
Towards Precise and Convenient
Semantic Search on Text and Knowledge Bases

Dissertation zur Erlangung des Doktorgrades
der Ingenieurwissenschaften (Dr.-Ing.)

der Technischen Fakultät
der Albert-Ludwigs-Universität Freiburg im Breisgau

vorgelegt von
Elmar Haußmann

Albert-Ludwigs-Universität Freiburg
Technische Fakultät

Institut für Informatik
2017

i

ii

Abstract

In this dissertation, we consider the problem of making semantic search on text and
knowledge bases more precise and convenient. In a nutshell, semantic search is search
with meaning. To this respect, text and knowledge bases have different advantages and
disadvantages. Large amounts of text are easily available on the web, and they contain
a wealth of information in natural language. However, text represents information in an
unstructured form. It follows no pre-defined schema, and without further processing, a
machine can understand its meaning only on a superficial level. Knowledge bases, on the
other hand, contain structured information in the form of subject predicate object triples.
The meaning of triples is well defined, and triples can be retrieved precisely via a query
language. However, formulating queries in this language is inconvenient and compared to
text only a small fraction of information is currently available in knowledge bases.

In this document, we summarize our contributions on making semantic search on text
and knowledge bases more precise and convenient. For knowledge bases, we introduce an
approach to answer natural language questions. A user can pose questions conveniently in
natural language and ask, for example, who is the ceo of apple?, instead of having to learn
and use a specific query language. Our approach applies learning-to-rank strategies and
improved the state of the art on two widely used benchmarks at the time of publication.
For knowledge bases, we also describe a novel approach to compute relevance scores for
triples from type-like relations like profession and nationality. For example, on a large
knowledge base, a query for american actors can return a list of more than 60 thousand
actors in no particular order. Relevance scores allow to sort this list so that, e.g., frequent
lead actors appear before those who only had single cameo roles. In a benchmark that we
generated via crowdsourcing, we show that our rankings are closer to human judgments
than approaches from the literature. Finally, for text, we introduce a novel natural lan-
guage processing technique that identifies which words in a sentence “semantically belong
together”. For example, in the sentence Bill Gates, founder of Microsoft, and Jeff Bezos,
founder of Amazon, are among the wealthiest persons in the world, the words Bill Gates,
founder, and Amazon do not belong together, but the words Bill Gates, founder, and Mi-
crosoft do. We show that when query keywords are required to belong together in order
to match, search results become more precise.

Given the characteristics of text and knowledge bases outlined above, it is promising to
consider a search that combines both. For example, for the query CEOs of U.S. companies
who advocate cryptocurrencies, a list of CEOs of U.S. companies can be retrieved from
a knowledge base. The information who is advocating cryptocurrencies is rather specific
and changes frequently. It is, therefore, better found in full text. As part of this thesis, we
describe how a combined search could be achieved and present and evaluate a fully func-
tional prototype. All of our approaches are accompanied by an extensive evaluation which
show their practicability and, where available, compare them to established approaches
from the literature.

iii

Kurzzusammenfassung

Diese Dissertation beschäftigt sich mit der Aufgabenstellung, semantische Suche in Text
und Wissensdatenbanken präziser und komfortabler zu machen. Semantische Suche ist
kurz gesagt eine „Suche mittels Bedeutung”. In diesem Kontext haben Text und Wissens-
datenbanken unterschiedliche Vor- und Nachteile. So ist Text in großer Menge im World
Wide Web verfügbar und enthält eine Fülle an Informationen. Für Nutzer von Suchma-
schinen ist die Suche nach Informationen über Schlagwörter einfach handzuhaben und hat
sich für viele Anfragen als effektiv herausgestellt. Allerdings sind Informationen in Text
unstrukturiert. Sie folgen keinem vorgegebenen Schema und ohne weitere Verarbeitung ist
die Bedeutung von Text für eine Maschine nur oberflächlich erkennbar. In der Konsequenz
ist es oft schwierig, präzise nach Informationen in Text zu suchen. Dagegen enthalten
Wissensdatenbanken strukturierte Information in Form von Tripeln aus Subjekt Prädikat
Objekt. Die Bedeutung von Tripeln ist für eine Maschine klar definiert und Tripel können
präzise über eine spezielle Abfragesprache gefunden werden. Allerdings ist das Formulieren
einer Abfrage in dieser Sprache umständlich. Zudem sind im Vergleich zu Text weniger
Informationen in Wissensdatenbanken verfügbar.

Angesichts dieser Eigenschaften ist eine kombinierte Suche in Text und Wissensdaten-
banken vielversprechend. Zum Beispiel kann für die Anfrage CEOs von US-Firmen, die
Kryptowährungen unterstützen eine Liste mit CEOs von US-Firmen aus einer Wissenda-
tenbank bezogen werden. Die Information, welche CEOs Kryptowährungen unterstützen,
ist relativ spezifisch und kann sich häufig ändern. Derartige Information ist daher schwie-
rig in einer Wissensdatenbank aktuell zu halten und lässt sich besser in Volltext, wie z.B.
aktuellen Nachrichten, finden.

In dieser Arbeit beschreiben wir in Kapitel 3.1 zunächst die Idee der Semantischen Voll-
textsuche, eine kombinierte Suche in Text undWissensdatenbanken. Wir präsentieren einen
voll funktionsfähigen Prototypen, der alle wichtigen Probleme adressiert, um Suchen ein-
facher und Ergebnisse präziser zu machen. Dazu gehören eine natürliche Sprachverar-
beitung, ein einfach zu verwendendes Benutzerinterface und eine einfach zu verstehende
Wissensdatenbank. Anhand des Prototypen evaluieren wir das Potential der Semantischen
Volltextsuche. Im Weiteren Verlauf der Arbeit präsentieren wir drei individuelle Problem-
stellungen, um semantische Suche auf Text oder Wissensdatenbanken präziser und kom-
fortabler zu machen. Diese Problemstellungen sind nicht nur relevant für Semantische
Volltextsuche, sondern darüber hinaus auch für andere Arten der semantischen Suche.

In Kapitel 3.2 stellen wir eine natürliche Sprachverarbeitungstechnik vor, um Ergebnisse
von Schlagwortsuchen in Text präziser zu machen. Anstatt der bloßen Existenz von Schlag-
wörtern an beliebigen Stellen in einem Dokument müssen die Schlagwörter innerhalb eines
Satzes in „inhaltlichem Zusammenhang” stehen, um als Treffer in Betracht zu kommen. In

iv

dieser Arbeit zeigen wir anhand von Experimenten, dass Semantische Volltextsuche durch
diese Technik präziser wird. Wir zeigen auch, dass die Technik verwendet werden kann,
um Tripel - ähnlich derer in Wissensdatenbanken - aus Text zu extrahieren.

Des Weiteren stellen wir in Kapitel 3.3 eine Technik vor um die Relevanz von Tripeln
aus Wissensdatenbanken für typähnliche Relationen wie profession oder nationality zu
berechnen. Anhand der Relevanz von Tripeln lassen sich Ergebnisslisten sortieren. Eine
Liste amerikanischer Schauspieler in der Wissensdatenbank Freebase enthält z.B. mehr
als 60.000 Einträge in beliebiger Reihenfolge. In einer nützlichen Sortierung erscheinen
Schauspieler mit häufigen Hauptrollen vor Schauspielern mit nur vereinzelten Nebenrollen.
Unser Ansatz bestimmt die Relevanz von Tripeln anhand von Informationen aus Text.
Da dies ein neuartiges Problem ist, erstellen wir mittels Crowdsourcing einen Datensatz
zur Evaluation. Dieser Datensatz ermöglicht es, unseren Ansatz mit Ähnlichen aus der
Literatur zu vergleichen. Er ist außerdem öffentlich für weitere Forschung verfügbar und
findet bereits Verwendung (z.B. WSDM Cup 2017).

In Kapitel 3.4 stellen wir einen Ansatz vor, um Anfragen in natürlicher Sprache aus ei-
ner Wissensdatenbank zu beantworten. Ein Benutzer kann Fragen in natürlicher Sprache
stellen, wie zum Beispiel who is the ceo of apple?, anstatt eine spezielle Abfragesprache
erlernen zu müssen. Ein großes Problem hierbei ist die Entitätserkennung und -zuordnung:
welche Wörter aus der Frage entsprechen welchen Entitäten aus der Wissensdatenbank.
Im Beispiel bezieht sich apple auf die Entität Apple Inc., die Firma, nicht auf Apple, die
Frucht, und ceo auf die Entität mit der synonymen Bezeichnung Managing Director. Unser
Ansatz löst gleichzeitig sowohl die Entitätserkennung und -zuordnung, als auch das Über-
setzen in die Abfragesprache durch eine Abbildung auf ein Learning-to-Rank Problem.
Wir evaluieren unseren Ansatz auf zwei, weit verbreiteten Benchmarks und übertreffen
zum Zeitpunkt der Veröffentlichung den Stand der Technik.

Semantische Suche stellt kein einzelnes, wohldefiniertes Problem dar. Daher haben wir eine
umfangreiche Zusammenfassung (158 Seiten) über das Gebiet der semantischen Suche auf
Text und Wissensdatenbanken erstellt. Darin wird das Gebiet in neun Bereiche klassifi-
ziert, basierend auf den zugrundeliegenden Daten (Text, Wissensdatenbanken, Kombina-
tionen davon) und der Art der Suche (Stichwörter, strukturiert, natürliche Sprache). Diese
Klassifizierung beschreiben wir im letzten Kapitel dieser Dissertation und vermitteln so
einen kurzen Überblick über dieses weitreichende Gebiet.

v

Acknowledgments

First and foremost, I am grateful for my time at the University of Freiburg and the free-
dom I was provided to learn and explore during my studies at the Chair of Algorithms
and Data Structures. Semantic search is a fascinating topic and the inspiring discussions,
collaborations, and opportunities I encountered fostered my enthusiasm for it. I am espe-
cially thankful to my supervisor Hannah Bast who always provided guidance and support
when I needed it, and who encouraged me to pursue a Ph.D. in the first place. My grad-
uate studies were certainly one of the most challenging but also most rewarding times I
have experienced so far.

I want to thank my colleagues Björn Buchhold, Claudius Korzen, Sabine Storandt, and
Florian Bäurle. Our fruitful collaboration, lively discussions, as well as our travels to
conferences around the world, were what made life at university exciting and diverse.
Presenting months worth of research at conferences, receiving feedback from the audience,
and discussing with peers is a reward on its own.

Last but not least, I want to thank my long-time partner and now wife, Simonette, who
supported me throughout this dissertation and special period in my life. I cannot imagine
having accomplished this without her.

vi

Contents

Abstract ii

Kurzzusammenfassung iii

Acknowledgments v

1 Introduction 1

2 List of Publications 6
2.1 Publications With Peer Review . 6
2.2 Publications Without Peer Review . 9

3 Contributions 10
3.1 Semantic Full-Text Search . 10

3.1.1 Problem, Related Work, and Contributions 10
3.1.2 Approach . 16
3.1.3 Experiments and Results . 20

3.2 Contextual Sentence Decomposition . 23
3.2.1 Problem, Related Work, and Contributions 23
3.2.2 Approach . 26
3.2.3 Experiments and Results . 29

3.3 Relevance Scores for Triples . 32
3.3.1 Problem, Related Work, and Contributions 32
3.3.2 Approach . 36
3.3.3 Experiments and Results . 39

3.4 Question Answering on Knowledge Bases 43
3.4.1 Problem, Related Work, and Contributions 43
3.4.2 Approach . 46
3.4.3 Experiments and Results . 49
3.4.4 Matching Relations in Questions Using Deep Learning 52

3.5 Semantic Search Survey . 54

4 Future Work 56

Bibliography 58

Appendix: Publications 64

1

1 Introduction

This thesis contributes to the field of semantic search on text and knowledge bases. Se-
mantic search is not a single well-defined problem, but an umbrella term for all kinds of
search with meaning. The kind of search and queries we consider in this work can be char-
acterized by the kind of result. Queries always ask for one or more entities. An example
query is who is the ceo of apple?1, but we also consider more specific queries like male
friends of Ada Lovelace who are philosophers. In all cases, we are concerned with making
the search convenient. This means making it easy to use, for example, by allowing a user
to pose a question in natural language instead of a complicated query language. We are
also concerned with answering queries precisely. That is, for a given query we want to
match and return the correct result or, in the case of a result list, rank it such that most
relevant results come first. The two data sources we consider for answering queries are
text and knowledge bases. With respect to convenience and preciseness, these are two
complementary sources of information. Let us understand this by first looking at search
on text followed by search on knowledge bases. Afterwards, we describe the individual
problems we address in this context.

Given a query consisting of keywords, search on text returns a list of documents that
match the keywords, or variations of them. For example, issuing the query first computer
programmer to a web search engine returns a list of web pages which match these keywords
in their text, title, or domain. As a top hit, we get a document with the title “Ada
Lovelace: The First Computer Programmer”. And we get the same match for variations
of query keywords like synonyms (computing) or spelling mistakes (computre). To match
this document, the search engine doesn’t have to understand the query or the document’s
content. In fact, the keywords match prominently in the title as well as in the document’s
text: Ada Lovelace has been called the world’s first computer programmer. Together, this
indicates to the search engine that this is a good hit for the query.

This kind of search has turned out to be very successful, which is somewhat surprising since
the underlying idea is rather simple. A major factor in the success is the massive amount
of data that is now available on the World Wide Web. For example, the English Wikipedia
alone contains about five million articles with detailed information on popular topics. For
popular queries, a web page with the answer that also matches the keywords is likely to
exist and formulating a keyword query is easy and intuitive for a user. Furthermore, the
search engine requires no deep understanding of the text or query. Instead, these are
treated as a mostly opaque and unstructured source of information.

1This example is from a benchmark [20] we use in one of our publications [17].

2

Of course, major search engines nowadays apply a myriad of techniques to improve this
kind of search. For example, they analyze query logs and search sessions [77, 32], person-
alize results [59], and learn sophisticated ranking strategies [57]. However, the underlying
search paradigm still reaches a limit for queries that require a deeper understanding or
the combination of multiple sources of information.

Consider issuing the query male friends of ada lovelace who are philosophers on a web
search engine. Certainly, the information is available somewhere on the Web, but likely
not in a single document.2 For example, the Wikipedia article on Ada Lovelace mentions
that she was friends with Charles Baggage, but only his Wikipedia article mentions that
he was a philosopher and nowhere is explicitly mentioned that Charles Baggage is male.
However, the search still produces results, because keywords match “randomly” in various
parts of documents, e.g., some keywords may match in the title, some in the abstract, and
some in the main text. The user then needs to inspect each document, examine whether
the content is helpful, and manually compile the list of persons she is looking for. What
is needed is a deeper understanding of the query and documents.

Long queries with a narrow and specific intent as in this example are more common than
one might expect. It has been observed that the length of queries on major search engines
follows a power law distribution [46, 3]. Therefore, a significant proportion of queries
consists of long queries. Bendersky and Gupta [46] cite that 17% of search engine queries
contain five or more keywords. They note that long queries often have a narrow and
specific intent and consist of composite queries with different subqueries - like the query
above. They further argue that such queries may become even more frequent with the
increasing availability of voice search, dialogue, and question answering systems.

While text contains a wealth of information in unstructured form, knowledge bases contain
structured information. Here are some example statements about Ada Lovelace and Grace
Hopper in the form of subject predicate object triples:

Ada Lovelace is-a Computer Scientist
Ada Lovelace gender Female
Ada Lovelace place-of-birth London
Grace Hopper is-a Computer Scientist
Grace Hopper gender Female
Grace Hopper place-of-birth New York City

Such statements, or triples, follow a precise and pre-defined schema. For example, there
is only one way of expressing the birthplace of Ada Lovelace, whereas, in text, the same
fact can be expressed with various sentences.

2We ignore the unlikely case where someone has manually compiled such a list.

3

Triples can be extracted automatically, e.g., from Wikipedia Infoboxes, or collected man-
ually. The currently largest general purpose knowledge base is Freebase3 [24], which
contains a mix of automatic extractions and manual curations totaling about three billion
statements on 40 million entities.

To retrieve statements from a knowledge base a structured query language called SPARQL4

is used. The following shows an example query for female computer scientists and their
place of birth:5

select ?entity ?place where {
?entity is-a Computer Scientist .
?entity gender Female .
?entity place-of-birth ?place .

}

The result is an unordered list of tuples of persons and their place of birth, containing,
for example, (Ada Lovelace, London) and (Grace Hopper, New York City). In contrast to
search in text, the semantics of the query is precisely defined by the query language, as is
the content of the knowledge base. If the answer is part of the knowledge base it can be
retrieved via the correct query. However, formulating the query can be difficult for a user
in the first place. It requires understanding the query language and the knowledge base
schema, for example, what predicates and entities exist and what their identifiers are.

Knowledge bases allow precise and semantic queries, however, there will always be some
information that is too specific to be included in a knowledge base, like who is friends with
whom.6 As a result, only a relatively small part of the world’s knowledge is available in
structured form. This is supplemented by a wealth of information available in full text.
Combining search on knowledge bases and search on full text allows answering queries
which cannot be easily answered by either one. Consider again the query for male friends
of ada lovelace who are philosophers. A knowledge base query can be used to obtain a
list of male philosophers. Finding out who was friends with Ada Lovelace can then be
achieved via a full-text query. We consider the combined search on text and knowledge
bases a promising search paradigm and present a viable approach as part of this work.

3Freebase was acquired by Google in 2010 and has been discontinued in 2015. All of the data is
supposed to be migrated to Wikidata [82].

4https://www.w3.org/TR/rdf-sparql-query/
5We glance over a few syntax details of SPARQL for better readability, e.g., we omit namespaces.
6This has two reasons: First, adding new information in an accurate and complete way and keeping

it up to date is expensive. Second, some circumstances are difficult to express in structured form, for
example, sentiment or controversial or vague statements.

https://www.w3.org/TR/rdf-sparql-query/

4

In this document, we summarize our work on problems that arise when answering semantic
search queries using text, knowledge bases, or their combination. The queries above are
good examples of the kind of queries we consider. They involve entities and their attributes,
and they have one or more entities as a result. Such entity queries have been shown to
make up a significant proportion of queries. In a query log analysis of a major web search
engine, [70] found that almost 60% of queries had entities or their attributes as the desired
result and more than 70% of all queries contained an entity or attribute. For academic
search, [54] find that even 92% of all queries contain an entity.

We are concerned with making search convenient. This means making the search easy
to use. For example, we present an approach that answers natural language questions,
arguably the most convenient way of searching for a user. We are also concerned with
answering queries precisely. That is, for a given query we want to match and return the
correct result or, in the case of a result list, rank it such that most relevant results come
first. In this context, we address and contribute to the following problems.

In Section 3.1, we introduce semantic full-text search, a combined search on text and a
knowledge base. We present a fully functional prototype that includes our approaches on
problems to make the search more precise and convenient. For example, we apply a novel
natural language processing technique, contextual sentence decomposition, that returns
more precise and semantic matches from the full text than the conventional matching
strategy described above. We also provide an intuitive user interface with context-sensitive
suggestions to construct queries, and we create a knowledge base that is easy to understand
and use. In a quality evaluation, we show the potential of semantic full-text search.

Afterwards, we describe three individual problems that make search on text or knowledge
bases more precise and convenient. These problems are not only relevant for semantic
full-text search, but have applications beyond and on their own.

In Section 3.2, we describe how to perform contextual sentence decomposition. We already
show in Section 3.1 that this technique can be used to get more precise results for semantic
full-text search. In Section 3.2, we extend the technique to extract triples from text, similar
to those contained in a knowledge base. In an evaluation, we compare our approach to
existing approaches from the literature and show that our extracted triples are preferable
for applications in semantic search.

In Section 3.3, we address how to return precise results for certain knowledge base queries.
For example, on Freebase, a query for american actors returns a list of 64,757 actors in
no particular order.7 We present a technique to compute relevance scores in order to
rank results such that, e.g., actors with frequent leading roles are ranked before those who
only had few supporting roles. Crucially, we compute relevance scores from text, because

7This example is taken from our publication [15].

5

the required information is not reliably present in the knowledge base. Since this is a
novel problem, we provide a benchmark created via crowdsourcing. We propose a variety
of algorithms to compute ranking scores and evaluate them using our benchmark. The
benchmark is also publicly available and already fosters further research on the problem
(e.g., WSDM Cup 2017 [48]).

In Section 3.4, we show how to answer natural language questions from a knowledge base
by automatically translating into a SPARQL query. A user can, for example, ask who is
the ceo of apple? and is presented with the result from the knowledge base. This makes
the search more convenient since the user doesn’t have to formulate a structured query.
A major problem in the translation is entity recognition and disambiguation: which words
from the question correspond to which entities from the knowledge base. In the example,
apple refers to the entity Apple Inc., the company, not to Apple, the fruit, and ceo to the
entity Managing Director, a synonym. Our approach solves both, entity recognition and
disambiguation and query translation, by mapping to a single learning-to-rank problem.
The approach focuses on giving precise results and improved the state of the art on two
widely used benchmarks at the time of publication.

As we stated at the very beginning, semantic search is not a single well-defined problem.
To give an overview of the vast field, we wrote an extensive survey on semantic search on
text and knowledge bases [16] (156 pages). The survey classifies the field into nine groups
based on the type of data that is used (text, knowledge bases, and their combination)
and the kind of search that is performed (keyword, structured, and natural language).
We describe the survey and our classification in Section 3.5 and thereby provide a short
overview of the vast field.

This document summarizes our publications on the problems introduced above and is
structured as follows. Chapter 2 lists all of our publications and attributes the work to
individual authors. The complete publications are provided in the Appendix. In Chapter
3, we present the core of our work on these problems. Each section, 3.1 to 3.4, describes
one problem and corresponds to one or more publications. In each section, we first give a
concise description of the problem, related work, and our contributions. Then, we present
the main ideas behind our approach, followed by a description of our experiments and main
results. In all parts, we focus on the core of our approach. Detailed technical descriptions
are available in the corresponding publications. In many places, we refer to our survey,
which contains an extensive overview of a lot of recent related work. Finally, we conclude
this dissertation with an outlook on future work in Chapter 4.

6

2 List of Publications

The following first lists our peer-reviewed publications followed by non peer-reviewed pub-
lications. For each publication, we give a short description and attribute the work to
individual authors. The publications are grouped by topic which are ordered by how we
describe them in the rest of this document. Note that authors for each publication are
listed alphabetically by convention.

In the digital version of this dissertation, titles below (and in the references) are clickable
and lead to an electronic copy. For readers of the hardcopy, we also provide direct links
to the publications via a web page:
http://ad-publications.cs.uni-freiburg.de/theses/Dissertation_Elmar_Haussmann.html

2.1 Publications With Peer Review

A Case for Semantic Full-Text Search [9], Position Paper, SIGIR-JIWES 2012
Hannah Bast, Florian Bäurle, Björn Buchhold, and Elmar Haussmann

Position paper that motivates semantic full-text search and describes the requirements
and resulting challenges. We address these as part of the papers below.

All authors wrote the paper.

Semantic Full-Text Search with Broccoli [12], SIGIR 2014
Hannah Bast, Florian Bäurle, Björn Buchhold, and Elmar Haussmann

Demo paper that presents our semantic full-text search prototype, its web application,
and its public API. Covered in Section 3.1.

Research and implementation is based on the work listed below. All authors wrote the
paper.

http://ad-publications.cs.uni-freiburg.de/theses/Dissertation_Elmar_Haussmann.html
http://ad-publications.cs.uni-freiburg.de/JIWES_semanticsearch_BBBH_2013.pdf
http://ad-publications.cs.uni-freiburg.de/SIGIR_BroccoliDemo_BBBH_2014.pdf

7

Easy Access to the Freebase Dataset [11], WWW 2014
Hannah Bast, Florian Bäurle, Björn Buchhold, and Elmar Haussmann

Demo paper that describes how to transform Freebase into a knowledge base that is easy
to use and search. The paper also presents a web application that provides convenient
access. Covered in Section 3.1.

HB, BB, and EH conducted the research. BB and EH implemented the ideas. FB adapted
the semantic full-text search interface for the web application. HB, BB, and EH wrote the
paper.

Open Information Extraction via Contextual Sentence Decomposition [19],
ICSC 2013
Hannah Bast and Elmar Haussmann

Research paper that describes how to identify the parts of a sentence that semantically
“belong together”. The paper also describes how to extend the technique to extract triples
from text (Open Information Extraction). Covered in Section 3.2.

Both authors conducted the research and designed the evaluation. EH implemented the
ideas and performed the evaluation. Both authors wrote the paper.

More Informative Open Information Extraction via Simple Inference [18],
ECIR 2014
Hannah Bast and Elmar Haussmann

Research paper that describes how to apply simple inference to increase informativeness
of triples from Open Information Extraction. The technique can be incorporated into the
triple extraction process from above [19]. Covered in Section 3.2.

Both authors conducted the research and designed the evaluation. EH implemented the
ideas and performed the evaluation. EH wrote most of the paper with guidance and input
by HB.

http://ad-publications.cs.uni-freiburg.de/WWW_FreebaseEasy_BBBH_2014.pdf
http://ad-publications.cs.uni-freiburg.de/ICSC_csdie_BH_2013.pdf
http://ad-publications.cs.uni-freiburg.de/ECIR_csdie-inf_BH_2014.pdf

8

Relevance Scores for Triples from Type-Like Relations [15], SIGIR 2015
Hannah Bast and Björn Buchhold and Elmar Haussmann

Research paper that describes how to compute relevance scores for knowledge base triples.
The scores can be used to properly rank results of entity queries on a knowledge base.
Covered in Section 3.3.

All authors conducted the research and designed the crowdsourcing experiment and eval-
uation. BB and EH implemented the ideas and performed the evaluation. All authors
wrote the paper.

WSDM Cup 2017: Vandalism Detection and Triple Scoring [48], WSDM 2017
Stefan Heindorf, Martin Potthast, Hannah Bast, Björn Buchhold, and Elmar Haussmann

Overview paper for the WSDM Cup 2017 and its two tasks, vandalism detection and triple
scoring. The task is based on the work described in Section 3.3.

SH and MP organized the vandalism detection task. HB organized the Triple Scoring task.
HB, BB and EH defined the triple scoring task, created a benchmark via crowd sourcing,
and defined sensible evaluation metrics. SH, MP, and HB wrote the paper.

More Accurate Question Answering on Freebase [17], CIKM 2015
Hannah Bast and Elmar Haussmann

Research paper that describes how to translate natural language questions to SPARQL
queries. This can be used to perform question answering on a knowledge base. Covered
in Section 3.4.

Both authors conducted the research and designed the evaluation. EH implemented the
ideas and performed the evaluation. Both authors wrote the paper.

Semantic Search on Text and Knowledge Bases [16], FNTiR 2016
Hannah Bast and Björn Buchhold and Elmar Haussmann

An extensive survey (156 pages) over the huge field of semantic search on text and knowl-
edge bases. Covered in Section 3.5.

All authors contributed in deciding the overall structure and scope of the survey. All
authors surveyed the literature and prepared summaries for systems to include or exclude.
All authors wrote the survey.

http://ad-publications.cs.uni-freiburg.de/SIGIR_triplescores_BBH_2015.pdf
http://ad-publications.cs.uni-freiburg.de/WSDM_cup_HPBBH_2017.pdf
http://ad-publications.cs.uni-freiburg.de/CIKM_freebase_qa_BH_2015.pdf
http://ad-publications.cs.uni-freiburg.de/FNTIR_semanticsearch_BBH_2016.pdf

9

2.2 Publications Without Peer Review

The following lists one publication at a non-peer reviewed venue and one publication that
is still under submission at a peer-reviewed venue.

Broccoli: Semantic Full-Text Search at your Fingertips [10], CoRR 2012
Hannah Bast, Florian Bäurle, Björn Buchhold, and Elmar Haussmann

Research paper that describes a semantic full-text search prototype, Broccoli, including all
important components: natural language pre-processing, search index, and user interface.
Covered in Section 3.1.

All authors conducted the research on the general search paradigm, system design, and
user interface. HB and EH conducted the research on contextual sentence decomposition.
EH implemented it. HB and BB conducted the research on the search index and query
processing and BB implemented it. BB, FB, and EH implemented the data pre-processing
steps for the prototype (Wikipedia XML parsing, tokenizing, entity recognition and link-
ing). FB implemented the user-interface. All authors performed the evaluation and wrote
the paper.

A Quality Evaluation of KB+Text Search [14],
Invited Paper under Submission at KI-Journal 2017
Hannah Bast, Björn Buchhold, and Elmar Haussmann

Research paper that describes a detailed quality evaluation and error analysis of our
KB+Text search paradigm. Covered in Section 3.1.

All authors designed the evaluation and analysed results. BB and EH performed most of
the manual evaluation and error analysis. All authors wrote the paper.

http://ad-publications.cs.uni-freiburg.de/CoRR_Broccoli_BBBH_2013.pdf
http://ad-publications.cs.uni-freiburg.de/KI_kbtextquality_BBH17.pdf

10

3 Contributions

3.1 Semantic Full-Text Search

Semantic full-text search combines the capabilities of full-text search and search in knowl-
edge bases. We have already motivated the idea in the introduction. In this section,
we describe the idea in detail and present a fully functional prototype. The prototype
addresses all important problems involved, including a natural language pre-processing
technique to find precise matches in full text, an easy-to-use knowledge base, and an
intuitive user interface to make the search convenient. We also describe an extensive qual-
ity evaluation that shows that our natural language pre-processing considerably improves
results and that our prototype can answer a wide range of questions. A demo of our
prototype, Broccoli, is available at http://broccoli.cs.uni-freiburg.de.

This section summarizes the work published in [10] at CoRR 2012, [9] as a position paper
at SIGIR-JIWES 2012, [12] at SIGIR 2014, [11] at WWW 2014, and [14] at KI-Journal
2017 (under submission).

3.1.1 Problem, Related Work, and Contributions

Consider the example query for plants with edible leaves and native to Europe.8 This query
can be expressed in semantic full-text search in the following way:

select ?entity where {
?entity is-a Plant .
?entity native-to Europe .
?entity occurs-with “edible leaves”

}

The query language is a subset of SPARQL extended with the special occurs-with relation.
For the example, it combines search in full text and a knowledge base as follows. The
first two triple patterns (is-a Plant, native-to Europe) match entities that are a plant
and native to Europe in the knowledge base. One of the matches is, besides many other
plants, broccoli. The special relation occurs-with requires that each plant, such as broccoli,
is mentioned along the words edible and leaves somewhere in the full text. This requires
that mentions of entities, e.g., broccoli, have been identified in the full text. For example,
in the following sentence, matching words and entities are underlined:

The edible portions of broccoli are the stem tissue, the flower buds, as well as the leaves.

8This and the following example queries and sentences are taken from our publication [10].

http://broccoli.cs.uni-freiburg.de

11

In principle, this co-occurrence doesn’t have to be restricted to a sentence but could also
be within a larger unit, like a paragraph or document. The co-occurrence can also be in
any text document, for example, in the Wikipedia article for broccoli or on a gardening
website about leafy green vegetables. What is essential for a correct result, however, is
that the co-occurrence provides evidence that broccoli indeed has edible leaves. We come
back to this important problem below. Together, the results from the knowledge base and
the full text can be used to infer a list of plants that match the query.

This kind of search combines the strengths of search on text and search on knowledge
bases. Large knowledge bases, such as Freebase, focus on facts that are easy to define and
extract automatically. A plant’s origin is, for example, often part of Wikipedia’s infobox.
This makes it easy to find for an extraction system in order to populate the knowledge
base. Once part of the knowledge base, it is straightforward to obtain a list of plants that
are native to Europe, given the correct query.

Finding a full-text query to obtain this list from text is difficult. An answer requires
factual knowledge in the first place, for example, that broccoli is a plant or that Italy (the
originating country of broccoli) is a part of Europe. To determine whether broccoli has
edible leaves it is the other way around. Corresponding facts are rather specific, more
difficult to extract automatically, and, therefore, unlikely to be included in a knowledge
base. However, the information is likely to be present in text, and it is easy to formulate a
full-text query. The combination of both search paradigms allows answering queries that
cannot be easily answered by either one.

Semantic full-text search uses combined data: a knowledge base as well as text in which
entity mentions from the knowledge base are identified (like broccoli in the example sen-
tence above). Queries are semi-structured: They are from a subset of SPARQL where
the structured part matches facts in the knowledge base while the keywords given via the
occurs-with relation match in the full text. There are two major approaches for searching
in combined data that is followed in related work.

One prominent approach is that of creating virtual documents. All of the information
pertaining to a specific entity is collected in a virtual document. For example, a document
can be constructed for an entity by adding the subject, predict, and object of triples that
have the entity as subject or object, together with text associated with that entity, like
its Wikipedia page. Search can then be performed via classical keyword search. Since
each document corresponds to an entity, results are lists of entities. This also allows
applying traditional ranking functions from information retrieval, like BM25. Compared
to semantic full-text search, keyword queries are more convenient to formulate for a user.
However, our query language is far more powerful and allows more precise searches. The
drawback is that a structured query needs to be constructed in the first place.

12

The virtual document approach has been popular, especially for searching the Semantic
Web. The Semantic Web consists of triples similar to those in a knowledge base. Triples
can be contributed by anybody, for example, via semantic markup in web pages. Because
content can also be referenced and interlinked, the data from the Semantic Web is also
referred to as linked open data (LOD). No global schema of triples is enforced. Many of
the triples contain literals so that a huge part of the data is actually text. Therefore, the
two main challenges that approaches need to overcome are the sheer amount of data and
the inconsistent schema.

Two established benchmarks to evaluate approaches for searching the Semantic Web are
the TREC Entity Tracks (2010 and 2011) [4, 5] and the SemSearch challenges (2010 and
2011) [47, 81]. Two example queries from these benchmarks are airlines that use boeing
747 airplanes and astronauts who walked on the moon. The benchmarks come with a set
of queries and desired results as well as a collection of triples extracted from the Semantic
Web. Indeed, the best performing systems used keyword search on virtual documents
with special attention to ranking. For example, [23] use a fielded inverted index with an
adaptation of BM25 that boosts matches from certain relations. Since the kind of queries
in these benchmarks are good examples for semantic full-text search, we used the two
benchmarks in the evaluation of our prototype (see below).

The second prominent approach for searching in combined data is to perform keyword
search on text, identify entities in the results, and rank them. Information from a knowl-
edge base is usually applied in the ranking phase, but without formulating or translating
to a precise SPARQL query that is used to restrict the result set. For example, the sys-
tem described in [42] (the winning submission at the TREC Entity Track in 2009 [6])
issues queries to Google and identifies entities in the result documents using named entity
recognition and disambiguation techniques. This establishes a link between the entity
and its mention in text. Entities are then ranked using a combination of relevance scores
based on how well the entity and the text surrounding the entity mention (document,
sentence, or web table) match the query. In [76], the authors use the knowledge base to
identify related similar entities (e.g., via the number of hops from one entity to another)
that weren’t matched prominently in text but that should be ranked higher. In contrast,
semantic full-text search allows very precise and complex queries on the knowledge base
that restrict the result set in the first place. Then, a simplistic ranking suffices to give
good results as we show in our evaluation.

Besides the two approaches discussed above, there are various approaches for performing
semantic search on text and knowledge bases alone. Details on related work in all of these
areas is available in our survey on semantic search [16]. There are a few systems that
perform combined search using (semi-) structured queries in a similar way to ours. We
describe their difference to our semantic full-text search prototype below.

13

A good prototype implementation of semantic full-text search should give correct results
and be easy to use. This requires the following, which we elaborate on next: finding correct
matches in text with the occurs-with relation, an easy to use knowledge base, an intuitive
user interface, and an efficient index and query processing. We have addressed these
problems in our fully functional prototype, called Broccoli. Figure 1 shows a screenshot
of our final prototype answering the query from above.

Words

Cabbage (34)

Broccoli (58)

Lettuce (23)

Instances:

1 - 3 of 421

House plant (17)

Garden plant (24)

Crop (16)

Classes:

1 - 3 of 28

 Broccoli

Ontology: Broccoli

Broccoli: is a plant; native to Europe.

Document: Edible plant stems

The edible portions of Broccoli are the stem tissue, the flower buds, as

well as the leaves.

Cabbage

Ontology: Cabbage

Cabbage: is a plant; native to Europe.

Document: Cabbage

The only part of the plant that is normally eaten is the leafy head.

Your Query:

Plant

occurs-with edible leaves

native-to

Hits: 1 - 2 of 421

Europe

occurs-with <Anything>

Relations:

1 - 3 of 7

cultivated-in <Location>

belongs-to <Plant family>

(67)

(58)

 type here to extend your query …

Figure 1. From our publication [10]: A screenshot for our example query. The structured query is
visualized as a simplified tree on the top (the triple ?entity is-a Plant is expressed by the root).
Below, results are grouped by entity. Each result provides evidence from both the knowledge
base and the full text. The search field on the top left can be used to extend the query. Below,
suggestions for subclasses and instances of plants and additional relations are shown. These can
be used to further refine the query. The suggestions are context-sensitive: They take the query so
far into account and always lead to results. More screenshots can be found in [10].

As mentioned above, an important component of semantic full-text search is the occurs-
with relation. It allows specifying co-occurrence of entities with words in text. Identifying
that this co-occurrence is semantic is essential for the full-text part of queries. Consider
the query plants with edible leaves and the following sentence with underlined matches:

The usable parts of rhubarb are the edible stalks, however its leaves are toxic.

All query elements (a plant, rhubarb, and words edible leaves) co-occur in the sentence,
however, rhubarb is clearly a wrong answer (its leaves are toxic). Indeed, this problem is
even more pronounced when restricting co-occurrence to the same paragraph or document,
as we show in the experiments below. Ideally, the above match should be avoided, but
it should still match a query for plants with edible stalks. We address this problem by

14

identifying words that “semantically belong together”, which we call contexts. Intuitively
the words rhubarb, edible and leaves do not belong together in the sentence above but
the words rhubarb, edible, stalks do. Once identified, co-occurrence can be restricted to
contexts and matches are more likely follow the intent of the query. The technique behind
this idea is called contextual sentence decomposition and described in detail in Section 3.2.
In this section, we introduce the basic idea and present an evaluation of the impact on
semantic full-text search.

For finding results in text, formulating a keyword query via the occurs-with relation is easy,
and the challenging part is semantically matching the keywords. This is the opposite for
structured queries on a knowledge base. The result set is well defined and easy to retrieve
because it is fully specified via the query language. However, the structured query can be
difficult to construct in the first place. It uses unique entity as well as relation identifiers
from the knowledge base. These are often opaque and difficult to determine. On top, the
query must adhere to the (usually complex) schema of the knowledge base. For example,
in Freebase, which we use for our prototype, the (seemingly) simple query for the winners
of the Palme d’Or looks like this:9

select ?name where {
?x ns:award.award_winner.awards_won ?m .
?m ns:award.award_honor.award ?a .
?a ns:type.object.name ”Palme d’Or”@en .
?x ns:type.object.name ?name .

}

Who won a Palme d’Or is expressed via an intermediate award nomination object (?m)
that connects the award (?a) and the person receiving the award (?x). The intermediate
object is often referred to as mediator and allows to express n-ary relations, e.g., to link
the person not only to the award but also to the date it was received and for which work
it was awarded. Constructing the query above is not feasible without being acquainted
with the schema of the knowledge base. The unwieldy relation and entity identifiers are
especially problematic. This is apparent in Figure 1, which would look unpleasant without
readable entity and relation identifiers.

We follow two approaches to tackle this problem. On the one hand, we construct a cu-
rated version of Freebase with simplified schema and readable identifiers. In this process,
we resolve, for example, the complex award nomination relation from above to a binary
awards-won relation. We also give entities their canonical and readable name as an iden-
tifier. Given the size of Freebase, this curation needs to be an automatic process.

9For readability, we omit namespace prefix definitions. The example query is from our publication [11].

15

On the other hand, we design a user interface that helps in incrementally constructing
queries. A user can start to construct a query by selecting a class or entity (like Palme
d’Or) and is presented with relations with meaningful names (e.g., awards-won) for this
class or entity. At each step, she is guided by meaningful context-sensitive suggestions.
Whenever the query is extended, new suggestions take the query so far into account so
that all suggestions actually lead to results. This avoids constructing queries without
results. Together, the curated knowledge base and user interface make it more convenient
to explore the knowledge base and construct the correct query.

Once a query is constructed, the text and knowledge base must be searched to retrieve
results. Besides reasonable query times (< 100ms per query) several features are essential
for our user interface, in particular, context-sensitive suggestions for words, classes, enti-
ties, and relations. Since no existing index structure provides this, we developed a special
index that can answer our queries efficiently. The index and query engine is explained in
detail in [13]. We don’t consider it here any further since the corresponding work is not
part of this thesis.

There are several related systems that perform Semi-Structured Search on Combined Data
[16, Section 4.6.2]. ESTER [8] was one of the first systems. It uses a special-purpose
index that also provides query suggestions from the text and knowledge base after each
keystroke. Compared to ESTER our user interface is far more involved and instead of
documents our system returns lists of entities. KIM [69] and its successor Mímir [80] allow
semi-structured search via two different indices based on off-the-shelf software, one for text
and one for the knowledge base. This causes efficiency issues when the structured part
of the query matches many entities (e.g., a query that requires the list of all persons in
Freebase). Both systems return lists of documents and provide no context-sensitive user
interface. STICS [49] finds documents with mentions of keywords, entities, or entities of
a certain category. A knowledge base provides the information which entity belongs to
which category, but no further relations from the knowledge base can be used in queries.
Suggestions for entities and categories are provided by a user interface and ranked by
coherence. For example, as the authors note, the suggestions for the category Ukranian
politicians rank the Klitschko brothers higher, once Angela Merkel is added to the query,
since they are long-time German residents. All of the systems above lack our natural
language processing technique to improve matches in the full text.

16

In the next subsection, we describe our approaches to the problems discussed above by
means of our semantic full-text search prototype, Broccoli. Our main contributions are
the following:

• The novel idea of semantic full-text search, which combines search in structured data
with search in full text. Queries are a subset of SPARQL with a special occurs-with
relation that can be used to specify co-occurrence of entities and words in text. In
contrast to previous approaches, results are lists of entities (not documents).

• A novel kind of pre-processing that decomposes a sentence into contexts: parts
that semantically “belong together”. This is important for precise matches with the
occurs-with relation. The technique behind this decomposition is called contextual
sentence decomposition and described in detail in Section 3.2. In our evaluation in
this section, we show that it makes the search more precise.

• A curated version of Freebase with unique readable entity and relation names and a
simplified schema. We also improved the taxonomy, and the knowledge base comes
with entity popularity scores for ranking. This makes it is easy-to-use, both for
semantic full-text search and in other applications.

• An implementation of above components into a fully functional prototype system
with an intuitive user interface. The user can incrementally construct her queries
and is guided by meaningful suggestions on how to extend the query at each point.

• An extensive evaluation showing the potential of semantic full-text search in general
and the improvements due to contextual sentence decomposition in particular.

3.1.2 Approach

On a high level, our semantic full-text search prototype, Broccoli, works as follows. First,
a pre-processing pipeline takes as input a knowledge base and text. The pipeline links
entity mentions in text to the knowledge base and decomposes sentences into contexts.
The resulting contexts and knowledge base facts are stored in an index, which also provides
a query engine with context-sensitive suggestions. The query engine is instrumented by
a user interface which helps in constructing and executing queries and displays results.
We start by explaining the knowledge base we use, followed by a description of the pre-
processing pipeline and the user interface.

Easy-to-use knowledge base. As we illustrated above, the knowledge base should be
convenient for an end user. In particular, it should have readable entity identifiers and
an intuitive schema. This is not provided by the largest publicly available knowledge

17

base, Freebase. We transform Freebase into an easy-to-use version using a few simple yet
effective techniques, which we describe in [11] and summarize below.

First, we obtain popularity scores for each entity by combining the number of mentions in
a reference text corpus and the number of knowledge base triples where the entity occurs
as subject or object. As a reference corpus, we use ClueWeb’12 [34] with entity mentions
by [45]. We use these scores to assign the most popular entity the canonical name and
resolve conflicts for other entities with the same name via heuristics. For example, for
persons, we append the notable profession, as in Michael Moore (Soccer Forward), and for
locations the containing country, as in Berlin (United States).

To simplify the schema, we resolve n-ary relations using a heuristic based on frequencies of
involved facts. Intuitively, more facts connect award winners to their award than for what
work or at what date it was won. Therefore, we create a new binary relation Awards-Won
and ignore facts about the date or award-winnning work involved. The query for the
winners of the Palme d’Or is now simple and intuitive:10

select ?x where { ?x Awards-Won "Palme d’Or" }

As part of the curation, we also merge duplicate types (like Person and person) by check-
ing for overlap on their members. Finally, we compute the transitive closure for manually
selected relations like profession and specialization-of. We use this to enhance the taxon-
omy, to ensure that, for example, a person who has the type Physicist (the specialization)
also has the type Scientist. All of the above problems are addressed in an automatic way.
The only required manual input is which relations to compute the transitive closures over.
Details on the applied heuristics can be found in the corresponding publication [11].

Pre-processing pipeline. The pre-processing pipeline takes a knowledge base and text
as input. Its main tasks are to link entity mentions in the text to the knowledge base,
split the text into sentences, and decompose the sentences into contexts. We describe the
pre-processing in more detail in [10].

Consider the following sentences, where mentions of the entity rhubarb are underlined:

The stalks of rhubarb are edible and its roots are medicinally used. However, the
leaves of the plant are toxic.

Identifying the first mention of rhubarb in the sentence is also known as named entity
recognition and disambiguation or entity linking. This is an established problem, and
a large body of approaches exists that solve this for any text input, e.g., [89, 72, 43].
The next two mentions, its and the plant, are references to the first mention of rhubarb.
Identifying these is also known as co-reference or anaphora resolution.

10The example query is from our publication [11].

18

In our prototype, we use the following simple heuristics to identify all of these mentions.
Since we use Wikipedia as text, we can obtain initial entity mentions from its markup:
as an annotation rule (by Wikipedia) the first mention of an entity always references
its Wikipedia page. By mapping Wikipedia pages to entities in the knowledge base11

we obtain entity mentions of higher precision than would be possible with automatic
approaches. We then resolve references as follows. Whenever a part or the full name of
an entity is mentioned again, we recognize it as that entity (for example, Ada as Ada
Lovelace). This is restricted to the same section of a document, which our pipeline is also
able to identify. Additionally, we resolve pronouns to the last identified entity of matching
gender and identify the pattern the <class> as the last entity of matching class. This
identifies the references of its and the plant to rhubarb in the example above.

Given entity mentions in each sentence, the next step is to decompose sentences into parts
that “belong together”. This is important to achieve precise matches with the occurs-
with relation. For example, consider the query plants with edible leaves and the following
matching sentence with underlined matches:12

The usable parts of rhubarb, a plant from the Polygonaceae family, are the medicinally
used roots and the edible stalks, however its leaves are toxic.

We decompose this sentence into the following contexts:

(C1) rhubarb, a plant from the Polygonaceae family
(C2) The usable parts of rhubarb are the medicinally used roots
(C3) The usable parts of rhubarb are the edible stalks
(C4) however rhubarb leaves are toxic

After decomposition, the query for plants with edible leaves no longer matches any of these
contexts, since rhubarb no longer co-occurs with the words edible and leaves. Note that
entities and co-references (its refers to rhubarb) have been identified beforehand. Thus,
no information is lost as part of this process. The technique for this is called contextual
sentence decomposition and covered in detail in Section 3.2. It takes a deep grammatical
parse tree of the sentence as input and applies tree transformations to retrieve contexts.

The pipeline performing entity linking and sentence decomposition as described above is
implemented as a UIMA13 chain. This allows us to easily exchange components, for exam-
ple, to switch to a different entity linking strategy. The pipeline also contains components
that parse the Wikipedia markup and split the text into (Wikipedia) sections, sentences,
and words. UIMA also allows to scale out the pre-processing to a cluster of servers for
computation intensive tasks like the required sentence parsing for our decomposition.

11Freebase provides the corresponding Wikipedia page for each entity, if it has one.
12The example is taken from our publication [10].
13http://uima.apache.org/

19

Index and user interface. Given the knowledge base and pre-processed text, we con-
struct our search index. The index and query engine are explained in detail in [13], which
is not part of the work of this thesis. The query engine reads results from the index and
applies a simplistic but, as our evaluation shows, effective ranking. For a query that only
uses the knowledge base, result entities are ranked by their popularity (see above). For
queries that use the full text, results are ranked by their number of matches in text. The
query engine also provides context-sensitive suggestions to the user interface.

We designed the user interface in an iterative process in which we developed ideas and
features, tested, and then revised them. In the end we came up with the user interface
already shown in Figure 1. It has the following main features as listed in our publication
[10], where we also show additional screenshots:

• Search as you type: Each keystroke updates the results and suggestions. Suggestions
are context-sensitive. They actually lead to hits and the higher-scored the hits, the
higher scored their suggestion.

• Pre-selected suggestions: New users may be overwhelmed by the multitude of sug-
gestions, therefore, the most likely suggestion is automatically highlighted.

• Visual query representation: The current query is always visualized as a tree. Sug-
gestions are displayed for the element in focus, which can be changed using clicks.

• Transparency: Results are grouped by entity, and displayed together with context
snippets that provide full evidence from the knowledge base and text.

The features above make it more convenient to construct queries. Furthermore, they
make results transparent. While the first is important for new users the latter is especially
important for researchers to identify mistakes. This helped in the analysis and evaluation
of the system which we describe next.

20

3.1.3 Experiments and Results

Here, we report on our quality evaluation of our semantic full-text search prototype,
Broccoli, which we describe in our publication [14]. We performed the evaluation with
two goals in mind. First, we wanted to draw conclusions on the general potential of
semantic full-text search. Second, we wanted to evaluate to what extent decomposing
sentences into contexts makes results more precise.

The following was our experimental setup. As a text corpus, we used the English Wikipedia
from January 2013. We performed entity recognition and contextual sentence decomposi-
tion as described above. This way we recognized a total of 285 million entity occurrences
and decomposed 200 million sentences into 418 million contexts. To keep running times
reasonable we scaled out this computation to a cluster of eight servers, each with an 8-core
CPU and 16 GB of main memory. As a knowledge base, we used YAGO [79], which has
about 26.6 million facts on 2.6 million entities. YAGO is smaller than Freebase but was
the most promising knowledge base at that time. A larger knowledge base, like our cu-
rated version of Freebase from above, would improve all results presented here since more
questions are answerable directly from the knowledge base. The conclusions we draw on
the potential of semantic full-text search in general and the improvement due to context
decomposition are valid nonetheless.

We evaluated search quality using three benchmarks. Each benchmark consists of a set
of queries and a corresponding ground truth of relevant results, i.e., lists of entities. We
used 15 queries from the TREC Entity Track in 2009 [6]. An example query is Airlines
that currently use Boeing 747 planes. From the SemSearch Challenge 2011 [81], we used
46 queries, for example, Apollo astronauts who walked on the moon. We also derived ten
queries from manually compiled Wikipedia lists. These can be thought of as a query with
the ground truth provided by the corresponding list, for example, the List of participating
nations at the Winter Olympic Games.

For each benchmark, we manually translated each query into our query language in a
straightforward way (i.e., we didn’t tune the queries to the results). All constructed
queries make use of the text corpus via the occurs-with relation. The ground truth for
each query is usually a small, well-defined result set. We believe that in this case, the
quality of the result set as a whole is more important than the ranking within the result
set, i.e., the result set should be as precise as possible. Therefore, we first focused on set
related measures: precision, recall, and F1, the harmonic mean of precision and recall.

21

We distinguished between three variants of semantics of occurs-with: co-occurrences re-
stricted to sections, sentences, and contexts. Table 1 shows our results. For all benchmarks,
sections achieve the highest recall. However, a lot of returned results are due to “random”
co-occurrences within a section. This causes a large amount of false-positives resulting in
the smallest precision and F1 score. Compared to sections, sentences decrease the num-
ber of false-positives resulting in a higher precision but at a cost of recall. Our contexts
further decrease the number of false-positives and also slightly increase the number of
false-negatives14. This results in an increased precision with a slight decrease in recall.
However, the increase in precision is far more pronounced, so that overall, contexts yield
the best precision and F1 score on all three benchmarks.

#FP #FN Prec. Recall F1

SemSearch
sections 44,117 92 6% 78% 9%
sentences 1361 119 29% 75% 35%
contexts 676 139 39% 67% 43%†

Wikipedia lists
sections 28,812 354 13% 84% 21%
sentences 1758 266 49% 79% 58%
contexts 931 392 61% 73% 64%∗

TREC
sections 6890 19 5% 82% 8%
sentences 392 38 39% 65% 37%
contexts 297 36 45% 67% 46%∗

Table 1. From our publication [14]: sum of false-positives and false-negatives and averages for other
measures over all SemSearch, Wikipedia list, and TREC queries. ∗ and † denote a p-value of < 0.02
and < 0.003, respectively, for the two-tailed t-test compared to the figures for sentences.

To evaluate the potential of semantic full-text search, we also computed and compared
ranking related measures. In a ranked list of results, Precision at K (P@K) is the precision
within the top K results. R-precision is the precision within the top R results, where R
is the number of relevant results according to the ground truth. The best system [28]
at the TREC Entity Track in 2009 achieved an average P@10 of 45% and R-precision of
55%. Our system achieved an average P@10 of 58% and R-precision of 62%, which is a
considerable improvement given the small range of results for previous systems.

14For TREC, the number of false-negatives actually decreases. This is due to how our parser pre-
processes Wikipedia lists. It appends each list item to the preceding sentence allowing contexts to cross
sentence boundaries. See our publication [14].

22

However, these results are not directly comparable for several reasons. First, the TREC
system only used a text corpus, ClueWeb’09 [34] Category B, which, however, is bigger
(50 million web pages) than our corpus. Second, we constructed our queries manually
(albeit not tuning them to the result). This was permitted for this benchmark, albeit
submissions that used automatic approaches yielded better results. Still, we believe this
makes the problem easier for our system. This also motivates automatically translating
into structured queries, which we address for knowledge base search in Section 3.4. Last,
the ground truth was approximated via pooling results from the participants. This may
put systems that are evaluated later on the same ground truth at a disadvantage [74].

A detailed error analysis on the TREC Entity Track questions revealed that most errors
are caused by an incomplete ground truth (55% of false-positives) or errors in third party
components (33% of false-positives and 63% of false-negatives): the knowledge base, the
constituent parser used for context decomposition, or our entity recognition. If we assume
all of these errors can be corrected, our system achieves an average F1 score of 86%,
P@10 of 94%, and R-precision of 92%. This motivates work on third party components
for correcting these errors. If we only assume a fixed ground truth (by adding missing
entities), our system achieves an average F1 score of 65%, P@10 of 79%, and R-precision
of 77%. Together, these results show the high potential of semantic full-text search.

23

3.2 Contextual Sentence Decomposition

Contextual sentence decomposition is the task of decomposing sentences into parts that
semantically “belong together”. We have already presented the basic idea in the previous
section, where we also showed how it makes semantic full-text search more precise. As
will become clear, a closely related problem is to extract (subject) (predicate) (object)
triples from a sentence. Extracting these triples is an established task known as Open
Information Extraction (OpenIE) [7].

In this section, we describe an approach for contextual sentence decomposition and how
to extend it to extract OpenIE triples. Our goal is to extract as many correct triples as
possible but also to keep them minimal and informative. These properties are neglected in
previous work, but important in applications like semantic full-text search, where precise
facts are essential. In our evaluation, we show that our approach matches the state of the
art with respect to correctness but improves upon minimality and informativeness.

This section summarizes the work published in [19] at ICSC 2013 and [18] at ECIR 2014.

3.2.1 Problem, Related Work, and Contributions

The goal of contextual sentence decomposition is to compute, for a given sentence, all
sub-sequences of words in that sentence that semantically “belong together”. The sub-
sequences are called the contexts of the sentence. Consider the following sentence:15

(S1) Ruth Gabriel, daughter of the actress and writer Ana Maria Bueno, was born in
San Fernando.

A correct decomposition yields the following contexts:

(C1) Ruth Gabriel was born in San Fernando
(C2) Ruth Gabriel, daughter of Ana Maria Bueno
(C3) actress Ana Maria Bueno
(C4) writer Ana Maria Bueno

If we restrict co-occurrence of entities and words to these contexts, as we did with semantic
full-text search (see Section 3.1), matches become more precise. For example, if we search
for co-occurrences of a person with the word writer (with the intent of finding writers)
these only match in C4 for Ana Maria Bueno. Her daughter Ruth Gabriel no longer
co-occurs with the word writer.

15The example is taken from our publication [19].

24

A highly related problem is that of extracting triples from a sentence. For example, from
the sentence above the following triples can be derived:

(T1) (Ruth Gabriel) (was born in) (San Fernando)
(T2) (Ruth Gabriel) (is) (daughter of Ana Maria Bueno)
(T3) (Ana Maria Bueno) (is) (actress)
(T4) (Ana Maria Bueno) (is) (writer)

Extracting such triples from a sentence is known as Open Information Extraction (OpenIE)
[7]. As can be seen, the triples T1-T4 are already close to the contexts C1-C4. What is
missing is an assignment of each word to subject, predicate, or object, and inserting the
implicit relation is in T3 and T4.

In this section, we first describe how to perform contextual sentence decomposition and
then how to extend it to an OpenIE system. We have already shown in the previous section
that our approach for decomposition can considerably improve results for semantic full-text
search. By extending our approach to an OpenIE system, we can directly compare it to
other approaches from the literature. This allows an intrinsic evaluation of the technique
based on extracted triples in addition to the extrinsic evaluation in the previous section.

Note that mapping subject, predicate, and object of an OpenIE triple to their corre-
sponding elements in a knowledge base is not considered part of the problem. For ex-
ample, in T1, the subject Ruth Gabriel, the object San Fernando, and the predicate
was born in could be mapped to their identifiers in Freebase: m.02z4mfm, m.0r0wy, and
people.person.place_of_birth, respectively. This distinguishes OpenIE from relation ex-
traction, where only triples of a given knowledge base relation, like place of birth, should
be extracted, but with many possible variations of mentioning it. An overview of relation
extraction and OpenIE can be found in our survey [16, Section 3.6]. Both problems are
examples of information extraction [75].

OpenIE triples can be used in, for example, knowledge base construction (after linking
to canonical entities and relations) or simple semantic querying, for example, to find all
subjects matching (?x) (was born in) (San Fernando).16

Early OpenIE systems, e.g., TextRunner [87], ReVerb [41], and KnowItAll [40], use shallow
natural language processing techniques, for example, part-of-speech tagging or chunking.
Using this shallow syntactic information they either apply hand-crafted or automatically
learned rules to identify triples. More recent systems, like OLLIE [58], ClausIE [37], and
our system, use a deeper linguistic analysis in the form of a syntactic parse tree of the
sentence. The parse tree expresses the grammatical structure of the sentence, which clearly
identifies nested phrases and clauses. This allows more powerful rules that also work

16A demo of such a system is available at: http://openie.allenai.org/.

http://openie.allenai.org/

25

in complicated sentences, e.g., with nested relative clauses. OLLIE uses automatically
learned rules on this parse tree. ClausIE and our system use manually defined rules. In
contrast to ClausIE, our rules were developed with the additional goal of minimality (see
below) and a direct application for semantic full-text search. Our publications [19, 18] and
semantic search survey give more details on related approaches as well as related natural
language processing techniques like pos-tagging, chunking, and parsing.

OpenIE systems are usually compared based on accuracy and number of extracted triples.
Accuracy refers to the percentage of triples that are correct, i.e., that express a meaningful
fact which is also expressed in the original sentence. In addition to this, we also consider
minimality to be essential. Consider the following triple:

(Ruth Gabriel) (is) (daughter of the actress and writer Ana Maria Bueno)

This triple is correct, but it also contains two other facts, namely, that Ana Maria Bueno
is an actress and a writer. Hence the triple is not minimal. This is problematic for appli-
cations like semantic full-text search, which assume that co-occurrences are “semantic”. In
our evaluation, we consider minimality in addition to the standard measures of accuracy
and the number of extractions. This has not been addressed or evaluated in previous work.

Besides correctness and minimality, another important aspect of extracted triples is that
of informativeness. Consider the sentence17

(S2) The ICRW is a non-profit organization headquartered in Washington.

and the extracted triples:

(U1) (The ICRW) (is) (a non-profit organization)
(U2) (a non-profit organization) (is headquartered in) (Washington)

Both triples are correct and minimal, but triple U2 is, by itself, not informative. The
information that it is the ICRW that is headquartered in Washington is not explicit and
cannot be found with a search in these triples (without the information that the object of
U1 and subject of U2 refer to the same organization). Therefore, we propose to integrate
a set of simple inference rules into the extraction process to increase informativeness.
An informative triple that should be extracted instead of U2 is U3: (The ICRW) (is
headquartered in) (Washington).

Informativeness has previously been addressed in [41] but only as part of correctness
(uninformative triples were labeled as incorrect) and with a different definition, focusing
on the predicate part of triples (is the predicate by itself informative). We explicitly
consider informativeness of whole triples and in relation to the originating sentence.

17The example is taken from our publication [18].

26

To summarize, our main contributions are the following:

• An approach for contextual sentence decomposition that is based on a grammatical
parse of a sentence. Compared to similar approaches, our output is tailored to an
application in semantic search.

• An extension of contextual sentence decomposition to extract OpenIE triples. In an
evaluation, we show that extracted triples match the state of the art with respect to
correctness, but are better than existing systems with respect to minimality.

• A way to increase the informativeness of extracted triples by using inference rules
during the extraction process. Our evaluation shows that a few simple inference
rules can mitigate many uninformative triples.

3.2.2 Approach

We first describe how to perform contextual sentence decomposition followed by how to
derive triples. This is described in more detail in [19]. We then outline how to improve
informativeness of triples, with details available in [18].

Contextual sentence decomposition is performed in two steps. In the sentence constituent
identification phase (SCI), we identify the basic “building blocks” of contexts and ar-
range them in a tree. Sentence constituent recombination (SCR) combines the identified
constituents to form contexts.

Figure 2 shows an SCI tree for our example sentence:

CONC

ENUM

Ruth Gabriel

the actress writer

REL

ENUM
daughter of Ana Maria Bueno

REL

was born in

and

San Ferando

CONC

CONC

Figure 2. From our publication [19]: The SCI tree for our example sentence. The head of each
relative clause is printed in bold, filler words in striped rectangles.

(S1) Ruth Gabriel, daughter of the actress and writer Ana Maria Bueno, was born in
San Fernando.

27

The goal of SCI is to compute such a tree for a given sentence. We distinguish between
three different types of internal nodes. ENUM nodes identify enumerations, where child
nodes belong to different contexts. In our example, the actress and writer are two separate
facts that describe Ana Maria Bueno, but have nothing to do with the rest of the sentence.
REL nodes mark relative clauses, which form separate contexts with their optional head18.
In our example, the nominal modifier (which we consider a type of relative clause) starting
with daughter of... is connected to its head, Ruth Gabriel, whom it describes. Finally,
CONC nodes group child nodes that belong to the same context. As is illustrated in
Figure 2, words of a sentence (terminals) are only contained in leaf nodes. Nodes can
be nested recursively and arbitrarily deep. In practice, deep nestings are rare, since the
sentence also becomes hard to read for humans. Note how the SCI tree already expresses
a lot of the semantic structure of the sentence.

S

Ruth Gabriel

NP NP

PP

VP
was born

NP

in NP

daughter
NP

NP NP

of

NP

the actress writer

and NP Ana Maria
Bueno

PP

San Ferando

,

NP

Figure 3. From our publication [19]: The constituent parse tree for our example sentence. It
arranges noun phrases (NP), verb phrases (VP) and prepositional phrases (PP), according to the
syntax of the sentence. For the sake of readability, the parse tree has been simplified.

A good starting point to derive the SCI tree is the constituent parse tree of the sentence.
Figure 3 shows the parse tree for our example sentence. It can be seen that the tree hier-
archically groups important constituents for the SCI tree. Identifying these constituents
based on a more shallow analysis, like part-of-speech tags, is difficult.

