ax)i| ≥ δ(Ax)i] ≤ 2 exp(−δ2(Ax)i/3).

By the union bound, this implies that with constant probability the round-
ing errors are bounded by O(max{√(Ax)i log m, log m}) for all rows i
simultaneously.

2 Note that, in fact, E[y] = x and y ∈ {�x�, �x�} is equivalent to saying that y is a
randomized rounding of x.
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Randomized rounding can be derandomized, that is, there is a way to deter-
ministically compute roundings that satisfy large deviations bounds essentially
with the same deviations that the randomized version would satisfy with posi-
tive probability. This comes, however, at the price of an increased computational
complexity of at least Ω(mn). Note that Raghavan’s derandomization works for
arbitrary A ∈ (Q∩ [0, 1])m×n only when we assume that exponentials of rational
numbers can be computed with arbitrary precision, otherwise, e.g., in the RAM
model of computation, it only works for binary A. In [57], a method was given to
obtain the same large deviations also for general A, however in O(mn2 log(mn))
time. In [17], a method was presented that gives large deviations larger by a
constant factor, but computationally simpler and with a complexity of O(mn)
when the entries of A have a finite length binary representation.

3 Randomized Rounding Under Constraints

Before we go into the engineering aspects, let us review the problem of random-
ized rounding under hard constraints from the perspective of what can theoret-
ically be achieved.

In the general situation, we have a family fractional variables x = (x1, . . . , xn)
(where we assume that xi ∈ [0, 1]; see Sect. 2) and (optionally) sets of hard
and soft constraints that all hold for x, and we wish to generate a randomized
rounding y of x such that all hard constraints hold for y with certainty, while
the violation of the soft constraints is as small as possible (usually achieved via
Chernoff-Hoeffding-style concentration bounds on the latter). Additionally, one
can also consider the derandomization problem, where the goal is to determinis-
tically generate a point y satisfying all hard constraints, with bounded violation
of the soft constraints. Depending on the type of hard constraints, this task can
be either impossible (e.g., if the hard constraints are unsatisfiable by an integral
solution), or possible with various restrictions on the supported types of soft
constraints.

Two frameworks for describing hard constraints (in this context) have been
considered in the literature. In the more general, the hard constraints are
described as a polytope P ⊆ [0, 1]n, where the constraint is x ∈ P . Naturally,
P should be an integral polytope, i.e., with all vertices in {0, 1}n, to guarantee
that integral roundings y exist. The second framework is a special case of this,
where the hard constraints take the form of a collection of equality or cardinality
constraints

∑
i∈S xi =

∑
i∈S yi, S ⊆ [n] := {1, . . . , n} (optionally, we can accept

rounding errors less than 1, if the left hand side is not integral). This perspective
will mostly suffice for the rest of this chapter, but in this section we will need
the polytope perspective.

Let us first observe that there is a certain inevitable tradeoff between the
types of hard and soft constraints. On the one hand, if there are no hard con-
straints, then one may simply apply independent randomized rounding (or one
of its derandomizations) and get Chernoff-Hoeffding concentration bounds for
any collection of linear soft constraints as in Sect. 2.
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On the other hand, we can easily create systems of hard constraints where
randomized rounding is possible, but which only allow for extremely limited
concentration bounds. Consider an integral polytope P and a fractional point
x ∈ P , and let x be expressed as a convex combination

∑
i αipi over vertices pi of

P (i.e., 0 ≤ αi ≤ 1 for each i, and
∑

i αi = 1); note that such an expression always
exists. If we can compute such an expression for any x ∈ P , then we can produce
a randomized rounding by simply letting x = pi with probability αi for each i.
Such a blunt rounding algorithm would in general not allow for any interesting
concentration bounds. (See [23] for the corresponding statement in the setting
of hard cardinality constraints.) Concretely, we may consider a polytope with
only two integral points (0, 1, 0, 1, . . .), (1, 0, 1, 0, . . .) ∈ [0, 1]n; this may also be
described via cardinality constraints (xi + xi+1 = 1) for 1 ≤ i < n. Given a
fractional point x = (ξ, 1− ξ, ξ, . . .), we can create a randomized rounding y of x
by letting y = (1, 0, 1, 0, . . .) with probability ξ, and y = (0, 1, 0, 1, . . .) otherwise.
It is clear that this produces a randomized rounding of x, but the procedure
only allows for very specific and restricted concentration bounds. To get useful
concentration bounds, we must consider weaker classes of hard constraints.

Cases with Complete Negative Correlation. Having seen that when no
hard constraints are present, independent randomized rounding allows large
deviation inequalities on all variables, a natural question is for which systems of
hard constraints in general we can obtain unrestricted large deviation bounds.
The standard approach to this is via negative correlation. A set of variables
y = {y1, . . . , yn} ∈ {0, 1}n are negatively correlated (over all subsets, also
referred to as complete negative correlation) if, for each S ⊆ [n] and each b = 0, 1
it holds that

Pr[
∧

i∈S

yi = b] ≤
∏

i∈S

Pr[yi = b].

Since negative correlation suffices for the classic large deviation bounds to
hold [46], the question is which hard constraints allow randomized rounding
in a way that the rounded variables are negatively correlated. Chekuri et al. [9]
showed that this is possible for every point in a polytope P exactly when P is a
kind of matroid polytope. Specifically, they show the following.

Theorem 1 ( [9]). Let P be a polytope with vertices in {0, 1}V . Then the fol-
lowing two properties are equivalent:

1. For any x ∈ P , there exists a probability distribution over vertices of P such
that a random vertex y drawn from this distribution satisfies E[y] = x and
the coordinates {yi}i∈V are negatively correlated.

2. P is a projection of a matroid base polytope, in the sense that there is a
matroid M = (V ′, I) such that V ⊆ V ′ and p is a vertex of P iff p = 1B∩V

for some base B of M .

Additionally, their algorithm provides a guarantee of sharp concentration
bounds for any submodular function; see [9]. While this is a very powerful result,
it requires the use of algorithms of forbidding complexity (both in terms of
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implementation and running time); see Sect. 4.4. Interesting special cases include
spanning trees (e.g., [4]) and cardinality constraints. The latter is covered in
detail in Sect. 4.

Partial Negative Correlation. To gain more expressive power in the hard
constraints, we have to give up some generality for the soft constraints. The first
result in this direction was by Gandhi et al. [35,36], who covered the case of edge-
rounding in bipartite graphs, with hard cardinality constraints (and negative
correlation) over sets of edges incident on a common vertex; see Sect. 5 for details.
This was generalized by Chekuri et al. to matroid intersection constraints, with
negative correlation over subsets of variables corresponding to equivalence classes
of the matroids; see [9]. Unlike for complete negative correlation, we have no
complete characterization for this case (i.e., no “only if” statement corresponding
to the second part of Theorem 1).

Further Extensions. Chekuri et al. [10] showed that by relaxing the condi-
tions slightly, one can achieve roundings that are in a sense almost randomized
roundings (up to a factor (1 − ε) for a given ε > 0), which satisfy a set of
hard constraints generalizing all cases above, and such that Chernoff-Hoeffding
concentration bounds apply for any linear function over the variables (i.e., not
restricted to certain variable subsets). In particular, they show the following.

Theorem 2. Let P be either a matroid intersection polytope or a (not neces-
sarily bipartite) graph matching polytope. For every fixed 0 < ε ≤ 1

2 , there is
an efficient randomized rounding procedure, such that given a point x ∈ P it
outputs a random feasible solution R corresponding to an (integer) vertex of
P , such that E[

∑
R] = (1 − ε)

∑
i xi, and such that for any linear function

a(R) =
∑

i∈R ai, with ai ∈ [0, 1] and E[a(R)] = μ, exponential concentration
bounds apply to E[a(R)]. The bounds are dimensionless, i.e., the coefficients in
the concentration bounds depend on ε and μ, but not on n = |x|.

See [10] for details. They mention that the results can be further generalized
to non-bipartite b-matching. Since cardinality constraints are special cases of
bipartite b-matchings, and since both matroid intersection and non-bipartite b-
matching are covered by the above result, this result properly generalizes all the
above-given results (except for the factor (1 − ε) and the exact factors involved
in the concentration bounds).

4 Disjoint Cardinality Constraints

In this section, we describe methods for generating dependent randomized round-
ings subject to disjoint hard cardinality constraints and admitting the usual large
deviation bounds on arbitrary subsets of the variables (complete negative cor-
relation). This includes a simple proof uniformly showing the correctness of all
approaches proposed so far.

To ease the presentation, we shall assume that there is only a single global
cardinality constraint, that is, that we do not tolerate any rounding error in the
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sum of all variables (this implies that we assume that
∑n

i=1 xi is integral). It will
be immediately clear how to extend all of the below to disjoint cardinality con-
straints (that is, more than one and possibly not covering all variables), and even
to cardinality constraints forming a laminar system (for each two constraints,
the two sets of variables concerned are disjoint or one is a subset of the other).

4.1 Algorithms

We now describe three algorithms that have been proposed for generating ran-
domized roundings with a global cardinality constraint [16,30,56]. All three
approaches (as well as the preliminary works [14,15]) use the same basic idea
of breaking down the rounding process to suitably rounding pairs of variables.
We thus first describe this common core, then fill in the details of how each
algorithm works. (The rounding algorithm for matroid constraints of Chekuri
et al. [9] can also be phrased in this framework, though it is not the perspective
taken in [9].)

Pair Roundings. Let (xi, xj) be a pair of fractional variables in x. A pair-
rounding step is to take such a pair (xi, xj) and modify their values as follows. Let
δ+, δ− > 0 be two values chosen by the respective algorithm, and adjust (xi, xj)
to (xi + δ, xj − δ), with δ ∈ {δ+,−δ−} chosen randomly so that E[δ] = 0. The
values δ+, δ− and the choice of the pair (xi, xj) vary according to the algorithm;
see below. Clearly, each pair-rounding step preserves the sum of all values, keeps
xi in [0, 1] and does not change the expectation of xi (hence the final yi is a
randomized rounding of xi). Negative correlation also follows, as shown next.

Theorem 3. Let x ∈ [0, 1]n be rounded by a sequence of pair-rounding steps to
some y ∈ {0, 1}n (with δ+, δ− chosen throughout so that all coordinates remain
in the range [0, 1]). Then |∑i xi − ∑

i yi| < 1 and y is a randomized rounding
of x with negative correlation over all sets of coordinates.

Proof. The first two claims are clear; we need to show that for any S ⊆ [n] we
have Pr[

∧
i∈S yi = b] ≤ ∏

i∈S Pr[yi = b] for b = 0, 1. We give a proof via induction
over the number of pair-rounding steps. As a base case, assume that no pair-
rounding steps are taken. In that case x is integral, y = x, and for each choice
of S and b, Pr[

∧
i∈S yi = b] =

∏
i∈S [xi = b]; thus the statements hold. For the

inductive case, let S ⊆ [n] be an arbitrary set and consider P := Pr[
∧

t∈S xt = 1].
Let (xi, xj) be the pair of variables in the first pair-rounding step, and observe
Pr[δ = δ+] = δ−

δ++δ− . Also let S′ = S \ {xi, xj} and P ′ = Pr[
∧

t∈S′ xt = 1] ≤∏
t∈S′ xt, by the inductive hypothesis. Now the statement follows by simple

manipulations. If |S ∩ {xi, xj}| = 1, say xi ∈ S, then

P = (
δ−

δ+ + δ− (xi + δ+) +
δ+

δ+ + δ− (xi − δ−))P ′ = xiP
′;
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if S = S′, then P = P ′ and we are done. Otherwise, we have

P = (
δ−

δ+ + δ− (xi + δ+)(xj − δ+) +
δ+

δ+ + δ− (xi − δ−)(xj + δ−))P ′

= (xixj − δ+(δ−)2

δ+ + δ− − δ−(δ+)2

δ+ + δ− )P ′ ≤ xixjP
′.

The case of
∧

t∈S xt = 0 is analogous, replacing each xt by 1 − xt.

Srinivasan’s Method. In [56], the details of the above scheme are filled in as
follows. Let (xi, xj) be a pair of fractional variables (chosen arbitrarily), and
let δ+ = min(1 − xi, xj) and δ− = min(xi, 1 − xj). Working through the above
description of the choice of δ, we find that δ = δ+ with probability δ−/(δ++δ−),
and δ = −δ− with complementary probability. Observe that in each case, at
least one of the new values xi + δ, xj − δ is integral, and will hence not be chosen
for further rounding steps. In particular, this implies that there are only O(n)
rounding steps. While the choice of pairs (xi, xj) has no impact on the theoretical
behavior of the algorithm, in practice it had some importance; see below.

Bitwise Roundings. A different approach to dependent rounding was taken
by Doerr [16]. For this method, we must assume that the variables {x1, . . . , xn}
have finite bit-depth �, i.e., that each variable xi can be written as ci · 2−� for
some integers ci and �. In this case, we round variables as follows. Let (xi, xj) be
a pair of variables with the least significant bit (LSB) set to 1 (i.e., ci mod 2 =
cj mod 2 = 1). If no such variables exist, we may rewrite x with a shorter bit-
depth �′ < �; also note that under the assumption that the total cardinality∑n

i=1 xi is integral, there cannot be only a single variable xi with non-zero LSB.
We round (xi, xj) as described above by letting δ = ±2−� with equal probability;
note that after this step, both variables will have a LSB of 0, regardless of choice
of δ. Hence, after O(n) rounding steps there will be no further variables with
non-zero LSB, and we may consider our variables to have a smaller bit-depth
� − 1. After � such phases, and consequently O(n�) rounding steps, all variables
will be integral.

The advantage and original motivation of this scheme is that the � rounding
phases are (arguably) simpler than the previous case, both to implement and to
analyze. In [16], each individual rounding phase was performed in a plug-in fash-
ion by the independent randomized rounding method of Raghavan and Thomp-
son, allowing for the first announced derandomized algorithm for this problem.
However, later it was observed (in [31]) that the standard method of pessimistic
estimators can be applied directly to all these schemes (see below). The complex-
ity of O(n�) is noticeably worse than the O(n) of Srinivasan’s method, except for
variables with small, constant bit-depth, but the approach of bit-wise rounding
turned out useful for the more general case of bipartite graphs; see Sect. 5.

A Hybrid Scheme. Motivated by differences observed in running time and
solution quality for the case of bipartite graphs (see Sect. 5), a third variant of
rounding scheme was considered in [30]. In brief, this variant consists of picking
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pairs of variables (xi, xj) as in bitwise rounding, but picking the adjustment δ as
in Srinivasan’s method (i.e., so that one of xi and xj becomes integral). Observe
that this adjustment δ will inevitably have a LSB of 1, implying that in each
rounding step, we both fix one variable as integral and decrease the bit-depth of
the other. The correctness of this method (in particular the negative correlation)
follows directly from Srinivasan [56], as the only technical difference between the
two is the choice of variable pairs, which is left unspecified in [56].

4.2 Derandomization

All of the above rounding schemes can be derandomized using the methods
developed by Raghavan for classical randomized rounding [47]. Let us outline
how these methods work for the independent rounding case before we review
how they can be adapted to cases of dependent rounding.

The first ingredient is known as method of conditional probabilities [32,47,55].
Let x be as above, and let P (x) be the probability of some undesirable event, e.g.,
the probability that an independent randomized rounding y of x has a rounding
error larger than some bound μ. Assume that P can be efficiently computed,
and that P (x) < 1. We can then produce a rounding y of x by iteratively
rounding each variable xi in turn, at each step picking the value yi ∈ {0, 1} that
minimizes P (·). Let x′ resp. x′′ be x modified as xi ← 1 resp. xi ← 0. Then
P (x) = xiP (x′) + (1 − xi)P (x′′), as P (x′) and P (x′′) are simply the conditional
probabilities of failure given xi. Hence min(P (x′), P (x′′)) ≤ P (x) < 1, and we
maintain the invariant that P (x∗) < 1 for every generated point x∗. By induction
we have P (y) < 1, where y is the final rounding of x generated this way, and
since y is integral we conclude that P (y) = 0, e.g., y produces a rounding error
less than our bound μ, and we are done.

To extend this to cases where P (x) is unknown or too expensive to compute
(as is the case for rounding errors in a linear system Ax = b), we may use a
pessimistic estimator F (x) in place of P (x). Such an estimator is an efficiently
computable function F (x) such that F (x) ≥ P (x) for all x, F (x) < 1 for the
initial point x, and for every two modifications x′, x′′ of a point x as above,
min(F (x′), F (x′′)) ≤ F (x). By identical arguments as above, using a pessimistic
estimator F (x) in place of the probability P (x), we may deterministically pro-
duce a rounding y of x which satisfies our condition. The art, or course, is
finding such pessimistic estimators. Raghavan [47] showed that certain technical
expressions occurring in the proof of Chernoff-Hoeffding bounds are pessimistic
estimators. This has the advantage that they can applied to systems Ax = b
of soft linear constraints whenever the corresponding Chernoff-Hoeffding bound
shows that with positive probability a solution with a certain rounding error
exists; see Sect. 2, and [47] for details.

To adapt the above to the dependent cases, we proceed as follows. Let x
be a point, and consider a pair-rounding step on variables xi, xj . Recall that
here we adjust x ← x + δ(ei − ej) for some δ ∈ {δ+, δ−}. Let F (x) be the
above pessimistic estimator, and define f(δ) = F (x + δ(ei − ej)). It was shown
in [31] that f(δ) is a concave function, meaning that for any pair δ+, δ− ≥ 0,
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at least one of the values f(δ+), f(−δ−) is at most F (x). We may now proceed
greedily, as above, at every pair-rounding step selecting that value of δ which
minimizes F (x). As before, this can be done in O(mn) time, for n variables and
m soft constraints. (Similarly to Theorem 3, this can be used to derandomize
any pair-rounding-based algorithm with the same guarantee for the rounding
errors.)

Historically, the derandomization of the bit-wise method progressed through
several generations, from the initial derandomization in [16] with significantly
worse constant factors in the rounding error guarantees, via a partial improve-
ment given in [31], until the general form of the above method was realized [30].

In practice, though the pessimistic estimators are far from perfect (e.g., due
to the use of a union bound), the greedy aspect of the derandomization process
makes for a powerful heuristic, as points with smaller value F (x) also tend to lead
to smaller rounding errors. Although the theoretical guarantees for the resulting
rounding error are comparable to the expected outcome of a randomized process,
in applications and experiments we repeatedly find that derandomized, greedy
methods significantly outperform randomized ones. (See the experiments in this
section for more.)

Implementation Notes. A few potential issues suggest themselves with respect
to implementation of the above. The first is the source of randomness for the
randomized methods. While we did not have access to a “real” (hardware) ran-
domness source, we found no indication in our experiments that the choice of
pseudo-random number generator would have a very powerful impact on the
results. The second potential issue lies in the use of floating-point arithmetics.
As noted in Sect. 2, exact computation of pessimistic estimators is only possi-
ble in the Real RAM model, and alternatives for the standard model are very
costly. Instead, our implementation (as is usual) uses CPU-native floating point
arithmetics. While this “usually” works “reasonably” well, there are potential
issues of accumulated imprecision (in particular since the pessimistic estimators
become repeatedly adjusted throughout the process). However, in experiments
we found no indication of such problems within the scope of this and the next
section.

4.3 Experimental Evaluations

Seemingly, not much experimental work on randomized rounding, even with-
out constraints, is published. Consequently, we include independent randomized
rounding in the following summary of experimental comparisons of the above
algorithms. They are mainly from [31], augmented by [29,30], which relate to
later developments (the hybrid rounding scheme and improvements in deran-
domization). For all details, we refer to these papers. All conclusions below are
supported for the latest versions of the respective programs (unless explicitly
stated otherwise). All experiments reported below use inputs of full bit-depth.

First, regarding the running time and general program feasibility (code com-
plexity and numerical stability), the conclusions are generally positive; the ran-
domized versions of independent rounding and Srinivasan’s method rounded
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1, 000, 000 variables in 0.05–0.14 s, with the bit-wise method being slower at
approximately one second. For the derandomized versions, rounding 10, 000
variables subject to 10, 000 soft constraints took 52 s for independent round-
ing, 75 s for Srinivasan’s method, and in excess of ten minutes with bit-wise
rounding. Later engineering of the code base reduced these times, eventually
allowing derandomization instances for a geometric discrepancy problem with
215 = 32, 768 variables and an equal number of soft constraints to be rounded in
37 s (with special-purpose code) [28]; see Sect. 6.1. No issues of numerical stabil-
ity were encountered. The hybrid method was not tested here, but based on the
results in [30] there is no reason to expect that the outcome would be noticeably
different from the other applications of Srinivasan’s method tested here.

Next, we consider solution quality (i.e., rounding errors). All considered
methods have identical theoretical concentration bounds (in the randomized
case) respectively identical theoretical upper bounds (in the derandomized case),
including the classical independent, non-constraint-preserving roundings. For the
bit-wise method, as noted above, the derandomization used in [31] had a worse
constant factor than the latest versions, thus we focus first on the other meth-
ods. Taking the performance of independent randomized rounding as a reference
(100%), the experiments of [31] showed that adding a cardinality constraint led
to no worse rounding errors, and in some cases to a reduction of rounding errors if
the soft constraints have large cardinality (e.g., on instances with a dense random
matrix of soft constraints, a hard cardinality constraint reduced rounding errors
by 15%). No clear difference between the dependent randomized methods was
found. Using a derandomization reduced the rounding error by approximately
50% on random instances; more on structured instances stemming from experi-
ments reported in Sect. 6.1. Comparing the independent derandomized rounding
with Srinivasan’s method revealed no clear difference, though perhaps an advan-
tage for Srinivasan’s method of a few percent. In particular, there seemed to be
no significant “price of hard constraints” in terms of solution quality. All algo-
rithms outperformed their theoretical bounds on rounding error by a factor of
2–3 (presumably due to the latter’s use of union bounds).

This data supports the general expectation that derandomized methods pro-
duce significantly smaller rounding errors, a conclusion that was consistently
arrived at in all our experiments. This advantage persisted when compared to
generating a large number of random solutions and keeping the best one (note
that computing the rounding error requires O(nm) time).

Finally, regarding the derandomized bit-wise method, the version used in [31]
performed worse than the other two (with rounding errors at 55–65% of those of
randomized rounding). Experiments in [29,30] (see later) using newer versions
tend to confirm a (modest) advantage of the derandomization of Srinivasan’s
method over that of the bit-wise method, though we have no good explanation
for this. However, we did find that particular combinations of soft constraints and
order of variable comparison led to very poor quality solutions for Srinivasan’s
method; see [31] regarding tree shape (but note that in later investigations, the
effect has been found to be less general than originally implied). In this respect,
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the hybrid method (viewed as a tweak on Srinivasan’s method) always creates
the balanced tree shape recommended in [31].

4.4 Extension: Matroid Constraints

As noted in Sect. 3, the above methods can be extended to the setting of matroid
constraints [9]. Matroids are powerful objects, whose usage unifies many results
from combinatorics (see, e.g., [45,53]); hence this extension is a powerful result.
However, it comes with a significant impact to practicality. While the algorithm
of [9] is reasonable (being combinatorial in nature), it works on the basis of a
decomposition of the input point x ∈ R

n into a convex combination of matroid
bases, and such a decomposition is difficult to obtain, both in terms of compu-
tational complexity (the best bound for the general case being O(n6) time [11])
and in terms of implementation difficulty. Using a more traditional pair-rounding
approach (in line with the algorithms of Sect. 4.1; see [8]) would save us from
having to provide an explicit decomposition, but instead requires the ability to
test the fractional membership of a point x in the corresponding polytope; for the
general case, this is again as difficult as obtaining a decomposition [11]. (Chekuri
et al. [9] note that in some applications, such a decomposition is provided along
with the point x, in which case these objections do not apply.)

One particularly interesting special case of this result are spanning tree con-
straints, i.e., creating a random spanning tree for a graph according to some
given edge probabilities. This was used in the breakthrough O(log n/ log log n)-
approximation result for Asymmetric TSP of Asadpour et al. [4] (although [4]
used the heavy machinery of maximum entropy sampling). However, the cost
of the above-noted primitives for the spanning tree polytope is still non-trivial,
e.g., decomposition requires O(n2) calls to a max-flow algorithm [34]. The best
present bound for max-flow is O(nm) time due to Orlin [44].

5 Pipage Rounding: Rounding in Bipartite Graphs

In this section, we move on to a more general constraint type, which can be
described either as rounding fractional edges in a bipartite graph (e.g., bipartite
b-matching) or as rounding a fractional point x subject to membership in the
assignment polytope. We will employ the bipartite graph perspective. Dependent
randomized roundings for this setting were provided by Gandhi et al. [35,36] and
by Doerr [16]. In this setting, the hard constraints are represented by a bipartite
graph G = (U ∪ V,E), with edge set E = {e1, . . . , em}, and with one variable
xi ∈ [0, 1] for every edge ei. Let x = (x1, . . . , xm) denote the family of variables,
and for a vertex w ∈ U ∪ V let δ(w) denote the edges incident on w. The hard
constraints that we must observe are then to preserve the values of

∑
ei∈δ(w) xi,

for all vertices w ∈ U ∪ V ; in other words, we are rounding the values of the
fractional edges ei, subject to preserving the fractional degree in every vertex.
We refer to these constraints as vertex constraints δ(w). For ease of presentation,
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we assume that each vertex constraint δ(w) is integral, by adding two dummy
vertices u0, v0 and up to |U | + |V | + 1 dummy edges [30].

We will not be able to guarantee complete negative correlation, as may be
realized by considering, e.g., an even cycle C2n of 1

2 -edges. There are exactly two
rounded solutions for this instance, and if the edges are numbered e1, e2, . . . , e2n

in order, in each solution we have x1 = x3 = . . . = x2n−1 and x2 = x4 = . . . =
x2n. However, the above results show that one can generate roundings subject to
the above, with negative correlation within all subsets δ(w) for w ∈ U ∪ V . We
will review the above algorithms, and recall the conclusions of some experiments,
both in general terms and for particular applications. We also briefly report on
theoretical results that extend the above situation, again to a matroid setting.

5.1 Algorithms

As in Sect. 4, three different rounding schemes are available for solving the prob-
lem, corresponding to the three schemes of Sect. 4.1, with a common algorithmic
core referred to as pipage rounding. Thus we first describe this common core,
then review how each rounding scheme can be applied to it.

Pipage Rounding. The common principle behind these algorithms is the idea
of pipage rounding, due to Ageev and Sviridenko [1]. Let C ⊆ E be a set of edges
that induce a simple cycle in E; w.l.o.g. assume that C = {e1, . . . , e2t}, numbered
in order along the cycle C, and let xC = {x1, . . . , x2t} be the corresponding set
of variables. We will perform a pair-rounding step at every vertex incident to
C, similarly as in Sect. 4, but this time, in order to maintain all cardinality
constraints δ(w) the adjustments need to cascade. Concretely, for some δ ∈
(−1, 1) we will adjust the values xi for all edges ei ∈ C so that x2i−1 ← x2i−1+δ
and x2i ← x2i − δ; the adjustment δ is chosen randomly as δ ∈ {δ+,−δ−} with
E[δ] = 0. The choice of δ+, δ− and the cycle C is algorithm-specific. We refer to
such an adjustment as a pipage rounding step. We review the effects of applying
the various rounding schemes to this outline. Note that when considering δ(w)
in isolation, w ∈ U ∪ V , the above scheme acts exactly like a pair-rounding
algorithm, implying both negative correlation and derandomization as in Sect. 4.

Gandhi et al. In [35,36], the details are chosen much as in Srinivasan’s method
for pair-rounding. That is, δ+ and δ− are defined as the largest values such that
using an adjustment of δ = δ+ (resp. δ = −δ−) leaves all variables xi ∈ [0, 1];
necessarily, at least one variable xi must become integral in such an adjustment.
Each time, the cycle C is chosen arbitrarily among the edges that still have
fractional values. (By the integrality of each vertex constraint, no vertex is inci-
dent to exactly one fractional edge, hence such a cycle always exists.) We get an
upper bound of O(m) pipage rounding steps; as each step may involve a cycle
C of O(n) edges, the total running time (pessimistically) becomes O(nm). (A
better bound may be O(mp), where p is the average cycle length, but this is
hard to estimate theoretically.)

Bit-Wise. In [16], the bit-wise rounding scheme is applied to the above. Con-
cretely, we assume that each variable xi has a finite bit-depth of �. Let E� be
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the set of all edges ei whose corresponding variables xi have an LSB of 1. By
the integrality of the vertex constraints, these edges E� form an even graph,
which hence decomposes into cycles. Let C be an arbitrary cycle in the graph
formed by E�, and pick δ = ±2−� uniformly at random. Now note that every
edge ei ∈ C gets an LSB of 0 after such an adjustment, hence for each bit level,
each edge is adjusted at most once. Consequently, the total work over all pipage
rounding steps is simply O(m�), which compares favorably to the bound O(mn)
for the previous method.

Hybrid. Finally, we consider the hybrid method, developed in [30] for this case.
Here, the cycle C is chosen as in the bit-wise method, while the values δ+, δ−

are chosen as in Gandhi et al. Again we find that both δ+ and δ− have an LSB
of 1, hence after each pipage rounding step, we both decrease the bit-depth of
all adjusted edges and make at least one edge variable integral. In practice, this
method proves to be faster than both the above methods (see below).

Derandomization and Implementation Notes. All these algorithms can
be derandomized, in the same sense as in Sect. 4, assuming that each soft con-
straint has its support contained in δ(w) for some vertex w; as noted above, we
may simply use the same pessimistic estimators as in Sect. 4.2. As for imple-
mentation notes, we found that there is some undesirable interaction between
the derandomization and the hard constraints, if one uses inexact (e.g., floating-
point) arithmetics. In many applications we may have hard cardinality con-
straints which make the solutions to the problem more costly (e.g., the limits on
broadcasting in Sect. 6.3). If a cardinality constraint of, say, 2 is misinterpreted
as a fractional constraint of 2 + ε (where ε > 0 is some small number stemming
from floating point imprecision), then a greedy derandomized algorithm may opt
to “round” this constraint up to 3. (Note that this would be extremely unlikely
for a randomized algorithm.) Based on our experiences in [30], rather than trying
to “plug” such holes in an ad-hoc manner, we recommend to transform the input
to fixed precision (say, 64-bit integers) before commencing any rounding. (This
64-bit data will need to be cleaned up for integrality after the transformation,
but this only has to be done once.)

5.2 Experimental Evaluations

We now report briefly on conclusions from [30] on random bipartite graphs,
regarding running time and solution quality; an application to broadcast schedul-
ing is covered in Sect. 6.3.

As noted above, the method of Gandhi et al. needs O(mp) time where p is
the average cycle length, while the bit-wise method needs O(m�) time where �
is the bit-depth (and the hybrid method needs the smaller of these). The deran-
domized versions incur an additional cost due to the need to update pessimistic
estimators; with the implementation used in [30], this cost is roughly propor-
tional to the total number of pessimistic estimators for all methods. (With a
more advanced implementation, it should be possible to reduce this factor to
the number of affected pessimistic estimators, which should further boost the
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differences in running times; however, this was not attempted.) Naturally, the
value of p depends on the graph structure; in experiments with random 5-regular
bipartite graphs with n vertices, we found that the total number of edge visits
for the method of Gandhi et al. scaled as O(n1.37), while it remained linear for
the two other methods. (The difference in running time scaled proportionally
to this.) In concrete numbers, for 5-regular graphs on 1000 vertices, the average
running times for the derandomized versions were 14.6 s, 10.2 s, resp. 8 s for the
method of Gandhi et al., bit-wise, resp. the hybrid method; for 20-regular graphs
on 1000 vertices the times were 109 s, 67 s, resp. 65 s; and for random graphs with
m = 20, 000 and n = 400, the times were 56 s, 46 s, resp. 33 s. In other words,
for this range of m, the order of Gandhi - bit-wise - hybrid is stable, with a
total gap of roughly factor of two. The randomized methods were roughly two
orders of magnitude faster on these instances, which though noteworthy is a less
drastic difference than in Sect. 4. In terms of rounding error, the general order
was that the method of Gandhi et al. produced smaller rounding errors, and the
bit-wise method larger errors, e.g., for the random graphs with m = 20, 000 and
n = 400, the average rounding errors were 4.38 for Gandhi et al., 6.09 for the
bit-wise method, and 5.43 for the hybrid method. However, in the application
experiments (reported in Sect. 6.3), this order was not preserved (there, instead,
the hybrid was both fastest and produced the best-quality solutions). The ran-
domized methods again produced rounding errors similar to each other, up to
twice as large as the derandomized methods.

5.3 Extension: Matroid Intersection

As noted in Sect. 3, there is a far-reaching generalization of the above into so-
called matroid intersection constraints [9]. The algorithm, as in Sect. 4.4, is based
on a convex decomposition of the input point x, though the individual steps are
more complicated (being pipage rounding steps rather than simple pair-rounding
steps). However, the extent of negative correlation is more limited (covering ver-
tex constraints as above, but perhaps not much beyond this). In a further exten-
sion, the authors also produce “approximate roundings” for settings including
matroid intersection; see Sect. 3 and [10]. (An interesting future question is how
the concentration bounds of these “approximate” roundings play out in prac-
tice against other methods.) Naturally, the complexity drawbacks reported in
Sect. 4.4 apply equally strongly here.

6 Some Applications

To get a feeling for the behavior of the algorithms “in practice,” we now review
some work on applying the above methods to (real or artificial) instances of con-
crete optimization problems. We cover three topics: Low-discrepancy pointsets
(in Sect. 6.1), routing and covering problems (in Sect. 6.2), and problems of
broadcast scheduling (in Sect. 6.3). These represent various areas where meth-
ods of dependent randomized rounding have been proposed for approximation
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algorithms. Additionally, we report on advances in randomized rumor spreading
(Sect. 6.4), which not only has a natural interpretation as rounding problem, but
moreover turned out to be a very useful test-case to investigate the influence of
additional dependencies in the random experiment.

6.1 Low-Discrepancy Point Sets

The first application is from the area of geometric discrepancy. Specifically, we
consider the following discrepancy problem. Let P be a set on n points in [0, 1]d.
The L∞-star discrepancy of P (star discrepancy for short) is defined as d∗

∞(P ) =
supx∈[0,1]d | 1n |T ∩ [0, x[| − vol[0, x[|, where [0, x[ is the d-dimensional half-open
box [0, x1[× . . . × [0, xd[; that is, the star discrepancy is defined with respect
to a range space of boxes anchored in 0. Our task is to create a point set P
for given values of n and d, with d∗

∞(P ) as small as possible. Such point sets
have important applications in numerical integration, in particular in financial
mathematics; see, e.g., [43]. In [22], a randomized method is proposed for this
problem. They define a subdivision of [0, 1]d into a (non-regular) grid of kd grid
boxes, for some k = k(d, n) chosen by the algorithm. The point sets P are then
created in a two-stage process, where in the first stage it is decided how many
points each grid box should contain, and in the second stage the placement of
these points inside the boxes are chosen. The first stage naturally corresponds to
a dependent rounding problem, with one variable xi for each box Bi of the grid,
with initial value xi = n · vol(Bi), and with a hard constraint

∑
i xi = n. Note

that this can be done in a randomized or derandomized manner, as the range
space above reduces to the set of all kd corner-anchored boxes one can form from
the grid, each of which can be treated as a soft constraint. This leaves the design
of the grid, for which see [22], and the choice of the parameter k = k(d, n).
In [22], k was chosen so as to balance the contribution to the discrepancy of
the two stages, based on theoretical bounds on the rounding and placement
errors. The resulting bounds were superior to previous work for a domain of
intermediate dimension d and relatively few points n. (For a related method,
see [26,27].)

In [28], this was tried out experimentally. In line with the experiences
reported in Sect. 4.3, the immediate experiences were that contrary to theory,
there was a very big difference in rounding error between the derandomized
and randomized methods, and even the randomized methods produced round-
ing errors significantly smaller than the union bound-based theoretical bound.
On tests with d = 7, n ≈ 150, the median rounding error (using Srinivasan’s
method) was 0.026, while the median star discrepancy was 0.139, i.e., five times
larger; tests with d = 9, n ≈ 90 revealed even larger differences. Therefore, the
recommendation would be to pick a larger k than k(n, d), perhaps up to the
limits formed by the growth of the number of variables kd.

To enable larger tests, the derandomization code was carefully engineered,
and special-purpose code was written for the case k = 2, enabling derandom-
ization of instances with k = 2, d = 20 (with over a million variables and soft
constraints), taking 10.5 h to compute. However, the investigation was hindered
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by the difficulty of computing discrepancies. Note that the formula for d∗
∞(P )

discretizes into O(nd) tests, which is highly impractical. Unfortunately, though
improvements exist [13,38], no practical method for upper-bounding d∗

∞(P ) for
larger d is known, and it is now known that computing d∗

∞(P ) in time O(no(d))
would contradict certain complexity-theoretical assumptions [37]. Therefore, the
final conclusions of the experiments remain tentative.

6.2 Routing and Covering Problems

We now move on to more typical approximation applications of randomized
rounding. We briefly review two applications, namely a low-congestion routing
problem and max coverage in hypergraphs; the results are taken from [29]. Both
problems are classical examples of the randomized rounding approach to approx-
imation algorithms, involving solving an LP-relaxation of the problem, rounding
it randomly to an integral solution, and using probabilistic arguments to show
that this integral solution is with good probability a good approximation. For
both problems, we find that the proposed algorithms work well in practice, but
furthermore we find that various heuristic improvements can be used to improve
the result quite significantly. We cover each problem in turn.

Low-Congestion Routing. The routing problem we considered is the follow-
ing variant. We are given a (directed) network G = (V,E) and a set of k routing
requests consisting of a source vertex si, a sink vertex ti, and a demand ri. The
objective is to find a set of paths (i.e., an integral multi-commodity flow) such
that for each i ∈ [k], ri units of commodity i are routed from si to ti. The
optimization goal is to minimize the congestion, i.e., the maximum total amount
of flow over any single edge. This variant, where every ri is an integer, is also
called integer-splittable flow. Raghavan and Thompson [48] gave an approxima-
tion algorithm for the case where all demands are 1, using randomized rounding;
Srinivasan [56] extended this to integer demands using dependent rounding. The
algorithm works as follows. First, we solve an LP relaxation of the problem; this
is simply the usual multi-commodity flow LP, with km variables xi,e for i ∈ [k],
e ∈ E, and with a flow-conservation constraint for each commodity i and each
vertex v (properly adjusted for the vertices si and ti). The LP is solved with
an optimization goal of minimizing the congestion C = maxe∈E

∑
i∈[k] xi,e (note

that this is easily implemented in an LP, using C as an extra variable). This
gives a set of fractional variables xi,e which will be the basis for the solution.
Next, we apply path stripping to these variables, creating for each i ∈ [k] a
finite set Pi of fractional paths from si to ti, of total weight ri. For each such
fractional path P , we let x(P ) denote the weight that P was given in the path
stripping; hence

∑
P∈Pi

x(P ) = ri for each i ∈ [k]. Finally, we round these frac-
tional weights x(P ) to integers y(P ), using

∑
P∈Pi

x(P ), i ∈ [k] as a collection of
(disjoint) hard cardinality constraints. Effectively, this means that we select for
each i ∈ [k] a collection of integral paths from si to ti, of total weight ri, creating
a solution for the problem. As for the congestion, observe that for every e ∈ E
the congestion over e is simply

∑
P :e∈P x(P ), i.e., the congestion can be treated
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as a set of m soft linear constraints, and as long as the congestion C of the LP
solution is not too low, large deviation bounds imply that the congestion of the
integral solution y is on expectation close to C (e.g., the expected congestion is
C + O(

√
C log m) if C > log m). The derandomized version of this works out of

the box with pessimistic estimators, giving the same approximation guarantee.
So far the theory; let us now focus on the algorithm engineering perspective.

In [29], the above was tested with the following setup. As instances, we used
n × n-size bidirectional grids with randomly generated requests, with demands
around ri = 3 (the details of placements of requests (si, ti) and choice of ri were
not found to affect the outcome too much). In the experiments, we found that
the proposed algorithms generally work well and tend to perform better than
the theoretical upper bound, and that (once again) the derandomized versions
clearly outperform the randomized versions by a factor of two or more (in terms
of rounding error relative to the fractional solution). Although the derandom-
ized versions were slower than the randomized ones, both running times were
completely dwarfed by the time required to solve the LP, making a strong rec-
ommendation towards using the derandomizations. Inspired by inspection of the
structure of the fractional and integral solutions, we also proposed a heuristic
modification of the LP, intended to produce fractional solutions that are easier
to round (e.g., with fewer edges at maximum initial congestion C); see [29] for
details. This modification, while making the LP still more expensive to solve,
paid off in terms of still further reduced rounding errors for all methods. Con-
cretely, for a 15 × 15 grid with 75 requests, with the basic LP the randomized
methods produced over 40% overhead and the derandomizations produced 25.8%
(bitwise) resp. 18.2% (Srinivasan) overhead; with the improvement, the numbers
were 28.5% (randomized) resp. 12.9% (derandomized Srinivasan).

Max Coverage. We next consider a different problem. Let S = {S1, . . . , Sn}
be a collection of subsets of some ground set U ; without loss of generality, let
U = [m]. In the basic version of the problem, we are given a budget L, and
asked to select L sets of S to maximize the size of the union; in the weighted
version, we additionally have a cost ci associated with every set Si, and a profit
wi associated with every element i ∈ U of the ground set. Two algorithms
have been proposed for this problem, both with approximation guarantees of
(1 − 1/e); unless P= NP, this is also the best possible approximation guarantee.
The first algorithm is the greedy algorithm, which (for the basic variant) simply
repeatedly selects the set Si which would cover the largest number of so-far
uncovered elements. To adapt this for the weighted case, we may instead select
the set Si to maximise the profit/cost ratio. (To guarantee a good approximation
ratio for the weighted case, special care must be taken with sets of very large
cost; however, the instances in our experiments did not include any such sets.)
The second algorithm is an LP-rounding algorithm, which solves the natural
LP-relaxation of the problem and produces a solution by dependent rounding,
developed in [1,56]. Concretely, the LP has variables xi, i ∈ [n], signifying that
set Si is taken, and ei, i ∈ U , signifying that element i is covered; the constraints
are the budget constraint

∑
i cixi ≤ L, and coverage constraints ei ≤ ∑

j:i∈Sj
xj
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for each i ∈ U ; the optimization goal is max
∑

i wiei. For the basic variant, for
the rounding case we can simply treat the values xi as values to be rounded,
subject to a hard constraint

∑
i xi = L. Let y ∈ {0, 1}n be the rounded version

of x. For a single element i ∈ U , the probability that i is covered by y equals

1 − Pr[
∧

j:i∈Sj

(yj = 0)] ≥ 1 −
∏

j:i∈Sj

Pr[yj = 0] = 1 −
∏

j:i∈Sj

(1 − yj);

the inequality is due to the negative correlation of the rounding. By standard
methods, it follows that Pr[ei is covered] ≥ (1 − 1/e)yi, and the approximation
ratio follows by linearity of expectation. To adapt this for the weighted case, we
must replace the simple cardinality constraint by a weighted constraint

∑
i cixi ≤

L + δ, where δ is a noise term bounded by the cost of the most expensive set.
Such budget-preserving roundings are given in [29,35]. For derandomization, we
simply use as guide the function

F (x) =
∑

i∈U

wi(1 −
∏

j:i∈Sj

(1 − yj)),

representing the expected solution value for an independent randomized round-
ing of x. With similar arguments as in Sect. 4.1 regarding concavity, we can
show that it is possible to keep the value of F (x) non-decreasing during the
rounding process, meaning that we end up with a final profit of F (y) ≥ F (x) ≥
(1 − 1/e)

∑
i wiei. For details, see [29]. Again, some further care must be taken

if there are sets of very large cost, but we will ignore this aspect.
In [29], we implemented the above, and tested it on instances adapted from

facility location problems. As before, the results were generally positive; all algo-
rithms listed above performed well, and produced good-quality outputs (at least
compared to the theoretical guarantees), derandomized rounding significantly
outperformed randomized rounding, and the running time requirement for solv-
ing the LP generally dominated all other computation steps. (Observe that the
expected outcome for a randomized rounding is simply F (x). An alternate ran-
domized strategy of producing 1000 random outputs and keeping the best solu-
tion was tried, but found to be both slower than derandomized rounding and
producing worse-quality solutions.) However, it was also found that the greedy
algorithm frequently produced very high-quality solutions, and was partially
complementary to the LP-rounding algorithm. For this reason, we considered
several ways of incorporating further greedy aspects into the LP-rounding algo-
rithm. In particular, we complemented the pair-rounding step with a greedy
selection of the particular pair (xi, xj) of variables to round (i.e., we make
that adjustment (xi, xj) ← (xi + δ, xj − δ) which locally best improves the
value of F (x)). Thanks to the nature of the function F (x), this decision may
be taken based on the gradients ∂F (x)/∂xi, which in turn can be computed
and updated efficiently; see [29] for details. In experiments, this gradient-based
rounding performed impressively well, outperforming both the greedy and basic
LP-rounding algorithms, at no significant practical cost to the running time.
Concretely, for the instance br818-400 (see [29]), the initial F (x) = 22, 157,
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greedy achieves 28054, derandomized Srinivasan 27, 397, and the gradient deran-
domization 28, 448. Optimum was found via exhaustive search to be 28, 709.
We also considered an alternate way of combining greedy and LP-rounding, of
seeding the LP-algorithm by using some fraction εL of the budget for greedy
pre-selection before solving the remaining instance as above; this was found in
some cases to further improve solution quality.

6.3 Broadcast Scheduling

Finally, we briefly cover some problems in broadcast scheduling, where the bipar-
tite edge roundings of Sect. 5 have found approximation applications; this mate-
rial is from [30,36]. In this problem, a server has a set of pages P and a set of
requests for pages; each request has an issue date, a weight, and optionally a
deadline after which it cannot be satisfied. Time is divided into discrete slots,
and the server is able to transmit (broadcast) one page (or a bounded number of
pages) per time slot; each broadcast satisfies all requests that are live at the time
(i.e., between issue date and deadline). Different optimization goals are possible;
we will focus mostly on the max throughput case, where the goal is to maximize
the weight of the satisfied requests. We are considering the offline setting, i.e.,
all requests are known in advance.

The reduction of the max throughput problem into bipartite edge round-
ing goes as follows. We first solve an LP-relaxation of the problem, creating a
fractional schedule xp

t ; here a variable xp
t , for a time slot t and page p ∈ P ,

represents the decision that page p is to be broadcast at time slot t. These are
constrained so that

∑
p∈P xp

t = 1 for each time slot t. (The LP formulation also
contains further variables to keep track of the optimization goal. Concretely, for
each request i we have a variable ri signifying that the request is satisfied; if
request i is for page pi to be transmitted between time slots ti and di, then we
have a constraint ri ≤ ∑di

t=ti
xpi

t . The goal is max
∑

i wiri where wi is the weight
of request i.) This fractional schedule is then converted into a bipartite graph as
follows. First, for every page p, the transmissions {t : xp

t > 0} of p are split into
consecutive windows W p

j , such that in each window except the first and the last,
the page p is transmitted exactly once by the schedule. (Note that to achieve
this, we may have to split a single transmission xp

t between two windows W p
j ,

W p
j+1.) Call those windows which are not the first or the last window internal

windows. The amount by which p is broadcast during its first window W p
1 is

decided by a random variable z. Next, we form a graph G = (U ∪ V,E), where
U contains one vertex ut for each time slot t, and V contains one vertex vj,p

for each window W p
j formed above; the edges E connect the windows and the

time slots in the natural way, with values based on xp
t . In summary, this gives

us a weighted bipartite graph where every vertex representing a time slot or an
internal window is incident to edges of weight exactly 1. The first window of
each page is incident to edges of weight exactly z, where z ∈ (0, 1] is a page
shift value chosen uniformly at random. This graph G is then put through the
rounding procedure, and in the end this produces a schedule where each time
slot is incident to exactly one integral edge, and each page is transmitted once
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for each internal window (and possibly up to twice more). It is shown in [36]
that each request satisfied in the LP-solution has a chance of at least 3/4 to be
satisfied in the integral solution, leading in particular to a 3/4-approximation
assuming that there is a fractional solution which satisfies all requests.

In [30], this algorithm was implemented and tested, on broadcast scheduling
instances derived from Wikipedia access logs (see the paper for details). We com-
plemented the randomized algorithm above with a simple greedy algorithm and
a derandomization of the above. The greedy algorithm simply proceeds time slot
by time slot, and in each time slot broadcasts that page which would satisfy the
greatest number of remaining requests. For the derandomization, observe that
there are two randomized aspects to the above algorithm, namely the choice of
shifts and the decisions in the pipage rounding. The latter can be derandomized
via ad-hoc pessimistic estimators; the former can be derandomized by select-
ing for each page p that value zp which maximizes the sum of its associated
pessimistic estimators. In the experiments, we found that the greedy algorithm
performed the worst (unlike in Sect. 6.2, where it was quite competitive), and
that the two aspects of the derandomization (choice of z and using derandom-
ized pipage rounding) both strongly improved the solution quality. Concretely,
for the larger instance tested in [30], the greedy algorithm and the randomized
algorithms all achieve a value of 24.6, while derandomizing both aspects gives
value 26.6 (bitwise), 27 (Gandhi et al.), resp. 27.3 (hybrid). The LP has a value
of 27.5. (However, it should be noted that in all derandomized versions, the orig-
inal “fairness” condition that each request has a 3/4 chance of being satisfied
naturally no longer holds.)

We also tested the goal of minimum average delay, which was also covered
in [36]. However, for this goal, the LP-rounding approach does not seem to be
warranted, as the greedy algorithm was found to be both much faster and to
produce better solutions.

6.4 Randomized Rumor Spreading

While the main focus of this survey is how to efficiently generate random-
ized roundings with dependencies, there is the equally important question what
dependencies to use. For many applications it is simple the desired solution that
makes it obvious which dependencies to add. However, our experiments sketched
in Sect. 4.3 also suggest that adding dependencies even where not demanded by
the structure of the solution can improve the performance. To gain more insight
into this phenomenon, we exemplarily regarded the classic push-protocol to dis-
seminate a piece of information in a network (“randomized rumor spreading”).
This has a natural interpretation as randomized rounding problem. Due to its
simple structure, several dependent approaches suggest itself. Interestingly, the
most astonishing improvement was achieved on preferential attachment graph,
hence on networks trying to imitate the structure of real-world networks.

Randomized rumor spreading is a basic process to disseminate a piece of
information in a network. Initiated by a node wanting to spread a piece of
information (“rumor”), this round-based protocol works as follows. In each round
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of the process, each node knowing the rumor already calls a random neighbor
and gossips the rumor to it. This process has been observed to be a very robust
and scalable method to disseminate information, consequently if found many
applications both in replicated databases [12] and wireless sensor networks [2].

Randomized rumor spreading has a natural interpretation as randomized
rounding problem. Note that for a node u of degree d at each time step for each
neighbor v the probability that u calls v is xtv = 1/d. An actual run of the
protocol leads to a rounding ytv defined by ytv = 1 if and only if u actually
called v in round t. This rounding problem comes with the natural dependency∑

v ytv =
∑

v xtv = 1, but as we shall see, adding further dependencies can be
useful.

In [24,25], it was suggested that nodes should not take independent actions
over time, but rather it should be avoided, e.g., that a node calls the same other
node twice in a row. To keep the bookkeeping effort low, it was proposed that
each node has a cyclic permutation of his neighbors. When first informed, it
chooses a random starting point in this cyclic order, but from then on determin-
istically follows the order of the list. Note that this also massively reduced the
number of random bits needed by the process. Despite using much less random-
ness, this process was proven to have a mostly similar or slightly better perfor-
mance than the classic independent rumor spreading. In [21], an experimental
investigation was undertaken that confirmed speed-ups for several settings where
the theoretical works could not prove a difference of the protocols. Also, it was
observed that the particular choice of the lists can make a difference, e.g., for 2D
grids with diagonal adjacencies a low-discrepancy order to serve the directions
was shown to be much better than a clock-wise order.

Interestingly, the most significant improvement stemming from dependen-
cies (and in fact very low dependencies) was found on preferential attachment
graphs [18,20]. These graphs were introduced by Barabási and Albert [7] as
a model for real-world networks. For these graphs, surprisingly, a very minor
fine-tuning turned out to change the asymptotic runtime [18,20]. While classic
protocol with high probability needs Ω(log n) rounds to inform all vertices, this
changes to O(log n/ log log n) when the independent choice is replaced by talk-
ing to a neighbor chosen uniformly at random from all neighbors except the one
called in the very previous round. That this asymptotic improvement is visible
also for realistic network sizes was shown in [19]. We are not aware of previous
results showing that such a minor fine-tuning of a randomized algorithm can
lead to such gains for real-world network structures.

7 Conclusions

All results presented in the article indicate that randomized rounding and its
derandomization can be adapted to respect additional hard cardinality con-
straints without incurring significant losses compared to classical independent
randomized rounding as introduced by Raghavan and Thomspon [47,48]. For
disjoint cardinality constraints, when using Srinivasan’s approach or the hybrid
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approach, we did not observe that generating the roundings or the derandom-
izations took more time or was significantly more complicated. Also, we gen-
erally did not observe larger rounding errors when additional hard constraints
were present (rather the opposite, in particular, adding a global cardinality con-
straint may in fact slightly descrease the rounding errors). For the choice of
the rounding method to be used, the experimental results clearly indicate that
for disjoint cardinality constraints, Srinivasan’s or the hybrid approach should
be preferred, where as for the bipartite edge weight setting, the bit-wise or the
hybrid approach are more efficient.
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Abstract. Many state spaces are so big that even in compressed form
they fail to fit into main memory. As a result, during the execution of a
search algorithm, only a part of the state space can be processed in main
memory at a time; the remainder is stored on a disk.

In this paper we survey research efforts in external-memory search
for solving state space problems, where the state space is generated by
applying rules. We study different form of expressiveness and the effect of
guiding the search into the direction of the goal. We consider outsourcing
the search to disk as well as its additional parallelization to many-core
processing units. We take the sliding-tile puzzle as a running example.

1 Introduction

A multitude of algorithmic tasks in a variety of application domains can be
formalized as a state space problem. A typical example is the sliding-tile puzzle –
in square arrangement called the (n2−1)-puzzle (see Fig. 1). Numbered tiles in a
rectangular grid have to be moved to a designated goal location by successively
sliding tiles into the only empty square. The state space grows rapidly: the
8-puzzle has 181,440, the 15-puzzle 20, 922, 789, 888, 000/2 ≈ 10 trillion, and the
24-puzzle 15, 511, 210, 043, 330, 985, 984, 000, 000/2 ≈ 7.75 × 1025 states.

More generally, a state space problem P = (S,A, s, T ) consists of a set of
states S, an initial state s ∈ S, a set of goal states T ⊆ S, and a finite set
of actions A where each a ∈ A transforms a state into another one. Usually,
a subset of actions A(u) ⊆ A is applicable in each state u. A solution π is an
ordered sequence of actions ai ∈ A, i ∈ {1, . . . , k} that transforms the initial
state s into one of the goal states t ∈ T , i.e., there exists a sequence of states
ui ∈ S, i ∈ {0, . . . , k}, with u0 = s, uk = t and ui is the outcome of applying ai

to ui−1, i ∈ {1, . . . , k}. A cost (or weight) function w : A → IR≥0 induces the
cost of a solution consisting of actions a1, . . . , ak as

∑k
i=1 w(ai). In the usual

case of unit-cost domains, for all a ∈ A we have w(a) = 1. A solution is optimal
if it has minimum cost among all solutions.

A state space problem graph G = (V,E, s, T ) for the state space problem
P = (S,A, s, T ) is defined by V = S as the set of nodes, s ∈ S as the initial
node, T as the set of goal nodes, and E ⊆ V ×V as the set of edges that connect
nodes to nodes with (u, v) ∈ E if and only if there exists an a ∈ A with a(u) = v.
Solving state space problems, however, is best characterized as a search in an
c© Springer International Publishing AG 2016
L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 185–225, 2016.
DOI: 10.1007/978-3-319-49487-6 6



186 S. Edelkamp

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24

3

7 5

4

1 2

8

6

8

4

5 7

1 3

6

2

9 10 11 12

41 5131

Fig. 1. (n2 − 1)-puzzle instances: 8-puzzle, 15-puzzle, 24-puzzle.

implicit graph. The difference is that not all edges have to be explicitly stored, but
are generated by a set of rules (such as in games). We have an initial node s ∈ V ,
a set of goal nodes determined by a predicate Goal : V → IB = {false, true}.
The basic operation is called node expansion (a.k.a., node exploration), which
means generation of all neighbors of a node u. The resulting nodes are called
successors (a.k.a., children) of u, and u is called a parent or predecessor. We will
write Succ(u) = {v ∈ S | ∃a ∈ A(u) | a(u) = v} for the successor set.

In more general state-space search models, by applying one action the suc-
cessor of a state is no longer unique. For the non-deterministic case, we have
Succ(u, a) = {v ∈ S | a ∈ A(u)}. For a Markov decision problem (MDPs) with
probabilities p(v | u, a) we additionally impose

∑
v∈Succ(u,a) p(v | u, a) = 1.

All nodes have to be reached at least once on a path from the initial node
through successor generation. Consequently, we can divide the set of reached
nodes into the set of expanded nodes and the set of generated nodes that are not
yet expanded. In AI literature the former set is often referred to as the Closed
list or the search frontier, and the latter set as the Open list. The denotation
as a list refers to the legacy of the first implementation, namely as a simple
linked list. However, realizing them using the right data structures (e.g., a hash
table for duplicate elimination and a priority queue for best-first exploration) is
crucial for the search algorithm’s characteristics and performance.

Refined algorithms have led to first optimal solutions for challenging com-
binatorial games. Besides computation time, space is a crucial computational
resource. For the Rubik’s Cube with 43,252,003,274,489,856,000 states the exact
diameter is 20 moves [73]. The computation for the lower bound took 35 CPU
years on several computers using (pattern) databases [62]. Rokicki et al. [83] par-
titioned the states into 2,217,093,120 sets of 19,508,428,800 states each, reduced
the count of sets needed to solve to 55,882,296 using symmetry and set covering.
Only solutions of length of at most 20 were found with a program that solved
a single set in about 20 s. The Towers-of-Hanoi problem (with 4 pegs and 30
disks) spawns a space of 1,152,921,504,606,846,976 states and was solved in 17
days using 400 GBs of disk space [67]. To show that Checkers is draw (assum-
ing optimal play) [86,87], endgame databases of up to 10 pieces were built, for
any combination of kings and checkers. The database size amounts to 39 tril-
lion states. The number of states in the proof for a particular opening took
about one month on an average of 7 processors, with a longest line of 67 moves.
The standard problem for Connect 4 has 4,531,985,219,092 reachable states [31].
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It is won for the first player [4,5]. Most other states have been classified via an
external-memory hybrid of explicit-state and symbolic retrograde analysis [33].

Current domain-independent action planning systems solve Blocksworld
problems with 50 blocks and more, and produce close-to cost-optimal plans in
Logistics with hundreds of steps [24,49,50,52,82]. For planning with numbers,
potentially infinite search spaces have to be explored [48,52]. With the external-
memory search, in some cases, optimal plans can be obtained [54].

External-memory search algorithms have also helped finding bugs in soft-
ware [8,26,34,35,54,74,92]. Different model checkers have been externalized and
enhanced by directing the search toward system errors. Search heuristics accel-
erate symbolic model checkers for analyzing hardware, on-the-fly verifiers for
analyzing compiled software units, and industrial tools for exploring real-time
domains and finding resource-optimal schedules. Given a large and dynamically
changing state vector, external-memory and parallel exploration scaled best.
A sweep-line scans the search space according to a given partial order [71], while
[55] implements a model-checking algorithm on top of external-memory A*, [56]
provides a distributed implementation of the algorithm of [55] for model check-
ing safety properties, while [27] extends the approach to general (LTL) proper-
ties. Iterative broadening has been suggested in the context of model checking
real-time domains by [26], and some recent algorithms include perfect hash func-
tions [12,13] in what has been denoted as semi-external-memory search [35,36].

External-memory search is also among the best-known methods for opti-
mally solving multiple sequence alignment problems [69,88,96]. The graphs for
the some challenging problems required days of CPU time to be explored [30].
Monte-Carlo tree search [17,60,84] is effective especially for post-hoc optimiza-
tion [42].

The text kicks off with introducing external-memory search algorithms
(Sect. 2) and continues with engineering the delayed detection (and elimina-
tion) of duplicates (Sect. 3). It then turns to pattern databases (Sect. 4), before
addressing more general state space formalisms (Sect. 5), as well as paralleliza-
tion options on CPUs (Sect. 6) and GPUs (Sect. 7). The work refers to prior pub-
lications of the author. E.g., Sects. 2.1 and 2.5 contain content from [29], Sect. 5
refers to [28], Sects. 6.1 and 6.3 are based on [56], Sect. 6.4 is based on [32], and
Sect. 7 contains content from [37,40].

2 External-Memory Search

The commonly used model for comparing the performance of external algorithms
consists of a single processor, a small internal memory that can hold up to M
data items, and an unlimited secondary memory. The size of the input problem
(in terms of the number of records) is abbreviated by N . Moreover, the block
size B governs the bandwidth of memory transfers. It is usually assumed that
at the beginning of the algorithm, the input data is stored in contiguous blocks
on external memory, and the same must hold for the output. Only the number
of block read and writes are counted, computations in internal memory do not
incur any cost (see Fig. 2).
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Fig. 2. The external memory model.

It is convenient to express the complexity of external-memory algorithms
using two frequently occurring primitive operations [1,85]. The simplest oper-
ation is external scanning, reading a stream of N records stored consecutively
on secondary memory. In this case, it is trivial to exploit disk (D) and block
(B) parallelism. The number of I/Os is scan(N) = N/DB. External sorting
is essential to arrange similar states together, for example, in order to find
duplicates. Although we will mainly be concerned only with the case of a sin-
gle disk (D = 1), it is possible to make optimal use of multiple disks with
sort(N) = O((N/DB) logM/B(N/B)) I/Os. In practice, one pass in a multi-way
merging process suffices so that we have sort(N) = O(scan(N)).

The advantage of state space search is that the (implicit) problem graph
G = (V,E) is generated on-the-fly by a set of rules, and, hence, no disk accesses
for the adjacency lists are required. Moreover, considering the I/O complexities,
bounds like those that include |V | are rather misleading, since we often avoid
generating the entire state space.

Many external-memory algorithms arrange the data flow in a directed acyclic
graph, with nodes representing physical sources. Every node writes or reads
streams of elements. Pipelining, a technique inherited from the database com-
munity, improves algorithms that reads data from and writes data to buffered
files [2]. It enables a procedure to feed the output as a data stream directly to
the algorithm that consumes the output, rather than writing it to the disk first.

2.1 External-Memory Breadth-First Search

There is no fundamental difference in the external-memory BFS algorithm by
Munagala and Ranade [77] for explicit and implicit unweighted graphs. How-
ever, the access efforts are by far larger for the explicit graphs, even though the
extension by Mehlhorn and Meyer [76] was successful in breaking the O(|V |) I/O
barrier for explicit graphs. The variant of Munagala and Ranade’s algorithm
in implicit graphs has been coined with the term delayed duplicate detection
(DDD) [63,70]. The algorithm maintains BFS layers on disk. Layer Open(i − 1)
is scanned and the set of successors are put into a buffer of size close to the
main memory capacity. If the buffer becomes full, internal sorting followed by a
duplicate elimination phase generates a sorted duplicate-free node sequence in
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the buffer that is flushed to disk. The outcome of this phase are k pre-sorted
files. Note that duplicate elimination can be improved by using hash tables for
the blocks before flushed to disk. Since the node set in the hash table has to be
stored anyway, the savings by early duplicate detection are considerably small.