We carefully designed a small set of 14 (prioritized) rules to transform a parse tree into
an SCI tree. An applied rule in our example is: “in a sequence consisting of two NPs,
split by a comma, mark the second NP as REL and the first NP as its head” [19]. This
identifies the relative clause daughter of the actress and writer Ana Maria Bueno and its
head, Ruth Gabriel. Another applied rule is: “mark a node as ENUM for which children
all have the same type (e.g., NP)” [19]. This identifies the enumeration in the actress and

18In our publication, we also describe SUB nodes, which are REL nodes without the optional head.

28

writer. The complete list of rules can be found in our publication [19]. After applying all
of the rules, we get the tree shown in Figure 2.

Given the SCI tree, computing contexts is straightforward. We first take out subtrees
labeled REL, and change the root of this new tree to CONC. If the relative clause had a
head, we attach it as first left child to the new tree. Then we recursively compute contexts
for each tree, which now only contain leafs, ENUM, or CONC nodes. The context of
a leaf consists exactly of the words contained in it. The contexts of an ENUM node is
computed as the union of the sets of all child node contexts. The contexts of a CONC
node is computed as the cross-product of the sets of its child node contexts. This gives us
the desired contexts C1 to C4 shown in the beginning.

To transform contexts into triples, we apply a set of (relatively) simple heuristics. In each
context, we identify the first explicit verb phrase and surrounding adverbs or prepositions
to be the predicate. The words before the predicate belong to the subject and the words
after it to the object. For example, in the context Ruth Gabriel was born in San Fernando
we identify was born in as predicate and can derive the subject and object accordingly.
Our heuristics also insert implicit verbs, for example, we use the verb is between the head
and its REL attachment (if it doesn’t begin with a verb). This allows deriving the triple
(Ana Maria Bueno) (is) (writer) from the context writer Ana Maria Bueno.

In a final step, we improve informativeness of extracted triples using inference rules. For
each triple, we first classify the predicate into one of five semantic relation classes.

OTHER(A′, B) ← OTHER(A,B) ∧ SYN(A,A′)
OTHER(A′, B) ← OTHER(A,B) ∧ SYN(A′, A)
OTHER(A,B′) ← OTHER(A,B) ∧ SYN(B,B′)
OTHER(A,B′) ← OTHER(A,B) ∧ SYN(B′, B)
IN(A,C) ← IN(A,B) ∧ PART-OF(B,C)
IN(A,C) ← IN(A,B) ∧ IS-A(B,C)
OTHER(A,C) ← IS-A(A,B) ∧OTHER(B,C)

Table 2. From our publication [18]: Inference rules for new triples.

For example, IS-A expresses hyponymy, the relation between a specific instance and its
more generic term, in triple U1: (The ICRW) (is a) (non-profit organization). The pred-
icate is headquartered in expresses a location placement, IN, in triple U2: (a non-profit
organization) (is headquartered in) (Washington). Other relation classes are SYN (syn-
onymy), PART-OF (meronomy, for “part-whole” relationships), and OTHER for all re-
maining relations. Based on the semantic relations, we apply a set of seven inference rules
shown in Table 2 to derive new triples.

29

In the example, the rule “if A IS-A B and B IN C → A IN C”19 matches. We, therefore,
conclude (The ICRW) (is headquartered in) (Washington). Crucially, this inference step
can only be performed during triple extraction for a given sentence, when involved subjects
and objects refer to the same words in a sentence. In the example, it must be clear that a
non-profit organization in triples U1 and U2 actually refer to the same real-world entity.

We also remove existing triples that we consider uninformative depending on how they were
used to derive new triples. For example, we remove triple U2 in favor of the inferred triple
above. While our rules are manually selected and simplistic, they improve informativeness
of extracted triples as our evaluation shows.

3.2.3 Experiments and Results

We have already described an extrinsic evaluation of contextual sentence decomposition
in Section 3.1, which showed that contexts make semantic full-text search more precise.
Here, we describe an evaluation based on extracted OpenIE triples from [19]. Our system
is called CSD-IE in the following.

For evaluation, we used two datasets from [37]: 200 random sentences from the English
Wikipedia and 200 random sentences from the New York Times. We compared our system
against three state-of-the-art OpenIE systems: ReVerb [41], using learned rules on part-
of-speech tags, OLLIE [58], using learned rules on a parse tree, and ClausIE [37], using
manually defined rules on a parse tree. In the first experiment, which we describe in [19],
we didn’t apply our inference technique to improve informativeness. We evaluated this
separately in a second experiment.

For the first experiment, we extracted triples with each of the four systems and manually
assigned two labels for each triple: one for correctness (yes or no) and one for minimality
(yes or no). From these labels, we computed the following accumulated measures for each
system as defined in [19]:

precision wrt accuracy (prec-a): the percentage of triples labeled as correct
precision wrt minimality (prec-m): the percentage of correct triples labeled as minimal

coverage: the percentage of words of the sentence that occur
in at least one extracted triple for that system

average triple length in words: average length of extracted triples for that system
in words (ignoring special characters)

19More formally: IS-A(A, B) ∧ IN(B, C) → IN(A, C)

30

ReVerb OLLIE ClausIE CSD-IE
#facts 249 408 610 677
#facts correct 188 230 421 474
prec-a 75.5% 56.4% 69.0% 70.0%
prec-m 87.2% 80.4% 57.0% 76.8%
coverage 47.2% 62.7% 95.4% 97.5%
triple length 7.3 9.7 11.0 8.4

Table 3. From our publication [19]: Results of our quality evaluation on the Wikipedia dataset.

Table 3 shows the results for the Wikipedia dataset. The results on the New York Times
dataset are very similar and gave no additional insights. For both datasets, the results for
previous systems closely agree with those reported in [37], confirming our labeling.

In comparison to the other systems, CSD-IE extracts the largest number of correct facts
(#facts correct). It also provides the highest coverage (coverage) and largest number of
extracted facts overall (#facts). ReVerb produces a higher percentage of minimal and cor-
rect triples, however, for a considerably lower number of extracted facts. In an application
for semantic search this can be detrimental to search quality. In particular, this is likely
to cause missing extractions, which in turn lead to missing results (lower recall).

Compared to ClausIE, the most similar system, CSD-IE achieves similar precision with
respect to accuracy (prec-a) and coverage. The triples extracted by CSD-IE are shorter on
average (triple length). Furthermore, the precision wrt minimality (prec-m) is 20% higher.
This is a considerable improvement that can be attributed to the fact that our rules were
explicitly tailored towards minimality.

An investigation of errors for CSD-IE on both datasets reveals that most of the inaccurate
extractions are caused by mistakes in the parse trees. This is also what we observed in
the analysis of our results in Section 3.1. Small mistakes, like attaching a subtree to the
wrong parent, cause wrong extractions for all contexts and triples involving that parent-
child relationship. Current state-of-the-art parsers still make such mistakes for about 8%
of parent-child relationships.20 More details on parsing and an overview on the current
state of the art are available in our survey [16, Section 3.3].

We believe there are two worthwhile directions to handle wrong extractions caused by the
parser. First, we could compute confidence scores for triples. Some parsers can provide
an estimate of their confidence for each subtree being correct. Wrong subtrees should
get assigned a low confidence score and triples from such subtrees could be assigned low

20Results in [52, Table 1] show that the best performing parser attaches 92% of words correctly. This
is for a dependency tree, which is similar to a constituent tree with respect to parent-child relationships.

31

scores. Second, it would be interesting to extract triples without the help of a parse tree.
This could be achieved via learning a task-specific extractor from scratch, i.e., without a
pipeline of cascading tools that propagate errors. This has been shown to work well for
other natural language processing tasks, especially sentence parsing [35].

In a second experiment, which we describe in [18], we investigated how our inference rules
improve the informativeness of extracted triples. We manually assigned two labels for
triples extracted from the 200 Wikipedia sentences from above: one for correctness (yes or
no) and one for informativeness (yes or no). A correct triple was considered informative
if there is no extraction that is more precise, according to the sentence it was extracted
from. We gave an example for this above.

#facts #facts corr #facts corr-inf prec corr prec corr-inf
No Inference 649 429 385 66% 90%
Inference 762 484 444 64% 92%

Table 4. From our publication [18]: Results for our quality evaluation with inference (top row)
and without inference (bottom row) over the labels correct (corr) and informative (inf). prec corr
refers to the percentage of all triples labeled correct, prec corr-inf to the percentage of correct
triples labeled informative. The experiments used a faster parser, hence the results differ slightly
from those in Table 3.

The results in Table 4 show that about 90% of all correctly extracted triples are informa-
tive. After applying our inference rules this increases to 92%. In addition recall increases.
The number of correctly extracted triples increases by 13% (#facts corr) and the number
of triples both correct and informative by 15% (#facts corr-inf). Since a few incorrect
triples are inferred the overall percentage of correct triples (prec corr) drops by 2%, but
at a higher recall.

An error evaluation shows that many incorrectly inferred triples are caused by wrong
parses or a wrong mapping of predicates to their semantic class. Eliminating these should
obviate the small negative effect on precision. A more sophisticated mapping to semantic
classes could be achieved by utilizing “relational patterns” as, e.g., described in [65]. To
further increase informativeness, it may also be interesting to automatically learn inference
rules, as, e.g., described in [56, 84, 63]

Overall, the results show that CSD-IE achieves good precision and high recall, while
providing very good coverage and minimality. We attribute this to the fact that our
original motivation for this problem is an application in a semantic search engine. Hence
our rules were developed and tailored with minimality in mind. The results also show
that already a few simple inference rules can improve informativeness of extracted triples.
Especially minimality and informativeness are important in applications like semantic
search where a precise representation of facts is beneficial.

32

3.3 Relevance Scores for Triples

In the previous section, we have described a technique that makes semantic search in full
text more precise. In this section, we show how to improve the results of structured queries
on a knowledge base. In particular, we address how to rank results of queries that return
a list of entities, such as american actors. For the queries we consider, the information
required for a good ranking is not contained in the knowledge base. Therefore, we describe
a variety of algorithms to compute relevance scores from a text corpus. Since this is a
novel problem, we also describe a benchmark that we designed. On this benchmark,
our methods achieve an agreement of about 80% with the ground truth and outperform
existing methods from the literature. The benchmark and our code are publicly available
via http://ad.informatik.uni-freiburg.de/publikationen.

This section summarizes the work published in [15] at SIGIR 2015.

3.3.1 Problem, Related Work, and Contributions

Knowledge bases are queried using a structured query language called SPARQL. A struc-
tured query has precisely defined semantics, and the corresponding result set is well-
defined. For example, here is a query for american actors in SPARQL:21

select ?entity where {
?entity has-nationality American .
?entity has-profession Actor .

}

This returns 64,757 matches on Freebase in no particular order.22 Clearly, when presenting
this huge result set to a user, a ranking is desirable. A straightforward ranking would be
by some form of popularity. This can be measured, e.g., by the number of occurrences in
a reference text corpus, which leads to the following top-5 results:
George Bush,Hillary Clinton,Tim Burton,Lady Gaga, Johnny Depp
All persons in this list are actors in the sense that they had a role in some movie. For
example, George Bush appeared in the documentary Capitalism: A Love Story and Tim
Burton had various cameo roles. However, in this list, only Johnny Depp is best known for
being an actor. Hillary Clinton and George Bush are better known for being politicians,
Lady Gaga as a musician, and Tim Burton as a film director. Consequently, one would
expect Johnny Depp to be ranked before all others.

21This example, including results and relevance scores, is taken from our publication [15].
22An order can be specified explicitly, e.g., with an ORDER BY clause, but this doesn’t solve the

problem we consider here.

http://ad.informatik.uni-freiburg.de/publikationen

33

The set of american actors is huge, but an ordering also makes sense for smaller result
sets. Consider the query for professions of Ronald Reagan in Freebase:
Actor, Lifeguard, Politician, Radio Personality, Soldier, Spokesperson,
All of them are correct (indeed, Reagan worked as a lifeguard in his youth), but his main
professions are certainly Politician and Actor. In this case, ranking by the popularity of
a profession makes no sense at all.

Queries as above are also typical queries for semantic full-text search (see Section 3.1).
However, such queries are likely to appear for any kind of semantic search that utilizes a
knowledge base. Hence, we consider this an interesting and relevant problem on its own
that warrants a separate study.

In this section, we address the problem behind the examples above, which we defined in
[15] as follows:

Definition: Given a type-like relation from a knowledge base, for each triple
from that relation compute a score from [0, 1] that measures the degree to
which the subject belongs to the respective type (expressed by the predicate
and object). In the remainder, we often refer to these scores simply as triple
scores.

Another way to describe the problem for the score of the profession Actor of Johnny Depp
is: “how surprised would we be to see Actor in a list of professions of Johnny Depp” [15].

The desired scores for some of the entities in the queries above might look as follows:

Tim Burton has-profession Actor 0.3
Tim Burton has-profession Director 1.0
Johnny Depp has-profession Actor 1.0
Ronald Reagan has-profession Actor 0.6
Ronald Reagan has-profession Lifeguard 0.1

The actual score of a triple is ill-defined in our definition above. This is similar to the notion
of relevance in information retrieval. There, a document is assigned a relevance score (in
the case of graded relevance) given a query. It is common practice to determine document
relevance via judgments from different people, simply because the actual relevance score
of a document can be subjective. In our experiments (see below), we also collect feedback
from multiple judges and show that there is a strong consensus on our relevance scores.

Once relevance scores are computed, it becomes straightforward to use these scores to
rank the results of our example queries. In the first case (american actors), a ranking can

34

be derived by combining the scores with a popularity for each entity. In the second case
(“professions of a single person”), the scores directly infer a ranking.

In this work, we consider scoring triples from type-like relations, such as profession or
nationality (we use both in our evaluation). These present the biggest challenge in terms
of ranking. For functional relations like date of birth or height, no ranking is needed or
trivially achieved. For example, for height, simply ranking by this value will often be
sufficient. Triples from non-functional relations between two concrete entities like invested
in (between two organizations) or featured in song (between a musician and a song she
featured in) are often better ranked by a single scalar from the knowledge base, like the
value of the investment or the length of the song feature. Finding such a single scalar is
difficult for type-like relations. For example, for the profession relation, the (computed)
scalar depends on the actual profession: For a musician, it may be the number of records
sold, while for an actor the appearances in high-grossing movies are more relevant.

Our motivation is ranking results of entity queries like american actors. Here, we focus on
computing scores for individual triples in the first place. This has several reasons. First,
scores as above are often all that is needed to obtain a good ranking, for example, for the
query for professions of a single person. Second, our scores can serve as a crucial ingredient
for approaches that rank results of entities queries. We discuss some of these approaches
below. Finally, as our evaluation shows, computing good relevance scores is difficult and
requires tailored approaches. These warrant a separate study.

To the best of our knowledge this is the first work addressing how to compute this kind
of relevance scores for triples. There is some work on estimating scores for the correctness
or accuracy (is the numeric value, e.g., a population count, off by some margin) of triples.
Correctness scores can come from the system that extracted the triple, e.g., a probability
provided by a machine learning classifier [58, 62]. They can also be inferred, for example,
via a witness count as indicated by the number of times a given triple was extracted
or found. Correctness scores are important, e.g., in knowledge fusion [38] or knowledge
base construction [68, 63], where the task is to construct a consistent knowledge base
from extractions from different sources. In this case, correctness scores can help resolving
conflicting statements, e.g., if extracted triples disagree on the place of birth of a person.
Correctness and accuracy scores are different to our relevance scores, where we assume
non-conflicting facts and estimate a “degree of belonging”. A beneficial side effect of our
appoches is that incorrect triples are likely to get a low score.

A related line of work is that of detecting fine-grained types of entities. There, the mo-
tivation is, given a sentence and the identified mention of an entity, infer its types from
a given type system. For example, from the input Ada wrote the first computer program
and the identified named entity (underlined), it could be inferred that Ada belongs to the

35

person and programmer types of Wordnet [61]. The given input entity is not linked to a
knowledge base (or does have to exist in one). Recent approaches focus on providing very
fine-grained types. In [64], the authors match learned text patterns that are associated
with a type and devise a probabilistic model and integer linear program to avoid type
inconsistencies (e.g., a person cannot also have type organization). In [36], the authors
design a huge set of patterns and rules based on, e.g., the mention’s text (the mention Uni-
versity of Freiburg contains the type university) or verb phrases. The system is evaluated
with 16k different types. In contrast to triple scores, approaches for type detection assign
types in a binary fashion. Assigning Ronald Reagan the types Lifeguard and Politician
to the same degree is both, correct and desired. Furthermore, approaches are designed
to identify types from a taxonomy. While the profession relation describes part of a tax-
onomy, this is not the case for other type-like relations, e.g., nationality, which we also
evaluate on. Our approaches are designed to work with all type-like relations.

For ranking results of queries on a knowledge base, a typical approach is to adapt and
apply techniques from ranking in information retrieval. The adapted techniques usually
rank entities based on existing scores that are assumed to be given or from ranking signals
(machine learning features) that are computed from the knowledge base and query. For
example, in [39], the authors investigate how to define language models for a structured
SPARQL query and result graphs. The language models incorporate witness counts to
estimate the confidence and importance of a triple. These are assumed to be given. In
[31], the authors compare learning to rank methods for keyword queries on a knowledge
base. They devise a set of 26 features that incorporate, for example, the type of an entity
and the similarity between an entity and the query. Both of these example approaches
could benefit from using our triples scores in addition or instead of the scores or type
information they already use. More approaches for ranking results of entity queries can
be found in the ranking section of our survey [16, Section 5.1].

As part of our work on this problem we have created and published a benchmark which
has lead to a public challenge on triple scoring at WSDM 2017 [48] with good participation
(21 teams). Most of the approaches (including the winning approach) relied on finding
witnesses for each type from text and applying supervised learning methods. This is
similar to one of the approaches we suggest below.

There are several challenges we face for computing triple scores. First, we cannot compute
scores from the knowledge base alone. We found that the required information, especially
for less popular entities, is not available reliably, even in a large knowledge base like Free-
base. Therefore, we focus on computing relevance scores from text. Second, we cannot
rely on purely supervised learning. There are more than 3,552 different professions in
Freebase and relevance is expressed differently for each. Hence, a different model and
therefore labeled examples are required for each profession. This rules out manually la-

36

beling examples, even with crowdsourcing. Finally, since this is a novel problem, we must
also establish a ground truth that allows a realistic and reliable comparison of approaches.

In summary, our main contributions are:

• The novel and interesting research problem of triples scores for type-like relations.
The scores are an essential component for properly ranking many popular kinds of
entity queries. Such queries occur, for example, as part of semantic full-text search.

• A benchmark to evaluate triple scores for the profession and nationality relations.
The benchmark consists of more than 14 thousand relevance judgments that were
obtained via crowdsourcing. The judgments confirm that there is a broad general
consensus on the problem definition of triple scores.

• A variety of approaches to computing triple scores from a text corpus. On our
benchmark, our best methods perform significantly better than non-trivial baselines
and achieve an agreement of about 80% with the ground truth.

3.3.2 Approach

We describe our approach that computes triple scores from a text corpus. Initially, we
also experimented with using a knowledge base, either as a supplement to a text corpus
or by itself. The scores we are trying to compute are certainly not explicitly expressed as
facts but may be implicit in other facts. For example, if a person has acted in a lot of
high-grossing movies, she is likely to be well-known as an actress, and that triple should
receive a high score. However, experiments showed that this knowledge is consistently less
available, especially for less popular entities.23 Therefore, we compute triple scores from
a large text corpus.

In the text corpus, we try to find “witnesses” for each triple. Optionally, each witness has
an associated significance, which we also compute. The higher the count and significance
of witnesses for a triple, the larger the score. For example, consider the following triples
for two of Johnny Depp’s professions:

Johnny Depp has-profession Actor
Johnny Depp has-profession Musician

We assume that, because he is more of an Actor than a Musician, he is more likely to
be mentioned along words like: actor, film, cast than album, band, or singer. The word
performed can be associated with Actor as well as Musician and has less significance for

23For example, in Freebase, out of 612 thousand persons with more than one profession, 400 thousand
have less than ten and 243 thousand have less than six facts (besides type and profession information).

37

determining these professions. By counting the number of mentions of these words (and
their significance) along Johnny Depp in the text corpus, we can compute a score for each
profession triple. Ideally, this gives a much higher score for Actor than for Musician.

This approach involves three steps. First, we need to learn indicator words (like actor,
film, cast above) for each profession. Each word can be associated with a weight, de-
pending on how significant it is for the profession. Next, for a given entity, we need to
find co-occurrences with these words from which we derive an intermediate score. The
scores should be comparable across entities. Therefore, in a final step, we normalize the
intermediate scores to a desired output range, for example, the interval [0, 1].

We designed multiple variants of how to learn indicator words, how to use them to derive
intermediate scores, and how to normalize to the final output range. We shortly summarize
these in the following. Note that we use profession as an example relation, but our
approaches work for any type-like relation.

Our first step to learning indicator words is to derive positive and negative training exam-
ples for each profession. This is done in a weakly supervised fashion using the following
criteria: For a given profession, the positive training examples are persons who only have
that profession (according to the knowledge base). The intuition is that these triples
naturally have the highest score assigned. Correspondingly, negative training examples
are persons who don’t have the given profession at all. Clearly, these should have the
lowest score. For example, Marlon Brando is a positive example for the profession Actor,
because this is his only profession according to Freebase. Alan Turing would be a negative
example, because he is a Computer Scientist, Mathematician, and more, but not an Actor.

Next, we represent each person with a virtual document. This document consists of all
the words the person co-occurs with. To identify semantically co-occurring words we use
contextual sentence decomposition as described in Section 3.2. The virtual document of a
person now consists of all (of the words) of the contexts she appears in. In our experiment,
this gave better results than using whole sentences.

We now have a set of positive and negative examples (virtual documents of persons) for
each profession. From here, we consider multiple variants of learning indicator words and
deriving intermediate scores. We shortly mention the basic ideas, in our experiments we
also considered many slight variations:

• Binary classifier : Learn a classifier (logistic regression) that makes a binary decision
for each profession. Each person is represented by the bag-of-words of her virtual
document with words weighted by tf-idf. This way, the classifier will learn a weight
for each word. The intermediate score for a profession is the binary decision of the
classifier whether the profession is primary or not.

38

• Count profession words: First, identify indicator words. A simple variant is to use
manually chosen prefixes of the profession, such as act for Actor. This as a baseline
in our experiments. A more complex variant is to compute and sum tf-idf scores for
words of the positive examples, sort by that score, and assign a weight of 1/r for
word at rank r. This gives weighted words for each profession. To get intermediate
scores, for each profession, count the prefix matches or sum up the word weights in
the virtual document of a person.

• Generative model: Identify weighted indicator words for each profession as with the
counting-based approach. Then apply a model, which, intuitively, generates the text
in the virtual document of a person. Maximizing the likelihood of the person’s text
gives a probability distribution over her professions as intermediate scores.

The approaches output different types of intermediate scores for each triple: word counts,
weighted sums, binary judgments (logistic regression), or probabilities. In the final step,
we normalize these for each person by mapping to the desired output range. In our experi-
ments, we map to the integers [0, 7] in order to facilitate comparison with our crowdsourc-
ing results. We either map to these scores on a linear scale or on a logarithmic scale, where
the next highest score corresponds to twice the intermediate score (sum or probability).

39

3.3.3 Experiments and Results

Since this is a novel problem, we started by creating a new benchmark. To obtain a
large number of relevance judgments we used crowdsourcing. Each human judge is given
a description of the task. In general, the judges aren’t familiar with the problem and
a major challenge was describing the task in way that results in consistent and reliable
relevance scores. This gave us valuable insight into our problem and its definition, also
allowing us to verify whether there is a general consensus on our scores. We first describe
our crowdsourcing task, followed by results on the new benchmark.

Crowdsourcing Benchmark

We experimented with several different crowdsourcing tasks, refining the task definition
and description along the way. Figure 4 shows the final task that worked well.

Figure 4. Adapted from our publication [15]: Excerpt of the crowdsourcing task for Ludwig van
Beethoven. His professions must be classified into primary or secondary by dragging each profession
into the respective box. The Wikipedia link to his page can be used to find additional information
(important for lesser known persons). In addition, example classifications and further instructions
were provided (not shown here).

Judges must classify all of the professions of a single person into either primary or sec-
ondary. This worked better than asking for the label of a single profession of a person
(without showing the other professions). Judges then often simply labeled the first men-
tioned profession of a person in the Wikipedia article as primary. We used this strategy
as one of the (simple) baselines in our experiments.

Each person is judged seven times by different judges. The number of primary judgments
for each profession of a person is aggregated to give a score from 0 to 7. For the profession
relation, we ran the above task for a random selection of 298 persons (1225 triples) which
gave us 8575 judgments. The random selection takes into account the popularity (i.e.
the number of mentions in our text corpus) of persons, providing a fair selection across

40

all popularity levels. We also evaluated the nationality relation, for which we selected 77
different people (162 triples) resulting in 1134 judgments.

To verify inter-annotator agreement we performed a control run of the above experiment
(with different judges) on one-third of the persons selected for the profession relation. We
also created random judgments choosing primary or secondary with equal probability.

Figure 5 shows a histogram of the results. As can be seen, judgments are far from random
and the control run provided very similar results.. This, together with a Fleiss’ Kappa
[44] of 0.47, shows that there is broad general consensus on the problem.

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7

Crowd Control Random

Figure 5. From our publication [15]: Histogram of score distribution of our crowdsourcing task,
the control run, and expected results for randomly (with p = 0.5) guessing judges (rounded).

Main Results

We evaluated our approaches using the above benchmark. As a text corpus, we used the
English Wikipedia where we recognized entity mentions as described in Section 3.1. As a
knowledge base, we used Freebase.

We performed experiments for the profession and the nationality relation. Experiments
on the nationality relation gave no major additional insights, hence we only describe the
main results for the profession relation here.

We compared our variants against several baselines. The first baseline selects the first
literal occurrence of a profession in the person’s textual description of Freebase to be
primary. The prefixes baseline applies the counting approach from above using prefixes
that were manually derived from the profession names (e.g., act for Actor). The Labeled
Latent Dirichlet Allocation (LLDA) [71] baseline is a topic model that can be learned in a
supervised fashion using our weakly-supervised training data. Given the text associated
with a person, it estimates a probability distribution over topics (e.g., professions).

41

All scores were mapped to the range 0 to 7, which is the range we get from our crowd-
sourcing experiments. To map our intermediate scores to this range, we used the mapping
that gave best results: linear mapping for count-based approaches and logarithmic map-
ping for approaches that output probabilities. As main evaluation measures, we computed
accuracy-δ, which measures the percentage of triples that deviate by at most δ from the
ground truth score, and average score deviation, the average over all deviations. We
also computed rank based measures: Kendalls’ Tau, footrule distance, and nDCG. These
correlated well with accuracy-δ and we omit them for brevity.

Method Accuracy (Acc) Average
Score
Diffδ = 1 δ = 2 δ = 4

First 41% 53% 71% 2.71
Prefixes 50% 64% 83% 2.07
LLDA 50% 68% 89% 1.86
Binary Classifier 47% 61% 78% 2.09
Weighted Indicators 57% 75% 94% 1.61
Generative Model 57% 77% 95% 1.61
Combined (GM + Classifier) 63% 80% 96% 1.57
Control Judges 76% 94% 99% 0.92

Table 5. Adapted from our publication [15]: Accuracies and average score deviation for the profes-
sion relation. The top part shows baselines, the middle part our approaches, and the bottom part
our control run.

Table 5 summarizes the results for the profession relation. We consider accuracy-2 the
most intuitive measure (percentage of triples with difference to ground truth score at most
two), hence it is emphasized. Note that accuracy-2 can be optimized by truncating results
to range between 2 and 5, which is never worse than predicting more extreme values.
However, this goes at the cost of other measures like average score difference [48]. We
performed no such truncation and our scores correlate well with average score difference.

The baselines perform well, but our more sophisticated approaches clearly outperform
them. Our best approach consists of a combination of the generative model and the
binary classifier (use the average of the two predicted scores if the binary classifier predicts
score 7). It achieves performance not far from human judges with a gap of 14%. For all
approaches we also evaluated many variants, including: using word pairs instead of single
words, using stemming, utilizing the knowledge base type hierarchy, other non-linear score
mappings, using tf instead of tf-idf etc. None of these improved results.

42

An evaluation of errors showed two main sources. The first source of errors is word co-
occurrences that refer to the wrong entity. For example, Michael Jackson gets a high score
as a Film Director because he is often mentioned along directed or director, which however,
does not refer to him, but to a person directing one of his shows.24 Using co-occurrence
based on our context decomposition instead of full sentences helps in some, but not all of
these cases. The second source of errors are words that occur with a different meaning.
For example, John F. Kennedy gets a high score as a Military Officer, simply because he
had many political actions during his presidency with respect to the military. In some of
these cases, a deeper linguistic processing of text as, e.g., in fine-grained entity typing [64,
36] may help. In general, it appears that a deep natural language understanding will be
necessary to close the gap to human judges.

24This and the following error example are taken from our publication [15].

43

3.4 Question Answering on Knowledge Bases

The previous section was concerned with making knowledge base search more precise. In
this section, we address how to make the search more convenient. We present an approach
that automatically translates a natural language question into a structured query on a
knowledge base. This makes searching the knowledge base easy by allowing the user to
freely formulate her questions in natural language, without knowing about a query lan-
guage or the structure of the underlying data. In addition to providing precise translations,
we also consider efficiency. We make sure that questions can be answered in an interactive
manner within at most one second. At the time of publication, our approach improved
the state of the art in terms of quality and efficiency on two large established benchmarks.

This section summarizes the work published in [17] at CIKM 2015. In the following, the
examples are taken from this paper.

3.4.1 Problem, Related Work, and Contributions

Mapping a search desire to the corresponding structured query on a knowledge base can
be difficult, even for an expert. For example, consider answering the (seemingly) simple
question who is the ceo of apple? on the knowledge base Freebase.25 The SPARQL query
to retrieve the answer is:

select ?name where {
?0 leadership.role Managing_Director .
?0 leadership.company Apple_Inc .
?0 leadership.person ?name

}

This matches the following triples in the knowledge base:26

m.0k8z leadership.role Managing_Director
m.0k8z leadership.company Apple_Inc
m.0k8z leadership.person Tim_Cook

The triples contain an abstract “leadership” entity (m.0k8z) with three relations: role,
company, and person. The relations and the leadership entity connect the entities Man-
aging_Director and Apple_Inc to the answer Tim_Cook we are looking for.

25This query is from the WebQuestions benchmark [20] which we use in our evaluation. For illustration
purposes, we omit namespace prefixes and use readable identifiers in the corresponding SPARQL query.

26We have updated the triples with the current CEO. The original Freebase data still mentions Steve
Jobs. Freebase is being migrated to Wikidata [82], which is constantly updated with new information.

44

To construct the query above, a user would need to find the identifiers of the correct
entities and relations and connect them in the correct way. This can be facilitated by an
interactive construction guided by suggestions like our semantic full-text search prototype
provides (see Section 3.1). However, this still passes some of the complexity to the user. It
would be far more convenient to ask the question in natural language and automatically
get the structured query that produces the answer. This is the problem we address here.

Answering natural language questions is a difficult task. Here, we focus on answering
questions from a knowledge base, albeit a very large one. As we show in our evaluation
in this section, this is hard enough to warrant a separate study. Our survey [16, Section
4.6, 4.7, 4.8] provides an overview of the state of the art on question answering on text,
knowledge bases, and the few works that attempt a combination.

The challenge in answering natural language questions stems from the high variation and
ambiguity inherent in natural language. This becomes apparent when looking at two
important subproblems of the translation process: identifying knowledge base entities
and identifying knowledge base relations that are mentioned in the question. If these
subproblems were solved perfectly, the correct query would be trivial to infer in most
cases. However, matching entities is difficult because there are many ways of mentioning a
specific entity (synonymy) but a single mention might also refer to many different entities
(polysemy). For example, the mention of apple in the query above refers to 218 entities
in Freebase but only one entity, Apple_Inc, is actually correct. The same problem holds
for matching relations but is even harder. It can involve n-ary relations and some of the
relations might only be mentioned implicitly. For example, the question above contains
no word or synonym of the query’s relation names person, company, or role. This problem
becomes even harder with the size of the knowledge base. Allowing weak and fuzzy matches
drastically increases the search space. On the other hand, only allowing strict and lexical
matches misses many correct matches.

Our goal is to answer questions from a large knowledge base like Freebase, which contains
about 2.9 billion facts on 44 million entities. To keep the problem manageable, we focus
on “structurally simple” queries. These involve two or three entities and either a single
binary or n-ary (n > 2) relation. In the example above, the result entity Tim_Cook
is connected to the entities Apple_Inc and Managing_Director via an n-ary leadership
relation. In SPARQL, this n-ary relation is represented using several binary relations, and
the special leadership entity (m.0k8z) also referred to as mediator in Freebase. This is a
typical way of representing n-ary relations for n > 2 in triple stores.27 While this may
sound restrictive, it still allows answering a wide variety of questions, as can be seen from
our evaluation.

27More generally, one can represent a k-ary relation by a special entity (one for each k-tuple in the
relation) and k binary relations between the special entity and the k entities of the tuple.

45

Given that the involved problems are mainly concerned with natural language, it is un-
surprising that a lot of recent work on question answering on knowledge bases has come
from the natural language community. There, it is addressed as part of semantic parsing:
translating the meaning of a sentence (or in this case, question) to a formal representation
of its meaning (in this case, the SPARQL query)

Recent work can be roughly categorized into two groups. The first group only considers a
fixed set of query structures as we do, e.g., [86, 85, 25, 22, 83, 88]. This puts the focus on
the hard problems of matching relations and entities in the question. The second group
of approaches allows a translation to (in theory) arbitrary queries, e.g., [30, 20, 53, 21,
1]. These systems either rely on a pre-trained syntactic parser or, essentially, are parsers
by themselves. This increases complexity and introduces new problems. In particular,
the huge space of possible patterns must be searched efficiently. Note, however, that the
two approaches are complementary. Any system will have to deal with the problem of
matching relations and entities. In contrast to our approach, previous approaches lack
a proper addressing of the entity matching problem and either assume matching entities
are given or only perform very simplistic matching. A very recent system that is close to
ours is [1]. It follows our approach in applying a learning-to-rank strategy and focuses on
answering more complex queries. More details on related approaches and systems can be
found in our publication [17] and survey on semantic search [16, Section 4.7].

Besides quality, we also consider efficiency aspects, which is neglected in previous work.
In particular, we took care that questions can be answered in an interactive manner, that
is, within a second. Furthermore, we made sure that our approach works well on multiple
datasets (with different kind of questions). A lot of previous approaches were evaluated
only on one dataset.

Our main contributions are the following:

• A new end-to-end system that translates a natural language question into a SPARQL
query on a knowledge base. In contrast to previous work, the system treats entity
identification in the question as an integral part of the problem and also considers
efficiency aspects.

• A joint disambiguation of entities and relations mentioned in the question. This
is achieved by applying learning-to-rank techniques to learn a pairwise comparator
of query candidates. Previous approaches framed this ranking as a classification or
parsing problem.

46

• An improvement over the state of the art (at the time of publication) on two estab-
lished benchmarks in terms of quality and efficiency. The two benchmarks exhibit
quite different challenges. Many previous systems were evaluated and work well on
only one of the benchmarks.

3.4.2 Approach

In the following, we describe how to answer natural language questions from a knowledge
base. We use Freebase for our examples and in our evaluation. However, our approach
is not specific to Freebase, but works for any knowledge base with entities and possibly
n-ary relations between them.

On a high level, the approach can be split into four steps, which we explain in the following.
As a running example, assume we are trying to answer the following question (from the
WebQuestions benchmark):

what character does ellen play in finding nemo?

Entity identification. We begin by identifying entities from the knowledge base that are
mentioned in the question. In our example, ellen refers to the tv host Ellen DeGeneres
and finding nemo refers to the movie Finding Nemo. However, these words are ambiguous,
for example, ellen could also refer to the actor Ellen Page and finding nemo to a video
game with the same name.

Often, entities are not mentioned with their full knowledge base name, but with a synonym
or alias. To find these, we utilize CrossWikis [78], which was built by mining the anchor
text of links to Wikipedia entities (articles) from various large web crawls. CrossWikis
covers around 4 million Wikipedia entities and provides prior probability distributions
p(e|s), of entity e being mentioned by text span s. We extend these distributions with
information about Freebase entities (details are in our publication [17]). This way, we
are able to recognize around 44 million entities with about 60 million aliases. In order
to keep the number of matched entities as small as possible without affecting recall we
apply part-of-speech (POS) tagging to the question and restrict matches to reasonable
POS sequences (mainly nouns).

Note that the disambiguation above can be helped by facts from the knowledge base.
In our example, the fact that Ellen DeGeneres actually performed in the movie Finding
Nemo makes the joint mentioning of both entities more likely. Therefore, instead of fixing
the mentioned entities at this point, we delay the decision and jointly disambiguate entities
and relations in a later step. The result of this step is a set of entity mentions p(e|s) with
attached probabilities. Subsequent steps also make use of a popularity score of each entity.

47

Template matching. Next, we match a set of query templates to the question using
the previously identified entities. Figure 6 shows our templates. Each template consists
of entity and relation placeholders. A matched template has these placeholders filled and
corresponds to a query candidate, which can be executed against the knowledge base to
obtain an answer.

e1 t
r1

e1 m
r1

t
r2

e1 m
r1 e2

r2

t

t
inventor

m
employment

t
company

m
film performance film

t

Scrabble

Henry Ford

Ellen DeGeneres Finding Nemo

who invented scrabble?

what company did henry ford work for?

what character does ellen play in finding nemo?

#1

#2

#3

Template

characterr3

Example Candidate Question

Figure 6. From our publication [17]: Query templates and example candidates with corresponding
questions. A query template contains entity placeholders ei, relation placeholders ri, a mediator
m and an answer node t.

Conceptually, we match the templates as follows. Let E be the set of all entities matched to
a subsequence of the question in the previous step. Consequently, a word in the question
can be part of several entity matches. For each template, fill the entity placeholder(s)
with entities ei ∈ E for which the words in the question don’t overlap. Then, look up
relations Ri for each entity ei in the knowledge base and create a query candidate for each
relation. If multiple entities are part of the template, the relations must connect them in
the knowledge base. This avoids generation of query candidates that have no answer.

For our example, we match template #3, besides others, as follows. We map e1 and e2 to
Ellen DeGeneres and Finding Nemo, respectively. Then we look up relations r1 as film
performance and r2 as film. These connect the two entities in the knowledge base because
Ellen DeGeneres played in Finding Nemo. One of the possible relations for r3 is character,
which generates the correct candidate shown in Figure 6 (center of bottom row).

Technically, this matching process is more involved to perform efficiently. In particular, for
matching template #3, we need to find r1 and r2 in connected triples (e1, r1,m), (m, r2, e2)
given e1 and e2. Such queries are slow in current triple stores.28 We, therefore, constructed
a special inverted index for faster lookup. Details can be found in our publication [17].

In this step, we favor recall over precision and generate a lot of query candidates, most
of them wrong. Wrong candidates can be identified in a later step, but a missing correct
candidate will lead to a wrong final answer. For our example question, we generate 356
candidates, only one of which of is correct. The final result of this step is the set of all
generated query candidates.

28In our experiments we use Virtuoso: http://virtuoso.openlinksw.com.

http://virtuoso.openlinksw.com

48

Relation matching. The query candidates still miss the fundamental information about
which relations were actually mentioned in the question. We distinguish four ways of
matching relations of a query candidate to the question text:

• Relation name: We match the name of the relation to words in the question. We
distinguish between literal matches (e.g., the relation named character matches the
word character), synonyms based on word embeddings and cosine distance [60] (e.g.,
started matches founded), and word derivations extracted from Wordnet [61] (e.g.,
high matches elevation).

• Distant supervision [62]: We learn indicator words for each relation using text from
Wikipedia where entity mentions were identified. This allows deriving noisy training
examples: A sentence expresses relation r if it contains two co-occurring entities that
are in relation r according to a knowledge base. For each relation, we rank the words
by their tf-idf to learn, for example, that born is a good indicator for the relation
place of birth.

• Supervised learning: Our evaluation benchmarks come with a training set of ques-
tions and corresponding answer entities. We can use this to derive positive and
negative training examples: Generate all query candidates for a question; if a query
candidate answers the question it is a positive, otherwise, a negative example. As in-
dicator features, we concatenate the n-grams of the question with the relation name.
This way we can learn a logistic regression classifier.

• Deep (supervised) learning: Using the same supervised data, we can train a deep
neural network instead of a logistic regression classifier. This is an extension of our
work and not described in [17]. We provide technical details below (Section 3.4.4).
In our experiments, we explicitly state when we use the neural network.

Each of the techniques provides a confidence score that we use for ranking candidates.

In our example, a word learned using distant supervision for the relations film performance
and film (between an actor and the film she acted in), is play. Furthermore, the word
character matches the relation with the same name.

Ranking. We now have a set of query candidates with information about which entities
and relations match which parts of the question how well. In a final step, we rank these
to find the best matching candidate. Note that performing ranking at this final step has
the strong benefit of jointly disambiguating entities and relations. A candidate can have
a weak match for an entity, but a strong match for a relation, and vice versa. We can
identify these combinations as correct, even when one of the matches seems unlikely when
considered separately.

49

To rank the candidates, we apply learning to rank [57]. The training data from the
benchmarks allows sorting the generated candidates for each question by how well they
answer it. Using the ranked list of candidates, we learn a comparator (a random forest
[26]) that, given two candidates, decides which should be ranked first. We engineer a
total of 23 features for this. These indicate how well entities and relations match but also
include more general features like coverage (ratio of question words matched by an entity
or relation) or result size. The exact features are listed in our publication [17].

For our example above, the candidate covering most words of the question is best. Match-
ing ellen to Ellen Page no longer allows matching Finding Nemo because these aren’t
related in the knowledge base. On the other hand, the character relation matches the
word character in the question, which is not the case for alternative relations like perfor-
mance type. This leaves us with the correct interpretation of asking for Ellen DeGeneres’
character in Finding Nemo.

3.4.3 Experiments and Results

To evaluate our system, we used two established benchmarks: Free917 [30] and WebQues-
tions [20]. Each benchmark consists of a set of questions and their answers (one or more
entities) from Freebase. As our knowledge base, we used the original Freebase data and not
the curated version we described in Section 3.1. This has two reasons. First, we want to
use all available facts in our answering process, and our curation simplifies n-ary relations
(like the film performance or leadership relations above). Second, and more importantly,
this allows a fair comparison with other approaches.

Each benchmark comes with a pre-defined set of training and test questions. The two
benchmarks differ substantially in the types of questions and their complexity.

Free917 contains 917 manually generated natural language questions. The questions cover
a wide range of domains. Two examples are:

who won the 1964 united states presidential election? answer: Lyndon B. Johnson
how many languages has jrr tolkein created?29 answer: 10

Questions are mostly grammatical and tend to be tailored to Freebase. The benchmark
also provides an entity lexicon: a manually constructed mapping from text (the surface
form) to the mentioned entity. This was used for identifying entities by all systems re-
porting results on the dataset so far. We only make use of this lexicon where explicitly
stated. The established evaluation measure on this benchmark is accuracy, the fraction of
queries answered with the exact gold answer.

29The typo in tolkien is indeed part of the dataset.

50

WebQuestions consists of 5,810 questions that were selected by crawling the Google sug-
gest API. Contrary to Free917, questions are not necessarily grammatical and are more
colloquial. For example:

who brad pitt has dated? answer: Angelina Jolie, Jennifer Anniston, ...
who plays dwight in the office? answer: Rainn Wilson

Due to the selection process, questions are biased towards topics that are frequently asked
from Google. Furthermore, the structure of questions tends to be simpler. Answers to
the questions were obtained by using crowdsourcing. This introduces additional noise.
In particular, for some questions, only a subset of the correct answer is provided as gold
answer. Therefore, what is usually reported is average F1 : the F1 measure for each
question (obtained by comparing the gold answer set and the system’s answer set of
entities) averaged over all questions.

Table 6 compares the quality of our system, Aqqu, to recent systems:

Free917 WebQuestions
Method Venue Accuracy+ Accuracy Average F1
Cai et al. [30] ACL’13 59 % – –
Jacana [86] ACL’14 – – 35.4%
Sempre [20] EMNLP’13 62 % 52 % 35.7%
Kwiat. et al. [53] EMNLP’13 68 % – –
Bordes et al. [25] EMNLP’14 – – 39.2%
ParaSempre [22] ACL’14 68.5% 46 % 39.9%
Aqqu [17] CIKM’15 76.4% 65.9% 49.4%
STAGG [88] ACL’15 – – 52.5%
Berant et al. [21] TACL’15 – – 49.7%
Xu et al. [83] CoRR’16 – – 53.3%
Reddy et al. [73] TACL’16 78.0% – 50.3%
QUINT [1] WWW’17 72.8% – 51.0%
Aqqu + NN – 78.7% 70.2% 51.8%

Table 6. Results on the Free917 (267 questions) and WebQuestions (2032 questions) test set. Re-
sults of our system, Aqqu, in bold. The bottom part of the table corresponds to work published
after Aqqu [17]. For the results in the third column (Accuracy+), a manually crafted entity lexicon
was used. Note that better performing systems fundamentally relied on external data (see text).

51

Most of the systems in Table 6 have only been evaluated on one of the two benchmarks.
Our system, Aqqu, uses a single approach that considerably improved the state of the art on
both benchmarks at the time of publication. The extension with a deep neural network for
relation matching, Aqqu + NN (see Section 3.4.4), is also competitive for the current state
of the art, in particular, since other approaches make considerably more use of external
data than our rather shallow learning of indicator words via distant supervision (see Section
3.4.2). Xu et al. [83] issue queries against a full-text search engine on Wikipedia during
the answering process. STAGG [88] uses large amounts of additional data (derived via
distant supervision) to train their neural network. Without this external data, [83] report
a drop of 6.2% and [88] a drop of 0.9% in average F1. Both techniques are likely to benefit
our approach as well.

To inspect how many questions can be answered by our query templates we analysed oracle
results: the score achievable when assuming perfect ranking. On Free917 Aqqu achieves
an oracle accuracy of 85% (without manual entity identification) and on WebQuestions
an oracle average F1 of 68%. Note that, as explained above, the WebQuestions dataset
consists of frequent but very noisy questions that often have an incomplete ground truth.
In a manual inspection we estimate that the best achievable score is around 80%. This
shows that our patterns allow answering the majority of questions with high quality.

Since we focused on rather short and frequent questions our templates will not work well
for arbitrarily complex questions. The work in [1] shows that templates can also be learned
automatically in order to answer compositional questions such as Which were the alma
maters of the PR managers of Hillary Clinton?. The described approach is orthogonal
to ours and could be integrated on top of our current system. We consider this direction
worthwhile future work.

On both benchmarks we also look at the top-k results of Aqqu. The best candidate is
within the top two in 74% of questions for Free917 and 67% for WebQuestions. This
demonstrates that our learned ranking is very strong. Indeed, in many cases, the top two
candidates are hard to distinguish and often match the question very well. For example,
where is chris paul from? can be answered with his place of birth or his nationality, but
only one interpretation is considered correct in the ground truth.

52

Besides quality, we also evaluated efficiency of our system. On average, Aqqu answers a
question within 217ms and 143ms on the test sets of Free917 and WebQuestions, respec-
tively.30 Aqqu + NN requires 193ms and 169ms, respectively. Berant et al. [21] report
291ms per question on average for WebQuestions. For other systems that provide code
and for which we reproduced results, run times are (at least) several seconds per query.

In an error analysis, we found that there is no single large source of errors worth pointing
out. Instead, each of the components (entity recognition, pattern and relation matching,
ranking) fails about equally often for various reasons. The accompanying materials of our
publication [17] provide a list of errors. Our publication also includes a more detailed
evaluation and analyses of, for example, feature and component importances.

3.4.4 Matching Relations in Questions Using Deep Learning

We shortly describe the neural network used in Aqqu + NN above. This is an extension
that is not part of our original publication [17]. The neural network computes a score that
indicates how well a candidate query and its relations matches a question. Essentially, it is
an additional, more sophisticated approach of the supervised relation matching classifier.
The neural network score is used in ranking query candidates. Besides this additional
ranking feature, all other components of the system are identical.

The architecture of the neural network is similar to that of [88]: a Siamese neural net-
work [27] that learns a real-valued vector representation (embedding) of the question and
knowledge base query. The cosine between both vector representations is used as a score
on how well the question matches (translates to) the query. Ideally, the representation of
the correct query is close to the representation of the question and the resulting cosine
similarity is large.

To compute an embedding of the question, we first transform it into a sequence of 128-
dimensional word vectors. Word vectors are learned using word2vec [60] on a corpus of 50
million sentences extracted from ClueWeb [34]. The vectors are kept fixed during training
of the neural network, i.e., we perform no fine-tuning. On the sequence of vectors we
apply a 1-d convolution followed by max-pooling as described in [50]. The convolution
uses filters of size one, two, and three with 300 filters of each size. The output of the
convolution layer is followed by a fully connected feed-forward network with 200 nodes.

30These numbers differ from our original publication [17] because we have improved the implementation
in obvious ways, e.g., by avoiding unnecessary re-computations of features. Originally we reported 644ms
and 900ms, respectively. New experiments were performed on a system with Intel i7-6700 CPUs, 60GB of
RAM, and a Titan X GPU.

53

To compute an embedding of a knowledge base query, we split each involved relation
into its three inherent parts separated by a dot. Each part is then represented as the
average of its word vectors (some parts have several words like place_of_birth in peo-
ple.person.place_of_birth). We use the same word vectors as above that are also fixed
during training. Because a query can have up to three relations (see the templates in
Section 3.4.2) this results in nine 128-dimensional vectors. Their concatenation is passed
through two fully connected feed-forward layers with 200 nodes each.

All nodes of the network use exponential linear units [33] as activation function. The 200-
dimensional outputs for the question and query representation are then compared using
their cosine, which gives the final output of the network.

The training data is the same as for the supervised relation matching classifier, i.e., it is
constructed from the training questions of the benchmark. We train the network using
Adam [51] for a fixed duration of 30 epochs, determined after observing performance on
a development set. As loss function, we use mean squared error.

We also experimented with many variations and extensions: using dropout for regulariza-
tion, different activation functions, different loss functions, and optimizers. In our exper-
iments, none gave performance improvements on the development set over the network
described above.

54

3.5 Semantic Search Survey

In this section, we describe our extensive survey (156 pages) on semantic search on text
and knowledge bases [16]. We start by illustrating our motivation for the survey followed
by giving a short outline.

As we stated in the introduction, semantic search is not a single well-defined problem.
Rather, it is understood by many different communities in different ways. As a result,
researchers are often not aware of related work in other communities, though the addressed
problems are similar. This is the main motivation behind the survey. It should give an
extensive overview of addressed problems, their approaches, and state of the art in the
different communities. Crucially, no such overview was available in the literature. Our
survey categorizes the vast research field. It also explains basic techniques which underpin
many of the described approaches and provides details on advanced techniques. This
should make it useful to newcomers as well as seasoned researchers.

To categorize the research, we devised a classification scheme along two dimensions: the
type of data that is searched on and the search paradigm. We consider this classification
scheme a major contribution. It can serve as a guideline to navigate the field, categorize
new approaches and techniques, and find related work in that area. Figure 7 shows
the categories according to our classification scheme. We shortly describe each of the
dimensions.

Keyword Search
on Text

Structured Data
Extraction from Text

Question Answering
on Text

Keyword Search on
Knowledge Bases

Structured Search
on Knowledge Bases

Question Answering
on Knowledge Bases

Keyword Search
on Combined Data

Question Answering
on Combined Data

Keyword
Search

Structured
Search

Natural Lang.
Search

Text

Knowledge
Bases

Combined
Data

Semi-Struct. Search
on Combined Data

Figure 7. Adapted from our survey [16]: Our basic classification of research on semantic search into
categories by underlying data (rows) and search paradigm (columns). Each category corresponds
to a subsection in the survey.

55

Data in the form of text usually consists of a collection of documents that contain nat-
ural language. This is the most abundant kind of information available, but completely
unstructured. A typical example is the Web, where each web page corresponds to a doc-
ument. Knowledge bases, on the other hand, contain structured statements, often in the
form of subject predicate object triples. An important trait is that identifiers of entities
and relations are used consistently, that is, the same entity or relation should have the
same identifier in all triples. A typical example of a knowledge base is Freebase. Combined
data refers to a combination of the two previous types. Entities from a knowledge base
can be linked to their mentions in text. This is the kind of data semantic full-text search
(see Section 3.1) uses. Combined data also refers the case where several knowledge bases
(with different naming schemes) are combined into one huge interlinked knowledge base.
In this case, the same entity or relation can exist multiple times with different identifiers.
A typical example is linked open data, the data behind the Semantic Web.

The classification into our three search paradigms is as follows. Keyword search accepts
a list of (typically few) keywords. It places no restriction on the structure of the query.
This is still the best known and most ubiquitous search paradigm. Structured search uses
a query language, like SQL or SPARQL. Queries must adhere to the syntax defined by
the language. This is the obvious choice when the data to be searched is structured. The
language can also be extended to incorporate search in unstructured data, for example
with keyword search in text, as in semantic full-text search (Section 3.1). Natural lan-
guage search answers complete questions as a human would pose them. We presented an
approach for question answering on a knowledge base in this document in Section 3.4.

Our classification leads to a total of nine categories. Each category corresponds to a
subsection that contains: a profile of the corresponding line of research (including strengths
and limitations) and a description of the basic techniques, important systems, benchmarks,
and the state of the art. These nine categories form the core section of the survey.

In addition, our survey provides a lot of supplementary information, for example, we list
and reference important datasets for each category. We also provide introductory and
background information, for example, we dedicate a whole section to fundamental natural
language processing techniques. In a final section on advanced techniques, we address
ranking, indexing, ontology matching and merging, as well as inference.

Altogether, we believe the survey is a valuable contribution to the semantic search com-
munity that was missing and long overdue, especially since the field is so vast, hard to
delineate, and difficult to get an overview of.

56

4 Future Work

The ultimate semantic search engine is one that has human-like understanding of the world.
It is able to perfectly determine the intent of each query, whether given as keywords or
complete question. And it can reason about the answer using whatever data it has at its
disposal, much like a human. Such a level of understanding and where it might come from
is still elusive. Nonetheless, we consider the following three directions of future research
as promising steps (albeit comparably small) towards this ultimate goal.

First, extending the question answering approach presented in Section 3.4.2 to use full
text in addition to a knowledge base will allow answering a wider range of questions. The
obvious way to achieve this is to make use of the occurs-with relation from semantic full-
text search (see Section 3.1). The main challenge will be to determine when to make use of
the text in addition to the knowledge base. For example, for questions like who is the ceo
of apple? results could always be kept up-to-date with a combined search in full text and
a knowledge base. However, searching full text is not necessary and possibly detrimental
in other cases, for example, for who founded apple?, which is answered perfectly from the
knowledge base alone.

Second, using semantic completions may direct a user to formulate questions that are less
ambiguous and better understood. For example, after typing “who played rick deckard
in” the user can be presented suggestions for the different Blade Runner movies. If she
selects one of the suggestions, no ambiguity arises compared to typing blade runner, which
can mean the movie from 1982 or 2017. This requires that the question typed so far is
sufficiently understood, for example, that the movie character Rick Deckard has been
identified and that the list of suggestions contains movies in which he appears. Sugges-
tions could be provided for all words of the question, not only for entities. In particular,
words that describe relations between entities, such as played above, are a major source
of ambiguity (see Section 3.4) and could be suggested as well. There is a large body of
work on auto-completing keyword queries summarized in [29]. However, only a few works
make use of entities or knowledge bases, and no work seems to address the problem for
question answering. Preliminary experiments indicate that a class-based language model
can learn meaningful suggestions. There is also recent work showing how knowledge base
facts can be incorporated in a neural language model [2].

Finally, it will be interesting to apply recent advances in learning neural networks in an
end-to-end fashion to answer questions [55, 67, 66]. This has the potential to enable
search on multiple data sources by learning which data source is reliable for which kind
of information. For example, it may be possible to learn when to query text in addition
to a knowledge base as in the example above. However, to achieve good results, large
amounts of training data may be required, and to answer a wide range of questions, it will

57

be necessary to transfer the learnings from one domain or dataset to others - which is still
an open research problem.

The problems we have addressed in this thesis have a wide range of applications in semantic
search. In particular, they can serve as building blocks in the suggestions outlined above.
Together, this represents a promising direction of future work which may bring us a step
closer to the ultimate semantic search engine.

58

References

The following lists the references cited in this summary. Note that the list of references
accumulated in all publications given in Section 2, especially the survey (see Section 3.5),
is much larger. In the digital version of this dissertation, titles below are clickable and
link to an electronic copy.

[1] A. Abujabal, M. Yahya, M. Riedewald, and G. Weikum. “Automated Template
Generation for Question Answering over Knowledge Graphs”. In: WWW , 2017,
pp. 1191–1200.

[2] S. Ahn, H. Choi, T. Pärnamaa, and Y. Bengio. “A Neural Knowledge Language
Model”. In: CoRR, 2016.

[3] P. Bailey, R. W. White, H. Liu, and G. Kumaran. “Mining Historic Query Trails to
Label Long and Rare Search Engine Queries”. In: TWEB, 2010, 15:1–15:27.

[4] K. Balog, P. Serdyukov, and A. P. de Vries. “Overview of the TREC 2010 Entity
Track”. In: TREC , 2010.

[5] K. Balog, P. Serdyukov, and A. P. de Vries. “Overview of the TREC 2011 Entity
Track”. In: TREC , 2011.

[6] K. Balog, A. P. de Vries, P. Serdyukov, P. Thomas, and T. Westerveld. “Overview
of the TREC 2009 Entity Track”. In: TREC , 2009.

[7] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. “Open
Information Extraction from the Web”. In: IJCAI , 2007, pp. 2670–2676.

[8] H. Bast, A. Chitea, F. M. Suchanek, and I. Weber. “ESTER: Efficient Search on
Text, Entities, and Relations”. In: SIGIR, 2007, pp. 671–678.

[9] H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann. “A Case for Semantic Full-Text
Search”. In: SIGIR-JIWES , 2012, 4:1–4:3.

[10] H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann. “Broccoli: Semantic Full-Text
Search at your Fingertips”. In: CoRR, 2012.

[11] H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann. “Easy Access to the Freebase
Dataset”. In: WWW , 2014, pp. 95–98.

[12] H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann. “Semantic Full-Text Search
with Broccoli”. In: SIGIR, 2014, pp. 1265–1266.

[13] H. Bast and B. Buchhold. “An Index for Efficient Semantic Full-Text Search”. In:
CIKM , 2013, pp. 369–378.

[14] H. Bast, B. Buchhold, and E. Haußmann. “A Quality Evaluation of KB+Text
Search”. In: KI (under submission), 2017.

http://dx.doi.org/10.1145/3038912.3052583
http://dx.doi.org/10.1145/3038912.3052583
http://arxiv.org/abs/1608.00318
http://arxiv.org/abs/1608.00318
http://dx.doi.org/10.1145/1841909.1841912
http://dx.doi.org/10.1145/1841909.1841912
http://trec.nist.gov/pubs/trec19/papers/ENTITY.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec19/papers/ENTITY.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec20/papers/ENTITY.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec20/papers/ENTITY.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec18/papers/ENT09.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec18/papers/ENT09.OVERVIEW.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/IJCAI07-429.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/IJCAI07-429.pdf
http://dx.doi.org/10.1145/1277741.1277856
http://dx.doi.org/10.1145/1277741.1277856
http://dx.doi.org/10.1145/2379307.2379311
http://dx.doi.org/10.1145/2379307.2379311
http://arxiv.org/abs/1207.2615
http://arxiv.org/abs/1207.2615
http://dx.doi.org/10.1145/2567948.2577016
http://dx.doi.org/10.1145/2567948.2577016
http://dx.doi.org/10.1145/2600428.2611186
http://dx.doi.org/10.1145/2600428.2611186
http://dx.doi.org/10.1145/2505515.2505689
http://ad-publications.informatik.uni-freiburg.de/KI_quality_kbtext_BBH_2017.pdf
http://ad-publications.informatik.uni-freiburg.de/KI_quality_kbtext_BBH_2017.pdf

59

[15] H. Bast, B. Buchhold, and E. Haußmann. “Relevance Scores for Triples from Type-
Like Relations”. In: SIGIR, 2015, pp. 243–252.

[16] H. Bast, B. Buchhold, and E. Haußmann. “Semantic Search on Text and Knowledge
Bases”. In: Foundations and Trends in Information Retrieval, 2016, pp. 119–271.

[17] H. Bast and E. Haußmann. “More Accurate Question Answering on Freebase”. In:
CIKM , 2015, pp. 1431–1440.

[18] H. Bast and E. Haußmann. “More Informative Open Information Extraction via
Simple Inference”. In: ECIR, 2014, pp. 585–590.

[19] H. Bast and E. Haußmann. “Open Information Extraction via Contextual Sentence
Decomposition”. In: ICSC , 2013, pp. 154–159.

[20] J. Berant, A. Chou, R. Frostig, and P. Liang. “Semantic Parsing on Freebase from
Question-Answer Pairs”. In: ACL, 2013, pp. 1533–1544.

[21] J. Berant and P. Liang. “Imitation Learning of Agenda-based Semantic Parsers”. In:
TACL, 2015, pp. 545–558.

[22] J. Berant and P. Liang. “Semantic Parsing via Paraphrasing”. In: ACL, 2014,
pp. 1415–1425.

[23] R. Blanco, P. Mika, and S. Vigna. “Effective and Efficient Entity Search in RDF
Data”. In: ISWC , 2011, pp. 83–97.

[24] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. “Freebase: a Col-
laboratively Created Graph Database for Structuring Human Knowledge”. In: SIG-
MOD, 2008, pp. 1247–1250.

[25] A. Bordes, S. Chopra, and J. Weston. “Question Answering with Subgraph Embed-
dings”. In: EMNLP, 2014, pp. 615–620.

[26] L. Breiman. “Random Forests”. In: Machine Learning, 2001, pp. 5–32.

[27] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. “Signature Verification
Using a Siamese Time Delay Neural Network”. In: NIPS , 1993, pp. 737–744.

[28] M. Bron, K. Balog, and M. de Rijke. “Ranking Related Entities: Components and
Analyses”. In: CIKM , 2010, pp. 1079–1088.

[29] F. Cai and M. de Rijke. “A Survey of Query Auto Completion in Information Re-
trieval”. In: Foundations and Trends in Information Retrieval, 2016, pp. 273–363.

[30] Q. Cai and A. Yates. “Large-Scale Semantic Parsing via Schema Matching and
Lexicon Extension”. In: ACL, 2013, pp. 423–433.

[31] J. Chen, C. Xiong, and J. Callan. “An Empirical Study of Learning to Rank for
Entity Search”. In: SIGIR, 2016, pp. 737–740.

http://ad-publications.informatik.uni-freiburg.de/SIGIR_triplescores_BBH_2015.pdf
http://ad-publications.informatik.uni-freiburg.de/SIGIR_triplescores_BBH_2015.pdf
http://dx.doi.org/10.1561/1500000032
http://dx.doi.org/10.1561/1500000032
http://ad-publications.informatik.uni-freiburg.de/CIKM_freebase_qa_BH_2015.pdf
http://dx.doi.org/10.1007/978-3-319-06028-6_61
http://dx.doi.org/10.1007/978-3-319-06028-6_61
http://dx.doi.org/10.1109/ICSC.2013.36
http://dx.doi.org/10.1109/ICSC.2013.36
http://aclweb.org/anthology/D/D13/D13-1160.pdf
http://aclweb.org/anthology/D/D13/D13-1160.pdf
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/646
http://aclweb.org/anthology/P/P14/P14-1133.pdf
http://dx.doi.org/10.1007/978-3-642-25073-6_6
http://dx.doi.org/10.1007/978-3-642-25073-6_6
http://dx.doi.org/10.1145/1376616.1376746
http://dx.doi.org/10.1145/1376616.1376746
http://aclweb.org/anthology/D/D14/D14-1067.pdf
http://aclweb.org/anthology/D/D14/D14-1067.pdf
http://dx.doi.org/10.1023/A:1010933404324
http://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network
http://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network
http://dx.doi.org/10.1145/1871437.1871574
http://dx.doi.org/10.1145/1871437.1871574
http://dx.doi.org/10.1561/1500000055
http://dx.doi.org/10.1561/1500000055
http://aclweb.org/anthology/P/P13/P13-1042.pdf
http://aclweb.org/anthology/P/P13/P13-1042.pdf
http://dx.doi.org/10.1145/2911451.2914725
http://dx.doi.org/10.1145/2911451.2914725

60

[32] A. Chuklin, I. Markov, and M. de Rijke. “Click Models for Web Search”. Synthe-
sis Lectures on Information Concepts, Retrieval, and Services. Morgan & Claypool
Publishers, 2015.

[33] D. Clevert, T. Unterthiner, and S. Hochreiter. “Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs)”. In: CoRR, 2015.

[34] ClueWeb. The Lemur Project, http://lemurproject.org/clueweb09. 2009.

[35] R. Collobert et al. “Natural Language Processing (Almost) from Scratch”. In: Jour-
nal of Machine Learning Research, 2011, pp. 2493–2537.

[36] L. D. Corro, A. Abujabal, R. Gemulla, and G. Weikum. “FINET: Context-Aware
Fine-Grained Named Entity Typing”. In: EMNLP, 2015, pp. 868–878.

[37] L. D. Corro and R. Gemulla. “ClausIE: Clause-Based Open Information Extraction”.
In: WWW , 2013, pp. 355–366.

[38] X. L. Dong et al. “From Data Fusion to Knowledge Fusion”. In: PVLDB, 2014,
pp. 881–892.

[39] S. Elbassuoni, M. Ramanath, R. Schenkel, M. Sydow, and G. Weikum. “Language-
Model-Based Ranking for Queries on RDF-graphs”. In: CIKM , 2009, pp. 977–986.

[40] O. Etzioni et al. “Web-scale Information Extraction in KnowItAll: (Preliminary
Results)”. In: WWW , 2004, pp. 100–110.

[41] A. Fader, S. Soderland, and O. Etzioni. “Identifying Relations for Open Information
Extraction”. In: ACL, 2011, pp. 1535–1545.

[42] Y. Fang, L. Si, Z. Yu, Y. Xian, and Y. Xu. “Entity Retrieval with Hierarchical
Relevance Model, Exploiting the Structure of Tables and Learning Homepage Clas-
sifiers”. In: TREC , 2009.

[43] P. Ferragina and U. Scaiella. “TAGME: On-the-Fly Annotation of Short Text Frag-
ments (by Wikipedia Entities)”. In: CIKM , 2010, pp. 1625–1628.

[44] J. L. Fleiss. “Measuring Nominal Scale Agreement Among Many Raters”. In: Psy-
chological bulletin, 1971, p. 378.

[45] E. Gabrilovich, M. Ringgaard, and A. Subramanya. “FACC1: Freebase Annotation
of ClueWeb Corpora, Version 1”. (Release Date 2013-06-26, Format Version 1, Cor-
rection Level 0).

[46] M. Gupta and M. Bendersky. “Information Retrieval with Verbose Queries”. In:
Foundations and Trends in Information Retrieval, 2015, pp. 91–208.

[47] H. Halpin et al. “Evaluating ad-hoc object retrieval”. In: IWEST , 2010.

[48] S. Heindorf, M. Potthast, H. Bast, B. Buchhold, and E. Haußmann. “WSDM Cup
2017: Vandalism Detection and Triple Scoring”. In: WSDM , 2017, pp. 827–828.

http://dx.doi.org/10.2200/S00654ED1V01Y201507ICR043
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://dl.acm.org/citation.cfm?id=2078186
http://aclweb.org/anthology/D/D15/D15-1103.pdf
http://aclweb.org/anthology/D/D15/D15-1103.pdf
http://dl.acm.org/citation.cfm?id=2488420
http://www.vldb.org/pvldb/vol7/p881-dong.pdf
http://dx.doi.org/10.1145/1645953.1646078
http://dx.doi.org/10.1145/1645953.1646078
http://dx.doi.org/10.1145/988672.988687
http://dx.doi.org/10.1145/988672.988687
http://www.aclweb.org/anthology/D11-1142
http://www.aclweb.org/anthology/D11-1142
http://trec.nist.gov/pubs/trec18/papers/purdue.ENT.pdf
http://trec.nist.gov/pubs/trec18/papers/purdue.ENT.pdf
http://trec.nist.gov/pubs/trec18/papers/purdue.ENT.pdf
http://dx.doi.org/10.1145/1871437.1871689
http://dx.doi.org/10.1145/1871437.1871689
http://dx.doi.org/10.1561/1500000050
http://ceur-ws.org/Vol-666/paper9.pdf
http://dl.acm.org/citation.cfm?id=3022762
http://dl.acm.org/citation.cfm?id=3022762

61

[49] J. Hoffart, D. Milchevski, and G. Weikum. “STICS: Searching with Strings, Things,
and Cats”. In: SIGIR, 2014, pp. 1247–1248.

[50] Y. Kim. “Convolutional Neural Networks for Sentence Classification”. In: ACL, 2014,
pp. 1746–1751.

[51] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: CoRR,
2014.

[52] E. Kiperwasser and Y. Goldberg. “Simple and Accurate Dependency Parsing Using
Bidirectional LSTM Feature Representations”. In: TACL, 2016, pp. 313–327.

[53] T. Kwiatkowski, E. Choi, Y. Artzi, and L. S. Zettlemoyer. “Scaling Semantic Parsers
with On-the-Fly Ontology Matching”. In: EMNLP, 2013, pp. 1545–1556.

[54] X. Li, B. J. A. Schijvenaars, and M. de Rijke. “Investigating Queries and Search
Failures in Academic Search”. In: Information Processing and Management, 2017,
pp. 666–683.

[55] C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao. “Neural Symbolic Machines:
Learning Semantic Parsers on Freebase with Weak Supervision”. In: CoRR, 2016.

[56] D. Lin and P. Pantel. “DIRT @SBT@Discovery of Inference Rules from Text”. In:
KDD, 2001, pp. 323–328.

[57] T. Liu. “Learning to Rank for Information Retrieval”. In: Foundations and Trends
in Information Retrieval, 2009, pp. 225–331.

[58] Mausam, M. Schmitz, S. Soderland, R. Bart, and O. Etzioni. “Open Language Learn-
ing for Information Extraction”. In: EMNLP, 2012, pp. 523–534.

[59] M. Melucci. “Contextual Search: A Computational Framework”. In: Foundations
and Trends in Information Retrieval, 2012, pp. 257–405.

[60] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed Rep-
resentations of Words and Phrases and their Compositionality”. In: NIPS , 2013,
pp. 3111–3119.

[61] G. A. Miller. “WordNet: A Lexical Database for English”. In: Commun. ACM, 1995,
pp. 39–41.

[62] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. “Distant Supervision for Relation
Extraction Without Labeled Data”. In: ACL, 2009, pp. 1003–1011.

[63] T. M. Mitchell et al. “Never-Ending Learning”. In: AAAI , 2015, pp. 2302–2310.
[64] N. Nakashole, T. Tylenda, and G. Weikum. “Fine-grained Semantic Typing of

Emerging Entities”. In: ACL, 2013, pp. 1488–1497.
[65] N. Nakashole, G. Weikum, and F. M. Suchanek. “PATTY: A Taxonomy of Relational

Patterns with Semantic Types”. In: EMNLP-CoNLL 2012, July 12-14, 2012, Jeju
Island, Korea, 2012, pp. 1135–1145.

http://dx.doi.org/10.1145/2600428.2611177
http://dx.doi.org/10.1145/2600428.2611177
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://arxiv.org/abs/1412.6980
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
http://aclweb.org/anthology/D/D13/D13-1161.pdf
http://aclweb.org/anthology/D/D13/D13-1161.pdf
http://dx.doi.org/10.1016/j.ipm.2017.01.005
http://dx.doi.org/10.1016/j.ipm.2017.01.005
http://arxiv.org/abs/1611.00020
http://arxiv.org/abs/1611.00020
http://portal.acm.org/citation.cfm?id=502512.502559
http://dx.doi.org/10.1561/1500000016
http://www.aclweb.org/anthology/D12-1048
http://www.aclweb.org/anthology/D12-1048
http://dx.doi.org/10.1561/1500000023
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://dx.doi.org/10.1145/219717.219748
http://www.aclweb.org/anthology/P09-1113
http://www.aclweb.org/anthology/P09-1113
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10049
http://aclweb.org/anthology/P/P13/P13-1146.pdf
http://aclweb.org/anthology/P/P13/P13-1146.pdf
http://www.aclweb.org/anthology/D12-1104
http://www.aclweb.org/anthology/D12-1104

62

[66] K. Narasimhan, A. Yala, and R. Barzilay. “Improving Information Extraction by
Acquiring External Evidence with Reinforcement Learning”. In: EMNLP, 2016,
pp. 2355–2365.

[67] A. Neelakantan, Q. V. Le, M. Abadi, A. McCallum, and D. Amodei. “Learning a
Natural Language Interface with Neural Programmer”. In: CoRR, 2016.

[68] H. Paulheim and C. Bizer. “Improving the Quality of Linked Data Using Statistical
Distributions”. In: Int. J. Semantic Web Inf. Syst. 2014, pp. 63–86.

[69] B. Popov et al. “KIM - Semantic Annotation Platform”. In: ISWC , 2003, pp. 834–
849.

[70] J. Pound, P. Mika, and H. Zaragoza. “Ad-hoc Object Retrieval in the Web of Data”.
In: WWW , 2010, pp. 771–780.

[71] D. Ramage, D. L. W. Hall, R. Nallapati, and C. D. Manning. “Labeled LDA: A
Supervised Topic Model for Credit Attribution in Multi-Labeled Corpora”. In: ACL,
2009, pp. 248–256.

[72] L. Ratinov, D. Roth, D. Downey, and M. Anderson. “Local and Global Algorithms
for Disambiguation to Wikipedia”. In: ACL, 2011, pp. 1375–1384.

[73] S. Reddy et al. “Transforming Dependency Structures to Logical Forms for Semantic
Parsing”. In: TACL, 2016, pp. 127–140.

[74] M. Sanderson. “Test Collection Based Evaluation of Information Retrieval Systems”.
In: Foundations and Trends in Information Retrieval, 2010, pp. 247–375.

[75] S. Sarawagi. “Information Extraction”. In: Foundations and Trends in Databases,
2008, pp. 261–377.

[76] M. Schuhmacher, L. Dietz, and S. P. Ponzetto. “Ranking Entities for Web Queries
Through Text and Knowledge”. In: CIKM , 2015, pp. 1461–1470.

[77] F. Silvestri. “Mining Query Logs: Turning Search Usage Data into Knowledge”. In:
Foundations and Trends in Information Retrieval, 2010, pp. 1–174.

[78] V. I. Spitkovsky and A. X. Chang. “A Cross-Lingual Dictionary for English
Wikipedia Concepts”. In: LREC , 2012, pp. 3168–3175.

[79] F. M. Suchanek, G. Kasneci, and G. Weikum. “YAGO: a Core of Semantic Knowl-
edge”. In: WWW , 2007, pp. 697–706.

[80] V. Tablan, K. Bontcheva, I. Roberts, and H. Cunningham. “Mímir: An Open-Source
Semantic Search Framework for Interactive Information Seeking and Discovery”. In:
J. Web Sem. 2015, pp. 52–68.

[81] T. Tran, P. Mika, H. Wang, and M. Grobelnik. “SemSearch’11: the 4th Semantic
Search Workshop”. In: WWW , 2011, pp. 315–316.

http://aclweb.org/anthology/D/D16/D16-1261.pdf
http://aclweb.org/anthology/D/D16/D16-1261.pdf
http://arxiv.org/abs/1611.08945
http://arxiv.org/abs/1611.08945
http://dx.doi.org/10.4018/ijswis.2014040104
http://dx.doi.org/10.4018/ijswis.2014040104
http://dx.doi.org/10.1007/978-3-540-39718-2_53
http://dx.doi.org/10.1145/1772690.1772769
http://www.aclweb.org/anthology/D09-1026
http://www.aclweb.org/anthology/D09-1026
http://www.aclweb.org/anthology/P11-1138
http://www.aclweb.org/anthology/P11-1138
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/807
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/807
http://dx.doi.org/10.1561/1500000009
http://dx.doi.org/10.1561/1900000003
http://dx.doi.org/10.1145/2806416.2806480
http://dx.doi.org/10.1145/2806416.2806480
http://dx.doi.org/10.1561/1500000013
http://www.lrec-conf.org/proceedings/lrec2012/summaries/266.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/266.html
http://doi.acm.org/10.1145/1242572.1242667
http://doi.acm.org/10.1145/1242572.1242667
http://dx.doi.org/10.1016/j.websem.2014.10.002
http://dx.doi.org/10.1016/j.websem.2014.10.002
http://dx.doi.org/10.1145/1963192.1963329
http://dx.doi.org/10.1145/1963192.1963329

63

[82] D. Vrandecic and M. Krötzsch. “Wikidata: a Free Collaborative Knowledgebase”.
In: CACM, 2014, pp. 78–85.

[83] K. Xu, Y. Feng, S. Reddy, S. Huang, and D. Zhao. “Enhancing Freebase Question
Answering Using Textual Evidence”. In: CoRR, 2016.

[84] B. Yang, W. Yih, X. He, J. Gao, and L. Deng. “Embedding Entities and Relations
for Learning and Inference in Knowledge Bases”. In: CoRR, 2014.

[85] X. Yao, J. Berant, and B. V. Durme. “Freebase QA: Information Extraction or
Semantic Parsing?” In: ACL, Workshop on Semantic Parsing, 2014.

[86] X. Yao and B. V. Durme. “Information Extraction over Structured Data: Question
Answering with Freebase”. In: ACL, 2014, pp. 956–966.

[87] A. Yates et al. “TextRunner: Open Information Extraction on the Web”. In: NAACL,
2007, pp. 25–26.

[88] W. Yih, M. Chang, X. He, and J. Gao. “Semantic Parsing via Staged Query Graph
Generation: Question Answering with Knowledge Base”. In: ACL, 2015, pp. 1321–
1331.

[89] M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and G. Weikum. “AIDA: An On-
line Tool for Accurate Disambiguation of Named Entities in Text and Tables”. In:
PVLDB, 2011, pp. 1450–1453.

http://dx.doi.org/10.1145/2629489
http://arxiv.org/abs/1603.00957
http://arxiv.org/abs/1603.00957
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://yoavartzi.com/sp14/pub/ybd-sp14-2014.pdf
http://yoavartzi.com/sp14/pub/ybd-sp14-2014.pdf
http://aclweb.org/anthology/P/P14/P14-1090.pdf
http://aclweb.org/anthology/P/P14/P14-1090.pdf
http://www.aclweb.org/anthology/N07-4013
http://aclweb.org/anthology/P/P15/P15-1128.pdf
http://aclweb.org/anthology/P/P15/P15-1128.pdf
http://www.vldb.org/pvldb/vol4/p1450-yosef.pdf
http://www.vldb.org/pvldb/vol4/p1450-yosef.pdf

64

Appendix: Publications

The following contains all of our publications in the order in which we listed them in Section
2. The publications are in original form including their page number in the corresponding
proceedings or journal. Electronic copies of all publications are available via a web page:
http://ad-publications.cs.uni-freiburg.de/theses/Dissertation_Elmar_Haussmann.html

A Case for Semantic Full-Text Search (2012) 65

Semantic Full-Text Search with Broccoli (2014) 68

Easy Acccess to the Freebase Dataset (2014) 70

Open Information Extraction via
Contextual Sentence Decomposition (2013) 74

More Informative Open Information Extraction via
Simple Inference (2014) 80

Relevance Scores for Triples from Type-Like Relations (2015) 86

WSDM Cup 2017: Vandalism Detection and Triple Scoring (2017) 96

More Accurate Question Answering on Freebase (2015) 98

Semantic Search on Text and Knowledge Bases (2016) 108

Broccoli Semantic Full-Text Search at your Fingertips (2012) 264

A Quality Evaluation of KB+Text Search (under submission, 2017) 274

http://ad-publications.cs.uni-freiburg.de/theses/Dissertation_Elmar_Haussmann.html

A Case for Semantic Full-Text Search
(position paper)

Hannah Bast, Florian Bäurle, Björn Buchhold, Elmar Haussmann
Department of Computer Science

University of Freiburg
79110 Freiburg, Germany

{bast,baeurlef,buchholb,haussmann}@informatik.uni-freiburg.de

ABSTRACT
We discuss the advantages and shortcomings of full-text
search on the one hand and search in ontologies / triple
stores on the other hand. We argue that both techniques
have an important quality missing from the other. We ad-
vocate a deep integration of the two, and describe the asso-
ciated requirements and challenges.

1. FULL-TEXT SEARCH
The basic principle of full-text search is that the user en-

ters a (typically small) set of keywords, and the search en-
gine returns a list of documents, in which some or all of
these keywords (or variations of them like spelling variants
or synonyms) occur. The results are ranked by how promi-
nent these occurrences are (term frequency, occurrence in
title, relative proximity, absolute importance of the docu-
ment, etc.)

1.1 Document-oriented queries
This works well as long as (i) the given keywords or vari-

ants of them occur in enough of the relevant documents, and
(ii) the mentioned prominence of these occurrences is high-
est for the most relevant documents. For example, a Google
query for broccoli will return the Wikipedia page as the first
hit, because it’s a popular page containing the query word
in the URL. A query for broccoli gardening will also work,
because relevant documents will contain both of the words,
most likely in a title / heading and in close proximity.

For large document collections (as in web search), the
number of matching documents is usually beyond what a
human can read. Then precision is of primary concern for
such queries, not recall. The informational Wikipedia page
(or a similar page) should come first, not second or fourth.
And it is not important that we find all broccoli gardening
tips on the internet.

Bottom line: Full-text queries work well when relevant
documents contain the keywords or simple variations of them
in a prominent way. The primary concern is precision, not
recall.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
JIWES ’12 August 12 2012, Portland, OR, USA
Copyright 2012 ACM 978-1-4503-1601-9/12/08 ...$15.00.

1.2 Entity-oriented queries
Consider the query plants with edible leaves. As we explain

now, this kind of query is inherently problematic for full-text
search engines.1

The first problem is as follows. Relevant documents are
likely to contain the words edible leaves or variations of them
(see above). But there is no reason why they should con-
tain the word plants, or variations of it like plant or botany.
Rather, they will contain the name of a particular plant,
for example, broccoli. This is exactly the kind of knowledge
contained in ontologies, discussed in Section 2.

The second problem is that the sought-for results are not
documents and also not passages in documents, but rather
a list of entities, plants with a certain property. This is not
only an issue of convenience for the user, but also one of
result diversity. Even if the search engine would manage
to match instances of plants (like broccoli) to the keyword
plant, the problem remains that the result list contains many
hits referring to one and the same (well-known) plant, while
many (lesser known) plants will be missing.

Worse than that, the information for a single hit could
be spread over several documents. For example, for the
query plants with edible leaves and native to Europe, the
information that a particular plant has edible leaves may be
contained in one document, while the information that it is
native to Europe may be contained in another document.
This is beyond the capabilities of full-text search engines.

Unlike for the queries from the previous subsection, recall
is much more important now. Precision must not be ignored,
but becomes a seconday concern. For example, consider the
query apollo astronauts who walked on the moon from the
2011 Yahoo Semsearch challenge2. A user would certainly
like to find all 12 entities matching this query. Regarding
precision, it would be acceptable if a number of irrelevant
results of the same order of magnitude were interspersed.
Bottom line: Entity-oriented queries typically require

ontological knowledge. High recall is of primary concern.
Precision must not be ignored, but becomes secondary.

2. ONTOLOGIES
For the purpose of this short paper, we view ontologies as

collections of subject-predicate-object triples (often called
facts), where each element of each triple has an identifier
that is consistent among triples. For example, Broccoli is-

1Let us ignore the untypical case that a precompiled docu-
ment containing those words and the result list exist.
2semsearch.yahoo.com

65

a Vegetable or Vegetable is-subclass-of Plant or Broccoli is-
native-to Europe.

Given an ontology with sufficient information, it is easy
to ask even complex queries, which require the connection of
many facts, with a precisely defined semantics. For example,
the query for all plants native to europe would require the
connection of all three facts from the previous paragraph.

2.1 Obtaining the facts
The first obvious problem of ontologies is how to obtain

the facts. This is easy, if the facts are already organized in
a database. Then all that is needed is a conversion to the
proper format. A large part of linked open data (LOD) [5]
and hence of the BTC datasets [7] is of this kind.

Another source of ontology data are users creating machine-
readable fact triples explicitly. Only a relatively small part
of the BTC datasets is of this kind.

However, much (if not most) information is stored in the
form of natural language text, without semantic markup.
For the obvious reason that this is the primary form of com-
munication between human beings. For example, there are
thousands of documents, including several Wikipedia arti-
cles, on the web stating somewhere in a sentence that the
leaves of broccoli are edible. But this information is neither
contained in DBpedia, nor in current LOD, nor in BTC.

Bottom line: Much information is available only in the
form of natural language text. This is unlikely to change
also in the long run. In particular, for recent and specific
information.

2.2 Information extraction
Extracting facts of the form above from natural language

text is a hard problem due to the diversity and ill-definedness
of natural language. This task, known as information ex-
traction, is an offline process. Whatever information was
failed to be extracted will not be contained in the ontology,
although it should be. Whatever wrong information was
extracted will be in the ontology, although it should not be.

It is exactly one of the secrets of success of full-text search
that it avoids this problem in the first place. Full-text search
engines simply index (almost) every word in all documents.
When the document contains your keywords, you have a
chance to find it. Also note how, for the sake of precision,
a search engine company like Google has introduced new
features (like error-tolerance or synonyms or returning) only
at a point where they were virtually error-free.

In contrast, state of the art information extraction from
natural language text is far from being error-free. For ex-
ample, the best system on the ACE 2004 dataset for the
extraction of 7 predefined relations reported a precision of
83% and a recall of 72% [11], [1]. In [2], a state of the art
system that automatically identifies and extracts arbitrary
relationships in a text gives an average precision of 88% and
a recall of only 45%. Both systems only extract binary re-
lationships and the extraction of multiway relationships is a
significantly more complicated task [13].

Bottom line: Fact extraction from natural language text
is an offline problem with a high error rate. The typical
recall is 70% or less even for popular relations.

2.3 Consistent names
The other big problem with ontology data is consistent

naming of entities and relations. LOD solves this by unify-

ing different names meaning the same thing via user-created
links (owl:sameAs). This works well for popular relations
and entities, but for more specific and less popular relations,
such user-created links are less likely to exist.
Bottom line: Unified names for entities and relations

are feasible for a core of popular facts, but unreasonable to
expect for other facts.

3. INTEGRATION OF FULL TEXT AND ON-
TOLOGY DATA

In the previous two sections we have argued how a large
part of the world’s information is (and will be for a long
time) available only as full text, while for a certain core
of popular knowledge an ontology is the storage medium
of choice. We therefore advocate an integration of the two
types of search, which we will refer to as semantic full-text
search.

We see four major research challenges associated with
such a semantic full-text search. We will describe each
of them in one of the following four subsections. We will
also comment how we addressed them in our own prototype
for an integrated such search, called Broccoli [3]. We en-
courage the reader to try our online demo available under
broccoli.informatik.uni-freiburg.de

We remark that we are not claiming that our own proto-
type is the only way to address these research challenges.

3.1 Entity recognition in the full text
An essential ingredient of a system for semantic full-text

search is the recognition of references (including anaphora)
to entities from the given ontology3 in the given full text.
For example, consider the following sentence: The stalks of
rhubarb are edible, but its leaves are toxic. Both of the un-
derlined words should map these words to the correspond-
ing entity or entities from the given ontology, for example,
dbpedia.org/resource/Rhubarb.

For reasonable query times, this kind of entity recognition
has to be done offline. However, unlike the fact extraction
described in Section 2.2, state-of-the-art methods for entity
recognition achieve relatively high values for both precision
and recall of around 90% [12].
Bottom line: Offline entity recognition is an essential

ingredient of semantic full-text search. The task is much
simpler than full information extraction, with precision and
recall values of around 90%.

3.2 Combined Index
Typical entity-oriented queries like our plants with edible

leaves native to Europe require three things: (1) finding en-
tities matching the ontology part of the query (plants native
to Europe), (2) finding text passages matching the full-text
part of the query (edible leaves), and (3) finding occurrences
of the entities from (1) that co-occur with the matches from
(2).

For both (1) and (2), efficient index structures with fast
query times exist. To solve (3), the solutions from (1) and
(2) could be combined at query time. However, this is a ma-
jor obstacle for fast query times, for two reasons. First, the
entity recognition problem described in the previous section
would have to be solved at query time. Second, even if the

3In particular, this could be from LOD or BTC.

66

final result is small, the separate result sets for (1) and (2)
will often be huge, and fully materializing them is expensive.

In our own prototype Broccoli, we therefore propose a joint
index with hybrid inverted lists that refer to both word and
entity occurrences; for details, see [3].

Bottom line: Semantic full-text search with fast query
times seems to require a joint index over both the word and
the entity occurrences.

3.3 Semantic Context
For queries with a large number of hits, prominence of

keyword occurrence has turned out to be a very reliable
indicator of relevance. However, entity-oriented queries tend
to have a long tail of hits with relatively little evidence in
the document collection. Then natural language processing
becomes indispensable [8].

For example, consider again the query plants with edible
leaves and again the sentence The stalks of rhubarb are ed-
ible, but its leaves are toxic. This sentence is one of only
few in the whole Wikipedia matching that query. But it
should not count as a hit, since in it edible refers only to the
stalks and not to the leaves. For such queries, we need an in-
strument for determining which words semantically “belong
together”.

In our own prototype Broccoli, we solve this problem by
splitting sentences into subsentences of words that belong
together in this way. For the sentence above, after anaphora
resolution this would be The stalks of rhubarb are edible and
Rhubarb leaves are toxic. Again, see [3] for details.

Bottom line: Entity-oriented queries often have hits with
little evidence in the document collection. To identify those,
a natural language processing is required that tells which
words semantically “belong together”.

3.4 User interface
We discuss two challenges which are particularly hard and

important for semantic full-text search, especially in combi-
nation: ease of use and transparency.

A standard query language for ontology search is SPARQL
[10]. The big advantage is its precise query semantics. The
big disadvantage is that most users are either not willing
or not able (or both) to learn / use such a complex query
language. Languages like SPARQL are useful for the work
behind the scenes, but not for the front-end.

On the other extreme of the spectrum is keyword search,
the simplicity of which is one the secrets of success of full-
text search. For full-text search, the query semantics of
keyword search is reasonably transparent: the user gets doc-
uments which contain some or all of the keywords. For se-
mantic full-text search this is no longer the case. Which part
of the query was considered as an entity, which as a word,
and which as a class of entities? How were these parts put
in relation to each other?

The other major ingredient of transparency, besides a pre-
cise query semantics, are results snippets. Result snippets
serve two main purposes. First, clarifying why the respec-
tive hit was returned. Second, allowing the user a quick
check whether the hit is relevant.

Systems for what has become known as ad-hoc object re-
trieval [9] try to infer the query semantics from a simple
keyword query. Result snippets are treated as a separate
problem [6]. In existing semantic search engines on the web,
they are often of low quality and little use, e.g. Falcons or

SWSE [4].
In our own prototype Broccoli, we use a hybrid approach.

Like in keyword search, there is only a single search field.
However, using it, the user can build a query, where part
of the semantic structure is made explicit. This process is
guided by extensive search-as-you-type query suggestions.
Due to lack of space here, we refer the reader to our online
demo under broccoli.informatik.uni-freiburg.de.
Bottom line: Particular challenges for a user inter-

face for semantic full-text search are ease of use and trans-
parency. Of the currently existing semantic search engines,
most neglect one or even both.

4. REFERENCES
[1] C. C. Aggarwal and C. Zhai, editors. Mining Text

Data. Springer, 2012.

[2] M. Banko and O. Etzioni. The tradeoffs between open
and traditional relation extraction. In ACL, pages
28–36, 2008.

[3] H. Bast, F. Bäurle, B. Buchhold, and E. Haussmann.
Broccoli: Semantic full-text search at your fingertips.
CoRR, ad.informatik.uni-freiburg.de/papers, 2012.

[4] C. Bizer, T. Heath, and T. Berners-Lee. Linked data -
the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1–22, 2009.

[5] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee.
Linked data on the web. In WWW, pages 1265–1266,
2008.

[6] R. Blanco and H. Zaragoza. Finding support sentences
for entities. In SIGIR, pages 339–346, 2010.

[7] Billion triple challenge dataset 2012.
http://km.aifb.kit.edu/projects/btc-2012/.

[8] S. T. Dumais, M. Banko, E. Brill, J. J. Lin, and A. Y.
Ng. Web question answering: is more always better?
In SIGIR, pages 291–298, 2002.

[9] J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object
retrieval in the web of data. In WWW, pages 771–780,
2010.

[10] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. W3C recommendation, W3C, Jan.
2008. http://www.w3.org/TR/2008/REC-rdf-sparql-
query-20080115/.

[11] L. Qian, G. Zhou, F. Kong, Q. Zhu, and P. Qian.
Exploiting constituent dependencies for tree
kernel-based semantic relation extraction. In
COLING, pages 697–704, 2008.

[12] E. F. T. K. Sang and F. D. Meulder. Introduction to
the CoNLL-2003 shared task: Language-independent
named entity recognition. CoRR, cs.CL/0306050,
2003.

[13] S. Sarawagi. Information extraction. Foundations and
Trends in Databases, 1(3):261–377, 2008.

67

Semantic Full-text Search with Broccoli

Hannah Bast, Florian Bäurle, Björn Buchhold, Elmar Haußmann
Department of Computer Science

University of Freiburg
79110 Freiburg, Germany

{bast, baeurlef, buchhold, haussmann}@informatik.uni-freiburg.de

ABSTRACT
We combine search in triple stores with full-text search into
what we call semantic full-text search. We provide a fully
functional web application that allows the incremental con-
struction of complex queries on the English Wikipedia com-
bined with the facts from Freebase. The user is guided by
context-sensitive suggestions of matching words, instances,
classes, and relations after each keystroke. We also pro-
vide a powerful API, which may be used for research tasks
or as a back end, e.g., for a question answering system.
Our web application and public API are available under
http://broccoli.cs.uni-freiburg.de.

1. INTRODUCTION
Knowledge is available in electronic form in two main rep-

resentations: as natural language text (e.g., Wikipedia), and
in structured form (e.g., Freebase). The central motivation
behind our system is that both representations have their
advantages and should be combined for high-quality seman-
tic search.1

For example, consider the query Plants with edible leaves
and rich in vitamin C. Information about which plant con-
tains how much vitamin C is naturally represented as fact
triples. Indeed, this information is found in a knowledge
base like Freebase. Information about which plants have
edible leaves is more likely to be mentioned in natural lan-
guage text. It is mentioned many times in Wikipedia, but we
don’t find it in Freebase (or any other knowledge base that
we know of). In principle, the information could be added,
but there will always be specific or recent information only
described as text.

In the following, we describe how we combine these two
information sources in a deep way. Figure 1 shows a screen-
shot of our demo system in action for our example query.

1As a matter of fact, Wikipedia also contains some struc-
tured data, and Freebase also contains natural language
text.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGIR’14, July 6–11, 2014, Gold Coast, Queensland, Australia.
ACM 978-1-4503-2257-7/14/07.
http://dx.doi.org/10.1145/2600428.2611186.

2. SYSTEM OVERVIEW
Preprocessing In principle, our system works for any given
text corpus and ontology. For our demo we use the English
Wikipedia (text) + Freebase (ontology). We preprocess this
data in three phases. First, we link entities from the ontol-
ogy to mentions in the full text, utilizing Wikipedia links
and a set of heuristics as described in [1]. This provides the
basis for our occurs-with operator explained below. Second,
the full text is split into contexts that ”semantically belong
together” as described in [3]. This is key for results of high
quality. Third, the special-purpose index described in [2] is
built. This is key for providing results and suggestions in
real time.

Queries The user interface allows to incrementally con-
struct basic tree-like SPARQL queries, extended by an ad-
ditional relation occurs-with. This relation allows to specify
the co-occurrence of entities from the ontology with words
from the text. For our example query, the back end com-
putes all occurrences of plants that occur in the same con-
text (see above) as the words edible and leaves. We also
provide the special relation has-occurrence-of, to search for
documents in which words and entities co-occur. Regular
full-text search is thus included as a special case.

Query Suggestions Based on the input of a user, our sys-
tem gives context-sensitive suggestions for words, classes,
instances, and relations. The displayed suggestions always
lead to hits, and the more / higher-scored hits they lead to,
the higher they are ranked. This is an elementary feature
for any system that utilizes a very large ontology. Without
good suggestions it is very hard to guess how entities and
relations are named, even for expert users.

Excerpts For each result hit (an entity or a document),
matching evidence for each part of the query is provided.
This is invaluable for the user to judge whether a hit indeed
matches the query intent. The UI also provides (on click) de-
tailed information about the NLP preprocessing (see above).

3. TARGET USERS
We see two uses of our system, and hence also two target

groups of users.
Our first target group is expert searchers. Our search in-

terface is more complex than ordinary keyword search or
asking questions in natural language. The benefit is a pow-
erful query language with precise result semantics. Under
these constraints, we have made the query process as easy-
to-use as possible. For example, there are tens of thousands
of Wikipedia List pages like ”Plants with edible leaves”.

1265

68

Words

Garden cress (4)

Broccoli (9)

Kohlrabi (3)

Instances:

1 - 3 of 9

Ingredient (9)

Food (9)

Classes:

1 - 2 of 37 Broccoli

Ontology fact

Broccoli: is a plant; Vitamin C per 100g in mg 89.2

Document: Edible plant stem

The edible portions of Broccoli are … the leaves.

Garden cress

Ontology fact

Cabbage: is a plant; Vitamin C per 100g in mg 69

Document: Cress

Plants cultivated for their edible leaves : Garden cress …

Your Query:

Plant

occurs-with edible leaves

Vitamin C per 100g in mg

Hits: 1 - 2 of 9

> 50

occurs-with

Relations:

1 - 3 of 22

Compatible with dietary restriction

Energy per 100g

(9)

(9)

 enter search terms …

+

Figure 1: A screenshot of our demo system. The current query is visualized on the top right as a tree. Below,
the result hits are shown, grouped by instance (entity) and ranked by relevance, together with evidence from
the ontology and the full text. The query can be extended further with the search field on the top left. The
four boxes below provide context-sensitive suggestions that depend on the current focus in the query, here:
matching sub and super classes, instances, and relations for plants matching the current query.

Many of these are actually non-trivial semantic queries, which
are hard to answer with traditional tools, like Google web
search. We expect our tool to be a great asset for contrib-
utors to such List pages. We expect a similar benefit for
expert searches in other areas, e.g., news (presidential cam-
paign backers) or medicine (symptoms of a disease).

Our second target group is researchers in semantic search
or engineers of such systems. They may want to use our
system to explore the given data and thus gain insight into
which facts are expressed in which ways. Engineers may
also use our API as a back end for a more simplistic front
end, suited for non-expert users. As a first step towards
such a front end, we have integrated the following feature in
our demo: when typing a query with three or more words
without following any of the suggestions, the system tries
to convert these keywords into a matching structured query.
For example, try mafia films directed by francis coppola.

4. RELATED WORK
We see three lines of research closely related to our system.
First, we already mentioned systems for semantic search

with more elaborate front ends. In particular, such allowing
natural language queries like IBM’s well-known Watson [4],
or standard keyword queries like in ad-hoc entity search [5].
When they work, such more intuitive front ends are clearly
to be preferred. However, semantic search is complex and
hard, and queries often fail. Then simple front ends lack the
feedback needed to understand what went wrong and what
can be done to ask a better query.

Second, there are various extensions of ontology search
by a free-text component. A good example is the MQL
language (similar to the more standard SPARQL) provided
by Freebase (http://www.freebase.com/query). In MQL,
objects of triples can also be string literals and these can be

matched against regular expressions and keyword queries.
For example, find all songs containing the words love and
you in their title. In principle, this could be used to simulate
our occurs-with operator, but only very inefficiently; see [2,
Section 4 and Table 1].

Third, information extraction (IE) aims at extracting fac-
tual knowledge from text. If this succeeded perfectly, on-
tology search would be all we need. There are two caveats,
however. Whatever information was not extracted prop-
erly is lost. In our system, all the original information is
kept and is, in principle, accessible by an appropriate query.
Also, IE triples often have string literals as objects. Dealing
efficiently with these requires a special index data structure,
like the one behind our search.

5. REFERENCES
[1] H. Bast, F. Bäurle, B. Buchhold, and E. Haussmann.

Broccoli: Semantic full-text search at your fingertips.
CoRR, abs/1207.2615, 2012.

[2] H. Bast and B. Buchhold. An index for efficient
semantic full-text search. In CIKM, pages 369–378,
2013.

[3] H. Bast and E. Haussmann. Open information
extraction via contextual sentence decomposition. In
ICSC, pages 154–159, 2013.

[4] D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan,
D. Gondek, A. Kalyanpur, A. Lally, J. W. Murdock,
E. Nyberg, J. M. Prager, N. Schlaefer, and C. A. Welty.
Building watson: An overview of the DeepQA project.
AI Magazine, 31(3):59–79, 2010.

[5] J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object
retrieval in the web of data. In WWW, pages 771–780,
2010.

1266

69

Easy Access to the Freebase Dataset

Hannah Bast, Florian Bäurle, Björn Buchhold, Elmar Haußmann
Department of Computer Science

University of Freiburg
79110 Freiburg, Germany

{bast, baeurlef, buchhold, haussmann}@informatik.uni-freiburg.de

ABSTRACT
We demonstrate a system for fast and intuitive exploration
of the Freebase dataset. This required solving several non-
trivial problems, including: entity scores for proper ranking
and name disambiguation, a unique meaningful name for ev-
ery entity and every type, extraction of canonical binary re-
lations from multi-way relations (which in Freebase are mod-
eled via so-called mediator objects), computing the transi-
tive hull of selected relations, and identifying and merging
duplicates. Our contribution is two-fold. First, we provide
for download an up-to-date version of the Freebase data,
enriched and simplified as just sketched. Second, we offer a
user interface for exploring and searching this data set. The
data set, the user interface and a demo video are available
from http://freebase-easy.cs.uni-freiburg.de.

Categories and Subject Descriptors
H.0 [Information Systems]: General

Keywords
Freebase; Knowledge Base; Ontology

1. INTRODUCTION
Freebase [2] is designed as an open, community-curated

knowledge base. With more than 40 million topics and over
2 billion facts, it is today by far the most comprehensive
publicly available source of general-knowledge facts.

The complete Freebase data is available for free use, shar-
ing, and adaption (even commercially) under a creative com-
mons license. The data format is N-Triples RDF, which is
standard for triple data. In principle, the data can therefore
be loaded into any state-of-the-art triple store and queried
via standard semantic query languages such as SPARQL.
Freebase also provides an own API. The query language used
there is MQL.

However, when working with this raw data via SPARQL
or with the Freebase API via MQL, several major usability
issues arise, also for expert users. Consider the query for

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2567948.2577016.

winners of the Palme d’Or1, shown in Figure 1. This appears
to be a simple query, which requires only a single relation.
In SPARQL one would like to write something like this:

select ?x where { ?x Awards-Won ”Palme d’Or” }
But the required SPARQL query on the provided RDF data
dump looks like this:

select ?name where {
?x ns:award/award winner/awards won ?m .
?m ns:award/award honor/award ?a .
?a ns:type/object/name ”Palme d’Or”@en .
?x ns:type/object/name ?name .

}
Already this simple example hints at a number of usability
issues. How to guess the right relation names? How to guess
the right schema (the object of the awards won relation is
a so-called mediator object, which is linked, via another re-
lation, to the actual award entity)? How to guess the right
entity names (Palme d’Or in this case)? The results are
opaque, too. Here is the link to the result for the equivalent
MQL query (the complexity of which is similar to that of
the SPARQL query above): http://tinyurl.com/l2pdms5.
In particular, the ranking is merely lexicographic and there
are ambiguous names like Michael Moore. For more complex
queries, e.g. http://tinyurl.com/qzrc77j, these problems
intensify.

In contrast, the query in Figure 1 is as one would ex-
pect. As we will see later, the user interface helps in finding
the proper relation names. The results are properly ranked,
with the most prominent hits (directors in this case) at the
top. The names of the directors are as expected, and accom-
panied by pictures. What is not shown is that there are 16
persons in Freebase with the name Michael Moore. In our
version of the Freebase data set, only the (in)famous direc-
tor gets exactly that name. The others are disambiguated
by meaningful suffixes, e.g. Michael Moore (Soccer Forward).
Finally, the user interface offers suggestions for sensible ways
to augment the query, e.g. by the relation Country of na-
tionality.

1.1 Our contribution
We address all of the problems from the example query

above, as well as several other problems that occur with
typical queries and impact usability.

Entity Scores. As in standard text search, long result lists
demand for a proper ranking. For example, for our exam-
ple query above, we would like to have the most prominent
1This is the highest prize at the annual Cannes Film Festival.

95

70

Your Query:

Hits:

Types:

Award Winner (73)

Film Crew (73)

1 - 10 of 118

Country of nationality, the RELATION

Michael Moore

Martin Scorsese

David Lynch

Quentin Tarantino

(237455)

(131749)

(112143)

(92768)

1 - 10 of 73

Instances:

Relations:

Award Won

Date of birth

Country of nationality

(73)

(73)

(73)

1 - 32 of 73

Michael Moore

David Lynch

Martin Scorsese

Quentin Tarantino

• Award Won: Palme d‘Or

• Award Won: Palme d‘Or

• Award Won: Palme d‘Or

• Award Won: Palme d‘Or

Award Won Palme d‘Or

Person

1 - 10 of 101

Figure 1: A screenshot of our demo system showing results for a query for winners of the Palme d’Or. For
explanations of the various components and features, see the paragraph before Section 1.1 and Section 3.

people at the top. We provide a prominence score for each
entity in Freebase; see Section 2.2.

Entity Names. In Freebase, each entity has a unique
alpha-numerical so-called machine id or mid, e.g. /m/0jw67.
In most applications, it is desirable to also have unique
names that are meaningful for humans. This is also the
approach Wikipedia takes. There, entities are distinguished
with suffixes. For example, Europe denotes the continent as
expected, while the Swedish rock band with the same name
is called Europe (band). For the sake of consistency, these
suffixes follow several rules, but ultimately they are chosen
by humans. We automatically compute such names for each
entity in Freebase. This is described in Section 2.3.

Mediators. In our introductory example, we have encoun-
tered the complex awards won relation. It involves a medi-
ator object that itself is related to several entities, includ-
ing not only the person who won the award and the award
won, but also supplementary information like the date of
the award and the winning work. Still, for many queries the
“main” binary relation (between the person and the award
in this case) is all that is needed, and would be much easier
to use. We automatically extract this binary relation from
each mediator; see in Section 2.4.

Transitivity. Many relations are practically unusable when
they are not closed under transitivity. The relation Con-
tained by between locations is a prominent example. We
compute the transitive hull for several large (manually se-
lected) relations from Freebase; see Section 2.5.

Duplicates. Duplicate entities or types with the same or a
similar name are frequent in Freebase. For example, there
are four classes called Person or person. Usually, addi-
tional types with the same name have few instances and
are added as a user’s mistake. The problem is aggravated
by our own addition of types to the taxonomy; see the next
item. We identify duplicates, merge them and give them a
proper canonical name; see Section 2.6.

Taxonomy. Freebase by itself has a comparably shallow
taxonomy (3,557 different types at the time of this writ-
ing) expressed via its type/object/type relation. However,
many intuitive semantic classes like plant or politician are
not types. Instead this information is available only via re-
lations, e.g. Profession. We apply a set of configurable rela-
tions with objects that are to be included in the taxonomy.
Our resulting taxonomy has a total of 21,042 different types.
See http://freebase-easy.cs.uni-freiburg.de for more
details.

User Interface. We provide a fully-functional user inter-
face that allows for an interactive exploration and search
using all of the features above. See Figure 1 and our de-
scription in Section 3. The demo is available under the link
above; we encourage the reader to try it out.

Download. Along with the demo, we also provide our ver-
sion of the Freebase data set, with all of the mentioned fea-
tures, for download. A zip file (2.4 GB at the time of this
writing) is available under the link above. Our data curation
pipeline (see Section 2) is fully automized. This allows us to
easily update the data set on a regular basis, and thus keep
pace with the continuously growing Freebase data.

We remark that some of the items above represent major
research challenges. For this demo paper, we apply compa-
rably simple and straightforward solutions. However, as can
be seen from the demo, these already go a long way towards
an easier access to and better usability of the Freebase data.

1.2 Related Work
There is an abundance of work on providing more conve-

nient front ends for semantic search. See [4] for a small
survey, and the many papers citing that work. None of
these achieve context-sensitive query suggestions at inter-
active speed as in our user interface (for a data set as large
as Freebase); see also [1, Section 2].

Concerning our data curation pipeline, we do not claim
particular novelty for any of the components. Our contri-

96

71

Freebase

RDF

Dump

sanitize
RDF3X

Triple

Store

Compute

Entity Scores

Assign

Entity Names

Identify

Relevant Relations

Resolve

Mediated Relations

Compute Transitive

Closures

Enrich Taxonomy
Reconcile

Duplicate Entities

Extract Triples

Extract & Enrich Pre-process

Final

KB

Improve Usability Simplify Schema

Figure 2: Architectural overview of our pipeline for a more easy-to-use version of the Freebase data set.

bution is that we have identified the major issues for the
(widely used) Freebase data set, and provide a version that
is much more easily accessible, and a ready-to-use demo ap-
plication. We know of no comparable effort to date.

2. DESCRIPTION OF OUR PIPELINE
Freebase provides raw data dumps in the form of RDF-

triples. As explained above, working with this raw data
is complex for a variety of reasons. We therefore seek to
simplify and enrich it in several ways. Figure 2 illustrates
the general pipeline of our architecture. The various steps
of the pipeline are described in the following subsections.

2.1 Data Sanitization
The raw RDF data contains redundant information as

well as information which is undesired or even annoying in
most use cases. We therefore first load the raw RDF data
into RDF-3X [5], a fast triple store, and then extract the
relations we are interested in using appropriate SPARQL
queries. Namely, we omit relations with few facts (< 5)
and relations that are not part of the core data in Freebase
(e.g., facts in the domains user and base). Further, Free-
base contains many (but not all) relations in two directions,
e.g., place-of-birth and people-born-here. For all those, we
only extract one direction (the one with more subjects than
objects)2.

2.2 Entity Scores
Scores indicating the prominence of entities are essential

when ranking result entities (rank prominent entities first)
and when resolving naming conflicts (assign the most promi-
nent entity the canonical name, see Section 2.3). Intuitively,
the more people talk (or write) about an entity the more
prominent it is. We utilize the mentions of Freebase entities
in the ClueWeb’12 Corpus3 (733M web pages) from [3] to
count the number of mentions of each entity and use it as a
score. Given a set of mentions MCW e of an entity e we use
sCW as the resulting score:

sCW (e) = |MCW e |
About 4.5 million distinct entities were recognized in ClueWeb,
but our knowledge base contains a total of 39.6 million dis-
tinct entities. Therefore, we additionally compute a score
based on the knowledge base and its relations in the follow-
ing way:

2Most applications, including our own here, can handle
queries for the reverse direction without requiring a copy
of it.
3http://lemurproject.org/clueweb12/

sKB (e) =
∑

r∈R

log(max(1, |{x | (e, r, x) ∈ KB}|))

+
∑

r∈R

log(max(1, |{x | (x, r, e) ∈ KB}|))

R is the set of all relation types in the knowledge base and
KB denotes its set of relational triples (x, r, y). The above is
the sum of the log of a per-relation out-degree and in-degree
with the intuition that an entity with many incoming and
outgoing relations is more prominent. The main effect of
this score is as a tie-braker, when two entities have the same
number of occurrences in the ClueWeb collections or were
not mentioned or recognized at all. As final score for an
entity we use the sum of the ClueWeb and knowledge based
score:

s(e) = sCW (e) + sKB (e)

2.3 Entity names
As discussed in the introduction, a unique meaningful

name for each entity is highly desirable in many applica-
tions. However, the raw Freebase data only provides alpha-
numerical ids and highly ambiguous names. In Wikipedia,
this problem is solved manually as follows. For an ambigu-
ous name, the most prominent entity gets the name without
further additions. For example, the director from our ex-
ample query in Figure 1 is called Michael Moore. Other
contestants for the same name are distinguished by a mean-
ingful suffix, e.g. Michael Moore (Australian politician).

For the Freebase data, we automatically assign unique
names as follows.4 If there is no name at all, use the alpha-
numerical id from Freebase. Otherwise, there will be a set
of candidates that compete for a name. Note that these
candidates can be types (e.g. Director) as well as entities
(e.g. Michael Moore) Also note that a type and an entity
can have the same name in Freebase (e.g., there is a type
Person and several entities with that name). The score for
an entity is simply the score from Section 2.2. The score for
a type is simply the maximum score of an entity plus the
number of instances of that type. The literal name (without
suffixes) then goes to the candidate with the highest score.

The remaining candidates are disambiguated as follows.
If they are located in a country, they compete for the name
<name> (<country>). Again, the entity with the highest
score gets that name. The others get an additional numerical
suffix, e.g. Berlin (United States) #2. Entities without loca-
tional information are disambiguated using their notable-for
relation, e.g. Michael Moore (Soccer Forward). If that is not
enough to achieve unique names, again a numerical suffix is

4Note that for most Freebase entries, there is no associated
Wikipedia entry.

97

72

added. Entities that have neither locational nor notable-for
information are disambiguated using their Freebase ids, e.g.
Maria (m/0760g8).

2.4 Mediators
As explained in the introduction, Freebase realizes multi-

way relations using so-called mediator objects. For example,
for a fact from Freebase’s Awards won relation, the object is
such a mediator object of type award honor. This object is
then related to the actual award, but also to supplementary
information such as the winning work or the date of the
award.

For each mediator type m (e.g. award honor), we do the
following. Intuitively, there are two types of mediators,
which require a different approach. Namely, m either medi-
ates between two entities in different roles (e.g. a musician
and a group) or in the same role (e.g. siblings). We found the
following strategy to differentiate very well between these
two cases.

Consider the k relations that have m as subject.5 Let
n1 ≥ . . . ≥ nk be the number of facts in each of these k
relations, sorted in decreasing order. Let r be the relation
pertaining to n1. If k ≥ 2 and n2 ≥ n1/2, let r′ be the
relation pertaining to n2, otherwise let r′ = r. Intuitively, r
and r′ are hence the most “frequent” relations, with r = r′

for a relation like “sibling”. It remains to “merge” r and r′

to the desired binary relation and give it a proper name.
Let n be the name of the reverse direction of the relation

r according to Freebase. If no such name can be obtained,
try the reverse relation of r′. In the very rare event that
this fails too, fall back to n = r. We then extract a binary
relation rm in the following way.

rm = {(s, n, o) | (x, r, s) ∈ KB ∧ (x, r′, o) ∈ KB ∧ s 6= o}
This gives us exactly one binary relation for each mediator
type m.

2.5 Transitivity
Freebase does not provide the transitive closure of transi-

tive relations. Given R1 and R2, the tuples of two relations
r1 and r2, we compute the transitive closure of tuples to be
added during extraction as follows:

Rt = R1 ◦ R+
2

Where R+
2 is the transitive of relation r2 and ◦ is relation

composition. This allows computing the transitive closure
over two relations, e.g., profession and is-specialization-of to
ensure that a person with the profession physicist also has
the profession scientist (because the profession physicist is
a specialization of scientist). The classic transitive closure
is a special case where r1 equals r2. We currently provide a
manually compiled list of relations for which the transitive
closure should be computed.

2.6 Duplicate Classes
A common problem in knowledge bases is that of duplicate

entities or classes, often with identical or slightly different
names. We follow a simple approach and merge two classes if
they have the same name, ignoring case, and if the instances
of one class are included in the other by a threshold. Let
IA and IB be the instances/entities of some class A and
B, respectively. We only merge class A into class B if the

5We always have k ≥ 1 and for few relations, like “sibling”,
we indeed have k = 1.

instances of class A are contained to at least 70% in class
B, that is when:

|IA ∩ IB |
|IA| ≥ 0.7

and vice versa.

3. USER INTERFACE
We provide a convenient user interface for performing

complex searches on our version of the Freebase dataset,
as described in the previous section. The main features are
as follows. We encourage the reader to try our demo under
http://freebase-easy.cs.uni-freiburg.de.

(1) A single input field, as in standard text search.

(2) Incremental query construction with suggestions (for
matching types, instance and relations) after each keystroke.

(3) Example tooltips for each relation (shown on mouse
over), to help understand what the relation is about (re-
lation names in Freebase are sometimes opaque).

(4) Visual editing of the current query graph (e.g., removing
a part or double-clicking a node to make it the new root).

(5) Meaningful names (following Section 2.3) and images
(loaded from Freebase, if available).

(6) Proper ranking of results, using the scores from Section
2.2 where appropriate.

(7) Sort by an arbitrary query element, i.p. dates and values.

(8) Interactive query times, using the index from [1].

4. CONCLUSION
We provide a curated version of the Freebase data set that

fixes several major usability issues with the original data
set. We also provide a convenient user interface for interac-
tive search and exploration, making good use of the various
features we added. Several of the problems we addressed
are major research problems in their own right. The solu-
tions we provided here are simple and effective, yet by no
means perfect. For example, our entity scores (derived from
counts in the ClueWeb’12 corpus) work very well to bring
the prominent entities to the top, but in some cases show an
undesirable topic drift (e.g., Celine Dion is the fourth most
prominent person). Our canonical entity names work like a
charm for the more frequent entities, while names like Berlin
(United States) #2 could be improved.

5. REFERENCES
[1] H. Bast and B. Buchhold. An index for efficient

semantic full-text search. In CIKM, pages 369–378,
2013.

[2] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In
SIGMOD, pages 1247–1250, 2008.

[3] E. Gabrilovich, M. Ringgaard, and A. Subramanya.
FACC1: Freebase annotation of ClueWeb corpora,
Version 1. (Release date 2013-06-26, Format version 1,
Correction level 0).

[4] E. Kaufmann and A. Bernstein. How useful are natural
language interfaces to the semantic web for casual
end-users? In ISWC, pages 281–294, 2007.

[5] T. Neumann and G. Weikum. Scalable join processing
on very large RDF graphs. In SIGMOD, pages 627–640,
2009.

98

73

Open Information Extraction via Contextual Sentence Decomposition1

Hannah Bast, Elmar Haussmann
Department of Computer Science

University of Freiburg
79110 Freiburg, Germany

{bast,haussmann}@informatik.uni-freiburg.de

Abstract—We show how contextual sentence decomposition
(CSD), a technique originally developed for high-precision
semantic search, can be used for open information extraction
(OIE). Intuitively, CSD decomposes a sentence into the parts
that semantically “belong together”. By identifying the (implicit
or explicit) verb in each such part, we obtain facts like in
OIE. We compare our system, called CSD-IE, to three state-
of-the-art OIE systems: ReVerb, OLLIE, and ClausIE. We
consider the following aspects: accuracy (does the extracted
triple express a meaningful fact, which is also expressed in
the original sentence), minimality (can the extracted triple be
further decomposed into smaller meaningful triples), coverage
(percentage of text contained in at least one extracted triple),
and number of facts extracted. We show how CSD-IE clearly
outperforms ReVerb and OLLIE in terms of coverage and
recall, but at comparable accuracy and minimality, and how
CSD-IE achieves precision and recall comparable to ClausIE,
but at significantly better minimality.1

Keywords-open information extraction; contextual sentence
decomposition; semantic search;

I. INTRODUCTION

Information extraction (IE) is the task of automatically
extracting relational tuples from natural language text. Such
relational tuples typically take the form subject predicate
object (SPO), for example: (Ruth Gabriel) (was born) (in
San Fernando). In early IE systems, the desired relations
(predicates) were part of the input, for example born in.
Such a system was then typically given, for each such
relation, a set of correct triples from which it could learn. In
recent years, the trend has been towards open information
extraction (OIE), where identifying the predicate and hence
the relation is part of the problem [1]. Many systems for
OIE have been developed in recent years; we describe the
most recent ones in Section II.

A classical use case for information extraction is to obtain
fact triples for a formal ontology. This use case requires that
the S, P, and O parts are disambiguated, that is, different
formulations referring to the same entity are mapped to the
same identifier. For example, the S part of the triple above
should be mapped to the actress Ruth Gabriel, regardless
of whether in that part she is referred to as Ruth Gabriel
(like above), R. Gabriel, Gabriel, or she (assuming, of

1An extended version of the paper is available via the authors’ website:
http://ad.informatik.uni-freiburg.de/publications.

course, that all these references actually mean her). In OIE,
this disambiguation is typically not considered part of the
problem. More than that, many facts extracted by traditional
OIE systems are not easily disambiguated, because the S and
O part often contain references to more than one entity. We
come back to this important aspect below, when we discuss
the aspect of minimality of a triple.

The motivation for our approach comes from an appli-
cation called semantic full-text search (SFTS) [2]. SFTS
combines formal ontology search with classical full-text
search. A typical query would be class:person word:writer,
searching for co-occurrences of a reference to a person with
the word writer. The intention of the query is to find people
who are writers. For results of good quality, it is crucial that
the two occurrences (or more for a longer query), actually
“belong together” semantically. For example, consider the
following sentence, which will be our running example
throughout the paper:

(S): Ruth Gabriel, daughter of the actress and writer Ana
Maria Bueno, was born in San Fernando.

The sentence contains two references to a person, Ruth
Gabriel and Ana Maria Bueno, as well as the word writer.
However, only the fact that Ana Maria Bueno is a writer
is supported by the sentence. Returning Ruth Gabriel as
a hit for the query above would be a mistake. In [2],
we therefore proposed contextual sentence decomposition
(CSD). The goal of CSD is to compute, for a given sentence,
all sub-sequences of words in that sentence that semantically
“belong together”. The sub-sequences are then called the
contexts of the sentence. A correct decomposition of the
sentence above would yield the following four contexts (in
any order):

#1: Ruth Gabriel was born in San Fernando
#2: Ruth Gabriel, daughter of Ana Maria Bueno
#3: actress Ana Maria Bueno
#4: writer Ana Maria Bueno

Note that not splitting actress and writer Ana Maria Bueno
into #3 and #4 would be considered a mistake in CSD, be-
cause the words actress and writer do not “belong together”
semantically. Rather, in this sentence, they are two unrelated
attributes related to the same person.

74

In this paper we explore the use of CSD for OIE. In fact,
the contexts above already look close to the kind of triples
expected from an OIE system. All that is missing is the
distinction into the subject, predicate, and object part. Since
CSD is computed from a full parse of the sentence, with
explicit markup denoting the verb phrases, this is relatively
straightforward. Also note that some of the contexts above
are missing a verb. In that case the verb is implicit, but can
(typically) be easily deduced from the context, e.g. is for
contexts #3 and #4 (noun phrase with pre-modifying noun
phrase). Our system, called CSD-IE is described in detail in
Section III.

A. Quality Aspects

In this paper, we evaluate OIE systems with respect to the
following three quality aspects.

1. The accuracy of the extracted facts. Two aspects
are important here. First, whether the fact actually has the
form of a meaningful relational triple. For example, the triple
(Ruth) (Gabriel was) (San Fernando) would be considered
inaccurate for two reasons: (1) the P part contains words
which do not belong to the verb (but to the S part in this
case), and (2) the P and the O parts do not fit together.
Second, what is expressed by the triple should also be
expressed by the sentence. For example, (Ruth Gabriel) (is)
(actress) would be accurate according to the criterion just
mentioned, but it’s not expressed in our sentence (S) above.

Accuracy is typically assessed by human judges, see
Section IV. The percentage of the extracted facts deemed
accurate is typically referred to as the precision.

2. The number of extracted facts. An average sentence
may express a lot of facts. For example, our example
sentence from above expresses four facts:

#1: (Ruth Gabriel) (was born) (in San Fernando)
#2: (Ruth Gabriel) (is) (daughter of Ana Maria Bueno)
#3: (Ana Maria Bueno) (is) (actress)
#4: (Ana Maria Bueno) (is) (writer)

It is the explicit goal of our system to extract, from a
given sentence, as many facts as possible, and lose as little
information as possible. In Section IV we measure this by
the coverage, that is, the percentage of all word occurrences
that occur in at least one extracted triple. For the sentence
above, the coverage is 100%.

3. The minimality of the extracted facts. An accurate
fact may itself contain other (accurate) facts. For example,
(Ruth Gabriel) (is) (daughter of the actress and writer Ana
Maria Bueno) would be considered an accurate fact accord-
ing to our definition above. However, we already explained
above that this fact contains two other facts (namely, that
Ana Maria Bueno is an actress and a writer), which are
unrelated to the containing fact and that this mixture of
unrelated facts is problematic for applications that require
“semantic togetherness” of the words in a fact. It is therefore

another explicit goal of our system to extract minimal facts.
The four facts listed under 2. above are all minimal.

The goal of minimality comes with a challenge that is not
apparent in our example sentences, but occurs in sentences
of a more complex type. For example, consider the sentence:

The Embassy said that 6,700 Americans were in Pakistan.

This sentence contains two facts: that the Embassy made
some statement, and that 6,700 Americans were in Pakistan.
However, by simply extracting these two facts, we would
lose the information what statement the Embassy made. We
solve this by allowing the S and O part of a fact to contain
references to other extracted facts. In this case, we would
extract:

#1: (The Embassy) (said) (that #2)
#2: (6,700 Americans) (were) (in Pakistan.)

where the numbers are simply unique ids for each extracted
triple. That way, no information is lost, and the application
may choose to either keep the facts separate (and avoid
mixing of facts) or substitute the references with the referred
fact (and thus obtain output as in other OIE systems). A
similar issue was addressed by OLLIE [3] using what they
call additional context information; see Section II.

B. Our contribution

We present a new system for open information extraction,
called CSD-IE, that is good in all three aspects above. We
compare our approach to what we consider the three best
previous approaches: ReVerb, OLLIE, and ClausIE. CSD-
IE outperforms ReVerb and OLLIE in terms of coverage
and recall, but at comparable precision and minimality. It
also achieves precision and recall comparable to ClausIE,
but at significantly better minimality. For some details about
previous systems and how they relate to our approach see the
next Section II. The details behind our CSD-IE are described
in Section III. Our evaluation is provided in Section IV.

II. RELATED WORK

A large variety of OIE systems have been developed in
recent years, starting with the original TextRunner [1], over
WOE [4], R2A2 [5], ReVerb [6], OLLIE [3], to the very
recent ClausIE [7]. A good and up-to-date overview over
these and other systems is provided in [7]. In the following
we will shortly describe how our strongest competitors
(ReVerb, OLLIE, and ClausIE) relate to our approach.

ReVerb explicitly addressed the issues of incoherent ex-
tractions and uninformative extractions. Using shallow NLP
and learned extraction patterns ReVerb achieves a signifi-
cantly better precision than its predecessors. Our approach
utilizes a full parse which helps with these problems; see the
description of ClausIE below and our description of CSD-IE
in Section III.

75

OLLIE improves over ReVerb by addressing two further
issues important for extraction quality. The first issue are
facts not mediated by verbs. The second issue is additional
information about facts expressed in indirect speech (He said
that ...) and the like. OLLIE relies on a dependency parse
and achieves significantly better recall than ReVerb with
basically the same good precision. Our contextual sentence
decomposition deals with these issues by allowing triples to
contain references to other triples and explicitly considering
facts not mediated by verbs. This has the advantage of
simultaneously addressing the issue of information loss and
of minimality.

ClausIE is the most recent OIE system, and our strongest
competitor. In fact, the basic approach of ClausIE is very
similar to ours: decompose each sentence into its basic
constituents (called “clauses” in ClausIE), and from those
constituents derive triples. Our approach has been devel-
oped in independent work and the basic ideas behind our
contextual sentence decomposition (CSD), as used for our
semantic search, have already been published in [8] and [2],
long before [7]. Still, there are some important differences
between our CSD-IE and ClausIE.

First and foremost, we make minimality a primary goal
of our system. This was motivated by our application to
semantic full-text search. However, minimality is also im-
portant for the more universal task of transforming the OIE
triples into disambiguated facts within a formal ontology.

Second, we provide a more principled description of how
we obtain our sentence constituents, by first transforming the
(fine-grained) parse tree into a (coarse-grained) constituent
tree, and then treating that tree like an expression tree (with
different operators) to obtain what we call our contexts
(from which we then derive our triples). In particular, the
second step is tricky when relative clauses are nested in
enumerations or vice versa. This aspect is not addressed in
the description of [7, Section 4.2].