In the next step, external-memory (multi-way) merging is applied to unify
the files into Open(i) by a simultaneous scan. The size of the output files is
chosen such that a single pass suffices. Duplicates are eliminated (even though
semantically more insightful for the ease of notation not renaming the files into
Closed). Since the files were pre-sorted, the complexity is given by the scanning
time of all files. One also has to eliminate Open(i − 1) and Open(i − 2) from
Open(i) to avoid re-computations; that is, nodes extracted from the disk-based
queue are not immediately deleted, but kept until the layer has been completely
generated and sorted, at which point duplicates can be eliminated using a parallel
scan. The process is repeated until Open(i − 1) becomes empty, or the goal has
been found. The algorithm applies O(sort(|Succ(Open(i−1))|)+scan(|Open(i−
1)|+ |Open(i− 2)|)) I/Os. By

∑
i |Succ(Open(i))| = O(|E|) and

∑
i |Open(i)| =

O(|V |), the total execution time is O(sort(|E|) + scan(|V |)) I/Os.
In search problems with bounded branching factor we have |E| = O(|V |), and

thus the complexity for external-memory BFS reduces to O(sort(|V |)) I/Os. If we
keep each Open(i) in a separate file for sparse problem graphs (e.g. simple chains)
file opening and closing would accumulate to O(|V |) I/Os. The solution for this
case is to store the nodes in Open(i), Open(i + 1), and so forth consecutively in
internal memory. Therefore, I/O is needed, only if a level has at most B nodes.

Let s be the initial node, and Succ be the successor generation function.
The algorithm extends to integer weighted graphs G = (V,E,w) with bounded
locality locG = max{δ(s, u) − δ(s, v) + w(u, v) | u ∈ S, v ∈ Succ(u)}, where
δ(s, u) is the shortest path distance from s to u. The locality determines the
thickness of the search frontier needed to prevent duplicates in the search.

In external-memory search the exploration fully resides on disk. As pointers
are not available solutions are reconstructed by saving the predecessor together
with every state, by scanning with decreasing depth the stored files, and by
looking for matching predecessors. Any reached node that is a predecessor of
the current node is its predecessor on an optimal solution path. This results in a
I/O complexity of O(scan(|V |)). Even if conceptually simpler, there is no need
to store the the search frontier Open(i), i ∈ {0, 1, . . . , k}, in different files.

By completely enumerating the state space the external-memory BFS explo-
ration results showed that an instance of the 15-puzzle requires at most 80
steps [68]. The result has been validated in [80] on a distributed-memory system
with 32 nodes (128 CPUs) in 66h.

2.2 External-Memory Breadth-First Branch-and-Bound

With general cost functions we hardly can omit states in the search. However, if
f = g+h with current path cost g and a consistent heuristic h, with h(u)−h(v) ≤
w(u, v) for all successors v of u, we may prune the exploration. For the domains
where cost f = g + h is monotonically increasing, external-memory breadth-first
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branch-and-bound (external-memory BFBnB) (with DDD) does not prune any
node that is on the optimal solution path and ultimately finds the best solution.
External BFBnB simulates memory-limited breadth-first heuristic search [93].
Let U be an upper bound on the solution cost. States with f(v) > U are pruned
and the expansion of states with f(v) ≤ U induce an updated bound.

In external-memory BFBnB with cost function f = g + h, where g is the
depth of the search and h a consistent search heuristic, every duplicate with a
smaller depth has been explored with a smaller f -value. This is simple to see as
the h-values of the query node and the duplicate node match, and BFS generates
duplicate with smaller g-value first. Moreover, u is safely pruned if f(u) exceeds
the current threshold, as an extension of the path to u to a solution will have a
larger f -value. External BFBnB is optimal, since expands all nodes u with f(u)
smaller than the optimal solution cost f∗.

2.3 External-Memory Enforced Hill Climbing

Enforced hill climbing (EHC) [53] is a conservative variant of hill-climbing search.
Given that the estimated goal distance value, often called heuristic in the area AI
search, is minimized, the term enforced downhill would be a better fit. EHC has
been adapted to both propositional and numerical planning by [52]. Starting from
the initial state, a (breadth-first) search for a successor with a better heuristic
value is started. As soon as such a successor is found, the hash tables are cleared
and a fresh search is started. The process continues until the goal with distance
value zero is reached (see Fig. 3, left). Since the algorithm performs a complete
search on every seed state and will end up with a strictly better heuristic value, it
is guaranteed to find a solution in directed graphs without dead-ends. In directed
search spaces it can be trapped without finding a solution. Moreover, while often
good, its results are not provably optimal.

Having external-memory BFS in hand, an external algorithm for EHC can
easily be derived by utilizing the heuristic estimates. Figure 3 considers parts
of an exploration for solving a planning problem in a histogram showing the
number of nodes in BFS layers for external EHC in a typical search problem.

Let h(s) be the heuristic estimate of the initial state s then the I/O com-
plexity is bounded by the number of calls to BFS times the I/O complexity of
each run, i.e., by O(h(s) · (scan(|V |) + sort(|E|))) I/Os.

2.4 External-Memory A*

In the following, we study how to extend external-memory BFS to A* [47]. The
main advantage of A* with respect to BFS is that, due to the use of a lower bound
on the goal distance, it often traverses a much smaller part of the search space
to establish an optimal solution. Since A* only changes the traversal ordering,
it is advantageous to BFS only if both algorithms terminate at a goal node.

In A*, the cost for node u is f(u) = g(u)+h(u), with g being the cost of the
path from the initial node to u and h(u) being the estimate of the remaining costs
from u to the goal. In each step, a node u with minimum f -value is removed
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Fig. 3. Schematic view of enforced hill climbing, incrementally queuing down to better
goal distance values, restarting each time the exit of a plateau is reached (left). Typical
memory profile in external-memory enforced hill climbing of a particular benchmark
planning problem (right): the x-axis provides an index for the concatenatenation of all
the BFS-layers encountered during the search, while the y-axis denotes the number of
states stored and expanded (height of bars), for the according index (on log scale).

from Open, and the new value f(v) of a successor v of u is updated to the
minimum of its current value and f(v) = g(v) + h(v) = g(u) + w(u, v) + h(v) =
f(u) + w(u, v) − h(u) + h(v); in this case, it is inserted into Open itself.

In our algorithm, we first assume a consistent heuristic, where for all u and
v we have w(u, v) ≥ h(u) − h(v), and a uniformly weighted undirected prob-
lem graph. These conditions are often met in practice, since many problem
graphs in single-agent search, e.g., in Rubik’s cube and sliding-tile puzzles are
uniformly weighted and undirected and many heuristics, e.g., pattern database
estimates [66] are consistent. Under these assumptions, we have h(u) ≤ h(v) + 1
for every node u and every successor v of u. Since the problem graph is undirected
this implies |h(u) − h(v)| ≤ 1 and h(v) − h(u) ∈ {−1, 0, 1}. If the heuristic is
consistent, then on each search path, the evaluation function f is non-decreasing.
No successor will have a smaller f -value than the current one. Therefore, A*,
which traverses the node set in f -order, expands each node at most once.

In the (n2 − 1)-puzzle, for example, the Manhattan distance is defined as the
sum of the horizontal and vertical differences between actual and goal configu-
rations, for all tiles. The heuristic is consistent, since for two successive nodes u
and v the difference of the according estimate evaluations h(v) − h(u) is either
−1 or 1. The f -values of nodes u and successor nodes v of are either the same
or f(v) = f(u) + 2.

As above, external-memory A* [29] maintains the search frontier on disk,
possibly partitioned into main-memory-sized sequences. In fact, the disk files
correspond to a bucket implementation of a priority queue data structure. In
the course of the algorithm, each bucket addressed with index i contains all
nodes u in the set Open that have priority f(u) = i. A disk-based representation
of this data structure will store each bucket in a different file [64].
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We introduce a refinement of the data structure that distinguishes between
nodes with different g-values, and designates bucket Open(i, j) to all nodes u
with path length g(u) = i and heuristic estimate h(u) = j. Similar to external-
memory BFS, we do not change the identifier Open (to Closed) to separate
generated from expanded nodes. During the execution of A*, bucket Open(i, j)
may refer to elements that are in the current search frontier or belong to the
set of expanded nodes. During the exploration process, only nodes from one
currently active bucket Open(i, j) with i + j = fmin are expanded, up to its
exhaustion. Buckets are selected in lexicographic order for (i, j); then, the buck-
ets Open(i′, j′) with i′ < i and i′ + j′ = fmin are closed, whereas the buckets
Open(i′, j′) with i′ + j′ > fmin or with i′ > i and i′ + j′ = fmin are open. Nodes
in the active bucket are either open or closed. Successors of Open(g, h) fall into
Open(g + 1, h − 1), Open(g + 1, h), or Open(g + 1, h + 1), so that the number of
buckets needed is bounded by O((f∗)2) with f∗ being the optimal solution cost.

By the restriction of f -values in the (n2 − 1)-puzzle only about half the
number of buckets have to be allocated. Figure 4 shows the memory profile of
external-memory A* on a 35-puzzle puzzle instance (with 14 tiles permuted).
The exploration starts in bucket (50, 0) and terminated while expanding bucket
(77, 1). Similar to external-memory BFS but in difference to ordinary A*,
external-memory A* terminates while generating the goal, since all frontier states
with smaller g-value have already been expanded.

We can restrict the removal of duplicates to buckets of the same h-value. since
for all i, i′, j, j′ with j 	= j′ we have Open(i, j) ∩ Open(i′, j′) = ∅. In undirected
problem graphs duplicates of a node with BFS-level i can at most occur in levels
i, i − 1 and i − 2. In addition, if u = v we have h(u) = h(v).

For ease of describing the algorithm, we consider each bucket for the Open
list as a different file. Very sparse graphs can lead to bad I/O performance, as
they may lead to buckets that contain by far less than B elements and dominate
I/O access. Hence, we generally assume graphs with (f∗)2 = O(scan(|V |)).

Algorithm 1.1 depicts the pseudo-code of the external-memory A* algorithm
for consistent estimates and uniform graphs. The algorithm maintains the two
values gmin and fmin to address the currently considered buckets. The buckets
of fmin are traversed for increasing gmin up to fmin. According to their differ-
ent h-values, successors are arranged into three different frontier lists A(fmin),
A(fmin + 1), and A(fmin + 2); hence, at each instance only four buckets have
to be accessed by I/O operations. For each of them, we keep a separate buffer
of size B/4; this will reduce the internal memory requirements to B. If a buffer
becomes full then it is flushed to disk. As in BFS it is practical to pre-sort buffers
in one bucket immediately by an efficient internal algorithm to ease merging, but
we could equivalently sort the unsorted buffers for one bucket externally.

There can be two cases that can give rise to duplicates within an active
bucket (see Fig. 5, black bucket): two different nodes of the same predecessor
bucket generating a common successor, and two nodes belonging to different
predecessor buckets generating a duplicate. These two cases can be dealt with by
merging all the pre-sorted buffers corresponding to the same bucket, resulting in



External-Memory State Space Search 193

 0  10  20  30  40  50  60  70  80  0
 10

 20
 30

 40
 50

 60
 70

 80

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

Bytes External-A*

g-value

h-value

Bytes

Fig. 4. Typical memory profile of external-memory A* in a selected sliding-tile bench-
mark problem instance. The (g, h)-value surface is a grid of buckets, and each bucket
corresponds to a file. The search starts with g-value zero, ends with h-value zero, and
progresses is made in expanding all states within a bucket with increasing g + h-value,
tie breaking on a lower g-value. The height of the bars (log scale) denotes the file sizes
(each state correspond to a fixed number of bytes).

one sorted file. This file can then be scanned to remove the duplicate nodes from
it. In fact, both the merging and duplicates removal can be done simultaneously.

Another special case of the duplicate nodes exists when the nodes that have
already been evaluated in the upper layers are generated again (see Fig. 5). These
duplicate nodes have to be removed by a file subtraction process for the next
active bucket Open(gmin +1, hmax −1) by removing any node that has appeared
in Open(gmin, hmax − 1) and Open(gmin − 1, hmax − 1) (Buckets shaded in light
gray). This file subtraction can be done by a mere parallel scan of the pre-sorted
files and by using a temporary file in which the intermediate result is stored.
It suffices to remove duplicates only in the bucket that is expanded next, i.e.,
Open(gmin + 1, hmax − 1).

When merging the pre-sorted sets with the previously existing Open buckets
(both residing on disk), duplicates are eliminated, leaving the sets Open(gmin +
1, hmax − 1), Open(gmin + 1, hmax) and Open(gmin + 1, hmax + 1) duplicate-free.
Then the next active bucket Open(gmin+1, hmax−1) is refined not to contain any
node in Open(gmin − 1, hmax − 1) or Open(gmin, hmax − 1). This can be achieved
through a parallel scan of the pre-sorted files and by using a temporary file
in which the intermediate result is stored, before Open(gmin + 1, hmax − 1) is
updated. It suffices to perform file subtraction lazily only for the bucket that is
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Fig. 5. External-memory A* with consistent heuristic in a uniform undirected graph.
The arrow indicates the order of matrix traversal, the buckets shaded in dark gray the
current file, the shaded buckets below the successor files, and the shaded buckets above
the files are used for duplicate elimination.

expanded next. Since external-memory A* only modifies the order of states with
the same f -value, completeness and optimality are inherited from internal A*.

By simulating internal A*, DDD ensures that each edge in the problem graph
is looked at most once, so that O(sort(|Succ(Open(gmin+1, hmax−1))|) I/Os are
needed to eliminate duplicates in the successor lists. Since each node is expanded
at most once, this adds O(sort(|E|)) I/Os to the overall run time. Filtering,
evaluating nodes, and merging lists is available in scanning time of all buckets
in consideration. During the exploration, each bucket Open will be referred to
at most six times, once for expansion, at most three times as a successor bucket
and at most two times for duplicate elimination as a predecessor of the same
h-value as the currently active bucket. Therefore, evaluating, merging and file
subtraction add O(scan(|V |) + scan(|E|)) I/Os to the overall run time.

If |E| = O(|V |) the complexity reduces to O(sort(|V |)) I/Os. It is not difficult
to generalize the result to directed graphs with bounded locality, since in this
case subtraction amounts to O(locG · scan(|V |)) = O(scan(|V |)) I/Os.

By setting the weight of all edges (u, v) to h(u) − h(v) + 1 for a consistent
heuristic h, A* can be cast as a variant of Dijkstra’s algorithm. To reconstruct
a solution path, we store predecessor information with each node on disk (thus
doubling the state vector size), and apply backward chaining, starting with the
target node. However, this is not strictly necessary: For a node in depth g, we
intersect the set of possible predecessors with the buckets of depth g − 1. Any
node that is in the intersection is reachable on an optimal solution path, so that
we can iterate the construction process. Time is bounded by O(scan(|V |)) I/Os.

Let us consider how to externally solve 15-puzzle problem instances that can-
not be solved internally with A* and the Manhattan distance estimate. Internal
sorting is implemented by applying Quicksort [51]. Multi-way external-memory
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Procedure External-Memory A*
Input: Problem graph with start node s
Output: Optimal solution path

Open(0, h(s)) ← {s} ;; Initialize frontier bucket
fmin ← h(s) ;; Initialize merit
while (fmin �= ∞) ;; Termination criterion for full exploration

gmin ← min{i | Open(i, fmin − i) �= ∅} ;; Determine minimal depth
while (gmin ≤ fmin) ;; As far as merit not exceeded

hmax ← fmin − gmin ;; Determine corresponding h-value
A(fmin), A(fmin + 1), A(fmin + 2) ← Succ(Open(gmin, hmax)) ;; Successors
Open(gmin + 1, hmax + 1) ← A(fmin + 2) ;; New bucket
Open(gmin + 1, hmax) ← A(fmin + 1) ∪ Open(gmin + 1, hmax) ;; Merge
Open(gmin + 1, hmax − 1) ← A(fmin) ∪ Open(gmin + 1, hmax − 1) ;; Merge
if (Goal(Open(gmin + 1, hmax − 1))) ;; Terminal state in set

return Construct(Open(gmin + 1, hmax − 1)) ;; Generate solution path
Open(gmin + 1, hmax − 1) ← ;; Simplify list

RemoveDuplicates(Open(gmin + 1, hmax − 1)) ;; Sort/scan
Open(gmin + 1, hmax − 1) ← Open(gmin + 1, hmax − 1)\ ;; Omit duplicates from

(Open(gmin, hmax − 1) ∪ Open(gmin − 1, hmax − 1)) ;; . . . previous levels
gmin ← gmin + 1 ;; Increase depth

fmin ← min{i + j > fmin | Open(i, j) �= ∅} ∪ {∞} ;; Find minimal f -value

Algorithm 1.1. External-memory A* for consistent and integer heuristics.

merging maintains file pointers for every flushed buffer and joins them into a
single sorted file. Internally, a heap is used (its engineered implementation is
crucial for the efficiency of the sorting). Duplicate removal and bucket subtrac-
tion are performed on single passes through the bucket file. Table 1 illustrates
the impact of duplicate removal (dr) and bucket subtraction (sub) on the num-
ber of generated states for problem instances of increasing complexity. In some
cases, the experiment is terminated because of the limited hard disk capacity.

One interesting feature of our approach from a practical point of view is the
ability to pause and resume the program execution in large problem instances.
This is desirable, e.g. in the case when the limits of secondary storage are reached,
as one can resume the execution with more disk space. External sorting can be
avoided to some extent, by a single or a selection of hash functions that splits
larger files into smaller pieces until they fit into main memory. As with the h-
value in the above case a node and its duplicate will have the same hash address.

While external-memory A* requires a constant amount of memory for the
internal read and write buffers, iterative-deepening A* (IDA*) [61] that applies
depth-first bounded searches with an increasing optimal solution cost threshold,
requires very little memory that scales linear with the search depth. External-
memory A* removes all duplicates from the search, but require slow disk to
succeed. Moreover, in search practice disk space is limited, too. Therefore, one
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Table 1. Impact of duplicate removal and bucket subtraction.

Instance States Statesdr Statesdr+sub

1 530,401 2,800 1,654
2 71,751,166 611,116 493,990
3 <out of disk space> 7,532,113 5,180,710
4 <out of disk space> <out of disk space> 297,583,236
5 <out of disk space> <out of disk space> 2,269,240,000
6 <out of disk space> <out of disk space> 2,956,384,330

Table 2. Combining IDA* with external-memory A* in a 24-puzzle problem.

Split at f -value Solution length Nodes generated

68 (IDA*) 82 94,769,462
72 (Hybrid) 82 127,777,529
76 (Hybrid) 82 63,733,384
80 (Hybrid) 82 96,612,234
84 (External A*) 82 171,814,208

option is to combine the advantages of IDA* and external-memory A*. Starting
with external-memory A*, the buckets up to a predefined f -value fsp (the split
value) are generated. Then, with increasing depth, all buckets on the fsp diagonal
are read, and all states contained in the buckets are fed into IDA* as initial states,
which is initialized to an anticipated solution length U = fsp. As a side effect of
all such runs being pairwise independent they can be easily distributed.

Table 2 shows results of solving a 24-puzzle instance according to different
f -value splits to document the potential of such hybrid algorithm. By its breadth-
first ordering, external A* expands the entire f∗-diagonal, while IDA* stops at
the first goal generated. Another instance (with an optimal plan of 100 moves)
and a split value of 94 generated 367,243,074,706 nodes using 4.9 GB disk, while
split value of 98 resulted in 451,034,974,741 generated nodes and 169 GB disk.

2.5 Non-uniformly Weighted Graphs

For integer weights in {1, . . . , C}, due to consistency of the heuristic, it holds for
every node u and every successor v of u that h(v) ≥ h(u) − w(u, v). Moreover,
since the graph is undirected, we equally have h(u) ≥ h(v) − w(u, v), or h(v) ≤
h(u) + w(u, v); hence, |h(u) − h(v)| ≤ w(u, v), so that The I/O complexity for
external A* in an implicit unweighted and undirected graph, where the weights
are in {1, . . . , C}, with a consistent estimate, is bounded by O(sort(|E|) + C ·
scan(|V |)). The difference to the uniform case is that each bucket is referred
to at most 2C + 1 times for bucket subtraction and expansion, so that each
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edge in the problem graph is considered at most once. If we do not impose a
bound C on the maximum integer weight, or if we allow directed graphs, the
run time increases to O(sort(|E|)+f∗ ·scan(|V |)) I/Os. For larger edge weights,
small-sized buckets have to be handled with care.

3 Duplicate Detection

We have seen that sorting-based duplicate detection is essential for disk-based
search, as ordinary hash functions are not access-locality preserving. This effect
is known as thrashing, the computer’s virtual memory subsystem is in a constant
state of paging, rapidly exchanging data in memory for data on disk.

3.1 Hash-Based Duplicate Detection

Hash-based duplicate detection is designed to avoid the complexity of sorting.
It is based on either one or two orthogonal hash functions. The primary hash
function distributes the nodes to different files. Once a file of successors has been
generated, duplicates are eliminated. The assumption is that all nodes with the
same primary hash address fit into main memory. The secondary hash function
(if available) maps all duplicates to the same hash address. This approach can
be illustrated by sorting a card deck of 52 cards. For 13 internal memory places
the best strategy is to hash cards to different files based on their suit in one
scan. Next, we individually read each of the files to main memory to sort the
cards or search for duplicates.

By iterating this Bucket Sort process we obtain an external-memory ver-
sion of Radix Sort that scans the files more than once according to a radix
representation of the key values. For the 15-puzzle problem in ordinary vector
representation with a number for each board position, we have 16 phases for
radix sort using 16 buckets.

3.2 Structured Duplicate Detection

Structured duplicate detection (SDD) [94] incorporates a hash function that
maps nodes into an abstract problem graph; this reduces the successor scope of
nodes that have to be kept in main memory. Such hash projections are state
space homomorphisms, such that for each pair of consecutive abstract nodes the
pair of original nodes is also connected. A bucket now corresponds to the set of
original states, which all map to the same abstract state. In difference to DDD,
SDD detects duplicates early ; as soon as they are generated. Before expand-
ing a bucket, not only the bucket itself, but all buckets that are potentially
affected by successor generation have to be loaded and, consequently, fit into
main memory. This gives rise to a different definition of locality, which deter-
mines a handle for the duplicate-detection scope. In difference to the locality for
DDD the locality for SDD is defined as the the maximum node branching factor
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Fig. 6. Example for structured duplicate detection; problem instance (left) is mapped
to one node in the abstract graph (right). For expanding all states mapped to an
abstract node, for the elimination of duplicates only states stored in the abstract suc-
cessors nodes need to be loaded in main memory.

bmax = maxv∈φ(S) |Succ(v)| in the abstract state space φ(S). If there are differ-
ent abstractions to choose from, we take those that have the smallest ratio of
maximum node branching factor bmax and abstract state space size |φ(S)|. The
idea is that smaller abstract state space sizes should be preferred but usually
lead to larger branching factors.

In the example of the 15-puzzle (see Fig. 6), the projection is based on nodes
that have the same blank position. This state-space abstraction also preserves
the additional property that the successor set and the expansion sets are disjoint,
yielding no self-loops in the abstract problem graph. The duplicate scope defines
the successor buckets that have to be read into main memory.

The method is crucially dependent on the availability and selection of suit-
able abstraction functions φ that adapt to the internal memory constraints. In
contrast, DDD does not rely on any partitioning beside the heuristic function
and it does not require the duplicate scope to fit in main memory. A time-space
trade-off refinement called edge partitioning [97] generates successors only along
one edge at a time.

SDD is compatible with ordinary and hash-based duplicate detection, as in
case the files that have to be loaded into main memory do no longer fit, we have
to delay. However, the structured partitioning may have truncated the file sizes
for duplicate detection to a manageable number. Each heuristic or hash function
defines a partitioning of the search space but not all partitions provide a good
locality with respect to the successor or predecessor states.

4 External-Memory Pattern Databases

While earlier versions of heuristic search via abstraction generate heuristics esti-
mates on demand, pattern databases precompute and store the goal distances
for the entire abstract search space in a lookup table [20]. Successful approaches
additionally combine the heuristics of multiple smaller pattern databases, either
by maximizing, or by cumulating the values, which is admissible under certain
disjointness conditions [66]. To save space, the computation of the database can
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Fig. 7. Fringe and corner target pattern for the 15-puzzle.

Table 3. Effect of pattern databases in the 15-puzzle.

Heuristic Nodes Mean heuristic value

Manhattan distance 401,189,630 36.942
Linear conflict heuristic 40,224,625 38.788
5-tile pattern database 5,722,922 41.562
6-tile pattern database 3,788,680 42.924

be restricted using an upper bound on the length of an optimal solution path;
and by exploiting specialized data compression schemes.

For the (n2 − 1)-puzzle problem abstraction consists of ignoring a selected
subset of tiles on the board. Their labels are replaced by a special don’t care
symbol; the remaining set of tiles is referred to as the pattern (see Fig. 7).

In experiments it has been showed that taking the maximum of the Manhat-
tan distance and a singleton pattern database reduces the number of expanded
nodes by two orders of magnitude of the algorithm using only the Manhattan
distance. Using both databases together even leads to an improvement accord-
ing to three orders of magnitude. Table 3 shows some exploration results for the
15-puzzle in reducing the number of search nodes and in increasing the mean of
the heuristic value.

Larger pattern databases correspond to complete explorations of abstract
state spaces that don’t fit into main memory. Most frequently they correspond to
external-memory BFS with DDD. The construction of external-memory pattern
databases is especially suited to frontier search, as no solution path has to be
reconstructed. They have been used together with SDD [95] and in different
representations [25].

During the construction each BFS-layer i has been assigned to an individual
file Bi. All states in Bi have the same goal distance, and all states that map
to a state in i share the heuristic estimate i. For determining the h-value for
some given state u in algorithms we first have to scan the files to find u. As
this is a cost-intensive operation, whenever possible, pattern database lookup
should be delayed, so that the heuristic estimates for a larger set of states can
be retrieved in one scan. For example, external-memory A* distributes the set
of successor states of each bucket according to their heuristic estimates. Hence,
it can be adapted to delayed lookup, intersecting the set of successor states with
(the state set represented by) the abstract states in the file of a given h-value.
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To keep the pattern database partitioned, we assume that the number of files
that can be opened simultaneously does not exceed Δ = max{h(v) − h(u)} +
1 | u, v ∈ Succ(u)}, i.e., Δ matches the locality of the abstract state space graph.

If a heuristic estimate is needed as soon as a node is generated, an appro-
priate choice for creating external-memory pattern databases is a backwards
BFS with SDD, as SDD already provides locality with respect to a state space
abstraction function. After the construction patterns are arranged according to
pattern blocks, one for each abstract state. When a concrete heuristic search
algorithm expands nodes, it must check if the pattern form the pattern-lookup
scope are in main memory, and, if not, it reads them from disk. Pattern blocks
that do not belong to the current pattern-lookup scope are removed. When the
part of internal memory is full, the search algorithm must decide, which pattern
block to remove, e.g., by adopting the least-recently used strategy.

Larger pattern databases provide better bounds and thus allow more guid-
ance in the search. For the 15-puzzle puzzle, a 10-tile 28 GB pattern database has
been built [81], while [23] computed 9-9-6, 9-8-7, and 8-8-8 pattern database sets
for the 24-puzzle that are up to three orders of magnitude larger (up to 1.4 TB)
than the standard 6-6-6-6 pattern database set. This was possible by perform-
ing a parallel breadth-first search in the compressed pattern space. Experiments
indicate an average 8-fold improvement of the 9-9-6 set over the 6-6-6-6 set. Com-
bining several large pattern databases yielded on average a 13-fold improvement.
A massive parallel search based on the map-and-reduce paradigm [21] using these
databases was proposed by [89].

If we consider the example of the 35-puzzle with x tiles in the pattern, the
abstract state space consists of 36!/(36 − x)! states. A perfect hash-table for the
35-puzzle has space requirements of 43.14 MB (x = 5), 1.3 GB (x = 6), and 39.1
GB (x = 7). The latter has successfully been constructed on disk by [32].

5 External-Memory Value Iteration

We now discuss an approach for extending the search model to cover uncertainty.
More precisely, we extend the value iteration procedure to work on large state
spaces that cannot fit into the RAM. There is a tight relation to the shortest-
paths algorithm of Bellman and Ford (see [19]). Different guidance heuristics for
improving the update have been proposed [7,10,45].

A Markov decision process problem (MDP) is a tuple (S,A,w, p), where S is
the underlying state space, A is the set of actions, w : S × A → IR is the cost
or immediate reward function and p(v | u, a) is the probability that action a in
state u will lead to state v. The goal is to minimize the (expected or discounted)
accumulated costs or, equivalently, to maximize the (expected or discounted)
accumulated rewards.

A common way of calculating an optimal policy is by means of dynamic
programming using value iteration based on the Bellman equation

f∗(u) = min
a∈A

{

w(u, a) +
∑

v∈S

p(v | u, a) · f∗(v)

}

.



External-Memory State Space Search 201

In some cases, we apply a discount δ to allow assigning values to infi-
nite paths. Roughly speaking, we can define the value of a state as the total
reward/cost an agent can expect to accumulate when traversing the graph
according to its policy, starting from that state. The discount factor defines how
much more we should value immediate costs/rewards, compared to costs/rewards
that are only attainable after two or more steps. Formally, the corresponding
equation according to the principle of optimality is

f∗(u) = min
a∈A

{

w(u, a) + δ ·
∑

v∈S

p(v | u, a) · f∗(v)

}

.

Value iteration improves the estimated cost-to-go function f by successively
performing the following operation for each state u:

f(u) ← min
a∈A

{

w(u, a) +
∑

v∈S

p(v | u, a) · f(v)

}

.

The algorithm exits if an error bound on the policy evaluation falls below a
user-supplied threshold ε, or a maximum number of iterations have been exe-
cuted. If the optimal cost f∗ is known for each state, the optimal policy can
be easily extracted by choosing an operation according to a single application
of the Bellman equation. The procedure takes a heuristic h for initializing the
value function as an additional parameter.

The error bound on the value function is also called the residual, and can
for example be computed in form maxu∈S |ft(u) − ft−1(u)|. A residual of zero
denotes that the process has converged. An advantage of other methods like
policy iteration is that it converges to the exact optimum, while value iteration
usually only reaches an approximation. On the other hand, the latter technique
is usually more efficient on large state spaces.

For implicit search graphs, value iteration proceed in two phases. In the first
phase, the whole state space is generated from the initial state s. In this process,
an entry in a hash table (or vector) is allocated in order to store the f -value for
each state u; this value is initialized to the cost of u if u ∈ T , or to a given (non-
necessarily admissible) heuristic estimate (or zero if no estimate is available) if
u is non-terminal. In the second phase, iterative scans of the state space are
performed updating the values of non-terminal states u as:

f(u) = min
a∈A(u)

q(u, a), (1)

where q(u, a), which depends on the search model.
Value iteration converges to the solution optimal value function provided that

its values are finite for all u ∈ S. In the case of MDPs, which may have cyclic
solutions, the number of iterations is not bounded and value iteration typically
only converges in the limit. For this reason, for MDPs, value iteration is often
terminated after a predefined bound of tmax iterations are performed, or when
the residual falls below a given ε > 0.
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For external-memory value iteration [28] instead of working on states, we
work on edges for reasons that shall become clear soon. In our case, an edge
is a 4-tuple (u, v, a, f(v)), where u is called the predecessor state, v the stored
state, a the action that transforms u into v, and f(v) is the current assignment
of the value function to v. Clearly, v must belong to Succ(a, u). In deterministic
problems, v is determined by u and a and so it can be completely dropped, but
for the non-deterministic problems, it is a necessity. Similarly to the internal
value iteration, the external-memory version works in two phases. A forward
phase, where the state space is generated, and a backward phase, where the
heuristic values are repeatedly updated until an ε-optimal policy is computed,
or tmax iterations are performed.

Forward Phase: State Space Generation. Typically, a state space is generated
by a depth-first or a breadth-first exploration that uses a hash table to avoid re-
expansion of states. We choose an external breadth-first exploration to handle
large state spaces. Since in an external setting a hash table is not affordable,
we rely on DDD. It consists of two phases, first removing duplicates within the
newly generated layer, and then removing duplicates with respect to previously
generated layers. Note that an edge (u, v, a, f(v)) is a duplicate, if and only if
its predecessor u, its state v, and the action a match an existing edge. Thus, in
undirected graphs, there are two different edges for each undirected edge. In our
case, sorting-based DDD is best suited as the sorted order is further exploited
during the backward phase. For each depth value d the algorithm maintains the
BFS layers Layer(d) on disk. The first phase ends up by concatenating all layers
into one Open list that contains all edges reachable from s. For bounded locality,
the complexity of this phase is O(sort(|E|)) I/Os.

Backward Phase: Update of Values. This is the most critical part of the approach
and deserves more attention. To perform the update on the value of state v,
we have to bring together the value of its successor states. As they both are
contained in one file, and there is no arrangement that can bring all successor
states close to their predecessor states, we make a copy of the entire graph (file)
and deal with the current state and its successor differently. To establish the
adjacencies, the second copy, called Temp, is sorted with respect to the node u.
Remember that Open is sorted with respect to the node v.

A parallel scan of files Open and Temp gives us access to all the successors
and values needed to perform the update on the value of v. This scenario is
shown in Fig. 8 for the graph in the example. The contents of Temp and Opent,
for t = 0, are shown along with the heuristic values computed so far for each
edge (u, v). The arrows show the flow of information (alternation between dotted
and dashed arrows is just for clarity). The results of the updates are written to
the file Opent+1 containing the new values for each state after t + 1 iterations.
Once Opent+1 is computed, the file Opent can be removed as it is no longer
needed.
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Fig. 8. An example graph with initial f -values and one backward phase in external-
memory value iteration. A parallel scan of Open0 and Temp is done from left to right.
The file Open1 is the result of the first update; f -values that changed in the first update
are shown with bold underline typeface.

The backward update algorithms first copies the Opent list in Temp using
buffered I/O operations, and sorts the new Temp list according to the predeces-
sor states u. The algorithm then iterates on all edges from Opent and searches
for the successors in Temp. Since Opent is sorted with respect to states v, the
algorithm never goes back and forth in any of the Opent or Temp files. Note
that all reads and writes are buffered and thus can be carried out very efficiently
by always doing I/O operations in blocks. Four different cases arise when an edge
(u, v, a, f(v)) is read from Opent. (States from Fig. 8 are referred in parentheses.)

– Case I: v is terminal (states 8 &10). Since no update is necessary, the edge
can be written to Opent+1.

– Case II: v is the same as the last updated state (state 3). Write the edge to
Opent+1 with such last value. (Case shown in Fig. 8 with curved arrows.)

– Case III: v has no successors. That means that v is a terminal state and so is
handled by case I.

– Case IV: v has one or more successors (remaining states). For each action a ∈
A(v), compute the value q(a, v) by summing the products of the probabilities
and the stored values. Such value is kept in the array q(a).

For edges (x, y, a′, f ′) read from Temp, we have

– Case A: y is the initial state, implying x = ptyset. Skip this edge since there is
nothing to do. By taking ptyset as the smallest element, the sorting of Temp
brings all such edges to the front of the file. (Case not shown.)
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Table 4. Performance of external-memory value iteration on deterministic (p = 1) and
probabilistic variants (p = 0.9) of the 8-puzzle with and without initialization to the
Manhattan distance heuristic.

Algorithm p |S|/|E| Iteration Updates h(s) f∗(s) RAM

VI (h = 0) 1.0 181,440 27 4,898,880 0 14.00 21M
External-VI (h = 0) 1.0 483,839 32 5,806,048 0 14.00 11M
VI (hMD) 1.0 181,440 20 3,628,800 10 14.00 21M
External-VI (hMD) 1.0 483,839 28 5,080,292 10 14.00 11M
VI (h = 0) 0.9 181,440 37 6,713,280 0 15.55 21M
External − VI (h = 0) 0.9 967,677 45 8,164,755 0 15.55 12M
VI (hMD) 0.9 181,440 35 6,350,400 10 15.55 21M
Ext-VI (hMD) 0.9 967,677 43 7,801,877 10 15.55 12M

– Case B: x = v, i.e. the predecessor of this edge matches the current state from
Opent. This calls for an update in the q(a)-value.

The array q : A → IR is initialized to the edge weight w(a, v), for each a ∈ A(v).
Once all the successors are processed, the new value for v is the minimum of the
values stored in the q-array for all applicable actions.

The backward phase performs at most tmax iterations. Each iteration consists
of one sorting and two scanning operations for a total of O(tmax ·sort(|E|)) I/Os.

For the sliding-tile puzzles we performed two experiments: one with determin-
istic moves, and the other with noisy actions that achieve their intended effects
with probability p = 0.9 and no effect with probability 1 − p. Table 4 shows the
results for random instances of the 8-puzzle for both experiments. The rectan-
gular 3 × 4 sliding-tile puzzle with p = 0.9 cannot be solved with internal value
iteration because the state space did not fit in RAM. External-memory value
iteration generated a total of 1,357,171,197 edges taking 45 GBs of disk space.
The backward update finished successfully after 21 days in 72 iterations using
1.4 GBs RAM. The value function for initial state converged to 28.8889 with a
residual smaller than ε = 10−4.

6 Parallel External-Memory Search

Combined parallel and disk-based search executes an exploration in distributed
environments like multi-processor machines and workstation clusters.

Recent parallel implementation of A* and its derivatives on multi-core
machines have been proposed by [59] with a subsequent scaling analysis in [58]
and by [15,16]. Our focus is the interplay of parallel and external-memory search.
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Fig. 9. Externally stored state space with parent and children files.

6.1 Parallel External-Memory Breadth-First Search

In parallel external-memory breadth-first search the state space is partitioned
into different files using a global hash function. For example in state spaces like
the 15-puzzle that are regular permutation games, each node can be perfectly
hashed to a unique index, and some prefix of the state vector can be used to for
partitioning. If state spaces are undirected, frontier search [70] can distinguish
neighboring nodes that have already been explored from those that have not,
in order to omit the Closed list. Figure 9 depicts the layered exploration on the
external partition of the state space. A hash function partitions both the current
parent layer and the children layer for the successors into files. If a layer is done,
children files are renamed into parent files to iterate the exploration.

Even on a single processor, multiple threads maximize the performance of
the disks. The reason is that a single-threaded implementation will block until
the read from or write to disk has completed.

Hash-based duplicate detection generates a suitable partition for the 15-
puzzle. Within one iteration, most file accesses can be performed independently.
Only if one simultaneously expands two parent files have a children file in com-
mon, the two processes will be in conflict. To realize parallel processing a work
queue is maintained, which contains parent files waiting to be expanded, and
child files waiting to be merged. At the start of each iteration, the queue is ini-
tialized to contain all parent files. Once all parents of a child file are expanded,
the child file is inserted into the queue for early merging.

Each process works as follows. It first locks the work queue. The algorithm
checks whether the first parent file conflicts with any other file expansion. If so,
it scans the queue for a parent file with no conflicts. It swaps the position of
that file with the one at the head of the queue, grabs the non-conflicting file,
unlocks the queue, and expands the file. For each file it generates, it checks if all
of its parents have been expanded. If so, it puts the children file at the head of
the queue for expansion, and then returns to the queue for more work. If there
is no more work in the queue, any idle process wait for the current iteration
to complete. At the end of each iteration the work queue is re-initialized to
contain all parent files for the next iteration. Algorithm 1.2 shows a pseudo-code
implementation.
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Procedure Parallel-External-Memory-BFS
Input: Undirected problem graph with start node s, number of processes N
hash function ψ
Output: Partitioned BFS layers Openj(i), i ∈ {0, 1, . . . , k}, j ∈ {0, 1, . . . , N}

g ← 0 ;; Master initializes layer
Open0(g) ← {s} ;; Master initializes search
while (∪N

i=1Openi(g) = ∅) ;; Search not terminated
for each j ∈ {1, . . . , N} in parallel ;; Distribute computation

if (Goal(Openj(g)) ;; Terminal state in set
return Announce(GoalFound) ;; Generate solution path

Aj ← Succ(Openj(g)) ;; Generated successors
RemoveDuplicates(Aj) ;; Sorting/Scanning current elements

for each j ∈ {1, . . . , N} in parallel ;; Distribute computation
A′

j ← {v ∈ ∪N
i=1Ai | ψ(v) = j} ;; Acquire nodes to sort

RemoveDuplicates(A′
j) ;; Sorting/scanning

Openj(g + 1) ← A′
j \ (Openj(g) ∪ Openj(g − 1)) ;; Frontier subtraction

g ← g + 1 ;; Increase depth
return Openj(i), i ∈ {0, 1, . . . , k}, j ∈ {0, 1, . . . , N}

Algorithm 1.2. Parallel external-memory breadth-first search for state space enu-
meration.

6.2 Parallel Structured Duplicate Detection

SDD performs early duplicate detection in the RAM. Each abstract state rep-
resents a file containing every concrete states mapping to it. As all adjacent
abstract states were load into main memory, duplicate detection for concrete
successor states remains in the RAM. We assume breadth-first heuristic search
as the underlying algorithm, which generates the search space with increasing
depth, but prunes it with respect to the f -value, provided that the optimal
solution length is known. If not, external-memory A* applies.

SDD extends nicely to a parallel implementation. In parallel SDD [98]
abstract states together with their abstract neighbors are assigned to a process.
We assume that the parallelization takes care of synchronization after one
breadth-first search iteration has been completed, as a concurrent expansion
in different depths likely affects the algorithm’s optimality.

If in one BFS-layer, two abstract nodes together with their successor do
not overlap, their expansion can be executed fully independently on different
processors. More formally, let φ(u1) and φ(u2) be the two abstract nodes, then
the scopes of φ(u1) and φ(u2) are disjoint if Succ(φ(u1)) ∩ Succ(φ(u2)) = ∅.
This parallelization maintains locks only for the abstract space. No locks for
individual states are needed.

The approach applies to both, shared and distributed memory architectures.
In the shared implementation each processor has a private memory pool. As soon
as this is exhausted it asks the master process (that has spawned it as a child
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Fig. 10. Example for parallel SDD with 4 processes: before P1 releases its work, after
P1 has released his work, after P1 has allocated new work.

process) for more memory that might have been released using a completed
exploration by some other process. For a proper (conflict-free) distribution of
work, numbers I(φ(u)) were assigned to each abstract node φ(u), denoting the
accumulated influence that currently imposed to this node by running processes.
If I(φ(u)) = 0 the abstract node φ(u) can be picked for expansion from every
processor that is currently idle. Function I is updated as follows. In a first
step, for all φ(v) 	= φ(u) with φ(u) ∈ Succ(φ(v)) value φ(v) is incremented by
one: all abstract nodes that include φ(u) in their scope cannot be expanded,
since φ(u) is chosen for expansion. In a second step, for all φ(v) 	= φ(u) with
φ(v) ∈ Succ(φ(u)) and all φ(w) 	= φ(v) with φ(w) ∈ Succ(φ(v)) value φ(v) is
incremented by one: all abstract nodes that include any φ(v) as a successor of
φ(u) cannot be expanded, since they are also assigned to the processor.

Figure 10 illustrates the working of parallel structural duplicate detection
for the 15-puzzle with the currently expanded abstract nodes shaded. The left-
most part of figure shows the abstract problem graph together with 4 processes
working independently at expanding abstract states. The numbers I(φ(u)) are
associated with each abstract node φ(u). The middle part of the figure depicts
the situation after one process has finished, the right part shows the situation
after process has been assigned to a new abstract state.

6.3 Parallel External-Memory A*

The distributed version of external-memory A*, called parallel-external-memory
A* is based on the observation that the internal work in each individual bucket
of external-memory A* can be parallelized among different processes. More
precisely each two states in a bucket Open(g, h) can be expanded in differ-
ent processes at the same time. An illustration is given in Fig. 11, indicating
a uniform partition available for each Open(g, h)-bucket. We discuss disk-based
message queues to distribute the load among different processes.

To organize the communication between the processes a work queue is main-
tained on disk. The work queue contains the requests for exploring parts of
a (g, h)-bucket together with the part of the file that has to be considered (as
processes may have different computational power and processes can dynamically
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Fig. 11. Partitioning of buckets in parallel external-memory A*.

join and leave the exploration, the size of the state space partition does not
necessarily have to match the number of processes. By utilizing a queue, one
also may expect a process to access a bucket multiple times. However, for the
ease of a first understanding, it is simpler to assume that the jobs are distrib-
uted uniformly among the processes.) For improving the efficiency, we assume
a distributed environment with one master and several slave processes. In the
implementation, the master is in fact an ordinary process defined as the one that
finalized the work for a bucket. The applies to both the cases when each slave
has its own hard disk or if they work together on one hard disk e.g. residing on
the master. We do not expect all processes to run on one machine, but allow
slaves to log-on the master machine, suitable for workstation clusters. Message
passing between the master and slave processes is purely done on files, so that
all processes are fully autonomous. Even if slave processes are killed, their work
can be re-done by any other idle process that is available.

One file that we call the expand-queue, contains all current requests for explor-
ing a node set that is contained in a file. The filename consists of the current
g- and h-value. In case of larger files, file-pointers for processing parts of a file
are provided, to allow for better load balancing. There are different strategies
to split a file into equi-distance parts or into chunks depending on the number
and performance of logged-on slaves. As we want to keep the exploration process
distributed, we select the file pointer windows into equidistant parts of a fixed
number of C bytes for the nodes to be expanded. For improved I/O, the number
C is supposed to divide the system’s block size B. As concurrent read operations
are allowed for most operating systems, multiple processes reading the same file
impose no concurrency conflicts.

The expand-queue is generated by the master process and is initialized with
the first block to be expanded. Additionally, we maintain the total number of
requests, i.e., the size of the queue, and the current number of satisfied requests.
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Any logged-on slave reads a request and increases the count once it finishes.
During the expansion process, in a subdirectory indexed by the slave’s name it
generates files that are indexed by the g- and h-value of the successor nodes.

The other queue is the refine-queue also generated by the master process
once all processes are done. It is organized in a similar fashion as the expand
queue and allows slaves to request work. The refine-queue contains filenames
that have been generated above, namely the slave-name (that does not have
to match with the one of the current process), the block number, and the g-
and h-value. For a suitable processing the master process will move the files
from subdirectories indexed by the slave’s name to ones that are indexed by the
block number. As this is a sequential operation executed by the master thread,
changing the file locations is fast in practice. To avoid redundant work, each
process eliminates the requests from the queue. Moreover, after finishing the
job, it writes an acknowledge to an associated file, so that each process can
access the current status of the exploration, and determine if a bucket has been
completely explored or sorted.

All communication between different processes can be shared files, so that a
message passing unit is not required. However, a mechanism for mutual exclusion
is necessary. A rather simple but efficient method to avoid concurrent writes
accesses is the following. Whenever a process has to write on a shared file, it
issues an operating system command to rename the file. If the command fails,
it implies that the file is currently being used by another process.

For each bucket that is under consideration, we establish four stages in the
algorithm with a pseudo-code shown in Algorithm 1.3. The four phases are visu-
alized in Fig. 12 (top to bottom). Zig-zag curves illustrate the order of the nodes
in the files wrt. the comparison function used. As the states are presorted in
internal memory, every peak correspond to a flushed buffer. The sorting criteria
itself is defined first by the node’s hash key and then by the low-level comparison
based on the (compressed) state vector.

In the exploration stage (generating the first row in the figure), each process
p flushes the successors with a particular g- and h-value to its own file (g, h, p).
Each process has its own hash table and eliminates some duplicates already in
main memory. The hash table is based on chaining, with chains sorted along
the node comparison function. However, if the output buffer exceeds memory
capacity it writes the entire hash table to disk. By the use of the sorting criteria
as given above, this can be done using a mere scan of the hash table.

– In the first sorting stage (generating the second row in the figure), each process
sorts its own file. In the distributed setting we exploit the advantage that the
files can be sorted in parallel, reducing internal processing time. Moreover, the
number of file pointers needed is restricted by the number of flushed buffers,
illustrated by the number of peaks in the figure. Based on this restriction, we
only need a merge of different sorted buffers.

– In the distribution stage (generating the third row in the figure), all nodes in
the presorted files are distributed according to the hash value’s range. As all
input files are presorted this is a mere scan. No all-including file is generated,
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Fig. 12. Stages of bucket expansions in parallel external-memory A*.

keeping the individual file sizes small. This stage can be a bottleneck to the
parallel execution, as processes have to wait until the distribution stage is
completed. However, if we expect the files to reside on different hard drives,
traffic for file copying can be parallelized.

– In the second sorting stage (generating the last row in the figure), processes
resort the files (with buffers presorted wrt. the hash value’s range), to find
further duplicates. The number of peaks in each individual file is limited by
the number of input files (=number of processes), and the number of output
files is determined by the selected partitioning of the hash index range. Using
the hash index as the sorting key we establish that the concatenation of files
is sorted.

Figure 13 shows the distribution of a bucket among three processors.

6.4 Parallel Pattern Database Search

Disjoint pattern databases can be constructed embarrassingly parallel. The sub-
sequent search, however, faces the problem of high memory consumption due
to many large pattern databases, since loading pattern databases on demand
significantly slows down the performance.

One solution is to distribute the lookup to multiple processes. For external-
memory A* this works as follows. As buckets are fully expanded, the order in
a bucket does not matter, so that we can distribute the work for expansion,
evaluation and duplicate elimination. For the 35-puzzle we choose one master
to distribute generated states to 35 client processes Pi, each one responsible for
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Procedure Parallel-External-Memory-A*
Input: Undirected problem graph with start node s, predicate Goal, N processes
hash function ψ
Output: Optimal solution path

g ← 0; h ← h(s) ;; Initial bucket
Open0(g, h) ← {s} ;; Master initializes search
while not (goalFound) ;; Search not terminated

for each j ∈ {1, . . . , N} in parallel ;; Distribute computation
if (Goal(Openj(g, h)) ;; Terminal state in set

return Announce(GoalFound) ;; Generate solution path
Aj(h − 1), Aj(h), Aj(h + 1) ← Succ(Openj(g, h)) ;; Generated successors
Openj(g + 1, h + 1) ← Aj(h + 1) ;; Prepare next level
Openj(g + 1, h) ← Aj(h) ∪ Openj(g + 1, h) ;; Prepare next level
RemoveDuplicates(Aj(h − 1)) ;; Sorting/Scanning

for each j ∈ {1, . . . , N} in parallel ;; Distribute computation
A′

j(h − 1) ← {u ∈ ∪N
i=1Ai(h − 1) | ψ(u) = j} ;; Allocate work

Openj(g + 1, h − 1) ← A′
j(h − 1) ∪ Openj(g + 1, h − 1) ;; Prepare next level

RemoveDuplicates(Openj(g + 1, h − 1)) ;; Sorting/scanning
Openj(g + 1, h − 1) ← Openj(g + 1, h − 1)\ ;; Eliminate duplicates

(Openj(g, h − 1) ∪ Openj(g − 1, h − 1))

f ← min{k + l | ∪N
i=1 Openi(k, l) �= ∅} ;; Update f -value

g ← min{l | ∪N
i=1 Openi(l, f − l) �= ∅} h ← f − g ;; Next non-empty bucket

Algorithm 1.3. Parallel external-memory A* for consistent and integral heuristics.

one tile i for i ∈ {1, . . . , 35}. All client processes operate individually on different
processing nodes and communicate via shared files.

During the expansion of a bucket (see Fig. 14), the master writes a file Ti

for each client process Pi, i ∈ {1, . . . , 35}. Once it has finished the expansion
of a bucket, the master Pm announces that each Pi should start evaluating Ti.
Additionally, the client is informed on the current g- and h-value. After that,
the master Pm is suspended, and waits for all Pi’s to complete their task. To
relieve the master from load, no sorting takes place during distribution. Next,
the client processes start evaluating Ti, putting their results into Ei(h − 1) or
Ei(h + 1), depending on the observed difference in the h-values. All files Ei are
additionally sorted to eliminate duplicates; internally (when a buffer is flushed)
and externally (for each generated buffer). As only 3 buckets are opened at a
time (1 for reading and 2 for writing) the associated internal buffers can be large.

After the evaluation phase is completed, each process Pi is suspended. When
all clients are done, the master Pm is resumed and merges the Ei(h − 1) and
Ei(h+1) files into Em(h−1) and Em(h+1). The merging preserves the order in
the files Ei(h − 1) and Ei(h + 1), so that the files Em(h − 1) and Em(h + 1) are
already sorted with all duplicates within the bucket eliminated. The subtraction
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Fig. 13. Distribution of buckets in parallel external-memory A*.

of the bucket (g − 1, h − 1) from Em(h − 1) and (g − 1, h + 1) from Em(h + 1)
now eliminates duplicates from the search using a parallel scan of both files.

Besides the potential for speeding up the evaluation, the chosen distribution
mainly saves space. On the one hand, the master process does not need any
additional memory for loading pattern databases. It can invest all its available
memory for internal buffers required for the distribution, merging and subtrac-
tion of nodes. On the other hand, during the lifetime of client process Pi, it
maintains only the pattern database Dj that includes tile i in its pattern.

7 Parallel Search on the GPU

In the last few years there has been a remarkable increase in the performance
and capabilities of the graphics processing unit (GPU). Modern GPUs are not
only powerful, but also parallel programmable processors featuring high arith-
metic capabilities and memory bandwidths. High-level programming interfaces
have been designed for using GPUs as ordinary computing devices. These efforts
in general purpose GPU programming (GPGPU) has positioned the GPU as a
compelling alternative to traditional microprocessors in high-performance com-
puting. The GPU’s rapid increase in both programmability and capability has
inspired researchers to map computationally demanding, complex problems to
it. Since the memory transfer between the card and main board on the express
bus is extremely fast, GPUs have become an apparent candidate to speed-up
large-scale computations. GPUs have several cores, but the programming and
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computational model are different from the ones on the CPU. A core is a stream-
ing processor with some floating point and arithmetic logic units. Together with
some special function units, streaming processor are grouped together to form
streaming multiprocessors. Programming a GPU requires a special compiler,
which translates the code to native GPU instructions. The GPU architecture
mimics a single instruction multiply data computer with the same instructions
running on all processors. It supports different layers for accessing memory.
GPUs forbid simultaneous writes to a memory cell but support concurrent reads.

GPUs have outpaced CPUs in numerical algorithms [46,72]. Applications
include studying the folding behavior of proteins by [57] and the simulation of
bio-molecular systems by [79]. Since the memory transfer between the card and
main board on the express bus is in the order gigabytes per second, GPUs have
become an apparent candidate to speed-up large-scale computations like sorting
numerical data on disk [18,44]. Its application for sorting-based delayed duplicate
detection is apparent. By using perfect hash functions there is work on explor-
ing single-agent search problems on the GPU [41], and on solving two-player
games [39]. Moreover, explicit-state and probabilistic model checking problems
have been ported to the GPU [11,38].

On the GPU, memory is structured hierarchically, starting with the GPU’s
global memory called video RAM, or VRAM. Access to this memory is slow,
but can be accelerated through coalescing, where adjacent accesses with less
than word-width number bits are combined to full word-width access. Each
streaming multi-processor includes a small amount of memory called SRAM,
which is shared between all streaming multi-processor and can be accessed at the
same speed as registers. Additional registers are also located in each streaming
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multiprocessors but not shared between streaming processors. Data has to be
copied to the VRAM to be accessible by the threads.

GPU-Based Breadth-First-Search. We assume a hierarchical GPU memory struc-
ture of SRAM (small, but fast and parallel access) and VRAM (large, but slow
access). The general setting is displayed in Fig. 15. We illustrate how to perform
GPU-based breadth-first search, enumerating the entire search space.

Algorithm 1.4 displays the main search algorithm running on the CPU. For
each BFS-level it divides into two computational parts that are executed on
the GPU: applying actions to generate the set of successors, and detecting and
eliminating duplicates in a delayed fashion via GPU-based sorting. We keep the
search frontier and the set of visited states distinct, as only the first one needs
to be accessible in uncompressed form.

Delayed Duplicate Detection on the GPU. For delayed elimination of duplicates,
we have to order a BFS level wrt. a comparison function that operates on
states (sorting phase). The array is then scanned and duplicates are removed
(compaction). Considering the strong set of assumptions of orthogonal, disjoint
and concise hash functions, ordinary hash-based delayed duplicate detection is
often infeasible. Therefore, we propose a trade-off between sorting-based and
hash-based delayed duplicate detection by sorting buckets that have been filled
through applying a hash function. The objective is that hashing in RAM per-
forms more costly distant data moves, while subsequent sorting addresses local
changes, and can be executed on the GPU by choosing the bucket sizes appro-
priately. If the buckets fit into the SRAM, they can be processed in parallel.

Disk-based sorting refers to one of the major success stories for GPU com-
putation. Various implementations have been proposed, including variants of
Bitonic Sort and GPU-based Quicksort. Applying the algorithms on larger state
vectors fails as their movement within the VRAM slows down the computation
significantly. Trying to sort an array of indexes also fails, as now the comparison
operator exceeds the boundary of the SRAM. This leads to an alternative design
of GPU sorting for state space search.
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Procedure GPU-BFS
Input: State space problem with initial state s
Output: State space partitioned into layers

g ← 0; Open(g) ← {s} ;; Initialize search
while (Open(g) �= ∅) ;; Until search levels off

Open(g + 1) ← Closed ← OpenPart ← ∅ ;; Initialize sets
for each u in Open(g) ;; Process BFS-level

OpenPart ← OpenPart ∪ {u} ;; Add node to part
if (|OpenPart| = |VRAM|) ;; RAM temporary for VRAM

Closed ← Closed ∪ GPU-Expand(OpenPart) ;; Call kernel
OpenPart ← ∅ ;; Reinitialize structure

Closed ← Closed ∪ GPU-Expand(OpenPart) ;; Call kernel function
for each v ∈ Closed ;; Consider all successors

H[hash(v)] ← H[hash(v)] ∪ {v} ;; Insert in bucket
if H[hash(v)] full ;; Overflow in bucket

Sorted ← GPU-DetectDuplicates(H) ;; Call kernel function
CompactedOpen ← ScanAndRemoveDuplicates(Sorted) ;; Compaction
DuplicateFreeOpen ← Subtract(CompactedOpen,Open(0..g)) ;; Subtraction
Open(g + 1) ← Merge(Open(g + 1),DuplicateFreeOpen) ;; Combine result
H[0..m] ← ∅ ;; Reset layer

Sorted ← GPU-DetectDuplicates(H) ;; Call kernel function
CompactedOpen ← ScanAndRemoveDuplicates(Sorted) ;; Compaction
DuplicateFreeOpen ← Subtract(CompactedOpen,Open(0..g)) ;; Subtraction
Open(g + 1) ← Merge(Open(g + 1),DuplicateFreeOpen) ;; Combine result
g ← g + 1 ;; Next layer

return Open(0..g − 1) ;; Final result on disk

Algorithm 1.4. Large-scale breadth-first search on the GPU.

In hash-based partitioning the first phase of sorting smaller blocks in Bitonic
Sort is fast, while merging the pre-sorted sequences for a total ordered slows down
the performance. Therefore, we employ hash-based partitioning on the CPU to
distribute the elements into buckets of adequate size (see Fig. 16). The state
array to be sorted is scanned once. Using hash function h and a distribution
of the VRAM into k blocks, the state s is written to the bucket with index
h′(s) = h(s) mod k. If the distribution of the hash function is appropriate and
the maximal bucket sizes are not too small, a first overflow occurs, when the
entire hash table is occupied to more than a half. All remaining elements are set
to a pre-defined illegal state vector that realizes the largest possible value in the
ordering of states.

This hash-partitioned vector of states is copied to the graphics card and
sorted by the first phase of Bitonic Sort. The crucial observation is that – due to
the presorting – the array is not only partial sorted wrt. the comparison function
operating on states s, but totally sorted wrt. the extended comparison function
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operating on the pairs (h′(s), s). The sorted vector is copied back from VRAM
to RAM, and the array is compacted by eliminating duplicates with another
scan through the elements. Subtracting visited states is made possible through
scanning all previous layers residing on disk. Finally, we flush the duplicate-free
file for the current BFS level to disk and iterate. To accelerate discrimination
and to obey the imposed order on disk, the hash bucket value h′(s) is added to
the front of the state vector s.

If a BFS level becomes too large to be sorted on the GPU, we split the search
frontier into parts that fit in the VRAM. This yields some additional state vector
files to be subtracted to obtain a duplicate-free layer, but in practice time perfor-
mance is still dominated by expansion and sorting. For the case that subtraction
becomes harder, we can exploit the hash-partitioning, inserting previous states
into files partitioned by the same hash value. States that have a matching hash
value are mapped to the same file. Provided that the sorting order is first on
the hash value then on the state, after the concatenation of files (even if sorted
separately) we obtain a total order on the sets of states. This implies that we
can restrict duplicate elimination to states that have matching hash values.

On the GPU, we have a fixed amount of O(|VRAM|/|SRAM|) group opera-
tions, where each group is sorted by Bitonic Sort. Hence, the sorting complexity
is independent from the number of elements to be sorted, as in each iteration
the entire vector is processed. With a good distribution function, we assure that
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on the average each bucket is at least 50% filled with successor states, such that
we loose less than factor 2 by not dealing with entirely filled buckets. As an
example, in our case, we have |VRAM| = 1 GB, and |SRAM| = (16 − c) KB,
where c is a small constant, imposed by the internal memory requirements of the
graphics card. For a state vector of 32 byte, we arrive at k = 256 elements in one
group. Within each group Bitonic Sort is applied, known to induce O(k log2 k)
work and O(log k) iterations. In each iteration the number of comparisons that
can be executed in parallel depends on the number of available threads, which
in turn depends on the graphics card chosen.

Instead of sorting the buckets after they have been filled, it is possible to use
chaining right away, checking each individual successor for having a duplicate
against the states stored in its bucket. Keeping the list of states sorted, as in
ordered hashing, accelerates the search, however, requires additional work for
insertion, and does not speed up the computation, if compared to parallel sorting
the buckets on the GPU. We only implemented a refinement that checks the state
to be inserted in a bucket with the top element to detect some duplicates quickly.

State Compression. With a 64-bit hash address we do not encounter any collision
even in very large state spaces. Henceforth, given hash function h, we compress
the state vector for u to (h(u), i(u)), where i(u) is the index of the state vector
residing in RAM that is needed for expansion. We sort the pairs on the GPU
with respect to the lexicographic ordering of h. The shorter the state vector, the
more elements fit into one group, and the better the expected speed-up.

To estimate the probability of an error, assume a state space of n = 230

elements uniformly hashed to the m = 264 possible bit-vectors of length 64. We
have m!/(mn(m − n)!) ≥ ((m − n + 1)/m)n ≥ (1 − n/m)n. For our case this
resolves to (1 − 2−34)2

30
= (.99999999994179233909)1073741824, and a confidence

of at least 93.94% that no duplicate arises while hashing the entire state space
to 64 bits. Recall, that missing a duplicate harms, only if the missed state is the
only way to reach the error in the system. If the above confidence appears still
to be too low, one may re-run the experiment with another independent hash
function, showing that with ≥99.6%, no false positive has been produced during
the traversal of the state space.

Expansion on the GPU. The remaining bottleneck is the CPU performance
in generating the successors, which can also be reduced by applying parallel
computation. For this we port the expansion for states to the GPU.

For BFS, the order of expansions within one bucket does not matter, so that
no communication between threads is required. Each processor simply takes
its share and starts expanding. Having fixed the set of applicable actions for
each state, generating the successors in parallel on the GPU is immediate by
replicating each state to be expanded by the number of applicable actions. All
generated states are copied back to RAM (or GPU sorting is applied).
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Procedure Rank
Input: Depth N , permutations π, π−1

Output: Rank of π
if (N = 1) return 0
l ← πN−1

Swap(πN−1, ππ−1
N−1

); Swap(π−1
l , π−1

N−1)

return l(N − 1)! + Rank(N − 1, π, π−1)

Procedure Unrank
Input: Value N , rank r, permutation π
Side Effect: Updated global permutation
if (N = 0) return
l ← 	r/(k − 1)!