III. CSD AND CSD-IE

We describe our system CSD-IE. The main idea behind
CSD-IE is contextual sentence decomposition (CSD). CSD
is performed in two steps. First, basic building blocks
of our contexts are identified in the sentence constituent
identification (SCI) phase. A tree expressing the semantics
is derived. In the second step, sentence constituent recom-
bination (SCR), the tree constituents are combined to form
our contexts. To derive triples from resulting contexts we
introduce a (relatively trivial) third phase. Throughout this
section we use the running sentence (S) from Section I.
The next sub-sections define the conceptual ideas of SCI
and SCR. We describe an implementation of SCI based on
constituent parse trees in section III-C. The triple generation
phase is described in section III-D.

A. Sentence Constituent Identification
The task of SCI is to identify the basic “building blocks”

of our contexts in a sentence and arrange them in a tree. It
turns out that, for our purposes, mainly relative clauses and
what we call enumeration items are important, because they
usually contain separate facts that have no direct relationship
to the other parts of the sentence. In our sentence (S) from
above, the (reduced) relative clause daughter of the actress
and writer Ana Maria Bueno refers to Ruth Gabriel but has
nothing to do with the rest of the sentence. Furthermore,
the relative clause contains the nominal (pre-)modifier the
actress and writer modifying Ana Maria Bueno, which
we consider to be another type of relative clause. The
nominal modifier itself contains an enumeration of two
coordinated enumeration items: the actress and writer. These
have nothing to do with each other, except that they both
refer to Ana Maria Bueno.
More specifically now, SCI computes a tree with the follow-
ing types of nodes:

ENUM: an enumeration. Each child corresponds to an
enumeration item and belongs to a different context.
CONC: a group of child-nodes (constituents) that belong to
the same context.
REL: a relative clause with a link to its head (the noun
phrase or clause it closer describes).
SUB: a clause or sub-sequence corresponding to a self-
sufficient context, e.g., a prepositional phrase describing a
complex circumstance representing some fact on its own.
LEAF: a leaf that contains words (terminals) of the sentence.

Nodes can be nested in an arbitrary fashion and arbitrarily
deep. Figure 1 depicts an SCI tree of our example sentence.

CONC

ENUM

Ruth Gabriel

the actress writer

REL

ENUM
daughter of Ana Maria Bueno

REL

was born in

and

San Ferando

CONC

CONC

Figure 1. The SCI tree for our example sentence (S). The head of each
relative clause is printed in bold, filler words in striped rectangles.

B. Sentence Constituent Recombination
The SCR phase recombines the constituents identified by

the SCI phase to form the final contexts. SCR recursively
computes contexts from an SCI tree or subtree as follows:

76

(SCR 0) Take out each subtree labeled REL or SUB and
change the root of this new tree to CONC. For REL, add
the head as the leftmost child (but leave it in the SCI tree,
too). For SUB, leave a reference to the newly created tree
in the original tree. This is the only place references to
other contexts need to be considered. Then process each
such subtree and the remaining part of the original SCI tree
(each of which then only has ENUM and CONC nodes left)
separately as follows:

(SCR 1) For a leaf, there is exactly one context: the part of
the sentence stored in that leaf.

(SCR 2a) For an inner node, first recursively compute the
set of contexts for each of its children.

(SCR 2b) If the node is marked ENUM, the set of contexts
for this node is computed as the union of the sets of contexts
of the children.

(SCR 2c) If the node is marked CONC, the set of contexts
for this node is computed as the cross-product of the sets of
contexts of the children.

Applying these rules to the SCI tree in Figure 1 yields the
desired contexts shown in section I:
In a final step we generate triples from the extracted
contexts, see Section III-D. We note that, given the SCI
tree and the definition above, SCR is straightforward and
fully defined. Therefore, the challenging part of CSD is
computing the SCI tree.

C. Sentence Constituent Identification Based on Deep Parse
Trees

We present an approach to SCI that is based on the output
of a state-of-the-art constituent parser. Figure 2 depicts the
parse tree for our example sentence (S).

S

Ruth Gabriel

NP NP

PP

VP
was born

NP

in NP

daughter
NP

NP NP

of

NP

the actress writer

and NP Ana Maria
Bueno

PP

San Ferando

,

NP

Figure 2. Constituent parse tree for our example sentence. For the sake
of readability, the parse tree has been simplified.

We manually created a small set of rules with which we
can derive an SCI tree from a parse tree. In the following
description when we speak of, for example, an NP (noun
phrase) we refer to nodes in the parse tree with that tag.

(SCI 1) Mark as ENUM each node, for which the children
are all of the same type (e.g. all VP), but interleaved

by punctuation or conjunctive constructions. (This avoids
splitting objects of di- and complex-transitive verbs).

(SCI 2a) If the sequence consist of only two NPs split by
a comma (and not some conjunction) this is an apposition.
Mark the second NP as REL and the first NP as its head.

(SCI 2b) Mark as REL each SBAR and PP, if it starts with
a phrase in WHPP, WHADV, WHNP or with a word from a
positive-list (e.g., such as or who) but not with one from
a negative-list indicating temporal relations (e.g., before,
when).

(SCI 2c) Mark as REL each PRN contained in round
brackets ”(”, ”)”.

(SCI 2d) Mark as REL each S that is preceded by an NP
followed by a comma.

(SCI 2e) Mark as REL each VP that is preceded by a
comma, if it has not previously been marked as part of an
enumeration and starts with a word with part-of-speech tag
of VBN, VBG or VBD. The verb can optionally be preceded
by an adverbial phrase ADVP.

(SCI 2f) Mark as REL each VP below a WHNP or NP,
starting with a word with a part-of-speech tag of VBN,
VBG, or VBD. These are participial clauses acting as relative
clauses.

(SCI 2g) For all REL from above define the closest left
sibling NP as the head. If there is no left sibling NP move
down towards the leaves and use the closest first NP to the
left as head (low/local attachment).

(SCI 3) Mark as REL each NP, which has an NP as parent
and which has exactly one right sibling NP. This NP is pre-
modifying the right sibling NP. Mark the right sibling NP
as head.

(SCI 4) Mark as REL each NP, which has as a first (or
last) word with part-of-speech tag PRP$. This indicates a
possessive relation. Mark the last (or first) part of the NP as
head. If the NP also has a right sibling mark it as additional
head.

(SCI 5a) Mark as SUB each PP starting with a preposition
from a positive-list of temporal indicators (e.g., before or
while), each PP enclosed in commas and all PPs at the
beginning of a sentence. These often describe circumstances
of events and should be considered separately.

(SCI 5b) Mark as SUB each SBAR if it is not already marked
REL.

(SCI 5c) Mark as SUB each S if it is below an SBAR and
contains NP as well as VP, but only if it is not directly below
a node of type PP or PRN (these were treated separately).

(SCI 6) Mark as CONC all remaining nodes. Contract away
each CONC with only text nodes in its sub-tree (by merging
the respective text) and merge CONC nodes that only have
CONC nodes as children.

77

Applying these rules to the parse tree in Figure 2 produces
the SCI-tree displayed in Figure 1. As our quality evaluation
in Section IV shows, in general, this small set of rules
already works reasonably well.

D. Triple Generation

The triple generation from extracted contexts is (relatively)
straight-forward. For each context, we identify the first
explicit verb phrase and surrounding adverbs to be the
predicate. Everything before that belongs to the subject, and
everything after that to the object. For the contexts from our
example sentence (S) this gives us the triple #1 from the
desired triples shown under 2 in Section I-A.
For relations resulting from SCI 2a-g and SCI 3 rules we
add the verb is between the head and its attachment, but
only if the attachment does not begin with a verb phrase
(we then use this verb phrase as predicate). This gives us
the remaining triples #2, #3 and #4 for our example sentence
from above.

To deal with possessive relations identified by the SCI
4 rule (see section III-C above) we use the predicate has
between head and attachment.

In some cases the object consists of a list of noun or
prepositional phrases (that are not enumeration items), for
example in the sentence:

Soubry graduated in law from the University of
Birmingham in 1979.

Here, the object consists of three parts: (in law), (from the
University of Birmingham) and (in 1979). We identify these
noun and prepositional phrases in the object when creating
our contexts in the SCR-phase, utilizing information from
the parse tree. From n identified phrases in the object we
derive triples, by in turn appending zero or one of the n - 1
last phrases to the first phrase:

#1: (Soubry) (graduated) (in law)
#2: (Soubry) (graduated) (in law from

the University of Birmingham)
#3: (Soubry) (graduated) (in law in 1979)

For n identified phrases in the object, this results in n triples.

IV. EVALUATION

We compare CSD-IE against the three OIE systems
ReVerb, OLLIE, and ClausIE. CSD-IE was implemented
as described in Section III, using the Stanford Constituent
Parser [9]. ClausIE was run in its default mode to extract
triples.

We evaluated the systems on two datasets: 200 random
sentences from the English Wikipedia, and 200 random
sentences from the New York Times. For comparability, we
used the exact same datasets as in [7], which the authors
made available on their web site2. The labels of their
evaluation are also available, however, we chose to label all

2http://www.mpi-inf.mpg.de/departments/d5/software/clausie.

ReVerb OLLIE ClausIE CSD-IE
#facts 249 408 610 677

#facts correct 188 230 421 474
prec-a 75.5% 56.4% 69.0% 70.0 %
prec-m 87.2% 80.4% 57.0% 76.8 %

coverage 47.2% 62.7% 95.4% 97.5 %
triple length 7.3 9.7 11.0 8.4

ReVerb OLLIE ClausIE CSD-IE
#facts 271 358 644 743

#facts correct 177 200 412 531
prec-a 65.3% 55.9% 64.0% 71.5 %
prec-m 93.8% 79.5% 71.4% 90.4 %

coverage 43.8% 61.0% 89.0% 91.8 %
triple length 7.0 10.4 11.6 7.8

Table I
RESULTS OF OUR QUALITY EVALUATION FOR ALL FOUR SYSTEMS FOR

THE TWO DATASETS WIKIPEDIA (ABOVE) AND NEW YORK TIMES
(BELOW).

extracted triples (by all four systems) again, for the following
reasons. First, for reasons of consistency (there is always
room for interpretation when it comes to assessing accuracy
and minimality). Second, to avoid a bias in favor or against a
certain system (all extractions were labeled together). Third,
because we also wanted to explicitly assess minimality for
each extraction.

The evaluation of [7] also comprises the ReVerb dataset
from [6], which consists of 500 random sentences from
the Web. However, the relative quality differences between
evaluated systems on that dataset were essentially the same.
Preliminary experiments on the ReVerb dataset have con-
firmed this impression, and we therefore excluded it from
our (already cumbersome) evaluation.

As explained in Section I, we labeled each extraction
(from each of the four systems) with two labels: one for
accuracy (yes or no) and one for minimality (yes or no).
From these labels, we computed the following accumulated
measures for each system:
precision wrt accuracy (prec-a) = the percentage of triples
labeled as accurate; see Section I
precision wrt minimality (prec-m) = the percentage of correct
triples labeled as minimal; see Section I
coverage = the percentage of word occurrences that occur
in at least one extracted triple for that system
average triple length in words = average length of extracted
triples for that system in words (ignoring special characters)

Table I shows the results for the two datasets. We note
that the numbers for both datasets closely agree with those
reported in [7], confirming the reasonability of our labels.
We first discuss the results for the Wikipedia dataset (Table
I, upper part). From all systems CSD-IE extracts the largest
number of facts overall (#facts), as well as the largest
number of correct facts (#facts correct). It also provides the
highest coverage of all systems (coverage). The precision
wrt accuracy (prec-a) and coverage of CSD-IE is comparable

78

to that of ClausIE, but our extracted facts are shorter
on average (triple length). Furthermore, the precision wrt
minimality (prec-m) is 20% higher - a drastic improvement.
This is because we explicitly consider minimality in our
approach and, as a result, our extracted facts are shorter.
ReVerb, the only system not utilizing a deep (constituent or
dependency) parse, uses patterns that match relatively short
facts. These seem to be very accurate, resulting in the best
precision and precision wrt minimality scores. In contrast,
coverage and the number of extracted facts are not nearly
as good as those of CSD-IE or ClausIE. OLLIE improves
upon ReVerb by extracting more facts and providing higher
coverage. However, overall precision drops drastically. This
has also been observed before in [7]. A common problem for
deep-parse-based OpenIE systems is the large influence of
parser errors. CSD-IE uses the Stanford Constituent Parser
[9], OLLIE uses the MaltParser [10] and ClausIE uses the
Stanford Dependency Parser [9]. One possible reason for
the comparably low precision of OLLIE might be that the
MaltParser was trained on data from a different domain and
had problems with the sometimes ungrammatical Wikipedia
sentences.

The results for the New York Times dataset, (Table I,
lower part) are similar to those of the Wikipedia dataset.
Sentences are typically longer and deeply nested, causing
more broken parses, resulting in slightly worse coverage for
all systems. The sentences also contain more facts - almost
all systems extract a slightly larger number of facts. Because
indirect speech and nested facts are very common in news
articles, many triples extracted by CSD-IE contain references
to other facts and are therefore more compact and minimal.

A preliminary investigation of errors for CSD-IE on both
datasets revealed that most of the inaccurate extractions were
caused by mistakes in the parse trees. We consider this an
important direction for future research, see the next section.

V. CONCLUSIONS AND FUTURE WORK

We have presented CSD-IE, a new system for open
information extraction (OIE). CSD-IE is based on contextual
sentence decomposition (CSD), a technique originally de-
veloped for semantic full-text search (SFTS). Our evaluation
has shown that CSD-IE simultaneously achieves good preci-
sion, high recall and very good coverage and minimality. The
aspects of coverage and minimality are particularly impor-
tant for applications such as semantic search, where precise
facts and small information loss are desirable. Our work has
raised some interesting directions for future research.

A preliminary error analysis shows that most inaccurate
extractions are due to a mistake in the (constituent) parse.
Since parsing is a complex problem, it would be interesting
to make the sentence constituent identification (SCI, see
Section III-A) more robust against errors in the parse. Or,
alternatively, pre-process the sentence, such that certain
common errors are avoided.

A more ambitious plan would be to avoid the “detour”
via a deep parse altogether, and try to identify the sentence
constituents in a more direct manner. Since our SCI tree
III-A is significantly more coarse-grained than the original
parse tree, there is hope that this problem can be solved
more efficiently and with higher quality.

A common phenomenon in more complex sentences is
that of transitivity. For example, consider the sentence

The ICRW is a non-profit organization headquartered
in Washington.

The following two triples would be considered both accurate
and minimal in our approach:

#1: (The ICRW) (is) (a non-profit organization)
#2: (a non-profit organization) (headquartered) (in Wash-

ington).
However, triple #2 would be significantly more informa-

tive, if the S part were replaced by The ICRW, that is,
the concrete entity to which it actually refers. It would be
desirable to deal with transitivity of this and more complex
kinds as a part of the OIE process.

REFERENCES

[1] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and
O. Etzioni, “Open information extraction from the web,” in
IJCAI, 2007, pp. 2670–2676.

[2] H. Bast, F. Bäurle, B. Buchhold, and E. Haussmann, “Broc-
coli: Semantic full-text search at your fingertips,” CoRR,
2012.

[3] Mausam, M. Schmitz, S. Soderland, R. Bart, and O. Et-
zioni, “Open language learning for information extraction,”
in EMNLP-CoNLL, 2012, pp. 523–534.

[4] F. Wu and D. S. Weld, “Open information extraction using
wikipedia,” in ACL, 2010, pp. 118–127.

[5] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and
Mausam, “Open information extraction: The second gener-
ation,” in IJCAI, 2011, pp. 3–10.

[6] A. Fader, S. Soderland, and O. Etzioni, “Identifying relations
for open information extraction,” in EMNLP, 2011, pp. 1535–
1545.

[7] L. D. Corro and R. Gemulla, “Clausie: clause-based open
information extraction,” in WWW, 2013, pp. 355–366.

[8] E. Haussmann, “Contextual sentence decomposition with
applications to semantic full-text search,” Master’s thesis,
University of Freiburg, July 2011.

[9] D. Klein and C. D. Manning, “Accurate unlexicalized pars-
ing,” in ACL, 2003, pp. 423–430.

[10] J. Nivre, J. Hall, and J. Nilsson, “Memory-based dependency
parsing,” in Proceedings of CoNLL, 2004, pp. 49–56.

79

More Informative Open Information Extraction

via Simple Inference

Hannah Bast and Elmar Haussmann

Department of Computer Science
University of Freiburg

79110 Freiburg, Germany
{bast, haussmann}@informatik.uni-freiburg.de

Abstract. Recent Open Information Extraction (OpenIE) systems utilize gram-
matical structure to extract facts with very high recall and good precision. In this
paper, we point out that a significant fraction of the extracted facts is, however, not
informative. For example, for the sentence The ICRW is a non-profit organization
headquartered in Washington, the extracted fact (a non-profit organization) (is
headquartered in) (Washington) is not informative. This is a problem for seman-
tic search applications utilizing these triples, which is hard to fix once the triple
extraction is completed. We therefore propose to integrate a set of simple infer-
ence rules into the extraction process. Our evaluation shows that, even with these
simple rules, the percentage of informative triples can be improved considerably
and the already high recall can be improved even further. Both improvements
directly increase the quality of search on these triples.1

1 Introduction

Information extraction (IE) is the task of automatically extracting relational tuples, typ-
ically triples, from natural language text. In recent years, the trend has been towards
Open Information Extraction (OpenIE), where identifying the predicate and hence the
relation is part of the problem. For example, from the sentence

The ICRW is a non-profit organization headquartered in Washington.
the following triples might be extracted:

#1: (The ICRW) (is) (a non-profit organization)
#2: (a non-profit organization) (is headquartered in) (Washington)

Extracted triples are an important source of information for many information retrieval
(IR) systems, in particular in the area of semantic search. For example, systems for the
semantic search challenges in the SemSearch 2010/2011 [1] and TREC Entity Track
2009/2010 [2] perform search on triples. A public demo of a search on triple extrac-
tions of the ReVerb OpenIE system [3] is available at: http://openie.cs.washington.edu/.
Semantic search systems like Broccoli [4] search in triples or triple-like excerpts ex-
tracted from the full text as well. All these approaches rely on the usefulness of ex-
tracted triples, usually indicated by how much facts were extracted (recall) and whether
they are correct (precision).

1 A demo of our system is available via http://ad.informatik.uni-freiburg.de/publications

80

Early approaches to OpenIE focused on extracting triples with high precision but
comparably low recall [5]. Later systems focused on improving recall at best possible
precision. Newer systems also addressed other important quality aspects, for example
in [3] incoherent extractions were addressed and [6] considers the context of triples.
The by far highest recall (at reasonably good precision) was recently achieved with
rule-based approaches utilizing grammatical structure, namely ClausIE [7] and CSD-
IE [8]. They rely on grammatical rules based on deep parses of a sentence to extract
direct facts, as e.g., triples #1 and #2 above. The facts are direct in the sense that sub-
ject, predicate (possibly implicit) and object are in some form directly connected via a
grammatical relation. With respect to these direct facts, the systems achieve almost per-
fect recall which makes them suitable for a wide range of applications in IR. However,
these systems ignore various quality aspects from earlier work.

In this paper, we show that a significant amount of the extracted facts is not infor-
mative. In the example above, triples #1 and #2 can both be considered correct, but only
triple #1 is, by itself, informative. For all practical purposes, the fact that some non-
profit organization is headquartered in Washington is useless. This is a serious problem
for systems utilizing these triples for search. For example, a search for where the ICRW
is headquartered would not be possible to answer from the extracted triples above. An
informative extraction that instead can be inferred is:

#3: (The ICRW) (is headquartered in) (Washington)
With this, the extracted triple #2 becomes superfluous - all information of the sentence
is covered in a precise form in triples #1 and #3. Note that inferring this is only possi-
ble while processing the sentence, when individual subjects, objects and their relations
are uniquely identified. Afterwards, multiple facts extracted from different sentences
mentioning (say) a non-profit organization cannot be guaranteed to refer to the same
organization.

Based on the observation that this phenomenon is frequent we propose to integrate
simple inference into the extraction process of an OpenIE system. Our approach utilizes
some of the generic rules used in large scale inference systems, see Section 3. The
process is simple and fast, only uses few inference rules and already shows good results.
We provide a brief overview of related work in the next section, describe our approach
in Section 3 and provide an evaluation in Section 4.

2 Related Work

For an elaborate overview of recent OpenIE systems we refer to [7]. To the best of
our knowledge no existing OpenIE system addresses the issue of inference during its
extractions process. Some earlier systems, e.g. [9], extract “indirect” facts, similar to
inferred facts, using learned patterns. This only works if the text pattern learned for
extraction is part of the used training set. In contrast, our inference rules are generic
and independent of the exact text surface of a relation.

A lot of work on inferring new information from triples or knowledge bases ex-
ists, e.g. [10, 11]. The goal is usually to infer facts from triples extracted from different
sources in order to, for example, extend knowledge bases or perform question answer-
ing. Our goal is to improve the informativeness of extracted triples in the first place, not

81

to perform elaborate inference. Furthermore, as we argued in Section 1, some informa-
tion can only be inferred while extracting triples, and is irrevocably lost afterwards.

Informativeness of extracted triples has previously been addressed in [3]. Triples
were considered uninformative if they omit critical information, for example, when
relation phrases are underspecified. The informativeness of extracted triples was evalu-
ated as part of correctness, i.e. uninformative triples were labeled incorrect. We take this
one step further and consider a triple uninformative if there is a more precise triple that
should be extracted instead, e.g., if the subject should be different (as in the example in
Section 1). In our evaluation we explicitly label informativeness as well as correctness
of extracted triples.

3 Simple Inference for OpenIE

Our approach consists of three straightforward steps, which are comparably simple yet
effective (as our quality evaluation in section 4 shows). The steps are performed after
subjects, predicates and objects of all triples in a sentence have been identified, but
when all other information (underlying parse tree, supporting data structures etc.) is still
available. Given the predicate of each triple in a sentence we first classify the predicate
into one of several semantic relation classes. Based on the semantic relation we apply
a set of inference rules to derive new triples. In the final step we remove existing triples
that we consider uninformative depending on whether and how they were used to derive
new triples. The next subsections each describe one of the three steps.

3.1 Identifying Semantic Predicate Class

We first classify the predicate of each triple into one of five semantic relation classes
shown in Table 1. The relations have previously been successfully used for inference
[10] and allow deriving generic, domain-independent inference rules.

To identify the relations we match simple indicator words and patterns. The patterns
are implemented as regular expressions over text or parse tree fragments using Tregex
[12].

Table 1. Semantic relation classes and patterns for identification

Semantics Pattern
SYN synonymy is, was, has|have been, are, nicknamed, known as
IS-A hyponymy (has|have been, are, is) a|an
PART-OF meronymy part of, consist* of
IN containment or placement * in
OTHER all other relations *

3.2 Inferring New Triples

Given the triples with identified semantic predicates we infer new triples using a set
of generic inference rules. Table 2 shows the rules used. For our example from the

82

introduction, the last rule matches because the semantic relation IS-A holds between
The ICRW (A) and a non-profit organization (B) and C can be bound to Washington.
As a result, it is inferred that The ICRW is headquartered in Washington.

These rules are similar to the up-ward monotone rules from [10], but have been
extended with an additional rule to reason over IS-A relations. The implementation dif-
ferentiates between lexically identical subjects and objects that occur in different places
of a sentence. This is a fundamental difference to approaches inferring information after
triple extraction, where this information is no longer available.

Table 2. Inference rules for new triples

OTHER(A′, B) ← OTHER(A,B) ∧ SYN(A,A′)
OTHER(A′, B) ← OTHER(A,B) ∧ SYN(A′, A)
OTHER(A,B′) ← OTHER(A,B) ∧ SYN(B,B′)
OTHER(A,B′) ← OTHER(A,B) ∧ SYN(B′, B)
IN(A,C) ← IN(A,B) ∧ PART-OF(B,C)
IN(A,C) ← IN(A,B) ∧ IS-A(B,C)
OTHER(A,C) ← IS-A(A,B) ∧ OTHER(B,C)

Table 3. Rule for deleting triples

remove(OTHER(B,C))←
IS-A(A,B)
∧OTHER(B,C)
∧OTHER(A,C)

3.3 Removing Uninformative Triples

As described in Section 1 some triples become redundant after they were used to infer
additional information. These triples should not be part of the output of the system. This
is often the case for IS-A relations and we use a single rule shown in Table 3 to remove
triples from our result list.

4 Evaluation

We evaluate the quality of extracted triples with respect to correctness and informative-
ness. A system similar to the OpenIE system in [8] was used to integrate inference as
described above. We compared it against the OpenIE system without inference.

As dataset we used 200 random sentences from Wikipedia. The sentences contain
only few incorrect grammatical constructions and cover a wide range of complexity and
length. This is the exact same dataset that has already been used in [7].

For each extracted triple we manually assigned two labels: one for correctness (yes
or no) and one for informativeness (yes or no). We follow the definition of [5] and con-
sider a triple correct if it is consistent with the truth value of the corresponding sentence.
A correct triple is considered informative if there is no extraction that is more precise,
according to the sentence it was extracted from. For example, in the sentence from the
introduction, triples #1 and #2 would be considered correct, but only triple #1 would
be considered informative and triple #3 would be considered both, correct and infor-
mative. From the labeled triples we calculated precision of correct triples and estimate
recall using the number of extracted correct triples. We also calculated corresponding
breakdown statistics for triples that are informative (inf.) as well as correct (corr.). Ta-
ble 4 shows overall results and Table 5 provides detailed information about the inferred
triples.

83

We first discuss the results in Table 4. Without inference, a large fraction of 10%
of correct triples is not informative (prec-corr. inf.). This means that, on average, every
10th extracted correct triple is more or less useless. Using inference the overall number
of extracted facts increases from 649 to 762, a relative increase of 17%. The number of
correct facts (#facts corr.) also increases: from 429 to 484, corresponding to a relative
increase of 13%. The relative increase in correct triples is smaller, because a small
number of incorrect triples are inferred (see next paragraph). This is also the reason for
the small decrease in the percentage of correct triples (prec corr.) from 66% to 64%
(at a 13% higher recall, however). Overall, the number of triples that are both correct
and informative (#facts corr. + inf.) increases from 385 to 444: a 15% increase. This
is a major improvement, caused by the large number of correct informative triples that
were inferred and the uninformative triples removed. Correspondingly, the percentage
of correct triples that are also informative (prec-corr. + inf.) increases from 90% to 92%.

Table 4. Quality evaluation results with inference (top row) and without inference (bottom row)
over the labels correct (corr.) and informative (inf.). prec corr. refers to the percentage of all
triples labeled correct, prec-corr. inf. to the percentage of correct triples labeled informative.

#facts #facts corr. #facts corr. + inf. prec corr. prec-corr. inf.
No Inference 649 429 385 66% 90%

Inference 762 484 444 64% 92%

Table 5. Detailed statistics for inferred triples. prec inf. refers to the percentage of inferred triples
labeled correct and prec-corr. inf. to the percentage of inferred correct triples also labeled infor-
mative.

#inferred #inferred corr. prec inf. #inferred corr. + inf. prec-corr. inf.
127 69 54% 59 85%

Table 5 shows the statistics for inferred triples. Note that, as described in Section
3.3, during inference previously extracted triples may be removed. Therefore, the num-
ber of extracted facts with inference does not equal the sum of facts extracted without
inference and inferred facts (see Table 4). Overall, about 54% of inferred triples are
correct (prec. inf.). A preliminary investigation shows that this is mainly caused by mis-
takes in preceding phases, in particular wrong parses, wrong identification of objects or
predicates and wrong mapping of predicates to their semantic class (see Section 3.1).
Eliminating these errors should be part of our next steps (see Section 5). About 85% of
correct inferred triples are also informative (prec-corr. inf.). Closer analysis shows that,
due to inference, 32% of the triples that were correct but uninformative were removed
and replaced with informative triples. Together with the inferred triples, this causes the
increase in the percentage of correct triples that are also informative (prec-corr. + inf.
in Table 4).

In some cases uninformative triples were inferred. For example, from the sentence
She joined WGBH-TV, Boston’s public television station it is inferred that (She) (joined)
(Boston’s public television station). Given that our current approach does not differen-

84

tiate between concrete and abstract subjects and objects (and therefore the “direction”
of inference) the high percentage of informative triples derived is remarkable. Further
work should, however, try to prevent these extractions.

5 Conclusions

We have presented a simple yet effective way to increase the informativeness of ex-
tracted triples for a recent OpenIE system. Using only a few simple inference rules
integrated into triple extraction can increase the number of extracted informative triples
by 15%. There are a lot of promising directions to improve our work.

A preliminary error analysis shows that most mistakes happen in preceding extrac-
tion stages, in particular the precise identification of predicates and objects. Improve-
ments in these areas will likely obviate the small negative effect on precision. To im-
prove the recognition of semantic relations, utilizing existing collections of semantic
patterns, such as provided in [13], seems promising. Our manually designed inference
rules could be exchanged for automatically derived rules, e.g., as suggested in [14].
Finally, to derive additional facts and distinguish between abstract and concrete facts
utilizing information from named entity recognition seems promising.

References
1. Tran, T., Mika, P., Wang, H., Grobelnik, M.: Semsearch’11: the 4th Semantic Search Work-

shop. In: WWW. (2011)
2. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2010 Entity Track. In:

TREC. (2010)
3. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction.

In: EMNLP. (2011) 1535–1545
4. Bast, H., Bäurle, F., Buchhold, B., Haussmann, E.: Broccoli: Semantic full-text search at

your fingertips. CoRR (2012)
5. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information

extraction from the web. In: IJCAI. (2007) 2670–2676
6. Mausam, Schmitz, M., Soderland, S., Bart, R., Etzioni, O.: Open language learning for

information extraction. In: EMNLP-CoNLL. (2012) 523–534
7. Corro, L.D., Gemulla, R.: ClausIE: clause-based open information extraction. In: WWW.

(2013) 355–366
8. Bast, H., Haussmann, E.: Open information extraction via contextual sentence decomposi-

tion. In: ICSC. (2013)
9. Banko, M., Etzioni, O.: The tradeoffs between open and traditional relation extraction. In:

ACL. (2008) 28–36
10. Schoenmackers, S., Etzioni, O., Weld, D.S.: Scaling textual inference to the web. In:

EMNLP. (2008) 79–88
11. Lao, N., Mitchell, T.M., Cohen, W.W.: Random walk inference and learning in a large scale

knowledge base. In: EMNLP. (2011) 529–539
12. Levy, R., Andrew, G.: Tregex and Tsurgeon: tools for querying and manipulating tree data

structures. In: LREC. (2006) 2231–2234
13. Nakashole, N., Weikum, G., Suchanek, F.M.: PATTY: A taxonomy of relational patterns

with semantic types. In: EMNLP-CoNLL. (2012) 1135–1145
14. Schoenmackers, S., Davis, J., Etzioni, O., Weld, D.S.: Learning first-order horn clauses from

web text. In: EMNLP. (2010) 1088–1098

85

Relevance Scores for Triples from Type-Like Relations

Hannah Bast, Björn Buchhold, Elmar Haussmann
Department of Computer Science

University of Freiburg
79110 Freiburg, Germany

{bast, buchhold, haussmann}@cs.uni-freiburg.de

ABSTRACT
We compute and evaluate relevance scores for knowledge-base tri-
ples from type-like relations. Such a score measures the degree
to which an entity “belongs” to a type. For example, Quentin
Tarantino has various professions, including Film Director, Screen-
writer, and Actor. The first two would get a high score in our set-
ting, because those are his main professions. The third would get
a low score, because he mostly had cameo appearances in his own
movies. Such scores are essential in the ranking for entity queries,
e.g. “american actors” or “quentin tarantino professions”. These
scores are different from scores for "correctness" or "accuracy" (all
three professions above are correct and accurate).

We propose a variety of algorithms to compute these scores. For
our evaluation we designed a new benchmark, which includes a
ground truth based on about 14K human judgments obtained via
crowdsourcing. Inter-judge agreement is slightly over 90%. Ex-
isting approaches from the literature give results far from the op-
timum. Our best algorithms achieve an agreement of about 80%
with the ground truth.

1. INTRODUCTION
Knowledge bases allow queries with a well-defined result set.

For example, we can easily formulate a precise query that gives us
a list of all american actors in a knowledge base. Note the fun-
damental difference to full-text search, where keyword queries are
only approximations of the actual search intent, and thus result lists
are typically a mix of relevant and irrelevant hits.

But even for well-defined result sets, a ranking of the results is
often desirable. One reason is similar as in full-text search: when
the set of relevant hits is very large, we want the most “interest-
ing” results first. But even if the result set is small, an ordering
often makes sense. We give two examples. The numbers refer to
Freebase [7], the largest general-purpose knowledge base to date.

Example 1 (american actors): Consider the query that returns
all entities that have Actor as their profession and American as
their nationality. On our Freebase dataset, this query has 64,757
matches. A straightforward ranking would be by popularity, as
measured, e.g., by counting the number of occurrences of each en-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGIR’15, August 09 - 13, 2015, Santiago, Chile.
c� 2015 ACM. ISBN 978-1-4503-3621-5/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2766462.2767734.

tity in a reference text corpus. Doing that, the top-5 results for our
query look as follows (the first item means the younger Bush):
George Bush,Hillary Clinton,Tim Burton,Lady Gaga,Johnny Depp
All five of these are indeed listed as actors in Freebase. This is cor-
rect in the sense that each of them appeared in a number of movies,
and be it only in documentary movies as themselves or in short
cameo roles. However, Bush and Clinton are known as politicians,
Burton is known as a film director, and Lady Gaga as a musician.
Only Johnny Depp, number five in the list above, is primarily an
actor. He should definitely be ranked before the other four.
Example 2 (professions of a single person): Consider all profes-
sions by Arnold Schwarzenegger. Our version of Freebase lists 10
entries:
Actor, Athlete, Bodybuilder, Businessperson, Entrepreneur, Film
Producer, Investor, Politician, Television Director, Writer
Again, all of them are correct in a sense. For this query, ranking
by “popularity” (of the professions) makes even less sense than
for the query from Example 1. Rather, we would like to have
the “main” professions of that particular person at the top. For
Arnold Schwarzenegger that would be: Actor, Politician, Body-
builder. Note how we have a very-ill defined task here. It is debat-
able whether Arnold Schwarzenegger is more of an actor or more
of a politician. But he is certainly more of an actor than a writer.

1.1 Problem definition
In this paper, we address the following problem, which addresses

the issues behind both of the examples above.

Definition: Given a type-like relation from a knowledge base, for
each triple from that relation compute a score from [0, 1] that mea-
sures the degree to which the subject belongs to the respective type
(expressed by the predicate and object). In the remainder of this
paper we often refer to these scores simply as triple scores.

Here are four example scores, related to the queries above:
Tim Burton has-profession Actor 0.3
Tim Burton has-profession Director 1.0
Johnny Depp has-profession Actor 1.0
Arnold Schwarzenegger has-profession Actor 0.6

An alternative, more intuitive way of expressing this notion of “de-
gree” is: how “surprised” would we be to see Actor in a list of
professions of Johnny Depp. We use this formulation in our crowd-
sourcing task when acquiring human judgments.

Note that the “degree” in the definition above is inherently ill-
defined, much like “relevance” in full-text search. In particular, dif-
ferent users might have different opinions on the correct “degree”
(for example, on the four scores from above). However, it is one
of the results of our crowdsourcing-based experiments that there is

86

broad general consensus. Note that we do not take user preferences
into account in this paper; we consider this an interesting topic on
its own.

1.2 Variants and related problems
The reader may wonder about variants of the problem definition

above, and related problems from the literature. We briefly discuss
these here.

Degree of Belonging vs. Correctness vs. Accuracy
Our scores are different from correctness or confidence scores.

For example, in knowledge fusion, multiple sources might provide
conflicting information on the birth date of a person. In those situ-
ations we need assessments on the confidence of a particular infor-
mation and which information is probably correct [12].

Our scores are also different from scores that measure the ac-
curacy. For example, an estimate for the population of a country
might be off by a certain margin but not completely wrong, or only
a range for the value is given.

We consider a single knowledge base with non-conflicting and
precise information. Indeed, for a knowledge base like Freebase,
over 99% of all triples are reported to be correct [7]. Even if there
are incorrect triples, it is a pleasant side effect of our framework
that they would get low scores.

Graded scores vs. Binary scores
We started our research on this topic with binary scores, which

we called primary and secondary, in accordance with existing re-
search on graded relevance in full-text search.1 We later found that
both our crowdsourcing experiments and our algorithms naturally
provide finer grades that also make sense in practice. We hence
use a continuous score in our definition above. The range [0, 1] is
merely a matter of convention.

In our crowdsourcing tasks in Section 3 we still ask each judge
for only a binary judgment. However, aggregation of multiple judg-
ments for each triple leads again to a graded score.

Which kind of relations
In principle, our algorithms work for all relations. However, we

found that for relations other than type-like, the kind of scores we
are interested in are either trivial or can be obtained using other,
simpler methods. We distinguish three types of relations.

• Functional relations like birth date or weight, where each sub-
ject has exactly one object. Since we assume a single knowledge
base where (almost) all triples are correct, we could simply assign
a score of 1.0 to all such triples.

• Non-functional relations between two concrete entities, like ac-
quired (between two companies) or acted in (between an actor and
a movie). For such triples there are two simpler options for a good
relevance score, which we do not explore further in this paper. The
first option is to take the value from another relation of the knowl-
edge base, like the date of the acquisition or the rank of the actor in
the cast listing. This relation could be assigned manually (the num-
ber of relations in a knowledge base is relatively small). Or it could
be determined heuristically (interesting, but technically completely
different from the methods we present). The second option is to
adapt our method for type-like relations algorithms also for these
relations. The main challenge for finding witnesses in the full text
is then to recognize variations of the (fixed) predicate name and not
of the (varying) object name. This makes our problem much easier;
see Section 4.

1We assume that all triples in our knowledge base are correct, so
there are no triples expressing a relationship that is not relevant.

• Non-functional relations between an entity and an abstract group
or type, like profession (between a person and a profession) or
nationality (between a person and a nationality). We know of no
knowledge base with explicit values for the “degree” to which an
entity belongs to a certain type. In particular, this is true for profes-
sion and nationality. As we will see in Section 4, such relations are
also the hardest for our approaches, because they require a separate
classifier for each distinct type (e.g., each distinct profession and
nationality), instead of just one for the whole relation. This is why
we selected only type-like relations for our benchmark.

We further remark that type information is central to many entity
queries. For example, all three tasks from the TREC 2011 Entity
Track [2] ask for lists of entities of a particular type. Also, most
of the entity queries currently supported by Google are for entities
of a certain type, like in the two use cases from our introduction;
presumably because of their popularity amongst users.

Triple Scores vs. Full Ranking
The reader may ask why we study scores for individual triples

when the motivation is the ranking of results for entity queries. We
give two main reasons.

First, the triple scores we consider are a crucial component of any
such ranking, and the problem by itself is hard enough to warrant
separate study. In fact, in Section 2 we discuss related works on
ranking for entity queries that require such scores as input.

Second, for many popular entity queries (like our two use cases
from the introduction), our triple scores are basically all that is
needed to obtain a good ranking. For the first use case (“american
actors”), ranking is a simple matter of combining our triple scores
with a popularity measure for each entity. Popularity measures are
easily obtained, e.g., by counting the number of mentions in a ref-
erence corpus. For the second use case (“professions of a single
person”), triple scores are exactly what is needed. Note that for the
second use case, a proper ranking is still missing on Google.

1.3 Basic Idea and Challenges
Our basic idea is to find “witnesses” for each triple in a given

large text corpus. The more witnesses we find and the more signif-
icant they are, the larger the score for that triple.

For example, consider the profession relation. In a “learning”
step, we compute words that are associated with each profession.
For example, for the profession Actor these could be: actor, ac-
tress, film, cast. For each entity (e.g., Johnny Depp) we identify
occurrences of these words semantically related to that entity in the
text (e.g., Paramount decided to cast Depp ...). Then we compute
weighted sums of the number of such occurrences for each possible
profession. In a final step, we normalize these sums to obtain our
scores. This sounds simple, but there are a number of challenges:

• Learning must be unsupervised, given that we have to learn dif-
ferent words for every different possible “type”. For example, there
are more than 3,552 different professions in Freebase.
• When is a word “semantically related” to an entity in a text?

It turns out that considering co-occurrence in the same sentence
works, but that a deeper natural language processing helps.
• How much weight to give to each occurrence of a word? It turns

out that results can be boosted by graded scores for different words.
• How to get from weighted sums to normalized scores? It turns

out that a simple linear mapping works but is often not optimal.
• Why use text and not the knowledge base? For a long time,

we also experimented with other facts from the knowledge base
as complementary or even as the sole information source. For ex-
ample, the fact that someone is or once was president of the U.S.

87

implies a high score for the profession Politician. However, we
found this knowledge to be consistently less available (especially
for less popular entities) and nowhere more reliable than full text.
More details about this from our experiments in Section 5.4.

1.4 Contributions and Overview
We consider the following as our main contributions:
• We identify the computation of relevance scores for triples from

type-like relations as an interesting research problem, which so far
has not achieved much attention. These scores are essential for
properly ranking many popular kinds of entity queries.
• We designed and make available a first benchmark for this prob-

lem. The required large number of relevance judgments (over 14K)
were obtained via crowdsourcing. Given the hard-to-define nature
of our scores, designing the task such that untrained human judges
provide proper and consistent judgments was a challenging task on
its own. Inter-judge agreement is about 90%, which confirms the
soundness of our problem definition. See Section 3.
• We introduce a variety of methods (partly new, partly adapted)

to compute these scores. All our methods work with an arbitrary
knowledge base and text corpus. See Section 4.
• We implemented and evaluated all methods against three base-

lines, using Freebase as knowledge base and Wikipedia as text cor-
pus. Our best methods achieve an agreement of about 80% with the
ground truth. We considered many variants and ideas for improve-
ment, none of which gave better results. See Section 5.
• We make our evaluation benchmark as well as all our code pub-

licly available (see Section 5). In particular, this allows full repro-
duction of our results.

2. RELATED WORK
There exists a large amount of work about ranking and other

problems based on the kind of relevance scores we study here.
However, in all these works such scores are assumed to be given.
We know of no work that addresses how to compute these scores in
the first place. We give a short overview of the various approaches.
Triple Scores for Ranking Structured Queries Several pieces of
work deal with integrating scores in a framework for ranking struc-
tured queries. For example, in [8], the authors propose an exten-
sion to RDF they call Ranked RDF, [13] proposes a ranking model
for SPARQL queries with possible text extensions based on Lan-
guage Models, and [11] discusses how to combine several kinds
of scores associated with triples into a meaningful ranking. In all
these frameworks, scores that are similar to our triple scores are
assumed to be given.
Fuzzy Databases / Knowledge bases This is an old and well-
established research area, considering all kinds of “fuzziness” in an
information system, including: uncertainty, imprecision, and frac-
tional degrees of membership in sets; see [20] for a survey. How-
ever, this body of work is almost entirely about modeling this fuzzi-
ness, and how to solve standard tasks (like queries or reasoning)
based on fuzzy information. The fuzzy information itself is, again,
assumed to be given. We know of no work in this area, where fuzzy
scores of the kind we consider are actually computed.
Ranking for Relational Databases SQL allows explicit ordering
of the query results (using the order by keyword). Still, there are
many meaningful queries to databases that return a huge number of
results. When confronting users with those results, ranking plays
an important role. This problem is tackled in [9]. Apart from
the many-answers problem, ranking for databases becomes impor-
tant when adding a keyword-search component. BANKS [5] has

the goal of ranking possible interpretations of a keyword query.
Similarly, ObjectRank [1] also takes keyword queries, but ranks
“database objects” (e.g., a paper, an author, etc.) according to a
query. These approaches share the fact that they work exclusively
on the data (or knowledge) base. Going from there, they try to use
the structure induced by foreign keys to provide a ranking. For our
specialized use case, this is not well suited. Even in a perfect world,
where such an approach is able to find the perfect connections to
influence the ranking (a hard task in itself), it is restricted to data in
the knowledge base. However, as discussed in Section 1.3, we have
found structured knowledge to be less available than that from full
text for computing our relevance scores.

Ranking Semantic Web Resources In the Semantic Web, one is
confronted with data from many differences sources, and of highly
varying quality. This gives rise to the problem of ranking these
data sources with respect to a given query or topic. For example,
TripleRank [16] achieves this by representing the Semantic Web
as a 3D tensor and then performs a tensor decomposition. Despite
the related-sounding name, this is very different from our scenario,
which is about ranking of entities from a single knowledge base.

Topic Models On a technical level, some of our methods are re-
lated to topic models. These derive high-level topics of documents
by inferring important words for each topic and the topic distribu-
tion for each document. In our setting, a document could be seen as
a subject (e.g., person) and topics as different types (e.g., her pro-
fessions). One state-of-the-art unsupervised topic model is Latent
Dirichlet Allocation (LDA) [6]. LDA (and related methods) infer
topics given only the text as input. In a supervised extension called
Labeled LDA (L-LDA) [21], topic labels (e.g., our professions) can
be provided for each document as part of the input. We compare
our methods against L-LDA in Section 5.

3. ESTABLISHING A BENCHMARK
Ranking problems and the notion of relevance are inherently sub-

jective and vague. Human relevance judgments are not only neces-
sary to evaluate algorithms that attempt to solve the problem, but
also help understanding it. This has happened for keyword search,
where ranking became an established problem with a universally
shared understanding.

We decided to use crowdsourcing to create a suitable benchmark
for our triple scores for exactly these two reasons: evaluation and
problem refinement. Since this helps to understand the problem at
hand, we discuss our benchmark before we describe our algorithms
to solve the problem.

Recall our use case example from Section 1. We want humans to
judge to what extent a person has a certain profession. In this sec-
tion, we discuss how we select a representative sample of entities,
present two ways to set up the task, and explain why one is supe-
rior. We then analyze the result of the crowdsourcing experiment.
The ground truth files are available for download together with all
reproducibility material under the URL given in Section 5.

3.1 Selecting Persons for Evaluation
Our benchmark should feature a representative sample of per-

sons that contains all levels of popularity. This is important for two
reasons. First, it can be expected that more information is available
for popular persons, so that some approaches might work better (or
even only) for those. Second, as discussed in the motivation, while
the ranking problem we address also exists for less popular persons,
it is more pronounced for popular persons.

Selecting persons from Freebase with more than one profession
leaves us with about 240K persons. We use the number of times

88

a person is mentioned in Wikipedia to approximate popularity and
restrict our choice to persons having Wikipedia articles. This has
practical reasons. In principle, any text collection could be used,
but Wikipedia is easy to obtain and, due to hyperlinks, no hard En-
tity Linking problem has to be solved. Apart from that, we can
point human judges directly to the Wikipedia article and hence en-
able them to make an informed decision without much effort. We
observe that (as could be expected) there are lots of people with
none or very few mentions and few people with lots of mentions (up
to almost 100K mentions). Therefore, a random sampling would
almost exclusively contain unpopular entities.

We define buckets of popularity and take a uniform random sam-
ple from each bucket. The buckets used were for a popularity (num-
ber of mentions) < 24, between 2i and 2i+1 for 4 i 13, and
� 214. In total, we took about 25 samples from each of the 12
buckets. This left us with 298 persons or a total of 1225 person-
profession tuples that nicely cover different levels of popularity.

3.2 Evaluate a Single Profession of a Person
An obvious approach is to present a person and his or her pro-

fession to a judge and ask whether the profession is primary or
secondary for that person. For example:

Arnold Schwarzenegger and the profession Bodybuilder. Is the pro-
fession primary or secondary for this person?

The task was enriched with instructions, including definitions of the
factors listed above. However, this definition is extremely hard to
communicate precisely. Also, there is a lot of subjectivity involved:
what “feels” primary to one judge does not to another.

Eventually, it turned out that judges mostly resorted to the fol-
lowing strategy: label the profession that is first mentioned in Wiki-
pedia as primary, and all others as secondary. Indeed this is one of
our simple baselines in Section 5. Obviously, this cannot work for
persons with more than one primary profession.

3.3 Evaluate All Professions of a Person
An improved version that turned out to work well is the follow-

ing. Instead of labeling a single profession of a person, we ask
to label all professions of a person. Additionally, we provide sim-
pler instructions but enrich them with a set of diverse examples of
labeled persons. An example is depicted in Figure 1. All profes-
sions of Barack Obama must be dragged into the box for primary
or secondary professions.

Figure 1: Condensed illustration of the crowdsourcing task.
All professions must be dragged into the box for primary or
secondary professions. For the complete version including in-
structions and examples see, go the URL from Section 5.

Below that, we show four examples illustrating a diverse set of pos-
sible labelings: Michael Jackson (many professions, some primary
some secondary), Ronald Reagan (many professions, two of them
primary), Mike Tyson (three professions, only one primary), James
Cook (two professions, both primary).
This worked well, and we assume this is mainly due to two reasons:
(1) People could do research on the person, and thus judge all the
professions of that person in relation to each other.
(2) The diverse examples helped to form an intuitive theory of what
we expected.

3.4 Crowdsourcing Results
We had the professions of each person labeled by seven different

judges. As final score for each triple we sum up the number of
primary labels, which is then in the range of 0 (all judges label
secondary) to 7 (all judges label primary).

On the 298 persons (1225 person-profession tuples) the inter-
annotator agreement according to Fleiss’ Kappa [15] is 0.47 for
the binary judgments. This can be considered moderate agreement.
However, what our experiment actually does is to determine a hid-
den probability p with which a human judge finds a person’s pro-
fession to be primary. In fact, we use a binary experiment to get
gradual scores. Note that, for certain triples, the desired result may
actually be a probability around 0.5. Measuring inter-annotator
agreement does such a scenario no justice. Instead, we want to
make sure that (1) all judges base their decision on the task and the
data, and (2) the obtained probabilities are significantly different
from random decisions.

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7

Crowd Control Random

Figure 2: Histogram of score distribution of our crowdsourcing
task, the control run, and expected results for randomly (with
p = 0.5) guessing judges (rounded).

For (1), we have run the same task again (with different annota-
tors) on a subset of every third person (386 person-profession tu-
ples) from our initial sample. Figure 2 depicts how much the scores
differ between this control run (control) and the full run (crowd).

For (2), looking at the distribution of scores shows that they are
very far from a random decision. Figure 2 shows a distribution that
prefers border cases (especially primary professions) and contains
only reasonably few triples with average score (3 or 4). In contrast,
a random or unclear task would lead to a distribution with mostly
average scores and rare border cases.

In Section 5, we report more details on the results of the control
run. The human judges based 95% of their decisions only on the
Wikipedia page of the respective person. As we report in Section
5.4, our automatic methods perform much worse when we restrict
them in this way. This shows how hard the judgment task is: the
relative relevance of the various professions mentioned on a per-
son’s Wikipedia page is often highly implicit in the text.

89

4. COMPUTING TRIPLE SCORES
We propose a variety of algorithms to compute triple scores. For

illustration purposes we describe the algorithms using the profes-
sion relation of a person, but the algorithms are not specific to that
relation and should work with any type-like relation. In Section 5
we show that they are equally effective to derive scores for nation-
alities of persons. Likewise, we use Wikipedia as our source of text
and Freebase as knowledge base, but the approaches are not spe-
cific to that data. None of our algorithms requires manually labeled
data. Instead, we make use of existing facts in an unsupervised
or distantly supervised fashion. The crowdsourcing judgments are
only used for evaluation.

The different algorithms provide different output: binary clas-
sifications, weighted sums and probabilities. In Section 4.6, we
describe how we map their output to the range [0, 1].

4.1 Training Data
We want to avoid manually labeled training data. Instead, we

use the following definition to obtain positive and negative training
examples for each profession:
Positive: people with only the given profession or any specializa-
tion of it, i.e. those for which the profession has to be primary.
Negative: people that do not have that profession at all
Thus, Humphrey Bogart is a positive example for the profession
Actor (because this is his only profession according to Freebase)
and Barack Obama, who is listed as politician, lawyer and more
(but not as actor), is a negative example for that profession.

We also experimented with other criteria (e.g., allowing the per-
sons used as positive examples to also have other professions) but
found this selection to work best across all approaches.

4.2 Selecting Text for each Person
All approaches analyze text about a person to derive triple scores.

As text we use the English Wikipedia2, utilizing the fact that per-
sons in Freebase often have a link to their Wikipedia article. We
have pre-processed Wikipedia and performed Entity Recognition
and Linking, as well as anaphora resolution as described in [3].
With each person we associate all words that co-occur with a linked
mention of the person in the same semantic context, as provided by
the pre-processing. Each semantic context is a sub-sequence of
the containing sentence that expresses one fact from the sentence.
This yields slight improvements over using full sentences (where
numerous facts can be mixed) as contexts. Further, we have found
that stemming has almost no effect. These and other variations are
discussed in more detail in Section 5.4.

4.3 Binary Classifier per Profession
We train a binary classifier to decide whether a profession is pri-

mary or secondary for a given person. For each person we extract
features from her associated text. We use word counts as features,
which we normalize by the total number of word occurrences in the
person’s associated text. Thus, feature values are between 0 and 1
(much closer to 0). Weighting feature values by their tf-idf score
(instead of the normalization) had no positive effect.

Before training the classifier, we balance positive and negative
training examples by randomly selecting an appropriate subset of
the negative training examples (there are always more negative than
positive training examples).

A logistic regression classifier with L2-regularization is then
trained on the balanced training data. As a linear model, logistic
regression has the benefit of an intuitive interpretation of features
2downloaded in August 2013

1. cast 28.21 5. directed -6.64 9. university -5.16
2. actor 12.46 6. starring 6.22 10. written -4.97
3. actress 11.50 7. role 5.62 11. voiced 4.50
4. played 7.19 8. stars 5.26 12. actors 4.48

Table 1: Top features (positive and negative) and their weight
learned by the logistic regression classifier for the profession
Actor.

weights. Table 1 lists the features with top weights learned for
profession Actor.

The learned feature weights form a model for each profession.
These models can then be used for persons with multiple profes-
sions to make a binary decision if each of his or her professions is
primary or not (secondary).

4.4 Count Profession Words
We want to mimic the behavior of humans that want to solve our

problem. Therefore, we look at the text associated with an entity
and find out how big the portion of text is that discusses profession
matters. In the simplest way, we could count how often a profession
is mentioned in text associated with the person.

We cannot count exact occurrences, however, because of profes-
sions that consist of more than one word, e.g., Film Score Com-
poser. Looking for mentions of such professions already puts them
at a disadvantage (or advantage depending on full vs. partial match
counting) compared to one-word professions like Composer. Addi-
tionally, often slight variations of a profession are mentioned, e.g.,
actor and actress.

To overcome this issue, we define a suitable prefix for each pro-
fession. We can do this automatically (using an off-the-shelf stem-
mer and the longest common prefix of the stem and the original
word) or manually once for each profession. In our experiments
(Section 5), we compare manually chosen prefixes as a strong base-
line.

Besides the profession names themselves (or their prefixes), we
have found that there are many other words that indicate, that some
part of the text is about a given profession. For example, consider
the positive features learned by the binary classifier as presented in
Table 1. We extend our counting based approach by automatically
computing indicator words in the following way: For each profes-
sion, take all words in the associated text for persons in the positive
training data (see Section 4.1), compute their tf-idf value and rank
the words by that value. During prediction, we set the weight of an
indicator mention to 1/rank and build the sum over the weights of
all indicator mentions.

1. cast 1.00 5. role 0.20 9. television 0.11
2. actor 0.50 6. starring 0.16 10. appeared 0.10
3. actress 0.30 7. played 0.14 11. born 0.09
4. film 0.25 8. best 0.13 12. series 0.08

Table 2: Top words (by tf-idf) and their weight (1/rank) for the
profession Actor.

Table 2 shows the top words and their weights for the profession
Actor. There is high overlap with the top features learned by the
binary classifier shown in Table 1. Note, that the word weights
were computed only from the text associated with positive training
examples and idf values based on the whole corpus. The negative
examples were not needed.

90

4.5 Generative model
We formulate a generative model where each person is associ-

ated with text that can be generated as follows. For a person with k
professions and n word occurrences in the associated text: Pick one
of the k professions with probability P (pi); generate word wj with
P (wj |pi); repeat until all n words are generated. The joint proba-
bility for word w and profession p is then P (w, p) = P (w|p)P (p).

Note that for a given text, the professions selected in the first step
above are unobserved. We would like to infer those, because, intu-
itively, they represent the amount of text that can be associated with
a certain profession. We derive these using a maximum likelihood
estimate.

Let tf j be the term frequency of word j, P (pi) be the probability
of profession i and let P (wj |pi) be the probability for word j under
profession i. The log-likelihood of producing text consisting of n
words for k professions is:

log L =

NX

j=1

[tfj · log

kX

i=1

(P (wj |pi)P (pi))]

Training We use the positive training examples to derive word
probabilities P (w|p). We distinguish two ways. (1) use the term
frequency of terms in the text associated with all training exam-
ples and assign probabilities accordingly. (2) use the tf-idf val-
ues as term frequencies to avoid common, unspecific terms with
high probabilities. When using tf-idf values, we use them for both:
P (w|p) and as new tf j when calculating LP . For efficiency rea-
sons, we only keep the probabilities for the top 30K words. We
have found that tf-idf values work better and restrict our examples
to this setup for the remainder of the paper.

Text that is associated with a person often contains information
that is not related to professions, e.g., family and personal life.
Therefore, we add a pseudo profession to each person in order to
account for these words. We use all text in the English Wikipedia
to calculate P (w|p) for the pseudo profession.

1. cast 0.023 5. role 0.007 9. appeared 0.004
2. actor 0.009 6. starring 0.005 10. television 0.004
3. actress 0.008 7. played 0.005 11. born 0.004
4. film 0.008 8. best 0.004 12. roles 0.004

Table 3: Top word probabilities for the profession Actor.

Naturally, the top word probabilities depicted in Table 3 are in
line with the top word weights presented in Table 2. This is not
surprising, since both values are based on the tf-idf scores of words
in text associated with the positive training samples. The proba-
bilities, however, do not differ as much as the weights we have
assigned for the counting approach.
Prediction To derive profession probabilities ~p, which have to sum
to 1, we maximize the log-likelihood:

~p = arg max
~p

NX

j=1

[tf j · log

kX

i=1

(P (wj |pi)P (pi))], s.t.

kX

i=1

pi = 1

To find the maximum likelihood estimate we use Expectation
Maximization [10]. Similar to the generative model for pLSI [17]
we treat the topic (profession) assignments to word-occurrences as
hidden variables. EM iteratively computes posterior probabilities
given the hidden variables in the expectation step (E) and then max-
imizes parameters for the previously computed probabilities in the
maximization step (M). The E and M steps are identical to the steps
in [17], with the difference that we treat P (w|p) as fixed, because

we already computed those from the positive examples as described
above.

4.6 Mapping to Triple Scores
The above approaches yield a variety of results. Binary clas-

sifications, weighted sums and probabilities. However, we actu-
ally want to compute scores for triples. While this is trivial for
binary classifications (assign minimum and maximum), we distin-
guish two approaches for sums and probabilities. Keep in mind that
we assume there is at least one primary profession for each person.
For comparison with the crowdsourcing judgments, we want scores
from 0 to 7 but the methods apply for any desired magnitude and,
without rounding, naturally allow continuous scores as well.
Maplin Linearly scale computed values to the range 0 to 7. In
practice, just divide all sums or probabilities by the highest one.
Then multiply by 7 and round to the nearest integer.
Maplog Scale computed values to the range 0 to 7 such that the
next highest score corresponds to twice the sum or probability. In
practice, divide all sums or probabilities by the highest one. Then
multiply by 27, take the logarithm to base 2, and finally take the
integer portion of the result.

We have found that the intuitive Maplin works much better with
the sums of weights obtained by counting triples. Maplog, how-
ever, is stronger when mapping probabilities to triples scores. This
is true for both, our generative model, and the topic model, Labeled
LDA, we compare against. The probabilistic models tend to assign
high probabilities to the top professions, leaving small probabilities
to all others. Differences between debatable professions and def-
inite secondary are small in total probability difference value but
still observable when comparing magnitudes.

5. EVALUATION
We first discuss the experimental setup: data + ground truth,

algorithms compared and quality measures. In Section 5.2, we
present and discuss our main results. In Section 5.4, we discuss
many variants (algorithms and quality measures) that we also ex-
perimented with but which did not turn out to work well.

All of the data and code needed to reproduce our experiments are
available under http://ad.informatik.uni-freiburg.
de/publications.

5.1 Experimental Setup
Data We extracted all triples from the Freebase relations Profes-
sion and Country of nationality. In all experiments we only con-
sider persons with at least two different profession or nationalities,
i.e., we only consider the non-trivial cases. Files with all these
triples are available under the above URL.
Ground truth For the profession relation, we randomly selected a
total of 1225 triples pertaining to 298 different people entities, as
described in Section 3.1. Each of these triples was then labeled in-
dependently by 7 human judges, using crowdsourcing, as described
in Section 3.1. This gives a total of 8.575 labels. We repeated
the task for all 386 triples of a random subset of 98 from the 298
people. This gives us another 2.702 labels. We used these as con-
trol labels to assess the quality of our main set above; see Section
5.2 below. We have presented the distribution of the scores in the
ground truth in Section 3.4 in Figure 2. For the nationaliy rela-
tion, we randomly selected a total of 162 triples pertaining to 77
different people entities and ran the same experiment. This gives
us another 1134 judgments.
Algorithms Compared We compare the following: three base-
lines, six algorithms, and the output of two control experiments.

91

We normalized all approaches to yield an integer score from the
range 0..7 for each triple.

First For each person, take the entity’s description from Freebase3

Look for the first literal mention of one of that person’s profession.
That profession gets a score of 7, all other professions get a score
of 0. This may look overly simplistic, but actually this is what most
of the judges did in the previous version of our task as presented in
Section 3.2.
Random Make 7 independent judgments for each triple, where for
each judgment primary and secondary are equally likely. That is,
pick the score at random from a binomial distribution with n = 7
and p = 0.5. This simulates human judges that guess randomly.
Prefixes For each triple, count the number of occurrences of a
hand-picked prefix of the profession (same for all professions) in
the Wikipedia article of the person. Map these counts to scores
(per person) using Maplin, as described in Section 4.6.
Labeled LDA (LLDA) The closest approach from previous work,
as described in Section 2. We use a topic label for each profession
and label each person with all of her professions. The Dirichlet
prior, ↵, is set to 2.0 and we run Gibbs sampling for 100 iterations.
Other parameter settings for ↵ gave much worse results and more
iterations showed no improvement. We map the probabilities to
scores using Maplog.
Words Classification For each triple, make a binary decision (score
0 or 7) using the logistic-regression classifier (see Section 4.3).
Words Counting For each profession, learn a weighted list of words,
as described in Section 4.4. For each triple, add the weights of all
profession words in all contexts containing the entity. Map these
weight sums to scores using Maplin.
Words MLE For each triple, we derive a score using the generative
model described in Section 4.5 and the Maplog mapping.
Counting Combined For each triple, use the Words Counting meth-
od. Additionally look at the decision of the Words Classification
method. If the binary classification is positive (score 7), increase
the score to the average of the two. The intuition behind this is,
that for strongly related professions (e.g., Poet and Playwright), it
is hard to attribute a text passage to one of the two. The binary de-
cisions made by the Words Classification method do not have this
problem.
MLE Combined Similar to Counting Combined but starting with
the Words MLE method instead of the counting.
Control Judges Take the labels from the human control judges, as
described above.
Control Expected The expected values when comparing two scor-
ings, where in each scoring each of the seven judgments for a triple
is primary with probability p, where p is chosen from the poste-
rior distribution given score s, where s is the score given by the
crowdsourcing judges.4

Evaluation measures We use two kinds of measures: score-based
and rank-based.

Score-based The score-based measures directly compare the scores
of two sequences s and s0 of triple scores for the same sequence
of n triples. We consider two measures: accuracy and average
score deviation. The accuracy has an integer parameter � and mea-
sures the percentage of triple scores that deviate by at most �. That
3For most entities, this is just the abstract of the corresponding
Wikipedia page.
4That is, Pr(p = k/7) / Pr(X = k), for k = 0..7, where X is
from the binomial distribution B(7, s/7).

is, Acc-� = |{i : |si � s0i| �}|. The average score deviation
is simply the average over all absolute score differences. That is,
ASD =

P
i |si � s0i|/n. We will see that the relative performance

of the various methods shows in both measures, but that the Acc
figures are more intuitive and insightful.

Rank-based The rank-based measures compare two rankings of
the same sequence of triples. We will use them to compare two
rankings of all professions / nationalities of a single person, and
the average over all persons. We consider three standard ranking
measures: Kendall’s Tau, the footrule distance, and nDCG.

Because scores in the gold standard are discrete, items often
share a rank. Such a ranking with ties constitutes a partial rank-
ing [14]. To compare partial rankings we use adapted versions of
Kendall’s ⌧ from [14]: ⌧p = 1

Z
(nd + p · nt), where nd is the num-

ber of discordant (inverted) pairs, nt is the number of pairs that are
tied in the gold standard but not in the predicted ranking or vice
versa, p is a penalization factor for these pairs which we set to 0.5,
and the normalization factor Z (the number of ordered pairs plus p
times the number of tied pairs in the gold standard).

The Spearman footrule distance counts the displacements of all
elements. It is f = 1

Z

P |�p(i)� �g(i)|, where i ranges over the
items of the list, and �p(i) and �g(i) is the rank of item i in the
predicted partial ranking and gold standard partial ranking, respec-
tively. The normalization factor Z corresponds to the maximum
possible distance and causes f to be in the interval [0, 1].

For nDCG, we remark that it also takes the exact scores into
account: ranking a triple lower than it should be is punished more,
the higher the score of that triple is.

5.2 Main results
Score-based evaluation of the profession triples We first discuss
the results for our score-based measures for the profession relation,
shown in Table 4.

Method
Accuracy (Acc) Average

Score Diff� = 1 � = 2 � = 4

First 41% 53% 71% 2.71
Random 31% 55% 91% 2.39
Words Classification 47% 61% 78% 2.09
Prefixes 50% 64% 83% 2.07
LLDA 50% 68% 89% 1.86
Words Counting 57% 75% 94% 1.61
Words MLE 57% 77% 95% 1.61
Count Combined 58% 77% 95% 1.52
MLE Combined 63% 80% 96% 1.57
Control Expected 75% 91% 99% 0.93
Control Judges 76% 94% 99% 0.92

Table 4: Accuracies and ASD for the profession relation, best
methods last.

The last line (Control Judges) shows that the human judges rarely
disagree by more than 2 on the 0-7 scale. The Acc-4 measure shows
that there are almost no stark disagreements, that is, by more than
4.5 A disagreement up to 1 is not unusual though. The average
score deviation is 0.92. As the next to last line (Control Expected)
shows, this is essentially what would be expected from random

5Note that such disagreements can only happen for scores 0-2 and
5-7.

92

fluctuation. Acc-2 hence seems to be the single most intuitive mea-
sure (for integer scores on a scale 0-7). We therefore emphasized
the results for that measure in Table 4.

Our binary classification algorithm achieves an Acc-2 of 61%,
which gradually improves to 80% for our most sophisticated al-
gorithm. There is hardly a difference between the MLE approach
and word counting with proper normalization. Our best approach
makes glaring mistakes (Acc-4) for only 4% of all triples. For the
Acc-2 measure, our best approach is still more than 10% away from
the ideal. In Section 5.4, we discuss various options for improve-
ment, none of which actually gives a significant further improve-
ment though. We conclude that our problem is what could be called
“NLP-hard”. Under that condition, we consider an Acc-2 of 80% a
very good result.

The simple “First” baseline performs similarly bad as the “Ran-
dom” baseline, which simulates a random guess for each judge.
Note that the “Random” baseline makes glaring mistakes (Acc-4)
only for 9% of the triples. This is because the scores of this base-
line follow a binomial distribution, with a probability of 0.55 that
the score is 3 or 4. For these two scores, the deviation from the
“true” value cannot be larger than 4. For the more extreme scores,
the probability of being off by more than 4 is also low. Acc-2, how-
ever, is only about 55% for “Random”. Note that a more extreme
version of “Random”, which picks only one of the scores 3 or 4 at
random for each triple, would achieve an Acc-4 of 100%, but an
Acc-2 of only 52%.

The relative performance of the various approaches is reflected
by the average score difference (ASD), shown in the last column of
Table 4. The various Acc measures provide a more refined picture
though.

Rank-based results for the profession triples We next discuss
the results for our rank-based measures for the profession relation,
shown in Table 5.

Method Kendall Footrule nDCG
Random 0.51 0.58 0.80
First 0.40 0.47 0.92
LLDA 0.32 0.38 0.88
Words Classification 0.32 0.35 0.88
Prefixes 0.31 0.35 0.88
Words MLE 0.23 0.28 0.94
Words Counting 0.24 0.29 0.94
Counting Combined 0.24 0.28 0.94
MLE Combined 0.22 0.27 0.94
Control Judges 0.18 0.21 0.97

Table 5: Average rank differences for the profession relation,
best methods last.

We observe that the relative quality of the various baselines and
algorithms is about the same in all three measures. Since Kendall
is the simplest and perhaps most intuitive measure, we have high-
lighted the results for that measure in Table 5.

Footrule is always slightly larger than Kendall. The nDCG val-
ues are relative large already for the simple Random baseline. This
is an artifact of the short lists we are comparing here (for each per-
son, his or her professions, which are often only two or three). In-
deed, for a list with only two items, there are only two possible
values for nDCG: 1 and 1/ log2 3 ⇡ 0.63. The average of the two
is ⇡ 0.82.

The relative order of the methods is similar as for the score-
based evaluation of Table 4. The only notable exception is that
in the rank-based evaluation, the simple “First” baseline is signifi-
cantly better than “Random”, while in the score-based evaluation,
it was the other way round. The reason is simple: “First” almost
always gets the first item in the list right (the first profession listed
in Wikipedia, is almost always the most obvious profession of the
person in question). For persons with only two professions, this
already gives the perfect ranking. For persons with three profes-
sions, this already gets 2 of the 3 possibly transpositions right. In
the score-based evaluation, the score for the triple with this “first”
profession is just one out of k, when the person has k professions.
Apart from that, “First” (and “Words Classification”) make binary
decisions for one of the most extreme scores. This is punished by
the Accuracy measures. Random, on the other hand, tends to se-
lect the middle ground scores 3 and 4 which are not punished as
strongly.

Note that the compared rankings are invariant under score map-
ping (Maplin or Maplog, see Section 4.6). Hence, score mapping
affects neither Kendall nor Footrule. It does, in principle, affect
nDCG, since that measure also takes the actual scores into account.
We found the effect to be insignificant though (at most 0.02 differ-
ence for affected approaches).

Score- and ranked-based evaluation of the nationality triples
We repeated the experiments above for the triples from the nation-
ality relation. We focused on the baselines and the best-performing
methods.

Method
Accuracy (Acc) Average

Score Diff� = 1 � = 2 � = 4

First 28% 36% 51% 3.89
Random 31% 55% 91% 2.83
Prefixes 41% 52% 71% 2.21
Words MLE 58% 78% 95% 1.71
Words Counting 63% 78% 96% 1.34
Control Expected 76% 92% 99% 0.82

Method Kendall Footrule nDCG
Random 0.51 0.58 0.80
First 0.41 0.42 0.90
Prefixes 0.51 0.53 0.88
Words MLE 0.44 0.45 0.92
Words Counting 0.36 0.37 0.94

Table 6: Score-based and ranked-based results for the nation-
ality relation, best methods last.

Table 6 shows the results for our experiments with triples from
the nationality relation. Sophisticated approaches have performance
similar to the run on triples of the profession relation (see Tables
4 and 5). This is good news, because it was not guaranteed that
Wikipedia texts provided a sufficiently strong signal for our algo-
rithms to perform well. Interestingly, baselines “First” and “Pre-
fixes” are weaker on this task. Apparently, direct mentions of a
nationality in the Wikipedia article are not as useful as they are
for professions. A typical example could be the term “German-
American” to describe (primary) Americans with German roots.
Not only is the secondary nationality mentioned first, the article
may also discuss the person’s ancestry further, frequently mention-
ing that country. Statistical signals for the primary nationality, like

93

mentions of the place of residence or typical institutions are only
considered by our more advanced approaches.

5.3 Refined analysis
We also conducted an analysis of the “clear cases”, that is, the
triples, where the score from the crowdsourcing judges were ei-
ther 6 or 7 or 1 or 0 (all judges, except at most one, agree). We
analyzed the percentage of triples, which got the “reverse” scores
for these triples, that is 0-1 for 6-7 and 6-7 for 0-1. The figures were
very similar to those already captured by the Acc-4 figure in Table
4. Recall that a score deviation of more than 4 can only happen for
the extreme scores. Thus, no new insights were provided by this
analysis.

We also analyzed the dependency between accuracy and popularity
of a person.

Method
Popularity Bucket

1 2 3 4 5 6
Words Counting 58% 76% 71% 71% 76% 81%
Count Combined 63% 81% 72% 68% 76% 81%
Words MLE 68% 84% 76% 79% 84% 76%
MLE Combined 74% 84% 75% 79% 84% 79%

Method
Popularity Bucket

7 8 9 10 11 12
Words Counting 77% 75% 70% 72% 82% 83%
Count Combined 86% 78% 76% 76% 78% 78%
Words MLE 76% 74% 69% 77% 79% 82%
MLE Combined 82% 75% 76% 80% 80% 82%

Table 7: Accuracy-2 for the profession relation, breakdown by
person popularity. Popularity Bucket i contains persons with a
number of occurrences between 2i+2 and 2i+3. Buckets 1 and
12 are special cases and contain persons with less than 24, resp.
more than 214, occurrences.

The buckets of popularity used in Table 7 pertain to the buck-
ets from our selection for the crowdsourcing task (see Section 3.1).
The breakdown shows that approaches function well on all per-
sons with more than 16 occurrences in the text. This corresponds
to buckets 2 and above. While more text is always better for our
statistical models, we observe that the minimum required to work
reasonably well, is already very low. The persons in bucket 1 with
very little associated text are harder to get correct. We can ob-
serve two things: Words Counting has more problems than Words
MLE. Further, the combination with the classifier specifically helps
to even out the problems with entities in this bucket.

5.4 Variants
Our main results show a gap of 11-14% between our best method,

and what human judges can achieve. We have experimented with
numerous variations of the methods described in Section 4 and 5.1.
None of these variations turned out to give an improvement.
Stemming. All approaches from Section 4 can be used with and
without stemming. We tried both the Porter [22] and the Lancaster
stemmer [19]. For all methods, stemming (in either variant) did
more harm than good.
Word pairs instead of just words. One significant source of er-
rors in the methods from Section 4 is that single words are ambigu-
ous indicators for certain triples. For example, the word film is a

strong indicator for both Actor and Film Director. Some persons
have both professions. To distinguish between the two, the context
of the word film is important. One obvious approach to address
this is to consider pairs of words as features, instead of just single
words. For the profession relation, the influence on both the score-
based and the rank-based measure was insignificant though. For
the nationality relation, results became significantly worse when
using word pairs. This is understandable, since for the majority of
nationalities single words are perfectly suited to uniquely identify
them (e.g., Canadian, Italian, German).
TF versus TF-IDF In our evaluation, we used tf-idf for all our
features. We also experimented with tf features, as well as with
variations of tf-idf that give more emphasis to the idf part or that
dampened the tf factor like in BM25. Results were either unaf-
fected or became slightly worse.
Non-linear score mappings. In Section 3, we discussed two score
mappings: Maplin and Maplog. The latter uses the mapping x 7!
log2 x. The rationale was that the MLE approach produces raw
scores (the probabilities) that grow super-linearly with the actual
score. We experimented with a variety of other non-linear score
mappings to capture this behavior, in particular, x 7! x↵, for var-
ious value of ↵. The results were similar but never significantly
better than for our Maplog.
Sentences vs. contexts In our methods in Section 4, we consider
only those words that occur “in the same context” as the entity in
question. We experimented with two realizations of this context:
co-occurrence in the same sentence and co-occurrence in the same
context, as described in Section 4. Contexts consistently outper-
formed sentences by a few percent. The improvement was more
pronounced for popular entities, where we have many occurrences
of the indicator words. This is in accordance with the theory from
[4]. Co-occurrence in the same sentences does not necessarily
mean that the two entities / words that co-occur have something
to do with each other. When they co-occur in the same context,
they have, by the definition of context from [4].
Whole corpus vs. only the Wikipedia article Almost all human
judges indicated that they only used the Wikipedia article of a per-
son to make their decision (95% of all decisions). For our methods
from Section 4, we considered co-occurrences anywhere in the text
corpus. When restricting to only the Wikipedia page of the respec-
tive person, like the human judges did, results consistently became
much worse. This is easy to understand, since all our methods are
statistics-based, and the whole corpus simply provides more infor-
mation, and hence also more certainty to make a good decision.
Treating hierarchy / specialization In Freebase, a person’s pro-
fessions may include generalizations of another profession that is
listed. For example, for John Lennon there are (among other pro-
fessions) singer-songwriter, keyboard player, guitarist and also mu-
sician. Like for Hierarchical Classification [18] problems, two ob-
vious approaches are to (1) ignore the hierarchy and classify each
triple and to (2) only classify specializations and infer a score for
parent professions. We have experimented with both approaches
and found that there is only little difference. If the same inference
rules from (2) are used on both, our scores and the human judg-
ments (human judgments are corrected towards a higher score if
the human judges have given that higher score to a specialization
of the profession), this increases the final scores by a few percent
(e.g., 82% for MLE Combined). Otherwise, there is not much dif-
ference.
Knowledge-base facts An obvious alternative to using text for com-
puting triple scores is to use information from the knowledge base.
However, we have made the experience that 1) only few properties

94

are reflected by other facts in the knowledge base and 2) even in
cases where they are, they are typically only available for popular
instances. For example, an indication for the relevance of an actor
may be in how many movies he acted, or how many awards he won
for them. But there are no such facts in the knowledge base for a
geologist, a surgeon, or a firefighter. Furthermore, in Freebase, out
of 612K persons with more than one profession, 400K have less
than 10 and 243K less than 6 other facts (besides type and profes-
sion information).

5.5 Manual Error Analysis
For all our methods from Section 4, as well as for all the variants

discussed in Section 5.4, we conducted a manual error analysis. We
discovered two main sources of errors.

Wrong reference An indicator word sometimes co-occurs with the
person in question, but is actually relating to another person. For
example, Michael Jackson is listed as a Film Director, which is
certainly not one of his main professions. The Wikipedia article
about him contains many mentions of the word directed or director
though. But most of them relate not to him but to a person directing
one of his shows.
Wrong meaning An indicator word is sometimes used with an-
other meaning. For example. John F. Kennedy is listed as a Mili-
tary Officer, which is certainly not one of his main professions. The
Wikipedia article contains many mentions of variants of the word
military though. But most of them relate to political actions during
his presidency with respect to the military.

Some of the variants discussed in Section 5.4 mitigate the ef-
fect of these problems somewhat. For example, restricting co-
occurrence to semantic contexts instead of full sentences helps the
wrong-reference problem in several instances. Or, considering word
pairs instead of single words helps with the wrong-meaning prob-
lem in several instances. However, a significant number of in-
stances remain, where deep natural language understanding ap-
pears to be required. Consider the sentences “<Screenwriter X>
was very happy with how his script was visualized” vs “<Film Di-
rector Y> was praised a lot for how he visualized the script”. It is
hard to understand the roles of the persons in these sentences. But
it is necessary to correctly decide if the sentence is evidence for a
profession Screenwriter or Film Producer.

6. CONCLUSION
We have studied the problem of computing relevance scores for

knowledge-base triples from type-like relations. We have shown
that we can compute good such scores in an unsupervised manner
from a text corpus with an accuracy of about 80%.

We have described various attempts to further improve the accu-
racy of our triple scores, towards the over 90% accuracy achieved
by human judges. These attempts, together with a manual error
analysis, suggest that deep natural language understanding is re-
quired to close this gap. In particular, we identified two main error
sources: wrong reference and wrong meaning of indicator words.
We consider these a hard but worthwhile task for future work.

The focus of this work is on scores for individual triples. This
problem is practically relevant on its own and also hard enough on
its own. Still, it would be interesting to follow up on previous work
about integrating such triple scores into a meaningful ranking for
complex knowledge-base queries.

7. REFERENCES
[1] A. Balmin, V. Hristidis, and Y. Papakonstantinou.

ObjectRank: Authority-based keyword search in databases.
In VLDB, pages 564–575, 2004.

[2] K. Balog, P. Serdyukov, and A. P. de Vries. Overview of the
TREC 2011 Entity Track. In TREC, 2011.

[3] H. Bast, F. Bäurle, B. Buchhold, and E. Haussmann.
Broccoli: Semantic full-text search at your fingertips. CoRR,
abs/1207.2615, 2012.

[4] H. Bast and E. Haussmann. Open information extraction via
contextual sentence decomposition. In ICSC, pages 154–159,
2013.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases
using BANKS. In ICDE, pages 431–440, 2002.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. In NIPS, pages 601–608, 2001.

[7] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph database
for structuring human knowledge. In SIGMOD, pages
1247–1250, 2008.

[8] J. P. Cedeño and K. S. Candan. R2DF framework for ranked
path queries over weighted RDF graphs. In WIMS, page 40,
2011.

[9] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic ranking of database query results. In VLDB,
pages 888–899, 2004.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm. J. R.
Stat. Soc., pages 1–38, 1977.

[11] R. Q. Dividino, G. Gröner, S. Scheglmann, and M. Thimm.
Ranking RDF with provenance via preference aggregation.
In EKAW, pages 154–163, 2012.

[12] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy,
S. Sun, and W. Zhang. From data fusion to knowledge
fusion. PVLDB, 7(10):881–892, 2014.

[13] S. Elbassuoni, M. Ramanath, R. Schenkel, M. Sydow, and
G. Weikum. Language-model-based ranking for queries on
RDF-graphs. In CIKM, pages 977–986, 2009.

[14] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee.
Comparing and aggregating rankings with ties. In PODS,
pages 47–58, 2004.

[15] J. L. Fleiss. Measuring nominal scale agreement among
many raters. Psychological bulletin, 76(5):378, 1971.

[16] T. Franz, A. Schultz, S. Sizov, and S. Staab. TripleRank:
Ranking semantic web data by tensor decomposition. In
ISWC, pages 213–228, 2009.

[17] T. Hofmann. Probabilistic latent semantic indexing. In
SIGIR, pages 50–57, 1999.

[18] C. N. S. Jr. and A. A. Freitas. A survey of hierarchical
classification across different application domains. Data
Min. Knowl. Discov., 22(1-2):31–72, 2011.

[19] C. D. Paice. Another stemmer. SIGIR Forum, 24(3):56–61,
1990.

[20] S. Parsons. Current approaches to handling imperfect
information in data and knowledge bases. IEEE Trans.
Knowl. Data Eng., 8(3):353–372, 1996.

[21] D. Ramage, D. L. W. Hall, R. Nallapati, and C. D. Manning.
Labeled LDA: A supervised topic model for credit attribution
in multi-labeled corpora. In EMNLP, pages 248–256, 2009.

[22] C. J. Van Rijsbergen, S. E. Robertson, and M. F. Porter. New
models in probabilistic information retrieval. Computer
Laboratory, University of Cambridge, 1980.

95

WSDM Cup 2017: Vandalism Detection and Triple Scoring∗

Stefan Heindorf
Paderborn University

heindorf@uni-paderborn.de

Martin Potthast
Bauhaus-Universität Weimar

martin.potthast@uni-weimar.de

Hannah Bast
University of Freiburg
bast@informatik.uni-

freiburg.de

Björn Buchhold
University of Freiburg

buchholb@informatik.uni-
freiburg.de

Elmar Haussmann
University of Freiburg

haussmann@informatik.uni-
freiburg.de

ABSTRACT
The WSDM Cup 2017 was a data mining challenge held in conjunc-
tion with the 10th International Conference on Web Search and Data
Mining (WSDM). It addressed key challenges of knowledge bases
today: quality assurance and entity search. For quality assurance,
we tackle the task of vandalism detection, based on a dataset of
more than 82 million user-contributed revisions of the Wikidata
knowledge base, all of which annotated with regard to whether or
not they are vandalism. For entity search, we tackle the task of
triple scoring, using a dataset that comprises relevance scores for
triples from type-like relations including occupation and country of
citizenship, based on about 10,000 human relevance judgments. For
reproducibility sake, participants were asked to submit their soft-
ware on TIRA, a cloud-based evaluation platform, and they were
incentivized to share their approaches open source.

Keywords: Knowledge Base; Vandalism; Data Quality; Search

1. TASK ON VANDALISM DETECTION
Knowledge is increasingly gathered by the crowd. Perhaps the

most prominent example is Wikidata, the knowledge base of the
Wikimedia Foundation that can be edited by anyone, and that stores
structured data similar to RDF triples. Most volunteers’ contri-
butions are of high quality, whereas some vandalize and damage
the knowledge base. The latters’ impact can be severe: integrat-
ing Wikidata into information systems such as search engines or
question-answering systems bears the risk of spreading false infor-
mation to all their users. Moreover, manually reviewing millions of
contributions every month imposes a high workload on the commu-
nity. Hence, the goal of this task is to develop an effective vandalism
detection model for Wikidata:

Given a Wikidata revision, the task is to compute a
quality score denoting the likelihood of this revision
being vandalism (or similarly damaging).

∗We thank Adobe Systems Inc. for sponsoring the event, and Wikimedia Germany for
supporting it.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WSDM 2017 February 06-10, 2017, Cambridge, United Kingdom

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4675-7/17/02.

DOI: http://dx.doi.org/10.1145/3018661.3022762

Table 1: The vandalism detection evaluation datasets in terms
of time period covered, revisions, sessions, items, and users as
per Heindorf et al. [7]. Numbers are given in thousands.
Dataset From To Revisions Sessions Items Users

Training Oct 1, 2012 Feb 29, 2016 65,010 36,552 12,401 471
Validation Mar 1, 2016 Apr 30, 2016 7,225 3,827 3,116 43
Test May 1, 2016 Jun 30, 2016 10,445 3,122 2,661 41

Revisions were to be scored in near real time as soon as a revision
arrives, allowing for immediate action upon potential vandalism.
Moreover, a model should hint at vandalism across a wide range of
precision/recall points to enable use cases such as fully automatic
reversion of damaging edits at high precision, as well as pre-filtering
revisions at high recall and ranking them with respect to importance
of being reviewed.

For the challenge, we constructed the Wikidata Vandalism Cor-
pus 2016 (WDVC-2016),1 an up-to-date version of the Wikidata
Vandalism Corpus 2015 (WDVC-2015) [6]: it consists of user-
contributed edits, excluding edits by bots, alongside annotations
whether or not an edit has been reverted via the administrative roll-
back feature, which is employed at Wikidata to revert vandalism
and similarly damaging contributions. This way, we obtained a
large-scale corpus ranging from October 2012 to June 2016, con-
taining over 82 million revisions, 198,147 of which are labeled
as vandalism. The corpus also supplies meta information that is
not readily available from Wikidata, such as geolocalization data
of all anonymous edits as well as Wikidata revision tags origi-
nating from both the Wikidata Abuse Filter and semi-automatic
editing tools. Table 1 gives an overview of the corpus. Partic-
ipants were provided training data and validation data while the
test data was held back until the final evaluation. To prevent teams
from using information that emerged after a revision was made,
we sorted all revisions by time and employed the evaluation-as-
a-service platform TIRA [4]2 in combination with a newly devel-
oped data server that only provides new revisions after a partic-
ipant’s software has reported scores for previous revisions. The
setup, datasets, rules, and measures, are described in detail on
http://www.wsdm-cup-2017.org/vandalism-detection.html.

As our main evaluation metric, we employ the area under curve
of the receiver operating characteristic because it is the de facto
standard for imbalanced learning tasks and enables a comparison to
state-of-the-art vandalism detectors [7]. For informational purposes,
we compute the area under the precision-recall curve, too.

The final evaluation results will be published in the workshop
proceedings of the WSDM Cup 2017 [5].
1Available from http://www.wsdm-cup-2017.org/vandalism-detection.html
2http://www.tira.io

96

2. TASK ON TRIPLE SCORING
Knowledge bases allow queries that express the search intent

precisely. For example, we can easily formulate a query that gives us
precisely a list of all American actors in a knowledge base. Note the
fundamental difference to full-text search, where keyword queries
are only approximations of the actual search intent, and thus result
lists are typically a mix of relevant and irrelevant hits.

But even for result sets containing only relevant items, a ranking
of the contained items is often desirable. One reason is similar as in
full-text search: when the result set is very large, we cannot look at
all items and thus want the most “interesting” items first. But even
for small result sets, it is useful to show the inherent order of the
items in case there is one. We give two examples. The numbers
refer to a sanitized dump of Freebase from June 29, 2014; see [1].

Example 1 (American actors): Consider the query that returns
all entities that have Actor as their profession and American as
their nationality. On the latest version of the Freebase dataset, this
query has 64,757 matches. A straightforward ranking would be by
popularity, as measured, e.g., by counting the number of occurrences
of each entity in a reference text corpus. Doing that, the top-5 results
for our query look as follows (the first result is G. W. Bush):
George Bush,Hillary Clinton,Tim Burton,Lady Gaga,Johnny Depp
All five of these are indeed listed as actors in Freebase. This is
correct in the sense that each of them appeared in a number of
movies, and be it only in documentary movies as themselves or
in short cameo roles. However, Bush and Clinton are known as
politicians, Burton is known as a film director, and Lady Gaga as
a musician. Only Johnny Depp, number five in the list above, is
primarily an actor. He should be ranked before the other four.

Example 2 (professions of a single person): Consider all profes-
sions by Arnold Schwarzenegger. Freebase lists 10 entries:
Actor, Athlete, Bodybuilder, Businessperson, Entrepreneur, Film
Producer, Investor, Politician, Television Director, Writer
Again, all of them are correct in a sense. For this query, ranking
by “popularity” (of the professions) makes even less sense than
for the query from Example 1. Rather, we would like to have the
“main” professions of that particular person at the top. For Arnold
Schwarzenegger that would be: Actor, Politician, Bodybuilder. Note
how we have an ill-defined task here: it is debatable whether Arnold
Schwarzenegger is more of an actor or more of a politician. But he
is certainly more of an actor than a writer.

2.1 Task Definition
The task is to compute relevance scores for triples from type-like

relations. The following definition is adapted from [2]:

Given a list of triples from two type-like relations (pro-
fession and nationality), for each triple compute an in-
teger score from 0..7 that measures the degree to which
the subject belongs to the respective type (expressed by
the predicate and object).

Here are four example scores, related to the example queries above:

Tim Burton profession Actor 2
Tim Burton profession Director 7
Johnny Depp profession Actor 7
A. Schwarzenegger profession Actor 6

An alternative, more intuitive way of expressing this notion of “de-
gree” is: how “surprised” would we be to see Actor in a list of
professions of, say, Arnold Schwarzenegger (a few people would be,
most would not). This formulation is also used in the crowdsourcing
task which we designed to acquire human judgments for the ground
truth used in our evaluation.

2.2 Datasets
Participants were provided a knowledge base in the form of

818,023 triples from two Freebase relations: profession and na-
tionality. Overall, these triples contained 385,426 different subjects,
200 different professions, and 100 different nationalities.

We constructed a ground truth for 1,387 of these triples (1,028
profession, 359 nationality). For each triple we obtained 7 binary
relevance judgments from a carefully implemented and controlled
crowdsourcing task, as described in [2]. This gives a total of 9,709
relevance judgments. For each triple, the sum of the binary relevance
judgments yields the score.

About half of this ground truth (677 triples) was made available to
the participants as training data. This was useful for understanding
the task and the notion of “degree” in the definition above. How-
ever, the learning task was still inherently unsupervised, because the
training data covers only a subset of all professions and nationalities.
Participants were allowed to use arbitrary external data for unsuper-
vised learning. For convenience, we provided 33,159,353 sentences
from Wikipedia with annotations of the 385,426 subjects. For each
subject from the ground truth, there were at least three sentences
(and usually many more) with that subject annotated.

The setup, datasets, rules, and measures, are described in detail
on http://www.wsdm-cup-2017.org/triple-scoring.html.

2.3 Performance Measures
Three quality measures were applied to measure the quality of

participating systems with respect to our ground truth:
Accuracy: the percentage of triples for which the score (an integer
from the range 0..7) differs by at most 2 (in either direction) from
the score in the ground truth.
Average score difference: the average (over all triples in the ground
truth) of the absolute difference of the score computed by the partic-
ipating system and the score from the ground truth.
Kendall’s Tau: a ranked-based measure which compares the ranking
of all the professions (or nationalities) of a person with the ranking
computed from the ground truth scores. The handling of items with
equal score is described in [2, Section 5.1] and under the link above.
Note that the Accuracy measure can only increase (and never de-
crease) when all scores 0 and 1 are rounded up to 2, and all scores
6 and 7 are rounded down to 5. For reasons of fairness, we there-
fore applied this simple transformation to all submissions when
comparing with respect to Accuracy.

The final evaluation results will be published in the workshop
proceedings of the WSDM Cup 2017 [3].

References
[1] H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann. Easy

access to the freebase dataset. In WWW, pages 95–98, 2014.
[2] H. Bast, B. Buchhold, and E. Haussmann. Relevance scores for

triples from type-like relations. In SIGIR, pages 243–252, 2015.
[3] H. Bast, B. Buchhold, and E. Haussmann. Overview of the

Triple Scoring Task at WSDM Cup 2017. To appear, 2017.
[4] T. Gollub, B. Stein, and S. Burrows. Ousting Ivory Tower

Research: Towards a Web Framework for Providing
Experiments as a Service. In SIGIR, pages 1125–1126, 2012.

[5] S. Heindorf, M. Potthast, G. Engels, and B. Stein. Overview of
the Wikidata Vandalism Detection Task at WSDM Cup 2017.
To appear, 2017.

[6] S. Heindorf, M. Potthast, B. Stein, and G. Engels. Towards
Vandalism Detection in Knowledge Bases: Corpus
Construction and Analysis. In SIGIR, pages 831–834, 2015.

[7] S. Heindorf, M. Potthast, B. Stein, and G. Engels. Vandalism
Detection in Wikidata. In CIKM, pages 327–336, 2016.

97

More Accurate Question Answering on Freebase

Hannah Bast, Elmar Haussmann
Department of Computer Science

University of Freiburg
79110 Freiburg, Germany

{bast, haussmann}@informatik.uni-freiburg.de

ABSTRACT
Real-world factoid or list questions often have a simple struc-
ture, yet are hard to match to facts in a given knowledge base
due to high representational and linguistic variability. For
example, to answer ”who is the ceo of apple” on Freebase re-
quires a match to an abstract ”leadership” entity with three
relations ”role”, ”organization” and ”person”, and two other
entities ”apple inc” and ”managing director”. Recent years
have seen a surge of research activity on learning-based so-
lutions for this method. We further advance the state of the
art by adopting learning-to-rank methodology and by fully
addressing the inherent entity recognition problem, which
was neglected in recent works.

We evaluate our system, called Aqqu, on two standard
benchmarks, Free917 and WebQuestions, improving the pre-
vious best result for each benchmark considerably. These
two benchmarks exhibit quite different challenges, and many
of the existing approaches were evaluated (and work well)
only for one of them. We also consider efficiency aspects and
take care that all questions can be answered interactively
(that is, within a second). Materials for full reproducibil-
ity are available on our website: http://ad.informatik.

uni-freiburg.de/publications .

1. INTRODUCTION
Knowledge bases like Freebase have reached an impressive
coverage of general knowledge. The data is stored in a clean
and structured manner, and can be queried unambiguously
via structured languages like SPARQL. However, given the
enormous amount of information (2.9 billion triples for Free-
base), mapping a search desire to the right query can be an
extremely hard task even for an expert user. For example,
consider the (seemingly) simple question who is the ceo of
apple. The answer is indeed contained in Freebase, and the
corresponding SPARQL query1 is:

1For the sake of readability, prefixes are omitted from the
entity and relation names.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
c© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806472.

select ?name where {
Managing Director job title.people with this title ?0 .
?0 employment tenure.company Apple Inc .
?0 employment tenure.person ?name
}

It would clearly be preferable, if we could just ask the ques-
tion in natural language, and the machine automatically
computes the corresponding SPARQL query. This is the
problem we consider in this paper.

We focus on “structurally simple” questions, like the one
above. They involve k entities (typically two or three, in the
example above: ceo and apple and the result entity), which
are linked via a single k-ary relation in the knowledge base.
For languages like SPARQL, k-ary relations for k > 2 can be
represented by a special entity (one for each k-tuple in the
relation) and k − 1 binary relations (in the example above:
the three binary relations in the where clause, all connected
to the ?0 entity).

The challenge for these questions is to find the match-
ing entities and relations in the given knowledge base. The
entity-matching problem is hard, because the question may
use a variant of the name used in the knowledge base (syn-
onymy), and the knowledge base may contain many entities
with the same name (polysemy). For example, there are
218 entities with the name apple in Freebase, but the right
match for the question is actually Apple Inc. The relation-
matching problem has the same problem, which is even more
difficult for k-ary relation with k > 2. As a further complica-
tion, questions like the above do not contain any word that
matches the relations from the sought for query.2 Note how
these problems exacerbate for very large knowledge bases. If
we restrict to lexical matches, we will often miss the correct
query. If we allow weaker matches, the number of possibili-
ties becomes very large. This will become clearer in Section
3.

1.1 Contributions
We consider the following as our main contributions:

• A new end-to-end system that automatically translates a
given natural-language question to the matching SPARQL
query on a given knowledge base. Several previous systems
factor out part of the problem, for example, by assuming
the right entities for the query to be given by an oracle. See
Section 3 for an overview of our system.

• An evaluation of our system on two standard benchmarks,
Free917 and WebQuestions, where it outperforms all pre-
2This is typical when the verb to be is used in the question.

98

vious approaches significantly. These two benchmarks ex-
hibit quite different challenges, and many of the existing
approaches were evaluated (and work well) only for one of
them. See Section 2 for an overview of the existing ap-
proaches, and Section 5 for the details of our evaluation.

• Integration of entity recognition in a learning-based ap-
proach. Previous learning-based approaches treated this
sub-problem in a simplistic manner, or even factored it out
by assuming the right entities to be given as part of the
problem.

• Using learning-to-rank techniques to learn pair-wise com-
parison of query candidates. Previous approaches often use
parser-inspired log-linear models for ranking.

• We also consider efficiency aspects and take care that
all questions can be answered interactively, that is, within
one second. Many of the previous systems do not consider
this aspect, and take at least several seconds and longer to
answer a single query. Again, see Section 5 for some details.

• We make the code of our system publicly available under
http://ad.informatik.uni-freiburg.de/publications .
In particular, this allows reproducing our results. The web-
site also provides various additional useful materials; in par-
ticular, a list of mistakes and inconsistencies in the Free917
and WebQuestions benchmarks.

Throughout this paper, we focus on Freebase as the cur-
rently largest general-purpose knowledge base. However,
there is nothing in our approach specific to Freebase. It
works for any knowledge base with entities and (possibly
k-ary) relations between them.

2. RELATED WORK
Much recent work on natural-language queries on knowl-

edge bases has focused on two recent benchmarks, both
based on Freebase: Free917 and WebQuestions. Section 2.1
gives an overview over this body of work, introducing the
two benchmarks on the way. In Section 5, we compare our
new method against all methods from this section. Section
2.2 briefly discusses work using other benchmarks.

2.1 Work on Free917 and WebQuestions
We consider the works in chronological order, briefly high-

lighting the relative innovations to previous works and the
corresponding gain in result quality. A more technical de-
scription of each of the methods is provided in Section 5.3.

In [7], the Free917 benchmark was first introduced. The
benchmark consists of 917 questions along with the correct3

knowledge-base query. All queries have exactly one (possi-
bly k-ary) relation. The basic approach of [7] is to extend
an existing semantic parser with correspondences between
natural-language phrases and relation names in the knowl-
edge base. The correspondences are learned using weak su-
pervision techniques and from the training portion of the
benchmark (70% = 641 questions).

In [15], query candidates are derived by transforming an
underspecified logical form of a CCG [21] parse. This form is
grounded to Freebase using a set of collapsing and expansion
operators that preserve the type of the expression. This has
the advantage that it leverages grammatical structure in the

3Actually, a small portion of the queries are incorrect, but
this is not a deliberate feature of the benchmark.

question and can adjust knowledge base mismatches, and
the disadvantage that it relies on well-formed questions. A
linear model is learned to score derivations, which are built
using a dynamic programming based parser.

In [2], the WebQuestions (WQ) benchmark was intro-
duced. This benchmark is much larger (5,810 question)
but only provides the result set for each question, not the
knowledge-base query. This allows gathering more train-
ing data more easily (the results were obtained via crowd-
sourcing). The WQ questions are also more realistic (they
were obtained via the Google Suggest API) and language-
wise more diverse than the Free917 questions, and hence
also harder (e.g. who runs china in 2011 asking for the
former Chinese Premier). The basic approach of [2] is to
generate query candidates by recursively generating logical
forms. The generation is guided by a mapping of phrases
to knowledge base predicates and a small set of composition
rules. Candidate scores are learned with a log-linear model.

In a follow-up work [3], the process from [2] is “turned on
its head” by again generating a natural-language question
from each query candidate. Scores are then learned (again
with a log-linear model) based on the similarity between the
question representing the query candidate and the original
question. This allows leverage of text-similarity informa-
tion (paraphrases) from large text corpora (unrelated to the
queried knowledge base).

In [25], the authors go another step further by not even
generating query candidates. Instead their approach tries
to identify the central entity of the question, and then it-
erates over each entity connected (via a single relation) to
that central entity in the knowledge base. It is then de-
cided (via a learned model) separately for each such entity
whether it becomes part of the result set. In principle, this
allows correct answers even when no single relation from
the knowledge base matches the question (e.g., asking for a
brother of someone, when the knowledge base only knows
about siblings). On the downside, this adds a lot of addi-
tional features to the learning process (the attributes of the
result entities). Quality-wise, the approach does not improve
over [2] and [3].

In [19], the authors go yet a step further by not even
using the training data. Instead, weak-supervision is used
to generate learning examples from natural language sen-
tences. The parsing step itself is conceptualized as a graph-
matching problem between the graph of a CCG parse and
graphs grounded in Freebase entities and relations. How-
ever, their approach was evaluated only on small (and topi-
cally narrow) subsets of the two benchmarks.

In [4], the authors try to solve the problem without any
natural-language processing (not even POS-tagging). They
match the results from [3] but do not improve them.

2.2 Other benchmarks
Another recent notable effort in open-domain question

answering is the QALD (Question Answering over Linked
Data) series of evaluation campaigns, which started in 2011.
See [22] for the latest report. So far, five benchmarks have
been issued, one per year. The challenges behind these
benchmarks are somewhat different than those behind the
Free917 and WebQuestions benchmarks from Section 2.1:

• The biggest and most diverse knowledge base used is DB-
pedia, which is more than an order of magnitude smaller
than Freebase (about 4M vs. about 40M entities).

99

• A significant fraction of the questions involves more than
one relation or non-trivial comparatives. For example, what
are the capitals of all countries that the himalayas run through
or which actor was cast in the most movies.

• The training sets are relatively small (50-100 queries for
QALD 1-3). This is mainly due to the fact, discussed in
Section 2.1 above, that the ground truth provides not just
the correct result sets but also the corresponding SPARQL
queries, which requires expensive human expert work. The
benchmarks thus give relatively little opportunity for super-
vised learning. Indeed, most of the participating systems are
unsupervised. It is one of the insights from our evaluation
in Section 5 that supervised learning is key for results of the
quality we achieve.

• QALD 3 and 4 contain multi-lingual versions of the data-
sets and questions. For QALD 5, the dataset is a combina-
tion of RDF data and free text.

For these reasons, and because there is such a substantial
body of very recent work on Free917 and WebQuestions
with a series of better and better results, we did not include
QALD in our evaluation. We consider it a very worthwhile
endeavor for future work though, to extend our approach to
the QALD benchmarks.

3. SYSTEM OVERVIEW
We first describe our overall process of answering a natural

language question from a knowledge base (KB). In the next
sections we describe each of the steps in detail. Assume
we are trying to answer the following question (from the
WebQuestions benchmark):

what character does ellen play in finding nemo?

Entity identification. We begin by identifying entities
from the KB that are mentioned in the question. In our
example, ellen refers to the tv host Ellen DeGeneres and
finding nemo refers to the movie Finding Nemo. However,
like for the example in the introduction, this is not obvious:
ellen could also refer to the actor Ellen Page and finding
nemo to the video game with the same name (besides oth-
ers). Instead of fixing a decision on which entities are men-
tioned, we delay this decision and jointly disambiguate the
mentioned entities via the next steps. Hence, the result of
this step is a set of (possibly overlapping) entity mentions
with attached confidence scores.

Template matching. Next, we match a set of query tem-
plates to the question. Figure 1 shows our templates. Each
template consists of entity and relation placeholders. A
matched template corresponds to a query candidate which
can be executed against the KB to obtain an answer.

Our simplest template consists of a single entity and an
answer relation (template 1 in Figure 1). One of the query
candidates for our example is generated by matching the en-
tity for the tv host Ellen DeGeneres and the relation parents
4:

<Ellen DeGeneres> <parents> <T>

This has the (wrong) interpretation of asking for her par-
ents. A slightly more complex template contains two rela-
tions connected to the entity via a mediator object (template

4We use SPARQL-like triple (subject, predicate, object) no-
tation, where uppercase characters indicate variables.

2 in Figure 1). In our example, this matches a query can-
didate connecting Ellen Page to abstract film performance
objects, via a film performance relation, and from there to
all the films she acted in via a film relation:

<Ellen Page> <performance> <M>
<M> <film> <T>

This asks for all films Ellen Page acted in. Yet another
template combines two entities via relations and a media-
tor entity (m in template 3 in Figure 1). In our example,
Ellen DeGeneres and Finding Nemo are connected via two
relations and a film-performance mediator.

<Ellen DeGeneres> <performance> <M>
<M> <film> <Finding Nemo>
<M> <character> <T>

We find this connection using an efficient inverted index (see
Section 4.2) and continue matching from the mediator. In
particular, we create query candidates asking for the charac-
ter (Dory) and performance type (Voice) of Ellen DeGeneres
in Finding Nemo. The final result of this step is a set of all
the matched query candidates.

Relation matching. The query candidates still miss the
fundamental information about which relations were actu-
ally mentioned and asked for in the question. We distinguish
three ways of matching relations of the query candidate to
words in the question: 1) via the name or description of the
relation in the KB, 2) via words learned for each relation
using distant supervision, 3) via supervised learning on a
training set. Each match has a confidence score attached.

In our example, a word learned for the relations perfor-
mance and film connecting an actor to the film she acted in
is play. This matches in the query candidates asking for all
films of Ellen Page and for the performance type or charac-
ter of Ellen DeGeneres in Finding Nemo. Furthermore, the
word character matches the relation with the same name,
whereas the relation performance type doesn’t match. Con-
tinuing this way, all relations in all query candidates are
enriched with information about what words were matched
in which way.

Ranking. We now have a set of query candidates, where
each candidate is enriched with information about which of
its entities and relations match which parts of the question
how well. It remains to rank the candidates in order to
find the best matching candidate. Note that performing
ranking at this final step has the strong benefit of jointly
disambiguating entities and relations. A candidate can have
a weak match for an entity, but a strong match for a relation,
and vice versa. By deciding this at the final stage we can
identify these combinations as correct, even when one of the
matches seems unlikely when considered separately.

Intuitively, for our example, the candidate covering most
words of the question is best. Matching ellen to Ellen Page
does no longer allow matching Finding Nemo because these
aren’t actually related in the KB. On the other hand, ask-
ing for the performance type of Ellen DeGeneres in Finding
Nemo doesn’t match the word character. This leaves us with
the correct interpretation of asking for her character in the
movie.

4. SYSTEM DETAILS
In this section, we describe the details of our system, called

Aqqu. Aqqu works by generating query candidates for each

100

e1 t
r1

e1 m
r1

t
r2

e1 m
r1 e2

r2

t

t
inventor

m
employment

t
company

m
film performance film

t

Scrabble

Henry Ford

Ellen DeGeneres Finding Nemo

who invented scrabble?

what company did henry ford work for?

what character does ellen play in finding nemo?

#1

#2

#3

Template

characterr3

Example Candidate Question

Figure 1: Query templates and example candidates with corresponding questions. A query template can
consist of entity placeholders e, relation placeholders r, an intermediate object m and the answer node t.

question. These query candidates are then ranked using a
learned model. The top-ranked query is then returned (or
“no answer” in case the set of candidates was empty). The
following subsections describe the candidate generation and
ranking in detail. The previous section explained the process
by an example.

4.1 Entity matching
The goal of the entity matching phase is to identify all

entities from the knowledge base that match a part of the
question. The match can be literal, or via an alias of the
entity name.

POS-tagging We POS-tag the question using the Stanford
tagger [17]. For entity matching (this subsection), we make
use of the tags NN (noun) and NNP (proper noun). For
relation matching (Section 4.3), we also make use of the
tags VB (verb) and JJ (adjective).

Subsequence generation We generate the set S of all
subsequences of words from the question, with the following
two restrictions. First, a subsequence consisting of a sin-
gle word must be tagged NN . Second, a subsequence must
not “split” a sequence of words tagged NNP ; that is, when
it starts (ends) with a word tagged NNP , it must not be
preceded (succeeded) by a word tagged NNP .

Find matching entities For each s ∈ S, we compute the
list of all entities from the knowledge base that have s as
their name or alias. We use a map from phrases (the aliases)
to lists of entities (the entities with the respective alias) ob-
tained from the CrossWikis dataset [20]. CrossWikis was
built by mining the anchor text of links to Wikipedia en-
tities (articles) from various large web-crawls. CrossWikis
covers around 4 million entities from Wikipedia. Almost
all of these entities also exist in Freebase, together with a
link to the respective Wikipedia entity. For the remaining
Freebase entities, we only consider the literal name match.
Overall, we are able to recognize around 44 million entities
with about 60 million aliases.

We have also experimented with the aliases provided by
Freebase, but they tend to be much more noisy (wrong
aliases) and less complete (important aliases missing).

Scores for the entity matches We compute a score for
each match s, e computed in the previous step, where s is
a subsequence of words from the question and e is an en-
tity from Freebase with alias s. Consider a fixed alias s.
CrossWikis also provides us with a probability distribution
pcross(e|s) over the Wikipedia entities e with alias s. Let e′

be a Freebase entity that is not contained in CrossWikis. Let

emax be the CrossWikis entity with the highest pcross(e|s).
That is, emax is the most likely Wikipedia entity for alias
s. Let pfree(e′|s) = p(emax |s) · pop(e′)/pop(emax), where pop
is the (alias-independent) popularity score of an entity, as
described in the next subsection. Intuitively, pfree(e′|s) es-
timates the probability that e′ has alias s via its relative
popularity to the most likely Wikipedia entity for s. We
merge pcross(e|s) and pfree(e′|s) into one probability distri-
bution by simply normalizing the probabilities to sum 1.

Popularity scores for each entity For each entity, we
also compute a (match-independent) popularity score. We
simply take the number of times the entity is mentioned
in the ClueWeb12 dataset [9], according to the annotations
provided by Google [13]. The popularity scores are used for
the entity match scores above. They also yield two features
used in ranking each candidate; see Section 4.5.

4.2 Candidate generation
Based on the entity matches, we compute a set of query

candidates as follows. We generate the query candidates in
three (disjoint) subsets, one for each of the three templates
shown in Figure 1. Each template stands for a query with
a particular kind of structure. These three templates cover
almost all of the questions in the Free917 and WebQuestions
benchmarks.

Let E be the set of all entities matched to a subsequence
of the question, as described in the previous section.

Template 1 For each e ∈ E, find all relations r such that
there is some triple (e, r, ·) in the knowledge base. We obtain
these via a single SPARQL query for each e.

Template 2 For each e ∈ E, find all r1, r2,m such that
there are two triples (e, r1,m) and (m, r2, ·) in the knowledge
base, where r1 and r2 are relations and m is a mediator
entity. We obtain these as follows. For each e, we use a single
SPARQL query to obtain all matching r1. For each e, r1, we
then use another SPARQL query to obtain all matching r2.
Note that m remains a variable in the query candidate.

Template 3 For all pairs of entities e1, e2 ∈ E such that the
two subsequences matched in the question do not overlap,
find all r1, r2, r3 such that there are three triples (e1, r1,m),
(m, r2, e2), and (m, r3, ·) in the knowledge base, where r1,
r2, r3 are relations and m is a mediator entity. We obtain
these as follows. For each entity e, we precompute the list
of all (r,m) such that m is a mediator entity and the triple
(e, r,m) exists in the knowledge base. The list is sorted
by the ids of the mediator entities. For given e1, e2 like
above, we then intersect the lists for e1 and e2. For each

101

mediator m in the intersection, we then obtain all r3 via a
simple SPARQL query. In the query candidate, m remains
a variable.

4.3 Relation matching
Let C be the set of query candidates computed in the

previous subsection. For each query candidate c ∈ C, let
RWc be the set of lemmatized5 words from the relations
from c (there can be one, two, or three relations, depending
on the template from which c was generated). We compute
how well the words from RWc match the subset QW of
lemmatized words from the question that are not already
matched by the entities from c.

We consider four kinds of matches, described in the fol-
lowing: literal, derivation, synonym, context. For each of
these four kinds of matches, we compute a non-negative
score (which is zero, if there is no match at all). It can
happen that all four of these scores are zero. In the basis
version of our system, we keep such candidates, in a variant
we prune them; see Section 4.7.

Literal matches This score is simply the number of pairs
w, q, where w ∈ RWc and q ∈ QW and w = q. Almost all
questions have no repeated words; in that case, this score is
just the number of relation words that occur in the question
(and are not already matched by an entity).

Derivation matches This score is the number of pairs w, q,
where w ∈ RWc and q ∈ QW and w is derivationally related
to q. Here we also consider the POS-tag of w in the question.
We precompute a map from POS-tagged words to deriva-
tions using WordNet [11]. We extract derivation links for
verbs and nouns (e.g. produce.VB - producer.NN and vice
versa). We also extract attribute links between adjectives
and their describing attribute (e.g., high.JJ - height.NN).
We extend these links with synonyms of the noun in Word-
Net (e.g. high.JJ - elevation.NN).

Synonym matches For each w ∈ RWc and q ∈ QW , add
s to this score if w is a synonym of q with similarity s. We
compute the similarity between two words by computing
the cosine similarity between the associated word vectors.
We use 300-dimensional word vectors that were computed
with Google’s word2vec on a news text corpus of size around
100 billion words.6 We consider only synonyms, where the
score is ≥ 0.4. This threshold is based on observation, but
chosen very liberally: many word pairs with score above that
threshold are not what humans would call “real synonyms”,
but almost all such “real synonyms” have a score above that
threshold.

Context matches For this score, we precompute weighted
indicator words for each relation from our knowledge base.
These are words which are not necessarily synonyms of words
in the relation name, but are used in text to express that re-
lation; see below for an example. The score is then the sum
of the weights of all words in QW that are indicators for one
of the relations from the query candidate. For templates 2
and 3, we consider r1.r2 as one relation.

We learn indicator words using distant supervision [18]
as follows. First, we identify entity mentions in Wikipedia
using Wiki markup and a set of simple heuristics for co-
reference resolution, as described in [1]. We also identify

5For example, founded → found and was → be.
6https://code.google.com/p/word2vec/

dates and values using SUTime [8]. For the 23 million sen-
tences that contain at least two entities (including dates or
values), we compute a dependency parse using [17].

For each pair e1, e2 of entities occurring in a sentence, we
look up all relations r in the knowledge base that connect
them. We also treat relations r1.r2 that connect the entities
via a mediator as a single binary relation r. If the shortest
path between e1 and e2 in the dependency parse has length
at most four, we consider all words along that path as in-
dicator words for r. We also experimented with considering
all words in the sentence, or words along longer paths, but
these gave considerably worse results.

We find about 4.7 million sentences that match at least
one relation this way. For example, we can thus learn that
born is an indicator word for the relation place of birth from
the following sentence (assuming that our knowledge base
contains the respective fact):

Andy Warhol was born on August 6, 1928 in Pittsburgh.

Note that from the same sentence, we can also learn that
born is an indicator word for the relation date of birth. To
distinguish between the two, we need some kind of answer
type matching; this is described in Section 4.4.

We compute the weights for the indicator words in the
following IR-style fashion. Consider each relation as a doc-
ument consisting of the words extracted for that relation.
Then compute tf.idf scores for all the words in these (rela-
tion) documents in the usual way. For each relation, then
only consider the top-1000 words and sum up their tf.idf
scores. The weight for each word in a (relation) document
is then its tf.idf score divided by this sum. This could also be
interpreted as a probability distribution p(w|r) over words
w given a relation r.

4.4 Answer type matching
For each candidate, we perform a simple but effective

binary check based on the relation leading to the answer
(r1, r2, r3 for templates 1,2 and 3, respectively). We pre-
compute a list of target types for each relation r by count-
ing the types of objects o in all triples (·, r, o), keeping only
the top ten percent of most frequent types. For questions
starting with who, we check whether the computed target
types contain the type person, character, or organization.
For questions starting with where, we check whether the re-
lation leads to a location or an event. For questions starting
with when or since when, we check whether the type is a
date; for all other questions, the check for target objects of
type date is negative.

As our evaluation and error analysis shows, these simple
heuristics work reasonably well for the Free917 and Web-
Questions benchmarks. The reason is that our entity and
relation matching already provide ample information for dis-
criminating between candidates. However, as explained in
Section 4.3, a question word like born alone does not permit
discrimination between the two relations place of birth and
date of birth. However, it is exactly those cases that can be
easily discriminated with the simple answer-type check from
above.

We leave elaborate answer-type detection (which has been
addressed by many QA systems) to future work.

4.5 Candidate features
The previous subsections have shown two things. First,

how we generate query candidates for a given question. Sec-

102

ID Description

1 number of entities in the query candidate

2 number of entities that matched exactly with their name, or with a high probability (> 0.8)

3 number of tokens of all entities that matched literally as per the previous feature

4-5 average (4) and sum (5) of entity match probabilities

6-7 average (6) and sum (7) of entity match popularities

8 number of relations in matched template

9 number of relations that were matched literally via their name

10-13 number of tokens that matched a relation of kind: literal (10), derivation (11), synonym (12), context (13)

14 sum of synonym match scores

15 sum of relation context match scores

16 number of times the answer relation (r1, r2, r3 for templates 1, 2 and 3 respectively) occurs in the KB

17 a value between 0 and 1 indicating how well the relation matches according to n-gram features (Section 4.5)

18 sum of features 3 and 10; that is, the number of tokens matching a relation or entity literally

19 number of tokens that match an entity or relation divided by the total number of tokens in question

20-22 whether the result size is 0 (feature 20), 1-20 (feature 21), or larger than 20 (feature 22); all binary

23 binary result of the answer-type check (Section 4.4)

Table 1: Features used by our ranking approaches. Top/middle/bottom: features for entity matches/features

for relation matches/combined or other features.

ond, how we compute various scores for each candidate that
measure how well the entities and relations from the candi-
date match which parts of the question.

In this subsection, we show how we generate a feature vec-
tor from each candidate. Most of these features are based on
the scores just mentioned. Another important feature, de-
scribed below, serves to learn the correspondence between
n-grams from the question and relations from query candi-
dates. Table 1 provides an overview over all our features. In
the description below, we refer to the features by their ID
(first column in the table). In Section 4.6, we show how we
rank candidates based on these feature vectors.

Entity/Relation matching features Features 1-7 are
based on the results from the entity matching described in
Section 4.1. Features 8-16 are based on the results from the
relation matching step described in Section 4.3. Features 18
and 19 quantify the number of words in the question covered
by entity or relation matches (feature 18 = literally, feature
19 = in any way). Features 20-22 quantify the result size.
This is important, because some candidates produce huge
result sizes or empty results sets, which are both rare. Fea-
ture 23 is the binary output of the simple answer-type check
from Section 4.4.

N-Gram relation matching feature This feature consid-
ers correspondences between words (unigrams) or two-word
phrases (bigrams) in the question and the relation in the
query candidate. For example, in the WebQuestion bench-
mark, the question who is ... almost always asks for the
profession of a person. Such a correspondence cannot be
learned by any of the mechanisms described in Section 4.3.
We learn this feature as follows.

For each query candidate, we generate all unigrams and bi-
grams of the lemmatized words of the question. The matched
entities (Section 4.1) are replaced with a special word entity.
For each n-gram, we then create an indicator feature by ap-
pending the n-gram to the relation names of the candidate.
For example, for template 2 from Figure 1, one of the fea-
tures would be employment.company+work for the uni-gram

work and the relations employment.company. We then train
an L2-regularized logistic regression classifier with all correct
candidates as positive examples and all others as negative
examples. The value of feature 17 is simply the (probability)
output by this classifier.

This feature will be part of a subsequent step to learn a
ranking that uses the same training data. To provide realis-
tic feature values (that aren’t overfit) we proceed as follows.
Split the training data into six folds. In turn, leave out one
fold and train the n-gram feature classifier on the remaining
folds. Then, for each example in the left-out fold compute
the n-gram feature value. Use this computed value as part
of the training data for subsequent learning.

4.6 Ranking
For each question, we finally rank the query candidates us-

ing the feature vectors described in the previous subsection.
The top-ranked query candidate is then used to provide the
answer. We say “no answer” only when the set of candidates
is emtpy; this is discussed in Section 4.7 below.7

We have experimented with state-of-the-art techniques
for the learning-to-rank approach from IR [14] [16], includ-
ing: RankSVM [14], RankBoost [12], LambdaRank [6] and
AdaRank [23]. These only lead to moderate results and were
outperformed by our approaches described below. We pre-
sume that this is because our ranking problem is degenerate.
In particular, each query is only associated with a single rel-
evant answer. This is different from a typical IR scenario
where a query usually has several answers, sometimes with
varying degrees of relevance.

We investigate two variants to obtain a ranking: pointwise
ranking and pairwise ranking. These approaches are inspired
by the learning-to-rank approaches from IR.

7Both benchmarks contain a considerable number of ques-
tions starting with how many ..., asking for a count. We
simply replace how many by what in these questions, and
count the size of the result set (unless the answer already is
a count).

103

Pointwise ranking In the pointwise ranking approach we
compute a score for each candidate. Candidates are sorted
by this score to infer a ranking. The score is computed by a
classifier learned on the candidate features (see Section 4.5)
and training data. We create training data by using the
correct candidate of each question as positive examples and
all other candidates as negative examples.

A drawback of the pointwise approach is that the model
”compares”question-independent examples. That is, correct
(incorrect) query candidates of questions of different type
and difficulty are in the same correct (incorrect) class, when
in practice it is not necessary to compare or discriminate
between them.

Pairwise ranking In the pairwise ranking approach, we
transform the ranking problem into a binary classification
problem. The idea is to learn a classifier that can predict
for a given pair of candidates, whether one should be ranked
before the other.

To infer a ranking, we sort the list of candidates using the
learned preference relation. This works very well in practice,
although our learning does not guarantee that the learned
relation is transitive or anti-symmetric. We have experi-
mented with two alternatives to sorting. Simply computing
the maximum turned out to perform badly. This makes
sense, because the maximum has to “survive” a larger num-
ber of comparisons. Following [10], we have also sorted the
candidates by their number of ”won” comparisons against
all other candidates. The results were identical to those for
sorting, but this method requires Θ(n2) comparisons for n
candidates.

To train the classifiers we create training examples in the
following way. For a question with n query candidates, ran-
domly select n/2, but at least 200 candidates (or n if n/2
< 200) . This is to guarantee that we have enough train-
ing examples for questions with few candidates and to avoid
putting too much emphasis on questions that have more
than 200 candidates.8 Then, for each randomly selected
candidate ri and the correct candidate c, where ri 6= c, cre-
ate a positive example pair (c, ri) and a negative example
pair (ri, c). The feature representation for a pair (a, b) is a
tuple of the individual feature vectors and their difference:
φpair(a, b) = (φ(a)− φ(b), φ(a), φ(b)), where φ is a function
extracting the features in Table 1.

Both ranking approaches, pointwise and pairwise, require
a classifier. Here, we consider two different options.

Linear A logistic regression classifier. In initial experi-
ments, other linear models, such as linear SVMs, have shown
similar performance. Logistic regression is also known to
output well calibrated probabilities and performs well in
high-dimensional feature spaces. We train the model us-
ing L-BFGS-B [26]. To avoid over-fitting we apply L2-
regularization choosing the regularization strength using 6-
fold cross-validation on the training set.

Random forest We learn a forest of decision trees [5].
Random forests are able to learn non-linear decision bound-
aries, require few hyperparameters, are simple to train, and
are known to perform very well on a variety of tasks.

8Our system generates around 200 candidates on average for
a random question, but the exact value had little effect on
performance in our evaluation.

4.7 Candidate pruning
Some questions may have no answers in the knowledge

base. Our system, as described so far, returns “no answer”
only when the set of query candidates is empty. However,
as also described, this would rarely happen, since there are
matching entities for every question, and we do not require
that the relations match any of the words in the question.9

We consider two variants of our system to deal with this
problem: (1) omitting the n-gram feature, and using hard
pruning; and (2) keeping the n-gram feature, and using a
pruning-classifier. Note that a nice side-effect of pruning is
that it speeds up the ranking process because it needs to
consider less candidates.

Without n-grams, with hard pruning When omitting
the n-gram feature, there is no reason to keep candidates
with the wrong answer type or where features 9-15 are all
zero. The natural approach is then to prune such candidates
before we do the ranking; this is what we call hard pruning.
Hard pruning naturally leads to empty candidate sets for
some queries. Indeed, on the Free917 benchmark, 10 ques-
tions have no answer, and our hard pruning yields an empty
candidate set for 7 of them.

With n-grams, with a pruning classifier When keep-
ing the n-gram feature, hard pruning as just described would
be counterproductive. As explained in Section 4.5, the an-
swers for the who is ... questions from the WebQuestions
benchmark are professions. They would be eliminated when
hard pruning by answer type. Also, the profession relation
matches no words from these questions. They would hence
also be eliminated when hard pruning if features 9-15 are all
zero.

The goal of the pruning classifier is to weed out only the
“obviously” bad candidates. For example, candidates that
do not match the answer type, have bad relation matches,
and a weak n-gram feature. We train the pruning classifier
in the same way as the pointwise classifiers (see above) with
the features from Table 1 using logistic regression. To op-
timize the classifier for recall we adjust example weights so
that positive candidates have twice the weight of negative
candidates. Before the ranking step, we apply the classi-
fier to each candidate and only keep candidates classified
positively.

5. EVALUATION
We perform an extensive evaluation of our system. In Sec-

tion 5.1, we provide more details on our two benchmarks. In
Section 5.2, we describe the evaluation measures used. In
Section 5.3, we describe the systems we evaluate and com-
pare to. In Section 5.4, we provide our main results followed
by a detailed analysis in Section 5.5.

5.1 Data
We use all of Freebase as our knowledge base (2.9 billion

facts on 44 million entities). Note that our approach is not
tailored to Freebase and could easily be adapted to another
knowledge base, e.g., WikiData10.

Datasets We evaluate our system on two established bench-
marks: Free917 and WebQuestions. Each benchmark con-
sists of a set of questions and their answers from Freebase.
9In that case, features 9-15 are all zero; however, the n-gram
features could still be positive.

10http://www.wikidata.org

104

The benchmarks differ substantially in the types of questions
and their complexity.

Free917 contains 917 manually generated natural language
questions [7]. The questions cover a wide range of domains
(81 in total). Two examples are what fuel does an inter-
nal combustion engine use and how many floors does the
white house have. The most common domains, film and
business, only make up 6% of the questions [7]. All ques-
tions are grammatical and tend to be tailored to Freebase.
The dataset provides a translation of each question into a
SPARQL-equivalent form. We execute the SPARQL queries
to obtain a gold answer for each question. [7] also provide an
entity lexicon: a mapping from exact text to the mentioned
entity for all entities appearing in the questions. This lexicon
consists of 1014 different entities. It was used for identify-
ing entities by all systems reporting results on the dataset
so far. We only make use of this lexicon where explicitly
stated. To report results, we use the original split of the
questions by [7] into 70% (641) questions to train and 30%
questions (276) to test.