Swap(πN−1, πl)
Unrank(N − 1, r − l · (N − 1)!, π)

Algorithm 1.5. Rank and Unrank operation for permutations.

Bitvector GPU Search. Static perfect hashing has been devised in the early
70th [22,43]. Practical perfect hashing has been analyzed by [12] and an external-
memory perfect hash function variant has been proposed by [13].

For the design of a minimum perfect hash function of the sliding-tile puzzles
we observe that in a lexicographic ordering every two successive permutations
have an alternating signature and differ by exactly one transposition. For mini-
mal perfect hashing a (n2 −1)-puzzle state to {0, . . . , n2!/2−1} we consequently
compute the lexicographic rank and divide it by 2. For unranking, we now have to
determine, which one of the two uncompressed permutations of puzzle is reach-
able. This amounts to finding the signature of the permutation, which allows to
separate solvable from unsolvable states.

There is one subtle problem with the blank. Simply taking minimum perfect
hash value for the alternation group in Sn2 does not suffice, as swapping a tile
with the blank not necessarily toggles the solvability status (e.g., it may be a
move). To resolve this problem, we partition state space along the position of
the blank. Let B0, . . . , Bn2−1 denote the sets of blank-projected states. Then
each Bi contains (n2 − 1)!/2 elements. Given index i and the rank inside Bi, it
is simple to reconstruct the state.

Korf and Schultze [68] used lookup tables to compute lexicographic ranks,
while Bonet [9] discussed different time-space trade-offs. Mares and Straka
[75] proposed a linear-time algorithm for lexicographic ranking, which relies
on bitvector operations in constant time. Applications of perfect hashing for
bitvector state space search include Peg Solitaire [41], Nine-Men-Morris [39],
and Chineese Checkers [90,91]. Bitvector-compressed pattern databases result
in log2 3 ≈ 1.6 bits per state [14]. Efficient permutation indices have been pro-
posed by Myrvold and Ruskey [78]. The basic motivation is the generation of a
random permutation of size N according to swapping πi with πr where r is a ran-
dom number uniformly chosen in 0, . . . , r, and i decreases from N − 1 to 1. The
(recursive) procedure Rank is shown in Algorithm 1.5. The permutation π and
its inverse π−1 are initialized according with the permutation, for which a rank
has to determined. The inverse π−1 of π can be computed by setting π−1

πi
= i,

for all i ∈ {0, . . . , k − 1}. Take as an example permutation π = π−1 = (1, 0, 3, 2).
Then its rank is 2 ·3!+Rank(102). This unrolls to 2 ·3!+2 ·2!+0 ·1!+0 ·0! = 16.
It is also possible to compile a rank back into a permutation in linear time.
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Fig. 17. GPU exploration of the 15-puzzle stored as a bitvector in RAM (GPU sorting
indices is optional and was not used in the experiments).

The inverse procedure Unrank is initialized with the identity permutation and
shown in Algorithm 1.5.

Table 5. Comparing CPU with GPU performances in Bit (vector)-BFS in various
sliding-tile puzzles (o.o.m means out of memory, while o.o.t denotes out of time).

2-Bit BFS 1-Bit BFS
Problem Time GPU Time CPU Time GPU Time CPU

(2 × 6) 70 s 176 s 163 s 1517 s
(3 × 4) 55 s 142 s 98 s 823 s
(4 × 3) 64 s 142 s 104 s 773 s
(6 × 2) 86 s 160 s 149 s 1110 s
(7 × 2) o.o.m o.o.m 13590 s o.o.t

In case of perfect and inversible hash functions, a bitvector exploration of the
search space is fortunate. The GPU-assisted exploration will rank and unrank
states during the expansion process. In constant-bit(vector) BFS search [65] the
entire or the partitioned state space bitvector is kept in RAM, while copying an
array of indices (ranks) to the GPU. One additional scan through the bitvector is
needed to convert its bits into integer ranks, but on the GPU the work to unrank,
generate the successors and rank them is identical for all threads. To avoid
unnecessary memory access, the rank given to expand should be overwritten
with the rank of the first child. For smaller BFS layers this means that a smaller
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amount of states are expanded. As the number of successors is known in advance,
with each rank we reserve space for its successors. In larger instances, that exceed
main memory capacities, we additionally maintain write buffers in RAM to avoid
random access on disk. Once the buffer is full, it is flushed to disk. Then, in one
streamed access, all corresponding bits are set.

Consider the (n2−1)-puzzle in (see Fig. 17). The partition B0, . . . , Bn2−1 into
buckets has the advantage that we can determine, whether the state belongs to
an odd or even layer and which bucket a successor belongs to. Speedups are
shown in Table 5.

8 Conclusion and Outlook

Mechanical hard disks have provided us with reliable service over the years and,
as shown in this text, lead to changes in the design of search algorithms for
solving large exploration problems that exceed main memory capacity. Their
dominance at least on mobile devices has changed with the advent of solid state
disks (SSDs). An SSD is electrically, mechanically and software compatible with
a conventional (magnetic) hard disk drive (HDD). The difference is that the
storage medium is not magnetic (like a hard disk) or optical (like a CD) but
solid state semiconductor (NAND flash) such as battery-backed RAM or other
electrically erasable RAM-like chips. In last years, NAND flash memories out-
paced RAM in terms of bit-density and the market with SSDs continues to grow.
This provides faster access time than a disk, because the data can be randomly
accessed and does not rely on a read/write interface head synchronizing with a
rotating disk. The speed of random reads for a SSD build lies roughly at the
geometric mean of the speeds of RAM and a magnetic HDD. The only factor
limiting SSDs from being massively spread is their cost: the price per stored bit
is still significantly higher for SSDs than for HDDs.

We observe that random read operations on SSDs are substantially faster
than on mechanical disks, while other parameters are similar. For SSDs, there-
fore, an extension of the external-memory model is needed. Moreover, it appears
natural to ask, whether it is necessary to employ delayed duplicate detection
(DDD) known from the current I/O-efficient graph search algorithms, or if is
possible to design efficient SSD algorithms using standard immediate duplicate
detection (IDD), hashing in particular [3,6,36].

We also emphasize that not only it is true that Disk is the New RAM (as
exploited in external-memory algorithms), but also that RAM is the New Disk.
On large-scale main memory storage systems, e.g., on supercomputers with thou-
sands of cores, algorithm locality is a more and more performance-critical issue.
Profiling in our setting revealed that the mere retrieval of a single bit in RAM
became the bottleneck in the parallel-external exploration.
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vol. 5578, pp. 32–49. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02652-2 7

12. Botelho, F.C., Pagh, R., Ziviani, N.: Simple and space-efficient minimal perfect
hash functions. In: WADS, pp. 139–150 (2007)

13. Botelho, F.C., Ziviani, N.: External perfect hashing for very large key sets. In:
CIKM, pp. 653–662 (2007)

14. Breyer, T.M., Korf, R.E.: 1.6-bit pattern databases. In: AAAI (2010)
15. Burns, E., Lemons, S., Ruml, W., Zhou, R.: Suboptimal and anytime heuristic

search on multi-core machines. In: ICAPS (2009)
16. Burns, E., Lemons, S., Zhou, R., Ruml, W.: Best-first heuristic search for multi-

core machines. In: IJCAI, pp. 449–455 (2009)
17. Cazenave, T.: Nested monte-carlo search. In: IJCAI, pp. 456–461 (2009)
18. Cederman, D., Tsigas, P.: A practical quicksort algorithm for graphics processors.

Technical report 2008–01, Chalmers University of Technology (2008)
19. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press,

Cambridge (1990)
20. Culberson, J.C., Schaeffer, J.: Pattern databases. Comput. Intell. 14(4), 318–334

(1998)
21. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

In: OSDI (USENIX Association, Berkeley, CA, USA) (2004)
22. Dietzfelbinger, M., Karlin, A., Mehlhorn, K., auf der Heide, F.M., Rohnert, H.,

Tarjan, R.E.: Dynamic perfect hashing upper and lower bounds. SIAM J. Comput.
23, 738–761 (1994)
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43. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with o(1) worst
case access time. J. ACM 3, 538–544 (1984)

44. Govindaraju, N.K., Gray, J., Kumar, R., Manocha, D.: GPUTeraSort: high perfor-
mance graphics coprocessor sorting for large database management. In: SIGMOD,
pp. 325–336 (2006)

http://www.aaai.org/ocs/index.php/ECP/ECP01
http://dx.doi.org/10.1007/11691617_1
http://dx.doi.org/10.1007/11691617_1
http://dx.doi.org/10.1007/978-3-540-30221-6_18
http://dx.doi.org/10.1007/978-3-540-74565-5_36
http://dx.doi.org/10.1007/978-3-540-74565-5_36
http://dx.doi.org/10.1007/978-3-540-85845-4_23


External-Memory State Space Search 223

45. Hansen, E., Zilberstein, S.: LAO*: a heuristic search algorithm that finds solutions
with loops. Artif. Intell. 129, 35–62 (2001)

46. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA.
In: Nguyen, H. (ed.) GPU Gems 3, pp. 851–876. Addison-Wesley, Salt Lake City
(2007)

47. Hart, N., Nilsson, J., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

48. Helmert, M.: Decidability and undecidability results for planning with numerical
state variables. In: AIPS, pp. 303–312 (2002)

49. Helmert, M., Domshlak, C.: Landmarks, critical paths, abstractions: what’s the
difference anyway? In: ICAPS (2009)

50. Helmert, M., Haslum, P., Hoffmann, J.: Flexible abstraction heuristics for optimal
sequential planning. In: ICAPS, pp. 176–183 (2007)

51. Hoare, C.A.R.: Algorithm 64: quicksort. Commun. ACM 4(7), 321 (1961)
52. Hoffmann, J.: The metric FF planning system: translating “Ignoring the delete

list” to numerical state variables. J. Artif. Intell. Res. 20, 291–341 (2003)
53. Hoffmann, J., Nebel, B.: Fast plan generation through heuristic search. J. Artif.

Intell. Res. 14, 253–302 (2001)
54. Jabbar, S.: External memory algorithms for state space exploration in model check-

ing and action planning. PhD thesis, TU Dortmund (2008)
55. Jabbar, S., Edelkamp, S.: I/O efficient directed model checking. In: Cousot, R.

(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 313–329. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-30579-8 21

56. Jabbar, S., Edelkamp, S.: Parallel external directed model checking with linear
I/O. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp.
237–251. Springer, Heidelberg (2005). doi:10.1007/11609773 16

57. Jaychandran, G., Vishal, V., Pande, V.S.: Using massively parallel simulations,
Markovian models to study protein folding: examining the Villin head-piece. J.
Chem. Phys. 124(6), 164 903–164 914 (2006)

58. Kishimoto, A., Fukunaga, A., Botea, A.: On the scaling behavior of HDA*. In:
SOCS (2010)

59. Kishimoto, A., Fukunaga, A.S., Botea, A.: Scalable, parallel best-first search for
optimal sequential planning. In: ICAPS (2009)

60. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: ICML, pp.
282–293 (2006)

61. Korf, R.E.: Linear-space best-first search. Artif. Intell. 62(1), 41–78 (1993)
62. Korf, R.E.: Finding optimal solutions to Rubik’s cube using pattern databases. In:

AAAI, pp. 700–705 (1997)
63. Korf, R.E.:. Breadth-first frontier search with delayed duplicate detection. In:

MOCHART, pp. 87–92 (2003)
64. Korf, R.E.: Best-first frontier search with delayed duplicate detection. In: AAAI,

pp. 650–657 (2004)
65. Korf, R.E.: Minimizing disk I/O in two-bit breadth-first search. In: AAAI, pp.

317–324 (2008)
66. Korf, R.E., Felner, A.: Disjoint pattern database heuristics. In: Chips Challeng-

ing Champions: Games, Computers and Artificial Intelligence, pp. 13–26. Elsevier
(2002)

67. Korf, R.E., Felner, A.: Recent progress in heuristic search: a case study of the
four-peg towers of Hanoi problem. In: IJCAI, pp. 2324–2329 (2007)

68. Korf, R.E., Schultze, T.: Large-scale parallel breadth-first search. In: AAAI, pp.
1380–1385 (2005)

http://dx.doi.org/10.1007/978-3-540-30579-8_21
http://dx.doi.org/10.1007/11609773_16


224 S. Edelkamp

69. Korf, R.E., Zhang, W.: Divide-and-conquer frontier search applied to optimal
sequence alignment. In: AAAI, pp. 910–916 (2000)

70. Korf, R.E., Zhang, W., Thayer, I., Hohwald, H.: Frontier search. J. ACM 52(5),
715–748 (2005)

71. Kristensen, L., Mailund, T.: Path finding with the sweep-line method using external
storage. In: ICFEM, pp. 319–337 (2003)

72. Krueger, J., Westermann, R.: Linear algebra operators for GPU implementation
of numerical algorithms. ACM Trans. Graph. 22(3), 908–916 (2003)

73. Kunkle, D., Cooperman, G.: Solving Rubik’s cube: disk is the new RAM. Commun.
ACM 51(4), 31–33 (2008)
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Abstract. Defining, measuring, and comparing the quality and effi-
ciency of rendering algorithms in computer graphics is a demanding
challenge: quality measures are often application specific and efficiency
is strongly influenced by properties of the rendered scene and the used
hardware. We survey the currently employed evaluation methods for
the development process of rendering algorithms. Then, we present our
PADrend framework, which supports systematic and flexible develop-
ment, evaluation, adaptation, and comparison of rendering algorithms,
and provides a comfortable and easy-to-use platform for developers of
rendering algorithms. The system includes a new evaluation method to
improve the objectivity of experimental evaluations of rendering algo-
rithms.

1 Introduction

In the area of computer graphics, rendering describes the process of visualizing
a data set. One important aspect of rendering is, of course, how the data is pre-
sented to serve the desired application. Besides that, an algorithmic challenge
arises from the complexity of the rendered data set. Especially if the visualiza-
tion has to be performed in real time, the amount of data can easily exceed
the capabilities of state of the art hardware, if only simple rendering techniques
are applied. In this paper, we focus on tools and techniques for the develop-
ment of algorithms for rendering three-dimensional virtual scenes in real-time
walkthrough applications. Although the algorithmic challenges induced by com-
plex virtual scenes traditionally play an important role in this area of computer
graphics, explicitly considering techniques supporting the developing process, or
providing a sound empirical evaluation are only considered marginally.

1.1 Context: Real-Time 3D Rendering

The input of a walkthrough application is a virtual scene usually composed of
a set of polygons, e.g., emerging from computer-aided design (CAD) data. The
user can interactively move through the scene representing a virtual observer,
c© Springer International Publishing AG 2016
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while the current view of the scene is rendered. The rendering process is normally
supported by dedicated graphics hardware. Such hardware nowadays supports
rendering of several million polygons at interactive frame rates (e.g., at least 10
frames per second). Considering complex virtual environments (like the CAD
data of an air plane, or of a complete construction facility), the complexity of
such scenes can however still exceed the capabilities of the hardware by orders
of magnitudes. Thus, many real world applications require specialized rendering
algorithms to reduce the amount of data processed by the graphics hardware.

The problem of rendering complex three dimensional scenes exhibits several
properties that distinguishes it from many other problem areas dealing with large
data sets; even influencing the process of designing, implementing, and evaluat-
ing algorithms in this area. In our opinion, the three most relevant properties are
the use of dedicated graphics hardware, the influence of the input’s geometric
structure, and the relevance of the image quality perceived by a human observer.
Dedicated graphics hardware provides a large amount of computational power,
but also requires adaptations to its parallel mode of operation and the partic-
ularities of the rendering pipeline. On the one hand, the geometric structure of
the virtual scene offers the opportunity to speed up the rendering process by
exploiting the mutual occlusion of objects in the scene. On the other hand, the
view on the scene changes for every observer position in the scene, which has to
be considered in order to acquire any reasonable evaluation results on the gen-
eral efficiency of a rendering algorithm. The human perception of the rendered
images allows to speed up the rendering process by replacing complex parts of
the scene by similar looking, but much simpler approximations. Challenges for
the development of such algorithms is to actually create well looking approxima-
tions and to reasonably measure the image quality for an objective experimental
evaluation.

1.2 Overview

First, we give an overview of the state of the art concerning different aspects influ-
encing the evaluation process of rendering algorithms (Sect. 2). Then, we present
the PADrend framework (Sect. 3), developed to provide a common basis for the
development and evaluation and usage of rendering algorithms. The behavior of
a rendering algorithm is not only depending on the visualized scene, but also on
the observer’s view on the scene – which is often only insufficiently considered
by existing evaluation methods. We developed a special evaluation technique
that tackles this issue based on globally approximated scene properties (Sect. 4).
As an example, we present a meta rendering algorithm (Sect. 5.2) that uses the
presented software framework and techniques to automatically assess and select
other rendering algorithms for the visualization of highly complex scenes.

2 Evaluating Rendering Performance and Image Quality

The z-buffer-algorithm [6] of today’s graphics hardware provides the real-time
rendering of n triangles in linear time O(n) [15]: The algorithm sequentially
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processes all triangles, whereby first the vertices of each triangle are projected
into the 2-dimensional screenspace (geometric transformation), and second, each
triangle is filled by coloring its pixels (rasterization).

To provide a smooth navigation through a scene about 10 images (frames)
per second are necessary. Current graphics hardware can render scenes con-
sisting of up to 15 millions triangles with 10 fps. Rendering algorithms try to
overcome this limit by working like a filter [1,21] in front of the z-buffer algo-
rithm: They reduce the number of polygons sent to the pipeline either by exclud-
ing invisible objects (visibility culling) or by approximating complex objects by
less complex replacements.

In the following three sections, we discuss the challenges of objectively eval-
uating and comparing different rendering algorithms. An algorithm’s efficiency,
as well as the achieved image quality, is not only influenced by the virtual scene
used as input (Sect. 2.1), but also by the user’s movement through the scene
(Sect. 2.2) and by the used graphics hardware (Sect. 2.3).

2.1 Influence of Input Scenes

The performance of a rendering algorithm is evaluated by experimental evalu-
ations in which an input scene is used to perform measurements: There exist
some standard objects (the Utah teapot by Martin Newell or the models from
the Stanford 3D Scanning Repository1) that can be used for algorithms that
render a single object [20,23,25]. The main difference in these scenes is mostly
the number of primitives they consist of. Multiple objects are sometimes com-
posed to form more complex scenes [3,19,35]. For walkthrough applications,
there are some standard scenes [2–4,12,14,35]: the Power Plant model, the Dou-
ble Eagle Tanker2, the Boeing 777 model3, or scenes created by software like the
CityEngine4. These scenes differ not only in the number of primitives, but also in
their geometrical structure: e.g., some consist of a large number of almost evenly
distributed simple objects, while others consist of complex structures showing
a large degree of mutual occlusion. Seldom, dynamic scenes are generated at
runtime to compare and test rendering systems [26].

Occlusion culling algorithms, for example, work especially well on scenes
having a high degree of occlusion; i.e. only a small fraction of the scene is visi-
ble at once. While some algorithms have strict requirements for the underlying
structure of the scene [29], others require only some large objects that serve as
occluders [35]. Some can handle almost arbitrary structured scenes by exploiting
occlusion generated by any object in the scene [22]. For a suitable scene, each
algorithm can increase the framerate by orders of magnitude, while an unsuitable
scene can even lead to a decreased framerate compared to the simple z-buffer
algorithm.

1 http://graphics.stanford.edu/data/3Dscanrep/.
2 http://www.cs.unc.edu/%7Ewalk/.
3 http://www.boeing.com.
4 http://www.esri.com/software/cityengine/resources/demos.

http://graphics.stanford.edu/data/3Dscanrep/
http://www.cs.unc.edu/%7Ewalk/
http://www.boeing.com
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If certain properties of the input scene can be assumed (e.g., all the polygons
are uniformly distributed), it can be shown, that the rendering time of several
rendering algorithms is logarithmic in the complexity of the scene for any position
in the scene (e.g., [7,30]).

2.2 Influence of Camera Paths

Besides the general structure of the input scene, the position and viewing direc-
tion from which the scene is rendered has a great influence on the runtime of
a rendering algorithm: E.g., standing directly in front of a wall allows occlu-
sion algorithms to cull most of the scene’s occluded geometry, while from other
positions huge parts of the scene might be visible.

When aiming at visualizing individual objects, only the direction from which
the object is seen is an important variable for an evaluation (e.g., [23,25]). For
algorithms designed for walkthrough applications it is common practice to use a
representative camera paths for evaluating an algorithm. In many works (like [2–
4,12,14,35]) the implementation of a rendering algorithm is evaluated by mea-
suring a property (running time, image quality, culling results) along a camera
path defined by the authors. One major drawback of this technique is, that all
quantitative results only refer to the used camera path – the possible conclu-
sions with regards to the general behavior of the algorithm for arbitrary scenes
is limited. Even with a fixed scene, the algorithms are likely to behave differently
depending on the chosen camera path. The documentation of the camera path
used for an evaluation is important for supporting the significance of the pub-
lished results. It differs largely between different works: in some, it is graphically
depicted (sometimes as a video) and described [2,3,12]; in some, it is depicted or
described only sparsely [4]; and in others, no description is given at all [14,35].
All considered papers state results based on statistical properties (mean, number
of frames with a certain property, etc.) sampled along the used paths. Although
the conclusions drawn by the authors may well relate to the general behavior
of the algorithm, we think that an additional evaluation tool can help authors
to generalize their results. E.g., for virtual reality applications, Yuaon et al. [34]
present a framework for using actual user movements for performance analysis
of rendering algorithms.

2.3 Influence of Graphics Hardware

Modern graphics cards combine a set of massively parallel processing units with
dedicated memory. Normally, the high level rendering process is controlled by
the CPU while the actual geometric and color calculations are performed on the
graphics processing unit (GPU) in parallel. This heterogeneous design has to be
reflected by the Real-time rendering systems, which reduce the number of primi-
tives that are sent to the graphics card to the extent that a rendering with a fixed
frame rate is possible. For this purpose a run-time prediction for the rendering
of the primitives send to the graphics card is necessary. As today’s graphics
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cards do not provide hard guarantees of the execution time of elementary graph-
ics operations, the runtime predictions are imprecise and depend mainly on the
chosen modeling of the hardware:

For the linear runtime estimation of the z-buffer algorithm we assume that
geometric transformation and rasterization are both possible in constant time
for each triangle. Practical implementations show that the runtime depends on
the projected size of the triangles (counted in number of rasterized pixels). If we
use an additional parameter a counting the number off all rasterized pixels, we
estimate the runtime by O(n + a) [15].

Funkhouser and Séquin [11] refined the model of basic graphics hardware
operations in order to predict the rendering time of single polygons. The ren-
dering time estimation take into account the number of polygons, the number
of pixels and the number of pixels in the projection.

Wimmer and Wonka [33] model the graphics hardware by four major com-
ponents, system tasks, and the maximum of CPU tasks and GPU tasks where
the latter two are a sum of frame setup, memory management, rendering code,
and idle time.

In this respect, no hard real-time rendering is possible, as in the case real-
time operating systems that can provide reliably specific results within a pre-
determined time period. A real-time rendering system is aimed more to provide
statistical guarantees for a fixed frame rate [33].

3 PADrend: Platform for Algorithm Development
and Rendering

One important tool for the practical design and evaluation of algorithms is a sup-
porting software framework. In the area of real-time rendering, there are many
different software libraries and frameworks, whereas most of them focus on the
use as a basis for an application and not as tool in the development process.
Many game engines, for example, offer a set of powerful and well implemented
rendering algorithms. For closed source engines, adding own algorithms or data
structures is often not possible. Open source game engines can be extended, but,
in our experience, suffer from a high internal complexity or too high level inter-
faces that hinder the necessary control over the underlying hardware. These
problems lead to the habit of implementing a separate prototypical rendering
engine for every new rendering algorithm. Besides the repeated implementa-
tion of common functionality (like scene loading, camera movement, support for
runtime measurements, etc.), this especially hinders an objective comparison of
different algorithmic approaches of different authors.

In this context, we developed the PADrend framework serving as one common
basis for the development of rendering algorithms (first presented in [10]). For
the development of PADrend, we followed several goals:

– Allow rapid development by providing a set of high level interfaces and mod-
ules for common tasks.
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– Provide efficient hardware and system abstractions to allow platform inde-
pendent development without dealing with too many technical details; while,
at the same time, trying to provide an interface as direct to the hardware
functions as possible.

– Support cooperative and concurrent development by using a modular design
with only lightly coupled modules providing well defined interfaces.

– Support evaluation techniques as integral functions in the system.
– Do not restrict the usage by freely distributing all core components as open

source software under the Mozilla Public License (MPL)5.

In the following, we will discuss some of the system’s aspects that directly
focus on rendering algorithms and that distinguish the system from other ren-
dering libraries and game engines.

3.1 System Design

The PADrend framework consists of several software libraries and a walkthrough
application building upon these libraries (see Fig. 1). The libraries are written in
C++ and among others, comprise libraries for geometrical calculations (Geom-
etry), system abstraction (Util), rendering API abstraction (Rendering), and
the scene graph (MinSG). These libraries have well defined dependencies and
can also be used independently from the PADrend application. The application
is based on a plugin structure written in EScript6, an object oriented scripting
language. EScript is easier to learn than C++ (in the context of a complex, exist-
ing software framework) while still offering direct access to the objects defined
in C++.

Fig. 1. Structural overview of PADrend.

5 http://www.mozilla.org/MPL/.
6 https://github.com/EScript.

http://www.mozilla.org/MPL/
https://github.com/EScript
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3.2 Scene Graph: MinSG Library

The basis for the high level rendering processes is the Minimalistic Scene Graph
(MinSG) library. “Minimalistic” represents the idea that the scene graph’s
core functionality is designed to be as compact and simplistic as possible. The
library’s core contains a small set of basic node types (a geometry node, a con-
tainer node, and a few others) and a set of different properties (called states)
that can be attached to nodes. The structure of the virtual scene is represented
as a tree of nodes, in which the leaf nodes contain the scene’s geometry as trian-
gle meshes. Material and lighting properties are represented by states attached
to the nodes. Specialized functions, data structures, and rendering algorithms
can be created by building upon those core components.

A characteristic of MinSG is the way in which rendering algorithms are
implemented. In most rendering engines, the rendering is defined by an external
process getting the scene graph as input. In MinSG, rendering algorithms are
implemented as states that are attached to inner nodes of the scene graph (like
material properties). All nodes in the corresponding subtree may be influenced
by this rendering state. The rendering state may use custom traversal techniques,
call arbitrary rendering functions using the Rendering library, and dynamically
store arbitrary data at any node. In this way, the rendering algorithm rather
becomes a property of the scene than an external process.

Some algorithms can be seen as a combination of different high level func-
tions. For instance, the color cubes algorithm (based on [7]) can be split up into
two steps: First, identify the nodes in the scene graph whose current projected
size is smaller than a given value. Then, approximate the corresponding subtrees
by rendering colored cubes mimicking the original geometry (trade image quality
for speed). In MinSG, these two steps (node selection and approximating) can
be handled by different cooperating rendering states using rendering channels.
Both states are assigned to a node in the scene graph for which the algorithm
should be applied. Upon activation, the approximating rendering state registers
itself as handler for a rendering channel. The selection rendering state performs
the actual traversal of the subtree. Nodes with a large projected size are tra-
versed further, leaves are rendered normally. Nodes with a small projected size
are passed on to the rendering channel for which the approximation renderer
is registered. The approximation renderer now handles the node by displaying
the colored cube. Other implemented approximation states are based on mesh
reduction techniques (like discrete Level of Detail [13,21]), image-based tech-
niques (like impostors [28]), or point-based techniques (like Progressive Blue
Surfels [17]). Furthermore, the state controlling which nodes are to be approxi-
mated can consider not only a node’s projected size, but its estimated visible size
(e.g., based on an occlusion culling algorithm), or adjust the size dynamically
to fulfill a given frame rate constraint (budget rendering). The main benefits
of such a modular decomposition of algorithms are the possibility to reuse the
parts for related techniques (decrease duplicated code and increase robustness)
and the possibility to experiment with the recombination of different parts even
at runtime. Further techniques that are implemented using rendering channels



Algorithm Engineering Aspects of Real-Time Rendering Algorithms 233

are, for example, distance sorting of transparent objects and multi-pass render-
ing. Techniques requiring complete control over the traversal process itself, can
hoverer easily leave out rendering channels completely.

Scripted rendering states are another possibility to influence the rendering
process, especially during the early development phase of an algorithm. Such
states are implemented in EScript, resulting in a noticeably lower performance–
but with the advantage that they can be deployed and altered at runtime. The
effects of a change in the algorithm can be observed immediately even without
reloading the scene. Later in the development process, such a state is normally
re-implemented by translating it to C++ with little effort.

3.3 PADrend Application

The main functionality of the PADrend application is to provide a free interactive
movement through the virtual scene and the modification of the scene graph.
Following the overall design goals of the system, the application is split up in a set
of plugins. The plugins are developed using the EScript language and can access
all of the classes and functions defined in the C++ libraries (through a set of
slim wrapper libraries). The basic functionality provides importing virtual scenes
from different file formats and navigating through the scene using different input
devices. The Node Editor plugin allows fine granular modification of the scene
graph – including managing the rendering states (see the left window in Fig. 2).
The Scene Editor plugin provides tools to compose new scenes out of existing
3D models to efficiently create example scenes for experimental evaluations. For
instance, a brush tool can be used to place multiple trees on a surface with
a single stroke to create a forest scene. Currently, there are more than thirty
different optional plugins available.

3.4 Evaluating the Rendering Process

PADrend offers several evaluation tools that are described in the following:

Frame Statistics. For each rendered image (frame), different parameters are
measured automatically and combined into the frame statistics. Typical para-
meter types include the number of rendered polygons, the time needed for ren-
dering the frame, or the number of certain operations performed by a rendering
algorithm (see the middle window in Fig. 2). Using the Waypoints plugin, the
parameters can be measured along a predefined camera path and exported for
later analysis. Similar features are common to most rendering frameworks.

Frame Events (Analyzer). A more fine granular method of observing the
behavior of an algorithm is the event system. Many operations (like issuing a
rendering request to the GPU) can be logged using a high resolution timer.
The log can then be visualized in real time to identify bottlenecks during the
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Fig. 2. Screen shot of PADrend showing the user interface of several plugins. The
left window shows the configuration of a node of the scene graph with an attached
rendering state. The middle window shows several frame statistics measured while
moving through the scene. The right window shows a visualization of the last frame’s
logged rendering events: Blue lines represent rendered geometry, yellow and red lines
represent occlusion queries, and empty regions show idle waiting times of the CPU –
possible starting points for optimizations. (Color figure online)

rendering process (see the right window in Fig. 2). This feature is used best in
combination with additional external profiler tools that are provided by major
GPU manufacturers.

Image Quality Evaluation. The image compare plugin offers several func-
tions for automatically measuring image quality. These functions require two
images as input: one original image created using an exact rendering algorithm
and the approximated image that is created using an approximate algorithm.
Simple and widely used functions are the number of different pixels in the two
images or some metrics on the color distances. We additionally support other
techniques originating from the area of image compression algorithms (like JPEG
compression). The structural similarity technique (SSIM) [32] detects changes
in the structure of an image by comparing the pixel neighborhoods of all pixels
in the two images.

To reduce the impact of small image errors compared to the dimensions of
the image, like noise or aliasing artifacts, an image pyramid [5] is used addi-
tionally. SSIM is calculated for the full-size images and for multiple versions
with reduced resolution. The arithmetic mean of the multiple SSIM calculations
for the different resolutions is used as final image quality value. The numerical
value as produced by using SSIM offers little direct meaning, but the order of
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different values (e.g., image A looks better than image B), aligns better with
human perception than non-structure-oriented techniques like PSNR (for a dis-
cussion, see [31]).

4 Using Scene Properties for Objective Algorithm
Evaluation

Common experimental evaluation based on measurements along camera paths
can give a good insight into the general behavior of an algorithm. The significance
of any statistical analysis is limited, as they are only valid for the chosen camera
path. To improve the process of evaluating rendering algorithms’ efficiency, we
developed an evaluation technique to capture the global behavior of an algorithm
using an adaptive sampling scheme. In the following, we give an overview of this
technique (for a more detailed description, see [18]).

4.1 Position-Dependent Scene Properties

The basic observation underlying our method is that many aspects of a rendering
algorithm’s behavior can be expressed as position-dependent scene properties.
Such a scene property can be expressed as function defined over R

3 mapping
to a property value from an arbitrary co-domain, like R or N. In the following
section, we give an overview of some property functions that proved to be useful
in the evaluation of rendering algorithms.

Number of Visible Objects: One basic property is the number of the scene’s
objects that are visible from a position in the scene (on a pixel basis and not
geometrically). This property is not bound to a specific algorithm, but can
give important insight into the structure of the used scene. In our experience,
almost all other properties are influenced by visibility.
A practical and efficient way of determining this property at a specific posi-
tion, is to use the graphics hardware for the visibility tests. The scene is
projected onto the six sides of a cube surrounding the observed position
by rendering. Each object contributing at least one pixel to the final image
on one of the sides is counted as visible. This can easily be measured by
using hardware-assisted occlusion queries. The resolution used for rendering
process should resemble the screen resolution of the walkthrough system and
is an important parameter for the evaluation. If the property is evaluated in a
system supporting efficient ray-casts (like a real-time ray tracing system), an
omnidirectional observer can alternatively be implemented using a spherical
projection, avoiding distortions in the corners of the cube.

Rendering Time: The rendering time property of an algorithm describes the
time needed for an algorithm to render one frame. This value is clearly not
only dependent on the position in the scene, but also on the viewing direction.
To express the rendering time as meaningful position-dependent scene prop-
erty, we abstract the viewing direction by taking the maximum of the values
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for six different directions – the six sides of a cube. The camera aperture
angle is set to 120◦ to produce an overlap between adjacent directions. This
overlap is required to reduce artifacts occurring if complex parts of the scene
are not completely covered by any projection surface, although this area
could be completely in view, if the camera was rotated differently.

Number of Operations: Other meaningful scene properties can be defined
by the number of various operations performed by an algorithm to render
a frame. This includes, for example, the number of rendered objects, the
number of state changes in the graphics pipeline, or the number of issued
occlusion queries. The measurement is similar to the rendering time mea-
surement in that we can take the maximum value of the six directions.

Other possibly interesting property functions include image quality measure-
ments or combinations of several other properties (like the difference in the
performance of two different algorithms).

4.2 Global Approximation

In order to use a position dependent property for visualizing a rendering algo-
rithm’s behavior or analyzing its general performance for a given virtual scene,
the next step is to approximate the property’s distribution over the space of the
scene. Evaluating the value of the property at some positions in the scene, we
propose an adaptive sampling approach to build a data structure that yields an
approximated value of the property at every position inside a predefined area
(a 2D rectangle cutting through the scene, or a 3D box enclosing the scene). In
order to be able to meaningfully approximate the scene property using a sam-
pling approach, the property function has to be “well behaved”. This means
that on most positions, its value only changes gradually. Fortunately, this is true
for many scene’s visibility functions. Although there are visibility events with
large changes in visibility (e.g., when the observer moves through a wall), the
visibility remains almost constant if the observer only moves a small step. As
the behavior of nearly all rendering algorithms is closely connected to visibility,
the distribution of most relevant scene properties is coupled to the distribution
of the visibility property.

The proposed adaptive sampling method aims at subdividing the considered
space into regions with a mostly uniform value distribution using as few sam-
ples as possible. At places with high fluctuation in the sampled function, more
samples are taken and a finer subdivision into regions is created than at places
where the function is more uniform. A region is associated with one constant
value calculated from all covered sample points.

Adaptive Sampling Algorithm. The input of the sampling algorithm consists
of a virtual scene, a property function, a maximal number of samples to evaluate,
and a region for which the property function should be approximated. This region
is either a 2D rectangle cutting through the scene or a 3D bounding box.
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The sampling method works as follows: Beginning with the initial region, the
active region is subdivided into eight (3D case) or four (2D case) equally-sized
new regions. For each of the new regions, new sample points are chosen (see
description below) and the property function is evaluated at those positions.
Two values are then calculated for each new region: The property value is the
average value of all sample values that lie inside or at the border of the region.
The quality-gain is defined by the variance of the region’s sample values divided
by the region’s diameter – large regions with a high value fluctuation get high
values, while small regions with almost uniform values get low values. The new
regions are inserted into a priority queue based on their quality-gain values. The
region with the highest quality-gain value is extracted from the queue and the
algorithm starts over splitting this region next. The algorithm stops when the
number of evaluated sample points exceeds the chosen value (or when another
used defined condition is reached).

Choosing the Samples in a Region. The number of random sample points
for a region is chosen by an heuristic, weighting the diameter of the region by a
constant scaling-factor (typical value: 0.1 per meter). To achieve a good overall
quality even for a small number of samples, the algorithm tries to spread the
samples over the region while maximizing the minimum distance between two
sample points. For the sampling algorithm to work in both 2D and 3D, and to
support progressive refinement of the existing sampling, we chose a simple, yet
flexible sampling scheme (loosely based on [8]): To choose one new sampling
position, a constant number of candidate positions is generated uniformly at
random inside the region (a typical number of samples is 200). The chosen can-
didate is the one with the largest minimum distance to any prior sample point.
Additional to these random points, the corners of the region are always chosen as
sample points (even if they are close to existing sample points), as these points
can be shared among several neighboring regions.

4.3 Data Analysis

For analyzing globally approximated scene properties, we propose two different
techniques: A graphical visualization of the evaluated values and a statistical
evaluation of the value distribution.7

Graphical Visualization. The most intuitive way of working with an approx-
imated scene property is its direct visualization. The simultaneous visualization
of the underlying scene is optional, but usually quite helpful. Each region’s asso-
ciated value is mapped to a color and a transparency value for representing
the region. If two-dimensional regions are used, an additional height value can
be used to emphasize certain value ranges (producing a 3D plot). Figure 3 is
an example for this 2D case. For three-dimensional regions, the transparency

7 http://gamma.cs.unc.edu/POWERPLANT/.

http://gamma.cs.unc.edu/POWERPLANT/


238 M. Fischer et al.

(a) Power Plant scene7 (b) Visualization of the
CHC++ rendering time
scene property with heights

(c) Visualization
without heights

Fig. 3. Visualization of the rendering time of the CHC++ algorithm [22] evaluated for a
2D cutting plane of the Power Plant. White regions (low height): rendering times down
to 5ms (behind the chimney, high occlusion). Red regions (large height): rendering
times up to 16 ms (inside the main building, little occlusion). The approximation is
based on 2 k sample points evaluated in 160 s. (image source [18]) (Color figure online)

value should be chosen in such a way that important areas can be seen from the
outside. A 3D example is shown in Fig. 4(b).

The visualization makes it easy for the user to understand the algorithm’s
behavior and how it corresponds to the characteristics of different scene regions.
Because it is intuitive and easy to use, it is a valuable tool during the development
of a new algorithm. It can also be used to comprehensibly present aspects of a
new algorithm in a scientific publication.

Statistical Analysis. To produce well-founded results, the approximated prop-
erty function can be analyzed statistically. One has to keep in mind that the final
approximation consists of differently sized regions (area in 2D, volume in 3D).
In order to determine statistical properties (like the mean or median), the values
have to be weighted by the corresponding region’s size. To visualize the value
distribution, a weighted histogram or a weighted box plot can be used. We pro-
pose using weighted violin plots [16] for summarizing the distribution of a scene
property (see Fig. 4(a)). In addition to the information normally contained in a
box plot (like the median and the interquartile range), a violin plot additionally
adds a kernel density estimation. This is advisable, because the distribution of
scene properties is likely to be multimodal.

5 Application of PADrend and Scene Properties

In Sect. 5.1 we use the well known CHC++ occlusions culling method [22] to
demonstrate our proposed evaluation methods. In Sect. 5.2 we present a new
rendering method that is developed with the PADrend system and show how
the image quality can easily be evaluated by the system.
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Fig. 4. (a) Violin plots for the distribution of the CHC++ rendering time in the Power
Plant scene for different loose octree’s maximum depths (4 k samples per value com-
puted in 40 min overall). (b) Visualization of the property rendering time: CHC++
minus simple z-buffer. Only the negative values are shown as darker (blue) regions
(two times 4 k samples). (c) Violin plot for the same property. (image source [18])
(Color figure online)

5.1 Evaluation of a Standard Occlusion Culling Algorithm

In the following, we demonstrate how our method can be used for the eval-
uation of different aspects of a rendering algorithm. The rendering algorithm
used as subject for the analysis is the widely used CHC++ occlusion culling
algorithm (Coherent-Hierarchical-Culling++ [22]). This algorithm filters out
occluded geometry by applying hardware accelerated occlusion tests for bound-
ing volumes covering parts of the scene. CHC++ applies several heuristics to
minimize the number of necessary occlusion tests per frame and to reduce the
average overhead that is introduced by an occlusion test. We use our method
to evaluate the influence of a parameter of the chosen data structure on the
algorithm to find the best parameter value for a given scene. For this value, we
measure the performance gain that is achieved by using the algorithm in contrast
to simple rendering. The measurements have been performed using the Power
Plant scene (12.7 M triangles) on an Intel Core i7-3770 (4 × 3.40 GHz) with a
NVIDIA GeForce GTX 660 (OpenGL 4.3).

Parameter Optimization: Optimal Octree Depth. The performance of the
CHC++ depends on the partitioning of the scene’s objects. When using a loose
octree (loose factor 2.0) as a data structure, one parameter is the maximum depth
of the tree. If the depth is too low, only a few nodes exist and the decisions that
the CHC++ is able to make are limited. With a very high depth, the fraction of
time that is used to perform occlusion tests grows too large compared to the time
that is saved by the culled geometry. Creating separate global approximations
(for a 3D region covering the scene) of the rendering time property for different
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depth values allows for a local search for the best value. In our setting, the
objectively best value is five (see Fig. 4(a)).

Overall Rendering Performance. The CHC++ rendering time property for
a 2D slice of the scene is shown in Fig. 3. The 2D approximation is easier to
visualize and to present than a 3D approximation, but it is less suited for global
statements. To measure the performance of the CHC++ in comparison to simple
z-buffer rendering, we measured the running time of both algorithms in a 3D
region covering the scene and combined them using the difference. The results
are shown in Fig. 4(b) and (c). One can see that the CHC++ is marginally slower
than the simple z-buffer rendering in areas where many objects are visible, but
if the occlusion is high enough, the CHC++ is clearly superior. The next steps
for a more thorough evaluation could be to measure the relative speed-up or to
relate the CHC++’s overhead to the number of occlusion queries.

5.2 Multi-Algorithm-Rendering

Many large virtual 3D scenes are not structured evenly, for example, because they
exhibit a high variety in their polygons’ spatial distribution. For such heteroge-
neous data, there may be no single algorithm that constantly performs well with
any type of scene and that is able to render the scene at each position fast and
with high image quality. For a small set of scenes, this situation can be improved,
if an experienced user is able to manually assign different rendering algorithms to
particular parts of the scene. Based on the set of rendering algorithms and auto-
matic evaluation techniques implemented in PADrend, we developed the meta
rendering algorithm Multi-Algorithm-Rendering (MAR) [24], which automati-
cally deploys different rendering algorithms simultaneously for a broad range of
scene types.

In a preprocessing step, MAR first divides the scene into suitable regions.
Then, at randomly chosen sample positions the expected behavior (rendering
time and image quality) of all available rendering algorithms for all regions is
evaluated. During runtime, this data is utilized to compute estimates for the
running time and image quality for the actual observer’s point of view. By solving
an optimizing problem embedded in a control cycle, the frame rate can be kept
almost constant, while the image quality is optimized.

Figure 5 shows an example from a highly complex and heterogeneous scene
consisting of more than 100 million polygons. It is composed of models emerging
from CAD, laser scans, and a procedural scene generator. The second screen
shot shows the algorithm assignment MAR chose for that position from the
following rendering algorithms: CHC++, normal z-buffer [6,27], Spherical Vis-
ibility Sampling [9], Color Cubes [7], discrete Level of Detail [13,21], and two
variants of Progressive Blue Surfels [18]. Figure 6 shows the distribution of the
achieved image quality as a scene property function. If the chosen target frame
rate is increased, the faster algorithms will be preferred – resulting in a decreased
image quality.
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z-Buffer

CHC++

SVS

LoD

Color Cubes

Blue Surfels

ForcFF e Surfels

Fig. 5. Example images rendered using Multi-Algorithm-Rendering. The highlighting
in the second image represents the different algorithms used by MAR.

higher image quality lower

(a) Image quality at 10 fps. (b) Image quality at 20 fps.

Fig. 6. Evaluation of MAR’s image quality as scene property function. The observer
positions are sampled in a slice slightly above the city.

6 Conclusion

By developing PADrend, we try to provide a common software framework for
assisting the developer in each step of the practical development process of a
rendering algorithm – from the initial idea to the final parameter tuning for a
concrete application. New ideas can be implemented and tried out using the high
level scripting interface. The algorithm’s code can be altered and test scenes
can be composed or altered without restarting the program. As the concept
matures, the developer can build upon the optimized and tested core libraries
and a large set of experimental extensions. For the experimental evaluation,
standard measurement methods can be complemented by the evaluation of scene
property functions. This additionally allows to adjust the algorithm’s parameters
for a given setting and to objectively compare the global efficiency of the new
algorithm to existing state of the art algorithms.
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Abstract. Robust optimization is a young and emerging field of
research having received a considerable increase of interest over the last
decade. In this paper, we argue that the algorithm engineering method-
ology fits very well to the field of robust optimization and yields a
rewarding new perspective on both the current state of research and
open research directions.

To this end we go through the algorithm engineering cycle of design
and analysis of concepts, development and implementation of algorithms,
and theoretical and experimental evaluation. We show that many ideas
of algorithm engineering have already been applied in publications on
robust optimization. Most work on robust optimization is devoted to
analysis of the concepts and the development of algorithms, some papers
deal with the evaluation of a particular concept in case studies, and work
on comparison of concepts just starts. What is still a drawback in many
papers on robustness is the missing link to include the results of the
experiments again in the design.

1 Introduction

Similar to the approach of stochastic optimization, robust optimization deals
with models in which the exact data is unknown, but bounded by a set of possi-
ble realizations (or scenarios). Contrary to the former approach, in robust opti-
mization, one typically refrains from assuming a given probability distribution
over the scenarios. While the first steps in robust optimization trace back to
the work of Soyster [118], it has not emerged as a field of research in its own
right before the late 90s with the seminal works of Ben-Tal, Nemirovski, and
co-authors (see [18,19], and many more).

In this section, we first describe the general setting of robust optimization
in more detail, and then discuss the algorithm engineering methodology and its
application, which gives a natural structure for the remainder of the paper.
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Uncertain Optimization Problems. Nearly every optimization problem suffers
from uncertainty to some degree, even if this does not seem to be the case at
first sight. Generally speaking, we may distinguish two types of uncertainty:
Microscopic uncertainty, such as numerical errors and measurement errors; and
macroscopic uncertainty, such as forecast errors, disturbances or other conditions
changing the environment where a solution is implemented.

In “classic” optimization, one would define a so-called nominal scenario,
which describes the expected or “most typical” behavior of the uncertain data.
Depending on the uncertainty type, this scenario may be, e.g., the coefficient
of the given precision for numerical errors, the measured value for measurement
errors, the most likely forecast for forecast errors, or an average environment for
long-term solutions. Depending on the application, computing such a scenario
may be a non-trivial process, see, e.g., [81].

In this paper we consider optimization problems that can be written in the
form

(P ) min f(x)
s.t. F (x) ≤ 0

x ∈ X ,

where F : Rn → R
m describes the m problem constraints, f : Rn → R is the

objective function, and X ⊆ R
n is the variable space. In real-world applica-

tions, both the constraints and the objective may depend on parameters which
are uncertain. In order to accommodate such uncertainties, instead of (P ), the
following parameterized family of problems is considered:

(P (ξ)) min f(x, ξ)
s.t. F (x, ξ) ≤ 0

x ∈ X ,

where F (·, ξ) : Rn → R
m and f(·, ξ) : Rn → R for any fixed ξ ∈ R

M . Every ξ
describes a scenario that may occur.

Although it is in practice often not known exactly which values such a sce-
nario ξ may take for an optimization problem P (ξ), we assume that it is known
that ξ lies within a given uncertainty set U ⊆ R

M . Such an uncertainty set
represents the scenarios which are likely enough to be considered.

The uncertain optimization problem corresponding to P (ξ) is then denoted as

(P (ξ), ξ ∈ U) . (1)

Note that the uncertain optimization problem in fact consists of a whole
set of parameterized problems, that is often even infinitely large. The purpose
of robust optimization concepts is to transform this family of problems back
into a single problem, which is called the robust counterpart. The choice of the
uncertainty set is of major impact not only for the respective application, but
also for the computational complexity of the resulting robust counterpart. It
hence has to be chosen carefully by the modeler.
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For a given uncertain optimization problem (P (ξ), ξ ∈ U), we denote by

F(ξ) = {x ∈ X : F (x, ξ) ≤ 0}

the feasible set of scenario ξ ∈ U . Furthermore, if there exists a nominal scenario,
it is denoted by ξ̂ ∈ U . The optimal objective value for a single scenario ξ ∈ U
is denoted by f∗(ξ).

We say that an uncertain optimization problem (P (ξ), ξ ∈ U) has convex
(quasiconvex, affine, linear) uncertainty, when both functions, F (x, ·) : U → R

m

and f(x, ·) : U → R are convex (quasiconvex, affine, linear) in ξ for every fixed
x ∈ X .

Common Uncertainty Sets. There are some types of uncertainty sets that are
frequently used in current literature. These include:

1. Finite uncertainty U =
{
ξ1, . . . , ξN

}

2. Interval-based uncertainty U = [ξ
1
, ξ1] × . . . × [ξ

M
, ξM ]

3. Polytopic uncertainty U = conv
{
ξ1, . . . , ξN

}

4. Norm-based uncertainty U =
{

ξ ∈ R
M : ‖ξ − ξ̂‖ ≤ α

}
for some parame-

ter α ≥ 0

5. Ellipsoidal uncertainty U =
{

ξ ∈ R
M :

√∑M
i=1 ξ2i /σ2

i ≤ Ω

}
for some para-

meter Ω ≥ 0
6. Constraint-wise uncertainty U = U1 × . . . × Um, where Ui only affects

constraint i

where conv
{
ξ1, . . . , ξN

}
=

{∑N
i=1 λiξ

i :
∑N

i=1 λi = 1, λ ∈ R
N
+

}
denotes the con-

vex hull of a set of points. Note that this classification is not exclusive, i.e., a
given uncertainty set can belong to multiple types at the same time.

The Algorithm Engineering Methodology, and the Structure of this Paper. In
the algorithm engineering approach, a feedback cycle between design, analysis,
implementations, and experiments is used (see [113] for a detailed discussion).
We reproduce this cycle for robust optimization in Fig. 1.

While this approach usually focuses on the design and analysis of algorithms,
one needs to consider the important role that different concepts play in robust
optimization. Moreover, as is also discussed later, there is a thin line between
what is to be considered a robustness concept, and an algorithm – e.g., the
usage of a simplified model for a robustness concept could be considered as a
new concept, but also as a heuristic algorithm for the original concept. We will
therefore consider the design and analysis of both, concepts and algorithms.

The algorithm engineering approach has been successfully applied to many
problems and often achieved impressive speed-ups (as in routing algorithms, see,
e.g. [50] and the book [102]).

Even though this aspect has not been sufficiently acknowledged in the robust
optimization community, the algorithm engineering paradigm fits very well in
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Fig. 1. The algorithm engineering cycle for robust optimization following [113].

the line of research done in this area: In algorithm engineering it is of particular
importance that the single steps in the depicted cycle are not considered individ-
ually, but that special structure occurring in typical instances is identified and
used in the development and analysis of concepts and algorithms. As we will
show in the following sections these links to real-world applications and to the
structure of the uncertain data are of special importance in particular in robust
optimization. Various applications with different understandings of what defines
a robust solution triggered the development of the different robustness concepts
(see Sect. 2) while the particular structure of the uncertainty set led to adapted
algorithms (see Sect. 3.1).

Moreover, the algorithm engineering cycle is well-suited to detect the missing
research links to push the developed methods further into practice. A key aspect
of this paper hence is to draw further attention to the potential of algorithm
engineering for robust optimization.
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We structure the paper along the algorithm engineering cycle, where we
discuss each step separately, providing a few exemplarily papers dealing with
the respective matters. Missing links to trigger further research in this areas are
pointed out. Specifically, we consider

– design of robustness concepts in Sect. 2,
– analysis of robustness concepts in Sect. 3,
– design and analysis of algorithms in Sect. 4, and
– implementations and experiments in Sect. 5.

Applications of robust optimization are various, and strongly influenced the
design of robustness concepts while the design of algorithms was rather driven
by an analysis of the respective uncertainty sets. Some of these relations are
mentioned in the respective sections. The paper is concluded in Sect. 6 where we
also demonstrate on some examples how the previously mentioned results can
be interpreted in the light of the algorithm engineering methodology.

2 Design of Robustness Concepts

Robust optimization started with rather conservative concepts hedging against
everything that is considered as being likely enough to happen. Driven by various
other situations and applications calling for “robust” solutions these concepts
were further developed. In this section we give an overview on the most impor-
tant older and some recent concepts. We put special emphasis on the impact
applications with uncertain data have on the design of robustness concepts (as
depicted in Fig. 1), and how real-world requirements influence the development
of robustness models.

2.1 Strict Robustness

This approach, which is sometimes also known as classic robust optimization,
one-stage robustness, min-max optimization, absolute deviation, or simply robust
optimization, can be seen as the pivotal starting point in the field of robustness.
A solution x ∈ X to the uncertain problem (P (ξ), ξ ∈ U) is called strictly robust
if it is feasible for all scenarios in U , i.e. if F (x, ξ) ≤ 0 for all ξ ∈ U . The
objective usually follows the pessimistic view of minimizing the worst-case over
all scenarios. Denoting the set of strictly robust solutions with respect to the
uncertainty set U by

SR(U) =
⋂

ξ∈U
F(ξ),

the strictly robust counterpart of the uncertain optimization problem is given
as

(SR) min sup
ξ∈U

f(x, ξ)

s.t. x ∈ SR(U)
x ∈ X .
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The first to consider this type of problems from the perspective of generalized
linear programs was Soyster [118] for uncertainty sets U of type

U = K1 × . . . × Kn,

where the set Ki contains possible column vectors Ai of the coefficient matrix A.
Subsequent works on this topic include [55,123].

However, building this approach into a strong theoretic framework is due
to a series of papers by Ben-Tal, Nemirovski, El Ghaoui and co-workers
[18–20,64]. A summary of their results can be found in the book [14]. Their
basic underlying idea is to hedge against all scenarios that may occur. As they
argue, such an approach makes sense in many settings, e.g., when constructing
a bridge which must be stable, no matter which traffic scenario occurs, or for
airplanes or nuclear power plants. However, this high degree of conservatism of
strict robustness is not applicable to all situations which call for robust solu-
tions. An example for this is timetabling in public transportation: being strictly
robust for a timetable means that all announced arrival and departure times have
to be met, no matter what happens. This may mean to add high buffer times,
depending on the uncertainty set used, and thus would not result in a practically
applicable timetable. Such applications triggered research in robust optimization
on ways to relax the concept. We now describe some of these approaches.

2.2 Cardinality Constrained Robustness

One possibility to overcome the conservatism of strict robustness is to shrink
the uncertainty set U . This has been conceptually introduced by Bertsimas and
Sim in [28] for linear programming problems. Due to this reason, this concept
is sometimes also known as “the approach of Bertsimas and Sim”, sometimes
also under the name “Γ -robustness”. Analyzing the structure of uncertainty
sets in typical applications, they observed that it is unlikely that all coefficients
of one constraint change simultaneously to their worst-case values. Instead they
propose to hedge only against scenarios in which at most Γ uncertain parameters
per constraint change to their worst-case values, i.e., they restrict the number
of coefficients which are allowed to change leading to the concept of cardinality
constrained robustness. Considering a constraint of the form

a1x1 + . . . + anxn ≤ b

with an uncertainty U = {a ∈ R
n : ai ∈ [âi − di, âi + di], i = 1, . . . , n}, their

robustness concept requires a solution x to satisfy

n∑

i=1

âixi + max
S⊆{1,...,n},

|S|=Γ

{
∑

i∈S

di|xi|
}

≤ b

for a given parameter Γ ∈ {0, . . . , n}. Any solution x to this model hence hedges
against all scenarios in which at most Γ many uncertain coefficients may deviate
from their nominal values at the same time.
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It can be shown that cardinality constrained robustness can also be con-
sidered as strict robustness using the convex hull of the cardinality-constrained
uncertainty set

U(Γ ) = {a ∈ U : ai �= âi for at most Γ indices i} ⊆ U .

Since conv(U(Γ )) is a polyhedral set, results on strict robustness with
respect to polyhedral uncertainty can also be applied to cardinality constrained
robustness.

Note that this approach also extends to fractional values of Γ . Their concept
has been extended to uncertainty sets under general norms in [27]. The approach
to combinatorial optimization problems has been generalized in [7,76].

2.3 Adjustable Robustness

In [16] a completely different observation of instances occurring in real-world
problems with uncertain data is used: Often the variables can be decomposed
into two sets. The values for the here-and-now variables have to be found by the
robust optimization algorithm in advance, while the decision about the wait-
and-see variables can wait until the actual scenario ξ ∈ U becomes known. Note
that this is similar to two-stage programming in stochastic optimization.

We therefore assume that the variables x = (u, v) are splitted into u ∈ X 1 ⊆
R

n1 and v ∈ X 2 ⊆ R
n2 with n1 + n2 = n, where the variables u need to be

determined before the scenario ξ ∈ U becomes known, while the variables v
may be determined after ξ has been realized. Thus, we may also write x(ξ) to
emphasize the dependence of v on the scenarios. The uncertain optimization
problem (P (ξ), ξ ∈ U) is rewritten as

P (ξ) min f(u, v, ξ)
F (u, v, ξ) ≤ 0

(u, v) ∈ X 1 × X 2.

When fixing the here-and-now variables, one has to make sure that for any
possible scenario ξ ∈ U there exists v ∈ X 2 such that (u, v) is feasible for ξ. The
set of adjustable robust solutions is therefore given by

aSR = {u ∈ X 1 : ∀ξ ∈ U ∃v ∈ X 2 s.t. (u, v) ∈ F(ξ)}
=

⋂

ξ∈U
PrX 1(F(ξ)),

where PrX 1(F(ξ)) = {u ∈ X 1 : ∃v ∈ X 2 s.t. (u, v) ∈ F(ξ)} denotes the projec-
tion of F(ξ) on X 1.

The worst case objective for some u ∈ aSR is given as

zaSR(u) = sup
ξ∈U

inf
v:(u,v)∈F(ξ)

f(u, v, ξ).
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The adjustable robust counterpart is then given as

min{zaSR(u) : u ∈ aSR}.

Note that this setting is also useful for another type of problem instances,
namely, if auxiliary variables are used that do not represent decisions, e.g., addi-
tional variables to model the absolute value of a variable.

There are several variations of the concept of adjustable robustness. Instead
of two stages, multiple stages are possible. In the approach of finitely adaptable
solutions [23], instead of computing a new solution for each scenario, a set of
possible static solutions is computed, such that at least one of them is feasible
in each stage.

Furthermore, the development of adjustable robustness was preceded by the
similar approach of Mulvey et al. [103]. They considered an uncertain linear
optimization problem of the form

(P(B,C, e)) min ctu + dtv

s.t. Au = b

Bu + Cv = e

u ∈ R
n1
+ , v ∈ R

n2
+ ,

where u represents a vector of design variables that cannot be adjusted,
and v a vector of control variables that can be adjusted when the
realized scenario becomes known. For a finite uncertainty set U =
{(B1, C1, e1), . . . , (BN , CN , eN )}, their robust counterpart is given as

(Mul) min σ(u, v1, . . . , vN ) + ωρ(z1, . . . , zN )
s.t. Au = b

Biu + Civi + zi = ei ∀i = 1, . . . , N

u ∈ R
n1
+ , vi ∈ R

n2
+ , zi ∈ R

m.

The variables zi are introduced to measure the infeasibility in every scenario, i.e.,
the deviation from the right-hand side. The function σ represents the solution
robustness. It can be modeled as a worst-case function of the nominal objective

σ(u, v1, . . . , vN ) = ctu + max
i=1,...,N

dtvi

or, when probabilities pi are known, as an expected nominal objective. The
function ρ on the other hand represents the model robustness and depends on
the infeasibility of the uncertain constraints. Possible penalty functions are

ρ(z1, . . . , zN ) =
N∑

i=1

pi

m∑

j=1

max{0, zi
j}

or =
N∑

i=1

pi(zi)tzi.
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As (Mul) is actually a bicriteria model, ω is used as a scalarization factor to
combine both objectives.

2.4 Light Robustness

The lightly robust counterpart of an uncertain optimization problem, as devel-
oped in [58] and generalized in [115] is again application driven. Originally devel-
oped for timetabling, the idea of light robustness is that a solution must not be
too bad in the nominal case. For example, the printed timetable should have
short travel times if everything runs smoothly and without disturbances; or a
planned schedule should have a small makespan. In this sense a certain nominal
quality is fixed. Among all solutions satisfying this standard, the concept asks
for the most “reliable” one with respect to constraint violation. Specifically, the
general lightly robust counterpart as defined in [115] is of the following form:

(LR) min
m∑

i=1

wiγi

s.t. f(x, ξ̂) ≤ f∗(ξ̂) + ρ

F (x, ξ) ≤ γ ∀ξ ∈ U
x ∈ X , γ ∈ R

m,

where wi models a penalty weight for the violation of constraint i and ρ deter-
mines the required nominal quality. We denote by ξ̂ the nominal scenario, as
introduced on page 3. This approach was in its first application in [58] used as
a further development of the concept of cardinality constrained robustness (see
Sect. 2.2).

Note that a constraint of the form F (x, ξ) ≤ 0 is equivalent to a constraint
λF (x, ξ) ≤ 0 for any λ > 0; therefore, the coefficients wi play an important role
in balancing the allowed violation of the given constraints.

2.5 Recoverable Robustness

Similar to adjustable robustness, recoverable robustness is again a two-stage con-
cept. It has been developed in [43,49,90,119] and has independently also been
used in [54]. Its basic idea is to allow a class of recovery algorithms A that can
be used in case of a disturbance. A solution x is called recovery robust with
respect to A if for any possible scenario ξ ∈ U there exists an algorithm A ∈ A
such that A applied to the solution x and the scenario ξ constructs a solution
A(x, ξ) ∈ F(ξ), i.e., a solution which is feasible for the current scenario.

The recovery robust counterpart according to [90] is the following:

(RR) min
(x,A)∈F(ξ̂)×A

f(x)

s.t. A(x, ξ) ∈ F(ξ) ∀ξ ∈ U .
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It can be extended by including the recovery costs of a solution x: Let d(A(x, ξ))
be a possible vector-valued function that measures the costs of the recovery, and
let λ ∈ Λ be a limit on the recovery costs, i.e., λ ≥ d(A(x, ξ)) for all ξ ∈ U .
Assume that there is some cost function g : Λ → R associated with λ.

Setting

A(x, ξ, λ) ∈ F ′(ξ) ⇐⇒ d(A(x, ξ)) ≤ λ ∧ A(x, ξ) ∈ F(ξ)

gives the recovery robust counterpart with limited recovery costs:

(RR-LIM) min
(x,A,λ)∈F(ξ̂)×A×Λ

f(x) + g(λ)

s.t. A(x, ξ, λ) ∈ F ′(ξ) ∀ξ ∈ U .

Due to the generality of this robustness concept, the computational tractabil-
ity heavily depends on the problem, the recovery algorithms and the uncertainty
under consideration. In [65,73–75], the concept of recoverable robustness has
been considered under the usage of metrics to measure recovery costs. The aim
is to minimize the costs when recovering, where they differ between recovering
to a feasible solution (“recovery-to-feasibility”), and recovering to an optimal
solution (“recovery-to-optimality”) in the realized scenario.

2.6 Regret Robustness

The concept of regret robustness differs from the other presented robustness
concepts insofar it usually only considers uncertainty in the objective function.
Instead of minimizing the worst-case performance of a solution, it minimizes the
difference to the objective function of the best solution that would have been
possible in a scenario. In some publications, it is also called deviation robustness.

Let f∗(ξ) denote the best objective value in scenario ξ ∈ U . The min-max
regret counterpart of an uncertain optimization problem with uncertainty in the
objective is then given by

(Regret) min sup
ξ∈U

(
f(x, ξ) − f∗(ξ)

)

s.t. F (x) ≤ 0
x ∈ X .

Regret robustness is a concept with a vast amount of applications, e.g., in loca-
tion theory or in scheduling. For a survey on this concept, see [4,89]. In a similar
spirit, the concept of lexicographic α-robustness has been recently proposed [83].
Its basic idea is to evaluate a fixed solution by reordering the set of scenarios
according to the performance of the solution. This performance curve is then
compared to an ideal curve, where the optimization problem is solved separately
for every scenario.
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2.7 Some Further Robustness Concepts

Reliability. Another approach to robust optimization is to relax the constraints
of strict robustness. This leads to the concept of reliability of Ben-Tal and
Nemirovski [20], in which the constraints F (x, ξ) ≤ 0 are replaced by F (x, ξ) ≤ γ
for some γ ∈ R

m
≥0. A solution x which satisfies

F (x, ξ) ≤ γ for all ξ ∈ U
is called reliable with respect to γ. The goal is to find a reliable solution which
minimizes the original objective function in the worst case. Similar to light
robustness, one has to be careful that the representation of the constraints does
not affect the reliability of the solution, otherwise one may obtain the counter-
intuitive result that, although the constraints F (x, ξ) ≤ 0 can also be written
as Ψ(F (x, ξ)) ≤ 0 for any increasing Ψ with Ψ(0) = 0, what is understood by
a robust solution may be different if one models the constraints with F or with
Ψ(F ).

Soft Robustness. The basic idea of soft robustness as introduced in [11] is to
handle the conservatism of the strict robust approach by considering a nested
family of uncertainty sets, and allowing more deviation in the constraints for
larger uncertainties. Specifically, instead of an uncertainty set U ⊆ R

M , a family
of uncertainties {U(ε) ⊆ U}ε>0 with U(ε1) ⊆ U(ε2) for all ε2 ≥ ε1 is used. The
set of soft robust solutions is then given as

softR = {x ∈ X : F (x, ξ) ≤ ε ∀ξ ∈ U(ε), ε > 0} .

Note that strict robustness is a special case with U(ε) = U for all ε > 0.
In [11], the authors show that a solution to the softly robust counterpart

– i.e., the optimization over softR with a worst-case objective – can be found
by solving a sequence of strictly robust counterparts using a bisection approach
over ε, and analyze the numerical performance on a bond portfolio and an asset
allocation problem.

Comprehensive Robustness. While the adjustable robust approach relaxes the
assumption that all decisions have to be made before the realized scenario
becomes known, the approach of comprehensively robust counterparts [12] also
removes the assumption that only scenarios defined in the uncertainty set U
need to be considered. Instead, using a distance measure dist in the space of
scenarios, and a distance measure dist in the solution space, they assume that
the further away a scenario is from the uncertainty set, the further away the
corresponding solution is allowed to be from the set of feasible solutions. As in
adjustable robustness, the dependence of x on the scenario ξ is allowed, and we
may write x(ξ). The adjustable robust counterpart is extended to the following
problem:

(CRC) min z

s.t. f(x(ξ), ξ) ≤ z + α0dist(ξ,U) ∀ξ

dist(x(ξ),F(ξ)) ≤ αdist(ξ,U) ∀ξ,
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where α, α0 denote sensitivity parameters. This formulation needs further formal
specification, which is provided in [12].

Uncertainty Feature Optimization. Instead of assuming that an explicit uncer-
tainty set is given, which may be hard to model for real-world problems, the
uncertainty feature optimization (UFO) approach [53] rather assumes that the
robustness of a solution is given by an explicit function. For an uncertain opti-
mization problem (P (ξ)), let μ : Rn → R

p be a measure for p robustness features.
The UFO-counterpart of the uncertain problem is then given by

(UFO) vecmaxμ(x)
s.t. F (x) ≤ 0

f(x) ≤ (1 + ρ)f∗(ξ̂)
x ∈ X ,

where f∗(ξ̂) denotes the best objective value to the nominal problem. The
authors show that this approach generalizes both stochastic optimization and
the concept of cardinality constrained robustness of Bertsimas and Sim.

2.8 Summary

As this section shows, we cannot actually speak of one concept or point-of-view
to be “robust optimization”; instead, we should see it as a vast collection of
different robustness concepts, each providing their unique advantages and dis-
advantages. Generally speaking, there is usually a trade-off between the degree
of freedom a concept gives to react to disruptions (including what is considered
as being a disruption, i.e., the choice of the uncertainty set), and its compu-
tational complexity. From an algorithm engineering point of view, the size of
this “toolbox” of different concepts significantly helps with finding a suitable
robustness concept for a given problem. However, as these concepts are usually
application-driven, they lack a generalizing systematics: Applications tend to
develop “their own approach” to robustness instead of making use of the exist-
ing body of literature, and develop their own notation and names along the way.
In fact, the very same concepts are known under plenty of names. Summaries
as [4,14,22,112] usually avoid this Babylonian “zoo” of robustness concepts and
nomenclature by focusing only on the mainstream concepts. Thus, we suggest
the following pointer to further research:

Remark 1. Robust optimization needs a unified classification scheme.

3 Analysis of Robustness Concepts

Not only the development of robustness concepts, but also their analysis is data-
driven. This becomes in particular clear when looking at the structure of the
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underlying uncertainty set. A large amount of research in the analysis of robust-
ness concepts is devoted to finding equivalent problem formulations that are
better tractable, using the structure of the uncertainty set.

In this section we first review this line of research, and then briefly point
out exemplarily which other types of structure or ideas have been used in the
analysis of concepts.

3.1 Using the Structure of the Uncertainty Set

Finite Uncertainty Set. If the uncertainty set U = {ξ1, . . . , ξN} is a finite set
containing not too many scenarios, most of the robustness concepts can be for-
mulated as mathematical programs by just adding the constraints for each of the
scenarios explicitly. This can straightforwardly been done for strict robustness
yielding

(SR) min z

s.t. f(x, ξi) ≤ z for i = 1, . . . , N

s.t. F (x, ξi) ≤ 0 for i = 1, . . . , N

x ∈ X .

as the strictly robust counterpart. Reliability and light robustness can be treated
analogously. In all three cases, the robust counterpart keeps many properties
of the original (non-robust) problem formulation: If the original formulation
was e.g., a linear program, also its robust counterpart is. The same holds for
differentiability, convexity, and many other properties.

For regret robustness one needs to precompute the best objective function
value for each scenario ξ1, i = 1, . . . , N in order to receive again a straightfor-
ward reformulation. Also in adjustable and recoverable robustness mathematical
programming formulations can be derived by adding a wait and see variable, or
a group of recovery variables for each of the scenarios. This usually leads to
a high number of additional variables but is (at least for linear programming)
often still solvable.

Note that the concept of cardinality constrained robustness does not make
much sense for a finite set of scenarios since it concerns the restriction which
scenarios might occur. For a finite set, scenarios in which too many parameters
change can be removed beforehand.

Polytopic Uncertainty. Let f(x, ·) and F (x, ·) be quasiconvex in ξ for any fixed
x ∈ X . Then there are robustness concepts in which the following reduction
result holds: The robust counterpart w.r.t. an uncertainty set U ′ is equiva-
lent to the robust counterpart w.r.t. U := conv(U ′). In such cases the robust
counterpart w.r.t. a polytopic uncertainty set U = conv{ξ1, . . . , ξN} is equiv-
alent to the robust counterpart w.r.t. the finite uncertainty set {ξ1, . . . , ξN},
hence the formulations for finite uncertainty sets can be used to treat polytopic
uncertainties.
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We now review for which robustness concepts the reduction result holds. First
of all, this is true for strict robustness, For affine and convex uncertainty this was
mentioned in [18]; the generalization to quasiconvex uncertainty is straightfor-
ward. One of the direct consequences, namely that the robust counterpart of an
uncertain linear program under these conditions is again a linear program was
mentioned in [20]. The same result holds for reliability since the reliable robust
counterpart can be transformed to a strictly convex counterpart by defining
F̃ (x, ξ) = F (x, ξ) − γ. For light robustness, the result is also true, see [115]. For
the case of adjustable robustness, [16] showed that the result holds for prob-
lems with fixed recourse. Otherwise, counterexamples can be constructed. The
generalization to nonlinear two-stage problems and quasiconvex uncertainty is
due to [121]. For recoverable robustness there exist special cases in which the
recovery robust counterpart is equivalent to an adjustable robust counterpart
with fixed recourse. In these cases, the result of [16] may be applied. However,
in general, recoverable robustness does not allow this property. This also holds
for recovery-to-optimality.

Interval-Based Uncertainty. Interval-based uncertainty can be interpreted as
a special case of polytopic uncertainty where the polytope is a box U =
[ξ

1
, ξ1] × . . . × [ξ

M
, ξM ] with 2M extreme points (ξ1, ξ2, . . . , ξM )t ∈ R

M , where
ξi ∈ {ξ

i
, ξi}, i = 1, . . . , M . Hence, all the results for polytopic uncertainty apply.

They can often be simplified by observing that not all extreme points are needed
since the respective constraints often dominate each other, yielding a drastic
speed-up when solving the robust counterpart.

For their concept of cardinality constrained robustness, Bertsimas and Sim
[28] considered interval-based uncertainty sets for linear programs. This can be
interpreted as strict robustness with a new uncertainty set U ′ only allowing
scenarios in which not more than Γ uncertain parameters per constraint change
their values (see also [27]). This uncertainty set U ′ is a polytope, hence the
robust counterpart for cardinality constrained robustness stays a linear program
for interval-based uncertainty.

Ellipsoidal Uncertainty. The case of ellipsoidal uncertainty is studied extensively
for strict robustness and for adjustable robustness in [14]. It could be shown that
often the constraint

F (x, ξ) ≤ 0 for all ξ ∈ U
can be replaced by a finite number of constraints for ellipsoidal uncertainty sets.
However, it has been shown in [14] that for ellipsoidal uncertainty, the structure
of the strictly robust counterpart gets more complicated. For example (see [18])
the strictly robust counterpart of a linear program is a conic quadratic program,
the strictly robust counterpart of a quadratic constrained quadratic program is
a semidefinite program, the strictly robust counterpart of a second order cone
program is a semidefinite program, and the strictly robust counterpart of a
semidefinite program is NP-hard. As mentioned before, all these results can be
transferred to reliability.
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For light robustness, it has been shown in [115] that the lightly robust coun-
terpart of a linear program with ellipsoidal uncertainty becomes a quadratic pro-
gram. Ellipsoidal uncertainty could receive more attention also for other robust-
ness concepts (e.g., for regret robustness, which usually only considers finite or
interval-based uncertainty, see [4]), or for adjustable robustness, see [14].

3.2 Using Duality

Duality in uncertain programs has been considered as early as 1980, see [123].
In [10], it is shown that “the primal worst equals the dual best”, i.e., under
quite general constraints, the dual of a strictly robust counterpart (a min-max
problem) amounts to optimization under the best case instead of the worst-case
(a max-min problem). Since then, duality in robust optimization has been a vivid
field of research, see, e.g., [82,120]. In the following, we highlight two applications
of duality for robust optimization: One for constraints, and one for objectives.

Duality in the Constraints. Duality is a useful tool for the reformulation of
robust constraints. We exemplarily demonstrate this using two applications.

In [28], the authors show that the cardinality constrained robust counterpart
can be linearized by using the dual of the inner maximization problem. This
yields

n∑

i=1

âixi + zΓ +
n∑

i=1

pi ≤ b

z + pi ≥ diyi ∀i = 1, . . . , n

− yi ≤ xi ≤ yi ∀i = 1, . . . , n

p, y, z ≥ 0.

Note that a general, robust constraint of the form

f(x, ξ) ≤ 0 ∀ξ ∈ U

can be rewritten as
max
ξ∈U

f(x, ξ) ≤ 0.

This is used in [17]. With a concave function f(x, ·) and an uncertainty set
U = {ξ̂ + Aζ : ζ ∈ Z} with a nonempty, convex and compact set Z, applying
duality yields

ξ̂tv + δ∗(AT v|Z) − f∗(v, x) ≤ 0

where δ∗ is the support function, f∗ is a conjugate function, and other tech-
nical requirements are met. This gives a very general tool to compute robust
counterparts; e.g., a linear constraint of the form f(x, ξ) = ξtx − β and
Z = {ζ : ‖ζ‖2 ≤ ρ} yields the counterpart ξ̂tx + ρ‖Atx‖2 ≤ β.
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Duality in the Objective. In many papers, duality is used to change the
typical min-max objective of a robust counterpart into a min objective by using
the dual formulation of the inner maximization problem.

This method was first applied to the spanning tree problem [126], and later
extended to the general case of optimization problems with zero duality gap in
[4]. Let an uncertain optimization problem of the form

min ctx

s.t. x ∈ X = {x ∈ {0, 1}n : Ax ≥ b}

with interval-based uncertainty in c be given; i.e., ci ∈ [ci, ci]. Then we may
write

min
x∈X

max
c∈U

(f(x, c) − f∗(c))

= min
x∈X

max
c∈U,y∈X

(
ctx − cty

)

= min
x∈X

(
cx − min

y∈X
cwc(x)y

)
,

where cwc(x) denotes the regret worst-case for x, given as ci if xi = 1, and ci if
xi = 0. Using that the duality gap is zero, we can insert the dual to the inner
optimization problem, and get the following equivalent problem:

min cx − bty

s.t. Ax ≥ b

Aty ≤ (c − c)x + c

x ∈ {0, 1}n, y ∈ R
n
+

This reformulation can then be solved using, e.g., a branch and bound approach.

4 Design and Analysis of Algorithms

Concerning the design and analysis of algorithms we concentrate on the most
mature concept, namely on algorithms for strict robustness. Many approaches,
often based on similar ideas, also exist for regret optimization – e.g., cutting
plane approaches [80,95,96], or preprocessing considerations [87,126]. For the
other concepts, approaches are currently still being developed.

The robust counterpart per se is a semi-infinite program; thus, all methods
that apply to semi-infinite programming [93] can be used here as well. However,
the special min-max structure of the robust counterpart allows improved algo-
rithms over the general case, in particular for the reformulations based on special
uncertainty sets as mentioned in Sect. 3.1.

In the following, we discuss algorithms that are generically applicable to
strictly robust optimization problems.
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4.1 Finite Scenarios

The case we consider here is that U = {ξ1, . . . , ξN} is a finite set; i.e., the strictly
robust counterpart (SR) can be rewritten as

min max
i=1,...,N

f(x, ξi)

s.t. F (x, ξi) ≤ 0 ∀i = 1, . . . , N

x ∈ X
Due to the lack of structure in the uncertainty set, these instances can be hard
so solve, even though they have a similar structure as the nominal problem.

Branch and Bound Using Surrogate Relaxation. The following approach
was introduced by [89] for discrete optimization problems with uncertainty only
in the objective: For any vector μ ∈ R

N
+ , the surrogate relaxation SRC(μ) of

(SR) with uncertain objective function is given by

SRC(μ) min
1

∑
ξ∈U μξ

∑

ξ∈U
μξf(x, ξ)

s.t. F (x) ≤ 0
x ∈ X

Note that the structure of the nominal problem is preserved, which allows the
usage of specialized algorithms already known. Furthermore, the optimal objec-
tive value SRC∗(μ) of this problem is a lower bound on the optimal objective
value SR∗ of the strictly robust counterpart; and as the set of feasible solutions
is the same, also an upper bound is provided by solving SRC(μ).

This approach is further extended by solving the problem

max
μ∈R

N
+

SRC∗(μ),

i.e., by finding the multiplier μ that yields the strongest lower bound. This can
be done using a sub-gradient method.

The lower and upper bounds generated by the surrogate relaxation are then
used within a branch and bound framework on the x variables. The approach
was further improved for the knapsack problem in [79,122].

Local Search Heuristics. In [114], a local search-based algorithm for the
knapsack problem with uncertain objective function is developed. We briefly
list the main aspects. It makes use of two different search procedures: Given a
feasible solution x and a list of local neighborhood moves M , let GS(x,M) (the
generalized search) determine the worst-case objective value of every move, and
return the best move along with its objective value. Furthermore, let RS(x,M, S)
(the restricted search) perform a random search using the moves M with at most
S steps.
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The cooperative local search algorithm (CLS) works as follows: It first con-
structs a heuristic starting solution, e.g., by a greedy approach. In every iteration,
a set of moves M is constructed using either the generalized search for sets with
small cardinality, or the restricted search for sets with large cardinality. When
a maximum number of iterations is reached, the best feasible solution found so
far is returned.

Approximation Algorithms. A discussion of approximation algorithms for
strict robustness with finitely many scenarios is given, e.g., in [3], where it is
shown that there is an FPTAS for the shortest path, the spanning tree, and the
knapsack problem when the number of scenarios is constant; but the shortest
path problem is not (2−ε)-approximable, the spanning tree problem is not (32−ε)-
approximable, and the knapsack problem is not approximable at all when the
number of scenarios is considered as a non-constant input.

The basic idea for their results is to use the relationship between the strictly
robust counterpart (SR) and multi-objective optimization: At least one optimal
solution for (SR) is also an efficient solution in the multi-objective problem
where every scenario is an objective. Thus, if the multi-objective problem has a
polynomial-time α-approximation algorithm, then also (SR) has a polynomial-
time α-approximation.

There exist many more approximation algorithms for specific problems. For
example, in [57], robust set covering problems are considered with implicitly
given, exponentially many scenarios. For a similar setting of exponentially many,
implicitly given scenarios for robust network design problems (e.g., Steiner tree),
[88] presents approximation results. Approximation results using finite scenario
sets for two-stage robust covering problems, min-cut and shortest path can be
found in [51,78].

4.2 Infinite Scenarios

Sampling. When we cannot make use of the structure of U (i.e., when the
reformulation approaches from Sect. 3 cannot be applied, or when we do not have
a closed description of the set available), we can still solve (SR) heuristically
using a finite subset of scenarios (given that we have some sampling method
available). The resulting problem can be solved using the algorithms described
in Sect. 4.1.

In a series of paper [37–40], the probability of a solution calculated by a
sampled scenario subset being feasible for all scenarios is considered. It is shown
that for a convex uncertain optimization problem, the probability of the violation
event V (x) = P{ξ ∈ U : x /∈ F(ξ)} can be bounded by

P (V (x∗) > ε) ≤
n−1∑

i=0

(
N
i

)
εi(1 − ε)N−i,

where N is the sample size, x∗ ∈ R
n is an optimal solution with respect to the

sampled scenarios, and n is (as before) the dimension of the decision space. Note
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that the left-hand side is the probability of a probability; this is due to fact
that V (x) is a random variable in the sampled scenarios. In other words, if a
desired probability of infeasibility ε is given, the accordingly required sample size
can be determined. This result holds under the assumption that every subset of
scenarios is feasible, and is independent of the probability distribution which is
used for sampling over U .

As the number of scenarios sampled this way may be large, the sequential
optimization approach [61–63] uses sampled scenarios one by one. Using the
above probability estimates, a solution generated by this method is feasible for
(SR) only within a certain probability. The basic idea is the following: We con-
sider the set S(γ) of feasible solutions with respect to a given quality level γ,
i.e.,

S(γ) = {x ∈ X : f(x) ≤ γ, F (x, ξ) ≤ 0 ∀ξ ∈ U}
= {x ∈ X : ν(γ, x, ξ) ≤ 0 ∀ξ ∈ U}

where
ν(γ, x, ξ) =

(
max{0, f(x) − γ}2 + max{0, F (x, ξ)}2)1/2

Using a subgradient on ν, the current solution is updated in every iteration using
the sampled scenario ξ. Lower bounds on the number of required iterations are
given to reach a desired level of solution quality and probability of feasibility.

Outer-Approximation and Cutting-Plane Methods. For this type of algo-
rithm, the general idea is to iteratively (a) solve a robust optimization problem
with a finite subset of scenarios, and (b) use a worst-case oracle that optimizes
over the uncertainty set U for a given solution x. These steps can be done either
exactly or approximately.

Algorithms of this type have often been used, see, e.g., [33,59,69,99,104,111,
116]; sometimes even without knowledge that such an approach already exists
(see also the lacking unification in robust optimization mentioned in Sect. 2.8).

The following general results should be mentioned. [104] show that this
method converges under certain assumptions, and present further variations that
improve the numerical performance of the algorithm. Cutting-plane methods are
compared to compact formulations on general problem benchmarks in [59]. In
[33], the implementation is considered in more detail: A distributed algorithm
version is presented, in which each processor starts with a single uncertain con-
straint, and generated cutting planes are communicated.

4.3 Algorithms for Specific Problems

The goal of this section is to show how much one can benefit by using the struc-
ture a specific problem might have. To this end, we exemplarily chose three spe-
cialized algorithms: The first solves an NP-hard problem in pseudo-polynomial
time, the second is a heuristic for another NP-hard problem, and the third is a
polynomial-time solution approach. Note that many more such algorithms have
been developed.
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In [98], a dynamic programming algorithm is developed for the robust knap-
sack problem with cardinality constrained uncertainty in the weights. Extending
the classic dynamic programming scheme to also include the number of items
that are on their upper bounds, they are able to show a O(Γnc) time complexity,
where n is the number of items, and c is the knapsack budget (note that this is
not a polynomial algorithm). The key idea of the dynamic program is an easy
feasibility check of a solution, which is achieved by using an item sorting based
on the upper weight bound w̄i. In computational experiments, instances with
up to 5000 items can be solved in reasonable time.

The problem of min-max regret shortest paths with interval uncertainty is
considered in [100]. The general idea is based on path ranking, and the conjecture
that a path that ranks good on the worst-case scenario, may also rank good with
respect to regret. Considering paths with respect to their worst-case performance
order, they formulate a stopping criterion when the regret of a path may not
improve anymore. Note that the regret of a single path can in this case easily
be computed by assuming the worst-case length for all edges in the path, and
the best-case length for all other edges. Experiments show a strong correlation
between computation times and length of the optimal path.

While the former two problems are NP-hard (for regret shortest path, see
[129]), a polynomial-time algorithm for the min-max regret 1-center on a tree
with uncertain edge lengths and node weights is presented in [9]. A 1-center is
a point on any edge of the tree for which the maximal weighted distance to all
nodes is minimized. The algorithm runs in O(n6) time, which can be reduced to
O(n2 log(n)) for the unweighted case. It is based on the observation that an edge
that contains an optimal solution can be found in O(n2 log(n)) time; however,
determining its exact location for the weighted case is more complicated.

Further algorithms to be mentioned here are the polynomial algorithm for
min-max regret flow-shop scheduling with two jobs from [8]; the polynomial algo-
rithm for the min-max regret location-allocation problem from [45]; the heuristic
for regret spanning arborescences from [48]; the polynomial algorithm for the
min-max regret gradual covering location problem from [21]; and the PTAS for
two-machine flow shop scheduling with discrete scenarios from [84].

4.4 Performance Guarantees

We now discuss performance guarantees in robust optimization. Measuring the
performance of a robust solution or algorithm can be either done by developing
guarantees regarding the performance of an algorithm or of a heuristic solu-
tion; but also by developing performance guarantees that compare the solutions
generated by different robustness concepts.

On the algorithmic side, standard measures like the approximation ratio (i.e.,
the ratio between the robust objective value of the heuristic and the optimal
robust solution) can be applied. There are simple, yet very general approximation
algorithms presented in [4] for strict robustness and regret robustness: If the orig-
inal problem is polynomially solvable, there is an N -approximation algorithm for
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finite uncertainty sets, where N is the number of scenarios. Furthermore, there
is a 2-approximation algorithm for regret robustness with interval-based uncer-
tainty [86] by using the mid-point scenario. These results have been extended in
[47], see also the approximability survey [3] on strict and regret robustness. We
do not know of approximation algorithms for other robustness concepts, which
would provide interesting insight in the structural differences between the robust
counterparts.

Regarding the comparison between solutions generated by different concepts,
an interesting approach is to consider the quality of a strictly robust solution
when used in an adjustable setting, as done in [24,25]. The authors are able to
develop performance guarantees solely based on the degree of symmetry of the
uncertainty set.

Concerning the evaluation of a robust solution (and not the algorithm to
compute it), there is no general consent how to proceed, and surprisingly little
systematic research can be found regarding this field. The so-called robustness
gap as considered in [18] is defined as the difference between the worst-case
objective of the robust solution, and the worst optimal objective value over all
scenarios, i.e., as SR∗ − supξ∈U f∗(ξ), where SR∗ denotes the optimal value of
(SR). They show that in the case of constraint-wise affine uncertainty, a compact
set X , and some technical assumptions, this gap equals zero. However, the most
widely used approach is computing the so-called price of robustness [28], which
is usually defined as the ratio between the robust solution value and the nominal
solution value, i.e., as

minx∈SR supξ∈U f(x, ξ)

minx∈F(ξ̂) f(x, ξ̂)

As an example, [97] presents the analytical calculation of the price of robustness
for knapsack problems. Using an interval-based uncertainty set on the weights
(i.e., the weight of item i is in [wi − wi, wi + wi]) and a cardinality constrained
robustness approach, they show that the price of robustness equals 1/(1+�δmax�)
for δmax := maxi wi/wi and Γ = 1. For Γ ≥ 2, the price of robustness becomes
1/(1 + �2δmax�).

Note that this is a rather pessimistic view on robustness, as it only con-
centrates on the additional costs of a robust solution compared to the nominal
objective function value of an optimal solution for the nominal case. However,
if the application under consideration is affected by uncertainty, the nominal
solution will not necessarily find nominal conditions, hence the robust solution
may actually save costs compared to the nominal solution (which easily may
be even infeasible). There is no general “golden rule” that would provide a fair
evaluation for the performance of a robust solution.

Note that such a bound is not the kind of performance guarantee that was actu-
ally considered in [28]. Rather, they developed probability bounds for the feasibil-
ity of a solution to the cardinality constrained approach depending on Γ . Using
such bounds they argue that the nominal performance of a solution can be con-
siderably increased without decreasing the probability of being feasible too much.
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Summarizing the above remarks, we claim that:

Remark 2. Performance guarantees are not sufficiently researched in robust opti-
mization.

5 Implementation and Experiments

5.1 Libraries

In the following, we present some libraries that are designed for robust optimiza-
tion. A related overview can also be found in [68].

AIMMS for Robust Optimization. AIMMS [108], which stands for “Advanced
Interactive Multidimensional Modeling System”, is a proprietary software that
contains an algebraic modeling language (AML) for optimization problems.
AIMMS supports most well-known solvers, including Cplex1, Xpress2 and
Gurobi3.

Since 2010, AIMMS has offered a robust optimization add-on, which was
developed in a partnership with A. Ben-Tal. The extension only considers the
concepts of strict and adjustable robustness as introduced in Sects. 2.1 and 2.3.
As uncertainty sets, interval-based uncertainty sets, polytopic uncertainty sets,
or ellipsoidal uncertainty sets are supported and transformed to mathematical
programs as described in Sect. 3.1. The respective transformations are automat-
ically done when the model is translated from the algebraic modeling language
to the solver.

ROME. While AIMMS focuses on the work of Ben-Tal and co-workers, ROME
[77] (“Robust Optimization Made Easy”) takes its origins in the work of
Bertsimas, Sim and co-workers. ROME is built in the MATLAB4 environment,
which makes it on the one hand intuitive to use for MATLAB-users, but on the
other hand lacks the versatility of an AML. As a research project, ROME is free
to use. It currently supports Cplex, Xpress and SDPT35 as solver engines.

ROME considers polytopic and ellipsoidal uncertainty sets, that can be fur-
ther specified using the mean support, the covariance matrix, or directional
deviations. Assuming an affine dependence of the wait-and-see variables, it then
transforms the uncertain optimization problem to an adjustable robust counter-
part. The strictly robust counterpart is included as a special case.

1 http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud.
2 http://www.fico.com/en/products/fico-xpress-optimization-suite.
3 http://www.gurobi.com/.
4 http://www.mathworks.com/products/matlab/.
5 http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html.

http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www.fico.com/en/products/fico-xpress-optimization-suite
http://www.gurobi.com/
http://www.mathworks.com/products/matlab/
http://www.math.nus.edu.sg/{~}mattohkc/sdpt3.html
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YALMIP. Similar to ROME, YALMIP [92] is a layer between MATLAB and
a solver that allows the modeling of optimization problems under uncertainty.
Nearly all well-known solvers are supported, including Cplex, Gurobi and Xpress.

YALMIP considers strict robustness. In order to obtain the strict robust
counterpart of an uncertain optimization problems so-called filters are used:
When presented a model with uncertainty, the software checks if one of these
filters applies to generate the strictly robust counterpart. Currently, five of these
automatic transformations are implemented. A duality filter (which adds dual
variables according to Sect. 3.2), an enumeration filter for finite and polytopic
scenario sets (which simply lists all relvant constraints), an explicit maximization
filter (where a worst-case scenario is used), the Pólya filter (which is based on
an inner approximation of the set of feasible solutions), and an elimination filter
(which sets variables affected by uncertainty to 0 and is used as a last resort).

ROPI. The Robust Optimization Programming Interface (ROPI) [66,68] is a
C++ library that provides wrapper MIP classes to support a range of solvers.
Using these generic classes, a robust counterpart is automatically generated
given the desired robustness concept and uncertainty set. Contrary to the pre-
vious libraries, a wider choice of robustness concepts is provided: These include
strict robustness, adjustable robustness, light robustness, and different versions
of recoverable robustness.

Even though a user can pick and choose between multiple robust optimization
libraries, there is to the best of our knowledge no library of robust optimization
algorithms available. All of the above implementations are based on reformula-
tion approaches, which makes it possible to draw upon existing solvers. However,
as described in Sect. 4, there are plenty of specifically designed algorithms for
robust optimization available. Making them readily-implemented available to the
user should be a significant concern for future work in robust optimization.

Remark 3. There is no robust optimization library available with specifically
designed algorithms other than reformulation approaches.

5.2 Applications

As already stated, robust optimization has been application-driven; thus, there
are abundant papers dealing with applications of some robustness approach to
real-world or at least realistic problems. Presenting an exhaustive list would go
far beyond the scope of this paper; examples include circuit design [94], emer-
gency logistics [13], and load planning [32] for adjustable robustness; supply chain
optimization [29] and furniture planning [5] for cardinality constrained robust-
ness; inventory control for comprehensive robustness [15]; timetabling [58,60],
and timetable information [71] for light robustness; shunting [43], timetabling
[44,73], and railway rolling stock planning [36] for recoverable robustness; and
airline scheduling for UFO [52].

Hence, we can state:

Remark 4. Robust optimization is application-driven.
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5.3 Comparative Experiments

In this section we consider research that either compares two robustness concepts
to the same problem, or two algorithms for the same problem and robustness
concept. We present a list of papers on the former aspect in Table 1, and a list of
papers on the latter aspect in Table 2. We do not claim completeness for these
tables; rather, they should be considered as giving a general impression on recent
directions of research.

Table 1. Papers presenting experiments comparing at least two different robustness
concepts. “cc” abbreviates “cardinality constrained”.

Year Paper Problem Robustness concept

2008 [26] Portfolio management Strict and cc

2009 [15] Inventory control Adjustable and comprehensive

2009 [127] Road improvement Strict and scenario-based

2010 [73] Timetabling Strict, buffered, light, and variations
of recoverable

2010 [128] Sawmill planning Mulvey with different recourse costs

2010 [125] Water sensor placement Strict and regret

2011 [74] LP Benchmarks Strict and recoverable

2011 [1] Wireless network resource
allocation

Finite and interval-based

2011 [91] Newsvendor Strict and regret

2013 [72] Timetable information Strict and light

2013 [70] Timetable information Strict and recoverable

2013 [32] Load planning Strict and adjustable

2013 [2] Vehicle routing Strict and adjustable

We conclude the following from these tables and the accompanying litera-
ture: Firstly, papers considering real-world applications that compare different
robustness concepts are relatively rare. Applied studies are too often satisfied
with considering only one approach of the many that are possible. Secondly, algo-
rithmic comparisons dominantly stem from the field of min-max regret, where
at the same time mostly academic problems are considered. The efficient cal-
culation of solutions for other robustness concepts is still a relatively open and
promising field of research. Summarizing, we claim that:

Remark 5. There are too few comparative studies in robust optimization.

A different aspect Table 1 reveals is that most computational studies comparing
at least two robustness concepts include strict robustness as a “baseline concept”;
accordingly, and unsurprisingly, the more tailor-made approaches will show an
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Table 2. Papers presenting experiments comparing at least two algorithms for the
same robustness concept. “cc” abbreviates “cardinality constrained”.

Year Paper Problem Concept Algorithms

2005 [101] Spanning tree Regret Branch and bound, MIP

2006 [99] Spanning tree Regret Bender’s decomp., MIP, branch and
bound

2008 [106] Spanning tree Regret Simulated annealing, branch and
bound, Bender’s decomp.

2008 [122] Knapsack Strict Branch and bound with and with-
out preprocessing

2008 [124] Capacitated sourcing Adjustable Tabu search

2009 [46] Critical path Regret MIP and heuristic

2010 [56] Machine scheduling Strict MIP with and without cuts

2010 [30] Wine harvesting cc robust MIP and scenario generation

2010 [105] Lot allocation Strict Branch-and-price and heuristics

2011 [41] Shortest path Regret IP with and without preprocessing

2011 [109] Assignment Regret MIP, Bender’s decomp., genetic
algorithms

2012 [85] Spanning tree Regret Tabu search and IP

2012 [59] Diverse cc robust MIP and cutting planes

2012 [117] Knapsack Strict Local search and branch and bound

2013 [98] Knapsack cc robust Dynamic programming and IP

2013 [107] Capacity assignment Adjustable Approximations

improved behavior for the application at hand. This is much similar to frequently
published papers on optimization problems which compare a problem-specific
method to a generic MIP solver, usually observing a better performance of the
former compared to the latter.

However, while a standard MIP solver is often still competitive to problem-
tailored algorithms, a robustness concept which does not capture the problem
specifics at hand will nearly always be the second choice to one which uses the
full problem potential.

5.4 Limits of Solvability

We show the approximate size of benchmark instances used for testing exact
algorithms for a choice of robust problems in Table 3. These values should rather
be considered as rough indicators on the current limits of solvability than the
exact limits themselves, as problem complexities are determined by many more
aspects6.
6 Number of items for finite, strict knapsack is estimated with the pegging test from

[122].
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Table 3. Currently considered problem sizes for exact algorithms.

Problem Approach Size Source

Spanning tree Interval regret ∼100 nodes [110]

Knapsack Finite strict ∼1500 items [67]

Knapsack Finite recoverable ∼500 items [34]

Knapsack cc strict ∼5000 items [98]

Knapsack cc recoverable ∼200 items [35]

Shortest path Interval regret ∼1500 nodes [42]

Assignment Interval regret ∼500 items [109]

What becomes immediately obvious is that these limits are much smaller than
for their nominal problem counterparts, which can go easily into the millions.

5.5 Learning from Experiments

We exemplarily show how experimental results can be used to design better
algorithms for robust optimization; thus, we highlight the potential that lies in
following the algorithm engineering cycle. To this end, we consider the regret
shortest path problem: Given a set of scenarios consisting of arc lengths in a
graph, find a path from a fixed source node to a fixed sink node which minimizes
the worst-case length difference to an optimal path for each scenario.

From a theoretical perspective, the problem complexity is well-understood.
For discrete uncertainty sets (and already for only two scenarios), the problem
was shown to be NP-hard in the seminal monograph [89]. For interval-based
uncertainty, [129] showed its NP-hardness.

Furthermore, it is known that the regret shortest path problem with a finite,
but unbounded set of scenarios is not approximable within 2−ε. For the interval-
case, a very simple 2-approximation algorithm (see [86]) is known: All one needs
to do is to compute the shortest path with respect to the midpoint scenario, i.e.,
the arc lengths which are the midpoint of the respective intervals.

To solve the interval regret problem exactly, a branch-and-bound method
has been proposed [100], which branches along the worst-case path in the graph.
However, computational experience shows that the midpoint solution – despite
being “only” a 2-approximation – is already an optimal, or close-to-optimal
solution for many of the randomly generated benchmark instances.

Examining this aspect in more detail, [42] developed an instance-dependent
approximation guarantee for the midpoint solution, which is always less or equal
to 2, but usually lies around ∼1.6 − 1.7.

Using these two ingredients – the strong observed performance of the mid-
point solution, and its instance-dependent lower bound – the branch-and-bound
algorithm of [100] can be easily adapted, by using a midpoint-path-based branch-
ing strategy instead of the worst-case path, and by using the improved guarantee
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as a lower bound. The resulting algorithm considerably outperforms the previ-
ous version, with computation times two orders of magnitude better for some
instance classes.

These modifications were possible by studying experimental results, improv-
ing thereupon the theoretical analysis, and feeding this analysis back to an algo-
rithm. It is an example for the successful traversal of an algorithm engineering
cycle, and we believe that many more such algorithmic improvements can be
achieved this way.

6 Algorithm Engineering in Robust Optimization
and Conclusion

In this paper we propose to use the algorithm engineering methodology to better
understand the open problems and challenges in robust optimization. Doing
so, we were able to point out links between algorithm engineering and robust
optimization, and we presented an overview on the state-of-the-art from this
perspective.

In order to further stress the usefulness of the algorithm engineering method-
ology, we finally present three examples. Each of them is composed of a series
of papers, which together follow the algorithm engineering cycle in robust opti-
mization.

Example 1: Development of new models based on shortcomings of previous ones.
[118] introduced the concept of strict robustness. This concept was illustrated

in several examples (e.g. from linear programming, see [20] or for a cantilever arm
as in [18]) and analyzed for these examples in a mathematical way. The analysis
in these papers showed that the problem complexity increases then introducing
robustness (e.g., the robust counterpart of an uncertain linear program with ellip-
soidal uncertainty is an explicit conic quadratic program). Moreover, the authors
recognized that the concept is rather conservative introducing an approximate
robust counterpart with a more moderate level of conservatism. These ideas
were taken up [28] to start the next run through the algorithm engineering cycle
by introducing their new concept of cardinality constrained robustness, which
is less conservative and computationally better tractable, but may be applied
only to easier uncertainty sets. Applying this concept to train timetabling and
performing experiments with it was the starting point of [58] who relaxed the
constraints further and developed the concept of light robustness which was then
later generalized to arbitrary uncertainty sets by [115].

Example 2: From one-stage to two-stage robustness.
Recognizing that the concept of strict robustness is too conservative, [16]

proposed the first two-stage robustness approach by introducing their concept
of adjustable robustness. When applying this concept to several application of
railway planning within the ARRIVAL project (see [6]), [90] noted that the
actions allowed to adjust a timetable do not fit the practical needs. This moti-
vated them to integrate recovery actions in robust planning yielding the concept
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of recoverable robustness. Unfortunately, recovery robust solutions are hard to
obtain. Research on developing practical algorithms is still ongoing. recent exam-
ples are a column-generation based approach for robust knapsack problems and
shortest path problems with uncertain demand [31], an approach using Bender’s
decomposition for railway rolling stock planning [36], and the idea of replacing
the recovery algorithm by a metric [65,74,75].

Example 3: Robust passenger information systems.
The following example shows the application of the algorithm engineering cycle
on a specific application, namely constructing robust timetable information sys-
tems. Suppose that a passenger wants to travel from an origin to some destination
by public transportation. The passenger can use a timetable information system
which will provide routes with small traveling time. However, since delays are a
matter of fact in public transportation, a robust route would be more valuable
than just having a shortest route. In [72] this problem was considered for strictly
robust routes: The model was set up, analyzed (showing that it is NP-complete),
and an algorithm for its solution was designed. The experimental evaluation on
real-world data showed that strictly robust routes are useless in practice: their
traveling time is much too long. Based on these experiments, light robust passen-
ger information system was considered. The light robust model was designed and
analyzed; algorithms based on the strictly robust procedures could be developed.
The experiments showed that this model is much better applicable in practice.
However, the model was still not satisfactory, since it was assumed that a pas-
senger stays on his/her route whatever happens. This drawback motivated to
start the algorithm engineering cycle again in [70] where now recoverable robust
timetables are investigated.

Considering the cycle of design, analysis, implementation, and experiments,
we were also able to identify pointers for further research. We summarize our
results by reproducing the most significant messages:

1. Robust optimization is application-driven. From the beginning, robust opti-
mization was intended as an optimization approach which generates solutions
that perform well in a realistic environment. As such, it is highly appealing
to practitioners, who would rather sacrifice some nominal solution quality if
the solution stability can be increased.

2. Robust optimization needs a unified classification scheme. While the strong
connection to applications is a beneficial driver of research, it also carries
problems. One striking observation is a lack of unification in robust optimiza-
tion. This begins with simple nomenclature: The names for strict robustness,
or the uncertainty set considered by Bertsimas and Sim are plenty. It extends
to the frequent re-development of algorithmic ideas (as iterative scenario gen-
eration), and the reinvention of robustness concepts from scratch for specific
applications. This lack of organization is in fact unscientific, and endangers
the successful perpetuation of research. As related problems, some journals
don’t even offer “robust optimization” as a subject classification (even though
publishing papers on robust optimization); solutions generated by some fash-
ion that is somehow related to uncertainty call themselves “robust”; and
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students that are new to the field have a hard time to identify the state-of-
the-art.

3. Performance guarantees are not sufficiently researched in robust optimiza-
tion. Also this point can be regarded as related to robust optimization being
application-driven and non-unified. Performance guarantees are of special
importance when comparing algorithms; hence, with a lack of comparison,
there also comes a lack of performance guarantees. This includes the compar-
ison of robust optimization concepts, of robust optimization algorithms, and
even the general evaluation of a robust solution compared to a non-robust
solution.

4. There is no robust optimization library available with specifically designed
algorithms other than reformulation approaches. While libraries for robust
optimization exist, they concentrate on the modeling aspects of uncertainty,
and less on different algorithmic approaches. Having such a library avail-
able would prove extremely helpful not only for practitioners, but also for
researches that develop new algorithms and try to compare them to the state-
of-the-art.

5. There are too few comparative studies in robust optimization. All the above
points culminate in the lack of comparative studies; however, we argue that
here also lies a chance to tackle these problems. This paper is a humble step
to motivate such research, and we hope for many more publications to come.
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73. Goerigk, M., Schöbel, A.: An empirical analysis of robustness concepts for
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Abstract. Roughly speaking, clustering evolving networks aims at
detecting structurally dense subgroups in networks that evolve over time.
This implies that the subgroups we seek for also evolve, which results in
many additional tasks compared to clustering static networks. We dis-
cuss these additional tasks and difficulties resulting thereof and present
an overview on current approaches to solve these problems. We focus on
clustering approaches in online information from previous time steps in
order to incorporate temporal smoothness or to achieve low running time.
Moreover, we describe a collection of real world networks and generators
for synthetic data that are frequently used for evaluation.

1 Introduction

Clustering is a powerful tool to examine the structure of various data. Since in
many fields data often entails an inherent network structure or directly derives
from physical or virtual networks, clustering techniques that explicitly build on
the information given by links between entities recently received great atten-
tion [58,130]. Moreover, many real world networks are continuously evolving,
which makes it even more challenging to explore their structure. Examples for
evolving networks include networks based on mobile communication data, sci-
entific publication data, and data on human interaction.

The structure that is induced by the entities of a network together with the
links between is often called graph, the entities are called verticals and the links
are called edges. However, the terms graph and network are often used inter-
changeably. The structural feature that is classically addressed by graph clus-
tering algorithms are subsets of vertices that are linked significantly stronger to
each other than to vertices outside the subset. In the context of mobile com-
munication networks this could be, for example, groups of cellphone users that
call each other more frequently than others. Depending on the application and
the type of the underlying network, searching for this kind of subsets has many
different names. Sociologists usually speak about community detection or com-
munity mining in social networks, in the context of communication networks
like Twitter, people aim at detecting emerging topics while in citations networks
the focus is on the identification of research areas, to name but a few. All these
issues can be solved by modeling the data as an appropriate graph and apply-
ing graph clustering. The found sets (corresponding to communities, topics or
c© Springer International Publishing AG 2016
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research areas) are then called clusters and the set of clusters is called a cluster-
ing. We further remark that also beyond sociology the term community is often
used instead of cluster [106]. The notion of clusters or communities as densely
connected subgroups that are only sparsely connected to each other has led to
the paradigm of intracluster density versus intercluster sparsity in the field of
graph clustering.

Nevertheless, the notion of a clustering given so far still leaves room for many
different formal definitions. Most commonly, a clustering of a graph is defined
as a partition of the vertex set into subsets, which form the clusters. In some
scenarios (e.g., outlier detection) it is, however, undesirable that each vertex is
assigned to a cluster. In this case, a clustering not necessarily forms a partition
of the vertex set, but leaves some vertices unclustered. Yet both concepts are
based on disjoint vertex sets, and the latter can be easily transformed into the
former one by just considering each vertex that is not a member of a cluster
as a cluster consisting of exactly one vertex. Other applications further admit
overlapping clusters, again with or without a complete assignment of the vertices
to clusters.

In this survey we give an overview of recent graph clustering approaches that
aim at finding disjoint or overlapping clusters in evolving graphs. The evolution
of the graph is usually modeled following one of two common concepts: The
first concept is based on a series of snapshots of the graph, where each snapshot
corresponds to a time step, and the difference between two consecutive snapshots
results from a bunch of edge and vertex changes. The second concept considers
a given stream of atomic edge and vertex changes, where each change induces
a new snapshot and a new time step. The primary objective of clustering such
networks is to find a meaningful clustering for each snapshot. Some algorithms
further aim at a particularly fast computation of these clusterings, others assume
that changes have only a small impact on the community structure in each
time step, and thus, aim at clusterings that differ not too much in consecutive
time steps. The latter was introduced as temporal smoothness by Chakrabarti
et al. [32] in the context of clustering evolving attributed data (instead of graphs).
In order to achieve these goals, online algorithms explicitly exploit information
about the graph structure and the community structure of previous time steps.
Algorithms that further use structural information from following time steps
are called offline. In this survey, we consider only online algorithms that can be
roughly separated into two classes. The first class contains clustering approaches
that incorporate temporal smoothness inspired by Chakrabarti et al. Most of
these approaches are based on an existing static clustering algorithm, which is
executed from scratch in each time step (cf. Fig. 1). In contrast, the approaches
in the second class dynamically update clusterings found in previous time steps
without a computation from scratch (cf. Fig. 2).

Apart from finding an appropriate clustering in each snapshot of an evolv-
ing graph, many applications require further steps in order to make the found
clusterings interpretable and usable for further analysis. A first natural question
directly resulting from the evolution of the graph is how the found clusters or
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Fig. 1. Evolutionary clustering strategy in evolving graphs. Horizontal dashed arrows
indicate the use of information, vertical arrows indicate the evolutionary strategy based
on a static clustering approach applied from scratch.
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Fig. 2. Dynamic update strategy for clusterings in evolving graphs. Vertical dashed
arrows indicate the use of information, horizontal arrows indicate the dynamic update
strategy based on previous time steps.

communities evolve over time and at what time steps events like cluster merging
or cluster splitting occur. In order to answer this question, the clusters need to be
tracked over time, thereby finding sequences of snapshots where certain clusters
remain stable while other clusters may split or merge. In this context, clusters
or communities of a single snapshot are often called local in order to distinguish
them from sequences of associated (local) communities in consecutive snapshots,
which describe the evolution of a certain (meta)community over time. When the
evolution of the clusters is supposed to be interpreted by human experts, it is
further necessary to present the algorithmic results in a clear and readable form.
Hence, the visualization of evolving clusters is another central issue in the con-
text of clustering evolving graphs. The evaluation of found clusterings is finally
an issue regarding the design of good clustering algorithms. There are many
open questions on how to choose an appropriate evaluation scheme in order to
get credible and comparable results. We discuss these issues in more detail in
Sect. 1.1 and give a brief idea on applications based on clustering evolving graphs
in Sect. 1.3.
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Delimitation. Apart from clustering approaches that follow the intracluster den-
sity versus intercluster sparsity paradigm, there exist various further approaches
that look very similar at a first glance but turn out to have a different focus.

Very closely related to graph clustering are algorithms for graph partition-
ing [20]. In contrast to many graph clustering algorithms, graph partitioning
always assumes that the number of clusters is an input parameter, most often, a
power of 2, and seeks to minimize the number of edges cut by a partition, such
that the parts have (almost) equal size. Its main application is not network analy-
sis but the preprocessing of graphs for parallel computing tasks. The dynamic
counterpart to static graph partitioning is often called repartitioning or load bal-
ancing [29,39,96]. Another area similar to clustering evolving graphs is clustering
graph streams [4,160]. Similar to consecutive graph snapshots, a graph stream is
a sequence of consecutively arriving graphs, but instead of finding a clustering
of the vertices in each graph or snapshot, the aim is to detect groups of similar
graphs. The term streaming algorithm usually refers to algorithms that process
the data in one or few passes under the restriction of limited memory availability,
like for example the partitioning algorithm by Stanton and Kliot [138]. However,
some authors also use the adjective streaming or the term stream model in the
context of graph changes in order to describe consecutive atomic changes [9,49].
A further task is the search for stable subgraphs in a given time interval in
an evolving network, i.e., subgraphs that change only slightly during the whole
interval. Depending on the formal definition of stability these subgraphs have
various other names, like heavy subgraphs or high-score subgraphs [23]. Pattern
Mining in evolving graphs is focused on frequently occurring subgraphs, inde-
pendent from their density [24].

Intention and Outline. In this survey, we introduce some of the current graph
clustering approaches for evolving networks that operate in an online scenario.
All approaches have in common that they use structural information from the
previous time steps in order to generate a meaningful clustering for the snap-
shot of the current time step. In doing so, some approaches focus on temporal
smoothness, while other approaches aim at a fast running time and a few even
achieve both.

In contrast to existing surveys on graph clustering, we focus on online algo-
rithms in evolving networks. A very detailed and well-founded presentation of
algorithmic aspects in static (non-evolving) and evolving graphs is further given
in the thesis of Görke [66]. For an overview on clustering techniques in static
graphs see also Schaeffer [130] and Fortunato [58]. The latter also provides a
short abstract on clustering evolving graphs. Aynaud et al. [12] explicitly con-
sider clustering approaches in evolving graphs, however, they do not focus on
the algorithmic aspect of reusing structural information in an online scenario.
Aggarwal and Subbian [2] give an overview on analysis methods where clustering
of slowly and fast evolving networks is one subject among others. Finally, Bilgin
and Yener [21] consider evolving networks from a more general perspective. They
also provide a section on “Clustering Dynamic Graphs”, however, the emphasis
of this section is the above mentioned idea of clustering graph streams.
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This survey is organized as follows. In Sect. 1.1, we discuss the above men-
tioned main issues related to clustering evolving networks in more detail. In
Sect. 1.2 we provide an overview on popular quality and distance measures for
clusterings. The former are of course used for the evaluation of clusterings but
also in the context of algorithm design. The latter are applied for the evaluation
as well as for cluster tracking and event detection. We conclude the introduc-
tion by a brief idea on applications in Sect. 1.3. The main part of this survey is
presented in Sect. 2, where we introduce current clustering approaches according
to our focus described above. Moreover, we provide an overview on the main
features of the presented algorithms in Table 1. Section 3 further lists a selection
of data sets and graph generators used for the evaluation of the approaches pre-
sented in Sect. 2 and briefly discusses the difficulties in choosing appropriate data
for evaluating clustering approaches on evolving graphs. We finally conclude in
Sect. 4.

Notation. Until noted otherwise, we will assume that graphs are simple, i.e.,
they do not contain loops and parallel edges. A dynamic or evolving graph
G = (G0, . . . , Gtmax) is a sequence of graphs with Gt = (Vt, Et) being the state
of the dynamic graph at time step t. Gt is also called snapshot of G. A clustering
Ct = {C1, . . . , Ck} of Gt is a set of subsets of Vt called clusters or communities.
If these subsets are pairwise disjoint, the clustering is called disjoint, otherwise
it is overlapping. A disjoint clustering that further has the property that each
vertex is contained in a cluster, i.e., that corresponds to a partition of Vt, is called
complete. Complete clusterings are often represented by storing a cluster id for
each vertex that encodes the corresponding cluster. A pair {u, v} of vertices
such that there is a cluster that contains both u and v is called intracluster
pair, otherwise {u, v} is called intercluster pair. An edge between the vertices
of an intracluster pair is called intracluster edge; intercluster edges are defined
analogously. A singleton clustering is a complete clustering where each cluster
contains only one vertex; such clusters are called singleton clusters. The other
extreme, i.e., a clustering consisting of only one cluster containing all vertices, is
called 1-clustering. Each cluster C ⊂ Vt further induces a cut in Gt. A cut in a
graph G = (V,E) is defined by a set S ⊂ V , which indicates one side of the cut.
The other side is implicitly given by V \ S. A cut is thus denoted by (S, V \ S).

1.1 Main Issues When Clustering Evolving Networks

In the following we briefly discuss the main issues related to clustering evolv-
ing networks. We consider cluster tracking and visualization first, since these
problems can be solved independent from the cluster detection. Our remarks
on cluster detection in online scenarios give a rough idea on different techniques
used in this field, followed by a short overview on some state-of-the-art evaluation
techniques.

Cluster Tracking and Event Detection. Assuming the cluster structure of the
network is already given for each snapshot by an arbitrary clustering approach,
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detecting the evolution of the clusters over time becomes a task independent
from finding the clusters. Most approaches that address this task describe a
framework of two subproblems. On the one hand, they seek for series of similar
clusters in consecutive snapshots (often called meta communities, meta groups or
time-lines), and on the other hand, they aim at identifying critical events where
clusters, for instance, appear, survive, disappear, split or merge. In particular,
deciding if a cluster that has just disappeared reappears in future time steps,
and thus, actually survives, requires future information, which is not available
in an online scenario. Hence, whether a framework is applicable in an online
scenario depends on the defined events. The frameworks of Takaffoli et al. [143]
and Green et al. [74] are offline frameworks since they compare the structure
of the clusters of the current snapshot to all previous and future snapshots in
order to also find clusters that disappear and reappear after a while. While the
framework by Takaffoli et al. requires disjoint clusters, the approach of Green et
al. also allows overlapping clusters.

In order to compare clusters of consecutive snapshots, many approaches
define a similarity measure considering two clusters as similar if the similar-
ity value exceeds a given threshold. Asur et al. [11] detect similar clusters by the
size of their intersection. Takaffoli et al. [143] normalize this value by the size
of the larger cluster. Berger-Wolf and Saia [19] admit the use of any similarity
measure that is efficiently computable and satisfies some mathematical proper-
ties, as it does the standard Jaccard similarity measure [78] that normalizes the
size of the intersection by the size of the union.

The frameworks mentioned so far can be applied to any cluster structure
in a given graph, regardless which clustering approach was used to find this
structure. Other tracking approaches, however, exploit special properties of the
given cluster structures in the snapshots, and thus, require that the clusters
are constructed by a designated (static) clustering method. Palla et al. [113]
require clusterings found by the clique percolation method (PCM) [42], which
can be also seen as a special case of a clustering method proposed by Everett
and Borgatti [52]. For a brief description of PCM see the part in Sect. 2 where
algorithms maintaining auxiliary structures are introduced. In order to identify
evolving clusters in two consecutive time steps, Palla et al. construct the union
of the two corresponding snapshots and apply again PCM to this union graph.
Due to the properties of the clusters found by PCM, it holds that each cluster
found in one of the snapshots is contained in exactly one cluster in the union
graph. A cluster C in the snapshot at time t − 1 is then associated with the
cluster C ′ in the snapshot at time t that is contained in the same cluster in the
union graph and has the most vertices in common with C. Falkowski et al. [54]
consider clusters that result from a hierarchical divisive edge betweenness clus-
tering algorithm [63]. In contrast to Palla et al. who map clusters only between
two consecutive time steps, Falkowski et al. present an offline approach. They
construct an auxiliary graph that consists of all clusters found in any snapshot
and two clusters are connected by an edge if and only if the relative overlap of
both clusters exceeds a given threshold. On this graph the authors apply the
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same clustering algorithm as on the snapshots in order to find groups of (local)
communities that are similar in different time steps. Another offline approach is
given by Tantipathananandh et al. [18]. Here the authors assume given groups
in the snapshots, where members of the same group interact while members of
different groups do not interact. Based on observed interactions of entities in
consecutive time steps, an auxiliary graph is built on which the authors solve
a coloring problem. Finally, there are also some frameworks that are not espe-
cially designed for networks, but are general enough to be applied to networks
as well [137]. For a further categorization of tracking methods see also Aynaud
et al. [12].

Besides whole frameworks that track clusters according to similarity, tracking
clusters by cluster ids is a very natural and simple approach. This however
requires that clusters that are given the same id in two consecutive time steps
are somehow related. Many graph clustering algorithms that dynamically update
previous clusterings, like Label Propagation [114], LabelRankT [152] and
DiDic [61], to name but a few of the approaches introduced in Sect. 2, fulfill
this requirement. The relation between clusters of the same id depends on how
the particular algorithm chooses the cluster ids. Furthermore, inferring clusters
based on generative models as done by FacetNet [93] often admits the tracking
of clusters without an additional framework, as the evolution of the clusters can
be read off the resulting model.

Visualization of the Evolution of Clusters. Even if there is already a clustering
given for each snapshot and we know which local clusters correspond to each
other in different snapshots, the visualization of the evolution of these clusters
is still not trivial. Since the evolution of clusters involves not only one graph
but several snapshots of an evolving graph, the total object that needs to be
visualized quickly becomes very complex. Hence, one problem that needs to be
dealt with when visualizing such an object is simplification. Many visualization
approaches and in particular interactive visualization tools solve this problem by
offering different views on different aspects of the object [33,54,128]. Apart from
different views, the most intuitive layout for evolving clusterings is probably to
draw consecutive snapshots next to each other and depict the correspondence
of clusters for example by colors or by additional edges between the snapshots.
In this kind of layout another well-known task from the field of visualization
gains importance, namely the preservation of the mental map [100]. This means
that corresponding clusters (and also vertices) in different snapshots are placed
at similar positions in the image of the particular snapshot, such that potential
changes in the clustering structure can be easily recognized. The goal to gen-
erate well readable diagrams further also justifies the postulation of temporal
smoothness. Instead of drawing the snapshots next to each other, TeCFlow [64]
and SoNIA [101] provide the possibility to create little movies out of consecu-
tive snapshots. Moreover, many visualization approaches are proposed on top of
new clustering approaches or existing tracking frameworks [76]. However, these
approaches are often specially tailored with respect to these clustering algorithms
or tracking frameworks.
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Online Cluster Detection in Evolving Graphs. The most intuitive attempt to
deal with clusters in evolving graphs is to cluster each snapshot independently
with a static clustering algorithm and track the clusters afterwards in order
to uncover their evolution. However, depending on the static clustering algo-
rithm, the structure of the clusters in each snapshot may vary greatly such that
a tracking method may find a lot of change points instead of nicely evolving
clusters. Greedy agglomerative approaches, for example, that aim at optimizing
an objective function often tend to find different local optima in consecutive
snapshots, depending on the order in which the vertices are chosen. Hence, even
small perturbations in the underlying graph may lead to significant changes in
the structure of the found clusters. Hopcroft et al. [77] were some of the first
authors who clustered snapshots with the help of a static clustering algorithm
and then tracked the found clusters over time. They overcome the above men-
tioned problem by applying a greedy agglomerative approach several times with
different orderings of vertices. Only clusters that remain stable under such mul-
tiple clustering runs (so called natural or consensus clusters) are then considered
for the tracking.

Another way to overcome the problem of unstable clusterings is to explicitly
incorporate temporal smoothness in the clustering process. A first attempt in this
direction was done by Chakrabarti et al. [32] in 2006; however, they clustered
attributed data instead of graphs. Their idea is to exploit the knowledge about
the previously found clustering to find a clustering for the current time step that
is similar to the previous clustering (i.e., has low history cost) and is still a good
clustering also for the data in the current time step (i.e., has high snapshot qual-
ity). Depending on the clustering algorithm in which the temporal smoothness is
incorporated, this may lead to an objective function that needs to be optimized
or to an adaption of the input data or certain parameters. Chakrabarti et al.
examine two widely used clustering methods within their framework; k-means
and agglomerative hierarchical clustering. Their technique of incorporating tem-
poral smoothness into static clustering approaches has been established under
the name evolutionary clustering. It has been adapted to graph clustering by
Kim and Han [81], Chi et al. [35], Görke et al. [70] and Xu et al. [154]. The
FacetNet approach by Lin et al. [93] is based on a generic model that is equiv-
alent to the framework of Chakrabarti et al. under certain assumptions. The
corresponding algorithms are described in more detail in Sect. 2. Note that the
term evolutionary is not limited to evolutionary clustering (as introduced by
Chakrabarti et al.). It is also used in many other contexts, like, for example, in
the context of evolutionary search heuristics.

Under the term dynamic graph clustering we subsume the remaining clus-
tering approaches presented in this survey. The difference to evolutionary clus-
tering, where in each time step a static algorithm is applied from scratch, is
that dynamic approaches update existing information from previous time steps
without recalculating the whole clustering from scratch. This can be done, for
example, by reusing parts of the previous clustering and restricting updates to
local areas where the clustering has become infeasible [1] or, in case of greedy
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agglomerative algorithms, initializing the current clustering with the previously
found clusters [144]. Other approaches update auxiliary information like sets of
dense subsets [9], lists of well connected neighbors [84], eigenvectors [110] or
structures like cut trees [68] or clique graphs [49]. Quite a few approaches also
combine these techniques. Although most of these dynamic approaches aim at
reducing the running time, in many cases updating previous information implic-
itly also leads to temporal smoothness. Other update methods admit the detec-
tion of cluster events like splitting or merging [55,68].

Evaluation of Clustering Methods. As the (rather fuzzy) definition of graph clus-
tering according to the intracluster density versus intercluster sparsity paradigm
does not correspond to a well defined optimization problem, the comparison of
different clustering approaches is inherently difficult. One aspect that should
always be taken into account is scalability, i.e., to what extent the running time
increases with the graph size. Disregarding the influence of more or less efficient
implementations and hardware environments, the scalability of algorithms can
be easily compared and evaluated. In some cases, it is possible to consider the
immediate usefulness of a clustering for a certain application, which allows to
compare different clusterings in a precise and well motivated way. An example
for this is the use of dynamic graph clustering in the context of routing proto-
cols in Mobile Ad hoc Networks (MANETS), where clusterings can be evalu-
ated based on their impact on statistics as Delivery Ratio or Average Delivery
Time [47,108]. However, most applications do not yield such statistics, which is
why most authors focus on two main approaches to evaluate clusterings, both
of which are not undisputed.