WebQuestions consists of 5,810 questions that were se-
lected by crawling the Google suggest API [2]. Contrary to
Free917, questions are not necessarily grammatical and are
more colloquial. For example: where did jackie kennedy go
to college and what is spoken in czech republic. Due to how
they were selected, the questions are biased towards topics
that are frequently asked from Google. According to [19],
the people domain alone makes up about 7% of questions.
Furthermore, the structure of questions tends to be simpler.
Most questions only require a single entity with an answer
relation [2]. Answers to the questions were obtained by using
crowdsourcing. This introduces additional noise; in particu-
lar, for some questions only a subset of the correct answer is
provided as gold answer. We use the original train-test split
of the questions by [2] into 70% (3,778 questions) to train
and 30% (2,032 questions) to test.

5.2 Evaluation measures
Given a benchmark and a system, denote the questions

by q1...qn, the gold answers by g1...gn, and the answers from
the system by a1...an. Note that an answer can consist of
a single value (in particular, a date or a literal) or a list of
values. We consider the following two evaluation measures.

Accuracy The fraction of queries answered with the exact
gold answer:

accuracy =
1

n

n∑

i=1

I(gi = ai)

where I(e) is an indicator function returning one if expres-
sion e is true and zero else. This is reasonable on Free917
which provides perfect gold answers.

Average F1 The average F1 across all questions:

average F1 =
1

n

n∑

i=1

F1(gi, ai)

where the function F1 computes F1 in the regular way. This
accounts for partially correct results, which is reasonable for
WebQuestions, where gold answers are sometimes incom-
plete.

In our evaluation we focus on accuracy for Free917 and
average F1 for WebQuestions. These are the most reported
and most intuitive measures for these datasets. We also per-
formed the evaluation with other measures that were used

Free917 WebQuestions

Method Accuracy+ Accuracy Average F1

Cai+Yates 59 % – –

Jacana – – 35.4 %

Sempre 62 % 52 % 35.7 %

Kwiat. et al 68 % – –

Bordes et al – – 39.2 %

ParaSempre 68.5 % 46 % 39.9 %

Aqqu 76.4 % 65.9 % 49.4 %

Table 2: Results on the Free917 (267 questions) and

WebQuestions (2032 questions) test set. For the re-

sults in the second column (Accuracy+) a manually

crafted entity lexicon was used.

in previous work, e.g., variants of F1 as defined in [15] and
[25]. These provided no new insights and strongly correlated
with the measures above.

5.3 Systems evaluated
We evaluate and compare the following systems. See Sec-

tion 2 for a brief description of the systems from previous
work. If we (re-)produced results, we explicitly state so.
Otherwise, we report existing results.

Cai+Yates The semantic parser developed by [7].

Kwiat. et al The semantic parser by [15].

Sempre The semantic parser by [2]. We produced results
for Free917 without an entity lexicon using the provided
code.11

ParaSempre The semantic parser suggested by [3]. We
used the code provided by the authors11 to produce results
on Free917 without an entity lexicon.

GraphParser The semantic parser developed by [19]. We
report results obtained from the code provided by the au-
thors12. The results from their code slightly deviates from
the results reported in their paper.

Jacana The information extraction based approach by [25].
We report updated results from [24].

Bordes et al The embedding-based model by [4].

Aqqu Our system, as described in Section 4. We want to
stress that we use the exact same system on both bench-
marks. As shown in Section 5.5 below, results can be fur-
ther improved by adapting the feature set to the benchmark.
However, we consider this overfitting. Note that all of the
systems above, except Sempre and ParaSempre, were only
evaluated on one of the two benchmarks.

5.4 Main results
Table 2 shows the results on the test sets for Free917 and

WebQuestions for all the systems from Section 5.3. Graph-
Parser is discussed separately below, because it was evalu-
ated only on a subset of questions.

On Free917, Aqqu improves in accuracy over the best pre-
vious systems by 8% with an entity lexicon, and by 14%
without entity lexicon. Performance drops considerably for
all systems when not using an entity lexicon. This shows

11http://github.com/percyliang/sempre
12http://github.com/sivareddyg/graph-parser

105

Top-2 Top-3 Top-5 Top-10

Free917 74.3 % 77.2 % 79.3 % 83.7 %

WebQuestions 67.1 % 72.7 % 77.5 % 82.3 %

Table 3: Top-k results on Free917 (top) and Web-

Questions (bottom). Percentage of questions with

the best answer in the top-k candidates.

Free917 WebQuestions

Method Acc+ Acc Avg F1

Aqqu-point-lin 73.6 % 63.4 % 46.9 %

Aqqu-point-tree 74.3 % 63.0 % 47.9 %

Aqqu-pair-lin 76.4 % 65.2 % 48.3 %

Aqqu-pair-tree 76.4 % 65.9 % 49.4 %

Table 4: Results for different ranking variants on

the test sets for Free917 and WebQuestions. For

the results in the second column (Acc+) a manually

crafted entity lexicon was used.

that addressing entity recognition is an integral part of the
problem that cannot be ignored. Overall, we achieve an or-
acle accuracy (percentage of questions where at least one
produced query candidate is correct) of 89.1% and 85.5%,
with and without entity lexicon respectively. This indicates
that there is still room for improvement for better matching
and ranking.

On WebQuestions our system improves the state of the
art by almost 10% in average F1. No system uses an entity
lexicon. Note that the WebQuestions benchmark is much
harder and contains a considerable amount of imperfect or
wrong answers. Out of a random sample of 55 questions we
found 9 questions that had a wrong answer, and 10 further
question that had only a partially correct answer. This sug-
gests that the upper bound for average F1 is roughly around
80%. Our oracle average F1 is at 68.5%. [2] and [3] report
48% and 63% respectively. Hence, we successfully identify
most of the entities and relations. However, there is still
much room for improvement in ranking and matching.
GraphParser was evaluated only on a subset of Freebase
relations. The authors provide a train-test split of questions
for WebQuestions. Note that we didn’t restrict our system
to the specific relations and that GraphParser requires an
entity lexicon also on WebQuestions. Our system (without
an entity lexicon) scores an average F1 of 66.1 % compared
to 40.5 % reported for GraphParser. The selected subset of
relations and thus questions seems to be considerably easier
to answer for our system.

5.5 Detailed analysis
Top-k results Table 3 shows the top-k results on the two
datasets. A large majority of questions can be answered
from the top two or three candidates. By providing these
interpretations and results (in addition to the top-ranked
candidate) to a user, many questions can be answered cor-
rectly. Note that on WebQuestions some questions only have
an imperfect gold answer with an F1 score smaller than one.
Therefore, the percentage of best answers in the top candi-
dates can be slightly larger than the resulting average F1.

Ranking variants As described in Section 4.6, we con-

Free917 WebQuestions

best previous 52.0 % 39.9 %

best now 69.2 % 49.4 %

no n-grams, all other 69.2 % 39.6 %

no n-grams, no lit-match 65.2 % 39.6 %

no n-grams, no synonyms 61.6 % 28.2 %

n-grams, all other 65.9 % 49.4 %

n-grams, no pruning 64.4 % 49.3 %

n-grams, no synonyms 62.0 % 48.0 %

n-grams, nothing else 18.1 % 43.8 %

Table 5: Feature analysis for Free917 and WebQues-

tions. No synonyms disables features 11-15 and no

lit-match features 2, 3, 9, 10 and 18. When not us-

ing the n-gram feature a different type of candidate

pruning is performed (see text).

.

sider two possible ranking methods: pointwise (point) and
pairwise (pair), each with two different ranking classifiers:
logistic regression (lin) and random forests (tree). This gives
a total of four different combinations.

Table 4 shows results of all four ranking variants with the
full features of Table 1. On both benchmarks, pairwise rank-
ing is more effective than pointwise ranking. This is consis-
tent with our intuition that learning a pairwise comparator
is better (see Section 4.6). Furthermore, random forests are
slightly more effective than a weighted linear combination.
We therefore use pairwise ranking with random forests as a
standard choice.

Feature analysis To gain insight into which features are
helpful we evaluate our system with different combinations.
Table 5 shows the results. Note that, as described in Section
4.7, without the n-gram feature hard pruning is applied. The
following main observations can be made.

The n-gram feature is extremely helpful on WebQuestions
but slightly detrimental on Free917. The WebQuestions
benchmark contains many questions that are hard to answer
without this kind of supervision, e.g., where is reggie bush
from? (asking for the place of birth) or what to do downtown
san francisco? (asking for tourist attractions). Our sys-
tem is able to successfully learn important features for these
from the training set. On the other hand, the small Free917
benchmark covers a wide range of domains and relations
with only few repetitions. N-gram features aren’t helpful on
this dataset, which is shown by the low performance when
only using the n-gram feature (18.1%). Note that the rank-
ing and learning problem is inherently more difficult when
the number of possible candidates increases. This is the case
when not using hard pruning which goes along with using
the n-gram feature (see Section 4.7). This disadvantage can-
not be fully compensated by the weak n-gram feature and
leaner pruning and, as a result, the score drops by about
3% for Free917. Still, we consider it more important to have
a single approach that performs well on different kinds of
datasets than to optimize for a single dataset.

Literal features provide a small benefit for Free917 but
no benefit on WebQuestions. This is an artefact of the way
Free917 was built. Free917 questions are tailored to Free-
base, often using words from the relation name as part of the

106

question. Synonym features are important for both datasets.
They give a huge benefit on WebQuestions without the n-
gram feature but only a small benefit on top of it.

Finally, the pruning classifier used with the n-gram feature
helps on Free917 because it allows to return ”no answer”
for some questions that have no answer in the knowledge
base. The difference on WebQuestions (which always has
an answer in the knowledge base) is not significant, and
shows that the pruning classifier doesn’t negatively affect
performance.

Manual error analysis We manually inspected the er-
rors our system makes. Many errors are due to mistakes
in the benchmarks (partially or completely wrong gold an-
swers) and inconsistencies in the knowledge base (different
relations with contradicting answers on the same piece of
information). We provide a list on our website, see the link
in Section 1.1.

On that website, we also provide a list of errors due to
our system. There is no single large class of errors worth
pointing out though.

Efficiency We also evaluated the performance of our sys-
tem. The average response time for a question is 644 ms for
Free917 and 900 ms for WebQuestions.13 None of the other
system from Section 5.3 comes with an efficiency evaluation.
For systems that provide code and for which we reproduced
results, runtimes are (at least) several seconds per query.
Training our system on the large WebQuestions benchmark
takes about 90 minutes in total.

6. CONCLUSION
We have presented Aqqu, a new end-to-end system that

automatically translates a given natural-language question
to the matching SPARQL query on a knowledge base. The
system integrates entity recognition and utilizes distant su-
pervision and learning-to-rank techniques. We showed that
our system outperforms previous state-of-the-art systems on
two very different benchmarks by 8% and more. Aqqu an-
swers questions interactively, that is, within one second.

For around 80% of the queries, the correct answer is among
the top-5 candidates. This suggests that a more interactive
approach, which asks the user’s feedback for critical deci-
sions (e.g., between two relations), could achieve a signifi-
cantly further improved accuracy.

7. REFERENCES
[1] H. Bast, F. Bäurle, B. Buchhold, and E. Haussmann.

Broccoli: Semantic full-text search at your fingertips.
CoRR, abs/1207.2615, 2012.

[2] J. Berant, A. Chou, R. Frostig, and P. Liang.
Semantic Parsing on Freebase from Question-Answer
Pairs. In EMNLP, pages 1533–1544, 2013.

[3] J. Berant and P. Liang. Semantic Parsing via
Paraphrasing. In ACL, pages 1415–1425, 2014.

[4] A. Bordes, S. Chopra, and J. Weston. Question
Answering with Subgraph Embeddings. CoRR,
abs/1406.3676, 2014.

[5] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

13Answer times are averaged over three runs on a server
with Intel E5649 CPUs, 90GB of RAM and warm SPARQL
caches.

[6] C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to
rank with nonsmooth cost functions. In NIPS, pages
193–200, 2006.

[7] Q. Cai and A. Yates. Large-scale Semantic Parsing via
Schema Matching and Lexicon Extension. In ACL,
pages 423–433, 2013.

[8] A. X. Chang and C. D. Manning. Sutime: A library
for recognizing and normalizing time expressions. In
LREC, pages 3735–3740, 2012.

[9] ClueWeb, 2012. The Lemur Projekt.

[10] W. W. Cohen, R. E. Schapire, and Y. Singer.
Learning to order things. JAIR, 10:243–270, 1999.

[11] C. Fellbaum. WordNet. Wiley Online Library, 1998.

[12] Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer.
An efficient boosting algorithm for combining
preferences. JMLR, 4:933–969, 2003.

[13] E. Gabrilovich, M. Ringgaard, and A. Subramanya.
FACC1: Freebase annotation of ClueWeb corpora,
Version 1.

[14] T. Joachims. Optimizing search engines using
clickthrough data. In KDD, pages 133–142, 2002.

[15] T. Kwiatkowski, E. Choi, Y. Artzi, and L. S.
Zettlemoyer. Scaling Semantic Parsers with
On-the-Fly Ontology Matching. In EMNLP, pages
1545–1556, 2013.

[16] T. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[17] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel,
S. Bethard, and D. McClosky. The stanford corenlp
natural language processing toolkit. In ACL, pages
55–60, 2014.

[18] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant
supervision for relation extraction without labeled
data. In ACL, pages 1003–1011, 2009.

[19] S. Reddy, M. Lapata, and M. Steedman. Large-scale
Semantic Parsing without Question-Answer Pairs.
TACL, 2:377–392, 2014.

[20] V. I. Spitkovsky and A. X. Chang. A Cross-Lingual
Dictionary for English Wikipedia Concepts. In LREC,
pages 3168–3175, 2012.

[21] M. Steedman. The syntactic process, volume 35. MIT
Press, 2000.

[22] C. Unger, C. Forascu, V. Lopez, A. N. Ngomo,
E. Cabrio, P. Cimiano, and S. Walter. Question
answering over linked data (QALD-4). In CLEF 2014,
pages 1172–1180, 2014.

[23] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In SIGIR, pages 391–398, 2007.

[24] X. Yao, J. Berant, and B. V. Durme. Freebase QA:
Information Extraction or Semantic Parsing? In ACL,
Workshop on Semantic Parsing, 2014.

[25] X. Yao and B. V. Durme. Information Extraction over
Structured Data: Question Answering with Freebase.
In ACL, pages 956–966, 2014.

[26] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm
778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization. ACM Trans. Math.
Softw., 23(4):550–560, 1997.

107

Foundations and TrendsR© in Information Retrieval
Vol. 10, No. 2-3 (2016) 119–271
c© 2016 H. Bast, B. Buchhold, E. Haussmann
DOI: 10.1561/1500000032

Semantic Search on Text and Knowledge Bases

Hannah Bast
University of Freiburg
bast@cs.uni-freiburg.de

Björn Buchhold
University of Freiburg

buchhold@cs.uni-freiburg.de

Elmar Haussmann
University of Freiburg

haussmann@cs.uni-freiburg.de

108

Contents

1 Introduction 120
1.1 Motivation for this Survey 120
1.2 Scope of this Survey . 123
1.3 Overview of this Survey 126
1.4 Glossary . 128

2 Classification by Data Type and Search Paradigm 131
2.1 Data Types and Common Datasets 132
2.2 Search Paradigms . 143
2.3 Other Aspects . 148

3 Basic NLP Tasks in Semantic Search 150
3.1 Part-of-Speech Tagging and Chunking 151
3.2 Named-Entity Recognition and Disambiguation 153
3.3 Sentence Parsing . 158
3.4 Word Vectors . 162

4 Approaches and Systems for Semantic Search 167
4.1 Keyword Search in Text 168
4.2 Structured Search in Knowledge Bases 173
4.3 Structured Data Extraction from Text 179
4.4 Keyword Search on Knowledge Bases 190

ii

109

iii

4.5 Keyword Search on Combined Data 196
4.6 Semi-Structured Search on Combined Data 203
4.7 Question Answering on Text 207
4.8 Question Answering on Knowledge Bases 212
4.9 Question Answering on Combined Data 220

5 Advanced Techniques used for Semantic Search 227
5.1 Ranking . 227
5.2 Indexing . 234
5.3 Ontology Matching and Merging 239
5.4 Inference . 243

6 The Future of Semantic Search 247
6.1 The Present . 247
6.2 The Near Future . 249
6.3 The Not So Near Future 250

Acknowledgements 253

Appendices 254
A Datasets . 254
B Standards . 256

References 257

110

Abstract

This article provides a comprehensive overview of the broad area of
semantic search on text and knowledge bases. In a nutshell, semantic
search is “search with meaning”. This “meaning” can refer to various
parts of the search process: understanding the query (instead of just
finding matches of its components in the data), understanding the data
(instead of just searching it for such matches), or representing knowl-
edge in a way suitable for meaningful retrieval.

Semantic search is studied in a variety of different communities with
a variety of different views of the problem. In this survey, we classify
this work according to two dimensions: the type of data (text, knowl-
edge bases, combinations of these) and the kind of search (keyword,
structured, natural language). We consider all nine combinations. The
focus is on fundamental techniques, concrete systems, and benchmarks.
The survey also considers advanced issues: ranking, indexing, ontol-
ogy matching and merging, and inference. It also provides a succinct
overview of natural language processing techniques that are useful for
semantic search: POS tagging, named-entity recognition and disam-
biguation, sentence parsing, and word vectors.

The survey is as self-contained as possible, and should thus also
serve as a good tutorial for newcomers to this fascinating and highly
topical field.

H. Bast, B. Buchhold, E. Haussmann. Semantic Search on Text and Knowledge
Bases. Foundations and TrendsR© in Information Retrieval, vol. 10, no. 2-3,
pp. 119–271, 2016.
DOI: 10.1561/1500000032.

111

1
Introduction

1.1 Motivation for this Survey

This is a survey about the broad field of semantic search. Semantics is
the study of meaning.1 In a nutshell, therefore, it could be said that
semantic search is search with meaning.

Let us first understand this by looking at the opposite. Only a
decade ago, search engines, including the big web search engines, were
still mostly lexical. By lexical, we here mean that the search engine looks
for literal matches of the query words typed by the user or variants of
them, without making an effort to understand what the whole query
actually means.

Consider the query university freiburg issued to a web search en-
gine. Clearly, the homepage of the University of Freiburg is a good
match for this query. To identify this page as a match, the search en-
gine does not need to understand what the two query words university
and freiburg actually mean, nor what they mean together. In fact, the
university homepage contains these two words in its title (and, as a

1The word comes from the ancient greek word sēmantikós, which means impor-
tant.

120

112

1.1. Motivation for this Survey 121

matter of fact, no other except the frequent word of). Further, the
page is at the top level of its domain, as can be seen from its URL:
http://www.uni-freiburg.de. Even more, the URL consists of parts
of the query words. All these criteria are easy to check, and they alone
make this page a very good candidate for the top hit of this query. No
deeper understanding of what the query actually “meant” or what the
homepage is actually “about” were needed.2

Modern search engines go more and more in the direction of accept-
ing a broader variety of queries, actually trying to “understand” them,
and providing the most appropriate answer in the most appropriate
form, instead of just a list of (excerpts from) matching documents.

For example, consider the two queries computer scientists and fe-
male computer scientists working on semantic search. The first query
is short and simple, the second query is longer and more complex.
Both are good examples of what we would call semantic search. The
following discussion is independent of the exact form of these queries.
They could be formulated as keyword queries like above. They could be
formulated in the form of complete natural language queries. Or they
could be formulated in an abstract query language. The point here is
what the queries are asking for.

To a human, the intention of both of these queries is quite clear:
the user is (most likely) looking for scientists of a certain kind. Prob-
ably a list of them would be nice, with some basic information on
each (for instance, a picture and a link to their homepage). For the
query computer scientists, Wikipedia happens to provide a page with
a corresponding list and matching query words.3 Correspondingly, the
list is also contained in DBpedia, a database containing the structured
knowledge from Wikipedia. But in both cases it is a manually compiled
list, limited to relatively few better-known computer scientists. For the
second query (female computer scientists working on semantic search),
there is no single web page or other document with a corresponding

2In this simple example, we are leaving aside the important issue of spam. That
is, someone deliberately putting misleading keywords in the title or even in the URL,
in order to fool search engines, and thus users, to consider the web page relevant.
Note that this query could also be solved using clickthrough data; see Section 1.2.2.

3http://en.wikipedia.org/wiki/List_of_computer_scientists

113

122 Introduction

list, let alone one matching the query words. Given the specificity of
the query, it is also unlikely that someone will ever manually compile
such a list (in whatever format) and maintain it. Note that both lists
are constantly changing over time, since new researchers may join any
time.

In fact, even individual web pages matching the query are unlikely
to contain most of the query words. A computer scientist does not
typically put the words computer scientist on his or her homepage. A
female computer scientist is unlikely to put the word female on her
homepage. The homepage probably has a section on that particular
scientist’s research interests, but this section does not necessarily con-
tain the word working (maybe it contains a similar word, or maybe no
such word at all, but just a list of topics). The topic semantic search
will probably be stated on a matching web page, though possibly in
a different formulation, for example, intelligent search or knowledge
retrieval.

Both queries are thus good examples, where search needs to go
beyond mere lexical matching of query words in order to provide a sat-
isfactory result to the user. Also, both queries (in particular, the second
one) require that information from several different sources is brought
together to answer the query satisfactorily. Those information sources
might be of different kinds: (unstructured) text as well as (structured)
knowledge bases.

There is no exact definition of what semantic search is. In fact, se-
mantic search means a lot of different things to different people. And
researchers from many different communities are working on a large va-
riety of problems related to semantic search, often without being aware
of related work in other communities. This is the main motivation be-
hind this survey.

When writing the survey, we had two audiences in mind: (i) new-
comers to the field, and (ii) researchers already working on semantic
search. Both audiences should get a comprehensive overview of which
approaches are currently pursued in which communities, and what the
current state of the art is. Both audiences should get pointers for fur-
ther reading wherever the scope of this survey (defined in Section 1.2

114

1.2. Scope of this Survey 123

right next) ends. But we also provide explanations of the underlying
concepts and technologies that are necessary to understand the various
approaches. Thus, this survey should also make a good tutorial for a
researcher previously unfamiliar with semantic search.

1.2 Scope of this Survey

1.2.1 Kinds of Data

This survey focuses on semantic search on text (in natural language) or
knowledge bases (consisting of structured records). The two may also
be combined. For example, a natural language text may be enriched
with semantic markup that identifies mentions of entities from a knowl-
edge base. Or several knowledge bases with different schemata may be
combined, like in the Semantic Web. The types of data considered in
this survey are explained in detail in Section 2.1 on Data Types and
Common Datasets.

This survey does not cover search on images, audio, video, and other
objects that have an inherently non-textual representation. This is not
to say that semantic search is not relevant for this kind of data; quite
the opposite is true. For example, consider a user looking for a picture
of a particular person. Almost surely, the user is not interested in the
precise arrangements of pixels that are used to represent the picture.
She might not even be interested in the particular angle, selection, or
lighting conditions of the picture, but only in the object shown. This
is very much “semantic search”, but on a different kind of data. There
is some overlap with search in textual data, including attempts to map
non-textual to textual features and the use of text that accompanies the
non-textual object (e.g., the caption of an image). But mostly, search
in non-textual data is a different world that requires quite different
techniques and tools.

A special case of image and audio data are scans of text documents
and speech. The underlying data is also textual4 and can be extracted
using optical character recognition (OCR) and automatic speech recog-
nition (ASR) techniques. We do not consider these techniques in this

4Leaving aside aspects like a particular writing style or emotions when talking.

115

124 Introduction

survey. However, we acknowledge that “semantic techniques”, as de-
scribed in this survey, can be helpful in the text recognition process.
For example, in both OCR and ASR, a semantic understanding of the
possible textual interpretations can help to decide which interpretation
is the most appropriate.

1.2.2 Kinds of Search

There are three types of queries prevailing in semantic search: keyword,
structured, and natural language. We cover the whole spectrum in this
survey; see Section 2.2 on Search Paradigms.

Concerning the kind of results returned, we take a narrower view:
we focus on techniques and systems that are extractive in the sense that
they return elements or excerpts from the original data. Think of the
result screen from a typical web search engine. The results are nicely
arranged and partly reformatted, so that we can digest them properly.
But it’s all excerpts and elements from the web pages and knowledge
bases being searched in the background.

We only barely touch upon the analysis of query logs (queries asked)
and clickthrough data (results clicked). Such data can be used to de-
rive information on what users found relevant for a particular query.
Modern web search engines leverage such information to a significant
extent. This topic is out of scope for this survey, since an explicit “un-
derstanding” of the query or the data is not necessary. We refer the
user to the seminal paper of Joachims [2002] and the recent survey of
Silvestri [2010].

There is also a large body of research that involves the complex
synthesis of new information, in particular, text. For example, in au-
tomatic summarization, the goal is to summarize a given (long) text
document, preserving the main content and a consistent style. In multi-
document summarization, this task is extended to multiple documents
on a particular topic or question. For example, compile a report on
drug trafficking in the united states over the past decade. Apart from
collecting the various bits and pieces of text and knowledge required to
answer these questions, the main challenge becomes to compile these
into a compact and coherent text that is well comprehensible for hu-

116

1.2. Scope of this Survey 125

mans. Such non-trivial automatic content synthesis is out of scope for
this survey.

1.2.3 Further inclusion criteria

As just explained, we focus on semantic search on text and knowledge
bases that retrieves elements and excerpts from the original data. But
even there we cannot possibly cover all existing research in depth.

Our inclusion criteria for this survey are very practically oriented,
with a focus on fundamental techniques, datasets, benchmarks, and
systems. Systems were selected with a strong preference for those eval-
uated on one of the prevailing benchmarks or that come with a working
software or demo. We provide quantitative information (on the bench-
marks and the performance and effectiveness of the various systems)
wherever possible.

We omit most of the history and mostly focus on the state of the
art. The historical perspective is interesting and worthwhile in its own
right, but the survey is already long and worthwhile without this. How-
ever, we usually mention the first system of a particular kind. Also, for
each of our nine categories (explained right next, in Section 1.3), we
describe systems in chronological order and make sure to clarify the
improvements of the newer systems over the older ones.

1.2.4 Further Reading

The survey provides pointers for further reading at many places. Addi-
tionally, we provide here a list of well-known conferences and journals,
grouped by research community, which are generally good sources for
published research on the topic of this survey and beyond. In particular,
the bibliography of this survey contains (many) references from each
of these venues. This list is by no means complete, and there are many
good papers that are right on topic but published in other venues.

Information Retrieval: SIGIR, CIKM, TREC, TAC, FNTIR.
Web and Semantic Web: WWW, ISWC, ESWC, AAAI, JWS.
Computer linguistics: ACL, EMNLP, HLT-NAACL.
Databases / Data Mining: VLDB, KDD, SIGMOD, TKDE.

117

126 Introduction

1.3 Overview of this Survey

Section 1.4 provides a Glossary of terms that are strongly related to se-
mantic search. For each of these, we provide a brief description together
with a pointer to the relevant passages in the survey. This is useful for
readers who specifically look for material on a particular problem or
aspect.

Section 2 on Classification by Data Type and Search Paradigm de-
scribes the two main dimensions that we use for categorizing research
on semantic search:
Data type: text, knowledge bases, and combined data.
Search paradigm: keyword, structured, and natural language search.
For each data type, we provide a brief characterization and a list of
frequently used datasets. For each search paradigm, we provide a brief
characterization and one or two examples.

Section 3 on Basic NLP Tasks in Semantic Search gives an overview
of: part-of-speech (POS) tagging, named-entity recognition and dis-
ambiguation (NER+NED), parsing the grammatical structure of sen-
tences, and word vectors / embeddings. These are used as basic building
blocks by various (though not all) of the approaches described in our
main Section 4. We give a brief tutorial on each of these tasks, as well
as a succinct summary of the state of the art.

Section 4 on Approaches and Systems for Semantic Search is the
core section of this survey. We group the many approaches and systems
that exist in the literature by data type (three categories, see above)
and search paradigm (three categories, see above). The resulting nine
combinations are shown in Figure 1.1. In a sense, this figure is the main
signpost for this survey. Note that we use Natural Language Search and
Question Answering synonymously in this survey. All nine subsections
share the same sub-structure:

Profile ... a short characterization of this line of research
Techniques ... what are the basic techniques used
Systems ... a concise description of milestone systems or software
Benchmarks ... existing benchmarks and the best results on them

118

1.3. Overview of this Survey 127

Section 4.1
Keyword Search

on Text

Section 4.3
Structured Data

Extraction from Text

Section 4.7
Question Answering

on Text

Section 4.4
Keyword Search on
Knowledge Bases

Section 4.2
Structured Search

on Knowledge Bases

Section 4.8
Question Answering
on Knowledge Bases

Section 4.5
Keyword Search

on Combined Data

Section 4.9
Question Answering
on Combined Data

Keyword
Search

Structured
Search

Natural Lang.
Search

Text

Knowledge
Bases

Combined
Data

Section 4.6
Semi-Struct. Search
on Combined Data

Figure 1.1: Our basic classification of research on semantic search by underlying
data (rows) and search paradigm (columns). The three data types are explained in
Section 2.1, the three search paradigms are explained in Section 2.2. Each of the
nine groups is discussed in the indicated subsection of our main Section 4.

Section 5 on Advanced Techniques for Semantic Search deals with:
ranking (in semantic entity search), indexing (getting not only good
results but getting them fast), ontology matching and merging (dealing
with multiple knowledge bases), and inference (information that is not
directly contained in the data but can be inferred from it). They pro-
vide a deeper understanding of the aspects that are critical for results
of high quality and/or with high performance.

Section 6 on The Future of Semantic Search provides a very brief
summary of the state of the art in semantic search, as described in the
main sections of this survey, and then dares to take a look into the near
and the not so near future.

The article closes with a long list of 218 references. Datasets and
standards are not listed as part of the References but separately in the
Appendices. In the PDF of this article, all citations in the text are
clickable (leading to the respective entry in the References), and so are

119

128 Introduction

most of the titles in the References (leading to the respective article on
the Web). In most PDF readers, Alt+Left brings you back to the place
of the citation.

The reader may wonder about possible reading orders and which
sections depend upon which. In fact, each of the six sections of this
survey is relatively self-contained and readable on its own. This is true
even for each of the nine subsections (one for each kind of semantic
search, according to our basic classification) of the main Section 4.
However, when reading such a subsection individually, it is a good idea
to prepend a quick read of those subsections from Section 2 that deal
with the respective data type and search paradigm: they are short and
easy to read, with instructive examples. Readers looking for specific
information may find the glossary, which comes right next, useful.

1.4 Glossary

This glossary provides a list of techniques or aspects that are strongly
related to semantic search but non-trivial to find using our basic clas-
sification. For each item, we provide a very short description and a
pointer to the relevant section(s) of the survey.

Deep learning for NLP: natural language processing using (deep)
neural networks; used for the word vectors in Section 3.4; some of the
systems in Section 4.8 on Question Answering on Knowledge Bases use
deep learning or word vectors; apart from that, deep NLP is still used
very little in actual systems for semantic search, but see Section 6 on
The Future of Semantic Search.

Distant supervision: technique to derive labeled training data using
heuristics in order to learn a (supervised) classifier; the basic principle
and significance for semantic search is explained in Section 4.3.2 on
Systems for Relationship Extraction from Text.

Entity resolution: identify that two different strings refer to the
same entity; this is used in Section 4.3.4 on Knowledge Base Construc-
tion and discussed more generally in Section 5.4 on Ontology Matching
and Merging.

120

1.4. Glossary 129

Entity search/retrieval: search on text or combined data that aims
at a particular entity or list of entities as opposed to a list of docu-
ments; this applies to almost all the systems in Section 4 that work
with combined data or natural language queries5; see also Section 5.1,
which is all about ranking techniques for entity search.
Knowledge base construction: constructing or enriching a knowl-
edge base from a given text corpus; basic techniques are explained in
Section 4.3.1; systems are described in Section 4.3.4.
Learning to rank for semantic search: supervised learning of
good ranking functions; several applications in the context of semantic
search are described in Section 5.1.
Ontology merging and matching: reconciling and aligning nam-
ing schemes and contents of different knowledge bases; this is the topic
of Section 5.3.
Paraphrasing or synonyms: identifying whether two words,
phrases or sentences are synonymous; systems in Section 4.8 on
Question Answering on Knowledge Bases make use of this; three
datasets that are used by systems described in this survey are: Patty
[2013] (paraphrases extracted in an unsupervised fashion), Paralex
[2013] (question paraphrases), and CrossWikis [2012] (Wikipedia
entity anchors in multiple languages).
Question answering: synonymous with natural language search in
this survey; see Section 2.2.3 for a definition; see Sections 4.7, 4.8, and
4.9 for research on question answering on each of our three data types.
Reasoning/Inference: using reasoning to infer new triples from a
given knowledge base; this is the topic of Section 5.4.
Semantic parsing: finding the logical structure of a natural language
query; this is described in Sections 4.8 on Question Answering on
Knowledge Bases and used by many of the systems there.
Semantic web: a framework for explicit semantic data on the web;
this kind of data is described in Section 2.1.3; the systems described

5A search on a knowledge base naturally returns a list of entities, too. However,
the name entity search is usually only used when (also) text is involved and returning
lists of entities is not the only option.

121

130 Introduction

in Section 4.5 deal with this kind of data; it is important to note that
many papers / systems that claim to be about semantic web data are
actually dealing only with a single knowledge base (like DBpedia, see
Table 2.2), and are hence described in the sections dealing with search
on knowledge bases.
Information extraction: extracting structured information from
text; this is exactly what Section 4.3 on Structured Data Extraction
from Text is about.
XML retrieval: search in nested semi-structured data (text with tag
pairs, which can be arbitrarily nested); the relevance for semantic
search is discussed in Section 4.5.3 in the context of the INEX series of
benchmarks.

122

2
Classification by Data Type and Search

Paradigm

In this section, we elaborate on our basic classification of semantic
search research and systems. The classification is along two dimensions:

Data type: text, knowledge bases, or combined data
Search paradigm: keyword, structured, and natural language search

In Section 2.1, we explain each of the three data types, providing a list
of frequently used datasets for each type. In Section 2.2, we explain
each of the three search paradigms along with various examples. The
resulting nine combinations are shown in Figure 1.1.

Why this Classification

Coming up with this simple classification was actually one of the hard-
est tasks when writing this survey. Our goal was to group together re-
search that, from a technical perspective, addresses similar problems,
with a relatively clear delineation between different groups (much like
in clustering problems). Most of the systems we looked at clearly fall
into one of our categories, and no other classification we considered
(in particular, refinements of the one from Figure 1.1) had that prop-
erty. Of course, certain “gray zones” between the classes are inevitable;

131

123

132 Classification by Data Type and Search Paradigm

these are discussed in the respective sections. For example, there is an
interesting gray zone between keyword and natural language queries,
which is discussed at the beginning of Section 2.2. Also, it is sometimes
debatable whether a dataset is a single knowledge base or a combina-
tion of different knowledge bases, which counts as combined data in our
classification; this is discussed in Section 2.1.2 on Knowledge Bases.

Also note that some other natural aspects are implicitly covered
by our classification: for example, the type of result is largely implied
by the type of data and the kind of search. Another complication (or
rather, source of confusion) is terminology mixup. To give just one ex-
ample, there is a huge body of research on the Semantic Web, but much
of this work is actually concerned with a single knowledge base (like
DBpedia, see Table 2.2), which requires mostly different techniques
compared to true semantic web data, which is huge and extremely het-
erogeneous. Our Glossary in Section 1.4 should help to resolve such
mixups, and, more generally, to locate (in this survey) material on a
given technique or aspect.

Yet other aspects are orthogonal to our primary classification, for
example: interactivity, faceted search, and details of the result presen-
tation. These could be added with advantage to almost any system for
semantic search. We briefly discuss such aspects in Section 2.3.

2.1 Data Types and Common Datasets

This section explains each of the three basic data types used in our
classification above: natural language text, knowledge bases, and com-
binations of the two. For each type, we provide a list of frequently
used datasets. All datasets are listed in a dedicated subsection of the
References section. In the PDF of this article, the references in the
tables below are clickable and lead to the corresponding entry in the
Appendix.

2.1.1 Text

Definition 2.1. For the purpose of this survey, text is a collection of
documents containing text, typically written in natural language. The

124

2.1. Data Types and Common Datasets 133

text need not be orthographically or grammatically correct. It may
contain typical punctuation and light markup that exhibits some high-
level structure of the text, like title and sections. There may also be
hyperlinks between documents.

Remark: If there is markup that provides fine-grained annotations of
parts of the text (e.g., linking an entity mention to a knowledge base),
we count this as Combined Data, as discussed in Section 2.1.3.

Text is ubiquitous in the cyberworld, because it is the natural form of
communication between humans. Typical examples are: news articles,
e-mails, blog posts, tweets, and all kinds of web pages.

Web pages pose several additional challenges, like boilerplate con-
tent (e.g., navigation, headers, footers, etc., which are not actual con-
tent and can be misleading if not removed), spam, and dynamically
generated content. We do not discuss these aspects in this survey. On
the positive side, the hyperlinks are useful for search in general. Tech-
niques for exploiting hyperlinks in the context of semantic search are
discussed in Section 5.1.3 on Ranking of Interlinked Entities.

Commonly Used Datasets

Table 2.2 lists some collections of text documents that are often used
in research on semantic search.

Reference Documents Size zip Type
[AQUAINT, 2002] 1.0 million 3.0 GB n news articles
[AQUAINT2, 2008] 0.9 million 2.5 GB n news articles
[Blogs06, 2006] 3.2 million 25 GB n blog posts
[ClueWeb, 2009] 1.0 billion 5.0 TB y web pages
[ClueWeb, 2012] 0.7 billion 5.0 TB y web pages
[CommonCrawl, 2007] 2.6 billion 183 TB n web pages
[Stream Corpus, 2014] 1.2 billion 16.1 TB y web pages1

Table 2.1: Datasets of natural language text used in research on semantic search.

125

134 Classification by Data Type and Search Paradigm

The two AQUAINT datasets were heavily used in the TREC bench-
marks dealing with question answering on text; see Section 4.7. The
ClueWeb datasets are (at the time of this writing) the most used
web-scale text collections. The CommonCrawl project provides reg-
ular snapshots (at least yearly) of a large portion of the Web in various
languages. The Stream Corpus has been used in the TREC Knowledge
Base Acceleration tracks (see Section 4.3 on Structured Data Extraction
from Text) where knowledge about entities can evolve over time.

2.1.2 Structured Data / Knowledge Bases

Definition 2.2. For the purpose of this survey, a knowledge base is a
collection of records in a database, which typically refer to some kind of
“knowledge” about the world. By convention, records are often stored
as triples in the form subject predicate object.
To qualify as a knowledge base, identifiers should2 be used consistently:
that is, the same entity or relation should have the same name in dif-
ferent records. Collections of records / triples from difference sources
with different naming schemes are counted as Combined Data, which
is discussed in Section 2.1.3.

Here are four example records from the Freebase dataset (see Ta-
ble 2.2 below). The ns: is a common prefix, and the corresponding
identifiers are URIs; see the subsection on data formats below.

ns:m.05b6w ns:type.object.name ”Neil Armstrong”
ns:m.0htp ns:type.object.name ”Astronaut”
ns:m.05b6w ns:people.person.profession ns:m.0htp
ns:m.05b6w ns:people.person.date of birth ”08-05-1930”

Note that by the consistent use of identifiers we can easily derive infor-
mation like a list of all astronauts or astronauts born before a certain
date. We briefly discuss some related terminology and finer points.

1Web pages are timestamped, which allows treating the corpus as a stream of
documents.

2A small fraction of inconsistencies are unavoidable in a large knowledge base
and hence acceptable.

126

2.1. Data Types and Common Datasets 135

Ontologies: an ontology is the (typically hierarchical) system of types
and relations behind a knowledge base. For example, the fact that
astronauts are persons and that all persons are entities are typical
ontological statements. WordNet [Miller, 1992] is a large ontology of
the concepts of general-purpose real-world knowledge. In a sense, an
ontology is therefore also a knowledge base, but on more “abstract”
entities. The distinction is not always sharp, however. For example,
WordNet also contains statements about “concrete entities”, like in a
typical knowledge base. Throughout this survey, we will consistently
use the term knowledge base when referring to collections of records as
defined above.
n-ary relations: It is easy to see that one can break down any struc-
tured data into triples, without loss of information. This is an instance
of what is called reification. An example is given at the end of Section
2.1.3 (Christoph Waltz’s Oscar).
n-tuples with n > 3: some knowledge bases also store tuples with
more than three components. Typical uses are: adding provenance in-
formation (the data source of a triple), adding spatial or temporal
information, assigning a unique id to a triple.
Triples vs. facts. vs. statements: the triples or n-tuples are some-
times referred to (somewhat optimistically) as facts or (more carefully)
as statements. This does not mean that they are necessarily true. They
may have entered the knowledge base by mistake, or they may just
express an opinion. Still, very often they are “facts” in the common
sense and it usually makes sense to think of them like that.
Graph representation: a knowledge base can also be thought of as a
graph, where the nodes are the entities and the edges are the relations.
When n-ary relations are involved, with n > 2, these edges become
hyperedges (connecting more than two entities) and the graph becomes
a hypergraph.

Commonly Used Datasets

Table 2.2 lists some often used knowledge bases. It is sometimes de-
batable when a dataset is a single knowledge base (as discussed in this

127

136 Classification by Data Type and Search Paradigm

section) or a combination of different knowledge bases (as discussed
in the next section). Our criterion, according to Definition 2.2 above,
is whether the bulk of the data follows a consistent ontology / nam-
ing scheme. For example, the bulk of DBpedias’s knowledge is stored
in dbpedia-owl:... relations which are used consistently across entities.
But there are also numerous dbprop:... relations, which correspond to a
wide variety of properties from the Wikipedia infoboxes, which do not
follow a strict underlying schema. Similarly, Freebase has numerous
relations from its “base” domain, which partly fill in some interesting
gaps and partly provide redundant or even confusing information.3

Reference #Triples #Entities Size Type
[YAGO, 2007] 20 M 2.0 M 1.4 GB Wikipedia
[YAGO2s, 2011] 447 M 9.8 M 2.2 GB Wikipedia
[DBpedia, 2007]4 580 M 4.6 M 3.8 GB Wikipedia
[GeoNames, 2006] 150 M 10.1 M 465 MB geodata
[MusicBrainz, 2003] 239 M 45.0 M 4.1 GB music
[UniProt, 2003] 19.0 B 3.8 B 130 GB proteins
[Freebase, 2007] 3.1 B 58.1 M 30 GB general
[Wikidata, 2012] 81 M 19.3 M 5.9 GB general

Table 2.2: Knowledge bases used in research on semantic search. All sizes are of
the compressed dataset.

We also remark that usually only a fraction of the triples in these
knowledge bases convey “knowledge” in the usual sense. For example,
the YAGO dataset contains about 3 million facts stating the length
of each Wikipedia page. Freebase contains 10 million facts stating the
keys of all Wikipedia articles. DBpedia has millions of rdf:type triples
relating entities to the countless synsets from WordNet. Also, many
facts are redundant. For example, in Freebase many relations have an

3For example, the type base.surprisingheights.surprisingly short people with
only fifteen entities, including Al Pacino.

4The number of triples and entities are for the English version. The multilingual
version features 3 billion triples and 38.8 million entities.

128

2.1. Data Types and Common Datasets 137

inverse relation with the same statements with subject and object re-
versed. According to Bordes and Gabrilovich [2015], the number of
non-redundant triples in Freebase is 637 million, which is about one
third of the total number stated in the table above.

On December 16, 2014 Google announced that it plans to merge
the Freebase data into Wikidata and then stop accumulating new data
in Freebase. Freebase became read-only on March 30, 2015. At the time
of this writing, Wikidata was still relatively small, however.

Data Formats

A knowledge base can be stored in a general-purpose relational
database management system (RDBMS), or in special-purpose so-
called triple stores. The efficiency of the various approaches is discussed
in Section 4.2 on Structured Search on Knowledge Bases.

On the Web, knowledge base data is often provided in the form
of RDF (Resource Description Framework). RDF is complex, and we
refer the reader to Wikipedia or W3C for a complete description. What
is notable for this survey is that in RDF, identifiers are provided by a
URI (Universal Resource Identifier) and hence globally unambiguous.

Also note that RDF is an abstract description model and language,
not an explicit format. For practical purposes, many text serializations
exist. The first such serialization was proposed in 1999 by the W3C
and was based on XML, and thus very verbose. At the time of this
writing, less verbose text serializations are commonly used:

N-triples: the triples are stored in a text file, with a space between
subject, predicate, and object, and a simple dot to separate triples
(usually one triple per line).

N-quads: like N-triples, but with one additional field per triple that
provides an arbitrary context value (e.g., the source of the triple).

TSV: one triple or quad per line, with the three or four components
separated by a tab. TSV is an abbreviation for tab-separated values.

Turtle: allows an explicit nested representation. Depending on the
data, this can be more convenient for reading and producing than mere

129

138 Classification by Data Type and Search Paradigm

triples or quads. The price is a more complex format that requires more
complex parsers.

2.1.3 Combined Data

Text and knowledge bases are both natural forms to represent knowl-
edge. Text is the most natural form for humans to produce information.
A knowledge base is the most natural form to store information that
is inherently structured in the first place. Therefore, it makes sense
to combine data of these two types into a maximally comprehensive
dataset It also makes sense to consider multiple knowledge bases, since
a single knowledge base is usually limited to a certain scope. Of course,
it also makes sense to combine different text collections, but that is
trivial since there is no common structure or naming scheme to obey.

Definition 2.3. For the purpose of this survey, combined data is ob-
tained by one or both of the following two principles:
link: link a text to a knowledge base by recognizing mentions of entities
from the knowledge base in the text and linking to them
mult: combine multiple knowledge bases with different naming schemes
(such that the same entity or relation may exist with different names)

Both of these are used extensively in research in order to obtain what we
call combined data here. In the list of commonly used datasets in Table
2.3 below, it is indicated which dataset makes uses of which subset
of these principles. Note that realizing “link” is equivalent to solving
the named-entity recognition and disambiguation problem discussed in
Section 3.2.

Commonly Used Datasets

Table 2.3 lists a number of popular datasets of the “combined” type.
The number of “triples” for the Wikipedia LOD dataset, the two
ClueWeb FACC datasets, and the FAKBA1 dataset is the number of
entity mentions in the text that were linked to an entity from the
knowledge base (YAGO and DBpedia for the Wikipedia LOD dataset,
Freebase for the FACC and FAKBA1 dataset). Note that the ClueWeb

130

2.1. Data Types and Common Datasets 139

Reference #Triples Size Type
[Wikipedia LOD, 2012] 70 million 61 GB link
[ClueWeb09 FACC, 2013] 5.1 billion 72 GB link
[ClueWeb12 FACC, 2013] 6.1 billion 92 GB link
[FAKBA1, 2015] 9.4 billion 196 GB link
[BTC, 2009] 1.1 billion 17 GB mult
[BTC, 2010] 3.2 billion 27 GB mult
[BTC, 2012] 1.4 billion 17 GB mult
[WDC, 2012] 17.2 billion 332 GB link+mult

Table 2.3: Commonly used datasets of the “combined” type. The last column indi-
cates which combination principles were used, according to the typology explained
at the beginning of the section.

FACC and FAKBA1 datasets only consist of the annotations and do
not include the full text from ClueWeb or the Stream Corpus from the
TREC Knowledge Base Acceleration track. The three BTC datasets
were obtained from a crawl of the Semantic Web, started from a se-
lection of seed URIs. Note that the BTC 2012 dataset contains all of
DBpedia and a selection of Freebase, which are both listed in Table
2.2 as individual knowledge bases. The WDC (Web Data Commons)
dataset is obtained by extracting structured data from CommonCrawl
(see Table 2.1). Both BTC and WDC are considered “semantic web
data”, which is explained in more detail below.

Text Linked to a Knowledge Base

The natural format to encode link information in text is XML. Here is
an example excerpt from the Wikipedia LOD collection from Table 2.3
above.

<paragraph> Mt. Morris is home of the <link>
<wikilink href="13135902.xml">Illinois Freedom Bell</wikilink>
<dbpedia href="http://dbpedia.org/.../Illinois_Freedom_Bell">
</dbpedia><yago ref="Illinois_Freedom_Bell"></yago>
</link>, which is located in the town square. [...]</paragraph>

131

140 Classification by Data Type and Search Paradigm

The main tasks of the INEX (Initiative for the Evaluation of XML
retrieval) series of benchmarks, discussed in Section 4.5.3, work with
this collection.

However, note that for the purposes of annotation, XML is a mere
convention, not a necessity. For example, the two FACC collections
from Table 2.3 above provide links between the ClueWeb collections
(from Table 2.1) and Freebase (from Table 2.2) as follows:

PDF 21089 21092 0.9976 m.0600q
FDA 21303 21306 0.9998 m.032mx
Food and Drug Administration 21312 21340 0.9998 m.032mx
The first column is the name of the entity in the text, the second and
third columns specify the byte offsets in the file, the fourth column is
the confidence of the link, and the fifth column is the Freebase id.

Semantic Web

The Semantic Web (SW) is an effort to provide “combined data” in
the sense above at a very large scale. The data from the Semantic Web
is often also called linked open data (LOD), because contents can be
contributed and interlinked by anyone, just like web pages (but in a
different format, see below). With respect to search, these are secondary
aspects. Throughout this survey, we therefore relate to this kind of
data as simply semantic web data. It makes uses of both principles of
combining data, as defined above:

link: provided by semantic markup for ordinary web pages.
mult: anyone can contribute + absence of a global schema.

The “mult“ principle is realized via RDF documents that can link to
each other, just like ordinary web pages can link to each other. For
example, here is an excerpt from the RDF page for the French city
Embrun (the showcase page of the GeoNames knowledge base from
Table 2.2). Note the use of prefixes like rdf: and gn: in the URI to keep
the content compact and readable also for humans.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

132

2.1. Data Types and Common Datasets 141

xmlns:gn="http://www.geonames.org/ontology#" ... >
<gn:Feature rdf:about="http://sws.geonames.org/3020251/">
<gn:name>Embrun</gn:name>
<gn:countryCode>FR</gn:countryCode>
<gn:population>7069</gn:population>

The “link” principle is realized via semantic markup that is embed-
ded into regular web pages. For example, here is an excerpt from an
HTML page using so-called Microdata markup.

<title>Michael Slackenerny’s Homepage</title>
<section itemscope itemtype="http://schema.org/Person">
Hi, my name is Michael Slackenerny.
I am a postdoctoral student at
Stanford Univ.</section>

The four most widely used formats for semantic markup are as
follows. The first three simply use HTML tags with existing or new
attributes.

Microdata: uses the dedicated attributes itemscope and itemprop
Microformats: (ab)uses the class attribute
RDFa: uses RDF-style attributes about, property, and contents
JSON-LD: uses JavaScript to provide Microdata-like markup

The advantage of JSON-LD over the other formats is that it allows a
cleaner separation of the ordinary content from the semantic content
(much in the spirit of frameworks like CSS, or libraries like jQuery).
As of this writing, all four of these formats are still widely used, and
no clear winner has emerged yet.

The use of semantic markup has increased steadily over the last
years. According to [Meusel, Petrovski, and Bizer, 2014], the number
of RDF quads (all of the above, except JSON-LD) in the WDC dataset
(see Table 2.3 below) has increased from 5.2 billion in the 2010 dataset,
to 7.4 billion in 2012, to 17.2 billion in 2013. Between 2012 and 2013,
the fraction of analyzed HTML pages and domains that use semantic
markup has more than doubled, up to 26% of pages and 14% of domains
in 2013. More recent statistics can be found in [Guha, Brickley, and

133

142 Classification by Data Type and Search Paradigm

MacBeth, 2015]. Here, a sample of 10 billion pages from a combination
of the Google index and Web Data Commons is analyzed. 31% of pages
have Schema.org markup, as discussed in the next subsection.

Challenges of Semantic Web Data

It is important to understand that semantic web data is not a single
knowledge base as defined in the previous section, because there is
no consistent naming scheme. This is not by accident, but rather by
design. Given the heterogeneity of contents and its providers on the
Web, it seems illusory to establish standard names for everything and
expect everyone to stick with it. The Semantic Web takes a minimalist
approach in this respect: content providers can use whatever names
they like, they only have to be globally unambiguous (URIs). We briefly
discuss three resulting challenges.

Standards: One (mostly social) approach is to enable and encourage
contributors to reuse existing schemes as much as possible. For common
concepts, this is already happening. One of the earliest schemes was
FOAF [2000] (Friend Of A Friend), which provided standard names for
relations related to a person, like: given names, family name, age, and
who knows who. A more recent and larger effort is Schema.org [2011],
collaboratively launched by Bing, Google, and Yahoo. Schema.org pro-
vides URIs for concepts such as creative works, events, organizations,
persons, places, product, reviews, which are relevant for many popular
web search queries.
Explicit links: Another approach is to enable contributors to pro-
vide explicit links between different names for the same entities or
concepts, via meta statements like <owl:sameAs>. An example for
different names for the same entity is: Barack Obama and Barack H.
Obama and B. Obama. Such links could also be identified by automatic
methods. This is discussed in more detail in Section 5.3 on Ontology
Matching and Merging.
Model mismatch: A more complex problem are relations, which can
not only be named differently, but also modeled in different ways. For
example, consider the YAGO and Freebase knowledge bases from Table

134

2.2. Search Paradigms 143

2.2. In YAGO, the relation won award is used to express who won which
award. For example
Christoph Waltz won-award Oscar for Best Supporting Actor
In Freebase, that information is modeled via a so-called mediator ob-
ject, which has id ns:m.0r4b38v in the following example. For the sake
of readability, we replaced the ids of the other objects with human-
readable names and shortened the relation names.
Christoph Waltz award ns:m.0r4b38v
ns:m.0r4b38v name Oscar for Best Supporting Actor
ns:m.0r4b38v year 2012
ns:m.0r4b38v movie Django Unchained
ns:m.0r4b38v role Dr. King Schulz
The approach taken by YAGO is simpler, the approach taken by Free-
base allows to capture more information.

2.2 Search Paradigms

We distinguish between three major search paradigms: keyword search,
structured search, and natural language search. Each of them is ex-
plained in one of the following subsections. As a first approximation,
think of the name of the paradigm to describe the type of the query
that is being asked.
keyword search: just type a few keywords
structured search: a query in a language like SQL or SPARQL
natural language: a complete question, as humans typically pose it
Before we describe each of these paradigms, let us comment on some
of the finer points of this categorization:
Kind of result: We also considered a (further) categorization by the
kind of result but this turned out to be impractical. The kind of result
usually follows from the type of query and the type of data that is
being searched. Sometimes there are variations, but that usually does
not affect the fundamental approach. This is briefly explained in each of
the following subsections, and in more detail in the various subsections
of Section 4 on Approaches and Systems for Semantic Search.

135

144 Classification by Data Type and Search Paradigm

Search on combined data: When dealing with combined data (in
the sense of Section 2.1.3), there are two prevailing search paradigms.
One is basic keyword search, optionally extended with a specification of
the desired type of result entities (for example, astronauts who walked
on the moon with a restriction to entities of type person). This kind of
search is discussed in Section 4.5. The other is structured search that is
extended with a keyword search component (there are many variants
for the semantics of such an extension). This kind of search is discussed
in Section 4.6.

Keyword vs. natural language: Keyword search and natural lan-
guage search are less clearly delineated than it may seem. For example,
consider the simple query birth date neil armstrong. A state-of-the-art
system for keyword search on text will return (on a typical corpus,
say the Web) a prominent document that contains the query words in
prominent position (say, the Wikipedia article of Neil Armstrong). This
document will probably also contain the desired piece of information
(his birth date). We classify such a system under keyword search. A
state-of-the-art question answering system might understand the very
same query as an abbreviated natural language query (what is the birth
date of neil armstrong), much like a human would do when seeing the
four keywords above. It would then return the corresponding answer in
a human-friendly form. We classify such a system under natural lan-
guage search.
An example for the opposite case would be how to tell gzip to leave
the original file. This is clearly a natural language query. But, at the
time of this writing, there happens to be a web page with exactly that
title and the complete answer as content. Any state-of-the-art system
for keyword search will easily find this web page, without any semantic
analysis of the query whatsoever.
The bottom line is that the distinction between keyword search and
natural language search is best made not by the apparent form of the
query, but by the basic technique used to process the query. From this
point of view, it is then usually clear to which of the two categories a
given system belongs.

136

2.2. Search Paradigms 145

2.2.1 Keyword Search

Query Keywords (typically few)
Example 1 space flight
Example 2 apollo astronauts

Result Documents or entities (or both) that are “relevant”
to the information need

Example 1 Documents on the topic of space flight
Example 2 Astronauts from the Apollo missions

Strength Easy and quick for the user to query

Weakness Often hard to guess the precise information need,
that is, what it means to be “relevant”

This is still the most ubiquitous search paradigm, and the one we
are most familiar with. All of the major web search engines use it. The
user types a few keywords and gets a list of matching items in return.
When the data is text, matching items are (snippets of) documents
matching the keywords. When the data is a knowledge base, matching
items are entities from the knowledge base. With combined data, the
result is a combination of these, usually grouped by entity.

The query processing is based on matching the components of the
query to parts of the data. In the simplest case, the keywords are
matched literally. In more sophisticated approaches, also variants of
the keywords are considered as well as variants or expansions of the
whole query. This is explained in more detail in Section 4.1 on Keyword
Search on Text. With respect to our classification, all such techniques
still count as keyword search.

In contrast, natural language search tries to “understand” the query.
This often means that the query is first translated to a logical form.
Then that logical form is matched to the data being searched.

Recall from the discussion at the beginning of this section that even
the most basic form of keyword search (which looks for literal matches

137

146 Classification by Data Type and Search Paradigm

of the query words) can answer a complex natural language query, when
there is a document with exactly or almost that question in, say, the
title. We still consider that keyword search in this survey.

2.2.2 Structured Search

Query Structured query languages like SPARQL
Example SELECT ?p WHERE {

?p has-profession Scientist .
?p birth-date 1970 }

Result Items from the knowledge base matching the query;
the order is arbitrary or explicitly specified (using
an ORDER BY clause in SPARQL)

Example Scientists born in 1970

Strength Maximally precise “semantics” = it is well-defined,
which items are relevant to the query

Weakness Cumbersome to construct queries; hard to impos-
sible to guess the correct entity and relation names
for large knowledge bases

Structured query languages are the method of choice when the data
is inherently structured, as described in Section 2.1.2 on Knowledge
Bases. Then even complex information needs can be formulated with-
out ambiguity. The price is a complex query language that is not suited
for ordinary users. For large knowledge bases, finding the right entity
and relation names becomes extremely hard, even for expert users. In-
teractive query suggestions (see Section 2.3) can alleviate the problem,
but not take it away.

The example query in the box above is formulated in SPARQL
[2008], the standard query language for knowledge bases represented
via triples. SPARQL is a recursive acronym for: SPARQL Protocol and
RDF Query Language. It is very much an adaption of SQL [1986],
the standard query language for databases. SQL is an acronym for:

138

2.2. Search Paradigms 147

Structured Query Language. The translation from SPARQL to SQL is
discussed in Section 4.2 on Structured Search in Knowledge Bases.

On combined data (as discussed in Section 2.1.3), structured search
requires an extension of SPARQL by a text search component. A simple
realization of this is discussed in Section 4.2.1, a semantically deeper
realization is discussed in Section 4.6.1.

2.2.3 Natural Language Search

Query Natural language queries, often starting with one of
the 5W1H: Who, What, Where, When, Why, How

Example Who won the oscar for best actor in 2015 ?

Result The correct answer, in human-friendly form
Example Eddie Redmayne ... and maybe some disambiguat-

ing information, like a picture, his nationality, and
his birth date

Strength Most natural for humans, suitable for speech input

Weakness Ambiguity in natural language; queries can be very
complex; queries can require complex reasoning

This is the most natural form of communication for humans. In the
simplest case, queries ask for an entity from a single relationship, like in
the example above. More complex queries may ask for the combination
of several relationships, for example:

what is the gdp of countries with a literacy rate of under 50%

A query may also ask several questions at once, for example:

what is the population and area of germany

Natural language search may also accept and correctly process keyword
queries, for example: oscar best actor 2015 . As explained at the begin-
ning of Section 2.2, the yardstick is not the apparent form of the query
but the technique used to process it.

139

148 Classification by Data Type and Search Paradigm

Questions that require the synthesis of new information or complex
reasoning are out of scope for this survey. For example:5

HAL, despite your enormous intellect, are you ever frustrated by your
dependence on people to carry out your actions?

2.3 Other Aspects

Our basic classification focuses on the main aspects of a search
paradigm: the kind of queries that are supported and the basic tech-
nique used to process these queries. In actual systems, a variety of
other aspects can play an important role, too. We here name three
particularly important and widely used aspects:

Interactivity: The search engine may provide autocompletion, query
suggestions, and other means to aid the query construction. This is
particularly important for semantic search. The query language may be
more complex, and thus unaided query construction may be hard, even
for an expert. Precise formulation of the names of entities or relations
can be key to get meaningful results.
Interactivity can also help the system to get more information from the
user (on the query intent), which can help result quality. For example,
the query suggestions of Google steer users towards queries that the
search engine can answer well.

Faceted Search: Along with the results, the search engine may pro-
vide various kinds of categories to narrow, broaden, or otherwise modify
the search. Again, this is particularly important for semantic search.
For complex queries and when the result is not simply a single entity or
web page, one iteration may simply not be enough to get to the desired
results.

Result presentation: When searching for entities, it is often useful
to group the results by entity and accompany them with additional
information, like an appropriate picture. When the entity was extracted
from text, it can be useful to show a containing snippet of appropriate

5Question to the HAL 9000 computer in the movie “2001: A Space Odyssey”.

140

2.3. Other Aspects 149

size. When the entity comes from a knowledge base, it can be useful to
show some related information. When searching for entities that have a
geographical location (like cities or events), it is often useful to depict
those locations on a map. The map may be interactive in a number
of ways. For example, hits can be represented by markers and clicking
on a marker provides more detailed information or zooms in. When
searching for events, they could be shown on a timeline.

Note that these extensions make sense for any data type and any search
paradigm discussed in the previous sections. For example, if the results
are cities, it makes sense to show them on a map, no matter how the
query was formulated, and no matter whether the information came
from a knowledge base or from the Semantic Web.

Several of the systems described in our main Section 4 on Ap-
proaches and Systems for Semantic Search implement one or several
of these extensions. We provide details when we describe the respec-
tive systems. Apart from that, we do not delve deeper into these aspects
in this survey. We do acknowledge though that proper user interfaces
and result presentation are essential for the success of semantic search.
In fact, at the time of this writing, all the major search engines already
have basic features for each of the aspects discussed above.

141

3
Basic NLP Tasks in Semantic Search

Semantic search is about search with meaning. In text, this meaning
is expressed in natural language. Even a knowledge base, where much
of the meaning is implicit in the structure, has elements of natural
language, for example, in the (sometimes rather long) relation names
or in the object literals (which, in principle, can contain arbitrary text).

The following subsections discuss four basic techniques to capture
aspects of the meaning of natural language text: POS tagging and
chunking, entity recognition and disambiguation, sentence parsing, and
word vectors. These four techniques should be in the toolbox of every
researcher in the semantic search field.

Many of the systems described in our main Section 4 use one or
more of these techniques. However, even NLP-agnostic approaches can
achieve remarkable results for certain query classes. This is particularly
true for keyword search on text, as discussed in Section 4.1. Still, there
is no doubt that for queries above a certain complexity, natural lan-
guage understanding is essential. This is discussed further in Section 6
on The Future of Semantic Search.

150

142

3.1. Part-of-Speech Tagging and Chunking 151

3.1 Part-of-Speech Tagging and Chunking

In Part-of-Speech (POS) tagging, the task is to assign to each word
from a sentence a tag from a pre-defined set that describes the word’s
grammatical role in the sentence.

Definition 3.1. Given a sentence s = (w1, . . . wn) and a set of available
POS tags T , POS tagging outputs a sequence t1, t2, . . . tn that assigns
each word wi a corresponding tag ti ∈ T .

Some typical POS tags are: NN (noun), VB (verb), adjective (JJ), RB
(adverb). Here is a POS-tagged example sentence using all of these:

Semantic/JJ search/NN is/VB just/RB great/JJ.