The first one is the evaluation of clusterings with the help of a ground truth
clustering. For real world data, in most cases this corresponds to additional
metadata that indicate well motivated communities. In the context of synthetic
data this usually refers to clusters implanted in the graph structure during gen-
eration. Usually, a ground truth clustering either corresponds to a partition of
the objects in the context of algorithms finding complete clusterings, or a set of
subsets of objects if clusters may be overlapping. Ground truth clusterings can
now be compared to the outcome of an algorithm with the help of a suitable
distance measure on partitions or sets of objects.

In the next section we introduce some distance measures that can be applied
to evaluate clusterings based on ground truth clusterings. Moreover, Sect. 3 gives
an overview of real world datasets used in the literature both with and with-
out metadata, and describes some models for generating synthetic data. In case
the metadata about real world data is not available in form of a ground truth
clustering, it is further possible to manually look into the data and perform plau-
sibility checks of the clusterings obtained. However, this approach requires a lot
of interpretation and, due to the large size of some datasets, is often necessarily
limited to a subset of the data at hand.

The second main approach is the use of quality measures to evaluate the
goodness of a given clustering. Using quality measures simplifies the evaluation
a lot, as it turns the inherently vague definition of clustering into an explicit
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optimization problem. Some algorithms exploit these objective functions explic-
itly and optimize them by using for example local search techniques or trying to
find provably optimal solutions efficiently [16,44,45,47,70,108,121]. Others use
objective functions as an additional evaluation criterion, although the algorithm
itself does not explicitly optimize any function [61,152]; often, the authors then
do not claim to obtain the best values according to the considered measure,
but apply the results as an additional sanity check to motivate their approach,
together with experiments involving ground truth clusterings. We will give the
definitions of some commonly used quality measures in the next section.

For a further discussion on the difficulties of evaluating community detection
methods and a brief history of method evaluation, see [88].

1.2 Quality and Distance Measures for Clusterings

In this section, we will give a short overview of quality measures assessing the
goodness of clusterings, followed by a discussion on what has to be additionally
considered in the dynamic scenario, and an introduction to some frequently used
distance measures that can be applied to evaluate the similarity of two cluster-
ings. To give a comprehensive overview of all quality and distance measures used
in the literature is beyond the scope of this survey; further information can be
found for example in the surveys of Fortunato [58] and Wagner et al. [148].

Quality Measures in Static Graphs. We will describe two main approaches to
measure the quality of a clustering in the static scenario, the first one is based on
balanced cuts and the second on null models. For better readability, we consider
only unweighted graphs in this section, although all measures described here can
be generalized to weighted graphs in a straightforward way.

The use of cuts as a means to analyze community structures in networks
has a long tradition [159]. A trivial community detection algorithm could for
example determine the minimum cut in a graph, split the graph according to
this cut, and recurse this procedure on the resulting communities until some
termination criterion, as for example a desired number of clusters, is met. This
procedure at least guarantees that two found communities or clusters are locally
not too strongly connected by intercluster edges. Nevertheless, this often leads
to clusters of very uneven sizes; especially in the presence of low degree vertices,
minimum cuts tend to separate only one or few vertices from the remainder of
the graph. For this reason, clustering algorithms typically build upon balanced
cuts, i.e., cuts that simultaneously cross few edges and split the graph in two
approximately equal sized parts.

Probably the first formal definitions of balanced cuts used in the context of
graph clustering are the measures conductance and expansion [79]. For a subset
S, let e(S, V \S) denote the number of edges connecting vertices in S with vertices
in V \S. Furthermore, the volume vol(S) :=

∑
v∈S deg(v) of a subset of vertices

S is defined as the sum of the degrees of its vertices. Then, the conductance cond
of a cut (S, V \ S) can be written as:
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cond(S, V \ S) =
e(S, V \ S)

min{vol(S), vol(V \ S)}
Many variations thereof exist, most of which either replace the volume by

other notions of cluster size, or use a slightly different tradeoff between the cut
size and the sizes of the two induced parts. We give the definition of two of these
variations, namely expansion and normalized cut ; the latter is especially popular
in the field of image segmentation [133]:

exp(S, V \ S) =
e(S, V \ S)

min{|S|, |V \ S|}
ncut(S, V \ S) =

e(S, V \ S)
vol(S)

+
e(S, V \ S)
vol(V \ S)

Finding a cut that is minimal with respect to any of the three definitions
above is NP-hard [90,133,135], which is why divisive algorithms are usually
based on approximation algorithms or heuristics. It remains to mention that
cut-based measures are closely related to spectral clustering techniques [95].

It is not immediately clear how the above measures can be used to evaluate
whole clusterings. One possibility is to associate two values with each cluster C,
one that evaluates the cut that separates the cluster from the rest of the graph
and another evaluating all cuts within the subgraph that is induced by C. In
the context of conductance, this leads to the following definition of inter- and
intracluster conductance of a cluster C [27]:

intercluster conductance(C) = cond(C, V \ C)
intracluster conductance(C) = min

S⊂C
{cond(S,C \ S)}

In a good clustering according to the intracluster density versus intercluster
sparsity paradigm, the intracluster conductance of the clusters is supposed to be
high while their intercluster conductance should be low. An overall value for the
intracluster conductance of a whole clustering can then be obtained by taking,
for example, the minimum or average of the intracluster conductance over all
clusters [71]. Analogously, the intercluster conductance of a clustering can be
defined as the maximum intercluster conductance over all clusters. This leads to
a bicriterial optimization problem. Calculating the intracluster conductance of a
cluster is NP-hard, which immediately follows from the NP-hardness of finding
a cut with optimum conductance. The same holds if we replace conductance
by expansion or normalized cut. Hence, most clustering approaches that aim at
solving the resulting optimization problem are again based on approximation
algorithms or heuristics. The cut clustering algorithm of Flake et al. [57,68],
however, guarantees at least a lower bound of the intracluster expansion of the
found clusters. In principal, these cut based criteria can be also used to evaluate
overlapping clusterings, although they are much more common in the context of
complete clusterings.

Another approach to measure the goodness of clusterings that has gained a
lot of attention during the last decade is the concept of null models. Roughly
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speaking, the idea behind this is to compare the number of edges within clusters
to the expected number of edges in the same partition, if edges are randomly
rewired. The most popular measure in this context is the modularity of a cluster-
ing as defined by Girvan and Newman [107] in 2004. Let e(C) denote the number
of edges connecting the vertices in cluster C. Then, the modularity mod(C) of a
(complete) clustering C can be defined as

mod(C) =
∑

C∈C

e(C)
m

−
∑

C∈C

vol(C)2

4m2
.

Here, the first term measures the actual fraction of edges within clusters
and the second the expectation of this value after random rewiring, given that
the probability that a rewired edge is incident to a particular vertex is propor-
tional to the degree of this vertex in the original graph. The larger the difference
between these terms, the better the clustering is adjusted to the graph struc-
ture. The corresponding optimization problem is NP-hard [25]. Modularity can
be generalized to weighted [105] and directed [10,89] graphs, to overlapping or
fuzzy clusterings [109,132], and to a local scenario, where the goal is to evalu-
ate single clusters [34,36,94]. Part of its popularity stems from the existence of
heuristic algorithms that optimize modularity and that are able to cluster very
large graphs in short time [22,112,124]. In Sect. 2, we will describe some gener-
alizations of these algorithms to the dynamic setting. Furthermore, in contrast
to many other measures and definitions, modularity does not depend on any
parameters. This might explain why it is still widely used, despite some recent
criticism [59].

Quality Measures in Evolving Graphs. In the context of dynamic graph cluster-
ing, we aim at clusterings of high quality for each snapshot graph. Compared
to the static approach, as discussed in Sect. 1, temporal smoothness becomes an
additional dimension. Speaking in terms of objective functions, we would like to
simultaneously optimize the two criteria quality and temporal smoothness.

As already mentioned before, one approach to obtain this has been introduced
by Chakrabarti et al. [32]. The idea is to measure the snapshot quality sq of the
current clustering Ct at time step t (with respect to the current snapshot Gt)
by a (static) measure for the goodness of a clustering. Similarly, the smoothness
is measured by the history cost hc of the current clustering, which is usually
defined as the distance of the current clustering to the previous clustering Ct−1

at time step t − 1. The snapshot quality could for example be measured by
modularity and the smoothness by any of the distance measures introduced in
the next paragraph. The goal is then to optimize a linear combination of both
measures, where α is an input parameter that determines the tradeoff between
quality and smoothness:

maximize α · sq(Ct,Gt) − (1 − α) · hc(Ct, Ct−1).

Closely related to this approach, but not relying on an explicit distance mea-
sure, is the claim that a good clustering of the snapshot at time step t should



292 T. Hartmann et al.

also be a good clustering for the snapshot at time step t − 1. This is based on
the underlying assumption that fundamental structural changes are rare. Hence,
linearly combining the snapshot quality of the current clustering with respect to
the current snapshot Gt and the previous snapshot Gt−1 yields a dynamic quality
measure, which can be build from any static quality measure:

maximize α · sq(Ct,Gt) + (1 − α)sq(Ct,Gt−1).

This causes the clustering at time step t to also take the structure of snapshot
Gt−1 into account, which implicitly enforces smoothness. Takaffoli et al. [144]
apply this approach in the context of modularity, and Chi et al. [35] in the
context of spectral clustering; both will be discussed in Sect. 2.

Distance Measures for Clusterings. In the context of graph clustering, distance
measures have three main applications. First, similar to static clustering, they
can be used to measure the similarity to a given ground truth clustering. Second,
they can be applied as a measure of smoothness, for example by comparing the
clusterings of adjacent time steps. Third, they are useful in the context of event
detection; a large distance between two consecutive clusterings may indicate an
event. A plethora of different measures exist in the literature, none of which is
universally accepted. For this reason, we will only introduce the measures used
by the dynamic algorithms we describe in Sect. 2. This includes the probably best
known index in the context of clustering, the normalized mutual information. If
not mentioned otherwise, all clusterings considered in this section are assumed
to be complete.

Mutual information has its roots in information theory and is based on the
notion of the entropy of a clustering C. For a cluster C ∈ C, let P (C) := |C|/n.
With that, the entropy H of C can be defined as

H(C) := −
∑

C∈C
P (C) log2 P (C)

Similarly, given a second clustering D, with P (C,D) := |C ∩ D|/n, the con-
ditional entropy H(C|D) is defined as

H(C|D) :=
∑

C∈C

∑

D∈D
P (C,D) log2

P (C)
P (C,D)

Now the mutual information I of C and D can be defined as

I(C,D) := H(C)−H(C|D) = H(D)−H(D|C) =
∑

C∈C

∑

D∈D
P (C,D) log2

P (C,D)
P (C)P (D)

Informally, this is a measure of the amount of information the cluster ids
in D carry about the cluster ids in C. Several normalizations of this measure
exist; according to Fortunato [58], the most commonly used normalization is
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the following notion of normalized mutual information (NMI), which maps the
mutual information to the interval [0, 1]:

NMI(C,D) =
2I(C,D)

H(C) + H(D)

Technically, this is not a distance but a similarity measure, as high values
of NMI indicate high correlation between the clustering. If need be, it can be
easily turned into a distance measure by considering 1 − NMI(C,D). There also
exists a generalization to overlapping clusterings [86]. Among the approaches we
describe in Sect. 2, Yang et al. [156], Cazabet et al. [30] and Kim and Han [81] use
mutual information to compare against ground truth clusterings. In contrast to
that, Lin et al. [93] apply it to compare the time step clusterings to the communi-
ties of the aggregated graph, which can be seen as both a measure of smoothness
and comparison to some kind of ground truth clustering. Wang et al. [84] use
NMI both to measure the similarity of a clustering to a generated ground truth
clustering and to compare the results of an approximation algorithm to clus-
terings found by an exact algorithm (according to their definition of clusters).
Lin et al. [93] refer to the Kullback-Leibler divergence [82], which is closely related
to mutual information, both as a measure of quality and smoothness.

Aynaud and Guillaume [13] propose, as an alternative to NMI, the minimum
number of vertex moves necessary to convert one clustering into the other as
a measure of distance. Their main argument to consider this approach is that
absolute values are far easier to interpret.

Another very intuitive measure for the distance between two partitions is
the Rand index introduced by Rand [120] in 1971. Let s(C,D) be the number
of vertex pairs that share a cluster both in C and D and d(C,D) the number of
vertex pairs that are in different clusters both in C and D. With that, the Rand
index R of C and D is defined as

R(C,D) := 1 − s(C,D) + d(C,D)
(
n
2

)

This corresponds to counting the number of vertex pairs where both cluster-
ings disagree in their classification as intracluster or intercluster pair, followed
by a normalization. Delling et al. [41] argue that this measure is not appropriate
in the context of graph clustering, as it does not consider the topology of the
underlying graph. They propose to only consider vertex pairs connected by an
edge, which leads to the graph based Rand index. This graph based version is
used by Görke et al. [70] to measure the distance between clusterings at adjacent
time steps.

Chi et al. [35] apply the chi square statistic to enforce and measure the
similarity between adjacent clusterings. The chi square statistic was suggested
by Pearson [117] in 1900 to test for independence in a bivariate distribution.
In the context of comparing partitions, different variants exist [99]; the version
used by Chi et al. is the following:
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χ2(C,D) = n ·
(

∑

C∈C

∑

D∈D

|C ∩ D|
|C| · |D| − 1

)

1.3 Applications

Graph clustering has possible applications in many different disciplines, includ-
ing biology and sociology. Biologists are for example interested in how diseases
spread over different communities, sociologists often focus on cultural and infor-
mation transmission. Many of the networks analyzed in these areas have a tempo-
ral dimension that is often neglected; taking it into account potentially increases
the usefulness of clustering for the respective application and at the same time
evokes new challenges like for example the involvement of temporal smoothness.
In the context of social networks, the benefit of temporal smoothness becomes
in particular obvious, since social relations and resulting community structures
are not expected to change frequently. Giving an exhaustive list of application
areas is beyond the scope of this survey; some further information can be found
in the overview article of Fortunato [58]. Instead, we will give some examples
where clustering approaches designed for evolving graphs have clearly motivated
advantages over static approaches.

A little-known but very interesting application of graph clustering is the use
in graph drawing or visualization algorithms. The general idea is to first cluster
the vertices of the graph and then use this information in the layouting steps by
placing vertices in the same community in proximity of each other. This has sev-
eral advantages: The layout makes the community structure of the graph visible,
which is desirable in many applications. Furthermore, the intracluster density
versus intracluster sparsity paradigm causes many edges to be within clusters,
which in turn corresponds to small edge lengths. Last but not least, layout algo-
rithms that exploit clustering as a preprocessing step are usually quite fast. As an
example, Muelder and Ma have used clustering algorithms in combination with
layouts based on treemaps [103] and space filling curves [102]. A straightforward
extension to these approaches is the task to visualize dynamic graphs [128].
Dynamic clustering algorithms can help in this context to reduce the running
time for the preprocessing in each time step. Furthermore, if they are addition-
ally targeted at producing smooth clusterings, this results in smoother layouts,
or, in terms of layout algorithms, in a good preservation of the mental map.

Another interesting application of dynamic graph clustering is its use in rout-
ing protocols in Mobile Ad hoc Networks (MANETS). On-Demand forwarding
schemes for this problem discover paths in the network only when receiving
concrete message delivery requests. It has been shown that “routing strategies
based on the discovery of modular structure have provided significant perfor-
mance enhancement compared to traditional schemes” [47]. Due to the mobility
of actors in the network, the resulting topology is inherently dynamic; recomput-
ing the clustering whenever a change occurs is costly and requires global infor-
mation. This motivated a number of online algorithms for modularity based
dynamic clustering algorithms, with experiments showing that the use of the
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dynamic clustering improved the performance of forwarding schemes in this sce-
nario [47,108]. Another interesting aspect of this application is that “consistent
modular structures with minimum changes in the routing tables” [47] are desir-
able, again motivating temporal smoothness.

2 Online Graph Clustering Approaches

In this section we introduce current clustering algorithms and community detec-
tion approaches for evolving graphs. As discussed above, we consider only algo-
rithms that operate in an online scenario, i.e., that do not exploit information
from future time steps, and are incremental in the sense that they incorporate
historic information from previous time steps to achieve temporal smoothness
or better running times. We use different categories to classify the approaches
presented here. Some categories are associated with particular algorithmic tech-
niques, other categories with applications or the form of the resulting clusterings.
Apart from these categories, the GraphScope approach [140] is presented at
the beginning of this section, as it is one of the first and most cited dynamic
approaches. The section concludes with two further approaches, which do not
fit into one of the previous categories.

GraphScope. The GraphScope approach by Sun et al. [140] is one of the first
and most cited dynamic clustering approaches so far. However, contrary to the
notion of communities as densely connected subgraphs, GraphScope follows
the idea of block modeling, which is another common technique in sociology.
The aim is to group actors in social networks by their role, i.e., structural equiv-
alence. Two actors are equivalent if they interact in the same way with the same
actors (not necessarily with each other). This is, the subgraph induced by such a
group may be disconnected or even consisting of an independent set of vertices.
The latter is the case in approaches like GraphScope that consider bipar-
tite graphs of source and destination vertices and seek for groups of equivalent
vertices in each part, i.e., groups consisting either of source or destination ver-
tices. Furthermore, instead of independent snapshots, GraphScope considers
whole graph segments, which are sequences of similar consecutive snapshots that
(w.l.o.g.) have all the same number of sources and destinations. The main idea is
the following. Given a graph segment and a partition of the vertices in each part
(the same partition for all snapshots in the graph segment), the more similar the
vertices are per group the cheaper are the encoding costs for the graph segment
using an appropriate encoding scheme based on a form of Minimum Description
Length (MDL) [123]. This is, GraphScope seeks for two partitions, one for each
part of the bipartite input graph, that minimize the encoding costs with respect
to the current graph segment. It computes good partitions in that sense by an
iterative greedy approach. Based on the same idea, the MDL is further used
to decide whether a newly arriving snapshot belongs to the current graph seg-
ment or starts a new segment. If the new snapshot belongs to the current graph
segment, the two partitions for the graph segment are updated, initialized by
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the previous partitions. If the new snapshot differs too much from the previous
snapshots, a new segment is started. In order to find new partitions in the new
segment, the iterative greedy approach is either initialized with the partitions of
the previous graph segment or the iterations are done from scratch. The latter
can be seen as a static version of GraphScope. An experimental comparison on
real world data proves a much better running time of the dynamic approach with
respect to the static approach. Additional experiments further illustrate that the
found source and destination partitions correspond to semantically meaningful
clusters. Although this approach focuses on bipartite graphs, it can be easily
modified to deal with unipartite graphs, by constraining the source partitions to
be the same as the destination partitions [31].

Detecting Overlapping Dense Subgraphs in Microblog Streams. The approaches
of Angel et al. [9] and Agarwal et al. [1] both date back to the year 2012 and aim
at real-time discovery of emerging events in microblog streams, as provided for
example by Twitter. To this end, they model the microblog stream as an evolv-
ing graph that represents the correlation of keywords occurring in the blogs or
messages. In this keyword graph, they seek for groups of highly correlated key-
words, which represent events and are updated over the time. Since a keyword
may be involved in several events, these groups are allowed to overlap. The main
differences between both attempts is the definition of the correlation between
keywords and the definition of the desired subgraphs. Angel et al. consider two
keywords as correlated if they appear together in the same message. Two key-
words are the stronger correlated the more messages contain them together. The
messages are considered as a stream and older messages time out. This results
in atomic updates of the keyword graph. In contrast, Agarwal et al. consider
multiple changes in the keyword graph resulting from a sliding time window
approach. They consider two keywords as correlated if they appear in (possibly
distinct) messages of the same user within the time window. Furthermore, they
ignore all edges representing a correlation below a given threshold, which results
in an unweighted keyword graph.

Regarding the group detection, Angel et al. introduce an algorithm called
DynDens that considers a parameterized definition of density, which covers
most standard density notions. Based on this definition, a set is dense if its
density is greater than a given threshold. In order to return all dense subgraphs
for each time step, a set of almost dense subgraphs is maintained over time that
has the property that after a change in the keyword graph each (possibly new)
dense subgraph contains one of the maintained almost dense subgraphs. Hence,
the almost dense subgraphs can be iteratively grown to proper density, thus
finding all new dense subgraphs after the change. With the help of an appropriate
data structure the almost dense subgraphs can be maintained efficiently with
respect to time and space requirements. In order to give experimental evidence
of the feasibility of their approach, the authors have built a live demo for their
techniques on Twitter-tweets and provide, besides a qualitative evaluation, a
comparison with a simple static baseline approach that periodically recomputes
all dense subgraphs. This static approach took that much time that it was able
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to compute the set of new events only every 48 to 96 min, compared to a real
time event identification performed by the dynamic approach. Instead of dense
subgraphs, Agarwal et al. seek for subgraphs that possess the property that
each edge in the subgraph is part of a cycle of length at most 4. This property is
highly local, and thus, can be updated efficiently. An experimental study on real-
world data comparing the dynamic approach to a static algorithm that computes
biconnected subgraphs confirms the efficiency of the local updates.

Other Approaches Admitting the Detection of Overlapping Clusters. While two
of the following approaches indeed return overlapping clusters, the remaining
approaches use a cluster definition that basically admits overlapping clusters,
but the algorithmic steps for finding these clusters are designed such that they
explicitly avoid overlaps. The most common reason for such an avoidance is
the fact that tracking overlapping clusters over time is even more difficult than
tracking disjoint clusters, which is why most of the existing tracking frameworks
require disjoint clusters.

Takaffoli et al. [144] incrementally apply a method inspired by Chen et al. [34]
that basically returns overlapping clusters. In order to apply, in a second step, an
independent event detection framework [143] that requires disjoint clusters, they
however rework this method such that it prevents overlaps. The idea is to greedily
grow clusters around core sets that serve as seeds. In doing so the aim is to
maximize the ratio of the average internal degree and the average external degree
of the vertices in the cluster, only considering vertices with a positive internal
and external degree, respectively. The reworking step then allows a vertex to also
leave its initial core set, which admits the shrinking of clusters and the prevention
of overlapping clusters. For the first snapshot in a dynamic scenario the initial
core sets are single vertices (static version), whereas any further snapshot is
clustered using the clusters of the previous snapshot as initial core sets (dynamic
approach). If a previous cluster decomposes into several connected components
in the current snapshot, the authors consider each of the connected components
as a seed. Compared to the static version applied to each snapshot independently
and also compared to the FacetNet approach [93] (which we introduce in the
category of generative models), at least for the Enron network tested by the
authors, the dynamic attempt results in a higher average community size and
a higher dynamic modularity per snapshot. The latter is a linear combination
of the modularity values of the current clustering with respect to the current
snapshot and the previous snapshot (see also the quality measures in evolving
graphs presented in Sect. 1.2).

Kim and Han [81] present an evolutionary clustering method, which incor-
porates temporal smoothness to Scan [155], a popular adaption of the (static)
density-based data clustering approach dbScan [51] to graphs. The new idea,
compared to the idea of evolutionary clustering by Chakrabarti et al. [32], is
that instead of minimizing a cost function that trades off the snapshot quality
and the history quality at every time step, the same effect can be achieved by
adapting the distance measure in Scan. As usual for Scan, the authors define
an ε-neighborhood of a vertex with respect to a distance measure, such that the
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resulting ε-neighborhood consists of core vertices and border vertices. A clus-
ter is then defined as the union of ε-neighborhoods, each of which having size
at least η, that overlap in at least one core vertex. This kind of clusters can
be easily found by a BFS in the graph. This initially yields clusters that may
overlap in some border vertices. However, by ignoring vertices that are already
assigned to a cluster during the BFS, disjoint clusters can be easily enforced.
A vertex that is not found to be a member of a cluster, is classified as noise.
By iteratively adapting ε the authors additionally seek for a clustering of high
modularity. When a good clustering is found for the current snapshot, temporal
smoothness is incorporated by adapting the distance measure that characterizes
the ε-neighborhoods in the next time steps, taking the distance in the current
snapshot into account. Finally, the authors also propose a method for mapping
the clusters found in consecutive snapshots, based on mutual information. On
synthetic networks of variable numbers of clusters the proposed approach out-
performed FacetNet [93] with respect to clustering accuracy and running time.

Another approach that is also based on dbScan and is very similar to Scan,
is called DenGraph and is presented by Falkowski et al. [55]. In contrast to Kim
and Han, Falkowski et al. do not focus on an evolutionary clustering approach,
but introduce dynamic update techniques to construct a new clustering after
the change of a vertex or an edge in the underlying graph. Again, these updates
are done by locally applying an BFS (as for the static Scan approach), but
just on the vertices that are close to the change, thereby updating the cluster
ids. Experiments on the Enron data set suggest that DenGraph is quite fast
but also relatively strict as it reveals only small, very dense groups while many
vertices are categorized as noise. The dynamic DenGraph version proposed
in [55] returns disjoint clusters, while in [53] Falkowski presents a dynamic version
for overlapping clusters.

A dynamic algorithm that is not based on a static clustering algorithm but
also produces overlapping clusters is proposed by Cazabet et al. [30]. In each time
step, clusters are updated in the following way. First, it is determined if a new
seed cluster, i.e., a small clique of constant size has emerged due to edge updates.
Then, existing clusters and seed clusters are extended by additional vertices. To
that end, for each cluster C, two characteristics are maintained. The first of these
characteristics corresponds to the average percentage of vertices a vertex in C can
reach in its cluster by a path of length 2. Very similar, the second characteristic
corresponds to the average percentage of vertices a vertex in C can reach in its
cluster by at least two distinct path of length 2. A vertex that is not in C may be
included into C if, roughly speaking, this improves both of these characteristics.
In a last step, clusters that share a certain percentage of vertices with another
cluster are discarded. The goal of this approach is not primarily to get good
clusterings for each time step but to get a good clustering of the last time step
by taking the evolution of the network into account. Nevertheless, the approach
per se is capable of clustering dynamic networks in an online scenario. Other
overlapping approaches are categorized according to a different focus and are
thus described at another point. For an overview on all overlapping approaches
presented in this survey see Table 1.
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Table 1. Systematic overview on main features of the algorithms presented in Sect. 2.
Checkmarks in brackets indicate a simple modification to overlapping clusters.

Reference
aims at overlapping

run. time smoothn. yes no
based on

existing static approach

Agarwal et al. [1]

Takaffoli et al. [142]

Kim and Han [80]

Falkowski et al. [52, 54]

Cazabet et al. [29]

Duan et al. [48]

Görke et al. [66, 67]

Chi et al. [34]

Ning et al. [107]

Bansal et al. [15]

Aynaud and Guillaume [12]

Riedy and Bader [118]

Pang et al. [111]

Lin et al. [91]

Yang et al. [155]

Sun et al. [138]

Kim et al. [79]

Wang et al. [82]

Xu et al. [153]

Chen et al. [33]

(DENGRAPH)

Derényi et al. [41] (PCM)

Flake et al. [56]

Shi and Malik [130]

Riedy et al. [119]

Raghavan etal. [116]
(LABEL PROPAGATION)

Xie et al. [152]

Meyerhenke et al. [95]

Yu et al. [156]

Angel et al. [8] (DYNDENS)

Xu et al. [154] (SCAN)

Xu et al. [154] (SCAN)

( )
( )

(EVOLSPEC)

Shi and Malik [130]

Blondel et al. [21] (LOUVAIN)

Newman and Moore [36] (CNM)

Newman and Moore [36] (CNM)

Newman and Moore [36] (CNM)

Blondel et al. [21] (LOUVAIN)

Blondel et al. [21] (LOUVAIN)

Blondel et al. [21] (LOUVAIN)

Dinh and Thai [45] and
Blondel et al. [21] (LOUVAIN)

Dinh et al. [44, 46] (MIEN)

Görke et al. [69] (DGLOBAL)

Görke et al. [69] (TDLOCAL)

Nguyen et al. [104] (QCA)

Görke et al. [69] (DLACAL)

Nguyen et al. [43] (A3CS)

Gehweiler et al. [60] (DIDIC)

Xie et al. [151] (LABELRANKT)

Sun et al. [139] (NETCLUS)

(FACETNET)

(EVO-NETCLUS)

( )

( )

(LABELRANK)

Sun et al. [137] (GRAPHSCOPE)

ALGORITHMS MAINTAINING AUXILIARY STRUCTURES

SPECTRAL GRAPH CLUSTERING METHODS

MODULARITY BASED ALGORITHMS

LABEL PROPAGATION/DIFFUSION

GENERATIVE MODELS

FURTHER APPROACHES

OTHER APPROACHES ADMITTING THE DETECTION OF OVERLAPPING CLUSTERS

DETECTING OVERLAPPING DENSE SUBGRAPHS IN MICROBLOG STREAMS
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Algorithms Maintaining Auxiliary Structures. The following two approaches con-
sider atomic changes in the given graph and aim at efficiently updating struc-
turally clearly defined clusters, which are obtained by a simple operation on an
auxiliary structure. Here, atomic changes refer to the insertion or deletion of one
edge or vertex. In the first approach, by Duan et al. [49], the auxiliary structure
is a graph that represents the overlap of maximal cliques in the input graph,
and the final clusters result from the connected components of this graph. In the
second approach, by Görke et al. [68], a partial cut tree (or Gomory-Hu tree [65])
is maintained and the clusters result from the subtrees obtained by deleting a
designated vertex in this tree. The latter approach further incorporates possibly
given edge weights of the input graph.

The dynamic clique-clustering approach of Duan et al. [49] is a dynamic ver-
sion of the clique percolation method (PCM) of Derényi et al. [42], which is
again a special case of a more general clique-clustering framework proposed by
Everett and Borgatti [52]. The framework by Everett and Borgatti applies an
arbitrary clustering algorithm to a weighted auxiliary graph H that represents
the overlap of the maximal cliques in the input graph. In the special case con-
sidered by Derényi et al. and Duan et al., the auxiliary graph H just encodes if
two maximal cliques (of at least size k) overlap in at least k − 1 vertices, and
thus, is an unweighted graph. More precisely, H is a graph where the maximal
cliques in the input graph represent the vertices and two vertices are connected
by an edge if and only if the corresponding cliques share at least k − 1 ver-
tices. As clustering algorithm Derényi et al. and Duan et al. simply choose a
DFS, which returns the connected components of H, which induce overlapping
clusters in the original graph. The running time of this approach is dominated
by the computation of maximal cliques, which is exponential in the number of
vertices [28]. The proposed dynamic version is then straightforward. For each
type of change, the authors give a procedure to update the auxiliary graph H
as well as the DFS-tree T , which indicates the connected components of H. In
doing so, the insertion of an edge is the only change where the computation of
new maximal cliques becomes necessary in parts of the input graph. All other
changes can be handled by updating the overlap of previous cliques and adapt-
ing edges in H and T . Hence, the more changes in the dynamic input graph are
different from edge insertions, the better the dynamic approach outperforms the
static approach, which computes all cliques from scratch after each change.

The dynamic cut-clustering approach of Görke et al. [67,68] is a dynamic ver-
sion of the static cut-clustering algorithm of Flake et al. [57], based on updating
a partial Gomory-Hu tree [65] of an extended input graph Gα. The graph Gα is
obtained from the input graph G by inserting an artificial vertex q and artificial
edges, each having weight α, between q and each vertex in G. The input parame-
ter α determines the coarseness of the resulting clustering. A Gomory-Hu tree T
for Gα then is a weighted tree on the vertices of Gα that represents a minimum
s-t-cut for each vertex pair in Gα. More precisely, deleting an edge {s, t} in T
decomposes T in two subtrees inducing a minimum s-t-cut in the underlying
graph. The weight assigned to the deleted edge in T further corresponds to the



Clustering Evolving Networks 301

costs of the induced minimum s-t-cut. For two non-adjacent vertices u and v
in T , the minimum u-v-cut is given by a lightest edge on the path from u to v
in T . In order to obtain the final complete clustering, the artificial vertex q is
deleted from T , resulting in a set of subtrees inducing the clusters. Due to the
special properties of the minimum s-q-cuts that separate the resulting clusters,
Flake et al. are able to prove a guarantee (depending on α) of the intercluster
expansion and the intracluster expansion of the resulting clustering, which in
general is NP-hard to compute (cf. the cut-based quality measures introduced
in Sect. 1.2). The dynamic version of the cut-clustering algorithm determines
which parts of the current Gomory-Hu tree of Gα become invalid due to an
atomic change in G and describes how to update these parts depending on the
type of the atomic change. The result is a cut clustering of the current graph G
with respect to the same parameter value α as in the previous time step. The
most difficult and also (in theory) most time consuming type of an update is the
update after an edge deletion. However, in most real world instances the actual
effort for this operation is still low, as shown by an experimental evaluation on
real world data. We stress that there also exists another attempt [126,127] that
claims to be a dynamic version of the cut clustering algorithm of Flake et al.,
however, Görke et al. showed that this attempt is erroneous beyond straight-
forward correction. Doll et al. [48] further propose a dynamic version of the
hierarchical cut-clustering algorithm that results from varying the parameter
value α, as shown by Flake et al. [57].

Spectral Graph Clustering Methods. The main idea of static spectral graph clus-
tering is to find an r-dimensional placement of the vertices such that vertices
that form a cluster in an appropriate clustering with respect to a given objective
are close to each other while vertices that are assigned to different clusters are
further away from each other. This can be done by considering the spectrum of
a variation of the adjacency matrix, like for example the Laplacian matrix in
the context of the normalized cut objective [95]. More precisely, many desirable
objectives result in optimization problems that are solved by the eigenvectors
associated with the top-r eigenvalues of a variation of the adjacency matrix
that represents the objective. The rows of the n-by-r matrix formed by these
eigenvectors then represent r-dimensional coordinates of the vertices that favor
the objective. The final clustering is then obtained by applying, for example,
k-means to these data points.

The EvolSpec algorithm by Chi et al. [35] conveys this concept to a
dynamic scenario by introducing objectives that incorporate temporal smooth-
ness. Inspired by Chakrabarti et al. [32], the authors linearly combine snapshot
costs and temporal costs of a clustering at time step t, where the temporal costs
either describe how well the current clustering clusters historic data in time
step t − 1 or how different the clusterings in time step t and t − 1 are. For both
quality measures, they give the matrices that represent the corresponding objec-
tives, and thus, allow the use of these measures in the context of spectral graph
clustering.
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Ning et al. [111] show how to efficiently update the eigenvalues and the
associated eigenvectors for established objectives if an edge or a vertex in the
underlying graph changes. Compared to the static spectral clustering, which
takes O(n3/2) time, this linear incremental approach saves a factor of n1/2. An
experimental evaluation of the running times on Web-blog data (collected by
the NEC laboratories) confirm this theoretical result. The fact that the updates
yield only approximations of the desired values is not an issue, as further exper-
iments on the approximation error and an analysis of the keywords in the found
clusters show.

A concept that is closely related to spectral graph clustering is Low-rank
approximations of the adjacency matrix of a graph. Tong et al. [145] do not
provide a stand-alone community detection algorithm but a fast algorithm that
returns a good low-rank approximation of the adjacency matrix of a graph that
requires only few space. Additionally, they propose efficient updates of these
matrix approximations that may enable many clustering methods that use low-
rank adjacency matrix approximations to also operate on evolving graphs.

Modularity Based Algorithms. All dynamic community detection algorithms
based on explicit modularity optimization are modifications of one of three static
agglomerative algorithms that greedily optimize modularity.

The first of these static algorithms, commonly called CNM according to its
authors Clauset, Newman and Moore [37], is similar to traditional hierarchical
clustering algorithms used in data mining, such as single linkage [134]. Start-
ing from a singleton clustering, among all clusterings that can be reached by
merging two of the clusters, the one with the best modularity is chosen. This
is repeated until modularity cannot be further improved by merging any of the
clusters. Although modularity is an inherently global measure, the improvement
of the objective function after a merge operation can be easily calculated by only
considering the affected clusters. This means that the set of all possible merge
operations can be maintained in a heap, which leads to a total running time of
O(n2 log n).

Dinh et al. [45,47] evaluate a straightforward dynamization of the CNM
algorithm that works as follows. The graph at the first time step is clustered
with the static algorithm and the resulting clustering is stored. In the next time
step, we first incorporate all changes in the graph. Then, each vertex that is
either newly inserted or incident to an edge that has been modified is freed, i.e.,
it is removed from its cluster and moved to a newly created singleton cluster.
To arrive at the final clustering, CNM is used to determine if merging some
of the clusters can again improve modularity. The authors call this framework
“Modules Identification in Evolving Networks” (MIEN).

Independently, Görke et al. [70] build upon the same idea, but in a more gen-
eral setting, which results in the algorithm dGlobal. There are two variants
of this algorithm, the first one based on freeing vertices in the neighborhood
of directly affected vertices and the second one based on a backtracking proce-
dure. In the first variant, the subset of freed vertices can be all vertices in the
same cluster, vertices within small hop distance or vertices found by a bounded
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breadth first search starting from the set of affected vertices. In their experi-
ments, considering these slightly larger subsets instead of only directly affected
vertices improves modularity and yields a good tradeoff between running time
and quality. The second variant not only stores the clustering from the last
time step but the whole sequence of merge operations in the form of a den-
drogram. A dendrogram is a binary forest where leaves correspond to vertices
in the original graph and vertices on higher levels correspond to merge oper-
ations. Additionally, if a vertex in the dendrogram is drawn in a level above
another vertex, this encodes that the corresponding merge has been performed
later in the algorithm. Figure 3a shows an example of a dendrogram produced
by the static CNM algorithm whose resulting clustering consists of two clusters.
Storing the whole dendrogram across time steps makes backtracking strategies
applicable. To update the clustering for the next time step, the backtracking
procedure first retracts a minimum number of merges such that certain require-
ments are met, which depend on the type of change. In case an intracluster edge
has been inserted, the requirement is that its incident vertices are in separate
clusters after the backtracking procedure. If an intercluster edge is inserted or
an intracluster edge deleted, merges are retracted until both affected vertices
are in singleton clusters. If an intercluster edge is deleted, the dendrogram stays
unchanged. Afterwards, CNM is used to complete this preliminary clustering.

Bansal et al. [16] use a similar approach. Instead of backtracking merges in the
dendrogram, their algorithm repeats all merge operations from the last time step
until an affected vertex is encountered. Again, this preliminary clustering is com-
pleted with the static CNM algorithm. Figure 3 illustrates the difference between
the two approaches. Both studies report a speedup in running time compared to
the static algorithm, Görke et al. additionally show that their approach improves
smoothness significantly. In the experiments of Bansal et al., quality in terms of
modularity is comparable to the static algorithm, while Görke et al. even observe
an improvement of quality on synthetic graphs and excerpts of coauthor graphs
derived from arXiv. Görke et al. additionally compare the backtracking variant of
dGlobal to the variant freeing subsets of vertices; for the test instances, back-
tracking was consistently faster but yielded worse smoothness values.

Fig. 3. Example dendrogram and illustration of backtracking procedure by Bansal
et al. [16] and Görke et al. [70] in case an intracluster edge between the white vertices
is deleted.
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Fig. 4. Illustration of the Louvain method and the corresponding dendrogram. In the
left part, the depicted edge structures show the graphs before the vertex moves, while
the colored subsets depict the resulting clusters after the vertex moves on the particular
level.

The second static algorithm that has been modified for the dynamic scenario
is a local greedy algorithm often called Louvain method [22]. Similar to CNM,
the algorithm starts with a singleton clustering. Now, vertices of the graph are
considered in a random order. If there is at least one cluster such that moving the
current vertex v to it improves the overall modularity, v is moved to the cluster
that yields the maximal gain in modularity. This process is repeated in sev-
eral rounds until a local maximum is attained. Then, clusters are contracted to
supernodes and edges between clusters summarized as weighted edges, whereas
edges within clusters are mapped to (weighted) self loops. The local moving pro-
cedure is then repeated on the abstracted graph taking edge weights into account.
Contractions and vertex moves are iterated until the graphs stays unchanged.
Then, the clustering is projected down to the lowest level, which represents the
original graph, to get the final result. Figure 4 illustrates this procedure.

Among the modifications of the Louvain method to the dynamic scenario,
the one by Aynaud and Guillaume [13] is the most direct. In their study, instead
of the singleton clustering, the clustering from the last time step is used to
initialize the clustering on the lowest level. Using a dynamic network of webblogs,
they demonstrate that this modification improves smoothness significantly. In
terms of modularity, the modified version follows the static version quite well
and yields better quality than a reference algorithm based on random walks
called Walktrap [118]. The authors further propose to use a tradeoff between
modularity and smoothness by removing a fixed percentage of randomly chosen
vertices from their cluster in each time step, in order to give the algorithm more
freedom to perform necessary changes in the clustering.

An evolutionary version of the Louvain method is proposed by Görke
et al. [70], called tdLocal. Here, the clustering is again reinitialized by the sin-
gleton clustering in each time step. Inspired by Chakrabarti et al. [32], smooth-
ness is encouraged by optimizing a linear combination of modularity and the
graph based Rand index [41]. It is possible to optimize this modified objective
with the Louvain algorithm without increasing the asymptotic running time of
one round.
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In contrast to that, the algorithm QCA proposed by Nguyen et al. [108] is
a modification of the Louvain method based on local updates, i.e., a dynamic
clustering algorithm. Depending on the kind of change, the following case dis-
tinction is used. If a new vertex v is inserted, v is greedily assigned to a cluster
such that modularity is optimized, in the spirit of the original algorithm. In case
an intercluster edge between u and v is inserted, the algorithm first checks if u
or v can be moved to the other cluster such that modularity increases. If yes, it
checks if neighbors of the moved vertex can be moved as well. In case a vertex
is deleted, its cluster is potentially split by using a method similar to clique
percolation [42] restricted to the affected cluster. If an intracluster edge between
u and v is deleted in cluster C, where u and v have degree at least 2, the set
of maximal quasi-cliques within C is determined and the clustering completed
similar to static CNM. In all other cases, the clustering from the last time step
is left unchanged.

All of these approaches only maintain one clustering across time steps,
namely, the one that could not be improved in terms of modularity. This clus-
tering corresponds to the highest level in the dendrogram. In contrast to that,
Görke et al. [70] propose to store and possibly modify the whole dendrogram
during the course of the algorithm, which leads to the algorithm framework
dLocal. After all changes have been incorporated into the graph of the lowest
level (the original graph), all affected vertices, i.e., vertices that are either new or
incident to edge changes, are marked. Additionally, depending on some policy P ,
some vertices in their close neighbourhood are marked as well. The set of policies
evaluated in this study correspond to the aforementioned subset strategies evalu-
ated by Görke et al. [70] for dGlobal. This means, P can correspond to freeing
vertices within a small hop distance from affected vertices, vertices in the same
cluster and vertices found by a bounded breadth first search. Then, vertices on
the lowest level are greedily moved until modularity cannot be further improved.
Now, affected vertices in the second level of the dendrogram are marked, i.e.,
subclusters affected by lower level changes. Depending on P , again, some ver-
tices in their neighborhood are marked and possibly moved. This is repeated on
all levels. The current clustering can be found at all time steps by considering
the projection of the highest to the lowest level. Keeping the whole dendrogram
in memory instead of only its highest level yields the additional possibility to
merge and split clusters on intermediate levels and therefore increases the search
space used for local moving, which leads to possibly better quality. Compared to
the algorithm dGlobal, the experiments of Görke et al. do not give conclusive
results; which of these algorithms performs better depends on the structure of
the graph and its communities.

An approach that is very similar to dLocal is used in the algorithm A3CS
proposed by Nguyen et al. [44]. The main difference is that the lowest level of the
dendrogram is not computed and maintained by a local moving procedure but
by an algorithm similar to the static Low-degree Following Algorithm proposed
by Dinh and Thai [46]. This algorithm has the nice property to yield approxi-
mation guarantees for graphs with a perfect powerlaw degree distribution with
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a powerlaw exponent larger than 2. This property is inherited by the dynamic
algorithm A3CS. However, the clusters produced by this algorithm are quite
small, which is why it makes sense to additionally consider local moving (which
includes merging of clusters) on higher levels to further improve its practical
performance. Dinh and Thai compare A3CS to QCA and MIEN, with the result
that it dominates both with respect to running time and quality.

The third static algorithm for modularity based clustering, which lends
itself especially well to parallelization, is based on the contraction of match-
ings [124,131]. To effectively optimize modularity, edges are weighted based on
the gain in modularity corresponding to the merge of the two adjacent ver-
tices. Using these edge weights, a weighted matching is computed in a greedy
fashion, possibly in parallel [122]. Riedy and Bader [121] propose a dynamic
variant of this algorithm especially for the case of larger batch sizes, i.e., many
changes between consecutive time steps. Across the time steps, the current clus-
tering together with its community graph is stored. After incorporating the edge
changes in the community graph, all (elementary) vertices incident to newly
inserted intercluster or deleted intracluster edges are extracted from their com-
munity. Then, the matching based agglomeration is restarted from the modified
community graph. As the community graph is usually much smaller than the
original graph, this potentially saves running time.

Label Propagation/Diffusion. An algorithm that is not based on modularity,
but conceptually closely related to the Louvain method is Label propaga-
tion [119]. Label propagation can be seen as an algorithm greedily maximiz-
ing the number of edges within clusters by moving vertices, very similar to the
local moving procedure in the Louvain method. Obviously, the global optimum
with respect to the number of edges within clusters is trivial, as it corresponds
to assigning all vertices to one cluster. Hence, using local moving in a multilevel
scheme, as in the case of modularity maximization, does not make much sense.
Instead, one is interested in the local maximum obtained after local moving on
the original graph, which corresponds to the lowest level in the dendrogram.
Label propagation is very fast and lends itself well to parallelization [139].
Xie and Szymanski propose a modified version of this algorithm called Label-
Rank [153]. In contrast to the original Label propagation algorithm, each
vertex does not maintain one single cluster id or label, but instead a vector
of containment probabilities for each cluster currently existing in the graph.
Label propagation phases alternate with inflation and cutoff steps to decrease
the computational complexity and to make the differences in the particular vec-
tors more pronounced. To prevent the algorithm from converging too fast to the
(potentially uninteresting) static distribution, only labels of vertices are updated
that are sufficiently different from their neighbors. The output of the algorithm
can be interpreted as overlapping clusters with the additional information of
containment probabilities. This is why, although overlaps are resolved in a pre-
processing step by only considering the strongest label for each vertex, we list the
algorithm both among overlapping and non overlapping approaches in Table 1.
Both Label propagation and LabelRank have been modified to the dynamic
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scenario [114,152], roughly based on the idea to only update labels/label vectors
of vertices affected by changes in the graph. The dynamic version of LabelRank
is called LabelRankT.

A concept that is very similar to LabelRank and has been developed in
the context of graph partitioning is diffusion [73,97,98]. Similar to the above
algorithm, each vertex maintains a vector of size k indicating to which extent it
is connected to the vertices of each of the k clusters. The entries of these vectors
are called loads; loads are distributed through the network along the edges in
rounds, which explains the origin of the name diffusion. Based on this concept,
Gehweiler and Meyerhenke [61] propose a distributed graph clustering algorithm
called DiDiC, which is motivated by the task to cluster nodes of a peer-to-peer
based virtual distributed supercomputer. The weight of edges between nodes in
this network corresponds to the bandwidth between the associated peers. The
idea is to find clusters of highly connected peers that can be exploited to solve
a common task in parallel. In contrast to LabelRankT, they use a second
diffusion system drawing the loads associated with cluster i back to the vertices
in cluster i, which accelerates the formation of large, connected clusters. In the
first time step, the process starts with a random clustering and distributes the
load of each cluster to the vertices it contains. After the diffusion process has been
run for a certain number of rounds, clusters are reassigned such that each vertex
moves to the cluster from which it obtained the highest load value, leading to a
complete clustering. The algorithm is made dynamic by initializing the clusters
and load vectors with the values obtained in the previous time step, instead of
random initialization.

Generative Models. Another popular approach to clustering problems is the use
of generative models that assume the graph is randomly generated on the basis
of a hidden ground truth clustering. The goal is now to approximately recover
the hidden or latent clustering by looking for clusterings that are likely given
the observed outcome of this random process, which corresponds to the given
graph. Given conditional probabilities that estimate this likelihood and a prior
distribution over the set of all possible clusterings, the posterior probability of a
given clustering can be obtained via Bayes’ theorem. For conditional probabil-
ities, a common choice are stochastic block models [8,136,149], which generally
assume that the probability of a link between two vertices is determined by their
cluster membership. If the number of clusters is not provided as an input para-
meter, a popular choice as a prior distribution for the cluster assignments is the
distribution induced by the Chinese restaurant process [7] and its derivations.
The goal of maximum a posteriori (MAP) estimations is now to find solutions
with high posterior probability.

Among the few approaches based on these concepts that explicitly address
the issue of dynamic graphs are FacetNet [93] and the algorithm by Yang
et al. [156]. The goal of both approaches is to implicitly enforce smoothness
by choosing the prior distribution such that large changes in the clustering
between adjacent time steps are assumed to be unlikely. In contrast to tradi-
tional stochastic block models, FacetNet builds upon the model proposed by
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Yu et al. [157] that assumes “soft community membership”, i.e. vertices belong
to different clusters to more or less extent. This results in an overlapping clus-
tering. However, these clusters can easily be converted to a complete clustering
in a postprocessing step by assigning each vertex to the cluster it participates
in to the largest extent. For this reason and the fact that this is often done when
comparing complete clusterings to the clusterings produced by FacetNet, we
list the algorithm both under overlapping and non overlapping clusterings in
Table 1. In the generative model, the probability of a certain cluster assignment
at time step t depends on the cluster assignment at step t − 1. Depending on a
parameter ν, the transitions will be more or less smooth. It can be shown that
under certain assumptions, the MAP estimation of this model is equivalent to
the framework of Chakrabarti [32]. In this context, the Kullback-Leibler diver-
gence [82] between the observed weight matrix and an approximation of it based
on cluster assignments is applied as the snapshot cost and the Kullback-Leibler
divergence between the clustering at time step t and at time step t−1 as history
cost. For the inference step, an expectation maximization algorithm is used that
is guaranteed to converge towards a locally optimal solution of the correspond-
ing MAP problem. In the FacetNet framework, the number of clusters can
change over time. To determine the best number of clusters for each time step,
an extension of modularity to soft community memberships is proposed. In the
experimental part, synthetic and real world networks are used to evaluate the
performance of FacetNet and to compare it to its static counterpart as well
as a static and evolutionary (EvolSpec) version of spectral clustering [35,133].
With respect to quality, the FacetNet approach compares favorably.

In the algorithm of Yang et al., the number of clusters is given as input.
Given the hidden clustering at a certain time step, the conditional probability
for a link between two vertices is determined by the linking probabilities associ-
ated with their respective clusters. These linking probabilities are in turn random
variables such that their prior distribution causes higher linking probabilities for
intracluster edges. The whole generative model corresponds to a Bayesian net
where the latent variables associated with a certain time step depend on the
clustering from the last time step, a matrix A specifying the probability that
a vertex moves from a certain cluster to another in the current time step, and
the prior distribution for the linking probabilities between clusters. Again, the
prior distribution for A biases the moving probabilities in such a way that the
probability for each vertex to move to another community k is smaller than the
probability to stay in its own cluster, which implicitly biases the model towards
smoothness. The model can be generalized to weighted graphs in a straight-
forward way. For the inference step, the authors evaluate both the online and
the offline scenario. In the online scenario, the variables are sampled from time
step to time step using the observations seen so far. In the offline scenario, all
variables are sampled together by taking both past and future observations into
account. In both cases, a Gibbs sampler is used to infer the latent variables.
In the offline scenario, additionally, an expectation maximization algorithm
is proposed. These two variants are then compared against each other, static
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statistical blockmodels, and the dynamic algorithms EvolSpec and FacetNet
and their static counterparts. Experiments on synthetic and real world networks
suggest that the approach based on Gibbs sampling in combination with the
new generative model yields the best quality. It might be worth to mention
that the hyperparameters that influence the priors are tuned by considering the
modularity of the resulting clusterings.

Another generative approach has been used by Sun et al. [141] for their
algorithm Evo-NetClus. Similar to FacetNet, Evo-NetClus builds upon
soft community membership. In contrast to the models mentioned above, the
networks considered are assumed to contain vertices of multiple types, where
one of the types is defined as a special “center type”. Each edge is incident
to exactly one center type vertex; the authors call this star network schema.
As an illustrative example that also occurs in the experiments, the authors use
publication networks as for example DBLP1. Here, vertices of the center type
correspond to papers and the other types to authors, conferences and associated
terms. Again, the probability of the clustering of time step t is influenced by
the clustering at time step t − 1, favoring smoothness. The model incorporates
changing cluster numbers in each time steps that are not assumed to be input
parameters. For the inference step, an online Gibbs sampler is proposed. With
respect to quality, the authors compare their model to degenerated models that
do not take historical data or only a subset of types into account.

Further Approaches. In this category we list three approaches that do not fit
into any of the previous categories. The first approach considers a bicriterial
optimization problem while the former approaches focus on a single criterion,
the second approach is a general framework that allows to incorporate temporal
smoothness into basically every static clustering algorithm, and the third app-
roach claims that considering the input graph as a homogeneous structure where
in each region the same criteria for good clusters hold is not appropriate.

The approach of Kim et al. [80] is based on optimizing two different mea-
sures simultaneously in a bicriterial approach. Typically, the measures in bicri-
terial approaches are competing in the sense that one measure tends towards
the 1-clustering and the other towards the singleton clustering. The goal is to
approximate the pareto front, i.e., to find a set of clusterings that are not domi-
nated by other clusterings with respect to both criteria. Kim et al. use as criteria
(or fitness functions) a global version of MinMaxCut [43], which tends to the
1-clustering, and a global version of the silhouette index [125], which tends to
the singleton clustering. They approximate the pareto front by an evolution-
ary metaheuristic in a dynamic scenario using a locus-based representation of
clusterings [115], which is a vector of length n storing for each vertex exactly
one outgoing edge. The represented clustering then corresponds to the connected
components of the induced graph. The locus-based representation has the advan-
tage that different clusterings can be combined (crossed) in a meaningful way
by performing uniform crossover on the corresponding vectors, which means

1 http://www.informatik.uni-trier.de/∼ley/db/.

http://www.informatik.uni-trier.de/~ley/db/
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that each entry in the resulting vector is randomly taken from one of the parent
vectors. The dynamization is trivially done by initializing the population of the
current time step by the result from the last time step. Different evolutionary
metaheuristics are compared with respect to both criteria on a dynamic graph
representing YouTube videos.

While the former approach uses evolutionary metaheuristics, which have
nothing to do with evolutionary clustering according to Chakrabarti et al. [32],
the next approach is again an evolutionary clustering approach. In contrast to
other evolutionary clustering approaches, which most often incorporate tempo-
ral smoothness into a particular clustering algorithm, the framework introduced
by Xu et al. [154] can be applied with any static clustering method. In their
publication the authors use the normalized cut spectral clustering approach by
Yu and Shi [158]. Although the idea of Xu et al. is inspired by Chakrabarti et
al., the main difference is that they do not incorporate temporal smoothness
by optimizing a linear combination of snapshot quality and history quality, but
adapt the input data for the chosen clustering algorithm based on the commu-
nity structure found in the previous snapshot. This adaption is done as follows.
The adjacency matrices of the snapshots are considered as realizations of a non
stationary random process which allows to define an expected adjacency matrix
for the current snapshot. Based on this expected matrix a smoothed adjacency
matrix can be approximated that also takes into account the previous time step.
The smoothed adjacency matrix is a convex combination of the smoothed adja-
cency matrix of the previous time step and the actual adjacency matrix of the
current time step. The parameter that balances the two terms of the convex
combination is estimated such that it minimizes a mean squared error criterion.
The chosen clustering algorithm is then applied to the estimated smoothed adja-
cency matrix, thus incorporating temporal smoothness to stabilize the variation
of the found clusters over time.

All the above clustering approaches use the same objective for the whole
graph to get good clusterings. In this way these approaches consider the input
graph as homogeneous structure, regardless whether parts of the graph are
sparser than others, and thus, possibly require another notion of density for
reasonable communities than denser parts. Wang et al. [84] follow Aggarwal et
al. [3] who claim that considering networks as homogeneous structures is not
an appropriate attempt. This is why Wang et al. introduce patterns describing
homogeneous regions that are consolidated in a second step to generate non
overlapping clusters. In contrast to density, which depends on the number or
the weight of edges within a subgraph or cluster, homogeneity means that all
vertices in a pattern have similarly weighted neighbors. In order to efficiently
compute the patterns in a dynamic scenario, the authors maintain, by incre-
mental updates, a top-k neighbor list and a top-k candidate list as auxiliary
structures. These updates are able to deal with atomic changes as well as with
several changes (of vertices and edge weights) in one time step. In compari-
son with FacetNet [93] and the evolutionary clustering method by Kim and
Han [81], experiments on the DBLP, the ACM and the IBM data set prove a
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better processing rate (number of vertices processed per second) and a better
accuracy of the found clusterings in locally heterogeneous graphs.

Summary. To provide a summary of all algorithms described in this section,
Table 1 lists some of their basic properties. These include whether the authors
aim at running time or smoothness, or both, and if the resulting clusterings are
overlapping or not. If applicable, we further give a reference to an existing static
algorithm the approach is based upon. Among the algorithms we considered, the
majority focuses on the task of finding non overlapping clusters. Interesting is
that the number of algorithms aiming at low running time is almost the same as
the number of algorithms aiming at smoothness; only very few algorithms take
both into account. Note that an entry in the table indicating that an algorithm
does not aim at low running time or smoothness does not indicate that the
algorithm is slow or produces unsmooth clusterings; it just signifies that this
aspect was neither considered in the conception of the algorithm nor evaluated
in the experiments. In general, it is expected that smoothness and running time
go together quite well, as the use of local updates often improves both of these
aspects.

3 Data Sets

Often, researchers developing new or enhanced algorithms are faced with the
question which data sets to use to illustrate the advantages and validity of
their approach. In the context of clustering evolving graphs, the data needs to
have some temporal aspects and, ideally, should come with some well-motivated
ground truth clustering. Additionally, using data that has been previously used
in the literature makes the comparison to other methods less cumbersome. To
simplify the search for suitable test data, this section aims to give an overview
on what kind of data sets have been used in current publications regarding the
clustering of evolving graphs. In the first part, we concentrate on real world
instances, i.e., instances that correspond to data collected from observed rela-
tionships between objects or persons. In the second part, we briefly talk about
models and generators for evolving networks, with a special focus on synthetic
data incorporating a hidden ground truth clustering.

3.1 Real World Instances

Most networks described in this category are based on human interaction and
can therefore be classified as social networks in the wider sense. We tried to
assign them to more fine grained subcategories depending on their structure and
interpretation.

Email networks. One of the few publicly available networks corresponding to
social interaction and containing both time information and additional metadata
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is the Enron email dataset2. It represents the email exchange of employees of
the Enron Corporation and was made public during the legal investigation con-
cerning the Enron corporation. According to the information given on the above
mentioned website, the dataset contains about 600000 emails belonging to 158
users. Note that the total number of distinct email addresses in the data is much
larger, as also emails to and from non-Enron email addresses are recorded. In
most network representations of the dataset, employees are modeled as vertices
and two vertices are connected by an edge if and only if the dataset contains an
email between the two corresponding employees. Since the data also distinguishes
between sender and recipient, edges are sometimes directed. Furthermore, the
emails of a certain time period are often aggregated in one snapshot. This may
result in multiple edges or in weighted edges representing the frequency. Hence,
depending on the concrete modeling, different authors refer to quite different
dynamic graphs as “the Enron network”, which makes comparisons between the
experimental findings rather difficult. This is also the case for static data sets;
however, due to even more degrees of freedom, for example the frequency of
time steps or the question whether relations age and disappear over time, this
is even more immanent in the case of dynamic data. Takaffoli et al. [144] choose
monthly snapshots over one year, which considerably decreases the number of
vertices and edges in the network. As a kind of ground truth clustering, they
identify “persisting topics” based on keyword extraction. Duan et al. [49] and
Dinh et al. [47] and Dinh et al. [108] consider emails on a weekly basis and
do not consider any metadata. The Enron dataset has also been used in the
evaluation of GraphScope [140]; however, there the data is considered as a
directed and bipartite graph, where one part corresponds to senders and the
other to receivers of emails. Görke et al. [70] did not consider Enron data, but
an anonymized network of e-mail contacts at the department of computer sci-
ence at KIT. It comprises about 700000 events collected over a period of about
2.5 years3. As metadata, it includes an id for each email address specifying the
corresponding chair, which can be considered as ground truth clusters.

Cellphone Data. Very similar to email networks are data about phone calls. Palla
et al. [113] cluster a network of phone calls between the customers of a mobile
phone company containing data of over 4 million users. They consider edges to
be weighted; a phone call contributes to the weight between the participating
customers for some time period around the actual time of the call. As metadata
to evaluate their community finding approach, they consider zip code and age of
customers. Similar data is considered by Green et al. [74], however, they do not
consider edge weights. The Reality MiningDataset [50] is provided by the MIT
Human Dynamics Lab4 and was collected during a social science experiment in
2004. It includes information about call logs, Bluetooth devices in proximity, cell

2 Available at http://www.cs.cmu.edu/∼enron/.
3 For further details and for downloading the whole dataset, please visit http://

i11www.iti.uni-karlsruhe.de/en/projects/spp1307/emaildata.
4 http://realitycommons.media.mit.edu/realitymining.html.

http://www.cs.cmu.edu/~enron/
http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/emaildata
http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/emaildata
http://realitycommons.media.mit.edu/realitymining.html
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tower IDs, application usage, and phone status of 94 subjects over the course
of an academic year. In the context of dynamic graph clustering, it is possible
to extract test data in various ways. Xu et al. [154] construct a dynamic graph
where the edge weight between two participants in a time step corresponds to the
number of intervals in which they were in close physical proximity. As ground
truth clustering, they use the affiliations of the participants. Sun et al. [140]
additionally consider the cellphone activity to construct a second dynamic graph.

Online Social Networks and Blogs. Another prime example of social networks
are online social networks like Facebook or Flickr. In the context of clustering
algorithms, they are particularly interesting due to their size and the fact that
friendship links are explicit and not implicitly assumed with the help of other
metadata. Viswanath et al. [147] crawled the regional network of Facebook in
New Orleans. Only data from public profiles is collected, giving information
about approximately 63000 users and 1.5 Mio. friendship links, together with
their evolution. Nguyen et al. [108] and Dinh et al. [44] use these data to evalu-
ate their clustering algorithms. Kumar et al. [83] analyze data from Flickr5 and
Yahoo! 360◦. Whereas Yahoo! 360◦ was a typical social network that does not
exist anymore, Flickr has a focus on the sharing of photos, although friendship
links exist as well. Both datasets are used by the authors in anonymized form and
are not publicly available. Closely related to online social networks are networks
derived from blogging platforms; here, the edges correspond to entry-to-entry
links between different blogs [13,93,111,156]. Angel et al. [9] use sampled data
obtained via Twitter’s restricted access to its data stream6. LiveJournal7 is some-
where in between a network of blogs and an online social network. Interesting is
that users can explicitly create friendship links as well as join groups. In contrast
to the usual way dynamic networks are build from blogs, edges do not neces-
sarily correspond to links but can also depend on friendship links. Backstrom
et al. [14] study the evolution of communities in LiveJournal using friendship
links as edges and group membership as (overlapping) ground truth clustering.