Depending on the application, POS tags of different granularity can
be considered. For example, the tags may distinguish between singular
(NN) and plural (NNS) nouns. Or between a regular adverb (RB), a
comparative (RBR), and a superlative (RBS).

A closely related problem is that of chunking, sometimes also re-
ferred to as shallow parsing. The task of chunking is to identify and tag
the basic constituents of a sentence, based on the POS-tagged words.

Definition 3.2. Given a sentence s = (w1, . . . wn) and a set of available
chunk tags C, chunking outputs word sequences identified by triples
(si, ei, ci) where si is the start index, ei the end index and ci ∈ C the
chunk type of chunk i. The chunks don’t overlap and don’t have to
cover all of the words.

Some typical chunking tags are: NP (noun phrase), VB (verb phrase),
ADJP (adjective phrase). A possible chunking of the example sentence
above, using all these tags, is:

NP(Semantic/JJ search/NN) VB(is/VB) ADJP(just/RB great/JJ).

Chunking is a natural first step for both entity recognition and sentence
parsing, which are discussed in the two subsections following this one.

143

152 Basic NLP Tasks in Semantic Search

3.1.1 Benchmarks and State of the Art

A classical benchmark is provided as part of the Penn Treebank [Mar-
cus, Santorini, and Marcinkiewicz, 1993]. We describe it in more detail
in Section 3.3 on Sentence Parsing below.

Both POS tagging and chunking can be solved fast and with high
accuracy. For example, the well-known and widely-used Stanford POS
tagger [Toutanova et al., 2003] achieves an accuracy of 97% on the Penn
Treebank-3 [1999] dataset (2,499 stories from the Wall Street Journal).
This is close to the accuracy achieved by human experts (which is also
not perfect). Tagging speed was reported to be around 15,000 words
per second, on a typical server in 2008.1 In an experiment on a current
server with Intel Xeon E5-1650 (3.50GHz) CPUs, the Stanford POS
tagger was able to tag around 55,000 words per second.

An accuracy of 97% sounds impressive, but when looking at whole
sentences this means that only 56% of the sentences are tagged without
any error. But a fully correct tagging is important for sentence parsing;
see the subsection below. Manning [2011] explores options to achieve a
per-word accuracy of close to 100%.

3.1.2 Application to Short Text and Queries

For very short text, e.g., queries, the methods described here are less
successful. For example, in the query pink songs, the word “pink” cer-
tainly refers to the pop artist and not the color. However, a typical
POS tagger is not used to the telegraphic form of queries and would
thus incorrectly tag “pink” as an adjective.

Hua et al. [2015] present an approach to solve variants of POS tag-
ging and chunking for short texts. Unlike for regular text, the chunking
is done before tagging. Throughout the whole process, decisions are
made based on semantics, in particular, the coherence between can-
didate chunks and tags. This distinguishes the approach from those
for larger texts where the structure of grammatically well-formed sen-
tences plays a central role and probabilities of chains of tags determine
the outcome. In a subsequent step, the approach also solves a variant

1Reported on http://nlp.stanford.edu/software/pos-tagger-faq.shtml.

144

3.2. Named-Entity Recognition and Disambiguation 153

of the named-entity recognition and disambiguation problem that is
described in the next subsection.

Short text understanding is very useful for question answering since
it provides a semantic interpretation of the query. Thus, systems from
Section 4.8 and Section 4.9 often include components that address this
problem or variants tailored towards their particular use case.

3.2 Named-Entity Recognition and Disambiguation

Assume we are given a collection of text documents and a knowledge
base. In the simplest case, the knowledge base is just a list of entities
with their common name or names. Additional knowledge on these
entities may be helpful for the task defined next.

The task of Named-Entity Recognition (NER) is to recognize which
word sequences from the text documents might refer to an entity from
the knowledge base. For example, in the following sentence, all word
sequences referring to an entity which has its own page in the English
Wikipedia (as of the time of this writing), are underlined:

Buzz Aldrin joined Armstrong and became the second human to set foot
on the Moon.2

Definition 3.3. Given some text and a set of entity types T , NER
outputs word sequences which mention a named entity. The mentions
are identified by triples (si, ei, ti) where si is the start index, ei the end
index and ti ∈ T the entity’s type. The entity mentions don’t overlap
and aren’t nested.

Note that usually no knowledge base is required for NER. The task
is only to identify possible entity mentions (typically proper nouns)
which refer to an entity from a few classes. Most typically, these are:
person, location, and organization. For example, the Stanford NER tag-
ger [Finkel, Grenager, and Manning, 2005] is of this kind. If entities are
linked to a knowledge base in a subsequent step, the knowledge base can
be a valuable resource for NER already, e.g., in the form of a gazetteer.

2It is often arguable what exactly constitutes a named entity. For example, in
some cases it may be desirable to tag human and foot as well.

145

154 Basic NLP Tasks in Semantic Search

The task of Named-Entity Disambiguation (NED) follows up on
NER. The task of NER is just to identify the word sequences, that is,
in the example above, underline them (and assign them a course type).
The task of NED is to decide for each identified sequence to exactly
which entity from the knowledge base it refers.

Definition 3.4. Given a knowledge base with entities E, some text and
a set of possible entity mentions (si, ei, ti) from NER, the task of NED
is to assign for each entity mention an entity from E ∪ ∅. If no entity
from E is mentioned, ∅ should be assigned.

For example, in the sentence above, the word Moon could refer to
any of the many moons in our solar system, or to the generic Moon, or
to one of the many people named Moon. However, it is clear from the
context of the sentence that the one moon from planet Earth is meant.
Likewise, the word Armstrong could refer to many different people:
Lance Armstrong, Louis Armstrong, Neil Armstrong etc. Again, the
context makes it clear that Neil Armstrong is meant. The task of NED
is to establish these “links” (indeed, NED is sometimes also referred to
as Named-Entity Linking).

Also note that, in the example above, the word Buzz on its own
could refer to a number of different entities: there are many people
with that name, there is a film with that name, there is a series of
video games with that name. It is part of the NER problem to find out
that the entity reference in this sentence consists of the word sequence
Buzz Aldrin and not just of the word Buzz.

For semantic search systems, we usually require NER and NED
together. In the overview below, we therefore only consider the state
of the art of research that considers both problems together.

3.2.1 Co-reference and Anaphora Resolution

It is a frequent phenomenon in natural language texts that an entity
is referred to not by its name but by a placeholder word. For example,
consider the following sentences:

The stalks of rhubarb are edible. Its roots are medicinally used. The
leaves of the plant are toxic.

146

3.2. Named-Entity Recognition and Disambiguation 155

Co-reference and anaphora resolution means to identify all mentions
that refer to the same entity. The first underlined word (rhubarb) is an
entity reference in the sense above. The second underlined word (its) is
a pronoun, which in this case refers to the rhubarb from the sentence
before. The third underlined word (the plant) is a noun phrase, which
in this context does not refer to a plant in general, but again to the
rhubarb from the sentence before.

The three references together are called co-references because they
refer to the same entity. The last two references are called anaphora,
because they refer to an entity mentioned earlier in the text. Note that
anaphora are not needed for expressiveness, but for the sake of brevity
(pronouns are short) or variety (to avoid repeating the same name again
and again).

There are many variations of this task depending on the context.
Co-references can be within or across documents. Only references be-
tween noun-phrases can be considered or also between events described
by whole sentences.

For some of the semantic search systems described in Section 4 on
Approaches and Systems for Semantic Search, it is important that as
many entity references are recognized and disambiguated as possible
(high recall). In that case, anaphora resolution is just as important as
NER and NED. However, in papers or benchmarks solely about NER
or NED, anaphora resolution is usually not included as part of the
problem statement.

A recent survey on anaphora resolution is provided in the book
by Mitkov [2014]. Supervised approaches for co-reference resolution of
noun-phrases are surveyed by Ng [2010].

3.2.2 Benchmarks and State of the Art

At the time of this writing, there were two active benchmarks: TAC
and ERD. We briefly describe the setting and best results for each.

TAC: The Text Analysis Conference (TAC) is co-organized by the Na-
tional Institute of Standards (NIST) and the Linguistic Data Consor-
tium (LDC). The first TAC was held in 2008, and has since replaced
the Automatic Content Evaluation (ACE) series, which had similar

147

156 Basic NLP Tasks in Semantic Search

goals and was last held in 2008. From 2009 until the time of this writ-
ing, TAC contained a track called Entity Linking [Ji, Nothman, and
Hachey, 2014], with a new benchmark every year. 3 In the benchmarks
before 2014, the offsets of the word sequences that have to be disam-
biguated are given as part of the problem. That is, the NER part,
according to our definition above, is already solved. For the NED part,
an additional challenge is added in that some of the word sequences do
not refer to any entity from the given knowledge base. It is part of the
problem, to identify these as new entities and group them accordingly if
there are several references to the same new entity. In 2014, a new end-
to-end English entity discovery and linking task was introduced. This
task requires to automatically extract entity mentions, link them to a
knowledge base, and cluster mentions of entities not in the knowledge
base.

The knowledge base used in all of the tasks was a collection of en-
tities (800K of them in 2013) of type person, organization, or location
from a dump of the English Wikipedia from October 2008. The corre-
sponding entries from the Wikipedia infoboxes were also provided. The
systems were evaluated on a mix of documents from news and posts to
blogs, newsgroups, and discussion fora.

The best system for the 2012 and 2013 benchmarks (and the 2014
variant that provided the perfect mention as an input) is the MS_MLI
system by Cucerzan [2012]. It achieved a variant of the F-measure
of 70%.4 These systems are adoptions of the approach described in
[Cucerzan, 2007]. The best system for the 2014 benchmark that also
performs entity discovery is the system by Monahan et al., 2014.

ERD: The Entity Recognition and Disambiguation Challenge (ERD)
was co-located with SIGIR 2014. An overview is given in [Carmel et al.,
2014]. As the name of the challenge says, the benchmark comprises both

3Other tracks of TAC are discussed in subsection 4.3.5 of the Section on Struc-
tured Data Extraction from Text.

4The variant is referred to as b-cubed+ in the TAC benchmarks. It groups
together all co-references in the same document into one cluster, and applies the F-
measure to these clusters, not to the individual references. This avoids giving undue
weight to frequent references in a document (which, by the way typical algorithms
work, will either all be correct or all be wrong).

148

3.2. Named-Entity Recognition and Disambiguation 157

NER and NED, whereas TAC, before 2014, just asked for NED. Also
different from TAC, it was not required to recognize and disambiguate
entities that were not in the knowledge base.

The knowledge base for ERD was a dump of Freebase (see Table 2.2)
from September 2009, restricted to entities with a corresponding page
in the English Wikipedia at that same time. There were two tracks,
with a different text collection each. For the long track, parts of the
ClueWeb09 and ClueWeb12 collections (see Table 2.1) were used. For
the short track, web search queries from various past TREC tracks were
used. For both tracks, small test sets were provided for learning.

The best system in the long track was again the MS_MLI NEMO
system [Cucerzan, 2014], with an F-measure of 76%. That paper also
discusses (in its Section 1) the difference to the TAC benchmarks. The
best system in the short track was SMAPH by Cornolti et al. [2014],
with an F-measure of 69%.

3.2.3 Scale

The first large-scale NER+NED was performed by the SemTag project
from Dill et al. [2003]. They recognized and disambiguated 434 mil-
lion entity occurrences in 264 million web documents. Precision was
estimated (from a sample) to be 82%. A relatively small knowledge
base (TAP) was used, which explains the small number of recognized
occurrences per document and the relatively high precision.

The largest-scale NER+NED at the time of this writing was per-
formed by Google Research [Orr et al., 2013]. They recognized and
disambiguated 11 billion entities on 800 million documents from the
ClueWeb09 and ClueWeb12 collections (see Table 2.1). The knowledge
base used was Freebase, and the NER+NED was reportedly “optimized
for precision over recall”. Precision and recall were estimated (from a
sample) with 80-85% and 70-85%, respectively.

Note that the corpus from Orr et al. [2013] is only about 3 times
larger than the one used in the 10 year older study of Dill et al. [2003].
However, the number of entity occurrences is about 25 times larger.
Also note that the web crawl of the Common Crawl project from August
2014 contained around 2.8 billion web pages (200 TB), which is only

149

158 Basic NLP Tasks in Semantic Search

about 3 times larger than both of the ClueWeb datasets together. In
2015, Google revealed that it knows over 30 thousand trillion different
URLs on the Web. However, only a fraction of these point to textual
content that is actually useful for search. Also, many URLs point to
similar content. As of 2015, the number of distinct web pages indexed
by Google is estimated to be around 50 billion.5

The bottom line is that web-scale NER+NED with a large general-
purpose knowledge base is feasible with good (but still far from perfect)
precision and recall.

3.3 Sentence Parsing

The goal of sentence parsing is to identify the grammatical structure
of a sentence. There are two kinds of representations that are widely
used: the constituent parse and the dependency parse. Both parses can
be viewed as a tree. In a constituent parse, the sentence is first split,
e.g., into a subject noun phrase (NP) and a predicate verb phrase (VP),
which are then recursively split into smaller components until the level
of words or chunks is reached.

Definition 3.5. A constituent parse of a sentence consists of a tree with
the individual words as its leaves. Labels of internal nodes represent
grammatical categories of the word sequences corresponding to their
subtree, e.g., noun phrase (NP), verb phrase (VP), subordinate clause
(SBAR), or independent clause (S). These can be nested recursively.
The root of the tree is usually labeled S.

In a dependency parse, each word in the sentence depends on ex-
actly one other word in the sentence, its head; the root of the tree
points to the main verb of the sentence.

Definition 3.6. A dependency parse of a sentence is a tree6 with indi-
vidual words as nodes. Nodes are connected via directed edges from the

5Source: http://www.worldwidewebsize.com, who extrapolate from the number
of hits for a selection of queries.

6This is often also referred to as a dependency graph, but for all practical pur-
poses it can be considered a tree.

150

3.3. Sentence Parsing 159

governor (head) to the dependent. Each node has exactly one governor.
Edges can be labeled with the grammatical relationship between the
words. The main verb of the sentence has an artificial ROOT node as
its head.

For example, the sentence from above has the following constituent
and dependency parse, respectively. For the constituent parse, the tree
structure is shown via nested parentheses labeled with constituent type.
The dependency parse only shows unlabeled arcs and no ROOT node.

S(NP((Semantic) (search)) VP(VB(is) ADJP((just) (great)))).
Semantic ← search ← is → great → just .

From a linguistic perspective, the two types of grammars are almost
equivalent [Gaifman, 1965]. Indeed, many widely used parsers (includ-
ing the Stanford parser referred to below) produce one type of parse
from which they can easily derive the other type of parse.

3.3.1 Semantic Role Labeling

Although this section is about sentence parsing, let us also briefly dis-
cuss Semantic Role Labeling (SRL) at this point. SRL goes beyond
sentence parsing in that it also assigns “roles” to the semantic argu-
ments of a predicate or verb of a sentence. For example, consider the
following two sentences:

John gives the book to Mary.
John is given the book by Mary.

Both have the same (structure of the) constituent parse tree. But the
role of John with respect to the verb give is different: in the first sen-
tence, he is the one who gives (his role is giver), in the second sentence,
he is the one who is given (his role is recipient).

Semantic Role Labeling looks very relevant for semantic search. For
example, for the query who was given the book, the correct answer is
different for each of the two sentences above. However, most semantic
search systems nowadays work with (surprisingly) shallow linguistic
technology. Many do not even use sentence parsing, and none of the
systems described in this survey uses SRL.

151

160 Basic NLP Tasks in Semantic Search

There are two apparent reasons. One reason is that semantic search
is still in its infancy, with major challenges still to overcome even for
relatively basic search scenarios that do not involve any natural lan-
guage processing or only a relatively shallow one. The other reason
is that natural language processing has not yet reached the necessary
level of sophistication in order to be unreservedly useful for improving
search results. For a look further ahead see Section 6 on The Future of
Semantic Search.

3.3.2 Benchmarks and State of the Art

Datasets: A benchmark for sentence parsing (that is, a text annotated
by the correct parse for each sentence) is referred to as a Treebank. The
most widely used Treebank is the Penn Treebank [Marcus, Santorini,
and Marcinkiewicz, 1993]. It comprises 2,499 articles from the Wall
Street Journal from 1989 (about 44K sentences with about 1M words),
annotated for syntactic structure by human experts. The articles are
split into 25 sections with the convention to use sections 2-21 as a
training set and section 23 as test set. Remaining sections can be used
as development set. The Penn Treebank also contains the POS-tagged
Brown corpus (carefully selected English text from 15 genres, about
1M words, from 1961). There are also two follow-up benchmarks, called
Penn Treebank-2 [1995] and Penn Treebank-3 [1999].

More recent English Treebanks are Ontonotes 5.0 by Hovy et al.
[2006], which also contains articles from the Wall Street Journal, and
the Google Web Treebank by Petrov and McDonald [2012], which con-
sists of annotated sentences from the Web. However, most English
parsers are still trained and evaluated on the Penn Treebank.
CoNLL 2007 Shared Task: This task [Nivre et al., 2007] featured
two tracks on dependency parsing: one multilingual (with an English
sub-track), and one called domain adaptation (learn from one domain,
test on another). Two standard metrics emerged from that task: the
Labeled Attachment Score (LAS) and the Unlabeled Attachment Score
(UAS). Both are percentages, with 100% being a perfect result. UAS
measures the degree to which the structure is correct (head and arcs).
LAS also takes into account the correctness of the dependency labels.

152

3.3. Sentence Parsing 161

The best system in the English part of the multilingual track achieved
89.6% LAS and 90.6% UAS. The best system in the domain adaptation
track achieved 81% LAS and 83.4% UAS.

SANCL 2012 Shared Task: SANCL [Petrov and McDonald, 2012]
is the name of the Workshop on Syntactic Analysis of non-canonical
Language. Parsers were trained on the Penn Treebank (sections 2-21,
about 30K sentences), but evaluated on the Google Web Treebank.
Both dependency and constituent parsers were evaluated. The Stan-
ford parser achieved 80.7% precision and 79.6% recall in constituent
mode, and 83.1% LAS and 87.2% UAS in dependency mode. The best
constituent parser achieved 84.3% precision and 82.8% recall.

Socher et al. [2013] describe recent improvements to the Stanford
parser, and compare it to other state-of-the-art parsers. F-measures
between 85% and 92% are achieved.

It is noteworthy that good parsers achieve about equal figures for
precision and recall, which is why often only the F-measure is reported.
Already the early Charniak parser [Charniak, 2000] achieved both pre-
cision and recall of about 90% (on a relatively simple benchmark).

Note that with close to perfect chunking alone (which is a rela-
tively simple task) one already gets around 50% recall (all the min-
imal constituents are correct) and close to perfect precision, that is,
around 75% F-measure. But such a “parsing” would be quite useless
for semantic search or information extraction, where it is important to
detect which items of a sentence “belong together” semantically. Bast-
ings and Sima’an [2014] therefore introduce an alternative measure,
called FREVAL. This measure weighs each component by its height
in the parse tree (a leaf has height 1, the root has the largest height).
Mistakes in the larger components then incur a higher penalty in the
score. Using this measure, they report only 35% to 55% F-measure
for current state-of-the-art parsers. Indeed, these figures better reflect
our own experience of the limited use of sentence parsing for semantic
search, than the close to 90% achieved in the standard measures.

A further problem is that parsers perform worse on long sentences
than on short sentences. For example, Klein and Manning [2002] report
a drop in F-measure from about 90% for sentences with 10 words to

153

162 Basic NLP Tasks in Semantic Search

about 75% for sentences with 40 words. Unfortunately, much of the
information in a text is often contained in long (and often complex)
sentences. This is exacerbated by the fact that available parser models
are usually trained on newswire text but applied to web-like text, which
is more colloquial and sometimes ungrammatical (see the results of
SANCL 2012 shared task above).

3.3.3 Performance and Scale

In terms of F-measure, the Charniak constituent parser achieves the
state-of-the-art result at 92% and claims about 1 second per sentence
[McClosky, Charniak, and Johnson, 2006; Charniak, 2000]. The recur-
sive neural network (constituent) parser from Socher et al. [2013] needs
about 0.8 seconds per sentence, and achieves 90% F-measure on the
Penn Treebank. Recently, parsers have improved parsing times con-
siderably while maintaining or improving state-of-the-art quality. The
greedily implemented shift-reduce based constituent parser that is part
of the Stanford CoreNLP toolkit [Manning et al., 2014] achieves com-
parable 88.6% F-measure but is about 30 times as fast (27 ms per sen-
tence). A recent neural network based dependency parser [Chen and
Manning, 2014] can process about 650 sentences per second (1.5 ms per
sentence) and produce state-of-the-art results (89.6% LAS and 91.8%
UAS on the Penn Treebank with Stanford dependencies). spaCy7 is
the currently fastest greedy shift-reduce based parser, which can pro-
cess about 13K sentences per second (0.08 ms per sentence) with state-
of-the-art performance (91.8% UAS on the Penn Treebank). A recent
comparison of parsers is given by Choi, Tetreault, and Stent [2015].

3.4 Word Vectors

Word vectors or word embeddings represent each word as a real-valued
vector, typically in a space of dimension much lower than the size of
the vocabulary. The main goal is that semantically similar words should
have similar vectors (e.g., with respect to cosine similarity). Also, word
vectors often have linear properties, since they are usually obtained by

7https://spacy.io/

154

3.4. Word Vectors 163

(implicit or explicit) matrix factorization. For example, the methods
described below will produce similar vectors for queen and king, because
they are both monarchs, as well as similar vectors for queen - woman +
man and king. Word vectors are also popular as a robust representation
of words used as input to machine learning algorithms.

Research on word vectors has a long history in natural language
processing dating back to a famous statement by John Rupert Firth in
1957: You shall know a word by the company it keeps. Indeed, words
that occur in similar contexts are likely to be similar in meaning. This
implies that word vectors can be learned in an unsupervised fashion
from a huge text corpus, without additional knowledge input. In the
following, we discuss the main techniques, extensions to text passages,
and the most popular benchmarks.

Applying word vectors has recently gained interest. In this sur-
vey many of the approaches in Section 4.8 on Question Answering on
Knowledge Bases use it as part of the input to machine learning algo-
rithms in order to provide a notion of (semantic) synonyms. It is also
part of the future work planned for many recent systems, for example,
for Joshi, Sawant, and Chakrabarti [2014] in Section 4.9 on Question
Answering on Combined Data.

3.4.1 Main Techniques

The straightforward approach is to build a word-word co-occurrence
matrix [Lund and Burgess, 1996], where each entry counts how often
the two words co-occur in a pre-defined context (in the simplest case:
within a certain distance of each other). A row (or column) of the ma-
trix can then be considered as a (huge but sparse) word vector. From
there, a low-dimensional dense embedding can be obtained via matrix
factorization techniques. For example, using principal component anal-
ysis (PCA, typically computed from an eigenvector decomposition) or
non-negative matrix factorization (NMF, typically computed with a
variant of the EM algorithm) [Lee and Seung, 2000]. There are many
variations of this basic approach; for example, the co-occurrence ma-
trix can be row-normalized, column-normalized, or each entry can be
replaced by its positive pointwise mutual information.

155

164 Basic NLP Tasks in Semantic Search

Explicit semantic analysis (ESA) [Gabrilovich and Markovitch,
2007] represents a word as a vector of weighted Wikipedia concepts.
The weight of a concept for a word is the tf-idf score of the word in
the concept’s Wikipedia article. The resulting word vectors are often
sparse, because each concept article contains only a small subset of
all possible words. By construction, longer text passages can be rep-
resented by the sum of the word vectors of the contained words. The
resulting vector is then supposed to be a good representation of what
the text “is about”. Like PCA and NMF, ESA can be combined with
standard ranking techniques (like BM25) to improve retrieval quality
in keyword search on text.

Word2vec [Mikolov et al., 2013a; Mikolov et al., 2013b] computes
(dense) word vectors using a neural network with a single hidden layer.
The basic idea is to use the neural network for the following task: given
a current word wi, predict the words wi+c occurring in its context
(a window around wi, e.g., positions −2,−1,+1,+2). The network is
trained on an arbitrary given text corpus, with the goal of maximizing
the product of these probabilities. Once trained, the word vectors can
be derived from the weights of the intermediate layer. Interestingly,
Levy and Goldberg [2014] could show that word2vec implicitly performs
a matrix factorization of the word-context matrix. The major advantage
over the explicit matrix factorization techniques from above is in space
consumption and training speed; see the next but one paragraph.

Glove [Pennington, Socher, and Manning, 2014] is a log-bilinear re-
gression model that, intuitively, is trained to predict word co-occurrence
counts. The model effectively performs a factorization of the log co-
occurrence count matrix [Levy, Goldberg, and Dagan, 2015]. Experi-
ments show that it performs similarly to word2vec; see the next para-
graph. It is also fast to train, but requires a co-occurrence count matrix
as input.

Levy, Goldberg, and Dagan [2015] perform an extensive compari-
son of the many approaches for word vectors, including word2vec, Glove
and co-occurrence based methods. They also give valuable advice on
how to choose hyperparameters for each model. In their experiments,
none of the techniques consistently outperforms others. Experiments

156

3.4. Word Vectors 165

also show that hyperparameters have a huge impact on the perfor-
mance of each model, which makes a direct comparison difficult. How-
ever, they report significant performance differences on a corpus with
1.5 billion tokens, in particular: half a day versus many days for the
training phases of word2vec vs. Glove, and an unfeasibly large memory
consumption for the explicit factorization methods.

3.4.2 Extensions to Text Passages

The straightforward approach to obtain a low-dimensional vector of the
kind above for an arbitrary text passage is to sum up or average over the
vectors of the contained words. This works well in some applications,
but can only be an approximation because it completely ignores word
order.

Le and Mikolov [2014] have extended word2vec to compute vectors
for paragraphs and documents. The vector is learned for the given
passage as a whole, and not just statically composed from individual
word vectors. On a sentiment analysis task, the approach beats simple
composition methods (as described in the previous paragraph) as well
as classical supervised methods (which do not leverage external text).

Two related problems are paraphrasing and textual entailment,
where the task is to determine for two given pieces of text, whether
they mean the same thing or whether the first entails the second, re-
spectively. For example, does John go to school every day entail John
is a student? Learning-based methods for paraphrasing and textual en-
tailment are discussed in Section 8.1 of the survey by Li and Xu [2014].

3.4.3 Benchmarks

There are two popular problems that allow an intrinsic evaluation of
word vectors. For each problem, several benchmark datasets are avail-
able.

Word similarity: This is a ranking task. Word pairs must be ranked
by how similar the two words are. For example, the words of the pair
(error, mistake) are more similar than (adventure, flood). Benchmarks
contain word pairs with human-judged graded similarity scores, often

157

166 Basic NLP Tasks in Semantic Search

retrieved via crowdsourcing. The final quality is assessed by computing
rank correlation using Spearman’s ρ. Some relevant benchmarks are:

WordSim353 [Finkelstein et al., 2002]: 353 word pairs
SimLex-999 [Hill, Reichart, and Korhonen, 2015]: 999 word pairs
MEN [Bruni, Tran, and Baroni, 2014]: 3000 word pairs
Rare words [Luong, Socher, and Manning, 2013]: 2034 word pairs
Crowdsourcing benchmark [Radinsky et al., 2011]: 287 word pairs

For a recent performance comparison we refer to the experiments done
by Levy, Goldberg, and Dagan [2015]. Typical rank correlations are
between .4 and .8, depending on the dataset and the model.
Word analogy: Analogy questions are of the form “saw is to sees as
returned to ?” and the task is to fill in the missing word (returns).
More formally, the task is: given words a, a∗ and b find the word b∗

such that the statement “a is to a∗ as b is to b∗” holds. One variant of
this task addresses syntactic similarities, as in the example above. The
other variant focuses on semantic similarities as in “Paris is to France
as Tokyo is to ?” (Japan). To solve this task, simple vector arithmetic
is used. Most prominently:

arg max
b∗∈V \{a,a∗,b}

cos(b∗, a∗ − a+ b)

where V is the vocabulary. Levy, Goldberg, and Dagan [2015] improved
on that function, essentially by taking the logarithm. The resulting
function is called 3CosMul:

arg max
b∗∈V \{a,a∗,b}

cos(b∗, a∗) · cos(b∗, b)
cos(b∗, a) + ε

Notable benchmarks are from Microsoft Research [Mikolov, Yih, and
Zweig, 2013], which consists of 8,000 questions focusing on syntactic
similarities, and Google [Mikolov et al., 2013b], which consists of 19,544
questions for syntactic as well as semantic similarities. The evaluation
measure is the percentage of words b∗ that were correctly predicted.
Again, we refer to the experiments from Levy, Goldberg, and Dagan
[2015] for a recent comparison. Current models answer about 55% to
69% of these questions correctly.

158

4
Approaches and Systems for Semantic Search

This is the core section of this survey. Here we describe the multitude of
approaches to and systems for semantic search on text and knowledge
bases. We follow the classification by data type and search paradigm
from Section 2, depicted in Figure 1.1. For each of the nine resulting
subgroups, there is a subsection in the following. Each of these subsec-
tions has the same structure:

Profile ... a short characterization of this line of research
Techniques ... what are the basic techniques used
Systems ... a concise description of milestone systems or software
Benchmarks ... existing benchmarks and the best results on them

We roughly ordered the sections historically, that is, those scenarios
come first, which have been historically researched first (and the most).
Later sections correspond to more and more complex scenarios, with
the last one (Section 4.9 on Question Answering on Combined Data)
being the hardest, with still relatively little research to date. Also,
approaches and systems of the later section often build on research from
the more fundamental scenarios from the earlier sections. For example,
almost any approach that deals with textual data uses standard data
structures and techniques from classical keyword search on text.

167

159

168 Approaches and Systems for Semantic Search

4.1 Keyword Search in Text

Data Text documents, as described in Section 2.1.1

Search Keyword search, as described in Section 2.2.1
This is classical full-text search: the query is a se-
quence of (typically few) keywords, and the result
is a list of (excerpts from) documents relevant to
the query
Methods aimed at a particular entity or list of en-
tities are addressed in Section 4.5

Approach Find all documents that match the words from the
query or variants/expansions of the query; rank the
results by a combination of relevance signals (like
prominent occurrences of the query words in the
document or occurrences in proximity); learn the
optimal combination of these relevance signals from
past relevance data

Strength Easy to use; works well when document relevance
correlates well with basic relevance signals

Limitation Is bound to fail for queries which require a match
based on a deeper understanding (of the query
or the matching document or both), or which re-
quires the combination of information from differ-
ent sources

This is the kind of search we are all most familiar with from the
large web search engines: you type a few keywords and you get a list
of documents that match the keywords from your query, or variations
of them.

A comprehensive treatment of this line of research would be a sur-
vey on its own. We instead provide a very brief overview of the most
important aspects (Section 4.1.1), widely used software which imple-
ments the state of the art (Section 4.1.2), and an overview over the

160

4.1. Keyword Search in Text 169

most important benchmarks in the field and a critical discussion of the
(lack of major) quality improvements over the last two decades (Section
4.1.3).

4.1.1 Basic Techniques

With respect to search quality, there are two main aspects: the match-
ing between a keyword query and a document, and the ranking of the
(typically very many) matching documents. We do not cover perfor-
mance issues for keyword search on text in this survey. However, Sec-
tion 5.2 discusses various extensions of the inverted index (the standard
indexing data structure for keyword search on text) to more semantic
approaches.

Basic techniques in matching are: lemmatization or stemming
(houses→ house or hous), synonyms (search ↔ retrieval), error correc-
tion (algoritm ↔ algorithm), relevance feedback (given some relevant
documents, enhance the query to find more relevant documents), prox-
imity (of some or all of the query words) and concept models (matching
the topic of a document, instead of or in addition to its words). A re-
cent survey on these techniques, cast into a common framework called
learning to match, is provided by Li and Xu [2014].

Basic techniques in ranking are either query-dependent ranking
functions, like BM25 (yielding a score for each occurrence of a word
in a document) and language models (a word distribution per docu-
ment), or query-independent popularity scores, like PageRank (yielding
a single score per document). Hundreds of refinements and signals have
been explored, with limited success; see the critical discussion in the
benchmark section below. The most significant advancement of the last
decade was the advent of learning to rank (LTR): this enables leverage
of a large number of potentially useful signals by learning the weights
of an optimal combination from past relevance data. See [Liu, 2009]
for a survey with a focus on applicable machine learning techniques.
We discuss applications of LTR to other forms of semantic search in
Section 5.1 on Ranking.

161

170 Approaches and Systems for Semantic Search

4.1.2 Popular State-Of-The-Art Software

Researchers have developed countless systems for keyword search on
text. A list is beyond the scope of this article, and bound to be very
incomplete anyway. Instead, we focus on open-source software and pro-
totypes that are widely used by the research community. Each of the
systems below provides basic functionality like: incremental index up-
dates (adding new documents without having to rebuild the whole in-
dex), fielded indices (to store arbitrary additional information along
with each document), distributed processing (split large text collec-
tions into multiple parts, which are then indexed and queried in par-
allel), standard query operators (like: conjunction, disjunction, prox-
imity), and multi-threading (processing several queries concurrently).
Also, each of the systems below is used as basis for at least one system
for more complex semantic search, which are described in one of the
following sections.

There are several studies comparing theses systems. For a qual-
ity comparison of some of these, see [Armstrong et al., 2009a]. For a
performance comparison, see [Trotman et al., 2012].

Apache’s Lucene1 is the most widely used open-source software
for basic keyword search. It is written in Java and designed to be
highly scalable and highly extensible. It is the most used software in
commercial applications. Lucene provides built-in support for some of
the basic matching and ranking techniques described in Section 4.1.1
above: stemming, synonyms, error correction, proximity, BM25, lan-
guage models.

Indri2 is written in C++. It is a general-purpose search engine, but
particularly used for language-model retrieval. Terrier3 is written in
Java, and provides similar functionality as Indri.

MG4J [Boldi and Vigna, 2005] is written in Java. It makes use of
quasi-succinct indexes, which are particularly space-efficient and en-
able particularly fast query processing also for complex query opera-
tors. MG4J supports fielded BM25, which is used by various of the

1http://lucene.apache.org
2http://www.lemurproject.org/indri
3http://terrier.org

162

4.1. Keyword Search in Text 171

approaches described in Section 4.5 on Keyword Search on Combined
Data.

4.1.3 Benchmarks

The classical source for benchmarks for keyword search on unstructured
text is the annual Text Retrieval Conference (TREC) series [Voorhees
and Harman, 2005], which began in 1992.4 TREC is divided into various
so-called tracks, where each track is about a particular kind of retrieval
task. Each track usually runs over a period of several years, with a
different benchmark each year. Each benchmark consists of a document
collection, a set of queries, and relevance judgments for each query.5

Keyword search on text documents was considered in the following
tracks: Ad-hoc (1992 - 1999, keyword search on the TIPSTER6 collec-
tion), Robust (2003 - 2005, hard queries from the ad-hoc track), Ter-
abyte (2004 - 2006, much larger document collection than in previous
tracks), and Web (1999 - 2004 and 2009 - 2014, web documents).

Armstrong et al. [2009a] and Armstrong et al. [2009b] conducted
an extensive comparative study of the progress of ad-hoc search over
the years. Systems were compared in two ways: (1) by direct compar-
ison of different results from different papers on the same (TREC ad-
hoc) benchmarks, and (2) by a comparison across benchmarks using
a technique called score standardization. Their surprising conclusion
from both studies is that results for ad-hoc search have not improved
significantly since 1998 or even earlier. New techniques were indeed
introduced, but the evaluations were almost always against weak base-
lines, instead of against the best previous state-of-the-art system.

Viewed from a different perspective, this study merely confirms a
typical experience of information retrieval researchers regarding key-
word search. The shortcomings are clear, and promising new ideas

4When researching proceedings, it helps to know that the first 9 TREC confer-
ences, from 1992 to 2000, are referenced by number: TREC-1, ..., TREC-9. Starting
from 2001, they are referenced by year: TREC-2001, TREC 2002, ...

5For the later (very large) collections, only partial relevance judgments (for the
top documents from each participating system) were available. This is called pooling.

6The TIPSTER collection comprises news articles, government announcements,
and technical abstracts.

163

172 Approaches and Systems for Semantic Search

spring to mind relatively quickly. But a comprehensive and honest eval-
uation of any single idea over a large variety of queries is often sobering:
the results for some queries indeed improve (usually because relevant
documents are found, which were not found before), while the results
for other queries deteriorate (usually because of lower precision). Of-
ten, the two opposing effects more or less balance out, and it is mostly
a matter of careful parameter tuning to get a slight improvement out
of this.

A real improvement was brought along by the learning to rank
approach, discussed briefly in Section 4.1.1 above. With learning to
rank, a large number of potentially useful signals can be combined,
and the best “parameter tuning” can be learned automatically from
past relevance data. Indeed, the winners of the last three TREC Web
Tracks are all based on this approach.

In absolute terms, results remained relatively weak however, with
typical nDCG@20 values of around 30%. This makes it all the more
reasonable to go beyond this simple form of keyword search and aim at
deeper forms of understanding, which is exactly what the approaches
described in the following sections do.

164

4.2. Structured Search in Knowledge Bases 173

4.2 Structured Search in Knowledge Bases

Data A knowledge base, as described in Section 2.1.2

Search Structured search, as described in Section 2.2.2
The query is from a language like SPARQL; the
result is a list of matching items from the knowledge
base; the order is arbitrary or explicitly specified

Approach Store the knowledge base in a standard RDBMS
and rewrite queries to SQL; or use a dedicated in-
dex data structure and query engine

Strength Expert searches with a precise semantics; the
canonical back end for any service that involves
non-trivial queries to a knowledge base

Limitation Query formulation is cumbersome, especially for
complex queries; finding the right entity and re-
lation names becomes very hard on large knowl-
edge bases; the amount of information contained in
knowledge bases is small compared to the amount
of knowledge contained in text

Structured search in knowledge bases is not so much a technique
for semantic search on its own, but rather a basic building block for all
approaches that work with one or more knowledge bases.

4.2.1 Basic Techniques

There are two main approaches to storing a knowledge base: in a stan-
dard relational database management system (RDBMS), or in a system
dedicated to storing knowledge as collections of triples and hence often
called triple store. Both approaches are widely used. The design and
implementation of a typical triple store is described in Section 4.2.2
below.

When the knowledge base is stored in an RDBMS and the query lan-
guage is SPARQL, queries can be translated to equivalent SQL queries.

165

174 Approaches and Systems for Semantic Search

A complete translation scheme is described in [Elliott et al., 2009].7
When the data is stored in an RDBMS using a non-trivial schema
(that is, not just one big table of triples), a mapping is needed to spec-
ify how to make triples out of this data. For this mapping, R2RML
[2012] has emerged as a standard. Given such a mapping, generating
a SQL query that can be executed as efficiently as possible becomes a
non-trivial problem [Unbehauen, Stadler, and Auer, 2013].

Traditional RDBMSs store their data row oriented, that is, the
items from one row are contiguous in memory. This is advantageous
when retrieving complete rows via direct access (e.g., via their key).
When storing a knowledge base in an RDBMS, column orientation is
the layout of choice. This is because typical SPARQL queries require
scans of very long runs of entries for one attribute. For example, to
find all people born in a given city, we need to determine all triples
with that city as their object. Also, these columns are typically highly
compressible. For the example just given, there will be long runs of
triples with the same city (if sorted by object). A simple run-length
encoding then saves both space and query time. A recent survey on
column-oriented databases aka column stores (with focus on efficiency)
is provided by Abadi et al. [2013].

The list of systems and benchmarks in Sections 4.2.2 and 4.2.3
below focuses on systems that explicitly support SPARQL. There are
two main aspects when comparing these systems: their performance
and which features they support.

Performance

It appears that dedicated triples stores have an advantage over
RDBMS-based systems. Dedicated triple stores can use index data
structures that are tailored to sets of triples (in particular, exploiting
the high repetitiveness and hence compressibility involved, see above).
Similarly, they can use query optimizers that exploit the structure of

7The SPARQL features ASK, CONSTRUCT, and DESCRIBE are treated spe-
cially, since they can only be approximated in SQL. They are not essential for the
expressiveness of SPARQL, however.

166

4.2. Structured Search in Knowledge Bases 175

typical SPARQL queries.8 It turns out, however, that RDBMS-based
approaches can still be superior, especially for complex queries, because
of their more mature query-optimizer implementations. This is briefly
discussed in the benchmark subsection below. Query planning and op-
timization are a research topic of their own, and we refer the interested
reader to [Schmidt, Meier, and Lausen, 2010].

Features

All the widely used systems below support the full SPARQL standard.
Research prototypes often focus on SELECT queries, details below.
Other features, which some but not all of the systems provide, are:
Reasoning: support for reasoning, e.g., using OWL or RDFS; this is
the topic of Section 5.4 on Inference.
Web API: query or modify the database via HTTP.
Exchangeable back end: plug in different back ends; in particular,
allow the choice between a dedicated triple store and an RDBMS.
Full-text search: support for keyword search in objects which are
string literals; here is an example using the syntax from Virtuoso’s
keyword search extension (the prefix bif stands for built-in function
and prefixes for the other relations are omitted):

SELECT ?p WHERE {
?p has-profession Astronaut .
?p has-description ?d .
?d bif:contains "walked AND moon" }

Note that already standard SPARQL enables regular-expression match-
ing of entity names via the FILTER regex(...) operation. In principle,
regular expressions can simulate keyword queries, but not very prac-
tically so. For example, a string literal matches the two keywords w1
and w2 if it matches one of the regular expressions w1.*w2 or w2.*w1 .

8From a more general perspective, such special-purpose databases are often
called NoSQL (acronym for “non (relational) SQL”, sometimes also interpreted as
“not only SQL”). Another example of a NoSQL database is Google’s BigTable,
which supports database-like queries on extremely large amounts of data that may
be stored distributed over thousands of machines.

167

176 Approaches and Systems for Semantic Search

Note that entity names are also string literals. This simple kind
of search is hence also useful when the exact name of the entity is
not known, or for long names. For example, the entity name Barack
Hussein Obama would be found with the keyword query "barack AND
obama".

4.2.2 Systems

The three most widely used systems at the time of this writing are (in
chronological order of the year the system was introduced): Virtuoso9,
Jena10, and Sesame [Broekstra, Kampman, and Harmelen, 2002].

All three provide all of the features listed above. Virtuoso is written
in C, Jena and Sesame are written in Java. Virtuoso is different in
that it is also a full-featured RDBMS; in particular, it can run with
its own RDBMS as back end. For a performance comparison, see the
benchmarks below.

Traditional database companies, like Oracle or MySQL, have also
started to provide support for triple stores and SPARQL queries. How-
ever, at the time of this writing, they still lack the breadth of features
of systems like Virtuoso, Jena, or Sesame.

Details of the implementation of a dedicated triple store and
SPARQL engine are described in [Neumann and Weikum, 2009; Neu-
mann and Weikum, 2010], for a system call RDF-3X. The software is
open source. RDF-3X supports SELECT queries with the most im-
portant modifiers and patterns.11 RDF-3X builds an index for each of
the six possible permutations of a triple (SPO, SOP, OPS, OSP, POS,
PSO, where S = subject, P = predicate, O = object). This enables
fast retrieval of the matching subset for each part of a SPARQL query.
Join orders are optimized for typical SPARQL queries, including star-
shaped (all triples have the same variable as their subject) and paths
(the object of one triple is the subject of the next). Query plans are
ranked using standard database techniques, like estimating the cost

9http://virtuoso.openlinksw.com
10https://jena.apache.org
11Supported patterns: OPTIONAL and FILTER. Supported modifiers: ORDER

BY, DISTINCT, REDUCED, LIMIT, and OFFSET. Not supported: ASK, DE-
SCRIBE, and CONSTRUCT queries.

168

4.2. Structured Search in Knowledge Bases 177

via histogram counts. The authors provide a performance evaluation,
where RDF-3X is faster than two column-store RDBMs (MonetDB and
PostgreSQL) on a variety of datasets (including BTC’09 and UniProt
from Tables 2.3 and 2.2). This is inconsistent with the results from
the Berlin SPARQL benchmark, discussed below, where an RDBMs
(Virtuoso) wins when the data is very large.

Bast et al. [2014a] provide a system for the incremental construction
of tree-like SPARQL queries. The system provides context-sensitive
suggestions for entity and relation names after each keystroke. The
suggestions are ranked such that the most promising suggestions appear
first; this ranking is discussed in more detail in Section 5.1.4. As of this
writing, an online demo for Freebase (see Table 2.2) is available: http:
//freebase-easy.cs.uni-freiburg.de. The demo also addresses the
challenge of providing unique and human-readable entity names.12

SIREn [Delbru, Campinas, and Tummarello, 2012] uses an inverted
index (Lucene) to support star-shaped SPARQL queries (with one en-
tity at the center), where predicate and relation names can be matched
via keyword queries. We describe the index in more detail in Section
5.2.1 on Using an Inverted Index for Knowledge Base Data.

4.2.3 Benchmarks

The Berlin SPARQL Benchmark [Bizer and Schultz, 2009] is modeled
after a real use case: a consumer looking for a product on an e-commerce
website. 12 generic queries are chosen to model the SPARQL queries
sent to the back end during such a session. The queries are parame-
terized, e.g., by the type of product that the consumer is looking for
initially. The benchmark demands that the queries are asked in se-
quence, with multiple sequences being asked concurrently, again as in
a real setting. The dataset is modeled after a real set of products (with
various features and textual descriptions) and is synthetically gener-
ated, with an arbitrary, given size.

12The entity names from Freebase are not unique, and the identifiers are alpha-
numeric strings. In contrast, for example, Wikipedia has human-readable unique
identifiers for each of its entities.

169

178 Approaches and Systems for Semantic Search

Bizer and Schultz [2009] compare a large variety of systems: explicit
triple stores (including: Jena, Sesame, and Virtuoso with its own triple
store back end), and SPARQL-to-SQL rewriters using an RDBMS (in-
cluding: MySQL and Virtuoso with its own RDBMS back end). Dataset
sizes used were 1M, 25M, and 100M triples. No single system came out
as the clear winner. However, for the largest datasets (100M), the best
RDBMS-based approach (Virtuoso) was about 10 times faster on aver-
age than the best dedicated triple store. The authors attribute this to
the more mature query optimizers of established RDBMS systems. It
is noted that the SPARQL-to-SQL rewriting takes up to half the time.

The DBpedia SPARQL Benchmark [Morsey et al., 2011] is a generic
benchmark that aims at deriving realistic SPARQL queries from an
arbitrary given query log for an arbitrary given knowledge base. In
particular, 25 query templates are derived for the DBpedia dataset
(see Table 2.2). Their evaluation confirms the performance differences
from previous benchmarks, notably Bizer and Schultz [2009], except
that the performance differences are even larger with realistic data and
queries.

170

4.3. Structured Data Extraction from Text 179

4.3 Structured Data Extraction from Text

Data Text documents, as described in Section 2.1.1
This includes web documents with markup that
helps to identify structure in the data

Search The main purpose of the systems described in this
section is to extract structured information from
text; the search is then an add-on or left to systems
as discussed in Section 4.2 on Structured Search in
Knowledge Bases

Approach Extract structured data from text; store in a knowl-
edge base or reconcile with an existing one; an al-
ternative for very simply structured queries is to
translate them to suitable keyword queries

Strength Make the vast amounts of structured data con-
tained in text documents accessible for structured
search

Limitation Extraction with high precision and recall is hard;
reconciling extracted information in a single knowl-
edge base is hard; some information is hard to ex-
press in structured form

A large part of the world’s information is provided in the form
of natural language text, created for humans. Large amounts of this
information could be naturally stored (and queried) in structured form.

4.3.1 Basic Techniques

We distinguish three kinds of approaches to access structured data con-
tained in text documents: relationship extraction from natural language
text, extraction of tables or infoboxes, and knowledge base construc-
tion. In a sense, the approaches build on each other, which is why we
describe them in this order.

171

180 Approaches and Systems for Semantic Search

For each of the three approaches, we describe the state-of-the-
art systems and performance in Sections 4.3.2 - 4.3.4. For a holistic
overview of the whole field of information extraction from text we refer
to the excellent survey from Sarawagi [2008].

Relationship Extraction from Natural Language Text

Relationship extraction aims at extracting subject-predicate-object tu-
ples from a given collection of natural language text. Consider the fol-
lowing sentence from Wikipedia:

Aldrin was born January 20, 1930, in Mountainside Hospital, which
straddles both Glen Ridge and Montclair

In basic relationship extraction, the searched relation is part of the
input. For example, extract all triples for the place of birth relation
from a given text. For the sentence above such a triple would be:

Buzz Aldrin place of birth Glen Ridge

The subject and object may or may not be linked (one also says:
grounded) to a matching entity from a given knowledge base (in the
example they are: we use the names from an – imaginary in this case –
knowledge base, not from the original sentence). Since the relation was
given, the predicate is easily grounded. Depending on the verb, there
may be multiple objects (in the example, there is just one).

Banko et al. [2007] introduced Open Information Extraction (OIE),
where the goal is to extract as many tuples as possible (for any relation)
from the given text. For the example sentence above, a typical OIE
system would extract:

Aldrin was born Glen Ridge

Unlike for the triple above, the subject and, especially, the predicate are
not grounded, but are simply expressed using words from the sentence.

Specialized Extraction

Web documents often contain additional structure in the form of
markup for some of the contents. Two notable such sub-structures

172

4.3. Structured Data Extraction from Text 181

are tables and Wikipedia infoboxes. Tables are interesting because a
lot of structured information contained in text is formatted as tables.
Balakrishnan et al. [2015] report that they have indexed over a hun-
dred million HTML tables that contain interesting structured data.13
Infoboxes are interesting because Wikipedia covers a lot of general-
purpose knowledge with high quality. In Section 4.3.3 below, we discuss
several systems developed for these sub-structures.

There is also vast literature on domain-specific extraction, in par-
ticular, for the life sciences. For example, extract all pairs of proteins
(subject and object) that interact in a certain way (predicate) from a
large collection of pertinent publications. The main challenge for such
systems is domain-specific knowledge (e.g., the many variants how pro-
tein names are expressed in text), which is beyond the scope of this
survey.

Knowledge Base Construction

Basic extraction processes, as described in the previous two subsections,
yield a (typically very large) collection of elements of structured data,
often triples. To obtain a knowledge base, as described in Section 2.1.2,
two challenging steps are still missing: entity resolution and knowledge
fusion, which we briefly explain here.

For entity resolution, sometimes also called entity de-duplication,
strings referring to the same entity must be mapped to a unique iden-
tifier for that entity. For example, the extraction process might yield
the two triples:

Buzz Aldrin born in Glen Ridge
Aldrin born in Montclair
Here, the two subjects are different strings but refer to the same entity.
Depending on the extraction process, this might also happen for the
predicates.

For knowledge fusion, different triples might contain conflicting or
complementary information, which needs to be resolved or unified. For
the two triples above, both provide correct information in a sense (the

13Note that HTML tables are often used in web pages merely for formatting.

173

182 Approaches and Systems for Semantic Search

hospital where Aldrin was born straddles both Glen Ridge and Mont-
clair). A system might also choose to discard one triple (because, in
this case, place of birth is a functional relation, that is, for each subject
there can be only one “true” object).

An excellent overview of the creation of state-of-the-art knowledge
bases is given in the tutorial by Bordes and Gabrilovich [2015].

4.3.2 Systems for Relationship Extraction from Text

Early approaches to relationship extraction make use of hand-crafted
rules or patterns. A classical example is the pattern NP such as NP,
which if matched in a text likely points to a hyponomy relation between
the two noun phrases [Hearst, 1992].

The next generation of systems was based on supervised classifi-
cation using linguistic features such as phrase chunks and dependency
paths [Zhou et al., 2005; Fundel, Küffner, and Zimmer, 2007] or tree
kernels [Zelenko, Aone, and Richardella, 2003]. Zhou et al. [2005] re-
port 55.5% F-measure (63.1% precision and 49.5% recall) over a set of
43 relations on a corpus of the NIST Automatic Content Extraction
(ACE) program.14 Again, we refer to the survey by Sarawagi [2008] for
a good overview.

A common problem for supervised approaches is that labeled train-
ing data is required for each relation to be extracted. Therefore, recent
approaches make use of distant supervision [Mintz et al., 2009] to de-
rive (noisy) training data. The idea is to find training examples for
each relation, by finding sentences in which entities, that are known
to be in the given relation, co-occur. This is possible with large-scale
public domain knowledge bases like Freebase, covering many relations
and entities, and a large text corpus, where mentioned entities have
been identified. Note that distant supervision is a technique that can
be applied for other tasks as well. In general, whenever noisy training
data can be derived using an authoritative source, one can speak of
distant supervision.

Of course, the assumption that co-occurring entities are in the given
relation does not always hold. For example, the entities Neil Armstrong

14https://www.ldc.upenn.edu/collaborations/past-projects/ace

174

4.3. Structured Data Extraction from Text 183

and Wapakoneta can co-occur in a sentence because it states that Arm-
strong was born in Wapakoneta or because he took flying lessons there.
Hence, recent approaches focus on better learning from this kind of
noisy data [Riedel, Yao, and McCallum, 2010; Hoffmann et al., 2011;
Surdeanu et al., 2012].

There is no standard annual benchmark for evaluation, and results
differ based on the considered relations and used corpus. The much
compared-to work by Hoffmann et al. [2011] reports around 60% F-
measure (72.4% precision and 51.9% recall) across all extracted rela-
tions.

The first approaches to Open Information Extraction (OIE) mainly
used patterns over shallow NLP, e.g., part-of-speech tags. Given a set of
seed entities that are in a specified relation, TextRunner learns surface
patterns from a text corpus and the initial bootstrap set is enriched
with additional entities [Yates et al., 2007]. Later systems combined
manually crafted rules with classifiers learned via this bootstrapping
process, e.g., ReVerb [Fader, Soderland, and Etzioni, 2011; Etzioni et
al., 2011].

More recent systems tend to utilize deeper NLP (dependency or
constituent parses), e.g., OLLIE [Mausam et al., 2012] learns patterns
on dependency parses. The currently best approaches use manually
crafted rules over deep NLP, notably ClausIE [Corro and Gemulla,
2013] and CSD-IE [Bast and Haussmann, 2013] (extended by Bast and
Haussmann [2014] to make triples more informative). Both systems
report around 70% of correct extractions with around twice as many
correct extractions as OLLIE [Mausam et al., 2012].

Triples from OIE systems can be used for semantic search in a va-
riety of ways. In [Fader, Zettlemoyer, and Etzioni, 2013], the triples
are searched directly, with parts of the query being matched to parts
of the triples, making extensive use of paraphrases. This approach
only works when the elements from the result sets correspond to
individual triples. A demo of this kind of search is provided under
http://openie.allenai.org. In [Bast et al., 2014b], triples are used
to establish semantic context (which entitites and words “belong to-
gether”) in semi-structured search on combined data; the system is

175

184 Approaches and Systems for Semantic Search

described in Section 4.6.2. In principle, OIE triples could also be used
for knowledge base construction. However, all of the systems described
in Section 4.3.1 below work with a fixed set of relations. This takes
away the burden of the problem of predicate name resolution (which
is hard, see Section 4.8.1). Additionally, the schema of the knowledge
base provides a filter on which triples are actually useful. For example,
OIE systems also extract triples like

John cheered for his team

that are usually not desirable to include in a knowledge base.

4.3.3 Systems for Specialized Extraction

WebKB [Craven et al., 1998] was one of the first systems to extract
triples from hyperlinked documents, namely the website of a computer
science department. In their approach, web pages stand for entities (for
example, the homepage of a person stands for that person) and links
between web pages indicate relations (for example, a link between a
person’s homepage and the department homepage is a strong indicator
that that person works in that department). The correspondence be-
tween web pages and entities is learned in a supervised fashion using a
Naive Bayes classifier with standard word features. Relations are also
learned using FOIL (rule-based, supervised learning) with link paths
(for example, a link from a person to a department) and anchor text (for
example, the word department in the anchor text) as features. In their
evaluation, 450 instances of 6 classes are classified with 73% precision
and 291 instances of 3 relations are extracted with 81% precision.

EXALG [Arasu and Garcia-Molina, 2003] is a system for gathering
knowledge from websites that fill templates with structured data. The
goal is to deduce the template without any human input, and then use
the deduced template to extract data. Mapping the extracted data to
an existing ontology is not part of the system. Technically, the system
works in two stages. In the first stage, it collects tokens that occur
(exactly) equally often and thus indicate a template (e.g., a label like
Name:). In the second stage, the data values are extracted. These are
expected to be found between the re-occurring tokens from stage one.

176

4.3. Structured Data Extraction from Text 185

Limaye, Sarawagi, and Chakrabarti [2010] present a system that ex-
tracts structured information from tables contained in web documents.
In a preprocessing step, for each table, its cells, columns, and col-
umn pairs are mapped to entities, types, and relations from the YAGO
knowledge base. For example, consider a table with two columns: names
of persons and their birth place. The cells are mapped to particular
persons and places, respectively, the columns are mapped to the types
person and location, and the column pair is mapped to the relation
born in. The mappings are learned using features such as: the simi-
larity between the entity name and the text in the cell, the similarity
between a relation name and a column header, and whether entity pairs
from a labeled relation are already in this relation according to YAGO.
WebTables [Cafarella et al., 2008] is a system for finding web tables in
the first place. For example, given the keyword query city population,
find tables on the Web containing information about cities and their
population.15

4.3.4 Systems for Knowledge Base Construction

YAGO [2007] is a knowledge base originally obtained from Wikipedia’s
infoboxes and from linking Wikipedia’s rich category information to
the WordNet [Miller, 1992] taxonomy using basic NLP techniques. For
example, the Wikipedia category German Computer Scientists can be
(easily) linked to the WordNet category Computer Scientist, and from
the WordNet taxonomy one can then infer that an entity with that cat-
egory is also a Scientist and a Person. More recent versions of YAGO
also contain statements from matching patterns in text, as well as ex-
tensive spatial and temporal information [Hoffart et al., 2013].

DBpedia [Auer et al., 2007] is a community effort to extract struc-
tured information from Wikipedia. The most important part are tem-
plates that extract structured data fromWikipedia infoboxes. However,
there are also other extractors, including some that harvest informa-
tion from full text using NLP techniques [Lehmann et al., 2015]. For
example, there is an extractor that infers the gender of a person from
the usage of pronouns in the person’s article.

15WebTables is used in several Google products; see [Balakrishnan et al., 2015].

177

186 Approaches and Systems for Semantic Search

The Never-Ending Language Learner (NELL) [Carlson et al., 2010;
Mitchell et al., 2015] is a system that constructs a knowledge base
from the Web in a staged fashion, where previously learned knowledge
enables further learning. NELL has been running 24 hours/day since
January 2010, and so far has acquired a knowledge base with over 80
million confidence-weighted statements. It started with a small knowl-
edge base that defines a basic ontology (that is, a set of types and
predicates of interest) and a handful of seed examples. In each cycle,
the current knowledge base is used to train several components, which
are then used to update the knowledge base. These components in-
clude: relationship extraction (see Section 4.3.2), removing mutually
exclusive statements (see Section 4.3.1), and inference modules that
generate new statements (if two people have the same parents, they
should also be in a sibling relationship).

Google’s Knowledge Vault [Dong et al., 2014] is a web-scale prob-
abilistic knowledge base that combines extractions from web content
with knowledge derived from existing repositories. Knowledge Vault
contains three major components. First, triple extractors that utilize
distant supervision using basic NLP features derived from POS tagging,
NER+NED, dependency parsing, and co-reference resolution (see Sec-
tion 3). Second, graph-based priors that predict possibly missing triples
(with a probability) based on what is already stored in the knowledge
base. For example, one can infer a missing instance of a sibling rela-
tion, if two persons have the same parent. Missing parent triples can
also be hinted at by a sibling triple, but with less confidence as the
other way round. These predictions are made without manually speci-
fied rules. The final component is knowledge fusion that computes the
probability of a triple being true, based on agreement between differ-
ent extractors and priors. According to [Bordes and Gabrilovich, 2015],
Knowledge Vault contained 302M high-confidence facts in 2015.

DeepDive [Zhang, 2015; Wu et al., 2015] provides the basic building
blocks for knowledge base construction systems. An initial knowledge
base and a text corpus are required. Users of DeepDive have to provide
extractors, training examples, and rules. Extractors can be off-the-shelf
tools or tailor-made and extract entity occurrences from the text (as

178

4.3. Structured Data Extraction from Text 187

offsets) and whatever else might be a useful feature: POS tags, de-
pendency parses, etc. Training examples are typically obtained using
distant supervision (explained in Section 4.3.2), but can also be pro-
vided manually. Rules can state something like “if a person smokes, the
person is likely to have cancer”. DeepDive then learns weights for those
rules and performs inference without the developer having to worry
about the algorithmic intricacies. Therefore, it creates a probabilistic
model and jointly learns: (1) optimal weights for the user-defined rules,
and (2) probabilities for candidate triples to be added to the knowledge
base. In the example above, smoking makes cancer more probable, but
that does not mean every smoker necessarily has cancer. The weight for
that rule is learned from existing data and, together with evidence from
the text (typical patterns or formulations), determines the confidence
of new statements that might be added to the knowledge base.

Angeli et al. [2014] present a system based on DeepDive. This sys-
tem was the best performing system at the 2014 TAC-KBP slot filling
task [Surdeanu and Ji, 2014], which is described below. Distant su-
pervision is performed with Freebase as a source of training data. To
improve upon this, a manual feedback round is added to find features
that are good indicators of the relation or not.

4.3.5 Benchmarks

For the basic task of relationship extraction, there is no widely agreed-
upon benchmark. Rather, each of the systems described in Section
4.3.2 comes with its own benchmark (as briefly summarized above).
The likely reason is the many variants of the extraction task: which
relations to extract (fixed subset or open), the subjective judgment
which triples are actually entailed by the text (and hence counted as
correct), whether to extract triples or n-tuples, optimize for precision
or for recall, etc.

Since 2009, the TAC conference series has a Knowledge Base Pop-
ulation (KBP) track. Overview papers from 2010 to 2014 are available
via the conference’s website: [Ji et al., 2010; Ji, Grishman, and Dang,
2011; Mayfield, Artiles, and Dang, 2012; Surdeanu, 2013; Surdeanu
and Ji, 2014]. Over the years, KBP has always featured two tasks that

179

188 Approaches and Systems for Semantic Search

are crucial to knowledge base construction: Entity Linking (see Section
3.2), and a so-called Slot Filling task, where missing facts about enti-
ties are retrieved and thus these slots are filled in a knowledge base.
Since 2012, KBP also includes a Cold Start task, where a knowledge
base is constructed from scratch and then evaluated as a whole.

The slot filling task is most relevant to this section. First of all, it
evaluates the main aspect of knowledge base construction: to retrieve
facts from a text corpus. Second, it is an example for searching with
structured queries on text itself. The goal of the task is, given an en-
tity (e.g., a particular person) together with the names of a number
of relations (e.g., countries of residence), compute the missing objects
(e.g., the countries of residence of the given person). All of them are
attributes of either persons or organizations. Each query contains the
name of the entity, its type (person or organization), and a link to one
occurrence in the corpus of the task.

The text corpus consists of documents from multiple sources, with
newswire text and web documents (1 million documents each) making
up the biggest part. The knowledge base includes nodes for entities
based on a dump of the English Wikipedia from October 2008. Results
are evaluated against manually judged extractions based on pooling.
Annotations from previous years are provided as additional training
data to facilitate the use of the reference knowledge base.

The slot filling task is consistently lively with 15, 15, 11, 19, and 18
participants over the years. The best performing system in 2014 is the
system by Angeli et al. [2014] described above. The system achieves
37% F-measure with 55% precision and 28% recall.

The cold start task introduced in 2012 has become its own track
and replaced the classic KBP track in 2015 [Mayfield and Grishman,
2015]. Differently from the other tasks, no knowledge base is given as
input. Instead, it is built from scratch using a given document collec-
tion and a predefined schema. This collection consists of 50K English
documents from newswire text and discussion forum posts. According
to the schema, systems have to recognize person, organization, and
geopolitical entities (entity discovery task) , their relations (slot filling
task) in the text corpus, and populate a knowledge base.