Publication Databases. Publication databases can be used to extract dynamic
graphs in several ways. Probably the most common approach is to consider
coauthor graphs, in which vertices correspond to authors, and two authors are
linked if they coauthored at least one publication. Depending on the model,
edges are weighted in different ways depending on the number of shared pub-
lications and the number of authors on each publication. An orthogonal view
on the data yields copaper networks where vertices correspond to papers and
links exist if papers have at least one author in common. Both of these network
types are simplifications of bipartite author-paper networks that relate authors
to their articles. Another possibility is to not take authorship into account but
insert (possibly directed) links between articles if one article cites the other,

5 http://www.flickr.com/.
6 https://dev.twitter.com/docs/streaming-apis#sampling.
7 http://www.livejournal.com/.

http://www.flickr.com/
https://dev.twitter.com/docs/streaming-apis#sampling
http://www.livejournal.com/
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leading to citation networks. It is commonly believed that clusters in all of these
networks correspond to different research topics or fields. Due to the fact that
publication data is typically not subject to any privacy concerns and their size
is reasonably large, they are often used in the evaluation of graph clustering
algorithms [11,13,14,16,44,47,49,70,93,108,141,143,152]. Another advantage is
that information about conferences and journals the articles appeared in can be
used as metadata to evaluate the resulting clusterings. The temporal aspect in
the data stems from the fact that each publication has an associated publication
year. The two most often considered databases in the context of clustering are
DBLP and arXiv. DBLP collects information about publications in the field of
computer science; information about how this data can be downloaded as an xml
file can be found on the corresponding homepage8. The arXiv e-print archive9

is a repository that stores electronic e-prints, organized in several categories
alongside time stamped metadata. To evaluate their dynamic graph clustering
framework, Görke et al. [70] used a dataset obtained from this repository, which
can be found, together with the source code of the crawler used to extract this
data, on the corresponding project page10. The KDD cup 2003 also provides
further arXiv datasets on its project page11; these have been used to evaluate
algorithms in the context of modularity based clustering [44,47,108].

Small Examples. Many publications about static graph clustering include the
analysis of small networks to illustrate some properties of the clusterings pro-
duced by their algorithm. A famous example for that is the karate network
collected by Zachary in 1977 [159], which describes friendship links between
members of a karate club before the club split up due to an internal dispute;
a typical question is whether a clustering algorithm is able to predict the split
given the network structure. Usually these networks are small enough to be
visualized entirely in an article, which enables readers to compare different clus-
terings of these networks across several publications. The closest evolving analog
to Zachary’s karate network is the Southern Women data set collected in 1933 by
Davis et al. [40]. It contains data on the social activities of 18 women observed
over a nine-month period. Within this period, they recorded for 14 informal
events whether these women participated or not. It has been used as a test set
by Berger et al. [18], Berger-Wolf and Saia [19], and Yang et al. [156]. Another
interesting small example is Grevi’s zebra data set [142] used by Berger et al. [18].
It consists of information about the spatial proximity of members of a zebra herd
observed over three months, corresponding to 44 observations or time steps.

Other Data Sets. In the following, we will list some further sources for dynamic
graph data already used to evaluate dynamic graph clustering algorithms.
Xie et al. [152] have used graphs representing the topology of the internet at

8 http://www.informatik.uni-trier.de/∼ley/db/.
9 http://arxiv.org/.

10 http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/dyneval.
11 http://www.cs.cornell.edu/projects/kddcup/datasets.html.

http://www.informatik.uni-trier.de/~ley/db/
http://arxiv.org/
http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/dyneval
http://www.cs.cornell.edu/projects/kddcup/datasets.html


Clustering Evolving Networks 315

the level of autonomous systems (AS Graphs) based on data collected by the
University of Oregon Route Views Project [92]. These data are available from
the Stanford Large Network Dataset Collection12. Xu et al. [154] try to iden-
tify communities of spammers in data from Project Honey Pot13, an ongoing
project to identify spammers. Sun et al. [141] use data extracted from the social
bookmarking web service Delicious14, which naturally comes with a plenitude
of metadata. Kim et al. [80] use data from youtube crawls15 in their evaluation.
Pang et al. [114] cluster a dynamic network of players of World of Warcraft,
where edges are based on the information whether they take part in the same
group.

Static Networks with Artificial Dynamics. Apart from real world data with a
naturally given temporal evolution, it is also possible to artificially incorporate
some dynamics into originally static data. Riedy et al. [121], for example, consider
static real world networks that become dynamic by generating random edge
deletions and insertions.

3.2 Dynamic Graph Generators

Depending on the aim of designing a certain clustering algorithm, there are good
reasons to use synthetic data as well as good reasons to use not only synthetic
data for the evaluation. Synthetic data refers to graphs that are artificially gen-
erated by the help of a graph generator. Given a number of vertices, these gen-
erators decide which vertices are connected by an edge based on the probability
of such an edge. The edge probabilities are derived for example from a prefer-
ential attachment process [17], where vertices that already have a high degree
are connected with higher probability than others, or from other rules that are
characteristic for the particular generator. In the context of evolving graphs,
graph generators usually not only have to decide which vertices are linked but
also which vertices or edges are added or deleted. Furthermore, if the generator
incorporates a hidden ground truth clustering, this usually evolves randomly as
well, which in turn influences edge probabilities.

One reason to include real world instances, i.e., instances that stem from typ-
ical applications, in the experimental evaluation is that they frequently exhibit
very specific properties and symmetries that are difficult to analyze and rebuild
in synthetic data. Hence, to predict the performance of an algorithm in a certain
application, using only synthetic data is unrewarding, since experiments involv-
ing sample instances stemming from this application are often more accurate.

This raises the question of why to use synthetic data at all. There are some
good arguments that justify the use of synthetic data, at least together with real
world data:

12 http://snap.stanford.edu/data/index.html.
13 http://www.projecthoneypot.org/.
14 https://delicious.com/.
15 http://netsg.cs.sfu.ca/youtubedata/.

http://snap.stanford.edu/data/index.html
http://www.projecthoneypot.org/
https://delicious.com/
http://netsg.cs.sfu.ca/youtubedata/
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– Tunable characteristics, as for example the density of the generated graphs,
allow to evaluate algorithms in detail depending on these characteristics.
A scenario where this can be useful is when an algorithm yields good results for
some networks but bad results on others. A study on a large set of generated
graphs might help to identify characteristics of the graph that are difficult
to handle for the algorithm, which in turn might raise some potential for
improvements.

– Synthetic graphs can usually be generated in any possible size, even very large
networks that might not (yet) exist in practice. This is especially useful in the
context of scalability studies.

– Using a graph generator, an unlimited number of different networks with sim-
ilar properties can be generated, preventing algorithms to focus only on very
few benchmark instances. This permits to test algorithms on a representa-
tive sample of the graph class one is interested in, ensuring some degree of
significance.

– In particular in the context of graph clustering, there is another reason why
synthetic networks are quite popular. Since there is no general agreement on a
single objective function evaluating the goodness of the clustering, a common
approach to evaluate graph clusterings independent of any objective function
is the comparison to a known ground truth clustering. The downside of this is
that real world graphs with a well-motivated ground truth clustering are still
rare. For this reason, synthetic networks incorporating a hidden ground truth
clustering that has been used in the generation process are popular.

In the following, we aim to give a short overview of models for synthetic
graphs that might be useful in the context of clustering evolving networks. We
start with some models especially suited for complex networks that can for exam-
ple be derived by observing human interaction, with a particular focus on models
that try to explain their evolution. In the second part, we give an overview on
synthetic benchmark instances that incorporate a hidden ground-truth cluster-
ing, together with existing approaches to make these benchmarks dynamic.

Probably the most fundamental model for synthetic graphs are graphs where
every edge exists with a fixed, constant probability, as first considered by
Gilbert [62] in 1959. Until then, a lot of effort has been put into alternative
models that better capture the properties of real world complex networks which
typically exhibit characteristics like small diameter, high clustering coefficient
and a powerlaw degree distribution [104]. Two classical models are small world
networks [151] that explicitly address the first two issues and the Barabási-Albert
model [17] that mostly addresses the degree distribution. The latter can be seen
as a dynamic model for graph growth according to a preferential attachment
process. Numerous variations thereof exist, most of which are targeted in captur-
ing more accurately properties observed in real world social networks [83,92,146].
Leskovec et al. [91] determine automatically, among a set of parameterized mod-
els, the one fitting a set of four large online networks best based on the associated
likelihood values. Similarly, Patro et al. [116] propose to use an evolutionary algo-
rithm to choose among a set of parameterized models of network growth the one
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fitting a given set of input characteristics best, in order to automatically learn
the best model for different graph classes.

Although these models incorporate network growth and already reflect com-
mon properties of observed complex networks as for example online social net-
works very well, they do not come with a well motivated inherent ground truth
clustering that can be used to evaluate clustering algorithms. An exception to
this is the model by Zheleva et al. [161] that is especially targeted at modeling
the growth of social networks where vertices can additionally choose to enter
special groups of interest. Here, the assumption is that both the network and
the group structure evolve simultaneously, influencing each other. It might be
possible to use the group structure chosen by the vertices as a ground truth
clustering for overlapping clusters, although the group structure is correlated
to the network only to a certain extent. In the model of Bagrow [15], starting
from a graph generated according to preferential attachment, edges are randomly
rewired to incorporate a given ground truth clustering. While this approach com-
bines a ground truth clustering with a realistic degree distribution, the evolution
stemming from the preferential attachment process is lost.

For static graph clustering, two synthetic benchmark sets have been used
very frequently in the literature; the GN benchmark introduced by Girvan and
Newman [63] and the LFR benchmark introduced by Lancichinetti et al. [87].
The GN benchmark is based on the planted partition model [26,38,60], also
called ad hoc model, that takes as input a given ground truth clustering and two
parameters pin and pout that correspond to the linking probabilities between
vertices within the same or different clusters. Typically, the GN benchmark is
used to determine how well an algorithm is able to recover the ground truth
clustering, depending on the gap between pin and pout. The planted partition
model has been generalized to weighted [56] and bipartite [75] graphs as well as
hierarchical [162] and overlapping [129] ground truth clusterings. Closely related
are relaxed caveman graphs [5,150]. Among the dynamic graph clustering algo-
rithms described here, FacetNet [93], the approaches by Yang et al. [156] and
Kim and Han [81], and the algorithm framework by Görke et al. [70] have been
evaluated with the aid of planted partition graphs. The former two evaluations
use graphs from the GN benchmark and introduce dynamics based on vertex
moves; in each time step, a constant fraction of vertices leave their cluster and
move to a random one. Kim and Han additionally consider a dynamic network
that also incorporates the forming and dissolving of clusters and vertex addition
and deletion. In contrast to that, Görke et al. use a custom graph generator
based on the planted partition model that introduces dynamics by splitting and
merging clusters in the ground truth clustering [72]. In each time step, one edge
or vertex is added or deleted according to the probabilities prescribed by the
current ground truth clustering. Hence, the actual graph structure follows the
ground truth clustering with some delay. They also provide an efficient imple-
mentation of this generator [69].

In the LFR benchmark, cluster sizes as well as vertex degrees are expected to
follow a power law distribution. Similar to the planted partition model, vertices



318 T. Hartmann et al.

share a certain fraction of their links with other vertices in their cluster and
the remaining links with random vertices in other parts of the graph. The LFR
benchmark has been generalized to weighted and directed graphs, as well as to
overlapping clusters [85]. Among the clustering algorithms described in Sect. 2,
Dinh et al. [44] have used a modification of this benchmark to a dynamic setting,
whereas Cazabet et al. [30] only use it in a static scenario. Green et al. [74] use
dynamic benchmarks based on LFR graphs that incorporate different cluster
events, including membership switching, cluster growth, shrinkage, birth and
death, and the merge and split of clusters. After the ground truth clustering has
been adapted, a new random graph is drawn according to the mechanisms of the
LFR benchmark, which results in large differences between adjacent timesteps.

Aldecoa and Maŕın [6] finally suggest to interpolate between two graphs with
a significant clustering structure by rewiring edges at random. This is proposed
as an alternative to benchmarks like the GN or LFR benchmark in the context
of static clustering algorithms. Here, the assumption is that clusterings of the
intermediate states of the graph during the rewiring process should have low
distance to both the ground truth clustering of the initial and the final state.
The rewiring process could be seen as a model for community evolution. In the
context of tracking clusterings over time, Berger et al. [18] do not consider models
for dynamic graphs but two scenarios for the evolution of clusters that are more
sophisticated than random vertex moves or cluster splits and merges. It remains
to mention that, in principle, all generative models used to infer clusterings
via a Bayesian approach discussed in Sect. 2 might also be used as benchmark
instances, as they naturally come with a dynamic ground truth clustering.

3.3 Summary

Nowadays, a lot of large real world networks have been collected and made
available by projects like the Stanford Large Network Dataset Collection16. One
problem in the context of evaluating clustering algorithms for evolving networks
is that even if the original data itself has a temporal aspect, this information
is often missing in the thereof constructed networks readily provided in many
benchmark sets. On the other hand, the listing in Sect. 3.1 reveals that there
is no real lack of dynamic data that is publicly available. A downside of these
data is that converting them to dynamic graphs is often laborious and leaves
many degrees of freedom. As discussed in the context of the Enron network,
data from the same origin can lead to quite different dynamic graphs, depending
on the design choices taken. This makes the comparison of results across different
publications cumbersome. For static graph clustering, a set of very frequently
used networks mostly taken from the websites of Newman17 and Arenas18 gained
some popularity in the orbit of modularity based methods. It would be nice to
have a similar set of common benchmark graphs that are evolving over time.

16 http://snap.stanford.edu/data/.
17 http://www-personal.umich.edu/∼mejn/netdata/.
18 http://deim.urv.cat/∼aarenas/data/welcome.htm.

http://snap.stanford.edu/data/
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http://deim.urv.cat/~aarenas/data/welcome.htm
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A related issue arises in the context of synthetic benchmarks that incorporate
a ground truth clustering. Although a lot of publications about the static case
exist, there is still no general agreement on how to make these data dynamic and
what realistic dynamic changes in the ground truth clustering might look like.

4 Conclusion

Clustering evolving networks is at least as difficult as clustering static networks
since it inherits all the difficulties from the static case and is further faced with
additional problems that arise from the evolution of the considered networks. The
difficulties inherited from static graph clustering are the many different ideas of
what a good clustering is and what a good clustering algorithm is supposed to
do, as well as the absence of approved benchmark instances to evaluate and com-
pare the performance of clustering algorithms. Additional tasks arise whenever
we seek for temporal smoothness or want to detect and visualize the evolution of
clusters over time. Among the vast number of algorithms designed for detecting
clusters in evolving graphs, in this survey we only considered graph clustering
approaches in online scenarios with an algorithmic focus on the exploitation of
structural information from previous time steps. We presented several state-of-
the-art algorithms in different categories and summarized the main features of
these algorithms in Table 1. As a first step towards common benchmark sets for
the evaluation of clustering algorithms also in evolving networks, we explicitly
listed data and graph generators that were used by the authors of the publi-
cations presented in this survey. With this list we aim at viewing the variety
of available data and providing a collection to other authors in order to help
them finding reasonable test instances for their particular algorithm. Further-
more, we discussed tasks like cluster mapping, event detection and visualization,
which make the found cluster information beneficial for further analysis. We
gave a brief overview on state-of-the-art approaches solving also these problems
and gave some further references where the reader can find more information
regarding these issues.
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135. Š́ıma, J., Schaeffer, S.E.: On the NP-completeness of some graph cluster measures.
In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM
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Abstract. A huge number of problems in production planning ask for a
somewhat good processing sequence. While all those problems share the
common sequencing aspect, the underlying side constraints, and hence,
the related scheduling decisions, are highly problem-specific. We propose
a generic algorithmic framework which aims at separating the side con-
straints from the general sequencing decisions. This allows us to only
focus on the optimization problem that remains when the processing
sequence is already decided—in many cases yet another NP-hard prob-
lem. Compared to the overall problem, this subproblem is far more man-
ageable. In cooperation with industry, our approach has been applied
to problems of planning (sheet metal) coil coating lines and dairy filling
lines, respectively. For the subproblem of the coil coating problem, we
could observe a close relation to the maximum weight independent set
problem on a special class of multiple-interval graphs. Thorough insights
into this problem were finally the basis for achieving a makespan reduc-
tion of over 13% on average for the coil coating line of our industrial
partner. For the less complex dairy problem, our solutions were on par
with the manual production plans in use at the production site of our
project partner. We could show that this solution is almost optimal, i.e.,
within a factor of 1.02 times a lower bound.

1 Introduction

During the industrial revolution in the late 19th century, production processes
were widely reorganized from individual manufacturing to assembly line produc-
tion. The high efficiency of this new concept helped to drastically increase the
productivity so that nowadays, it is one of the standard manufacturing concepts
in several branches of industry. While over the years, assembly lines improved and
got technically more advanced, production planning at the same time became
more and more complex. The awareness for the central importance of elaborate
schedules, though, raised only slowly. Still, surprisingly many companies do not
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exploit the full potential of their production lines due to suboptimal planning. It
is not unusual that even today production plans are designed manually without
any support of planning or optimization tools. Of course, this does not neces-
sarily imply poor plans. On the contrary, due to the long-term experience of the
planners, these schedules have very often an impressive quality. However, if the
problem becomes too complex it is basically impossible for a human being to
oversee the problem as a whole, and hence, to manually produce good plans.

The addressed complex scheduling problems share major problem charac-
teristics. One of the most central components is the sequencing aspect which
arises naturally from the architecture of assembly lines. Due to complex side
constraints, however, the overall scheduling problem usually goes far beyond
basic sequencing problems known from theoretic literature. In most of the cases,
the actual processing sequence is just one of many strongly interdependent deci-
sions. Once a sequence is chosen, still certain allocations have to be made—e.g.,
the allocation of resources or the assignment of time slots for work related to
security regulations. Such decisions may depend not only on pairs of adjacently
scheduled jobs but also on whole subsequences or even the entire sequence in the
worst case. As a consequence, the quest for a good processing sequence can only
be answered accurately by taking into account the ensuing allocation problem
as well.

Currently, for most of those problems (sufficiently fast) exact algorithms
are out of reach. Computationally expensive heuristics are usually also not an
option, since planning tools are utilized on a daily basis, and for this reason
underlie strict runtime limits. When designing simple heuristics, on the other
hand, one is often faced with problems stemming from tangled constraints. Often,
the sequencing is tailored to only some of the many side constraints, leading in
the end to rather poor results.

In this paper, we investigate a generic integrated approach which aims to
avoid these difficulties. Based on a black box sequence evaluation, the algorithm
elaborately examines a large number of processing sequences. In this way, the
highly problem specific allocation problem is separated from the problem unspe-
cific sequencing task. From a user’s perspective, this allows to solely focus on
the allocation problem which is usually far more manageable than the overall
scheduling problem. This makes the approach very user-friendly, and, as we will
see in examples in the following sections, also very successful. As a nice side
effect, the approach generates not only one but several good solutions such that
expert planners can take the final decision according to criteria possibly not even
covered by the actual model. Since it is unlikely to provide a priori performance
guarantees, we assess the performance of the algorithms via instance-based lower
bounds.

Before addressing related algorithmic challenges, we will first give an idea
of what different planning problems and the underlying allocation problems
look like.

Automotive Industry. The automotive industry is one well-known example for
assembly line production. Cars are usually manufactured while hanging or lying
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on assembly belts. Due to the constant speed of the lines, and hence, the lim-
ited time for each working step, it is not possible to install certain options like
sunroofs or special navigation devices at every car in the sequence but only
at a certain fraction. Violations of the constraints are measured by a penalty
function, representing the cost for additional workers required or the additional
time needed. This is a classic problem introduced in [29] already in the 1980s. It
has prominently attained attention when being addressed in the 2005 ROADEF
Challenge1 in cooperation with Renault. The results of this competition are
summarized in [33]. In this problem, the underlying allocation problem is trivial.
Once the processing sequence is chosen, only the penalty cost needs to computed,
and no further decisions have to be taken.

Food-Processing Industry. The food industry is characterized by a large and still
increasing variety of products which is especially noticeable at the last produc-
tion stage, the packaging or filling lines. Here, due to special company labels,
different destinations or packet sizes, one base product again splits up into several
subproducts. This makes the last stage very often the bottleneck of the whole
production. As a result of the large number of products, (sequence-dependent)
setup operations play a central role in production planning. Focusing only on
this aspect, the problem of computing a minimum setup processing sequence can
be formulated as Asymmetric Traveling Salesman Problem (ATSP). However,
there are usually additional side constraints that make the problem much more
complex than ATSP. In most of the cases, this results in non-trivial allocation
problems. Classic constraints in this area stem from the limited shelf-life of the
products or from hygiene regulations. An overview of typical constraints in food
industry and at packaging lines, respectively, can be found in e.g., [2,36]. Addi-
tional problem-specific constraints from cheese, ice cream or dairy production
are discussed in [8,19,20].

Steel Industry. The final branch of industry we want to use as illustrations is
steel industry. It provides complex sequencing problems at almost every stage of
production. Some of many examples where such problems occur are the strand
casting process as one of the first production stages, the hot and cold rolling mills
later on, and the coil coating lines at the very end; see e.g., [7,9,34]. A classic
constraint that appears in many of the related scheduling problems is the so
called coffin shape. It asks for an ordering of the items so that their width
slightly increases for the first few items and decreases afterwards. The reasons
for demanding this is that the slabs or coils are grooving the used rollers at their
borders, and hence, scheduling the items in the wrong order would lead to visible
grooves on subsequent items. Consequently, if the items are not processed in a
coffin shape manner, the roller needs to be replaced which delays the further
production. There are similar ordering criteria with respect to other characteris-
tics, which in total lead again to an ATSP-like subproblem (if ignoring the initial
increase of the width in the coffin shape). Still, similar to the problems from food

1 http://challenge.roadef.org/2005/en/.

http://challenge.roadef.org/2005/en/
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industry, there are usually further side constraints that go far beyond ATSP. A
class of such constraints is due to the temperature of the processed items which
plays a crucial role in many production steps. To avoid the items cooling down
too much, it is necessary to limit the waiting times between different processing
stages, and hence, it may be necessary to take into account preceding stages
when planning.

When implementing the generic algorithmic approach for a concrete problem,
the most elaborate part is usually the design of algorithms for the allocation
problem which—to serve as a proper subroutine—have to be sufficiently fast.
Due to the large number of sequence evaluation calls, we cannot afford allocation
algorithms with more than linear or quadratic runtime. In many cases, this
permits again only heuristics. Their quality goes very often hand in hand with
a good understanding of the problem, not only from the experimental but also
from the theoretical perspective. Structural insights gained in the analysis can
provide essential ideas for the design of algorithms.

Organization of the Paper. In the remainder of this section, we first formally
define the considered class of integrated sequencing and allocation problems,
and then discuss related work. In Sect. 2, we present the generic algorithmic
framework for solving problems from this class. The approach is applied to two
exemplary problems from steel industry and dairy industry in the Sects. 3 and 4,
respectively. Finally, in Sect. 5, we give an outlook on a problem setting where the
focus is more on social fairness rather than on maximizing the total throughput.

1.1 Abstract Problem Formulation

Encapsulating the structure of the examples given above, we consider basic
(ATSP-like) sequencing problems with integrated abstract resource allocation
for generated sequences. The latter can be seen as a scheduling problem for
a fixed sequence of jobs. However, in order to distinguish it from the overall
problem, which we refer to as scheduling problem, the term allocation problem
is used instead. Even though our approach is not limited to a certain objective,
the two major problems discussed in this paper address the makespan objective,
i.e., the maximum completion time among all jobs which serves as a measure for
the throughput. At an abstract level, we can formally describe the considered
scheduling problem (with respect to the makespan objective) as follows, and we
give an brief outlook on other objectives in Sect. 5.

Integrated Sequencing and Allocation Problem. Consider a set of n jobs J :=
{1, 2, . . . , n} with processing time pj > 0 for job j ∈ J , additional job characteris-
tics, and sequence-dependent setups of length sij ≥ 0 for any pair i, j ∈ J . Then,
given a set of cost functions cπ : Aπ → R≥0 for any permutation of jobs π∈Πn

where Aπ denotes the set of feasible allocations for π, the task is to compute a



334 W. Höhn and R.H. Möhring

minimum makespan schedule. A schedule consists of a sequence π ∈ Πn and an
allocation A(π) ∈ Aπ for sequence π, and its makespan is given by

Cmax(π,A(π)) =
∑

j∈J

pj +
n−1∑

j=1

sπ(j)π(j+1) + cπ(A(π)) .

The term
∑n−1

j=1 sπ(j)π(j+1) + cπ(A(π)) is referred to as cost of the schedule.
We typically assume that the allocation problem involves decisions that

incorporate not only neighboring jobs but also larger parts of the processing
sequence π. Consequently, also the additional allocation cost cπ(A(π)) will be
non-local in this sense. In contrast, the term

∑n−1
j=1 sπ(j)π(j+1) is purely local

while
∑

j∈J pj is even independent of the schedule.

1.2 Related Work

Sequencing and allocation problems with setup times and makespan minimiza-
tion constitute a widely studied field, see [3] for a recent survey. In most of
these problems, however, setups are purely local, i.e., depend only on two suc-
cessive jobs on the same machine and thus are closely related to variants of the
ATSP, see [5]. Also more general problems with setups typically involve only
local setups. One such example are scheduling problems with communication
delays and precedence constraints, see [6], where a delay only occurs between
pairs of jobs with a non-transitive precedence constraint among them when they
are scheduled on different machines.

In contrast, our setup costs need to be calculated in view of several, possibly
many preceding jobs. Such non-local setups have only sporadically been consid-
ered in scheduling, e.g., by [21]. They are more typical in multi product assembly
lines. But here one no longer considers sequencing problems with makespan min-
imization, but aims at finding batches of products that minimize the cycle time
of the robotic cells, see e.g., [30].

Setups concurrent with production—as they will occur in the coil coat-
ing problem discussed in the following section—also occur in parallel machine
scheduling problems with a common server considered by [14]: Before process-
ing, jobs must be loaded onto a machine by a single server which requires some
time (the setup time for that job) on that server. Good sequences of jobs on
the parallel machines minimize the time jobs have to wait to be setup due to
the single server being busy on a different machine. In this model, too, setups
are purely local, and once sequences for the machines have been determined,
scheduling the server constitutes a trivial task.

Considering the computational complexity of the integrated sequencing and
allocation problem, it is in most cases easy to observe that the problem is NP-
hard or even inapproximable. Ignoring allocation aspects, the problem is equiva-
lent to the path variant of the ATSP. Straightforward reductions from the Sym-
metric Travelling Salesman Problem (TSP) allow to transfer results from this
classic problem to its path variant, implying that the problem is MAX SNP-hard
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Algorithm 1.1. Generic algorithmic framework
generate initial population of sequences;
repeat

perform mutation on mm ≤ m randomly chosen sequences from S;
perform crossover on mc ≤ m randomly chosen pairs of sequences from S;
add sequences resulting from mutation and crossover to S;
assess sequences in S utilizing the allocation subroutine;
delete all but the m best sequences from S;

until termination criterion fulfilled ;
return S;

even in the symmetric case when all edge length are 1 or 2 [28]. Moreover, for
the symmetric case with general edge lengths, it follows that there exists no con-
stant factor approximation algorithm unless P �= NP [31]. Excellent references on
TSP include the textbook by Applegate et al. [4] and the more recent collection
by Gutin and Punnen [13]. Despite the hardness of ATSP, Helsgaun’s efficient
implementation of the Lin-Kernighan Heuristic [15] (LKH) can be expected to
compute optimal solutions for instances of up to roughly 100 and 1000 cities in
approximately one second and one minute, respectively.

2 Generic Algorithmic Framework

In this section, we introduce the generic algorithmic framework for integrated
sequencing and allocation problems. For the sequencing part, we utilize a genetic
algorithm which by its nature combines solutions, or individuals, in such a way
that beneficial characteristics of solutions persist, while costly characteristics
are eliminated [1]. The set of solutions is commonly referred to as population.
In a crossover, the combination of two parents from the current population
brings forth a new individual, while a mutation creates a new individual by
modifying one already present. In an iteration, or generation, the population
is first enlarged through crossovers and mutations, before a subset of all these
individuals is selected for survival. See [24] for a recent successful application to
a different production sequencing problem.

During a run of our algorithm, we maintain a constant population size across
generations. For each individual, we (heuristically) solve the allocation subprob-
lem to assess its cost. Individuals with better makespans survive. The algorithm
stops if a given termination criterion is fulfilled. The corresponding pseudo code
is given in Algorithm 1.1, and its different components are described in more
detail below.

Good parameter choices for this approach are usually the result of rigorous
testing. Apart from this tuning process, the initial population and the alloca-
tion subroutine are the only components which are purely problem-specific, and
hence, which need to be fully adapted.
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Initial Population. The initial population plays a central role in the success of
our approach. Choosing an appropriate and diverse population usually increases
the chance to find good solutions and moreover, to do so much faster. In contrast
to the final sequence we aim to compute, for the different sequences in the initial
population we rather look for sequences that are specifically good with respect
to only some of the many constraints. One natural such sequence is the one
we obtain when ignoring all side constraints and focusing only on minimizing
the total sequence-dependent setup durations sij . In this restricted form, the
problem can be formulated as ATSP with distances sij , and a solution can
be computed utilizing LKH. If necessary, we add further randomly generated
sequences. After all, a highly diverse initial population provides a good starting
point for later recombinations in the algorithm.

Termination Criterion. An obvious termination criterion is the runtime limit, if
given by the customer. From the algorithmic perspective, a more natural crite-
rion is to stop after a certain number of iterations without improvement. This
can avoid unnecessary long runtimes on the one hand, and on the other hand,
it appears less likely to stop the algorithm right before the very last iterations
which might still drastically improve the result. Depending on the problem, one
might also consider to restart the algorithm if the solutions are not improving
anymore.

Mutation. Mutations are conducted by inverting a random consecutive subse-
quence of an individual.

Crossover. For crossovers, we implement a classic mechanism for sequencing
problems originally proposed by Mühlenbein et al. [27]: Upon the selection of two
individuals from the current population, a donor d and a receiver r, a random
consecutive subsequence of random length is taken from the donor to form the
basis for the construction of the new individual, or offspring s. We complete s by
continuing from its last element i with the elements following i in the receiver,
until we encounter an element already contained in s. Now we switch back to
the donor and continue completing s from d in the same way, going back to r
again when encountering an element already added to the offspring. If we can
continue with neither r nor d, we add to s the next element from r which is not
in s yet, and try again.

3 Integrated Sequencing and Allocation in Steel Industry

In this section, we deal with a particular integrated sequencing and allocation
problem as described in Sect. 1.1. The considered problem stems from the final
processing step in sheet metal production, the coating of steel coils, which may
be seen as a prototype of such an integrated problem: In addition to sequencing
coils, a challenging concurrent setup allocation problem needs to be solved, and
both problems are strongly interdependent.
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Fig. 1. Coil coating.

Due to the extremely diverse product portfolio of coils, the coil coating
process plays an important role in the overall planning in steel industry. As
is typical for paint jobs, it may be subject to long setup times, mainly for the
cleaning of equipment, and thus very high setup cost. This problem has been
introduced and studied in detail in [18]. However, at this point our focus is
rather on illustrating the general approach taken in Algorithm1.1, and so the
description remains high level.

High-Level Problem Formulation. Steel coils are a highly individualized product,
and all non-productive time in coil coating depends on certain characteristics
of coils. They usually have a length of 1–5 km, and their central attributes are
naturally the different coating layers they receive, chosen from a palette of several
hundreds, and their width, usually 1.0–1.8 m.

We consider a typical coil coating line as operated by many major steel
companies worldwide, consisting of a primer and a finish coater, each comprising
two coaters to coat the top and bottom side of a coil, see [10,25]. Before entering
production, each coil is unrolled and stapled to the end of its predecessor, so
essentially a never-ending strip of sheet metal is continuously running through
the coil coating line. After the coating process, the coils are rolled up again, now
ready for shipping. A schematic view of a typical coil coating line is depicted in
Fig. 1(a).

Each of the coaters may or may not be a shuttle coater, that modern coil
coating lines are nowadays equipped with in order to reduce the total setup
cost. Shuttle coaters possess two separate tanks allowing for holding two different
coating materials at the same time. The advantage is twofold: The shuttle can be
used to switch between two coatings on the same coater at almost no setup time
and cost, or alternatively the unused tank can be set up while coating continues
from the other tank in the meantime. We refer to this possibility to perform
setup work during production—which is somewhat uncommon in scheduling
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literature—as concurrent setup. Setup work is necessary whenever the color of
two consecutive coils on the same tank changes or when the first of these two coils
has a smaller width than the second one. The latter requiring a change of the
rubber roller which is used for applying the coating to the coil. See Fig. 1(b) for
an illustrative example. The introduction of shuttle coaters significantly changes
the flavor and the complexity of production planning: Which tank do we use
for which coil, and how do we allocate concurrent setup work without exceeding
available work resources?

The optimization goal is to minimize the makespan for coating the given set
of coils, i.e., the completion time of the last coil in the sequence. Concerning
optimal solutions, this is equivalent to minimizing non-productive time, or cost,
in the schedule.

Technically, once a detailed schedule is chosen, scrap coils are inserted in the
actual sequence of coils in order to bridge the time required for setup work.

Related Work. Literature regarding optimization in the planning process for coil
coating in general is scarce at best: To the best of our knowledge, only Tang
and Wang [35] consider planning for a coil coating line. They apply tabu search
to a rather basic model without shuttle coaters. The present work is the first
incorporating shuttles and concurrent setup work in a thorough mathematical
investigation.

Model for the Underlying Allocation Problem. Due to the shuttle coaters, even
fixing the coil sequence leaves open the non-trivial question of deciding the
tank assignment and the scheduling of concurrent setup work. We develop a
representation of solutions of this allocation problem as a family of weighted
2-dimensional intervals or rectangles, where the first dimension is related to a
tank assignment and the second dimension to performing concurrent setup work.
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More specifically, the x-axis is divided into disjoint segments, one for each
shuttle coater. Each of the segments covers the fixed chosen coil sequence, and
an “interval” in that sequence corresponds to a maximal sequence of consecu-
tive coils run from the same tank on the corresponding coater. Consequently,
intersecting intervals conflict in the sense of representing an infeasible tank
assignment. The y-axis is similarly divided into segments for each team that
can perform setup work. Here, an “interval” in the coil sequence corresponds to
a time interval during which setup work is performed concurrently to production.
If every team has the ability to perform all possible setup work, we have identi-
cal rows of the different teams in the y-direction. In order to properly perform
setup work concurrently, the tank on the respective coater must not be changed
during this interval, i.e., the rectangle’s setup interval must be contained in its
tank interval with respect to the segment-based time axis. Intersecting setup
intervals conflict since one team can only perform concurrent setup work at one
coater at a time. See Fig. 2 for an example.

Finally, we assign weights to the rectangles which represent the (possibly
negative) cost savings by the corresponding partial tank assignment and the
concurrent setup work performed, compared to running all coils on the same tank
without concurrent setup work. The fixed-sequence allocation problem is then
equivalent to finding pairwise non-conflicting rectangles with maximum total
weight (in a set of properly defined rectangles). This problem is closely related—
however, neither being a special case nor a generalization—to the Maximum
Weight Independent Set Problem on a restricted class of so called 2-union graphs,
which are of interest in their own right. Due to the limited space, here we only
focus on the tank assignment and concurrent setup work scheduling. In [18], we
provide additional results for the latter problem.

Algorithm for the Underlying Allocation Problem. Studying the allocation prob-
lem, we observed that even this fixed-sequence subproblem is strongly NP-hard
when the number of shuttle coaters is assumed to be part of the problem input.

Theorem 1 ([18]). For the number of shuttle coaters m being part of the prob-
lem input, the fixed sequence tank assignment and concurrent setup work schedul-
ing problem is strongly NP-hard for any fixed number r < m of work teams for
performing setup work.

This result shows that we cannot assume a polynomial time algorithm for the
allocation problem with an arbitrary number of shuttle coaters m. However, in
practice, this number is usually rather small so that it is reasonable to assume m
to be constant. Under this assumption, we could show that the problem is in P.

Theorem 2 ([18]). When the number of shuttle coaters m is constant, and the
ratio maxj∈C pj/τ is polynomial in the size of the input I, denoting by pj the
duration of a coil j and by τ the greatest common divisor of all setup durations,
then the fixed sequence tank assignment and concurrent setup work scheduling
problem can be solved in polynomial time, even if the number of work teams r is
part of the input.
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Even though the designed algorithm has a polynomial runtime, it is far too
slow to be used as subroutine in our overall framework. Due to its dynamic
programming nature, even a single run of the algorithm for a very small number
of coils and shuttle coaters exceeds our overall runtime limit.

Still, the graph theoretical model inspires a fast and good heuristic for the
allocation problem which would not have been possible without the above inves-
tigations. The complexity of our exact algorithm stems from the need to consider
interval selections for all coaters simultaneously in order to ensure that savings
from all selected setup intervals can be realized by the scarce work resource(s).
Intuitively, the probability that concurrent setup work on different cells can be
scheduled feasibly, i.e., one setup at a time, increases with the length of the
associated tank interval. This is our core idea for computing good tank assign-
ments heuristically. Instead of considering all coaters at once, we consider them
separately. Recall that savings from tank intervals for different coaters can be
realized independently in any case. Now, instead of explicitly considering all pos-
sible saving rectangles belonging to some tank interval I, we assume that during
a certain fraction α of Is length setup work can be performed, and, at this point,
we do not care when exactly it is performed and even, if it can be performed
that way at all.

Modeling this idea, we define new weights for the intervals. With these mod-
ified weights, it suffices to consider tank intervals alone. As a consequence, com-
puting a tank assignment reduces to finding a Maximum Weight Independent
Set in an interval graph, which can be dealt with very efficiently; see e.g., [26]. In
order to compute a feasible concurrent setup allocation for this tank assignment,
we use an earliest-deadline-first strategy as a simple scheduling rule for properly
defined deadlines.

Additionally, we also consider the allocation rule which was previously in use
at Salzgitter Flachstahl: Whenever subsequent coils have different colors, switch
the tank. If the new tank does not contain the required color, a color change on
that tank becomes necessary. We refer to this rule as FIFO.

Results. Embedding the above algorithm for the allocation problem into the
generic Algorithm 1.1, altogether, we develop a practical heuristic which solves
the overall planning problem and computes detailed production schedules for
the coil coating line. Besides the allocation algorithm, also the construction of
the initial population plays a major role for the overall quality of the algorithm.
It generates several very different solutions which are good with respect to only
some of the many side constraints. The quality of our schedules is assessed with
the help of an integer program which we solve by branch-and-price.

Our algorithm has been added to PSI Metals’ planning software suite, and
is currently in use for a coil coating line with shuttle coaters at Salzgitter
Flachstahl, Germany. At the time of its introduction, it yielded an average
reduction in makespan by over 13% as compared to the previous manual plan-
ning process. In addition, our lower bounds suggest that the makespan of the
solutions computed by our algorithm is within 10% of the optimal makespan
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for typical instances2. Since most setup cost calculations are incorporated into
our methods as a black box, our algorithm can be adapted easily to other coil
coating lines with different setup rules and a different number of shuttle coaters.

We close this section with further details on our computational study which
was based on instances from daily production at Salzgitter Falchstahl. For
long-term instances which cover roughly 72 h of production, we compared the
allocation subroutine based on Independent Set for the best α in

Table 1. Normalized results corresponding to Figs. 3 and 4.

Instance Makespan Cost

LBtriv LBTSP LBIP Best α FIFO Expert Best α α = 0.5 FIFO

� 1 0.71 0.79 − 1.00 1.00 1.22 1.00 1.00 1.00

� 2 0.69 0.78 − 1.00 1.00 1.11 1.00 1.00 1.00

� 3 0.71 0.76 − 0.98 1.00 − 0.93 0.97 1.00

� 4 0.84 0.89 − 0.96 1.00 1.00 0.74 0.78 1.00

� 5 0.73 0.78 − 0.99 1.00 − 0.97 1.00 1.00

� 6 0.82 0.88 − 1.00 1.00 1.33 1.00 1.00 1.00

� 7 0.58 0.79 − 0.99 1.00 − 0.98 0.98 1.00

� 8 0.71 0.77 − 0.99 1.00 − 0.97 0.98 1.00

� 9 0.82 0.86 − 1.00 1.00 − 1.00 1.04 1.00

� 10 0.73 0.78 − 0.99 1.00 − 0.97 0.97 1.00

� 11 0.71 0.76 − 0.99 1.00 1.29 0.98 1.00 1.00

� 12 0.75 0.81 − 0.99 1.00 1.28 0.96 0.96 1.00

� 13 0.78 0.81 − 1.00 1.00 1.31 0.99 1.03 1.00

� 14 0.78 0.82 − 1.00 1.00 1.23 0.99 1.06 1.00

� 15 0.83 0.85 − 0.96 1.00 1.00 0.76 0.80 1.00

� 16 0.82 0.85 − 0.94 1.00 1.00 0.67 0.69 1.00

s 1 0.73 0.85 0.92 − 1.00 − − − −
s 2 0.86 0.87 0.95 − 1.00 1.19 − − −
s 3 0.68 0.76 0.91 − 1.00 1.27 − − −
s 4 0.81 0.84 0.90 − 1.00 1.35 − − −
s 5 0.84 0.90 0.94 − 1.00 1.11 − − −
s 6 0.89 0.91 0.93 − 1.00 1.10 − − −
s 7 0.88 0.92 0.94 − 1.00 1.09 − − −
s 8 0.89 0.91 0.93 − 1.00 1.06 − − −
s 9 0.92 0.96 0.96 − 1.00 − − − −
s 10 0.86 0.87 0.91 − 1.00 − − − −

2 This success has made this contribution a finalist of the 2009 EURO Excellence in
Practice Award.
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{0.1, 0.2, . . . , 0.8} and for fixed α = 0.5, and the FIFO rule; see Fig. 3 and Table 1.
The Independent Set Heuristic outperformed FIFO on 12 of the 16 instances,
reducing cost by up to 30% (over FIFO). This translates to makespan savings of
up to 6%. When fixing α to 0.5, the Independent Set Heuristic remains similarly
superior to FIFO on 8 instances, while incurring an increase in makespan of at
most 1% in four cases.

For short-term instances of roughly 24 h, we succeeded in computing lower
bounds with respect to the FIFO rule by our IP approach. Yet, we did not solve
all instances to integer optimality, so the lower bound is certainly improvable. In
Fig. 4 and Table 1 we compare different lower bounds—a trivial bound LBtriv, a
TSP-based bound LBTSP, and the mention IP bound LBIP, see [18] for further
details—with our FIFO results and the solutions we were provided with by
Salzgitter Flachstahl. The results show makespan reductions of up to more than
30%. The superiority of the Independent Set Heuristic to FIFO is less significant
in short-term planning, so that we focused on FIFO for the short instances.

4 Integrated Sequencing and Allocation in Dairy Industry

After discussing the coil coating problem in the previous section, we now apply
our approach from Sect. 2 to a second application from dairy industry. In partic-
ular, we consider the planning of filling lines, which are usually the bottleneck in
dairy production. The optimization problem incorporates again sequencing and
allocation components: For a given set of dairy products—e.g., cream or yogurt—
one aims at a filling order with minimum makespan. However, the makespan does
not only contain the products’ processing times and local sequence-dependent
setup times. Additional setup work or waiting periods may become necessary
due to different types of side constraints. Several options of performing setup
work and inserting waiting periods lead to an allocation problem for the fixed
filling sequence. As for the coil coating, we only give a brief description of the
problem, further details can be found in [12].

High-Level Problem Formulation. We aim at scheduling a set of dairy products
or jobs which are specified by their processing time, their volume, their base (e.g.,
yogurt or cream), an optional flavor and an article number. Sequence-dependent
setups are necessary in between consecutive jobs in the sequence. Roughly speak-
ing, the more parameters of consecutive jobs differ, the more setup work is nec-
essary. Additionally, to meet hygiene regulations, the filling machinery has to be
cleaned and sterilized at certain intervals to which we refer to as cleanings. Even
though some of the sequence-dependent setups may already involve cleanings,
further cleanings are usually required to satisfy the regulation. There are two
ways of allocating additional cleanings: By job preemption, they can be inserted
at any point in the schedule, or, alternatively, they can replace less exhaus-
tive sequence-dependent setups. This yields a tradeoff between keeping the total
number of cleanings small by postponing them as long as possible, and saving
additional setup time by replacing sequence-dependent setups by cleanings, but
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cleaning cleaning(a) job 1 job 2 job 3

> Δclean

> Δclean

cleaning cleaning cleaning cleaning(b) job 1 job 2 job 3

cleaning cleaning cleaning(c) job 1 job 2 job 2 job 3

Fig. 5. The schedule (a) contains only jobs and sequence-dependent setups, two of them
being cleanings. The time between the cleanings exceeds the maximum time lag Δclean

between cleanings. The schedules (b) and (c) below are feasible with respect to cleaning
time lags. The former replaces two existing sequence-dependent setups while the latter
preempts the middle job to require only one additional cleaning.

possibly requiring more additional cleanings in total; see Fig. 5. Thus, setups are
not only determined by their neighboring jobs, but also by scheduling decisions
taken in view of the entire sequence.

Moreover, there are waiting periods which are caused by filling constraints of
certain products, or other technical constraints. A typical example for the latter
is the production of cream. The pretreated milk is processed in a special tank
before the finished cream can be filled into cups. Due to the limited tank size,
cream jobs have to be partitioned into different tank fillings. Resulting from the
preparation time in the tank and the later cleaning time, the filling machine may
be idle, awaiting the first cream job of a new tank filling. We refer to constraints
of this type as capacity constraints.

Related Work. Previous work on the planning of filling lines in dairy industry
mainly focuses on mixed-integer linear programming (MILP) models to minimize
weighted cost functions comprising setup cost, storage cost and others. Recently,
Kopanos et al. [19] proposed a MILP model for parallel filling machines, taking
into account machine- and sequence-dependent setups, due dates, and certain
tank capacities. Further MILP models were proposed for different problem set-
tings, e.g., by [11,22,23]. For the common planning horizon of one week, the mod-
els in [11,19] could compute optimal solutions at very low computational cost.
Based on different relaxations of their model, Marinelli et al. [23] also proposed
an algorithm which is heuristically almost optimal, but at a high computational
expense. However, different to our problem, regular cleanings of the filling line
are performed at the end of the day in all these papers. In combination with their
very restricting sequencing constraints, this turns these problems into packing
problems rather than into sequencing problems as in our case. The results cannot
be adapted to our problem, and, to the best of our knowledge, flexible cleaning
scheduling has not been considered in the scheduling literature yet.
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Fig. 6. A sequence of characteristic (dotted) and non-characteristic (white) tasks and
chosen subgroups (with some intermediate spacing for clarity). Vertices and arcs are
defined as described below. The marked path corresponds to the choice of subgroups
as shown in the three boxes.

Model for the Underlying Allocation Problem. The side constraints in the dairy
problem exhibit a very similar structure. In fact, we can formulate all of them
as generalized capacity constraints. Such a constraint is defined in a similar way
as normal capacity constraints. For the normal capacity constraints, one is look-
ing for consecutive subgroups of jobs of a certain characteristic, in total not
exceeding a given capacity limited—e.g., cream jobs of at most 10000 liters—
where consecutive means that there are no other jobs of the same characteristic
between the jobs of the subgroup. However, jobs of other characteristics may
occur inbetween; see the bottom part of Fig. 6. While for the normal capacity
constraints there are certain time lags to be observed between the subgroups,
in the generalized case, there are general cost. Moreover, generalized capacity
constraints do not only take into account jobs but also setup work or waiting
periods, jointly referred to as tasks.

Note that the dairy problem involves multiple generalized capacity con-
straints, and a subgroup’s cost with respect to a certain constraint strongly
depends on the chosen subgroups corresponding to other constraints, since the
related costs may represent setup or waiting tasks that have to be added to
the sequence. E.g., if inserting cleanings into the schedule for the cleaning con-
straint, actual waiting times of other constraints may decrease, and so would
the cost of the associated subgroups with respect to that constraint. Thus, by
optimally satisfying one constraint after the other, in general, we do not obtain
an optimum schedule.

Algorithm for the Underlying Allocation Problem. The special case in which the
allocation problem consists of a single generalized capacity constraint can be
solved with standard dynamic programming. In order to make use of efficient
software libraries, we formulate the problem as shortest path problem. For a
given sequence of tasks, we define a graph whose vertices lie on the natural time
axis of the sequence; see Fig. 6. For each characteristic task, we place a vertex
at its start time. Additionally, a vertex is placed at the completion time of the
last characteristic task. We insert an arc pointing from one vertex to another if
and only if it is a forward arc in the natural sense of time, and the tasks below
that arc, i.e., the tasks that lie in the time interval covered by the arc, form
a feasible subgroup with respect to the constraint under consideration. More
precisely, the subgroup is formed by the subsequence of tasks, starting with
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the first characteristic job below that arc, and ending with the last such job,
respectively. Since any feasible subgroup is represented by an arc in the graph,
this yields a one-to-one correspondence between feasible sets of subgroups and
paths in the graph. By using the subgroups costs as arc weights, a shortest
path in this graph corresponds to a minimum cost choice of subgroups. Since
the number of arcs is quadratic in the number of characteristic tasks, Dijkstras
shortest path algorithm solves the problem in polynomial time.

If there is more than one generalized capacity constraint, it might as well
be possible to solve the allocation problem (under some restrictions) with an
adapted dynamic programming approach. However, since we do not expect such
an algorithm to be sufficiently fast for being used as subroutine in Algorithm1.1,
our practical focus was more on fast heuristic algorithms. Aiming for at most a
quadratic runtime, we examined algorithmic variants which satisfy the different
generalized capacity constraints one after the other. The variants differ as well
in the order in which the constraints are satisfied as in the subroutine that
is used in each constraint step. While in the first setting, we use the above
shortest path approach (SP) which satisfies each constraint at minimum cost,
in the second variant we use a greedy subroutine (Greedy) which adds tasks
to subgroups as long as the given capacity is not exceeded. The keywords First
and Last indicate that the cleaning constraint is satisfied before and after the
generalized capacity constrainst, respectively. In our tests we consider all four
variants GreedyFirst, GreedyLast, SPFirst and SPLast.

Currently, the complexity of the allocation problem is still open. For the
overall dairy problem with its sequencing and allocation components, already a
very restricted special case can be shown to be strongly NP-hard [12].

Results. We evaluate all of the above variants of the allocation algorithm as sub-
routine in the framework of Algorithm1.1. For the initial population, we choose
a sequence which is optimal with respect to local setup work but disregards all
other constraints, and in addition, we choose several random sequences. The
former is computed utilizing LKH. Ignoring all cost due to generalized capacity
constraints, i.e., accounting only for the job’s processing times and local setup
times, the LKH solution provides a lower bound for the optimum cost of the
general problem. This bound is used to evaluate our solutions.

Our industrial partner Sachsenmilch provided us with actual production data
which we used to generate 2880 additional realistic, but in different ways more
extreme, problem instances. For the data of Sachsenmilch’s current production,
our approach achieved an optimality gap of only 2%, and of roughly 15% on
average for the generated instances. Due to the presumed weakness of the lower
bound, the gap of 2% makes us believe that the former solution is in fact optimal.
Comparing the Greedy and the optimal SP subroutine, it turned out that
Greedy generates in fact better results. A reason for this might be that in
contrast to the schedules computed with the shortest path subroutine SP, the
Greedy schedules never preempt jobs. This property seems to allow to adapt
to “later” constraints more easily.
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In the remainder of this section, we will provide some more detailed com-
putational results. In our evaluations, we filter the instances for one particular
parameter, i.e., an instance belongs to such a setting if this parameter is satisfied,
no matter how the remaining parameters are set. We examined different base
types (all, yoghurt, cream), processing times (original, small, large), volumes of
the cream tank (original, small), and lengths of the cleaning intervals (original,
small). The setting original comprises all instances that were generated accord-
ing to the actual parameters by Sachsenmilch. The results are shown in Fig. 7
and the corresponding Table 2.

We compared the better result of the two greedy algorithms GreedyLast
and GreedyFirst (BestGreedy) with the better result of the two short-
est path variants SPLast and SPFirst (BestSP). BestGreedy performed
always better than BestSP, up to 4% in makespan average. In fact, for the
orginial test setting, BestSP is never better than BestGreedy. If utilizing
BestSP, the worst case gap compared to BestGreedy is 6%, whereas con-
versely this gap may grow up to 210%. As expected, also the runtimes differ
greatly; see again Table 2. While BestSP produces better solutions for the allo-
cation subproblem, the faster running time of BestGreedy allows for more
iterations of the genetic algorithm and better overall solutions.

If comparing the two greedy and the two shortest path approaches with
each other, the difference of the performance is not that striking. The average
performance is almost identical. However, considering the worst case behavior, in
both cases the Last-algorithm is only about 6% worse than the First-algorithm,
where conversely, the gap can attain 15%. This may be due to the advantage of
scheduling the inflexible cleanings as late as possible.

1.0

1.2

1.4

1.6

1.8

2.0

or
ig
in
al

al
l p

ro
d.

yo
gu

rt
pr

od

cr
ea

m
pr

od
.

or
ig
in
al

du
r.

sm
al
l d

ur
.

la
rg

e
du

r.

or
ig
in
al

ta
nk

sm
al
l t

an
k

or
ig
in
al

Δcl
ea
n

sm
al
l Δ

cl
ea
n

(a) Ratio BestSP/BestGreedy.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

or
ig
in
al

al
l p

ro
d.

yo
gu

rt
pr

od

cr
ea

m
pr

od
.

or
ig
in
al

du
r.

sm
al
l d

ur
.

la
rg

e
du

r.

or
ig
in
al

ta
nk

sm
al
l t

an
k

or
ig
in
al

Δcl
ea
n

sm
al
l Δ

cl
ea
n

(b) Ratio GreedyLast/ LB.

Fig. 7. Computational results for the different parameter classes. In the box plots, the
average value ∅ is marked as fat line and the surrounding rectangle shows the interval
of the standard deviation σ. The minimum and maximum value is marked at the lower
and upper end of the thin vertical line, respectively.
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The optimality gap computed with the LKH lower bound is roughly 15%,
and it is slightly better for the greedy algorithms than for the shortest path
algorithms. Exemplary for our best algorithm GreedyLast, the results are
shown in Fig. 7(b). For all algorithms, the optimality gap is much worse for a
small tank size. However, in this case the lower bound performs very poorly, so
that one may assume that this gap is far away from being tight.

5 Outlook on Fairness Objectives

In this final section, we give an outlook on another objective which also plays
an important role in production planning. While in makespan minimization, the
focus is on maximizing the throughput from a rather global perspective of the
machine operator, this new objective aims at schedules which are somehow fair to
the jobs. In the related scheduling model, in addition to its actual parameters, a
job j has got a weight wj , which represents its priority. For some non-decreasing
cost function f , the goal is then to minimize

∑

j∈J

wj f(Cj), (1)

where Cj denotes the completion time of job j. In the literature, scheduling prob-
lems with this objective are often referred to as generalized min-sum scheduling.
For instance, setting the cost function to f(t) := tp for some p ≥ 1 and apply-
ing the p-th square root to the optimal objective function value, we minimize
the Lp-norm, a classic fairness measure.

Table 2. Computational results for the different parameter classes corresponding to
Fig. 7. By ∅ and σ, we denote the average and the standard deviation, respectively. The
values min and max refer to the smallest and largest value attained. To the algorithms
GreedyLast, GreedyFirst, SPLast and SPFirst, we refer by their initials GL,
GF, SPL and SPF.

Parameter BestSP/BestGr. [%] GreedyLast/LB [%] Average runtime [s]

∅ σ Min Max ∅ σ Min Max GL GF SPL SPF

Original 1.007 0.015 1.000 1.050 1.105 0.057 1.007 1.203 5 6 39 55

All prod. 1.014 0.079 0.985 1.876 1.117 0.085 1.000 1.894 6 6 49 71

Yogurt prod. 1.017 0.025 0.948 1.120 1.109 0.065 1.010 1.390 5 6 44 67

Cream prod. 1.003 0.058 0.946 2.120 1.201 0.278 1.031 3.943 7 8 53 75

Original dur. 1.010 0.020 0.974 1.093 1.146 0.152 1.007 2.769 7 7 53 77

Small dur. 1.009 0.018 0.956 1.120 1.148 0.151 1.007 2.862 10 11 81 118

Large dur. 1.014 0.098 0.946 2.120 1.133 0.220 1.000 3.943 2 2 13 18

Original tank 1.007 0.017 0.946 1.120 1.117 0.081 1.000 1.716 6 7 49 72

Small tank 1.043 0.155 0.949 2.120 1.321 0.411 1.000 3.943 6 7 49 65

Original Δclean 1.011 0.045 0.956 1.596 1.121 0.108 1.000 2.671 6 7 49 69

Small Δclean 1.012 0.069 0.946 2.120 1.164 0.224 1.000 3.943 6 7 49 71
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In cooperation with Knorr-Bremse, a producer of train brakes, we consid-
ered a problem that involved such a fairness objective: In order to guarantee
reliability, different parts of the brakes have to be checked in some measuring
and quality control station before the item can be produced in larger quantities.
Depending on the type of production line that the item came from (referred
to as machine henceforth), that machine is idle until the test result is known,
or, in the other case, the machine can work on some other job in the mean-
time. Aiming at avoiding idle times on machines, the job weights (priorities) are
chosen accordingly to represent the different machines’ behavior. Moreover, the
goal was to avoid never ending waiting times for jobs of lower priority. For this
reason, a non-linear cost function should be considered. In discussions with the
practitioners, the Lp-norm turned out to be a good measure for the quality of
schedules for the measuring and quality control station.

Coming back to the general integrated sequencing and allocation problem
with objective (1), we started working on a subproblem which plays a similar
role as the ATSP for the makespan variant. While the ATSP ignores all global
setups, the generalized min-sum variant ignores all side constraints but the pri-
oritized sequencing: We consider a classic single machine scheduling problem in
which jobs have only two parameters, processing time and weight. Algorithms
for the ATSP were utilized to produce good processing sequences for the initial
population as well as for the computation of lower bounds. Likewise, we hope to
use efficient algorithms for the classic single machine scheduling problem.

We could already provide a tight analysis of the approximation guarantee
of Smith’s rule [32]—a simple heuristic which sorts the jobs according to their
ratio of weight and processing time—for every fixed convex or concave cost
function [17]. For the L2-norm and the L3-norm, for instance, the analysis yields
approximation factors of only 1.143 and 1.207, respectively. In terms of exact
algorithms for f(t) := t2, we showed some properties of the order of the jobs in
optimal schedules. Using this property allows us to significantly reduce the search
space of algorithms, so that we are also able to compute optimal solutions to the
classic single machine scheduling problem, however, at a much higher runtime
than Smith’s rule [16].

6 Conclusions

Our work shows that good algorithm engineering requires theory and practice
to go hand in hand. Problems from industry inspire new interesting theoretical
questions which, on the one hand, naturally enhance problems that have been
studied in theory, while on the other hand, they provide essential insights for
designing better practical algorithms. In the end, algorithm engineering allows
to achieve results which would not have been possible with standard techniques
and from which in fact both theory and practice benefit.
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Abstract. We describe the Algorithm Engineering process for designing
a pass-efficient semi-streaming algorithm for the bipartite maximum
matching problem, using the augmenting paths technique. This algo-
rithm was first published by the author at SEA 2011. This text not only
discusses the algorithm, but also describes how Algorithm Engineering
helped to invent and refine it.

Outline. The first three sections are an introduction to the matching problem
in the semi-streaming model. In Sect. 4, a previous semi-streaming algorithm
is described, which grows augmenting paths using the position limiting tech-
nique [11] and is the basis for all further development. Experimental studies start
in Sect. 5, with a description of the experimental setup. In Sect. 6, the algorithm
from [11] is analyzed experimentally, which marks the start of the Algorithm
Engineering process. The remaining sections describe how this process leads to
a new semi-streaming algorithm [21], which experimentally shows much smaller
pass counts than the previous one but maintains many of the (good) theoretical
properties.

1 Bipartite Matching

Let G = (A,B,E) be a bipartite graph, i. e., V := A ∪ B is the set of vertices,
A ∩ B = ∅, and E ⊆ {{a, b}; a ∈ A ∧ b ∈ B} are the edges. Denote n := |V |
and N := |E| the number of vertices and edges, respectively. The density of
the graph is D := |E|

|A||B| ∈ [0, 1], i. e., the ratio of the number of edges to the
maximum possible number of edges given the two sets A and B. A matching
of G is a set M ⊆ E such that m ∩ m′ = ∅ for all m,m′ ∈ M with m �= m′.
A matching M of G is called inclusion-maximal a.k.a. maximal if M ∪ {e} is
not a matching for all e ∈ E \ M , i. e., if we cannot add another edge without
destroying the matching property. A matching M∗ of G is called a cardinality-
maximal a.k.a. maximum matching if |M ′| � |M∗| for all matchings M ′ of G. If
M∗ is a maximum matching and ρ � 1 is a real number, then a matching M is
called a ρ-approximation if |M | � ρ |M∗|.

A maximal matching is easy to find algorithmically: just start with M = ∅

then consider all the edges in an arbitrary order and add an edge to M if this
c© Springer International Publishing AG 2016
L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 352–378, 2016.
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does not destroy the matching property. However, a maximal matching needs
not to be a maximum matching, although it is a well-known fact that it is
a 1

2 -approximation, i. e., |M | � 1
2 |M∗| for all maximal matchings M and a

maximum matching M∗ of G. Devising polynomial-time algorithms computing
maximum matchings in bipartite graphs is a classical and important problem in
Combinatorial Optimization.

We introduce some terminology relative to a matching M . A vertex v is
called matched or covered if there is m ∈ M such that v ∈ m, and v is called free
otherwise. For X ⊆ V , denote free(X) the free vertices in X. We often denote
free vertices with lower-case Greek letters. If v ∈ V is matched, then there is
a unique vertex Mv with {v,Mv} ∈ M ; we call Mv the mate of v. An edge
e ∈ E is called a matching edge if e ∈ M and free otherwise. Note that the end-
vertices of a free edge need not to be free vertices. A path is called alternating
if it traverses matching edges and free edges alternately. An alternating path
where both of the end-vertices are free, is called an augmenting path. Clearly,
augmenting paths have an odd number of edges and in the bipartite case can
be written in the form (α, e1, b1,m1, a1, . . . ,mt, at, et+1, β), where α ∈ free(A),
β ∈ free(B), a1, . . . , at ∈ A, b1, . . . , bt ∈ B, m1, . . . ,mt ∈ M , and e1, . . . , et+1 ∈
E \ M for some t ∈ N. The length (number of traversed edges) of this path is
2t+1. We always denote paths as a sequence of vertices and edges; this notation
has redundancy but will be helpful.

By exchanging matching edges for free edges along an augmenting path, a
new matching is obtained from M with cardinality |M | + 1. Hence a maximum
matching does not admit any augmenting paths. By Berge’s theorem [5], the
converse also holds: when M admits no augmenting paths, then M is a maximum
matching. This theorem also holds for general (not necessarily bipartite) graphs.

Finding augmenting paths, or determining that there exist none, is algorith-
mically easy in the bipartite case. The simplest algorithm starts at an arbitrary
free vertex α ∈ free(A) and does a modified breadth-first search (BFS) which
only considers free edges when moving from A to B and only matching edges
when moving from B to A.1 As soon as another free vertex β is found (it will be
in B then), an augmenting path (α, . . . , β) is constructed by following the BFS
layers. In each such iteration, the matching grows by 1, so in O (n) iterations
a maximum matching is reached, resulting in a bound of O (nN) = O (

n3
)

on
the total runtime. If no free vertex β is found, then the next free vertex from
free(A) is tried as a starting point for BFS. It can be seen easily that if free(B)
is not reachable from free(A) by modified BFS, then there are no augmenting
paths. A similar argument cannot be made for general graphs, causing the situa-
tion there to be much more complicated. We will not consider general graphs in
this work.

1 This can also be achieved by orienting the edges

E := {(a, b) ∈ A × B; {a, b} ∈ E \ M} ∪ {(b, a) ∈ B × A; {a, b} ∈ M}
and then using normal BFS in this directed bipartite graph (A, B,E).
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For the bipartite case, the total runtime bound can be reduced to O (
√

nN) =
O (

n5/2
)

using the algorithm by Hopcroft and Karp [18] (a good description
can also be found in [24]). Modified BFS is done starting from free(A), more
precisely, we start with the BFS queue containing all vertices from free(A). This
BFS constructs a layered graph, with free(A) being one of the end-layers. As
soon as a layer with vertices from free(B) is found, depth-first search (DFS) in
the layered graph is used to find an inclusion-maximal set A of pairwise vertex-
disjoint shortest augmenting paths. We say disjoint in the following meaning
“pairwise vertex-disjoint”. Since the paths in A are disjoint, they can be used
simultaneously to improve the matching, the new matching will be of cardinality
|M | + |A|. One such BFS and then DFS is called a phase and takes O (N) time.
The achievement of Hopcroft and Karp lies in recognizing and proving that there
are only O (

√
n) phases. An implementation of their algorithm particularly suited

for dense graphs having a bound of O
(
n1.5

√
N/ log n

)
on the runtime was later

given by Alt et al. [3].
There is also a randomized algorithm by Mucha and Sankowski [27], which

runs in O (nω), where ω depends on the running time of the best known matrix
multiplication algorithm; currently known is ω < 2.38.

On the experimental side, two early studies by Setubal [30] and Cherkassky
et al. [7] are particularly important since they introduce families of bipartite
graphs where solving the maximum matching problem is difficult. In practice,
the choice of the initial (usually inclusion-maximal) matching can make a differ-
ence. Different such initialization heuristics are known and were combined with
different algorithms in the more recent study by Langguth et al. [25]. One possi-
ble initialization heuristic repeatedly picks a vertex v with minimum degree and
matches it to one of its neighbors w, either randomly chosen or also chosen with
minimum degree. Then the two matched vertices are removed from all further
considerations and the degrees of the remaining vertices updated accordingly,
i. e., all remaining neighbors of v and w have their degree reduced.

2 Semi-Streaming Model

Traditionally, random access to the problem instance (here the graph) is assumed
to be cheap. For example, the following assumptions are typically made, where
Δ := maxv∈V deg(v) is the maximum degree in the graph:

– when using an adjacency matrix, whether two vertices are adjacent or not can
be tested in O (1) time and the neighborhood of a vertex can be collected in
O (n);

– when using adjacency lists, adjacency can be tested in O (Δ) time (or O (log Δ)
if vertices are ordered) and the neighborhood of a vertex v can be traversed
in O (deg(v)).

BFS and DFS, heavily used in the algorithms discussed in the previous
section, rely on this. However, when the input becomes very large, perhaps larger
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than the amount of random access memory (RAM) available on the machine,
then those assumptions are no longer realistic. Large data calls for a different
access model; a popular class of such models are streaming models. In a streaming
model, the input is given as a sequence of items, e. g., numbers or pairs of num-
bers (which could represent edges in a graph). Such a sequence is called a stream.
An algorithm can request to see the stream once or multiple times, and each time
each of the items is presented to the algorithm, one by one. Seeing the stream
once is called a pass or a pass over the input. No assumption is made on the
order in which the items are presented, and often algorithms are designed so
that the order of items is allowed to change from one pass to the other. A pass is
assumed to be costly, and a bound on the number of passes, the pass guarantee,
is an important characteristic of a streaming algorithm. It is generally accepted
that the pass guarantee should be independent of the input size, but is allowed
to depend on approximation parameters.

The first streaming algorithms were devised starting in the late 1970s (see,
e. g., [15,28]), with one of the most influential works published in 1996 by Alon
et al. [2]. The term “streaming” was coined shortly after by Henzinger et al. [17].

Besides the pass guarantee, another important characteristic is the amount
of RAM an algorithm requires. RAM should be substantially smaller than the
input size for the streaming model to make any sense. On the other hand,
RAM should be large enough in order that something useful can be done. For
graph problems, the graph is given as a stream of its edges, i. e., as a sequence
e1, . . . , eN where each ei is a pair (interpreted as an unordered pair) of num-
bers from [n] = {1, . . . , n} when n is the number of vertices. Feigenbaum et al.
[13] showed that O (poly log n) bits2 is not enough to even determine whether a
path of length 2 exists between two given vertices, i. e., if their neighborhoods
are disjoint or not, unless an input-size-dependent number of passes is allowed.
The argument is based on the fact that set disjointness has Ω (n) communica-
tion complexity [19], and a p(n)-pass streaming algorithm with O (poly log n)
bits of RAM, say O (logc n) for some c > 0, would allow the problem to be
solved with only O (p(n) · logc n) bits of communication. So any pass guarantee
of p(n) = o (n/ logc n) is ruled out, in particular p(n) = O (1) is impossible. It
follows that logarithmic space makes not much sense for graph problems.

Shortly before the work by Feigenbaum et al., in 2003, Muthukrishnan
had proposed the semi-streaming model [29], where RAM is restricted to
O (n · poly log n) bits, meaning that we can store a linear (in n) number of
edges at a time.3 In this model, they investigate [13] several graph problems,
in particular they devise a semi-streaming

(
2
3 − ε

)
-approximation algorithm,

0 < ε < 1
3 , for the bipartite maximum matching problem with a pass guar-

antee of O (
ε−1 log ε−1

)
. This is an impressive bound, but on the other hand a

2 By poly x we denote a polynomial in x, another way to write O (poly x) is xO(1).
3 The “semi” attribute was chosen since the term “streaming model” is generally asso-

ciated with logarithmic space. The semi-streaming model is considered “between”
logarithmic and quadratic space, the latter being equivalent to the RAM model since
a graph can be stored in O (n2

)
bits of space.
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1
2 -approximation, not that far from 2

3 , can already be obtained in just one pass,
since in one pass a maximal matching can be computed.

The exact algorithms from the previous section cannot be directly applied
to the streaming situation. If the order of edges in unfortunate, a naively imple-
mented BFS can require as many passes as the number of layers. Feigenbaum
et al. [14] prove that indeed, any BFS algorithm computing the first k layers
with probability at least 2/3, requires more than k/2 passes if staying within the
limits of the semi-streaming model (see Guruswami and Onak [16] for improved
lower bounds). In the next section, we will see that in order to obtain a (1 + ε)−1-
approximation, it is sufficient to consider augmenting paths of length O (

ε−1
)
,

so BFS can be concluded when reaching this depth. But then we still need a
bound on the number of augmentation steps (for the simple algorithm), but
even for Hopcroft-Karp we only know the input-size-dependent O (

√
n) bound

on the number of phases. It is worth noting that even the simple initialization
heuristic described at the end of Sect. 1 cannot be carried over to the streaming
situation, since each degree update takes one pass.

Now suppose that in Hopcroft-Karp, we could bring the number of phases
down to O (

poly ε−1
)
. This still leaves us with a problem, namely how to do

the DFS in a pass-efficient way. The breakthrough idea for this was given by
McGregor [26], namely to perform a “blend” of BFS and DFS: depending on
which edge comes along in the stream, we either grow in breadth or in depth.
Using this technique, McGregor gave a randomized (1 + ε)−1-approximation
algorithm for general graphs, but with an exponential dependence on ε−1 in
the pass guarantee. Eggert et al. [11] showed that this dependence remains even
if restricting to bipartite input, namely we have a worst-case lower bound of
Ω

(
ε−(ε−1)

)
on the number of passes required by McGregor’s algorithm. This is

due mainly to the randomized nature of the algorithm, requiring a large number
of iterations in order to attain a useful success probability. Using the concept of
position limiting, Eggert et al. [11] gave a new BFS/DFS blend for the bipartite
case, with a pass guarantee of O (

ε−5
)
. Subsequently, Algorithm Engineering

was performed on this algorithm yielding an experimentally much faster deriva-
tive [21]. This algorithm and the engineering process that led to its creation will
be described in Sect. 7 and experimentally analyzed in Sect. 8.

In a different line of research, Ahn and Guha devised linear-programming-
based algorithms for a variety of matching-type graph problems [1].
For the bipartite matching problem, an algorithm with pass guarantee
O (

ε−2 log log ε−1
)

is presented (with the number of passes being a factor in
the RAM requirement). An experimental evaluation of these techniques is still
an open task. Konrad et al. [23] gave algorithms for the bipartite maximum
matching problem which work in one or two passes with approximation guaran-
tees slightly above the known 1

2 of an inclusion-maximal matching. For further
work on graph streams (connectivity, spanning trees, weighted matching, cuts)
the work by Zelke [31] is a good starting point.

More recent results include the following; we restrict the discussion to upper
bounds. In dynamic graph streams, edges that have been announced can also
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be removed from the graph at a later point in the stream, and edges may be
inserted multiple times. Assadi et al. [4] give a one-pass randomized algorithm
for approximating a maximum matching in a bipartite dynamic graph stream,
with a parameter controlling a trade-off between approximation and required
memory. Konrad [22] gives a similar result for the case of a slightly more gen-
eral dynamic streaming model. A constant-factor randomized approximation for
the size of a maximum matching in planar graphs is achieved in sub-linear
memory size and with one pass with the algorithm by Esfandiari et al. [12].
They generalize to graphs with bounded arboricity. For extensions to dynamic
graph streams, see Bury and Schwiegelshohn [6]. Chitnis et al. [8,9], for dynamic
graph streams, give a one-pass algorithm for maintaining an inclusion-maximal
matching using O (k · poly log n) bits, provided that at any point in time, no
inclusion-maximal matching of size greater than k exists. For computing a poly-
logarithmic approximation to the size of a maximum matching, Kapralov et al.
[20] give a one-pass algorithm requiring only polylogarithmic space, requiring
the stream to be presented in random order. Extensions are given in [6]. Much
has been done for weighted matching, and a recent approximation algorithm was
presented by Crouch and Stubbs [10]. Again, for extensions, see [6].

3 Approximation Theory for Matching

Since BFS covering the whole graph can take too many passes, we restrict to
augmenting paths up to an input-size-independent length. This section presents
a general framework for this.

A DAP algorithm (“DAP” standing for “disjoint augmenting paths”) is one
that finds, given a matching M , a set of disjoint augmenting paths. For λ ∈ N,
we call a path a λ path if it is of length at most 2λ + 1; the length of a path
being the number of its edges. For λ1, λ2 ∈ N, λ1 � λ2, a set D of paths is called
a (λ1, λ2) DAP set if:

(i) All paths in D are augmenting λ2 paths.
(ii) Any two paths in D are vertex-disjoint.
(iii) We cannot add another augmenting λ1 path to D without violating

condition (ii).

We call s := λ2
λ1

the stretch, since it specifies how far paths may stretch
beyond λ1. Given δ ∈ [0, 1], a DAP algorithm is called a (λ1, λ2, δ) DAP approx-
imation algorithm if it always delivers a result A of disjoint augmenting λ2

paths such that there exists a (λ1, λ2) DAP set D so that |D| � |A| + δ |M |.
Let δinn, δout ∈ [0, 1] and DAP be a (λ1, λ2, δinn) DAP approximation algorithm.
All our algorithms utilize the loop shown in Algorithm1. When this loop ter-
minates, clearly there exists a (λ1, λ2) DAP set D with |D| � |A| + δinn |M | �
δout |M | + δinn |M | = (δinn + δout) |M |, where M denotes the matching before
the last augmentation. Let k ∈ N; this will control approximation, 1

k takes the
role of ε as it was used in the previous section. Moreover, let k � λ1 � λ2 and

δ(k, λ1, λ2) :=
λ1 − k + 1

2kλ1 (λ2 + 2)
> 0. (1)
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Algorithm 1. Outer Loop
1 M := any inclusion-maximal matching;
2 repeat
3 c := |M |;
4 A := DAP(M);
5 augment M using A;
6 until |A| � δout c;

Following the pattern of [11, Lemmas 4.1 and 4.2] we can prove:

Lemma 1. Let M be an inclusion-maximal matching. Let D be a (λ1, λ2) DAP
set such that |D| � 2δ |M | with δ = δ(k, λ1, λ2). Then M is a

(
1 + 1

k

)−1-
approximation.

The lemma yields the
(
1 + 1

k

)−1 approximation guarantee for Algorithm1 when
δinn = δout = δ(k, λ1, λ2). What are desirable values for λ1 and λ2? The DAP
approximation algorithms presented in later sections (the path-based and the
tree-based one) can work with any allowable setting for λ1 and λ2, so we have
some freedom of choice. We assume that constructing longer paths is more expen-
sive, so we would like to have those values small and in particular λ1 = λ2. (We
will later encounter situations where it is conceivable that λ1 < λ2, in other
words s > 1, may be beneficial.) On the other hand, we would like to have δ
large in order to terminate quickly. The function λ 	→ δ(k, λ, λ) climbs until
λ = k − 1 +

√
k2 − 1 � 2k − 1 and falls after that. Since we only use integral

values for λ1, the largest value to consider is λ1 = λ2 = 2k −1. The smallest one
is λ1 = λ2 = k. We parametrize the range in between by defining

λ(γ) := �k (1 + γ)� − 1 for each γ ∈ [1/k, 1] . (2)

Consider the setting λ1 := λ2 := λ(γ) and δinn := δout := δ(k, λ1, λ2). Then
increasing γ increases path length, but also increases δinn and δout, which means
that we are content with a less good approximation from the DAP algorithm
and also relax the stopping condition of the outer loop. So γ controls a trade-
off between path length and stopping criterion, and different choices should be
compared experimentally.

Now we have a general framework, but a major building block, a (λ1, λ2, δinn)
DAP approximation algorithm, is still missing. We will give two different algo-
rithms, one we call path-based and the other tree-based, the latter being the result
of Algorithm Engineering.

4 Path-Based DAP Approximation

The following paragraphs describe how we find a (λ1, λ2, δinn) DAP approxima-
tion with λ1 = λ2, following [11]. Since both length parameters are the same, we
write λ = λ1 = λ2. Pseudocode is given as Algorithm 2.
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Algorithm 2. Path-Based DAP Approximation
Input: inclusion-maximal matching M , parameters λ ∈ N and δinn ∈ R>0

Output: (λ, λ, δinn) DAP approximation A
1 foreach m ∈ M do �(m) := λ + 1;
2 foreach α ∈ free(A) do P (α) := (α);
3 repeat
4 foreach e = {a, b} ∈ E with a ∈ A and b ∈ B do
5 if a, b ∈ remain(V ) and ∃P (α∗) = (α∗, e∗, b∗, m1, . . . , mt, a) then
6 if b ∈ free(B) then
7 P (α∗) := (α∗, . . . , mt, a, e, b);
8 A := A ∪ {P (α∗)};
9 mark vertices on P (α∗) as used;

10 else if t + 1 < �(m) with m := {b, Mb} then
11 if ∃P (α̃) = (α̃, . . . , ã, ẽ, b, m, Mb, e1, b1, m̃1, . . . , m̃j , aj) then
12 P (α̃) := (α̃, . . . , ã);
13 P (α∗) := (α∗, . . . , mt, a, e, b, m, Mb, . . . , aj);
14 �(m) := t + 1;
15 foreach i ∈ {1, . . . , j} do �(m̃i) := t + 1 + i;

16 else
17 P (α∗) := (α∗, . . . , mt, a, e, b, m, Mb);
18 �(m) := t + 1;

19 c := |{α ∈ free(A) ∩ remain(A) ; P (α) > 0}|;
20 foreach α ∈ free(A) ∩ remain(A) do
21 if P (α) was not modified in the previous pass then
22 backtrack by removing last two edges from P (α);

23 until c � δinn |M |;
24 return A;

Fix an inclusion-maximal matching M ; such a matching can be constructed
in just one pass by starting with the empty matching and adding edges as they
come along in the stream as long as they do not destroy the matching prop-
erty. We construct disjoint alternating paths starting at vertices of free(A), the
constructed paths, and we index them by their starting vertices: (P (α))α∈free(A).
During construction, these paths have an even length. When we find augmenting
paths, they are stored in a set A and their vertices marked as used ; a vertex
not being used is called remaining. Denote remain(X) the remaining vertices
in a set X ⊆ V . Suppose P (α) = (α, e1, b1,m1, a1, . . . ,mt, at) is a path with
free vertex α ∈ free(A), vertices a1, . . . , at ∈ A and b1, . . . , bt ∈ B, free edges
e1, . . . , et ∈ E and matching edges m1, . . . ,mt ∈ M . Then we say that matching
edge mi has position i, i ∈ [t]. Each matching edge m has a position limit �(m),
initialized to �(m) := λ + 1, which will be ensured to be an impossible position
to take in any constructed path. We perform position limiting, i. e., a matching
edge m will only be inserted into a constructed path if its new position is strictly
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smaller than its position limit (so in particular λ + 1 is an impossible position
to take). When a matching edge is inserted, its position limit is decremented to
its position in the constructed path.

Insertion takes place the following way. Let e = {a, b} come along in the
stream with a, b ∈ remain(V ). Then we check whether a is the end of any
constructed path. If so, say P (α∗) = (α∗, . . . ,mt, a) with t matching edges,
then we check whether b is free. If so, then we have found an augmenting path
(α∗, . . . ,mt, a, e, b), which is immediately stored away into the result set A, and
its vertices are marked used. Otherwise, if b is matched, let m := {b,Mb} and
we check if t + 1 < �(m). If so, we extend the path to (α∗, . . . ,mt, a, e, b,m,Mb)
if m is in no constructed path already. If on the other hand there is P (α̃) =
(α̃, . . . , ã, ẽ, b,m,Mb, . . .), we move m and everything behind it from P (α̃) to
P (α∗), so that the latter looks like: (α∗, . . . ,mt, a, e, b,m,Mb, . . .). Position limits
of all inserted or migrated matching edges are updated, i. e., �(m) := t + 1, and
so on for all matching edges behind m, if any. For example, if the next matching
edge is called m̃, then �(m̃) := t+2. After migration, we have P (α̃) = (α̃, . . . , ã).

After each pass, we backtrack conditionally: each constructed path that was
not modified during that preceding pass has its last two edges removed. This
gives other edges the chance to be inserted there in subsequent passes. When the
number of constructed paths of positive length (considered before backtracking)
falls on or below δinn |M |, we terminate and deliver all augmenting paths found
so far. Note that although constructed paths are initialized with length zero (one
vertex and no edges), during the first pass, every possible extension is considered
and hence the set of positive-length paths can be large after the first pass, when
the termination criterion is considered for the first time. It was proved in [11]:

(i) The procedure described above is a (λ, λ, δinn) DAP approx. algorithm.
(ii) Termination occurs after at most 2λδ−1

inn + 1 passes.

Position limiting is important for bounding the number of passes [11,
Lemma 7.1]. Finally we consider the whole matching algorithm, which in general
means multiple invocations of the DAP algorithm. By the stopping criterion of
the outer loop, there can be at most δ−1

out +1 such invocations [11, Theorem 7.2].
Hence, with (2), we have the following bound on the number of passes conducted
in total: (

δ−1
out + 1

) (
2λδ−1

inn + 1
)

= O (
γ−2 k5

)
. (3)

Let us specify γ by γ̃ ∈ [0, 1] via the relation γ = k−γ̃ . Then for γ̃ = 0 the bound
is O (

k5
)
, for γ̃ = 1

2 it is O (
k6

)
, and for γ̃ = 1 it is O (

k7
)
. We will compare

these three values for γ̃ in experiments in Sect. 6.
Concluding this section, we give a series of figures demonstrating possible oper-

ations of the path-based DAP approximation algorithm for k = 7. Constructed
paths are drawn starting at the left and growing to the right. In the state drawn
in the following figure, there are 5 constructed paths of positive length and 1 con-
structed path of length 0. If the dotted edge comes along in the stream, having a
free vertex at its right end, then the 4th path (counting from the top) is completed
to an augmenting one and immediately stored away in the set A:



Engineering a Bipartite Matching Algorithm in the Semi-Streaming Model 361

i = 4 k + 1 = 8

On the other hand, if the other end of the dotted edge is matched, so there is
a matching edge m there, then it is checked whether we can use m to extend
that constructed path. Since we are talking about position i = 4, it is checked
whether 4 < �(m). If so, the dotted edge and the matching edge m are appended
to the path, and the position limit of m is updated to �(m) := 4:

i = 4 k + 1 = 8

m

If m is no part of any constructed path, then this is all that has to be done.
On the other hand, let us consider that an edge comes along in the stream
connecting the end of the 4th constructed path to some matching edge inside of
the 1st constructed path:

i = 4 k + 1 = 8

m1 m2 m3
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Then it is checked whether we may use m1 and its right wing (containing match-
ing edges m2 and m3) to extend the 4th path. For this, only the position limit of
m1 is relevant. It is checked whether 4 < �(m1), which is true since �(m1) = 5.
Hence m1 and its right wing is migrated from the 1st constructed path to the
4th one and position limits are updated, namely �(m1) := 4 and �(m2) := 5 and
�(m3) := 6:

i = 4 k + 1 = 8

m1 m2 m3

For the proof in [11] of the approximation guarantee to work, it is important
that the whole right wing is migrated and not only, say, its first edge and the
other edges are dropped.

If any of those dotted edges in the next figure comes along in the stream,
then nothing happens since the position limits of m and m′ are too small, namely
�(m) = 2 and �(m′) = 4, whereas for a migration, they must be strictly larger
than 4:

i = 4 k + 1 = 8

m

m′

Finally, note that the following situation cannot occur, since the graph is
bipartite:
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i = 4 k + 1 = 8

5 Experimental Setup

In order to perform Algorithm Engineering, we need an implementation and a
way to generate difficult test instances. All algorithms and instance generators
were implemented in C++. Each instance is kept completely in RAM while the
algorithms are working on it, as an array of pairs of 32 bit integers. So the
streaming situation is only simulated (although one might argue that even in
RAM, sequential access can be beneficial). When randomizing the order of edges
for the sake of experiments, it is important to really randomize the array and not
just access it using randomized indices. If s [] is the array holding the stream,
it should be first randomized by permuting its entries so that during a pass
we access it using s [ i ] with i = 1, . . . , N . Another possibility would be to use
an array p[] being a random permutation of [N ] and then obtain a random
permutation of the stream by accessing it using s [p[ i ]] with i = 1, . . . , N .
However, the latter is substantially less efficient and would lead to much fewer
experiments conducted per time.

We generate instances with various structure:

rand: Random bipartite graph; each edge in {{a, b} ; a ∈ A ∧ b ∈ B} occurs with
probability p ∈ [0, 1], which is a parameter.

degm: The degrees in one partition, say A, are a linear function of the vertex
index, which runs from 1 to |A|. The neighbors in partition B are chosen
uniformly at random. A parameter p ∈ [0, 1] is used to scale degrees.

The following three classes were introduced in [7,30], see also [25]. The con-
structions work by dividing vertices into groups of equal size and connect them
following certain rules.

hilo: Parameters are l, k, d ∈ N, with d � k and |A| = |B| = lk. Denote A =
{a0, . . . , alk−1} and B = {b0, . . . , blk−1}. Define the groups by

Ai := {aj ; ki � j < k (i + 1)} and Bi := {bj ; ki � j < k (i + 1)}
for each 0 � i < l. This makes l groups in each partition, each group being
of size k. Denote Ai =

{
ai
0, . . . , a

i
k−1

}
und Bi =

{
bi
0, . . . , b

i
k−1

}
for each

0 � i < l.
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Edges run as follows. For each 0 � i < l, each 0 � j < k, and each 0 � t < d
with 0 � j − t we add the edge

{
ai

j , b
i
j−t

}
, and if i + 1 < l, then we add also{

ai
j , b

i+1
j−t

}
. That is, each ai

j is connected with its “direct counterpart” bi
j , and

with the d − 1 vertices in Bi located before bi
j ; and then the same with Bi+1

instead of Bi, provided we have not yet reached the last group. Such a graph
has a unique perfect matching.
For l = 3, k = 5, and d = 2 this looks as follows, where A is shown at the top.
The unique perfect matching is highlighted (all the vertically drawn edges).

rbg: Parameters are l, k ∈ N and p ∈ [0, 1], where again |A| = |B| = lk. Groups
(
Ai

)l

i=1
and

(
Bi

)l

i=1
are defined as for hilo. For each 0 � i < l and each

j ∈ {i − 1, i, i + 1} (where the arithmetic is modulo l, hence −1 = l − 1 and
l = 0) and each vertex v ∈ Ai and each vertex w ∈ Bj , we add {v, w} with
probability p. That is, we have a random bipartite graph between each group
of A and its three “nearest” groups in B, with wrap-around. This class is also
known as fewg and manyg, depending on the size of parameter l.

rope: Parameters and definition of groups is as in rbg. Edges run as follows. For
each 0 � i < l, we add a perfect matching between Ai and Bi. For each
1 � i < l, we add each possible edge between Ai and Bi−1 with probability p.
Such a graph has a unique perfect matching. The following picture gives an
example for l = 3 and k = 4, with the unique perfect matching highlighted.
From left to right, we have A0, B0, A1, B1, A2, B2.

We impose a hard limit of 1 × 109 on |E|, meaning about 7.5GiB (each
vertex is stored as a 32 bit unsigned integer). A series is specified by a density
limit Dmax and a set of values for n. For each n of a series and for each class,
we generate 256 instances on n vertices. For hilo, rbg, and rope, parameter l is
chosen randomly from the set of divisors of |A| = n

2 . For all classes, a parameter
controlling the (expected) number of edges (e. g., p for rand) is being moved
through a range such that we start with very few (expected) edges and go up to
(or close to) the maximum number of edges possible, given the hard limit, the
limit Dmax on the density (allowing some overstepping due to randomness), and
any limit resulting from structural properties (e. g., number of groups l). This
way we produce instances of different densities. For rand and degm, we use 16
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different densities and generate 16 instances each. For hilo, rbg, and rope, we use
64 random choices of l and for each 4 different densities. This amounts to 256
instances per n and class. After an instance is generated, its edges are brought
into random order. Then each algorithm is run on it once, and then again with
partitions A and B swapped. During one run of an algorithm, the order of edges
in the stream is kept fix. We use the term pass count to refer to the number of
passes occurring until the algorithm terminates; clearly the pass guarantee is an
upper bound on any pass count.

6 Experimental Results for Path-Based DAP
Approximation

The starting point for the Algorithm Engineering process is an implementation
of the algorithm explained in Sect. 4. We give concrete theoretical bounds for this
algorithm for k = 9, which means a 90%-approximation (i. e., |M | � 0.9 · |M∗|
for the constructed matching M and a maximum matching M∗). Recall that
γ̃ controls the length parameters λ1 = λ2 = λ(γ) = λ(k−γ̃), given by (2), and
results in different pass guarantees, given by (3). Recall also that we use the same
value for δinn and δout, given by (1). Writing λ = λ1 = λ2 and δ = δinn = δout
we obtain the following expression as a bound on the number of passes:

(
δ−1 + 1

) (
2λδ−1 + 1

)
,

where
δ =

λ − k + 1
2kλ (λ + 2)

and λ =
⌈
k (1 + k−γ̃)

⌉ − 1.

Concrete numbers for k = 9 are given in the following table.

Table 1. Theorerical pass guarantees

γ̃ = 0 γ̃ = 1
2

γ̃ = 1

How pass guarantee depends on k: O (k5
) O (k6

) O (k7
)

Length parameter λ(k−γ̃) for k = 9: 17 11 9

Termination parameter δ−1 for k = 9: 646 858 1 782

Concrete pass guarantee for k = 9: 14 211 355 16 215 343 57 193 291

Despite the relatively weak dependence on k, these are daunting numbers. It
is therefore good to see that actual pass counts are much lower, as shown in the
following table.

Numbers state the maximum and rounded mean pass counts, respectively,
that were observed for the different choices of parameters and instance classes.
This series uses n = 40 000, 41 000, . . . , 50 000 and a density limit of Dmax = 1

10 .
Number of edges ranges up to about |E| = 62 × 106.
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Table 2. Experimentally observed pass counts (taken from [21])

γ̃ Maximum Mean

rand degm hilo rbg rope rand degm hilo rbg rope

0 O (k5
)

11 886 14 180 7 032 4 723 2 689 107 145 3 337 257 378
1
2

O (k6
)

7 817 31 491 7 971 4 383 3 843 80 127 2 071 500 541

1 O (k7
)

7 121 32 844 9 106 5 687 5 126 74 166 2 033 844 790

It is not only interesting to note that these numbers are much smaller than
the pass guarantees, but also that there is no best γ̃ setting. When only looking
at how the pass guarantee depends on k and also when looking at the concrete
pass guarantees (as per Table 1), the setting γ̃ = 0 is superior. However, in
experiments it shows to be inferior to γ̃ = 1 in the following cases: for the
maximum and mean for rand, and for the mean for hilo. Especially for hilo this
is interesting since this instance class shows by far the highest mean. This is yet
another reminder that the performance of an algorithm observed in practice will
not necessarily be predicted by theoretical analysis, even if constants otherwise
hidden in O (·) notation are taken into account.

7 Tree-Based DAP Approximation

A general observation during the experiments with the path-based DAP approx-
imation was that the vast majority of edges come along in the stream during
a pass without anything happening. Recall the series of examples at the end of
Sect. 4 and consider that an edge {a, b} comes along in the stream with b being
free but a is not at the end of any constructed path but somewhere in the middle.
For example, this could look like this, the edge {a, b} drawn dotted:

i = 4 k + 1 = 8

Then nothing will happen, the edge will be ignored. Moreover assume that the
5th constructed path as shown above has a “dead end”, i. e., there is no way
to complete it to an augmenting path, not until the last two matching edges
have been removed by backtracking. (Recall that after each pass, we backtrack
conditionally: each constructed path that was not modified during that preceding
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pass has its last two edges removed.) After backtracking was performed twice on
the 5th path – which will take at least 2 more passes – the dotted edge shown
above can finally become effective and complete the path to an augmenting path.
The question arises: would it not be a good idea to complete a path as soon as
it is possible instead?

Another question is raised if the completion is not imminent, but we could
complete for example using one intermediate matching edge m:

i = 4 k + 1 = 8

m

To benefit from this without having to go through all the backtracking, we would
have to first remember m when the first dotted edge comes along in the stream
and later complete when the second dotted edge comes along. So in fact, we
would not be growing paths, but growing trees. These considerations give rise
to the first version of our tree-based DAP approximation algorithm, described
formally in the following.

First Version

An alternating tree is a pair consisting of a tree T that is a subgraph of G,
and a vertex r ∈ V (T ), called its root, so that each path from r to any other
vertex of T is an alternating path. For v ∈ V (T ) the subtree induced by all
vertices reachable from r via v is called the subtree below v and denoted T [v].
An alternating forest consists of one or more alternating trees being pairwise
vertex-disjoint. Our tree-based DAP algorithm maintains an alternating forest
with trees indexed by their roots; we write T (r) = (V (r), E(r)) for the tree
rooted at r ∈ V . The forest F consists of all such trees that are rooted at
a remaining vertex, i. e., F = {T (r); r ∈ remain(V )}. We call a tree properly
rooted if its root is a free vertex. A properly rooted tree T (α) together with an
edge {a, β} with β being free and a ∈ V (T ) at an even distance from α, yield
an augmenting path.

We initialize by setting T (α) := ({α} , ∅) for each α ∈ free(A) and T (r) :=
(∅, ∅) for each r ∈ V \ free(A). So we have empty trees and one-vertex trees
with a free vertex of A. Position limits are initialized �(m) := λ1 + 1 for each
m ∈ M as usual. If (α, e1, b1,m1, a1, . . . ,mt, at) is a path in the properly rooted
tree T (α), then we say that matching edge mi, i ∈ [t], has position i. Results
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(i. e., the augmenting paths found) will be stored into a set A, that is initialized
to A := ∅.

Trees grow over time, and there may also emerge non-properly rooted trees.
When a free edge {a, b} between two remaining vertices goes by in the stream
with b being covered, the algorithm checks whether to extend any of the trees.
Conditions are: the tree has to be properly rooted, say T (α), it must contain a,
and i < �({b,Mb}), where i is the position that the matching edge {b,Mb}
would take in T (α). If all those conditions are met, an extension step occurs:
the two edges {a, b} and {b,Mb} are added to T (α), and, if {b,Mb} is already
part of a tree T (b′), then T (b′)[b] is removed from T (b′) and connected to T (α)
via {a, b}. The tree T (b′) is not required to be properly rooted, but it may be.
Bipartiteness ensures that Mb ∈ V (T (b′)[b]). Position limits for all inserted or
migrated edges are updated to reflect their new positions. The following figures
show an example. There is a properly rooted tree T (α) and a non-properly rooted
tree T (b′). Assume that the dotted edge {a, b} comes along in the stream:

α a

b′ b Mb

Provided that position limits allow, then part of T (b′), namely the subtree
T (b′)[b], is migrated to T (α). The migrated edges will receive new position lim-
its, e. g., �({b,Mb}) := 2. There are only 3 edges left in tree T (b′), two matching
edges and one free edge:

α a

b′

b Mb
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When a free edge {a, β} with a, β ∈ remain(V ) goes by in the stream with β
being free, then we check whether we can build an augmenting path. If there is
a properly rooted tree T (α) with a ∈ V (α), the path P in T (α) from α to β is
augmenting. In that case, a completion step occurs: we store P into the result
set A, and mark all vertices on P as used. Also, we adjust our forest as follows.
For each a ∈ V (P ) ∩ A and each of its neighbors in T (α) and not in P , i. e., for
each b ∈ NT (α)(a) \ V (P ), we set T (b) := T (α)[b]. In other words, we “cut” P
out of T (α) and make each of the resulting subtrees that “fall off” a new tree of
its own. None of those is properly rooted, and also they are rooted at vertices
of partition B, not A as the properly rooted ones. However, they – or parts of
them – can subsequently be connected to remaining properly rooted trees by an
extension step as described before.

After each pass, it is checked whether it is time to terminate and return the
result A. We terminate when any of the following two conditions is met:

(T1) During the last pass, no extension or completion occurred. In other words,
the forest did not change. (It then would not change during further passes.)

(T2) The number of properly rooted trees (which is also the number of remaining
free vertices of A) is on or below δinn |M |.

A backtracking step as for the path-based algorithm makes no sense here
since its purpose was to free up the ends of constructed paths in order that
other edges can be attached there – which obviously is not necessary for the
tree-based algorithm.

Experiments and Proof Attempt

An implementation of this algorithm was substantially more involved than for
the path-based one, but experiments were rewarding since they showed aston-
ishing low pass counts, far below 100, even for heavy instances like hilo. Conse-
quently, the time required to run a series of experiments dropped to a fraction
of that time needed when using the path-based algorithm. Next, a theoretical
analysis was attempted, first for the approximation guarantee. Recall that for
the path-based algorithm, we have the following termination criterion: when the
number of constructed paths of positive length falls on or below δinn |M |, we
terminate. The proof of its approximation guarantee (given in [11]) works by
showing that

(i) if that threshold is reduced to 0, then a (λ1, λ2) DAP set is returned
(where λ1 = λ2 by the way we choose these parameters for the path-based
algorithm);4

(ii) and by using any threshold τ > 0, at most τ augmenting paths are missed.

4 The statement (i) can also be formulated as the algorithm with threshold 0 being a
(λ1, λ2, 0) DAP approximation algorithm.
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It immediately follows that for τ = δinn |M |, there exist a (λ1, λ2) DAP set D
with |D| � |A| + δinn |M |, namely we can take for D the set that would have
been constructed for threshold 0. By definition, we thus have a (λ1, λ2, δinn)
DAP approximation algorithm, as required. The most complicated step in this
proof is (i). An attempt to follow through the same program for the first version
of the tree-based algorithm failed, and it must fail due to the following simple
example. Let the following graph and matching be given:

α1

α2

b1 a1

b2 a2

β1

β2

Assume {α1, b1} and {α1, b2} come first in the stream. Then the two matching
edges {b1, a1} and {b2, a2} are built into T (α1) and their position limits set to 1,
so they can never migrate to T (α2). Thus, at most one of the four augmenting
paths is found (namely either (α1, b1, a1, β1) or (α1, b2, a2, β2), depending on
whether (a1, β1) or (a2, β2) comes next in the stream), leaving one behind that
is disjoint to the found one.

This does not only spoil the proof attempt, but it is a serious flaw in the
algorithm, which can lead to poor approximation. To see this, we generalize the
above example to |free(A)| = t for some t ∈ N.

Example 1. This is a family of examples, parameterized by t ∈ N. For each t, a
graph and an ordering of its edges in the stream is specified. The graph looks
like this:

α1

α2

αt

b1 a1

b2 a2

bt at

β1

β2

βt

The set of edges is

E = {{αi, aj} ; i, j ∈ [t]} ∪ {{ai, bi} ; i ∈ [t]} ∪ {{bi, βi} ; i ∈ [t]} .
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The stream is ordered like so (for each of the passes):

{a1, b1} , {a2, b2} , . . . , {at, bt} ,

{α1, b1} , {α1, b2} , . . . , {α1, bt} ,

{α2, b1} , {α2, b2} , . . . , {α2, bt} ,

. . . ,

{αt, b1} , {αt, b2} , . . . , {αt, bt} ,

{b1, β1} , {b2, β2} , . . . , {bt, βt}

This concludes the definition of the example.

Due to the order in the stream, the initial matching will be {{ai, bi} ; i ∈ [t]}
as shown in the picture above, since all these edges come first and are hence
picked. This is just a 1

2 -approximation, not better. During the first pass of the
DAP approximation, the tree T (α1) will first grab all the matching edges and
when {a1, β1} comes along in the stream, we will have the augmenting path
(α1, b1, a1, β1). Due to position limits, nothing more will happen in this phase,
so the DAP approximation terminates, delivering just one augmenting path. It
will be used to improve the matching from size t to size t + 1, but then the
whole algorithm, which is Algorithm 1, will terminate since |A| = 1. Strictly,
this requires t to be sufficiently large compared to k, but these requirements
are easily met. For example, let k = 9 and λ1 = λ2 = k (i. e., γ̃ = 1). Then
δ(k, λ1, λ2) = 1

1782 as per (1). So if t � 1782 and k = 9 then the algorithm will
terminate after one invocation of the DAP approximation and as a result it will
miss its goal of a 90%-approximation by far.

Second and Third Version

In order to remedy the flaw that has become evident above, we add a feature to
the completion step. Recall that in the completion step, an augmenting path is
“cut” out of a properly rooted tree, perhaps leaving some non-properly rooted
trees behind. The second version introduces position limit release: we reset posi-
tion limits to λ1 + 1 on edges of the new (non-properly rooted) trees; we say
that the position limits on those edges are released. This can be considered an
implicit form of backtracking.

Pass counts in experiments went up only moderately after position limit
release was implemented. However, something else unexpectedly happened: the
batch system at the Computing Center where the experiments were run killed
many of the jobs after some time because they exceeded their memory limit.
The batch system requires to give a bound on the memory requirements of a job
and will kill the job if this bound is exceeded. One way is to just give the total
amount of memory available on the desired compute nodes, but this would be a
waste of computing power since the nodes have multiple cores and the memory
limit set to total memory would mean that only one (single-threaded) job would
run on it. So the memory requirement of the program was estimated by looking
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at its data structures and this estimate was given to the batch system. With
this estimate, jobs were killed, even after introduction of an extra safety margin.
Additional assert () statements finally revealed that the data structure used for
storing trees grew beyond all expectations, in particular paths much longer than
2λ2 + 1 were constructed (i. e., they were not λ2 paths anymore).5 Indeed, a
review of the algorithm showed that this is to be expected after position limit
release was introduced, explained in the following.

In an extension step, although position limits at first are not higher than
λ1 + 1, edges can be included in a tree at positions beyond λ1. Assume m =
{b,Mb} is inserted at position i � λ1 into a properly rooted tree T (α) and
subsequently, more edges are inserted behind m. Then an augmenting path is
found in T (α) not incorporating m, hence the position limit of m is released.
Later m can be inserted at a position j with λ1 � j > i in another properly
rooted tree T (α′). When m carries a sufficiently deep subtree with it, then T (α′)
could grow beyond λ1, even though j � λ1. This is no good since we expect a
DAP approximation algorithm to deliver λ2 paths for a parameter λ2 (which so
far was chosen to be equal to λ1); cf. Sect. 3.

As a solution, the second length parameter λ2 takes on a special role. The
third version of the tree-based DAP approximation includes the following feature:
when the migrated subtree is too deep, we trim its branches just so that it can be
migrated without making the destination tree reach beyond λ2. The trimmed-off
branches become non-properly rooted trees of their own. We control a trade-off
this way: higher λ2 means fewer trimming and hence that we destroy fewer of our
previously built structure. But higher λ2 reduces δ(λ1, λ2) and so may prolong
termination. Choosing λ2 := λ1 is possible, so we may stick to a single length
parameter as before, but can also experiment with larger λ2. Recall that the
stretch s = λ2

λ1
is used as a measure how far beyond λ1 our structures may

stretch.
This experience shows that appropriate technical restrictions during experi-

mentation, such as memory limits, can be helpful not only to find flaws in the
implementation but also to find flaws in the algorithm design.

We are finally able to give an approximation guarantee:

Lemma 2. The third version of the tree-based algorithm (with position limit
release and trimming) is a (λ1, λ2, δinn) DAP approximation algorithm.

Proof. Recall the termination conditions on page 18. When the algorithm termi-
nates via condition (T2), it could have, by carrying on, found at most δinn |M |
additional augmenting paths. We show that when we restrict to termination
condition (T1), we have a (λ1, λ2, 0) DAP approximation algorithm. Clearly,
by trimming, only λ2 paths can be returned. It is also obvious that all paths
returned are augmenting paths and disjoint.

It remains to show that we cannot add an augmenting λ1 path to A without
hitting at least one of the paths already included. Suppose there is an augmenting

5 Recall that so far we have always used λ1 = λ2. A distinction between the two
parameters will be made shortly.
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path (α, e1, b1,m1, a1, e2, b2,m2, a2, . . . , at, et+1, β) with t � λ1, α ∈ free(A) and
β ∈ free(B) that is disjoint to all paths in A. We show that when the algorithm
terminates, then at is in a properly rooted tree T . This is a contradiction: first,
by the stopping criterion, at was there for the whole pass, since an extension step
would have made termination impossible. But then the algorithm would have
pulled out an augmenting path from T when et+1 = {at, β} came along in the
stream during the last pass and so it would not have been allowed to terminate.

We proceed by induction, denoting a0 := α. We show that when the algorithm
terminates, ai is in a properly rooted tree for each i ∈ {0, . . . , t} with a distance
of at most 2i from the root (for i > 0 this means that mi is at position at most i).
As argued above, the vertex being there at the end of the last pass means that
it was there during the whole last pass.

The induction base is clear: a0 = α is in the properly rooted tree T (α) with
distance 0 from the root. Let i ∈ [t] and assume the statement to be true for i−1,
with ai−1 ∈ V (T (α′)) for some α′ during the last pass. If ai is in no properly
rooted tree, then mi = {bi, ai} has position limit λ1 + 1. If ai is in a properly
rooted tree at distance more than 2i from the root, then mi has position limit
more than i. In both cases, mi would have been inserted into T (α′) when the
edge {ai−1, bi} came by during the last pass. Since this did not happen (as it
would contradict termination), the only remaining alternative holds: ai is in a
properly rooted tree at distance at most 2i from the root. 
�

Pass Guarantee

By the previous lemma, we have an approximation guarantee for the third ver-
sion. What about a pass guarantee? Unfortunately, no input-size-independent
pass guarantee can be made. This is seen by Example 1. First the tree T (α1)
will grab all the matching edges, then one augmenting path is found and posi-
tion limits on all the matching edges not in that path are released. During the
next pass, tree T (α2) will grab all the matching edges, and so on. There will be
Ω (t) = Ω (n) passes.

On the upside, this is easily fixed: we simply let an algorithm using the
path-based DAP approximation run in parallel, feeding it the same edges from
the stream. We terminate when one of the two terminates. Since both have an
approximation guarantee of

(
1 + 1

k

)−1, we know that we have a good approxi-
mation no matter from which of the two algorithms we take the solution. Since
the path-based algorithm has a pass guarantee of O (

kO(1)
)
, we know that ter-

mination will certainly occur after that many passes – in practice it is of course
reasonable to expect that termination will occur much earlier than the pass
guarantee predicts and also that termination will be triggered by the tree-based
algorithm.

On the other hand, in the special case of Example 1, the path-based algo-
rithm would require at most 4 passes: one pass to establish the initial matching,
one pass to construct the paths (αi, bi, ai) in the order i = 1, . . . , t, one pass to
complete each such path to (αi, bi, ai, βi), then the DAP approximation termi-
nates and an augmentation step occurs, and then there is at most one more final
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pass to realize that nothing more can be done, the DAP approximation returns
A = ∅. The result is the perfect matching {{αi, bi} , {ai, βi} ; i ∈ [t]}.

8 Experimental Results for Tree-Based DAP
Approximation

We review detailed experimental results (as they were stated in [21]) for the
third and final version of the tree-based DAP approximation algorithm. For the
sake of a simpler implementation, we did not combine it with the path-based
algorithm as described in the previous section, since the pass counts we observed
did not indicate that this would be necessary.

The following table is based on the same instances as Table 2, in particular
we have n = 40 000, 41 000, . . . , 50 000 and Dmax = 1

10 . As before, we use γ̃ ∈{
0, 1

2 , 1
}
. For the stretch, we use s = 1 (i. e., λ1 = λ2) and s = 2 (i. e., 2λ1 = λ2).

Except for one case (maximum value for hilo and γ̃ = 0), there is no improvement
of s = 2 over s = 1; on the contrary, the higher stretch lets maximum for rope
and γ̃ = 0 jump from 79 to 94. Among the s = 1 results, γ̃ = 1 is the best except
for the maximum for rbg, which is one less for γ̃ = 1

2 . But γ̃ = 1
2 shows inferior

results for several other classes.

Table 3. Pass counts for the tree-based algorithm

γ̃ s Maximum Mean

rand degm hilo rbg rope rand degm hilo rbg rope

0 1 6 9 75 41 79 3 3 51 5 22

0 2 6 9 74 52 94 3 3 51 5 26
1
2

1 6 9 59 37 63 3 3 38 5 20
1
2

2 6 9 59 44 70 3 3 38 5 22

1 1 6 9 54 38 61 3 3 35 5 20

1 2 6 9 55 40 67 3 3 36 6 21

All the following experiments are done with the good (and almost always
best) settings γ̃ = 1 and s = 1. The highest pass count we have seen for this
setting in Table 3 is 61. We increase number of vertices up to a million and first
keep the density limit at Dmax = 1

10 . The following table shows development
for growing n. The number of edges ranges up to about the hard limit of |E| =
1 × 109, which takes about 7.5GiB of space (Table 4).

The previous highest pass count of 61 is exceeded, for n = 1000 000 and
hilo we observe 65 in this new series. However, this is only a small increase, and
moreover the mean values show no increase. The linear worst-case dependence
on n, as seen by Example 1, is not reflected by these results.

Next, we lower the density limit. The following table is based on two series:
one with Dmax = 1 × 10−3 and the other with Dmax = 1 × 10−4 (Table 5).
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Table 4. Pass counts for γ̃ = 1 and s = 1 and higher n.

n Maximum Mean

rand degm hilo rbg rope rand degm hilo rbg rope

100 000 3 8 53 30 62 2.5 3.2 35.0 5.1 19.8

200 000 3 7 56 31 63 2.5 2.8 37.6 4.7 19.1

300 000 3 7 55 29 64 2.5 2.9 38.6 3.9 18.2

400 000 3 8 56 33 63 2.5 2.9 36.3 5.3 15.6

500 000 3 7 58 34 64 2.5 3.0 36.7 4.4 19.4

600 000 3 9 58 30 64 2.5 3.5 38.4 3.3 18.1

700 000 6 9 56 35 62 2.5 3.6 37.4 3.9 18.5

800 000 3 8 58 31 63 2.5 3.5 37.9 3.1 16.2

900 000 7 8 61 32 62 2.6 3.3 37.0 3.7 14.5

1 000 000 6 9 60 34 65 2.5 3.1 33.4 4.6 18.2

Table 5. Pass counts for lower densities

n Maximum Mean

rand degm hilo rbg rope rand degm hilo rbg rope

100 000 40 41 53 48 46 10.3 12.0 28.3 18.9 24.0

200 000 43 43 54 48 46 8.3 11.1 28.5 14.6 21.9

300 000 41 42 56 52 55 6.5 8.4 29.1 11.9 21.2

400 000 44 42 56 48 55 6.1 8.2 29.6 8.6 18.2

500 000 48 45 59 41 56 4.9 7.1 28.9 8.2 18.5

600 000 48 40 58 42 56 5.3 8.3 29.2 6.0 19.1

700 000 40 42 57 32 55 4.3 6.6 29.4 4.7 16.4

800 000 30 42 57 34 57 3.8 6.3 30.9 4.8 16.7

900 000 46 45 58 48 60 4.3 6.6 30.0 4.6 16.6

1 000 000 48 45 59 42 60 4.1 7.5 31.3 4.5 17.3

For several classes, in particular rand and degm, lower density elicits higher
pass counts. But still the previous maximum of 65 is not exceeded. This remains
true even for the following series going up to two million vertices and Dmax =
1 × 10−4 (Table 6).

Practical Considerations. This section has focused on the setting γ̃ = 1 and
stretch s = 1. But for any practical application, the author would recommend to
experiment with different settings. Given the rise in multicore processors, it may
be conceivable to have multiple instances of the algorithm perform in parallel
with different parameters, being fed from the same stream. The six combinations
of γ̃ and s in Table 3 may be a good place to start. Also the combination with the
path-based algorithm in parallel should be tested, with different γ̃ parameters.
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Table 6. Pass counts for up to two million vertices.

n Maximum Mean

rand degm hilo rbg rope rand degm hilo rbg rope

1 000 000 48 43 62 41 48 5.5 8.8 29.6 4.5 17.7

1 100 000 47 49 60 42 50 5.1 8.6 29.6 4.4 17.0

1 200 000 45 51 60 33 52 4.4 8.4 29.0 5.2 14.5

1 300 000 31 30 59 41 47 3.9 8.7 30.0 3.9 15.5

1 400 000 32 35 61 35 51 4.5 7.6 28.5 4.6 14.9

1 500 000 28 29 57 33 51 3.9 8.5 28.7 4.5 15.5

1 600 000 25 27 58 34 52 4.1 6.9 26.7 4.5 15.9

1 700 000 28 42 60 35 52 3.6 7.7 28.8 4.6 16.2

1 800 000 31 29 60 35 54 4.1 6.8 28.1 3.2 15.2

1 900 000 23 26 56 34 50 3.2 6.3 27.7 4.6 14.0

2 000 000 32 21 60 35 49 3.4 6.4 28.9 4.5 15.7
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Abstract. The Art Gallery Problem (AGP) is one of the most well-
known problems in Computational Geometry (CG), with a rich history
in the study of algorithms, complexity, and variants. Recently there has
been a surge in experimental work on the problem. In this survey, we
describe this work, show the chronology of developments, and compare
current algorithms, including two unpublished versions, in an exhaus-
tive experiment. Furthermore, we show what core algorithmic ingredients
have led to recent successes.

Keywords: Art gallery problem · Computational geometry · Linear
programming · Experimental algorithmics

1 Introduction

The Art Gallery Problem (AGP) is one of the classic problems in Computational
Geometry (CG). Originally it was posed forty years ago, as recalled by Ross
Honsberger [37, p. 104]:

“At a conference in Stanford in August, 1973, Victor Klee asked the
gifted young Czech mathematician Václav Chvátal (University of Mon-
treal) whether he had considered a certain problem of guarding the paint-
ings in an art gallery. The way the rooms in museums and galleries snake
around with all kinds of alcoves and corners, it is not an easy job to keep an
eye on every bit of wall space. The question is to determine the minimum
number of guards that are necessary to survey the entire building.”

It should be noted that a slightly different definition is used today, where not only
the walls of the gallery have to be guarded, but also the interior (this is indeed
a different problem, see Fig. 1a). AGP has received enormous attention from the
CG community, and today no CG textbook is complete without a treatment
of it. We give an overview on the most relevant developments in Sect. 2, after
introducing the problem more formally.
c© Springer International Publishing AG 2016
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(a) Three guards suffice to cover the
walls, but not the interior.

(b) One point guard covers the interior,
but a vertex guard cannot

Fig. 1. Edge cover and vertex guard variants have better and worse solutions than the
classic AGP, respectively.

Besides theoretical interest, there are practical problems that turn out to
be AGP. Some are of these are straightforward, such as guarding a shop with
security cameras, or illuminating an environment with few lights. For another
example, consider a commercial service providing indoors laser scanning: Given
an architectural drawing of an environment, say, a factory building, a high-
resolution scan needs to be obtained. For that matter, the company brings in
a scanner, places it on a few carefully chosen positions, and scans the building.
As scanning takes quite a while, often in the range of several hours per position,
the company needs to keep the number of scans as low as possible to stay com-
petitive — this is exactly minimizing the number of guards (scan positions) that
still survey (scan) the whole environment.

In this paper, we provide a thorough survey on experimental work in this area,
i.e., algorithms that compute optimal or good solutions for AGP, including some
problem variants. We only consider algorithms that have been implemented, and
that underwent an experimental evaluation. During the past seven years, there
have been tremendous improvements, from being able to solve instances with tens
of vertices with simplification assumptions, to algorithm implementations that
find optimal solutions for instances with several thousands of vertices, in reason-
able time on standard PCs. We avoid quoting experimental results from the lit-
erature, which are difficult to compare to each other due to differences in bench-
mark instances, machines used, time limits, and reported statistics. Instead, we
conducted a massive unified experiment with 900 problem instances with up to
5000 vertices, comparing six different implementations that were available to
us. This allows us to pinpoint benefits and drawbacks of each implementation,
and to exactly identify where the current barrier in problem complexity lies.
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Given that all benchmarks are made available, this allows future work to compare
against the current state. Furthermore, for this paper, the two leading implemen-
tations were improved in a joint work between their respective authors, using
what is better in each. The resulting implementation significantly outperforms
any previous work, and constitutes the current frontier in solving AGP.

The remainder of this paper is organized as follows. In the next section,
we formalize the problem and describe related work. In Sect. 3, we turn our
attention to the sequence of experimental results that have been presented in
the past few years, with an emphasis on the chronology of developments. This
is followed by an experimental cross-comparison of these algorithms in Sect. 4,
showing speedups over time, and the current frontier. In Sect. 5, we take an
orthogonal approach and analyze common and unique ingredients of the algo-
rithms, discussing which core ideas have been most successful. This is followed
by a discussion on closely related problem variants and current trends in Sect. 6,
and a conclusion in Sect. 7.

2 The Art Gallery Problem

Before discussing Art Gallery Problem (AGP) in detail, let us give a formal
definition and introduce the necessary notation.

2.1 Problem and Definitions

We are given a polygon P , possibly with holes, in the plane with vertices V and
|V | = n. P is simple if and only if its boundary, denoted by ∂P , is connected. For
p ∈ P , V (p) ⊆ P denotes all points seen by p, referred to as the visibility region
of p, i.e., all points p′ ∈ P that can be connected to p using the line segment
pp′ ⊂ P . We call P star-shaped if and only if P = V (p) for some p ∈ P , the set
of all such points p represents the kernel of P . For any G ⊆ P , we denote by
V (G) =

⋃
g∈G V (g). A finite G ⊂ P with V (G) = P is called a guard set of P ;

g ∈ G is a guard. We say that g covers all points in V (g). The AGP asks for
such a guard set of minimum cardinality.

Note that visibility is symmetric, i.e., p ∈ V (q) ⇐⇒ q ∈ V (p). The inverse
of V (·) describes all points that can see a given point p. This is easily confirmed
to be

V−1(p) := {q ∈ P : p ∈ V (q)} = V (p) .

We use two terms to refer to points of P , making the discussion easier to
follow. We call a point a guard position or guard candidate when we want to
stress its role to be selected as part of a guard set. The second term comes from
the fact that in a feasible solution, every point in w ∈ P needs to be covered by
some visibility polygon. We refer to such a point as witness when we use it as
certificate for coverage.

Let G,W ⊆ P be sets of guard candidates and witnesses such that W ⊆
V (G). The AGP variant were W has to be covered with a minimum number
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of guards, which may only be picked from G, can be formulated as an Integer
Linear Program (ILP):

AGP(G,W ) := min
∑

g∈G

xg (1)

s.t.
∑

g∈V(w)∩G

xg ≥ 1, ∀w ∈ W, (2)

xg ∈ {0, 1}, ∀g ∈ G. (3)

Essentially the model above casts the AGP variant in terms of a Set Covering
Problem (SCP). But note that, depending on the choice of G and W , AGP(G,W )
may have an infinite number of variables and/or constraints, i.e., be a semi- or
doubly-infinite ILP. We discuss three major variants of AGP:

– The classic AGP definition, allowing for arbitrary point guards, i.e., allowing
to place guards anywhere within P . It requires that all of P , boundary and
interior, is guarded. This corresponds to AGP(P, P ). We refer to this variant
as “the” AGP.

– In AGP(V, P ), all of P has to be guarded, but guards are restricted to be placed
on vertices of P only. We refer to such guards as vertex guards. Trivially, a
vertex guard solution is a solution for AGP as well, but the reverse is not
necessarily true, see Fig. 1b.

– The variant that Victor Klee actually described, i.e., where only the polygon’s
boundary needs to be guarded, is described by AGP(P, ∂P ). A solution for
AGP(P, P ) also solves AGP(P, ∂P ), but not vice versa (see Fig. 1a).

There are many more AGP variants that deserve (and received) attention, how-
ever, these are the three versions that are mostly relevant for this paper.

In the following, unless explicitly stated otherwise, we use G and W to indi-
cate discretized versions of the AGP. For example AGP(G,P ) may refer to a
(sub-)problem where all of P needs to be guarded, but a finite set of guard can-
didates is already known. Analogously, AGP(P,W ) is the version where only a
finite set of points needs to be covered, and AGP(G,W ) is the fully discretized
version.

The semi-infinite case AGP(G,P ) provides some structure that can be
exploited in algorithms. Consider Fig. 2. We denote by A(G) the arrangement
obtained by overlaying all visibility polygons V (g) for every g ∈ G. Every feature
(face, edge, or vertex) of A(G) has a well-defined set of guards that completely
sees it. Hence, any of those guards covers the entire feature, and we refer to
them as Atomic Visibility Polygon (AVPs). We define a partial order on them
as follows: For two faces f1 and f2, we define f1 	 f2 if they are adjacent in
A(G) and the set of guards seeing f1 is a superset of those seeing f2. The max-
imal (minimal) elements in the resulting poset are called light (shadow) AVPs.
They can be exploited to solve the two semi-infinite cases: For given finite G,
any subset of G that covers all shadow AVPs also covers P , hence is feasible for
AGP(G,P ). For finite W , there is always an optimal solution for AGP(P,W )
that uses only guards in light AVPs of A(W ), with at most one guard per AVP.
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{g1, g2}

∅

{g2}

{g2}

{g1}

{g1}

∅

g1 g2

Fig. 2. The visibility arrangement A({g1, g2}) induced by two guards g1 and g2 in a
polygon with one hole.

2.2 Related Work

Chvátal [13] was the first to prove the famous “Art Gallery Theorem”, stating
that 
n/3� guards are sometimes necessary and always sufficient for polygons
with n vertices. Later Fisk [32] came up with a simple proof for this theorem,
beautiful enough to be included in the BOOK [1]. It also translates directly
into a straightforward algorithm to compute such a set of guards. Note that
for every n, there exist polygons that can be guarded by a single point (i.e.,
star-shaped polygons). So any algorithm producing 
n/3� guards is merely a
Θ(n)-approximation. There are excellent surveys on theoretical results, espe-
cially those by O’Rourke [49] and Urrutia [61] should be mentioned.

Many variants of the problem have been studied in the past. For example,
Kahn et al. [38] established a similar theorem using 
n/4� guards for orthogonal
polygons. There are variants where the characteristics of the guards have been
changed. For example, edge guards are allowed to move along an edge and survey
all points visible to some point on this edge. Instead of patrolling along an edge,
diagonal guards move along diagonals, mobile guards are allowed to use both. See
Shermer [56] for these definitions. Alternatively, variations on the guard’s task
have been considered, for example, Laurentini [44] required visibility coverage
for the polygon’s edges only. Another relevant problem related to the coverage of
polygons considers watchman routes. A watchman route is a path in the interior
of a polygon P such that every point of P is seen by at least one point in the
path. Therefore, a mobile guard moving along this path can do the surveillance
of the entire polygon’s area. Results on this problem can be found, for example,
in Mitchell [47,51].

AGP and its variants are typically hard optimization problems. O’Rourke
and Supowit [50] proved AGP to be NP-hard by a reduction from 3SAT, for
guards restricted to be located on vertices and polygons with holes. Lee and
Lin [45] showed NP-hardness also for simple polygons. This result was extended
to point guards by Aggarwal [49]. Schuchardt and Hecker [55] gave NP-hardness
proofs for rectilinear simple polygons, both for point and vertex guards. Eiden-
benz et al. [25] established lower bounds on the achievable approximation ratio.
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They gave a lower bound of Ω(log n) for polygons with holes. For vertex,
edge and point guards in simple polygons, they established APX-hardness. For
restricted versions, approximation algorithms have been presented. Efrat and
Har-Peled [24] gave a randomized approximation algorithm with logarithmic
approximation ratio for vertex guards. Ghosh [34] presented algorithms for ver-
tex and edge guards only, with an approximation ratio of O(log n). For point
guards Nilsson [48] gave O(OPT2)-approximation algorithms for monotone and
simple rectilinear polygons. Also for point guards, Deshpande et al. [23] pro-
posed one of the few existing approximation algorithms which is not constrained
to a few polygon classes. See Ghosh [34] for an overview of approximation algo-
rithms for the AGP. The first known exact algorithm for point guard problem
was proposed by Efrat and Har-Peled [24] and has complexity O((nc)3(2c+1)),
where c is the size of the optimal solution. No experimental results with this
algorithm have been reported so far. The exponential grow of the running time
with c probably makes it useless to solve large non-trivial instances.

3 Timeline

After receiving mainly a theoretical treatment for over thirty years, several
groups have started working on solving the AGP using the Algorithm Engi-
neering methodology, aiming at providing efficient implementations to obtain
optimal, or near-optimal, solutions.

Especially two groups, the Institute of Computing at the University of Camp-
inas, Brazil, and the Algorithms Group at TU Braunschweig, Germany, devel-
oped a series of algorithms that substantially improve in what kind of instances
can be solved efficiently. In this section, we give a chronological overview on
these efforts, and describe the algorithms that were developed. It should be
noted that all these approaches follow similar core ingredients, e.g., the AGP
is treated as an infinite Set Covering Problem (SCP). As finite SCP instances
can be solved reasonably fast in practice, the AGP is reduced to finite sets, and
different techniques are employed to connect the finite and infinite cases.

3.1 Stony Brook 2007:
AGP (P, P ) Heuristics, Tens of Vertices

Amit et al. [2] were among the first to experiment with a solver for AGP(P, P ),
see the journal version [3] and the PhD thesis by Packer [52] for extended
presentations.

In this work, greedy algorithms are considered, following the same setup:
A large set G of guard candidates is constructed, with the property that P
can be guarded using G. Algorithms pick guards one after the other from G,
using a priority function μ, until P is fully guarded. Both G and μ are heuristic
in nature. The authors present 13 different strategies (i.e., choices for G and
μ), and identify the three that are the best: In A1, G consists of the polygon
vertices, and of one additional point in every face of the arrangement obtained
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by adding edge extensions to the polygon. Priority is given to guards that can see
the most of the currently unguarded other positions in G. The second strategy,
A2 follows the same idea. Additionally, after selecting a guard g, it adds V (g)
to the arrangements and creates additional candidate positions in the newly
created faces. Finally, A13 employs a weight function ω on G, used as a random
distribution. In each step, a point from G is selected following ω. Then, a random
uncovered point p is generated, and all guard candidates seeing p get their weight
doubled.

To produce lower bounds, greedy heuristics for independent witnesses (i.e.,
witnesses whose visibility regions do not overlap) are considered. Using a pool
of witness candidates, consisting of the polygon’s convex vertices and points
on reflex-reflex edges, a witness set is constructed iteratively. In every step,
the witness seeing the fewest other witness candidates is added, and dependent
candidates are removed.

The authors conducted experiments with 40 input sets, including randomly
generated as well as hand-crafted instances, with up to 100 vertices. Both simple
polygons and ones with holes are considered. By comparing upper and lower
bounds, it was found that the three algorithms mentioned above always produced
solutions that are at most a factor 2 from the optimum. Algorithm A1 was most
successful in finding optimal solutions, which happened in 12 out of 37 reported
cases.

3.2 Campinas 2007:
AGP (V, P ) for Orthogonal Simple Polygons, Hundreds
of Vertices

In 2007, Couto et al. [20,21] focused on the development of an exact algorithm
for the AGP with vertex guards, AGP(V, P ), restricted to orthogonal polygons
without holes. To the best of our knowledge, these works were the first in the
literature to report extensive experimentation with an exact algorithm for a
variant of the AGP. Early attempts to tackle the orthogonal AGP(V, P ) also
involved reductions to the SCP [27,28] and aimed either to obtain heuristic
solutions or to solve it exactly [57,58]. However, experiments in these works
only considered a few instances of limited sizes. In contrast, in the work of
Couto et al., thousands of instances, some of which with 1000 vertices, were
tested and later assembled into a benchmark, made publicly available for future
comparisons [16], containing new classes of polygons including some very hard
problem instances.

Moreover, in [21], the group in Campinas derived theoretical results that
were later extended and proved to be instrumental to obtain exact solutions for
more general variants of the AGP. They showed that AGP(V, P ) can be solved
through a single instance of the SCP by replacing the infinite set of points P by
a finite set of suitably chosen witnesses from P .

The basic idea of the algorithm is to select a discrete set of points W in P
and then solve the AGP variant whose objective consists in finding the min-
imum number of vertices sufficient to cover all points in W . This discretized
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AGP is then reduced to an SCP instance and modeled as an ILP. The resulting
formulation is subsequently solved using an ILP solver, in their case, XPRESS.
If the solution to the discretized version covers the whole polygon, then an opti-
mal solution has been found. Otherwise, additional points are added to W and
the procedure is iterated. The authors prove that the algorithm converges in a
polynomial number of iterations, O(n3) in the worst case.

An important step of this exact algorithm is to decide how to construct the
set of witnesses W . Couto et al. study various alternatives and investigated the
impact on the performance of the algorithm. In the first version [20], a single
method for selecting the initial discretization is considered, which is based on
the creation of a regular grid in the interior of P . In the journal version [21], four
new discretizations are proposed: Induced grid (obtained by extending the lines
of support of the edges of the polygon), just vertices (comprised of all vertices of
P ), complete AVP (consisting of exactly one point in the interior of each AVP),
and reduced AVP (formed by one point from each shadow AVP). The authors
prove that, with the shadow AVP discretization, that it takes the algorithm only
one iteration to converge to an optimal solution for the orthogonal AGP.

The first experimental results were largely surpassed by those reported in
the journal version. Besides introducing new discretizations, the shadow AVP
discretization increased the polygon sizes fivefold (to 1000 vertices). In total,
almost 2000 orthogonal polygons were tested, including von Koch polygons,
which give rise to high density visibility arrangements and, as a consequence, to
larger and harder to solve SCP instances.

The authors highlight that, despite the fact that the visibility polygons and
the remaining geometric operations executed by the algorithm can be computed
in polynomial time, in practice, the preprocessing phase (i.e. geometric opera-
tions such as visibility polygon computation) is responsible for the majority of
the running time. At first glance, this is surprising since the SCP is known to
be NP-hard and one instance of this problem has to be solved at each iteration.
However, many SCP instances are easily handled by modern ILP solvers, as is
the case for those arising from the AGP. Furthermore, the authors also observe
that, when reasonable initial discretizations of the polygon are used, the number
of iterations of the algorithm is actually quite small.

Knowing that the reduced AVP discretization requires a single iteration,
albeit an expensive one timewise, the authors remark that a trade-off between
the number of iterations and the hardness of the SCP instances handled by the
ILP solver should to be sought. Extensive tests lead to the conclusion that the
fastest results were achieved using the just vertices discretization since, although
many more iterations may be required, the SCP instances are quite small.

3.3 Torino 2008:
AGP (P, ∂P ), Hundreds of Vertices

In 2008, Bottino and Laurentini [9] proposed a new algorithm for the AGP
variant whose objective consists in only covering the edges of a polygon P ,
denoted AGP(P, ∂P ). Hence, in this version, coverage of the interior of P is not
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required. Despite being less constrained than the original AGP, the AGP(P, ∂P )
was proven to be NP-hard [44]. In this context, the authors presented an algo-
rithm capable of optimally solving AGP(P, ∂P ) for polygons with and without
holes provided the method converges in a finite number of steps. This represents
a significant improvement in the search for optimal solutions for the AGP.

The algorithm by Bottino and Laurentini works iteratively. First, a lower
bound specific for P is computed. The second step consists of solving an instance
of the so called Integer Edge Covering Problem (IEC). In this problem, the
objective is also to cover the whole boundary of the polygon with one additional
restriction: each edge must be seen entirely by at least one of the selected guards.
It is easy to see that a solution to the IEC is also viable for AGP(P, ∂P ) and,
consequently, its cardinality is an upper bound for the latter. After obtaining a
viable solution, the gap between the upper and lower bounds is checked. If it
is zero (or less than a predefined threshold) the execution is halted. Otherwise,
a method is used to find indivisible edges, which are edges that are entirely
observed by one guard in some or all optimal solutions of AGP(P, ∂P ). The
identification of these edges can be done in polynomial time from the visibility
arrangement. After identifying them, those classified as not indivisible are split
and the process starts over.

Tests were performed on approximately 400 random polygons with up to 200
vertices. The instances were divided into four classes: simple, orthogonal, random
polygons with holes and random orthogonal polygons with holes. Reasonable
optimality percentages were obtained using the method. For instance, on random
polygons with holes, optimal results were achieved for 65% of the instances with
60 vertices. In cases where the program did not reach an optimal solution (due
to the optimality gap threshold or to timeout limits), the final upper bound
was, on average, very close to the lower bound computed by the algorithm. On
average, for all classes of polygons, the upper bound exceeded the lower bound
by ∼ 7%.

3.4 Campinas 2009:
AGP (V, P ) for Simple Polygons, Thousands of Vertices

Couto et al. went on to study how to increase the efficiency of the algorithm for
AGP(V, P ) proposed in the works discussed in Sect. 3.2. A complete description
of their findings can be found in a 2011 paper [19], with a preliminary version
available as a 2009 technical report [15]. The basic steps of the algorithm are
explained in [17], and are illustrated in the companion video [18].

Compared to the previous works by the same authors, the new algorithm was
extended to cope with more general classes of polygons, still without holes, but
now including non-orthogonal polygons. Experiments on thousands of instances
confirmed the robustness of the algorithm. A massive amount of data was subse-
quently made publicly available containing the entire benchmark used for these
tests, see also Sect. 4.1.

Essentially, some implemented procedures were improved relative to the app-
roach in [21] to enable handling non-orthogonal polygons. Moreover, two new
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initial discretization techniques were considered. The first one, called single ver-
tex, consists in the extreme case where just one vertex of the polygon forms
the initial discretized set W . As the second strategy, named convex vertices, W
comprises all convex vertices of P .

The authors made a thorough analysis of the trade-off between the number
and nature of the alternative discretization methods and the number of itera-
tions. Their tests were run on a huge benchmark set of more than ten thousand
polygons with up to 2500 vertices. The conclusion was that the decision over the
best discretization strategy deeply depends on the polygon class being solved. As
anticipated, the fraction of time spent in the preprocessing phase was confirmed
to be large for sizable non-orthogonal polygons and even worse in the case of
von Koch and random von Koch polygons. Moreover, while using shadow AVPs
as the initial discretization produces convergence after just one iteration of the
algorithm, the resulting discretization set can, in this case, be so large that the
time cost of the preprocessing phase overshadows the solution of the ensued SCP.
For this reason, the just vertices strategy lead to the most efficient version of
the algorithm, in practice, as the small SCP instances created counterbalanced
the larger number of iterations for many polygon classes.

3.5 Braunschweig 2010:
Fractional Solutions for AGP (P, P ), Hundreds of Vertices

In 2010, Baumgartner et al. [7] (see Kröller et al. [41] for the journal version)
presented an exact algorithm for the fractional variant of AGP(P, P ). In it, solu-
tions may contain guards g ∈ P with a fractional value for xg. This corresponds
to solving a Linear Program (LP), namely the LP relaxation of AGP(P, P ) which
is obtained by replacing Constraint (3) of AGP(G,W ) with

0 ≤ xg ≤ 1 ∀g ∈ G. (4)

We denote by AGPR(G,W ) the LP relaxation of AGP(G,W ). Note that this is
the first exact algorithm where neither guard nor witness positions are restricted.

The authors present a primal-dual approach to solve the problem. They
notice that AGPR(G,W ) can be easily solved using an LP solver, provided G
and W are finite and not too large. The proposed algorithm picks small, carefully
chosen sets for G and W . It then iteratively extends them using cutting planes
and column generation:

– cutting planes: If there is an uncovered point w ∈ P \ W , this corresponds
to a violated constraint of AGPR(P, P ), so w is added to W . Otherwise the
current solution is feasible for AGPR(G,P ), and hence an upper bound of
AGPR(P, P ). We also refer to this part as primal separation.

– column generation: A violated constraint of the dual of AGPR(P, P ) corre-
sponds to a guard candidate g ∈ P \ G that improves the current solution,
and g is added to G. Otherwise the current solution optimally guards the
witnesses in W , i.e. is optimal for AGPR(P,W ), and hence provides a lower
bound for AGPR(P, P ). We also refer to this part as dual separation.
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It can be shown that, if the algorithm converges, it produces an optimal solution
for AGPR(P, P ). Furthermore, the authors use the algorithm for the integer
AGP, but only insofar that LP solutions sometimes are integer by chance, but
without any guarantee.

The algorithm has many heuristic ingredients, e.g., in the choice of initial G
and W and the placement strategy for new guards and witnesses. The authors
conducted an exhaustive experiment, with 150 problem instances with up to
500 vertices. They compared different strategies for all heuristic ingredients of
the algorithm. There were four separation strategies: (1) Focusing on upper
bounds by always running primal separation, but dual only when primal failed.
(2) Focusing on lower bounds, by reversing the previous one. (3) Always running
both separators, in the hope of quickly finishing. (4) Alternating between foci,
by running primal separation until an upper bound is found, then switching to
running dual separation until a lower bound is found, and repeating. There were
four different separators, i.e., algorithms to select new candidates for G resp. W ;
these included selecting the point corresponding to a maximally violated con-
straint, selecting points in all AVPs, a greedy strategy to find independent rows
(columns) with a large support, and placing witnesses on AVP edges. For initial
choice of G and W , four heuristics were used: (1) Using all polygon vertices,
(2) starting with an empty set (for implementation reasons, a single point had
to be used here), (3) selecting half the vertices to keep the set smaller but still
allowing full coverage, and finally two strategies based on the work by Chwa
et al. [14]. Here, G is initialized to use all reflex vertices, and W is initialized to
have a witness on every polygon edge that is incident to a reflex vertex.

The trial consisted of over 18,000 runs, allowing for a direct comparison of
individual parameter choices. It was found that many instances could be solved
optimally within 20 min. This happened for 60% of the 500-vertex polygons, and
85% of the 100-vertex polygons. Other findings included the importance of the
initial solution, where the best strategy (the Chwa-inspired one) led to an overall
speedup factor of 2. The best primal and dual separators were identified in a
similar way. Furthermore, the authors were first to observe the bathtub-shaped
runtime distribution that is still prominent in today’s algorithms: Either the
algorithm finishes very quickly, usually in the first few seconds, with an optimal
solutions, or it engages in an excruciatingly slow process to find good guards
and witnesses, often failing to finish within time.

3.6 Torino 2011:
AGP (P, P ), Tens of Vertices

In 2011, Bottino et al. [10] improved their previous work (see Sect. 3.3) by apply-
ing similar ideas to solve the original AGP rather than the AGP(P, ∂P ). The
objective was to develop an algorithm capable of finding nearly-optimal solu-
tions for full polygon coverage, since, at that time, there was a lack of practical
methods for this task.

The first step of the presented technique consists of using the algorithm
discussed in Sect. 3.3, which allows for obtaining a lower bound and also multiple
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optimal solutions for the AGP(P, ∂P ). These are then tested in the search for a
coverage of the entire polygon. According to the authors, if such solution exists,
it is automatically a nearly optimal one for AGP(P, P ). If a viable solution is
not among those, guards are then added using a greedy strategy until a feasible
solution is found.

It should be noted that there are worst-case instances for AGP(P, P ) that
only possess a single optimal solution, where no characterization of the guard
positions is known. Therefore this algorithm, and none of the subsequent ones
presented in this paper, can guarantee to find optimal solutions. This common
issue is discussed in more detail in Sect. 6.2.

For the experiments presented in [10], 400 polygons with sizes ranging from
30 to 60 vertices were examined. As in the previous work, the following classes
were tested: simple, orthogonal, random polygons with holes and also random
orthogonal polygons with holes. Guaranteed optimal solutions were found in
about 68% of the polygons tested. Note that, in about 96% of the cases, the
solution found for AGP(P, ∂P ) in the first step of this algorithm was also viable
for AGP(P, P ). In addition, the authors also implemented the most promising
techniques by Amit et al. (see Sect. 3.1), in order to enable comparison between
both works. As a result, this technique was more successful than the method by
Amit et al. considering the random polygons tested.

3.7 Braunschweig 2012:
AGP (P, P ), Hundreds of Vertices

In 2012, the primal-dual method introduced by the Braunschweig group was
extended. The previous version could find optimal point guards, but only for the
LP relaxation which allows fractional guards. Integer solutions could only be
found by chance. Now, two ingredients were added to find integer solutions: An
ILP-based routine and cutting planes. See Friedrichs [33] for a detailed discussion
on the cutting planes, and Fekete et al. [30,31] for the combined approach.
As it turned out, this algorithm could solve the classic problem AGP(P, P ) on
instances of several hundreds of vertices with holes, a factor 10 more than in
previous work.

The 2012 algorithm switches between primal and dual phases. In the primal
phase, feasible solutions are sought, i.e., upper bounds. Unlike the 2010 version,
now only integer solutions are considered. For the current set G of guards and
W of witnesses, AGP(G,W ) is solved optimally using an ILP formulation. The
visibility overlay A(G) is scanned for insufficiently covered spots, and additional
witnesses are generated accordingly. The primal phase ends when no new wit-
nesses are generated, with a feasible integer solution for AGP(G,P ), and hence
an upper bound for AGP(P, P ). In the dual phase, new guard positions are found
using the dual arrangement A(W ). For that, a dual solution is needed, which is
provided by solving the LP relaxation AGPR(G,W ). The dual phase ends with
an optimal solution for AGPR(P,W ), which is a lower bound for AGPR(P, P ),
and hence also AGP(P, P ). The procedure computes a narrowing sequence of
upper bounds for AGP(P, P ) and lower bounds for AGPR(P, P ), leaving the
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issue of closing the integrality gap between them. This may lead to terminating
with a suboptimal solution, however with a provided lower bound. As a lever-
age against this shortcoming, cutting planes are employed to raise the lower
bounds [33]. Two classes of facet-defining inequalities for the convex hull of all
feasible integer solution of AGP(G,W ) are identified. While the NP-hardness
of AGP indicates that it is hopeless to find a complete polynomial-size facet
description, it is shown that the new inequalities contain a large set of facets,
including all with coefficients in {0, 1, 2}, see also [6]. The dual phase is enhanced
with separation routines for the two classes, consequently improving the lower
bounds, and often allowing the algorithm to terminate with provably optimal
solutions.

To evaluate this work, experiments were conducted on four different poly-
gon classes, sized between 60 and 1000 vertices. These included both orthogonal
and non-orthogonal instances, both with and without holes, and polygons where
optimal solutions cannot use vertex guards. Different parametrizations of the
algorithms were tested, and it was found that the ILP-based algorithm itself
(without applying cutting planes) could identify good integer solutions, some-
times even optimal ones, and considerably surpassed the previous 2010 version.
The algorithm was able to find optimal solutions for 500-vertex instances quite
often. Instances with 1000 vertices were out of reach though.

3.8 Campinas 2013:
AGP (P, P ), Hundreds of Vertices

The work by Tozoni et al. [60] generalizes to AGP(P, P ) the ideas developed
for AGP(V, P ) by Couto et al. (see Sect. 3.4). The paper proposes an algorithm
that iteratively generates upper and lower bounds while seeking to reach an
exact solution. Extensive experiments were carried out which comprised 1440
simple polygons with up to 1000 vertices from several classes, all of which were
solved to optimality in a matter of minutes on a standard desktop computer. Up
to that point in time, this was the most robust and effective algorithm available
for AGP(P, P ), for simple polygons. The restriction to simple polygons in this
version as well as earlier versions of the Campinas branch originates from the
fact that no visibility algorithm for general polygons was available to the group
in Campinas, yet.

The algorithm generates, through a number of iterations, lower and upper
bounds for the AGP(P, P ) through the resolution of the two semi-infinite dis-
cretized variants of the original AGP, namely AGP(P,W ) (asking for the mini-
mum number of guards that are sufficient to cover the finite set W of witnesses)
and AGP(G,P ) (computing the minimum number of guards from G that are
sufficient to cover P ). Notice that in these variants, either the witness or the
guard candidate set is infinite, preventing the formulation of these problem vari-
ants as an ILP. However, remarkable results [60] show that both variants can be
reduced to a compact set covering problem.

To solve AGP(P,W ) instance, the algorithm constructs A(W ), and chooses
the vertices of the light AVPs to become part of the guard candidates set G.
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Assuming that |W | is bounded by a polynomial in n, the same holds for |G|.
Therefore, the SCP instance corresponding to AGP(G,W ) admits a compact
ILP model. Tozoni et al. showed that an optimal solution for AGP(P,W ) can be
obtained by solving AGP(G,W ). Thus, the algorithm computes a lower bound
for AGP(P, P ) using an ILP solver.

Now, to produce an upper bound for AGP(P, P ), an idea similar to the one
developed by Couto et al. [19] to solve the AGP(V, P ) is used. The procedure
starts with the same sets G and W used for the lower bound computation.
The AGP(G,W ) is solved as before. If the optimal solution found in this way
covers P , then it is also feasible for AGP(P, P ) and provides an upper bound
for the problem. Otherwise, new witnesses are added to the set W and the
procedure iterates. The upper bound procedure is known to converge in a number
of iterations that is polynomial in n.

The lower and upper bound procedures are repeated until the gap between
the two bounds reaches zero or a predefined time limit is reached. For certain
initial discretization sets and strategies for updating the witness set, one can
construct fairly simple instances that lead the algorithm to run indefinitely.
Therefore, it remains an important open question whether there exists a dis-
cretization scheme that guarantees that the algorithm always converges, see also
Sect. 6.2.

An important step of this algorithm, which greatly affects the performance
of the final program, is how the initial witness set should be chosen and updated
throughout the iterations. Two initial discretizations were tested in practice
and are worth noting. The first one, called Chwa-Points, is based on the work
by Chwa et al. [14] and chooses the middle points of reflex-reflex edges and
the convex vertices that are adjacent to reflex vertices. This is similar to the
initialization used in [7,41]. The second, called Convex-Vertices, comprises all
convex vertices of P .

The computational results obtained by this algorithm confirmed its robust-
ness. A total of 1440 instances were tested from different polygon classes, includ-
ing simple, orthogonal and von Koch ones. Optimal solutions were found for all
of them. Also, comparisons with previous published papers showed that the algo-
rithm was effective and far more robust than its competitors. Experiments with
different initial witness sets revealed that, on average, Chwa Points attained
the best results. However, on von Koch Polygons, Convex Vertices performed
better.

3.9 Campinas 2013 (Journal Version):
AGP (P, P ), Thousands of Vertices

After presenting an algorithm for AGP with point guards in spring 2013 (see
Sect. 3.8), the research group from Campinas continued working on the subject.
In this context, improvements were implemented, including the development of
their own visibility algorithm that was also able to handle polygons with holes,
giving rise to a new version of the algorithm [59]. The resulting implementation is
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able to solve polygons with thousands of vertices in a few minutes on a standard
computer.

Several major improvements were introduced in order to reach this redesigned
version. Among them, a Lagrangian Heuristic method (see Sect. 5.2) was imple-
mented to help the ILP solver expedite the computation of optimal solutions for
SCP instances. Moreover, a procedure for removing redundant variables and con-
straints from the SCP formulation was also used to speed up the ILP resolution
process.

One of the most effective changes consisted in reversing the point of view of
visibility testing from the perspective of the guards to that of the witnesses. Since
these are fewer in number and their arrangement has already been computed,
much of the geometric computation is simplified.

In the end, 2440 instances were tested and optimal solutions were found for
more than 98% of them. The test bench included several different classes of
polygons, with and without holes, with up to 2500 vertices. Besides the classes
tested in the previous version [60], the authors also used a newly created bench-
mark instance for polygons with holes (see also Sect. 4.1) and the spike polygons
presented by Kröller et al. [41]. Also, comparisons were made with the work of
Kröller et al. and an analysis of the effects obtained from different discretizations
for the initial witness set were presented. Moreover, the authors evaluated the
impact of using a Lagrangian heuristic on the overall performance of the method
and concluded that it reduces the average execution time in most of the cases.

3.10 Braunschweig 2013 (Current Version):
AGP (P, P ), Thousands of Vertices

A deeper runtime analysis of the former code from 2012 revealed that the main
bottlenecks where the geometric subroutines, namely (i) the computation of
visibility polygons (an implementation of a O(n log n) rotational sweep as in
Asano [4]), (ii) the overlays of these visibility polygons to form A(G) and A(W )
(O(n2m2 log(nm)), where m is the size of G resp. W ), and (iii) point location
algorithms to determine membership in AVPs. This was somewhat surprising
as all of these algorithms have fairly low complexity, especially when compared
to LP solving (worst-case exponential time when using the Simplex algorithm)
and ILP solving (NP-hard in general, and used to solved the NP-hard Set Cover
problem). Still the geometric routines made up for over 90% of the runtime.

The group in Braunschweig focused on the improvement of these geo-
metric subroutines: (i) A new Computational Geometry Algorithms Library
[12] (CGAL) package for visibility polygon computation was developed in
Braunschweig [36], which contains a new algorithm named triangular expan-
sion [11]. Though the algorithm only guarantees an O(n2) time complexity, it
usually performs several magnitudes faster than the rotational sweep. (ii) The
code now uses the lazy-exact kernel [54], which delays (or even avoids) the con-
struction of exact coordinates of intersection points as much as possible. The
impact is most evident in the construction of the overlays, which contain many
intersection points. (iii) The algorithm was restructured to allow a batched point
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location [62, Sect. 3]1 of all already existing guards (or witnesses) with respect
to a new visibility polygon at once.

The new code now runs substantially faster, allowing it to solve much larger
instances than the previous one. This paper contains the first experimental evalu-
ation of this new algorithm. Section 4 contains results from running the algorithm
and comparing it to the other approaches presented here. Section 5 discusses the
speedup obtained by the new subroutines.

3.11 Campinas and Braunschweig 2013 (Current Version):
AGP (P, P ), Thousands of Vertices

This implementation is the result of a joint effort by the Braunschweig and the
Campinas groups. With the intent of achieving robustness, its core is the algo-
rithm from Campinas (Sect. 3.9), refitted with optimizations from Braunschweig
that greatly improved its efficiency.

The new code now also uses the lazy exact kernel (cf. Sect. 3.10) of CGAL
and the triangular expansion algorithm [11] of the new visibility package [36]
of CGAL. While the impact of the new visibility polygon algorithm was huge
for both approaches the usage of the lazy kernel was also significant since the
overlays in the approach of Campinas contain significantly more intersection
points. To see more about how changes in kernel and visibility affect the solver,
consult Sect. 5.

Moreover, the current version of Campinas also includes new approaches on
the algorithm side. One of the ideas developed was to postpone the computation
of an upper bound (solving AGP(G,P )) to the time that a good lower bound,
and, consequently, a “good” set of guard candidates is obtained. This can be
done by repeatedly solving only AGP(P,W ) instances until an iteration where
the lower bound is not improved is reached. This situation possibly means that
the value obtained will not change much in the next iterations. It also increases
the chances that the first viable solution found is also provably optimal, which
automatically reduces the number of AGP(G,P ) instances which must be re-
solved.

Other changes that are the inclusion of a new strategy for guard positioning,
where only one interior point from each light AVP is chosen to be part of the
guard candidate set (instead of all its vertices), and the possibility of using IBM
ILOG CPLEX Optimization Studio [22] (CPLEX) solver instead of XPRESS.

This new version was tested in experiments conducted for this paper, using
900 problem instances ranging from 200 to 5000 vertices. Section 4 presents the
obtained results in detail. The implementation proved to be efficient and robust
for all classes of polygons experimented.

1 This is an an O((n+m) log n) sweep line algorithm, where n is the number of polygon
vertices and m the number of query points.
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4 Experimental Evaluation

To assess how well the AGP can be solved using current algorithms, and how
their efficiency has developed over the last years, we have run exhaustive exper-
iments. The experiments involve all algorithms for which we could get working
implementations, and were conducted on the same set of instances and on the
same machines, see Sect. 4.2. We refrain from providing comparisons based on
numbers from the literature.

We had several snapshots from the Braunschweig and Campinas code avail-
able, these are:

– For Braunschweig, the versions from 2010 (Sect. 3.5), 2012 (Sect. 3.7), and
2013 (Sect. 3.10). These will be referred to as BS-2010, BS-2012, and BS-2013,
respectively.

– For Campinas, the version from 2009 (Sect. 3.4), and the two snapshots from
2013 (Sects. 3.8 and 3.9). These will be referred to as C-2009, C-2013.1 and
C-2013.2, respectively.

– The latest version is the combined approach from Campinas and
Braunschweig that was obtained during a visit of Davi C. Tozoni to
Braunschweig (Sect. 3.11), which we refer to as C+BS-2013.

The older versions have already been published, for these we provide a unified
evaluation. The versions BS-2013 and C+BS-2013 are, as of yet, unpublished.

4.1 AGPLib

For the performed experiments, several classes of polygons were considered. The
majority of them were collected from AGPLib [16], which is a library of sample
instances for the AGP, consisting of various classes of polygons of multiple sizes.
They include the test sets from many previously published papers [7,19–21,41,
59,60].

To find out more about how each of the classes was generated, see [20] and
[59]. Below, we show a short description of the six classes of instances considered
in this survey; all of them are randomly generated:

“simple”: Random non-orthogonal simple polygons as in Fig. 3a.
“simple-simple”: Random non-orthogonal polygons as in Fig. 3b. These are

generated like the “simple” polygon class, but with holes. The holes are also
generated like the first class and randomly scaled and placed until they are
in the interior of the initial polygon.

“ortho”: Random floorplan-like simple polygons with orthogonal edges as in
Fig. 3c.

“ortho-ortho”: Random floorplan-like orthogonal polygons as in Fig. 3d. As
the simple-simple class, these polygons are generated by using one polygon of
the ortho class as main polygon, and then randomly scaling and translating
smaller ortho polygons until they are contained within the main polygon’s
interior, where they are used as holes.
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(a) simple (b) simple-simple (c) ortho

(d) ortho-ortho (e) vonKoch (f) spike

Fig. 3. Example instances of different polygon classes.

“von Koch”: Random polygons inspired by randomly pruned Koch curves, see
Fig. 3e.

“spike”: Random polygons with holes as in Fig. 3f. Note that this class is specif-
ically designed to provide polygons that encourage placing point guards in the
intersection centers. It has been published along with the BS-2010 algorithm
(Sect. 3.5), which was the first capable of placing point guards.

4.2 Experimental Setup

The experiments were run on identical PCs with eight-core Intel Core i7-3770
CPUs at 3.4 GHz, 8 MB cache, and 16 GB main memory running a 64-bit Linux
3.8.0 kernel. All algorithms used version 4.0 of Computational Geometry Algo-
rithms Library [12] (CGAL) and IBM ILOG CPLEX Optimization Studio [22]
(CPLEX) 12.5. The only component using concurrency is the ILP solver CPLEX,
everything else was single-threaded. For each polygon-class/complexity combi-
nation, we tested 30 different polygons. Each test run had a runtime limit of
20 min.

4.3 Results

Historically, the two lines of algorithms have been working towards AGP from
different angles. Campinas focused on binary solutions, which initially came at
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the expense of being limited to given guard discretization, like vertex guards:
AGP(V, P ). The Braunschweig work started with point guards, but the price
were fractional solutions: AGPR(P, P ). It only became possible to reliably solve
the binary AGP with point guards, AGP(P, P ), with the BS-2012 and C-2013.1
algorithms.

Therefore, we first sketch progress for the AGP with vertex guards and the
fractional AGP before discussing the experimental results for AGP with point
guards itself.

Vertex Guards. AGP(V, P ) is one of the semi-infinite variants. We believe it
to be a considerably simpler problem than AGP(P, P ) for two reasons: (1) Both
variants are NP-hard, but we know AGP(V, P ) is in NP, which is uncertain
for AGP(P, P ) as it is unknown if there is a polynomial-size representation of
guard locations. (2) Experience and experimental results indicate that finding
good guard candidates is the hardest part of the problem and leads to many
iterations; but for AGP(V, P ) we only have to place witnesses and solve SCP
instances, which is usually possible in a comparably short time frame with a good
ILP solver. The first experimental work on AGP(V, P ) was Campinas 2007, but
unfortunately, the implementation is no longer available.

Table 1. Optimality rates for vertex guards. Notice that BS-2010 finds fractional
vertex guard solutions, whereas the others find integer ones.

Polygons without holes Polygons with holes

200 500 1000 2000 5000 200 500 1000 2000 5000

C-2009 100.0 100.0 100.0 100.0 63.3 – – – – –

C-2013.1 100.0 100.0 100.0 100.0 63.3 – – – – –

BS-2013 100.0 100.0 100.0 100.0 88.9 100.0 97.8 67.8 77.8 66.7

C-2013.2 100.0 100.0 100.0 100.0 37.8 100.0 100.0 66.7 65.6 0.0

C+BS-2013 100.0 100.0 100.0 100.0 100.0 100.0 100.0 77.8 88.9 66.7

BS-2010 * 100.0 100.0 100.0 100.0 33.3 100.0 100.0 100.0 98.9 0.0

Table 1 shows optimality rates, i.e., how many of the instances each imple-
mentation could solve, given a 20 min time limit per instance. The polygons were
grouped in two categories: those without holes, including the instances classes
simple, ortho and von Koch, and those with holes composed by the instances
in the classes simple-simple, ortho-ortho and spikes. The Campinas versions
prior to C-2013.2 could not deal with holes in input polygons, so these entries are
empty. It should also be noted that BS-2010 solves the easier case of fractional
vertex guards. It is clearly visible how all algorithms (including the five-year-old
C-2009) can solve all simple polygons with up to 2000 vertices as well as most
simple 5000-vertex polygons. For instances with holes, however, the solution per-
centages of all algorithms (except BS-2010 which solves an easier problem) start
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significantly dropping at 1000 vertices. This demonstrates two effects: First, for
smaller sizes, the problem is easier to solve as the search for good guard candi-
dates is unnecessary. Second, for larger sizes, finding optimal solutions to large
instances of the NP-hard SCP dominate, resulting in a computational barrier.
The difficulty to handle large SCP instances also shows up when we consider the
results of the Campinas codes C-2013.1 and C-2013.2. As the size of the poly-
gons increases and the SCPs to be solved grow in complexity, the Lagrangian
heuristic employed by C-2013.2 version uses more computational time but does
not help the ILP solver to find optimal solutions for the AGP(G,W) instances,
due to the deterioration of the primal bounds. This inefficiency causes a decrease
in the solver’s performance, as can be seen in the optimality rate shown in Table
1 for simple polygons with 5000 vertices. In this case, if C-2013.2 did not use
the Lagrangian heuristic by default, a result at least similar to that obtained by
C-2013.1 would be expected.

The high solution rates allow us to directly analyze the speedup achieved over
time. Table 2 shows how much faster than C-2009 later algorithms could solve
the problem. The shown numbers are log-averages over the speedup against
C-2009 for all instances solved by both versions. As C-2009 cannot process
holes, this analysis is restricted to simple polygons. It is clearly visible that

Table 2. Speedup for vertex guards. Numbers indicate how many times faster than
C-2009 later implementations became, computed as log-average. The comparison is
only possible when there is at least one instance of the group that was solved by all
considered solvers. This table is restricted to simple polygons, since C-2009 does not
support polygons with holes.

Class n Speedup factor

C-2009 BS-2010 C-2013.1 C-2013.2 BS-2013 C+BS-2013

Simple 200 1.00 0.66 1.03 1.21 7.54 6.75

500 1.00 0.66 1.01 1.02 7.79 10.21

1000 1.00 0.66 1.02 0.95 8.03 14.65

2000 1.00 0.68 1.00 0.90 10.24 18.97

5000 – – – – – –

Orthogonal 200 1.00 0.64 1.01 1.05 6.46 6.15

500 1.00 0.63 1.01 0.98 6.67 10.82

1000 1.00 0.65 1.00 0.92 7.75 15.67

2000 1.00 0.65 0.98 0.82 9.57 19.52

5000 1.00 0.72 1.00 0.75 12.63 28.64

von Koch 200 1.00 0.38 1.02 1.33 2.09 3.45

500 1.00 0.44 1.09 1.37 1.86 4.27

1000 1.00 0.60 0.95 1.40 1.95 4.75

2000 1.00 0.92 1.34 1.39 2.67 6.18

5000 – – – – – –
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BS-2013 is about five times faster then C-2009, and the changes from C-2013.2
to C+BS-2013 led to a speedup factor of about seven. These stem from a number
of changes between versions, however, roughly a factor 5 can be attributed to
improvements in geometric subroutines — faster visibility algorithms, lazy-exact
CGAL kernel, reduced point constructions. We discuss the influence of geometry
routines in Sect. 5.1.

Fractional Guards. The Braunschweig line of work started with solving the
fractional point guard variant AGPR(P, P ) and all Braunschweig versions, even
those designed for binary solutions, still support the fractional AGP. Table 3
shows how often the three implementations could find optimal solutions, and
how often they achieved a 5% gap by the end of the 20-min runtime limit. Here
again, the polygons have been grouped: those with holes and those without holes.

Table 3. Optimality rates for fractional point guards.

Polygons without holes Polygons with holes

200 500 1000 2000 5000 200 500 1000 2000 5000

OPT BS-2010 55.6 27.8 14.4 3.3 0.0 54.4 32.2 28.9 30.0 0.0

BS-2012 53.3 30.0 11.1 4.4 0.0 54.4 32.2 27.8 31.1 0.0

BS-2013 56.7 24.4 12.2 1.1 0.0 50.0 31.1 27.8 31.1 33.3

5% gap BS-2010 93.3 100.0 100.0 100.0 33.3 96.7 100.0 98.9 75.6 0.0

BS-2012 93.3 100.0 100.0 100.0 33.3 97.8 98.9 98.9 72.2 0.0

BS-2013 91.1 100.0 100.0 100.0 98.9 97.8 98.9 98.9 98.9 33.3

Unsurprisingly, there is no significant difference between the BS-2010 and
BS-2012 versions, the development between these snapshots focused on the inte-
ger case. The improvements from BS-2012 to BS-2013 stem from improved geom-
etry subroutines which are beneficial to both, the binary and the fractional mode.
It can be seen that near-optimal solutions are obtained almost every time, but
the gap is not always closed. Furthermore, with the 20-min time limit, there is
an barrier between 2000 and 5000 vertices, where the success rate drops sharply,
indicating that the current frontier for input complexity lies roughly in this
range.

Point Guards. We turn our attention to the classic AGP, AGP(P, P ): Finding
integer solutions with point guards. We report optimality in three different ways:
Which percentage of instances could be solved optimally with a matching lower
bound (i.e., proven optimality) is reported in Table 4; we show in how many
percent of the cases an instance could be solved optimally, whether or not a
matching bound was found in Table 5; Table 6 reports how many percent of
the solutions were no more than 5% away from the optimum. This allows to
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Table 4. Optimality Rate for point guards.

Class n Optimality rate (%)

BS-2012 C-2013.1 C-2013.2 BS-2013 C+BS-2013

Simple 200 100.0 100.0 100.0 96.7 100.0

500 76.7 100.0 100.0 96.7 100.0

1000 70.0 96.7 100.0 90.0 100.0

2000 36.7 6.7 50.0 60.0 100.0

5000 0.0 0.0 0.0 26.7 100.0

Orthogonal 200 96.7 100.0 100.0 96.7 96.7

500 86.7 100.0 96.7 93.3 93.3

1000 70.0 100.0 100.0 86.7 100.0

2000 46.7 70.0 90.0 70.0 100.0

5000 0.0 0.0 0.0 40.0 93.3

Simple-simple 200 93.3 – 100.0 86.7 100.0

500 76.7 – 83.3 60.0 100.0

1000 3.3 – 0.0 13.3 100.0

2000 0.0 – 0.0 0.0 46.7

5000 0.0 – 0.0 0.0 0.0

Ortho-ortho 200 83.3 – 96.7 86.7 100.0

500 53.3 – 83.3 53.3 100.0

1000 16.7 – 3.3 16.7 96.7

2000 0.0 – 0.0 0.0 33.3

5000 0.0 – 0.0 0.0 0.0

von Koch 200 100.0 100.0 100.0 100.0 100.0

500 100.0 96.7 100.0 93.3 100.0

1000 100.0 46.7 100.0 96.7 100.0

2000 83.3 0.0 0.0 86.7 100.0

5000 0.0 0.0 0.0 0.0 0.0

Spike 200 100.0 – 100.0 96.7 100.0

500 100.0 – 100.0 100.0 100.0

1000 3.3 – 96.7 100.0 100.0

2000 0.0 – 96.7 100.0 100.0

5000 0.0 – 0.0 96.7 100.0

distinguish between cases where BS-2013 does not converge, and cases where
the integrality gap prevents it from detecting optimality.

The C+BS-2013 implementation solves the vast majority of instances from
our test set to proven optimality, the only notable exception being some classes
of very large polygons with holes and the 5000-vertex Koch polygons. Given
how the best known implementation by 2011, the Torino one from Sect. 3.6,
had an optimality rate of about 70% for 60-vertex instances, it is clearly visible
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Table 5. Optimality Rate without proof for point guards.

Class n Optimality rate (%) without proof

BS-2012 C-2013.1 C-2013.2 BS-2013 C+BS-2013

Simple 200 100.0 100.0 100.0 96.7 100.0

500 80.0 100.0 100.0 100.0 100.0

1000 73.3 100.0 100.0 100.0 100.0

2000 50.0 50.0 80.0 93.3 100.0

5000 0.0 0.0 0.0 83.3 100.0

Orthogonal 200 96.7 100.0 100.0 96.7 96.7

500 86.7 100.0 100.0 93.3 93.3

1000 70.0 100.0 100.0 90.0 100.0

2000 50.0 96.7 93.3 90.0 100.0

5000 0.0 0.0 0.0 50.0 93.3

Simple-simple 200 96.7 – 100.0 90.0 100.0

500 93.3 – 96.7 80.0 100.0

1000 33.3 – 20.0 73.3 100.0

2000 0.0 – 0.0 33.3 50.0

5000 0.0 – 0.0 0.0 0.0

Ortho-ortho 200 93.3 – 100.0 100.0 100.0

500 80.0 – 93.3 90.0 100.0

1000 70.0 – 30.0 70.0 96.7

2000 0.0 – 0.0 30.0 43.3

5000 0.0 – 0.0 0.0 0.0

von Koch 200 100.0 100.0 100.0 100.0 100.0

500 100.0 100.0 100.0 93.3 100.0

1000 100.0 70.0 100.0 96.7 100.0

2000 83.3 0.0 30.0 90.0 100.0

5000 0.0 0.0 0.0 0.0 0.0

Spike 200 100.0 – 100.0 96.7 100.0

500 100.0 – 100.0 100.0 100.0

1000 3.3 – 100.0 100.0 100.0

2000 0.0 – 96.7 100.0 100.0

5000 0.0 – 0.0 96.7 100.0

how the developments in the last years pushed the frontier. With C+BS-2013,
instances with 2000 vertices are usually solved to optimality, showing an increase
in about two orders of magnitude. The success of C+BS-2013 is multifactorial: It
contains improved combinatorial algorithms as well as faster geometry routines,
most notably a fast visibility implementation. Section 5 discusses its key success
factors.
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Table 6. Rate of upper bound within 5% distance to lower bound.

Class n 5% gap Rate in (%)

BS-2012 C-2013.1 C-2013.2 BS-2013 C+BS-2013

Simple 200 100.0 100.0 100.0 100.0 100.0

500 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0

2000 100.0 100.0 96.7 100.0 100.0

5000 0.0 0.0 0.0 100.0 100.0

Orthogonal 200 100.0 100.0 100.0 100.0 100.0

500 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0

2000 100.0 100.0 100.0 100.0 100.0

5000 0.0 0.0 0.0 100.0 100.0

Simple-simple 200 100.0 −− 100.0 100.0 100.0

500 100.0 −− 93.3 100.0 100.0

1000 100.0 −− 33.3 100.0 100.0

2000 0.0 −− 0.0 96.7 80.0

5000 0.0 −− 0.0 0.0 0.0

Ortho-ortho 200 100.0 −− 100.0 100.0 100.0

500 100.0 −− 100.0 100.0 100.0

1000 100.0 −− 40.0 96.7 100.0

2000 56.7 −− 0.0 76.7 86.7

5000 0.0 −− 0.0 0.0 0.0

von Koch 200 100.0 100.0 100.0 100.0 100.0

500 100.0 100.0 100.0 100.0 100.0

1000 100.0 73.3 100.0 100.0 100.0

2000 100.0 0.0 56.7 100.0 100.0

5000 0.0 0.0 0.0 3.3 0.0

Spike 200 100.0 −− 100.0 96.7 100.0

500 100.0 −− 100.0 100.0 100.0

1000 3.3 −− 96.7 100.0 100.0

2000 0.0 −− 96.7 100.0 100.0

5000 0.0 −− 0.0 96.7 100.0

It can be seen from Table 6 that many algorithms are able to find near-optimal
solutions (5% gap) for most instances, indicating that for practical purposes, all
2013 algorithms perform very well. The frontier on how large instances can be
solved with small gap is between 2000 and 5000 vertices for most polygons with
holes and beyond 5000 vertices for simple polygons.
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Comparing Tables 4, 5 and 6, it can be seen that the primal-dual approach
(BS-2010 and BS-2012) produces decent upper bounds, often optimal ones, but
does have an issue with finding matching lower bounds. This drawback has been
much improved in BS-2012 but is still measurable.

Finally, we analyze how difficult the individual instance classes are. In
Tables 4, 5 and 6, we group them by size and based on whether they feature
holes. Table 7 shows optimality rates for each class. We restrict presentation to
BS-2013 here, for the simple reason that it has the highest variation in reported
rates. In each class, we see a continuous decline with increasing input complex-
ity, indicating that local features of an instance play a major role in how hard
it is to solve it, rather than this being an intrinsic property of the generator.
The only generator that produces “easier” instances than the others is Spike.
These are instances tailored for showing the difference between vertex and point
guards, requiring few guards to be placed in the middle of certain free areas. We
include the Spike instances in our experiments because they are an established
class of test cases, being aware that all of the current implementations are able
to identify good non-vertex positions for guards, and that this class has to be
considered easy.

Table 7. Optimality rates for BS-2013 on different instance classes.

200 500 1000 2000 5000 Avg

Simple 96.7 96.7 90.0 60.0 26.7 74.0

Orthogonal 96.7 93.3 86.7 70.0 40.0 77.3

simple-simple 86.7 60.0 13.3 0.0 0.0 32.0

ortho-ortho 86.7 53.3 16.7 0.0 0.0 31.3

von Koch 100.0 93.3 96.7 86.7 0.0 75.3

Spike 96.7 100.0 100.0 100.0 96.7 98.7

5 Success Factors

As seen in Sect. 3, the most effective algorithms for the AGP can be decomposed
into four elements:

– Geometric subroutines dealing with computing visibility relations, determin-
ing feasibility,

– Set Cover subroutines computing (near-)optimal solutions for finite cases,
– Routines to find candidates for discrete guard and witness locations, and
– An outer algorithm combining the three parts above.

In this section, we focus on these techniques.
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5.1 Geometric Subroutines

Both groups use the 2D Arrangements package [62] of CGAL which follows the
generic programming paradigm [5]. For instance, in the case of arrangements
it is possible to change the curve type that is used to represent the planar
subdivisions or the kernel that provides the essential geometric operations and
also determines the number type used. In the context of this work, it is clear
that the used curves are simply segments2. However, the choice of the geometric
kernel can have a significant impact on the runtime.

First of all, it should be noted that among the different kernels that CGAL
offers only kernels that provide exact constructions should be considered as any
inexact construction is likely to induce inconsistencies in the data structure of
the arrangements package. This already holds for seemingly simple scenarios
as the code of the arrangement package heavily relies on the assumption that
constructions are exact.

This essentially leaves two kernels: The Cartesian kernel and the lazy-exact
kernel. For both kernels it is possible to exchange the underlying exact rational
number type, but CGAL :: Gmpq [35] is the recommended one3.

The Cartesian kernel, is essentially the naive application of exact rational
arithmetic (using the one that it is instantiated with, in this case CGAL :: Gmpq).
Thus, coordinates are represented by a numerator and denominator each being
an integer using as many bits as required. This implies that even basic geometric
constructions and predicates are not of constant cost, but depend on the bit-
size of their input. For instance, the intersection point of two segments is likely
to require significantly more bits than the endpoints of the segments. And this
is even more relevant in case of cascaded constructions as the bit growth is
cumulative. This effect is very relevant in both approaches due to there iterative
nature, e.g., when such a point is chosen to be a new guard or witness position.

The lazy-exact kernel [54] tries to attenuate all these effects by using exact
arithmetic only when necessary. Every arithmetic operation and construction is
first carried out using only double interval arithmetic, that is, using directed
rounding, an upper and a lower of the exact value is computed. The hope is
that for most cases this is already sufficient to give the correct and certified
answer, for instance whether a point is above or below a line. However, for the
case when this is not sufficient, each constructed object also knows its history,
which makes it possible to carry out the exact rational arithmetic as it is done
in the Cartesian kernel in order to determine the correct result. This idea is
implemented by the lazy kernel not only on the number type level4, but also for
predicates and constructions, which reduces the overhead (memory and time)
that is induced by maintaining the history.

2 In the context of fading [43] circular arcs may also be required.
3 Other options are, for instance, leda::rational [46] or CORE::BigRat [39], but,

compared to Gmpq, both imply some overhead and are only recommended in case
the usage of the more complex number types of these libraries is required.

4 This can be achieved by the instantiation of the Cartesian kernel with
CGAL::Lazy exact nt<CGAL::Gmpq>.
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Table 8. The speedup factor of C+BS-2013 using the Cartesian kernel and the lazy-
exact kernel. Similar numbers were obtained for BS-2012. The lazy-exact kernel is now
the standard configuration in BS-2013 and C+BS-2013.

Class size 200 500 1000 2000 5000

Simple 1.27 1.46 1.55 1.49 1.35

Orthogonal 1.44 1.60 1.66 1.69 1.65

Simple-simple 2.15 1.72 1.44 1.37 -

Ortho-ortho 1.54 1.30 1.21 1.20 -

von Koch 1.02 1.06 1.10 1.16 -

Spike 1.15 1.61 1.76 2.10 2.56

By the genericity of CGAL it is possible to easily exchange the used geometric
kernel. Table 8 shows the speedup factors by using the Cartesian kernel vs the
lazy-exact kernel for the different instances for C-2013.1. It should be noted that
all Braunschweig and Campinas implementations since 2007 use a complexity
reduction step together with the Cartesian kernel: Whenever a point in a face
is generated, it is rounded to a nearby point of lower bit complexity. Without
this, neither implementation would be able to solve any instance of substantial
size. This speedup technique is missing in the variant with the lazy-exact kernel,
as it requires to actually compute the point coordinates before rounding, which
would defeat the purpose of the kernel. Therefore the table compare the lazy-
exact kernel against the Cartesian kernel with explicit complexity reduction.

For the random polygons, as well as for the spike ones, it can be observed
that the lazy-exact kernel is usually almost twice as fast as the Cartesian kernel.
However, for the von Koch polygons the lazy-exact kernel only gives a mild
speedup. We explain this by two effects. First, the bit-size of the input polygons
is not very large and also the bit-size of intermediate constructions do not grow
as much, as the horizontal and vertical lines dominate the scene. Second, the
instance induces degenerate situations in which the lazy-exact kernel must fall
back to the exact arithmetic in which cases effort for interval arithmetic and
maintaining the history is a real overhead. The lazy-exact kernel is now the
standard configuration in BS-2013 and C+BS-2013.

Visibility Computation. One of the most significant improvements with
respect to speed is due to the new upcoming visibility package [36] of CGAL. This
package was developed by the group in Braunschweig with this project being the
main motivation. Of course, this packages was also made available to the group
in Campinas prior to its actual integration in CGAL. Figure 4 illustrates the
tremendous impact on the runtime for both approaches. The left side shows the
split up of total runtime for the code from Braunschweig in 2012 and 2013. While
in 2012 the update time (dominated by visibility computation) used about two
third of the time for visibility computation is now almost negligible. The same
holds for improvements achieved in the code from Campinas, see right side of
Fig. 4. It can be noticed in the latter graph that the time spent by C+BS-2013
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(a) Braunschweig (b) Campinas

Fig. 4. Split up of average total time for different configurations on all simple instances
with 1000 vertices. (left) The update time which is dominated by the visibility polygon
computation almost vanishes in BS-2013 compared to the BS-2012. (right) The time
spent on visibility in C+BS-2013 is almost negligible compared to the time spend in
C-2013.2.

in building the constraint matrices for the ILPs, denoted by Mat Time, also suf-
fered a huge reduction relative to C-2013.2. As commented in Sect. 3.11, this
was mostly due to the execution of the visibility testing from the perspective of
the witnesses rather than the guards.

5.2 Set Cover Optimization

Many AGP algorithms rely on repeatedly solving AGP(G,W ) (Eqs. (1)–(3)) for
finite G and W as a subroutine, corresponding to the NP-hard SCP. Therefore
improving the solutions times for these SCP instances can benefit the overall
algorithm.

Lagrangian Relaxation. In the algorithm developed by the research group in
Campinas subsequent to the journal version from 2013 [59] (Sect. 3.9), attempts
were made to reduce the time spent by the ILP solver through the implemen-
tation of some known techniques, such as ILP matrix reduction and Lagrangian
heuristic.

A standard method for reducing constraints and variables was used, which
is based on inclusion properties among columns (guard candidates) and rows
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(witnesses) of the Boolean constraint matrix of the ILP that models the SCP
instance.

Furthermore, their algorithm employs a Lagrangian Heuristic in order to
obtain good, hopefully optimal, feasible starting solutions for the SCP to speedup
the convergence towards an optimum. See [8] for a comprehensive introduction
to this technique. The heuristic implemented is based on the work presented
in [8]. Figure 5 shows how the use of this technique positively influenced the
average run time of the approach.

Fig. 5. Average Time needed for the current Campinas version to solve von Koch
polygons with 1000 vertices with and without the Lagrangian Heuristic.

DC Programming. A different solution method for the Braunschweig app-
roach was discussed in Kröller et al. [42]. Here, the ILP representing the SCP
for AGP(G,W ) was rewritten as

min
x∈RG

F (x) , where F (x) :=
∑

g∈G

xg − θ
∑

g∈G

xg(xg − 1) + χ(x). (5)

Here, θ is a sufficiently large constant used to penalize fractional values for xg,
and χ : RG → {0,∞} is an indicator function with

χ(x) = 0 :⇐⇒
{∑

g∈V(w) xg ≥ 1 ∀w ∈ W

0 ≤ xg ≤ 1 ∀g ∈ G
. (6)
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It is easy to see that F can be expressed as F (x) := f1(x) − f2(x), where

f1(x) :=
∑

g∈G

xG + χ(x), and f2(x) = θ
∑

g∈G

xg(xg − 1), (7)

i.e., the SCP instance is reduced to minimizing the difference of two non-linear
convex functions. For such optimization problems, the DCA algorithm [53] can be
used. In experiments, it was shown that solutions for AGP(G,W ) could be found
very quickly, however, at the time, the large runtime overhead of the geometric
subroutines led to inconclusive results on the benefits. Revisiting this approach
with the new BS-2013 and C+BS-2013 implementations, which no longer suffer
from this overhead, will be an interesting experiment left for future work.

5.3 Point Generation

The central heuristic component in most AGP implementations are point gen-
erators, which choose where to place new guards and witnesses. One cannot
expect these problems to be simple, given that a perfect choice for G and W
equals solving AGP optimally.

Guard Placement. One subroutine in the algorithms is to improve the current
set of guards, given a current set W of witnesses. This corresponds to finding
guards that can be used to solve AGP(P,W ).

A critical observation [60] allows for elegant solution to this problem: Con-
sider the visibility arrangement A(W ). It is always possible to find an optimal
solution for AGP(P,W ) where each AVP contains at most one guard. This can
be strengthened by observing that the guards can be restricted further to light
AVPs. As explained in Sect. 3.8, the C-2013.1 algorithm uses as guard candi-
dates the vertices of P along with all vertices from light AVPs. In C+BS-2013, a
second guard placement strategy using no more than one interior point per AVP
is available. Results comparing these two can be seen in Table 9. It is possible to
conclude that the latest guard placement strategy, which consists of using only
one point within each light AVP, is often the best option. The explanation for

Table 9. Percentage of instances solved to binary optimality by the current implemen-
tation from Campinas with guard candidates on vertices or inside light AVPs.

Vertices of light AVPs Interior of light AVPs

simple 2000 100.0 100.0

ortho 2000 100.0 100.0

simple-simple 2000 6.7 33.3

ortho-ortho 2000 13.3 46.7

von Koch 2000 100.0 100.0

spike 2000 100.0 100.0
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this success is probably related to the fact that, with the winning strategy, there
is a reduced number of visibility tests between witnesses and guard candidates,
as well as a smaller size of SCP instances to be solved.

For AGPR(P,W ), as solved by the Braunschweig line of algorithms, this
observation can be extended further: If an optimal dual solution for AGPR(G,W )
is available, selecting additional guards corresponds to a column generation
process. Therefore, the BS algorithms place guards only in light AVPs where
the dual solution guarantees an improvement in the objective function. To avoid
cycling in the column generation process, G is monotonically growing, leading
over time to a large number of guard positions.

Witness Placement. The choice of witnesses is as important as that of the
guards. In principle, the same reasoning as for guards can be used: Given guard
candidates G, creating W with one witness in every shadow AVP of A(G) guar-
antees that a solution for AGP(G,W ) is also a solution for AGP(G,P ). A näıve
placement algorithm based on this observation would simply create witnesses
in shadow AVPs. However, this leads to the problem of creeping shadows at
reflex vertices, see Fig. 6: Placing witness in the interior of the AVP adjacent
to the polygon boundary creates an infinite chain of guard/witness positions
that converges towards a witness on the boundary, but not reaching it. Both
the Braunschweig and the Campinas algorithms therefore can create additional
witnesses on the edges of shadow AVPs.

g1

g2

w1

w2

w3

Fig. 6. Creeping shadow effect.

Initial Set. The selection of the first candidates for guards and witnesses, i.e.,
the initial choice of G and W can have tremendous impact on algorithm runtime.
In principle, a good heuristic here could pick an almost optimal set for G and a
matching W to prove it, and reduce the algorithm afterwards to a few or even
no iterations.

Chwa et al. [14] provide a partial answer to this problem: They attempt to
find a finite set of witnesses with the property that guarding this set guarantees
guarding the whole polygon. If such a set exists, the polygon is called witnessable.
Unfortunately this is not always the case. However, for a witnessable polygon,
the set can be characterized and quickly computed. Current algorithms do not
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bother checking for witnessability (although Chwa et al. provide an algorithm),
but rather directly compute this set and use it for initial witnesses. Should
the polygon be witnessable, the algorithm automatically terminates in the first
iteration.

Considering the current version from Campinas, two initial discretizations
are used: Convex Vertices (CV) and Chwa Points (CP). The first one includes
only the convex vertices of the polygon in the initial set, while the second chooses
the middle points of reflex-reflex edges and the convex vertices that are adjacent
to reflex vertices.

The two charts in Fig. 7 show the average run time necessary to find optimal
solutions when using CV and CP strategies on simple-simple and spike polygons.
From these charts, one can perceive that there is an advantage in using the CP
discretization for polygons from the simple-simple class. On the other hand,
the chart corresponding to the spike polygons shows that the implementation
works much better when the strategy chosen is the CV one. In this last case, the
program required four times less time to solve the same set of polygons when
using the CV strategy as opposed to CP.

Fig. 7. Average Time needed to solve ortho-ortho (left) and spike (right) polygons with
1000 vertices using the Convex Vertices and the Chwa Points discretization.

For BS-2010, several strategies were implemented, see Table 10 which is
extracted from the corresponding paper [41]: Leaving G and W empty (for
implementation reasons, both contained one arbitrary point), putting guards
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Table 10. Speedup factors in BS-2010 obtained by varying initial guards and wit-
nesses [41].

Initial G Initial W Speedup

Single Point Single Point 1.00

Every other vertex Every other vertex 1.59

All vertices All vertices 1.64

All vertices Reflex edges 1.74

Reflex vertices Reflex edges 2.02

and witnesses on every (or every other) vertex of the polygon, putting guards
on all reflex vertices, and putting a witness on every edge adjacent to a reflex
vertex. The Chwa-inspired combination allowed for a speedup of around two.

5.4 Lower Bounds

A crucial success factor for solving the binary AGP variants is the quality of
the lower bounds. This is especially visible in BS-2013, which was tested with
and without the cutting planes, i.e., with and without the features published
in [31,33] and outlined in Sect. 3.7. Table 11 compares the solution rates for
the different classes of instances with 500 vertices and clearly shows that using
cutting planes greatly improves solution rates. Cutting planes increase the lower
bounds and improve the solution rates for all classes of instances.

Table 11. Percentage of instances solved to binary optimality comparing two variants
of code from Braunschweig 2013, one with and without cutting planes, for 500-vertex
instances.

Class/Technique With cutting planes Without cutting planes

ortho 80.0% 63.3%

simple 86.7% 40.0%

von Koch 100.0% 70.0%

ortho-ortho 63.3% 13.3%

simple-simple 70.0% 6.7%

spike 100.0% 96.7%

For the Campinas approach, the quality of the lower bound computed is a
very important issue. For AGP(P, P ), the lower bound is obtained by solving
an AGP(P,W ) instance, where W is a discretized set of witnesses points within
P . Therefore, it is fair to say that the quality of the value computed is directly
dependent on the strategy applied to select the points that comprise the set
W . For more information on how the witness set is managed and how it affects
convergence of Campinas method, see Sect. 5.3.



412 P.J. de Rezende et al.

6 Variants and Open Problems

6.1 Fading

An interesting variant for the AGP was proposed by Joe O’Rourke in 2005: What
if visibility suffers from fading effects, just like light in the real world does? To
be precise, we assume that for a guard g with intensity xg, a witness w ∈ V (g) is
illuminated with a value of �(d(g, w))xg, where d(g, w) is the Euclidean distance
between g and w, and � is a fading function, usually assumed to be

�(d) :=

⎧
⎨

⎩

1 if d < 1
d−α if 1 ≤ d < R
0 if d ≥ R

. (8)

Here, α is a constant (2 for natural light in 3D space), and R is a maximal radius
beyond which illumination is neglected. Fixing �(d) to 1 for small d is necessary
to keep the problem well-defined. Otherwise, an infinitesimally small light can
illuminate a small circle around it. Then, no finite solution can exist, because
it can always be improved by creating additional guards between the existing
ones, and reducing intensity for all. This converges towards the setup of G = P ,
with all xg = 0, which is not feasible.

Very little is known about this variant. A restricted case has been discussed
by Eisenbrand et al. [26], where a 1-dimensional line segment is illuminated
from a fixed set of guards. It is shown how to solve this problem exactly and
approximatively using techniques from mathematical programming.

The primal-dual Braunschweig algorithm was shown to apply to this variant
as well: Kröller et al. [43] have modified the ILP formulation (1)–(3) to use the
constraint ∑

g∈V(w)

�(d(g, w))xg ≥ 1 ∀w ∈ W (9)

instead of (2). Two algorithms for vertex guards were proposed and tested [29],
based on the BS-2013 implementation. The first approximates � with a step
function, and uses updated primal and dual separation routines that operate on
overlays of visibility polygons and circular arcs, resulting in an FPTAS for the
fractional AGP(V, P ). The other is based on continuous optimization techniques,
namely a simplex partitioning approach. In an experimental evaluation using
polygons with up to 700 vertices, it was found that most polygons can be solved
(to an 1.2-approximation in case of the discrete approach) within 20 min on a
standard PC. The continuous algorithm turned out to be much faster, and very
often finishing with an almost-optimal solution with a gap under 0.01%. In an
experimental work by Kokemüller [40], AGP(P, P ) with fading was analyzed. It
was found that placing guards makes the problem substantially more difficult.
This is mainly due to an effect where moving one guard requires moving chains
of other guards as well to cover up for decreased illumination. It was also found
that scaling an input polygon has an impact on the structure of solutions and
number of required guards, resulting in a dramatic runtime impact.
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Fig. 8. A simple orthogonal polygon possessing only a single optimal solution.

6.2 Degeneracies

The experiments conducted by different groups as well as the results shown in
Sect. 4 indicate that practically efficient algorithms exist, and a growing number
of input instances can be solved to optimality. This raises the question whether
it can be expected that all instances can be solved, given sufficient time.

Unfortunately, the answer to this question is “no”. As a counterexample,
consider the polygon depicted in Fig. 8. The three indicated guard positions form
the only optimal solution. There is no variation allowed—shifting any guard by
any ε > 0, in an arbitrary direction, will create a shadow, requiring a fourth
guard and thereby losing optimality.

None of the currently known algorithms can solve such problems, as no way
to characterize these points is known. To see this, consider perturbations of the
shown polygon: It is possible to slightly move all vertices in a way that keeps
the dashed lines intact. It is not clear how to find the shadow alignment points
on the boundary, which in turn define the optimal guard positions. It should
be noted, however, that it remains an open question whether there are polygons
given by rational coordinates that require optimal guard positions with irrational
coordinates.

To summarize, after forty years of research on AGP, it is still not known
whether there exist finite-time algorithms for it. Even membership in NP is
unclear, as it is not known if guard locations can be encoded in polynomial size.

7 Conclusion

In this paper, we have surveyed recent developments on solving the Art Gallery
Problem (AGP) in a practically efficient manner. After over thirty years of mostly
theoretical work, several approaches have been proposed and evaluated over the
last few years, resulting in dramatic improvements. The size of instances for
which optimal solutions can be found in reasonable time has improved from tens
to thousands of vertices in just a few years.
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While these developments are very promising, experimental findings have
led to new questions about the problem complexity. There are bad instances
that current implementations cannot solve despite small size, and it is not clear
whether exact algorithms for the AGP can exist, even ones with exponential
runtime.
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