180

4.3. Structured Data Extraction from Text 189

Also in 2012, the TREC conference series introduced a Knowledge
Base Acceleration (KBA) track [Frank et al., 2012; Frank et al., 2013;
Frank et al., 2014]. The streaming slot filling task is similar to the slot
filling task of KBP, except that the data is given as a stream (with time
stamps for each document), and the knowledge about entities evolves
over time. As the stream of documents progresses, the entities change
and evolve, so KBA systems must detect when vital, new information
appears that would motivate an update to the knowledge base. The
data comes from the Stream Corpus (see Table 2.1). Systems are eval-
uated by similarity between their slot fills and those found by humans
(using cosine similarity between word vectors when taking all slot fills
as bags of words). The best system [Qi et al., 2014] achieves a similar-
ity of 61%. It makes use of training data from the non-streaming TAC
KBP task (described above) to learn patterns on dependency parses of
sentences (see Section 3.3).

181

190 Approaches and Systems for Semantic Search

4.4 Keyword Search on Knowledge Bases

Data A knowledge base, as described in Section 2.1.2

Search Keyword search, as described in Section 2.2.1
The query is a sequence of (typically few) keywords;
the result is a SPARQL query or a ranked list of
matching items from the knowledge base

Approach Match keywords to entities from the knowledge
base; generate candidates for SPARQL queries from
these matching entities; rank candidate queries us-
ing graph, lexical, and IR measures; some overlap
with the techniques from Section 4.8

Strength Easier access to structured data for simple queries

Limitation Is bound to fail for complex search intents that can-
not be adequately (unambiguously) expressed by a
keyword query

The main strength of a knowledge base is that even complex queries
can be asked with precise semantics. The main drawback is that it is
challenging to formulate these queries. For arbitrarily complex search
requests, a complex query language is inevitable. However, for relatively
simple search requests, a simpler kind of search is feasible. Keyword
search has the strong benefit of being an established search paradigm
that users are already accustomed to.

There is a small overlap with Section 4.8 on Question Answering
on Knowledge Bases. According to our discussion at the beginning of
Section 2.2, we distinguish systems by technique and not by the ap-
parent form of the query. The core of the approaches in this section
is to match keywords to entities and then find small subgraphs in the
knowledge base connecting these entities. The approaches in Section
4.8 go further, for example, by also trying to match relation names, or
by considering grammatical structure.

182

4.4. Keyword Search on Knowledge Bases 191

4.4.1 Basic Techniques

Systems for keyword search on knowledge bases, or more generally on
relational databases, view the data as a graph. For knowledge bases, the
graph structure is already given, for relational databases, it is induced,
e.g., by foreign key relations. Keywords are then mapped to nodes in
this graph. Typically, an inverted index over the (words of the) en-
tity, class, or relation names is used. This allows to efficiently match
keywords to nodes of the graph during run-time. Using standard tech-
niques as described in Section 4.1, word variants and synonyms can be
matched as well; for example, matching the keyword cmu to a knowl-
edge base entity Carnegie Mellon University.

A problem is that keyword queries might mention relations differ-
ently from how they are represented in a knowledge base or might not
mention them at all. For example, the keyword query films by francis
ford coppola doesn’t explicitly mention a directed relation. Therefore,
systems try to connect the elements that were identified via the key-
words, to form a connected (sub-)graph. This can be done by exploring
the neighborhood of identified elements and finding the smallest (span-
ning) tree connecting all elements. Often, this is an instance of the
Steiner tree problem, which is NP-complete. Hence, a lot of work tries
to find efficient and good approximations. From the matched graph, a
structured query can be derived, for example, by replacing identified
classes with result variables.

Because words from the query can match several components of the
graph, the translation results in several candidate queries which need to
be ranked. Techniques for ranking these make use of two main factors:
the relevance and the structure of the matching (sub-)graph. For rele-
vance, ranking functions from information retrieval (see Section 4.1 on
Keyword Search on Text) can be adapted to this setting, e.g., by assum-
ing that each matched subgraph corresponds to a virtual document. In
addition, the popularity of matching nodes (for example, derived via
PageRank) and the quality of the keyword mappings (e.g., via the Lev-
enshtein distance) can be considered. The structure of the matching
graphs is incorporated, for example, by ranking smaller graphs higher.
The intuition behind this is that simpler queries are more likely to be

183

192 Approaches and Systems for Semantic Search

correct. Similarly, the number of joins of the corresponding query can
be considered (as a proxy for query complexity).

To improve usability, some systems also include user feedback in the
translation process. This is done, for example, by suggesting keyword
completions that lead to results, or by allowing the user to select the
correct interpretation for each keyword (when several are possible).

Below, we first introduce systems designed for keyword queries on
general relational databases, followed by systems specifically designed
for knowledge bases.

4.4.2 Systems for Keyword Search on Relational Databases

Keyword search on relational databases is an actively researched field
on its own. The survey by Yu, Qin, and Chang [2010] gives a good
overview. Coffman and Weaver [2010] and Coffman and Weaver [2014]
perform a qualitative evaluation of many state-of-the-art systems on a
benchmark they introduce for that purpose (see below).

DBXplorer [Agrawal, Chaudhuri, and Das, 2002], DISCOVER
[Hristidis and Papakonstantinou, 2002] and BANKS [Bhalotia et al.,
2002] were the first prominent systems for keyword search on relational
databases. DBXplorer and DISCOVER use the number of joins to rank
answers, while BANKS tries to find the smallest matching subgraph.
Subsequent work refines and combines the techniques mentioned above
to improve results.

Tastier [Li et al., 2009] includes the user in answering keyword
queries. In addition to translating to a SQL query it provides context-
sensitive auto-completion of keyword queries, similar to what is de-
scribed in [Bast and Weber, 2006]. This is achieved via specialized
data structures (mainly a trie over words in the database) that allow
computing completions of keywords that lead to results.

GraphLM [Mass and Sagiv, 2012] applies language models for rank-
ing. Keyword queries are matched to subgraphs which correspond to
a possible answer. Nodes in each subgraph have text associated with
them via different fields: title (e.g., names), content (all attributes and
their values) and structural (only attribute names). This allows learn-
ing a language model for each subgraph and field, which can then be

184

4.4. Keyword Search on Knowledge Bases 193

used to compute, e.g., p(q|atitle), the probability that a query q is gen-
erated by the title field of subgraph a. Ranking also incorporates node
and edge weights. Intuitively, nodes with high in-degrees and unique
edges are more important. The system outperforms all of the previ-
ous systems on the benchmark by Coffman and Weaver [2010] that is
described in Section 4.4.2 below.

4.4.3 Systems for Keyword Search on Knowledge Bases

SemSearch [Lei, Uren, and Motta, 2006] was one of the first systems for
keyword queries on knowledge bases. It accepts keyword queries with
some additional structure, e.g., there is syntactic sugar for including
types in queries and operators AND and OR are supported. An inverted
index is used that maps keywords to classes, instances and properties of
the knowledge base. The matching elements are combined in all possible
ways using several query templates to obtain a structured query in
SeRQL (a predecessor of SPARQL).

Tran et al. [2007] suggest a similar method to translate keyword
queries to SPARQL queries. Keywords are mapped to entities (via their
URIs and labels) of the knowledge base via an inverted index (imple-
mented with Lucene). Starting at the matched entities, the knowledge
base is explored in order to find subgraphs connecting the matched
elements. The matching subgraphs are ranked by the lengths of their
paths (with the intuition that smaller lengths correspond to better
paths) and translated into a SPARQL query.

SPARK [Zhou et al., 2007] uses more sophisticated techniques, e.g.,
synonyms from WordNet and string metrics, for mapping keywords to
knowledge base elements. The matched elements in the knowledge base
are then connected by finding minimum spanning trees from which
SPARQL queries are generated. To select the most likely SPARQL
query, a probabilistic ranking model that incorporates the quality of
the mapping and the structure of the query is proposed.

Zenz et al. [2009] follow an interactive and incremental approach
to translate a keyword query into a SPARQL query. For each keyword
provided by the user, a choice of a possible interpretation (with respect
to the final SPARQL query) is presented. When the user selects an

185

194 Approaches and Systems for Semantic Search

interpretation for one keyword, the number of possible interpretations
of the remaining keywords is reduced. This allows to incrementally
construct complex SPARQL queries from keyword queries.

Hermes [Tran, Wang, and Haase, 2009] can search on multiple,
possibly interlinked, knowledge bases.16 In a preprocessing step, the
knowledge bases are partly unified using maps between the various el-
ements of the knowledge bases and their respective ontologies. Hermes
also precomputes a map from potential search terms to elements of the
knowledge bases. Keyword queries can then be mapped to candidate
subgraphs in the resulting meta knowledge base. The candidates are
ranked, preferring shorter paths containing important elements which
match the keywords well. The system is evaluated on a combination of
seven knowledge bases (including DBpedia, Freebase, and GeoNames,
see Table 2.2) with a total of around 1.1B triples.

Pound et al. [2012] focus on keyword queries from the logs of the
Yahoo web search engine. Keywords of a query are first tagged as en-
tity, type, or relation mentions. The mentions are then arranged by
mapping them to one of ten structured query templates. Both steps
are learned via manually annotated queries from a query log using
straightforward machine learning. In a final step, standard techniques
as described above are used to map the mentions to entities and rela-
tions of a knowledge base. The system is evaluated using 156 manually
annotated queries from the Yahoo query log and YAGO as a knowledge
base.

4.4.4 Benchmarks

Coffman and Weaver [2010] introduce a benchmark on three datasets:
selected data from Mondial17 (geographical knowledge), IMDB, and
Wikipedia, respectively. For each dataset, 50 queries were manually
selected and binary relevance judgments for results are provided by
identifying all possible correct answers. Evaluation metrics are those

16As such, it seems that Hermes should be described in Section 4.5 on Keyword
Search in Combined Data. However, due to the unification process, the system is
technically more similar to the systems in this section.

17http://www.dbis.informatik.uni-goettingen.de/Mondial

186

4.4. Keyword Search on Knowledge Bases 195

typical for information retrieval: precision at 1, mean reciprocal rank,
and mean average precision. The authors evaluate nine recent state-
of-the-art system on this benchmark. Many previous claims cannot be
corroborated, which shows the shortcomings of previous evaluations.
The evaluation also shows no clear winner, but that most systems score
comparably on average, with different systems performing best on dif-
ferent datasets. In a follow-up evaluation, the GraphLM system [Mass
and Sagiv, 2012] discussed above produced the consistently best results.

Balog and Neumayer [2013] assembled queries from a variety of
previous benchmarks by mapping relevant entities to DBpedia. Some
of these benchmarks were originally designed for semantic web data
(like BTC; see Table 2.3), but the best systems mostly return results
from the (comparably tiny) DBpedia part only. The new benchmark
includes keyword queries (e.g., from the TREC Entity Tracks; see Sec-
tion 4.5.3) as well as natural language queries (e.g., from QALD-2;
see Section 4.8.5). Evaluation metrics are MAP (mean average preci-
sion) and precision at 10. Several baselines have been evaluated on the
benchmark but adoption is slow. The current best performing system
is from Zhiltsov, Kotov, and Nikolaev [2015], which achieves a MAP of
23%, an absolute improvement of 4% over one of the baselines.

In theory, benchmarks for question answering on knowledge bases
(discussed in Section 4.8.5) could also be used by transforming natural
language queries into keywords. In fact, some of those benchmarks also
provide keyword versions of the questions. Obviously, this will fail when
questions are more complex than what a keyword query can reasonably
express.

187

196 Approaches and Systems for Semantic Search

4.5 Keyword Search on Combined Data

Data Combined data, as described in Section 2.1.3
Specifically here, text with entity annotations or
semantic web data

Search Keyword search, as described in Section 2.2.1
Results are ranked lists of entities, maybe aug-
mented with text snippets matching the query; op-
tionally restricted to entities of a given type

Approach For each entity, create a virtual text document
from (all or a selection of) text associated with it;
search these documents using techniques from Sec-
tion 4.1; alternatively, first search given text using
techniques from Section 4.1, then extract entities
from the results and rank them

Strength Easy-to-use entity search on combined data; works
well when the data provides sufficiently strong rel-
evance signals for the keyword, just as in keyword
search on text

Limitation Similar precision problems as for keyword search
on text; see the box at the beginning of Section 4.1

Many keyword queries actually ask for an entity or a list of entities
instead of a list of documents. In a study by Pound, Mika, and Zaragoza
[2010] on a large query log from a commercial web-search engine, 40%
of queries are for a particular entity (e.g., neil armstrong), 12% are for
a particular lists of entities (e.g., astronauts who walked on the moon),
and 5% are asking for a particular attribute of a particular entity (e.g.,
birth date neil armstrong).

Section 4.4 discusses one option for such queries: keyword search on
knowledge bases. In this section, we consider combined data, which for
keyword search is typically either semantic web data (multiple knowl-
edge bases with different naming schemes and extensive use of string

188

4.5. Keyword Search on Combined Data 197

literals; see Section 2.1.3) or text with entity annotations (this is the
simplest form of text linked to a knowledge base; also see Section 2.1.3).

4.5.1 Basic Techniques

There are two prevalent approaches: search in virtual documents (one
per entity) and standard keyword search on text followed by an entity
extraction and ranking step.

In the virtual document approach, all or some of the data related
to a particular entity (relation names, object names, string literals) is
collected in a single virtual document for that entity. This makes par-
ticular sense for semantic web data, where the extreme heterogeneity
of the data makes a structured search hard. Also, in some applications,
there is a document per entity in the first place. A notable example is
Wikipedia, which is used in all of the INEX benchmarks, discussed in
Section 4.5.3 below. Given one document per entity (virtual or real),
the result corpus can be searched using techniques from Section 4.1.
The ranking of this kind of documents is discussed in detail in Section
5.1.1. Efficient indexing is discussed in Section 5.2.1. All of the systems
described in Section 4.5.2 below are based on the virtual document
approach, and they are all for semantic web data.

In the search and extract approach, the first step is keyword search
on text. Many systems use one of the off-the-shelf systems from Section
4.1.2 for this task, or a web search engine like Google. In a second step,
entities are extracted from the results (either from the full documents
or only from the result snippets). This is trivial for collections like
FACC (see Table 2.3), where entity annotations are part of the data.
In a third step, entities are ranked. This is where the intelligence of
systems using this approach lies. We hence describe them in Section
5.1.2 from our section on Ranking.

In both of these approaches, entity resolution (that is, different
names or URIs for the same entity) is a challenge. The Semantic Web
allows users to provide explicit links between such entities, notably
via relations such as owl:sameAs or dbpedia:redirect/disambiguate. Not
surprisingly, making use of such links can considerably improve result
quality [Tonon, Demartini, and Cudré-Mauroux, 2012]. Section 5.1.1

189

198 Approaches and Systems for Semantic Search

describes a method that uses language models, which are normally
used for ranking, for automatically establishing owl:sameAs links in
semantic web data. Section 5.1.3 is about ranking interlinked entities
(obtained from a semantic web search) in general, where owl:sameAs
links also influence scores.

A special case of keyword search on combined data is expertise
retrieval, where the goal is to retrieve a list of experts on a given topic.
For example, find experts on ontology merging from a collection of
W3C documents. The experts are persons, and it is either part of the
problem to identify their mentions in the text (this is an instance of
NER+NED; see Section 3.2) or these annotation are already provided.
Note that the underlying knowledge base is then a simplistic one: just
the entities (persons) and their names. The typical approaches are via
virtual documents or via search and extract, as discussed above. A
recent survey is provided by Balog et al. [2012].

4.5.2 Systems (all for Semantic Web Data)

Guha, McCool, and Miller [2003] describe an early prototype for search
on the Semantic Web. At that time, hardly any semantic web data was
available yet. The data was therefore artificially created via scraping18
from a small selection of websites. Their main use case is single-entity
search, that is, part or all of the query denotes an entity. Aspects dis-
cussed are disambiguation of entity names in the query (user inter-
action is suggested as a solution), disambiguation of entity names in
matching documents (this is essentially the NER+NED problem from
Section 3.2), and which of the usually many triples about the entity to
show (various simple heuristics are discussed). The final result about
the matching entity is shown in an infobox on the right, similar to
how the large web search engines do it nowadays (except that those in-
foboxes do not come from the Semantic Web, but rather from a single,
well-curated knowledge base).

Swoogle [Ding et al., 2004] was one of the fist engines to provide key-
word search on the Semantic Web. Swoogle indexes n-grams to leverage

18Scraping refers to extracting structured data from ordinary websites, often via
simple web-site specific scripts.

190

4.5. Keyword Search on Combined Data 199

the information hidden in the often long URIs of entity and relation
names. Also, an n-gram index enables approximate search. The index is
augmented by metadata, so that search results can be restricted by cer-
tain criteria (e.g., to results in a particular language). The system also
comprises a crawler and custom ranking function. As of this writing,
there was still a demo available at http://swoogle.umbc.edu.

Falcons [Cheng, Ge, and Qu, 2008] provides a similar functionality
as Swoogle, with the following additional features. The search can be
restricted to entities of a given certain type (e.g., to type conference
when the query19 is beijing 2008). The search can also be restricted to
a particular knowledge base (e.g., to only DBpedia). In the (default)
entity-centric view, matching triples are grouped by entity, and for each
entity a selection of the matching triples are displayed. Different URIs
from the same entity are not merged. As of this writing, there was still
a demo available at http://ws.nju.edu.cn/falcons.

Sindice [Oren et al., 2008] offers similar functionality on a dis-
tributed very large scale by using Hadoop and MapReduce. It also
inspects schemata to identify properties that uniquely identify an en-
tity, e.g., foaf:personalHomepage, which allows retrieval based on the
property and its value. The system is not designed to be an end-user
application but to serve other applications that want to locate informa-
tion sources via an API. Unfortunately, as of this writing, the service
was no longer available.

Glimmer [Blanco, Mika, and Vigna, 2011] constructs a virtual doc-
ument for each entity using fielded BM25F. The particular index is
described in Section 5.2.1. This allows customizing the contribution
weight of contents from certain data sources and relations. Both qual-
ity and performance are evaluated on the WDC dataset (see Table 2.3)
with queries from the SemSearch Challenge 2010 (see Section 4.5.3 be-
low). Queries are keywords, possibly annotated by fields or relations
they should match. As of this writing, a live demo is available under
http://glimmer.research.yahoo.com.

19The WWW’08 conference, where this paper was presented, took place in Bei-
jing.

191

200 Approaches and Systems for Semantic Search

As of this writing, there is no single system that searches the totality
of semantic web data with a coverage and result quality even remotely
comparable to that of the large commercial web search engines. This
is largely due to the fact that, although the data is large in size, the
amount of information contained is tiny compared to the regular web.
It is also noteworthy that approaches with good results, like Glimmer
above, boost high-quality contents like DBpedia. Indeed, as of this
writing, all major commercial systems rely on internal well-curated
knowledge bases; see Section 4.8 on Question Answering on Knowledge
Bases.

4.5.3 Benchmarks

There are three notable series of benchmarks for keyword search on
combined data, in particular, semantic web data: the TREC Entity
Track (2009 - 2011), the SemSearch Challenge (2010 and 2011), and
the INEX series of benchmarks (2006 - 2014). The QALD (Question
Answering on Linked Data) benchmarks are described in Sections 4.8.5
(Question Answering on Knowledge Bases) and 4.9.4 (Question An-
swering on Combined Data).

We remark that participation in these competitions was low (gen-
erally below 10 participating groups, sometimes only a couple of par-
ticipants). However, the datasets and queries continue to be used in
research papers related to semantic search.

TREC Entity Track (2009 - 2011): An overview of each of the
three tracks is provided in [Balog et al., 2009; Balog, Serdyukov, and
Vries, 2010; Balog, Serdyukov, and Vries, 2011]. A typical query is:

airlines that currently use boeing 747 planes

The central entity of the query (boeing 747) and the type of the target
entities (airlines) was explicitly given as part of the query. There were
two kinds of datasets: text (ClueWeb, see Table 2.1) and semantic web
data (BTC’10, see Table 2.3).20

20In the TREC Entity Track 2009, only ClueWeb’09 was used. In the TREC
Entity Track 2011, the Sindice dataset was used instead of BTC’10. However, the
Sindice dataset is no longer available, which is why we do not list it in Table 2.3.

192

4.5. Keyword Search on Combined Data 201

The best systems that worked with the BTC’10 dataset used the
virtual document approach described in Section 4.5.1 above. That is,
although the queries appear more as natural language queries (see the
example above), the processing is clearly keyword search style. Ac-
cording to our discussion at the beginning of Section 2, we make the
distinction between these two kinds of search by technique. This also
explains why we describe this benchmark in this section and not in
Section 4.9 on Question Answering on Combined Data.

The best system that worked with the ClueWeb’09 dataset used
the extract and search approach described in Section 4.5.1 above. It
is mainly about ranking, and hence described in Section 5.1.2 (right
at the beginning). Interestingly, the system chose to ignore the official
dataset and instead used Google Search for the initial retrieval step.

The best results for the main task (related entity finding, like for the
query above) were an nDCG@R of 31%, 37%, and 25% in 2009, 2010,
and 2011, respectively. The best result for the related task of entity list
completion (where some result entities are given) was a mean average
precision of 26% in 2010.

SemSearch Challenge (2010 and 2011): An overview over each of
these two challenges is provided in [Halpin et al., 2010] and [Blanco
et al., 2011]. In 2010, queries were keyword queries asking for a single
entity (for example, university of north dakota). In 2011, there were two
tasks: keyword queries for a single entity (like in 2010, but new queries)
and keyword queries for a list of entities (for example, astronauts who
landed on the moon). Both challenges used the BTC’09 dataset (see
Table 2.3).

The best approaches again construct virtual documents and use a
fielded index and corresponding ranking function. The winner in 2010
achieved a precision at 10 of 49% and a mean average precision of 19%.
In 2011, the best result for the single-entity task was a precision at
10 of 26% and a mean average precision of 23%. The best result for
the entity-list task was a precision at 10 of 35% and a mean average
precision of 28%.

INEX (2006 - 2014): INEX (Initiative for the Evaluation of XML
Retrieval) has featured several ad-hoc search tasks. The dataset was

193

202 Approaches and Systems for Semantic Search

Wikipedia with an increasing amount of annotations, all represented in
XML; see Section 2.1.3 for an example. From 2006 - 2008, annotations
were obtained from Wikipedia markup (in particular: infoboxes, links,
and lists). In 2009, cross-references to entities from YAGO (see Table
2.2) were added to the Wikipedia links, as well as for each page as a
whole. In 2012, additional cross-references to DBpedia (see Table 2.2)
were added. The resulting dataset is Wikipedia LOD (see Table 2.3).

The goal of the early ad-hoc tasks (2006 - 2010) was similar to that
of the TREC ad-hoc tasks described in Section 4.1.3. Queries were
also similar, for example, olive oil health benefit (from 2013) or guitar
classical bach (from 2012). One notable difference was the focus on
the retrieval of (XML) elements rather than whole documents, and the
incorporation of the proper focus of these elements (not too large and
not too small) in the quality measure. See [Gövert et al., 2006] for an
overview paper on this aspect of XML retrieval.

The INEX Entity Ranking Track (2007 - 2009) is similar to the
TREC Entity Track from above: given a keyword query (describing
a topic) and a category, find entities from that category relevant for
that topic. For example, find entities from the category art museums
and galleries that are relevant for impressionist art in the netherlands
(from 2007).

The INEX Linked-Data Track (2012 and 2013) explicitly encour-
aged the use of the external knowledge bases (YAGO and DBpedia)
to which the Wikipedia content was linked. However, few participants
made use of that information and the results were inconclusive.

Our take on the usability of XML-style retrieval for semantic search
is as follows. XML shines for deeply nested structures, with a mix be-
tween structured and unstructured elements. Indeed, query languages
like XPath and XQuery are designed for precise retrieval involving com-
plex paths in these structures. However, datasets actively used in se-
mantic search at the time of this writing have a flat structure (triples
or simple links from the text to entities from the knowledge base; see
Tables 2.2 and 2.3). The core challenge lies in the enormous size and
ambiguity of the data (queries, text, and entity and relation names),
which is nothing where XML can specifically help.

194

4.6. Semi-Structured Search on Combined Data 203

4.6 Semi-Structured Search on Combined Data

Data Combined data, as described in Section 2.1.3
Specifically here, text linked to a knowledge base

Search Structured search, as described in Section 2.2.2, ex-
tended with a keyword search component
Results are ranked lists of entities, maybe aug-
mented with matching text snippets or matching
information from the knowledge base

Approach Store data in an inverted index or extensions of it;
use separate indexes for the text and the knowledge
base or use tailor-made combined indexes; provide
special-purpose user interfaces adapted for the par-
ticular kind of search

Strength Combines the advantages of text (widely available)
and knowledge bases (precise semantics); good for
expert search and as a back end for question
answering

Limitation Queries with a complex structured part have the
same usability problems as described at the begin-
ning of Section 4.2

Since combined data contains both structured and unstructured el-
ements, it is natural that queries also contain a mix of structured and
unstructured elements. Simple text search extensions of SPARQL are
discussed already in Section 4.2. This section considers more sophisti-
cated extensions.

4.6.1 Basic Techniques

Text linked to a knowledge base allows searches for co-occurrences of
arbitrary keywords with arbitrary subsets of entities, as specified by a
structured query on the knowledge base. A simple example would be
to search for all politicians (all entities in the knowledge base with that

195

204 Approaches and Systems for Semantic Search

profession) that co-occur with the keywords audience pope. This could
be expressed as an extended keyword query, where some keywords are
concepts from the knowledge base, for example:

type:politician audience pope

This kind of search can easily be supported by an inverted index, with
an artificial index item (like the type:politician) added for each mention
of a politician in the text. Alternatively, XML search engines supporting
languages like XPath or even XQuery could be used. However, this
would be cracking a nut with a sledgehammer; see the discussion at the
end of Section 4.5.3, after the description of the INEX benchmarks.

As a more complex example, consider the example query from the
introduction female computer scientists who work on semantic search.
This is naturally expressed as a structured query (that expresses the
knowledge base part) extended with a keyword search component (that
expresses the co-occurrence with the given keywords). In the syntax of
the Broccoli system, discussed below, this can be written as:

SELECT ?p WHERE {
?p has-profession Computer_Scientist .
?p has-gender Female .
?p occurs-with "semantic search" }

For this more general class of queries the simple annotation trick fails,
at least for a knowledge base of significant size. We then cannot anno-
tate each entity in the text with all the information that is available
about it in the knowledge base. The ways to index such data, as well as
their strengths and limitations, are discussed in detail in Section 5.2.2
on Semi-Structured Search Based on an Inverted Index.

It is important to understand the difference between a relation like
occurs-with and a simple text search extension like bif:contains dis-
cussed in Section 4.2.1. Consider the query above with the last triple
replaced by

?p has-description ?d . ?d bif:contains "semantic AND search"

That query requires each matching entity to stand in a has-description
relation to a string literal containing the desired keywords. This is

196

4.6. Semi-Structured Search on Combined Data 205

unlikely to be fulfilled by a typical knowledge base. In contrast, the
original query from above only requires that a matching entity co-
occurs with the given keywords somewhere in the text corpus. This is
realistic for a sufficiently large text corpus.

4.6.2 Systems

KIM [Popov et al., 2004] was one of the first systems to provide semi-
structured search on text linked to a knowledge base, as described
above. Results are documents that mention entities from the structured
part of the query as well as the specified keywords. The text is indexed
with Lucene (see Section 4.1.2), including for each entity an inverted
index of the occurrences of that entity in the text. The knowledge
base is indexed with Sesame (see Section 4.2.2). The results from the
two indexes are combined by computing the union of the inverted lists
of the entities matching the structured part of the query. This runs
into efficiency problems when the structured part matches very many
entities (for example, a structured query for just person).

Ester [Bast et al., 2007] provides similar functionality as KIM, but
achieves scalability with a special-purpose combined index, adapted
from [Bast and Weber, 2006]. The index also provides fast query sug-
gestions after each keystroke, for words from the text as well as for
elements from the knowledge base. The system was evaluated on a
variant of the Wikipedia LOD dataset (see Table 2.3).

Broccoli [Bast et al., 2012; Bast et al., 2014b] provides extended key-
word search as well as extended structured search; an example query
for the latter is given above. The structured part of the query is re-
stricted to tree-like SPARQL queries. Co-occurrence of entities from
the text with entities from the knowledge base can be restricted to the
semantic contexts from [Bast and Haussmann, 2013], as explained in
Section 4.3.1 on Relationship Extraction from Natural Language Text.
Interactive query suggestions are provided, and an elaborate user inter-
face is provided. Results can be grouped by entity, with matching text
snippets. A tailor-made index for the efficient support of these features
is provided, which is explained in Section 5.2.2. The system is evalu-
ated on a variant of the Wikipedia LOD dataset (see Table 2.3) with

197

206 Approaches and Systems for Semantic Search

queries adapted from the TREC Entity Track 2011 and the SemSearch
Challenge 2011, as explained in Section 4.6.3 below. As of this writing,
a live demo is available: http://broccoli.cs.uni-freiburg.de.

Mìmir [Tablan et al., 2015] is an extension of KIM. Compared to
KIM, simple queries are implemented more efficiently (for example, a
search for cities that occur with certain keywords), and full SPARQL is
supported for the structured part of the query (though not particularly
efficiently when combined with keyword search). For the text corpus,
MG4J is used (see Section 4.1.2). The ranking function is customizable,
in particular, BM25 is supported (see Section 4.1.1). Results are match-
ing documents, grouping by entities is not supported. The software is
open source.

4.6.3 Benchmarks

There are no widely used benchmarks that are explicitly designed for
semi-structured search on combined data.

However, the benchmarks from Section 4.5.3 (TREC Entity Track,
SemSearch Challenge, and INEX) can be easily adapted for this sce-
nario. Namely, most of the queries of these benchmarks have a part
pertaining to information best found in a knowledge base and a part
pertaining to information best found in text. For example, for the query
astronauts who landed on the moon (SemSearch Challenge 2011, entity-
list task), the information who is an astronaut is best taken from a
knowledge base, whereas the information who landed on the moon is
best found in text. The semi-structured representation for this query
is similar to the example given in Section 4.6.1 above.

The Broccoli system, discussed in Section 4.6.2 above, has adapted
the queries from the TREC Entity Track 2009 (main task: related entity
finding) and the SemSearch Challenge 2011 (entity-list task) in this
manner. On a variant of the Wikipedia LOD dataset (Table 2.3), an
nDCG of 48% and 55%, respectively, is achieved.

The queries for the QALD (Question Answering on Linked Data)
benchmarks, which are described in Sections 4.8.5 and 4.9.4, can be
adapted in a similar way. QALD-5 features a track with explicitly semi-
structured queries; see Section 4.9.4.

198

4.7. Question Answering on Text 207

4.7 Question Answering on Text

Data Text documents, as described in Section 2.1.1

Search Natural language queries, as described in Section
2.2.3; the results are passages or statements from
the text that answer the question

Approach Derive suitable keyword queries and the answer
type from the question; extract answer candidates
from the (many) result snippets and rank them;
optionally use reasoning and an external general-
purpose knowledge base

Strength The most natural kind of queries on the most abun-
dant kind of data

Limitation Questions that require combination of facts not
found in the text; or questions with complex
structure

Question answering on text became popular in the early 1990s,
when large amounts of natural language texts started to become avail-
able online. With the advent of the world wide web, the field blossomed.
According to the scope of this survey, as explained in Section 1.2, we
here focus on so-called extractive question answering, where the desired
answers can be found in the text and no synthesis of new information
is required. Indeed, most research on question answering on text is of
exactly this kind.

4.7.1 Basic Techniques

Prager [2006] gives an excellent survey of the development of the field
until 2006. The survey by Kolomiyets and Moens [2011] focuses on
techniques (and less on complete systems) and surveys some more re-
cent research like co-reference resolution and semantic role labeling (as
discussed in Section 3.3).

199

208 Approaches and Systems for Semantic Search

In 2007, the popular series of TREC Question Answering bench-
marks (described below) ended. In all issues, a single system, Lymba’s
PowerAnswer and its predecessors, beat the competing systems by a
large margin. We briefly describe that system below. At the time of this
writing, we still consider it the state of the art in (extractive) question
answering on text.

The field has since moved away from only text as a data source.
Just around the time of the last TREC QA benchmark, large general-
purpose knowledge bases like YAGO, DBpedia, and Freebase (see Table
2.1.2) started to gain momentum and comprehensiveness. This spawned
extensive research activity on question answering on such knowledge
bases, which we describe in Section 4.8 on Question Answering on
Knowledge Bases. Note that a question like:

what is the average gdp of countries with a literacy rate below 50%

is relatively easy to answer from a knowledge base, but very hard to an-
swer from text alone (unless the text contains that piece of information
explicitly, which is unlikely).

At about the same time, IBM started its work on Watson, aimed
at competing against human experts in the Jeopardy! game. Watson
draws on multiple data sources, including text as well as the knowledge
bases just mentioned. Therefore, we describe that work in Section 4.9
on Question Answering on Combined Data.21

Search engines like WolframAlpha or Google also accept natural
language queries, but as of this writing, the answers do not come from
text, but rather from an internal (well-curated) knowledge base; see
Subsection 4.8.4 of the section on Question Answering on Knowledge
Bases.

4.7.2 The START System

START [Katz, 1997; Katz, Borchardt, and Felshin, 2006] was the first
web-based question answering system. It is one of the few systems with

21John Prager, the author of the above-mentioned survey, was a member of the
team working on Watson.

200

4.7. Question Answering on Text 209

a reliable online demo22, which has been up and running continuously
since 1993 to this day. It answers natural language queries by first
extracting structured information (basically: nested subject-predicate-
object triples) from sentences and storing them in a knowledge base.
Compared to full-fledged knowledge base construction, as described in
Section 4.3 on Structured Data Extraction from Text, the constructed
knowledge base does not have a single consistent schema and is fuzzy.
The system answers questions by transforming them into the same
triple-like representation and matching them against the knowledge
base. Matched facts are then translated back to a natural language
sentence that is presented to the user.

4.7.3 The PowerAnswer System

We briefly describe Lymba’s PowerAnswer [Moldovan, Clark, and Bow-
den, 2007], the undisputed winner of the TREC Question Answering
track. The system can still be considered state of the art at the time of
this writing. In particular, its basic architecture is typical for a system
that does question answering on text.

Depending on the type of question (factoid, list, definition etc.), the
system implements different strategies. Each strategy has the following
main components:

Answer type extraction: determine the answer type of the query;
for example, the answer for who ... could be a person or organization,
but not a place or date.

Keyword query generation: generate one or more keyword queries,
which are then issued to a text search engine, with standard techniques
as described in Section 4.1.

Passage retrieval: retrieve passages from the documents matching
these keyword queries that could possibly be an answer to the question.

Answer extraction: extract potential answers from the retrieved
passages; rank those answers by a score that reflects the “relevance” to
and the degree of “semantic match” with the question.

22http://start.csail.mit.edu/index.php

201

210 Approaches and Systems for Semantic Search

The process involves subsystems solving many of the natural language
processing problems discussed in Section 3. In particular, answer ex-
traction often makes use of POS tagging, chunking, and named-entity
recognition and disambiguation. Particular kinds of entities relevant
for the kind of questions asked in the TREC benchmarks are events,
dates, and times.

In the TREC benchmarks, the answer is eventually to come from
the reference text corpus (typically AQUAINT, as described below).
However, PowerAnswer also issued keyword queries against external
sources like amazon.com, imdb.com, and Wikipedia to find candidate
answers. These were then used, in turn, to find correct answers in the
TREC collection.

Candidate answers are ranked using pre-trained language models
and scoring functions, using state-of-the-art techniques known from
keyword search on text as described in Section 4.1. PowerAnswer also
makes use of COGEX, a logic prover with basic reasoning capabilities,
to re-rank candidate answers. COGEX is similar to the inference en-
gines we describe in Section 5.4 on Inference and Reasoning (where
we restrict ourselves to publicly available systems). It generates a logic
form of the question and candidate answer and performs a proof by
contradiction. As part of the reasoning it also makes use of real world
knowledge (e.g., that Sumatra is a part of Asia) and natural language
statements (e.g., that the verb invent is a hyponym of create). The
proofs (if they succeed) output a confidence score, which depends on
the rules and axioms that were applied. The score is used as part of
ranking the candidate answers.

4.7.4 Benchmarks

The TREC Questions Answering Track ran from 1999 - 2007, with 9
issues altogether. There is a comprehensive overview article for each
year, describing the individual tasks as well as the participating sys-
tems and their results [Voorhees, 1999; Voorhees, 2000; Voorhees, 2001;
Voorhees, 2002; Voorhees, 2003; Voorhees, 2004; Voorhees and Dang,
2005; Dang, Lin, and Kelly, 2006; Dang, Kelly, and Lin, 2007]. Par-
ticipation was strong, with at least 20 participating groups, peaking

202

4.7. Question Answering on Text 211

in 2001 with 36 groups. Lymba’s PowerAnswer, described above, and
its predecessors participated and dominated the competition in each
year. For example, in 2007, PowerAnswer scored an accuracy of 70.6%
on factoid questions and of 47.9% on list questions with a runner-up
accuracy of 49.4% and 32.4%, respectively.

All tracks made use of the AQUAINT or AQUAINT2 text cor-
pus. The last two tracks also made use of the BLOG’06 corpus. These
datasets are described in Table 2.1.

The TREC Entity Tracks (2009 - 2011) featured entity-centric
search on ClueWeb (see Table 2.1) as one of their tasks. Overview pa-
pers and example queries are provided in Section 4.5 on Keyword Search
on Combined Data, since other tasks from these tracks used semantic
web data. The systems working on ClueWeb used similar techniques as
described for Lymba’s PowerAnswer above. However, the Entity Track
tasks additionally required that systems return an authoritative URL
for each result entity, and not just its name. This made the task con-
siderably harder.

In 2015, a new TREC LiveQA track was initiated, with the goal
to “revive and expand the [Question Answering track described above,
but] focusing on live questions from real users”. However, many of the
questions asked there can hardly be considered extractive. One of the
three examples questions from the track’s call for participation reads:

Is the ability to play an epic guitar solo attractive in a woman? Or do
you see it as something aggressive and a turn off?

Apart from being sexist, such questions usually require synthesis of new
information and are hence out of scope for this survey.

203

212 Approaches and Systems for Semantic Search

4.8 Question Answering on Knowledge Bases

Data A knowledge base, as described in Section 2.1.2

Search Natural language queries, as described in Section
2.2.3; the result is a SPARQL query or a ranked
list of matching items from the knowledge base

Approach Generate candidates for SPARQL queries by ana-
lyzing the structure of the question and mapping
parts of the question to entities and relations from
the knowledge base; rank query candidates and ex-
ecute the top query to retrieve the answer

Strength User-friendly access to the growing amount of data
that is available in knowledge bases

Limitation Very hard for complex queries, especially when
the knowledge base is large; only a fraction of the
world’s information is stored in knowledge bases

Leveraging the rapidly growing amount of information in knowledge
bases via natural language queries is a relatively young field. There is
some overlap with Section 4.4 on Keyword Search on Knowledge Bases,
which is discussed at the beginning of that section. The difference be-
comes clearer when reading and comparing Subsection 4.4.1 from that
section and Subsection 4.8.1 below.

4.8.1 Basic Techniques

The goal of the typical systems from this section is the same as for
the typical systems from Section 4.4: translate the given question to a
(SPARQL) query that expresses what the question is asking for. The
basic mechanism is also similar to that described in Section 4.4.1: con-
sider a set of candidate queries (which stand for possible interpretations
of the question) and from that set pick the one that represents the given
question best. However, the way these candidate sets are generated and

204

4.8. Question Answering on Knowledge Bases 213

how the best query is selected from that set is more sophisticated, going
much more in the direction of what could be called “understanding”
the question.

As in Section 4.4, recognizing entities from the knowledge base in
the query (the NER+NED problem from Section 3.2) is a crucial com-
ponent. However, all of the systems in this section also try to recognize
relation names from the knowledge base in the question. This is harder
than recognizing entities, because of the much larger variety in which
relation names can be expressed in natural language.

A typical approach for recognizing relation names is via indicator
words or synonyms that are learned from a text corpus by distant
supervision (explained in Section 4.3.2) or by using datasets obtained
via distant supervision, e.g., Patty [2013]. Another approach is to use
corpora of paraphrased questions, such as Paralex [2013], to derive
common paraphrases.

Natural language questions are often longer and provide more in-
formation than keyword queries. For example, compare in what films
did quentin tarantino play to quentin tarantino films. The natural lan-
guage question is more explicit about the expected type of result (films)
and more precise about the relation (films in which Quentin Tarantino
acted, not films which he directed). At the same time, natural lan-
guage questions can also be more complex. For example, who was born
in vienna and died in berlin.

Some of the systems below exploit this additional information by
performing a linguistic analysis of the question. This is done with ex-
isting taggers and parsers (see Sections 3.1 and 3.3), or by training new
special-purpose parsers. The result provides the linguistic or semantic
structure of the question, which can be used to generate a template for
a SPARQL query. It remains to fill in the entity and relation names.
It turns out that a joint optimization of the structure (and hence the
query template) and the entity and relation names works better than
solving the two problems independently.

Selecting a query from the set of candidate queries is also more
complex than for the systems in Section 4.4. The techniques sketched
above provide a rich set of features for determining how well a candidate

205

214 Approaches and Systems for Semantic Search

query matches the given question. A typical approach is to use these
features for learning to rank the candidates from given training data.
This enables solving even hard questions (in the sense that the correct
SPARQL query is hard to find using simple matching techniques) as
long as there are enough examples in the training data. For example,
answering the question who is john garcia with singer requires under-
standing that the who is part of the question is asking for the profession
of the person that follows.

Section 4.8.5 below describes three widely used benchmarks: Ques-
tion Answering on Linked Data (QALD), Free917, and WebQuestions.
The QALD benchmarks sparked from the semantic web community,
while Free917 and WebQuestions were initiated by the computational
linguistic community. We first describe systems that were evaluated on
QALD, followed by systems evaluated on Free917 and WebQuestions.

4.8.2 Systems Evaluated on QALD

The AutoSPARQL system [Unger et al., 2012] bases its translation on a
linguistic analysis of the question. Using a lexicon of manually-designed
domain-independent expressions (such as most or more than) query
templates are instantiated from the structure of the question. To derive
SPARQL queries, the templates are instantiated with elements from
the knowledge base. Queries are then ranked by preferring prominent
entities but also by considering string similarities of the knowledge
base mapping. The system was evaluated on 39 of the 50 questions of
QALD-1, of which it was able to answer 19 perfectly.

DEANNA [Yahya et al., 2012] formulates the task of translating
a given question to a SPARQL query as an integer linear program.
The program incorporates the identification of concept and relation
phrases in the question, mapping these to the knowledge base, and a de-
pendency parse to generate (SPARQL) triple candidates. Aliases from
YAGO2s [2011] and relation phrases from ReVerb [Fader, Soderland,
and Etzioni, 2011] are used to map to entities and relations from the
knowledge base. Additionally, semantic coherence and similarity mea-
sures are incorporated. The system was evaluated on QALD-1, where
it was able to answer 13 out of 27 questions correctly.

206

4.8. Question Answering on Knowledge Bases 215

Xser [Xu, Feng, and Zhao, 2014] performs the translation in two
separate phases. The first phase identifies relevant phrases (mentioned
entities, relations, types) in the question, independently of the knowl-
edge base. The identified phrases are arranged in a DAG to represent
the structure of the question. Training data is used to learn a model
and parser for this. The second phase maps the identified phrases to
entities and relations from the knowledge base. For the experiments on
DBpedia, the Wikipedia miner tool23 is used to find matching entities,
and the data from Patty [2013] is used to map to relations. Xser was
the best performing system at QALD-4 and QALD-5, beating other
systems by a wide margin (more than 30% absolute F-measure). Ac-
cording to the authors (private communication), the system achieves
69% and 39% accuracy on Free917 and WebQuestions, respectively.
This is about 10% below the current state of the art on these bench-
marks (see below).

4.8.3 Systems Evaluated on Free917 and WebQuestions

Sempre [Berant et al., 2013a] produces a semantic parse of a question
by recursively computing logical forms corresponding to subsequences
of a question. The generation is guided by identified entities in the
question, a mapping of phrases to relations from the knowledge base,
and a small set of composition rules. Logical forms are scored with a
log-linear model and translated into a corresponding SPARQL query on
Freebase. Sempre achieves 62% accuracy on Free917 and 36% accuracy
on WebQuestions.

Parasempre [Berant and Liang, 2014] uses a set of fixed query pat-
terns that are matched to each question. Each pattern is then trans-
lated back into a canonical natural language realization using a set
of rules and the Freebase schema. A log-linear model chooses the re-
alization that best paraphrases the original question. The model uti-
lizes word vector representations and a corpus of paraphrases [Paralex,
2013]. Parasempre achieves 69% accuracy on Free917 and 40% accuracy
on WebQuestions.

23https://github.com/dnmilne/wikipediaminer

207

216 Approaches and Systems for Semantic Search

Graphparser [Reddy, Lapata, and Steedman, 2014] uses distant su-
pervision to generate learning examples (questions and their answer)
from natural language sentences. Intuitively, this is achieved by remov-
ing an identified entity from a sentence and reformulating the sentence
as a question for that entity. To translate a question, an existing CCG
parser (a kind of constituent parser) is used to retrieve a logical form.
This logical form is then matched to a graph in which identified entities
and relations are mapped to Freebase. Graphparser was evaluated on
a subset of Freebase, where it achieves 65% accuracy on Free917 and
41% accuracy on WebQuestions.

Bordes, Chopra, and Weston [2014] take an alternative approach
that involves neither named-entity recognition nor sentence parsing,
and not even POS tagging. Instead, word vectors (see Section 3.4) of
words and of entities and relations from Freebase are learned. This
is done by using the given training data, augmented by synthetically
generated question answer pairs. The idea is to learn the embeddings in
such a way that the embedding of a question is close to the embedding
of its answer entity. No intermediate structured query is generated. The
system achieves 39% accuracy on WebQuestions.

Aqqu [Bast and Haussmann, 2015] directly constructs a SPARQL
query by matching a fixed set of query patterns to the question. The
patterns are matched by first identifying candidates for entity men-
tions in the question. Candidate queries are then generated by match-
ing patterns on the subgraphs of these entities in the knowledge base.
This way, only candidates that have an actual representation in the
knowledge base are created. The candidates are ranked using a learn-
ing to rank approach. Features include the quality of entity matches
and besides others, distant supervision and n-gram based approaches
of matching the relations of a candidate query to the question. For en-
tity synonyms, CrossWikis [2012] is utilized. The system achieves 76%
accuracy on Free917 and 49% accuracy on WebQuestions.

STAGG [Yih et al., 2015], like Aqqu, directly constructs a SPARQL
query using the knowledge base. Starting from identified entities it also
incrementally constructs query candidates. To control the search space,
STAGG only considers a limited number of top candidates, scored by

208

4.8. Question Answering on Knowledge Bases 217

a learned function, for extension at each step. For scoring the candi-
dates it also uses a learning to rank approach. In contrast to Aqqu, it
uses more sophisticated techniques based on deep learning for match-
ing relations of query candidates to the question. It also allows adding
constraints to queries (e.g., first or last for dates) and, in theory, allows
arbitrary patterns to be generated. In practice, however, patterns are
constrained (very similar to those of Aqqu) in order to keep the search
space tractable. The system achieves 53% accuracy on WebQuestions.

4.8.4 Commercial Systems

WolframAlpha can answer questions about general knowledge. As of
this writing, no technical publications were available, but their FAQ24

is quite informative concerning the scope and basic techniques used.
On the back end side, Wolfram Alpha uses its own internal knowledge
base, which is a carefully curated combination of various high-quality
knowledge bases. It also uses real-time data (like weather or market
prices), which is curated using heuristics. NLP techniques are used,
combined with publicly available data. For example, Wikipedia is used
for linguistic disambiguation (such that the big apple is a synonym
for NYC). The implementation uses Mathematica as a programming
language.

Facebook Graph Search25 supports personalized searches on the
relations between persons, places, tags, pictures, etc. An example query
is photos of my friends taken at national parks. Results are based on
the relationships between the user and her friends and their interests
expressed on Facebook. Graph Search was introduced by Facebook in
March 2013. It was reduced to a much restricted version (eliminating
most search patterns) in December 2014, mainly due to privacy issues.

Google Search answers an increasing fraction of natural language
queries from its internal knowledge base, called Knowledge Graph. As
of this writing, the Knowledge Graph is based on Freebase (and not on
the much larger Knowledge Vault described in Section 4.3.4) and there
is no published work on how this search works.

24http://www.wolframalpha.com/faqs.html
25http://en.wikipedia.org/wiki/Facebook_Graph_Search

209

218 Approaches and Systems for Semantic Search

4.8.5 Benchmarks

Question Answering over Linked Data (QALD) [Lopez et al., 2011b;
Lopez et al., 2012; Cimiano et al., 2013; Unger et al., 2014; Lopez et al.,
2013; Unger et al., 2015] is an annual benchmark of manually selected
natural language queries with their SPARQL equivalent. The questions
are of varying complexity, for example:
Who is the mayor of Berlin?
What is the second highest mountain on Earth?
Give me all people that were born in Vienna and died in Berlin.
The name seems to imply semantic web data, but the datasets are DB-
pedia and MusicBrainz (see Table 2.2), which we consider as knowledge
bases in this survey. For the first version of the benchmark (QALD-1)
50 training questions and 50 test questions were used. Later versions
used between 50 and 100 training and test questions. Systems were
evaluated by comparing the set of answers returned by a system to
the answers in the ground truth (i.e., those returned by the correct
SPARQL query) and computing precision and recall for each question.
Averages of these on all queries and the resulting F-measure are used
to compare systems globally.

The benchmark started in 2011 (QALD-1) with 2 participating
groups. Since then participation has constantly increased to 7 groups
for QALD-5. Later versions included questions in multiple languages
and hybrid questions that require combining search on text as well as
knowledge bases. The best system at QALD-4 and QALD-5 was Xser
[Xu, Feng, and Zhao, 2014], described above, with an F-measure of 72%
and 63%, respectively.

Free917 [Cai and Yates, 2013] is a benchmark consisting of 917 ques-
tions and their structured query (SPARQL) equivalent on Freebase. For
example, when was starry night painted and:
SELECT DISTINCT ?x WHERE {
fb:en.de_sternennacht fb:visual_art.artwork.date_completed ?x }

The goal is, given the question (and knowing the schema of Freebase),
to automatically compute the corresponding structured query. Ques-
tions and their SPARQL equivalent were constructed manually. All

210

4.8. Question Answering on Knowledge Bases 219

questions are such that the corresponding entities and relation indeed
occur in Freebase; this makes the benchmark simpler than a real-world
task with arbitrary questions from real users. 30% of the questions
are explicitly marked as test questions and 70% are reserved for learn-
ing. As an evaluation metric, accuracy (the percentage of questions
answered exactly as in the ground truth) is used. The current best
system, Aqqu [Bast and Haussmann, 2015], achieves an accuracy of
76%.

WebQuestions [Berant et al., 2013b] is a benchmark that consists of
5,810 questions and their answers from Freebase (i.e., no corresponding
SPARQL query). For example, what type of music did vivaldi write and
the answer classical music. In order to obtain the questions, 100,000
candidates were generated using the Google Suggest API and Ama-
zon Mechanical Turk was used to identify those, which actually have
an answer in Freebase. These questions are more realistic (i.e., more
colloquial) than those of Free917, which also makes the benchmark
considerably harder. 40% of the questions are used as test questions
and 60% are reserved for learning. The average F-measure over all test
questions is used as evaluation metric. This is computed by comparing
the result set of a system to the result set in the ground truth for each
question and computing individual F-measures and their average. The
current best system, STAGG [Yih et al., 2015], achieves an F-measure
of 53%.

211

220 Approaches and Systems for Semantic Search

4.9 Question Answering on Combined Data

Data Combined data, as described in Section 2.1.3: text
linked to a knowledge base, multiple knowledge
bases, or semantic web data

Search Natural language queries, as described in Section
2.2.3; the result is (close to) the answer one would
expect from a human

Approach A melting pot of all techniques from the previ-
ous sections; plus techniques to evaluate the con-
fidence and combine the answers from the various
sources; current approaches are still relatively sim-
plistic, however

Strength The ultimate “semantic search”: free-form queries
on whatever data there is

Limitation This line of research is still in its infancy; but it will
be the future

In a sense, this is the ultimate “semantic search”. Users can formu-
late queries in natural language, and the system draws on a variety of
data sources to answer it: text, knowledge bases, and combinations of
the two (including semantic web data).

As of this writing, there is still little research for this scenario.
In particular, we know of only one recent benchmark (the QALD-5
hybrid track with only three participants) and few notable systems;
see below. This is understandable given what we have seen in the last
two subsections: that natural language queries are hard already when
restricting to “only” textual data or when restricting to (usually a
single) knowledge base.

4.9.1 Basic Techniques

Technically, question answering on combined data is a big melting pot
of techniques, in particular, those from the three previous subsections:

212

4.9. Question Answering on Combined Data 221

Question Answering from Text, Question Answering from Knowledge
Bases, and Keyword or Semi-Structured Search on Combined Data,
which in turn draw heavily on techniques from the previous subsec-
tions. In Section 4.9.2, we provide a longer description of the popular
Watson system. Apart from Watson, there has been little research on
this topic so far. In Section 4.9.3 we describe a recent system.

Commercial search engines like Google also provide question an-
swering capabilities on both text and knowledge bases. At the time of
this writing, there is no published work on how these subsystems are
combined. However, answers appear to come from two different sub-
systems. If the answer comes from the knowledge base, the result is
displayed in an infobox on the right, or as a list of entities on the top
of the usual search results. If the answer comes from annotated text,
it is displayed with a corresponding snippet, again on top of the usual
result list. So far, there is no evidence of a deeper integration of the
two kinds of data.

A survey that addresses question answering specifically for the Se-
mantic Web is provided by Lopez et al. [2011a].

4.9.2 Watson

IBM’s Watson [Ferrucci et al., 2010; Ferrucci et al., 2013] was devel-
oped to compete with human experts in the well-known Jeopardy! game
show. In Jeopardy, the question is formulated as an assertion (called
“claim”) and the answer has to be formulated as a question. The follow-
ing example clarifies that this is just an entertaining twist of classical
question answering; technically the transformation of one to the other
is trivial.

Classical: What drug has been shown to relieve the symptoms of ADD
with relatively little side effects? Ritalin.
Jeopardy: This drug has been shown to relieve the symptoms of ADD
with relatively few side effects. What is Ritalin?

The goal of Watson was to answer roughly 70% of the questions with
greater than 80% precision in 3 seconds or less. This would be enough

213

222 Approaches and Systems for Semantic Search

to beat the best human experts in the game; a goal eventually reached
in a much publicized show in 2011.

Watson answers questions using both text and knowledge bases.
Among the text data sources are: Wikipedia, several editions of the
Bible, and various encyclopedias and dictionaries. These were expanded
to contain text extracted from the Web. Overall, the corpus contained
8.6 million documents with a size of 59 GB. Among the knowledge
bases are: DBpedia, YAGO, and Freebase (see Table 2.2).

The Watson system consists of a pipeline of steps. Each step is very
carefully designed and adjusted to the particular type and distribution
of Jeopardy questions. The steps are of varying complexity and make
use of state-of-the-art techniques where necessary, but also resort to
simple but effective heuristics when sufficient. Here, we outline the
main steps and relate them to other techniques in this survey when
appropriate. For a comprehensive technical description, we refer to a
special issue of the IBM Journal by Pickover [2012] consisting of a series
of twelve papers (each about 10 pages) solely about Watson.

Question analysis: First, the focus and lexical answer type of the
question is determined. For example, in

A new play based on this Sir Arthur Conan Doyle canine classic opened
on the London stage in 2007.

the focus is this and the lexical answer type is classic. This is done
using manually designed rules, e.g., “use the word this as focus and use
its head word (classic) as a lexical answer type”. The rules make use
of a linguistic analysis of the question, e.g., a syntactic parse, its log-
ical structure (similar to semantic role labeling) and identified named
entities; see Section 3 on Basic NLP Tasks in Semantic Search.

Using rules, the question is also categorized into different types, e.g.,
puzzle or definition question. These require slightly different approaches
later on.

Relations mentioned in the question are identified as well. This is
done using human-made rules as well as machine learning. The rules
for about 30 relations, with 10 to 20 rules per relation, make use of
identified types. For example, from a David Lean classic the relation

214

4.9. Question Answering on Combined Data 223

directorOf can be extracted. The corresponding rule matches if a direc-
tor (David Lean) is used as an adjective of a film synonym (classic). The
machine-learning based approach uses distant supervision (explained in
Section 4.3.2) to learn relation mentions for about 7K relations from
DBpedia and Wikipedia. The identified relations are simple in the sense
that they only connect one entity to a relation. This is in contrast to
some of the techniques in Section 4.8 on Question Answering on Knowl-
edge Bases, where the goal is a formal representation of the (meaning
of the) whole question.

Finally, the question is also decomposed into subquestions, which
can be answered independently. For example,
This company with origins dating back to 1876 became the first U.S.
company to have 1 million stockholders in 1951.
contains two major hints: that the company has “origins dating back to
1876” and that it was “the first U.S. company to have 1 million stock-
holders in 1951”. The decomposition is done via rules on a syntactic
parse of the sentence. Answers from different subquestions are synthe-
sized at the end with a model that is specifically trained to combine
the results (lists of entities) of individual subquestions.
Hypothesis generation: After analyzing the question, the system
generates candidate answers by searching multiple data sources (text
and knowledge bases) independently. The focus in this step is on recall,
with the assumption that later steps can weed out incorrect candidates
and improve precision. A correct candidate answer not generated in
this step will lead to a wrong final answer.

For search in text, standard techniques for keyword search (see
Section 4.1) are applied to find documents and passages that contain
keywords of the question. Candidate answers are extracted, e.g., from
the title of the documents and passages using named-entity recognition.
The applied techniques are similar to those of state-of-the-art systems
for question answering on text (see Section 4.7).

Knowledge bases are queried for entities that are related to those
mentioned in the question. These serve as additional candidate answers.
If relations were identified in the question, these are also used for query-
ing the knowledge bases. For each pair of a single entity and relation

215

224 Approaches and Systems for Semantic Search

in the question, a SPARQL query is derived and executed to retrieve
additional candidate answers. In total, this phase typically generates
several hundreds of candidate answers.
Soft filtering: The list of candidates obtained from the steps so far
is often very long. For performance reasons, the list is filtered using
lightweight machine learning, for example, based on how well the lexical
answer type matches the candidate. The idea is to weed out candidates
that are easy to identify as unlikely answers. Only about 100 candidate
answers remain.
Hypothesis and evidence scoring: Now, evidence is collected for
each remaining candidate. For example, passages that mention the an-
swer entity along the question keywords are retrieved. Structured data
is also used, e.g., in geospatial and temporal reasoning. For example,
in

This picturesque Moorish city lies about 60 miles northeast of
Casablanca.

the latitude and longitude of Casablanca can be retrieved from DB-
pedia and compared to candidate answers and the identified relation
northeast.

The retrieved evidence is passed to scorers that determine the de-
gree to which the evidence supports the candidate answer. More than
50 different scorers are used in total. They range from relatively sim-
ple string matching (between the question and the retrieved passages),
to learning-based reasoning (for example, on spatial or temporal dis-
tance). According to the authors, no single algorithm dominates, but
it is the ensemble that makes a difference.
Merging and ranking: In a final step, answer candidates are merged
and then ranked. Merging is necessary because candidates can have dif-
ferent surface forms but refer to the same entity, for example, John F.
Kennedy and J.F.K. This can happen because entities are retrieved
from many different sources (text, DBpedia, Freebase etc.) and no
canonical entity representation is enforced before this merging step.

The answer candidates are then ranked, based on the previously
computed evidence scores. The question type is also taken into account.

216

4.9. Question Answering on Combined Data 225

This is important, since, for example, different features are important
for factoid questions and puzzle-type questions. Ranking is done via
a machine learning framework that takes as input a set of candidate
answers with their evidence scores and outputs a confidence score for
each candidate that indicates whether it is the final correct answer.
Candidates ranked by their confidence scores are the final output of
Watson.

4.9.3 Other Systems

Joshi, Sawant, and Chakrabarti [2014] answer entity-oriented (tele-
graphic) keyword queries on a text linked to a knowledge base
(ClueWeb + FACC, see Table 2.3). Telegraphic queries are abbrevi-
ated natural language queries, for example, first american in space.26
Given a question, the system computes a score for all possible entities,
ea, as answer. For this, the question is first split into entity, target type,
relation, and contextual (everything else) segments. Then, evidence is
collected from the knowledge base or text. For example, for the entity
identified in the question, eq, the relation to a possible answer entity,
ea, is retrieved from the knowledge base. A score is computed (using a
language model) indicating how well the relation segment of the ques-
tion expresses this knowledge-base relation. Furthermore, a text index
is queried for snippets mentioning both eq and ea, scored by an adap-
tation of BM25. The final ranking incorporates the scores above as well
as further evidence, like answer type information and a likelihood for
the segmentation (several are possible). Overall, this is similar to the
systems described in Section 4.8, but with a full-text component added
to the underlying search. The system is evaluated on adapted queries
from TREC (Section 4.1.3), INEX (Section 4.5.3), and WebQuestions
(Section 4.8.5). On the WebQuestions dataset it achieves an nDCG@10
of 47% compared to Sempre, an approach only utilizing the knowledge
base (see Section 4.8), with 45%. On the TREC and INEX questions
they achieve an nDCG@10 of 54% versus 25% with Sempre.

26See our discussion on the gray zone between keyword queries and natural lan-
guage queries at the beginning of Section 2.2.

217

226 Approaches and Systems for Semantic Search

4.9.4 Benchmarks

The QALD series, described in Section 4.8 on Question Answering on
Knowledge Bases, featured a hybrid search task in 2015. The benchmark
contains ten hybrid questions, for example:

Who is the front man of the band that wrote Coffee & TV?

The correct answer requires the combination of triples with information
from the textual description of the entity (both contained in DBpedia,
see Table 2.2). For example, for the example question above, the in-
formation who is a front man is contained only in the text. Only five
systems participated in this benchmark. The best F-measure of only
26% was achieved by the ISOFT system [Park et al., 2015].

The INEX series, described in Section 4.5.3 on Keyword Search on
Combined Data, featured a Jeopardy! task in 2012 and 2013. However,
participation was low, with only a single group in 2013.

218

5
Advanced Techniques used for Semantic Search

This section is about four more advanced aspects of semantic search:
ranking, indexing, ontology matching and merging, and inference. They
are advanced in the sense that powerful semantic search engines can
be built with relatively simplistic solutions for these aspects. Indeed,
this is the case for several state of the art systems and approaches from
Section 4. However, when addressed properly, they can further boost
result quality and/or performance.

5.1 Ranking

Many of the systems from our main Section 4 produce a list of entities
as their result. In our descriptions so far, we have focused on how the set
of result entities is retrieved from the respective data. In this section,
we elaborate on the aspect of ranking these entities. We also (but not
exclusively) include research on ranking techniques that have not been
implemented as part of a full-fledged system.

The following subsections roughly correspond to the representa-
tion of the entities that should be ranked: entities associated with vir-
tual documents (typically obtained from keyword search on combined

227

219

228 Advanced Techniques used for Semantic Search

data; see Section 4.5), entities obtained from text linked to a knowl-
edge base (typically obtained from keyword or semi-structured search
on combined data; see Sections 4.5 and 4.6), interlinked entities (from
a knowledge base or from semantic web data), and entities obtained
from a structured or semi-structured search (as described in Section
4.2 and Section 4.6).

In the following, we assume basic knowledge about standard ranking
techniques for document-centric keyword search on text, such as: BM25
scoring, language models, and PageRank.

5.1.1 Ranking of Entities Associated with (Virtual) Documents

A standard approach for entity search in heterogeneous data is to con-
struct, for each entity, a virtual document consisting of (all or a se-
lection of) text associated with the entity in the given data (typically:
semantic-web data); see Section 4.5. A ranking can then be obtained
by using standard techniques for keyword search in text, like BM25 or
language models.

The original structure (provided by triples) does not necessarily
have to be discarded. It can be preserved in a fielded index and by
a ranking function like BM25F, which is an extension of BM25 by
Zaragoza et al. [2004]. In comparison to standard BM25, BM25F com-
putes a field-dependent normalized term frequency tf ∗f which, instead
of document length and average document length, uses field length
(lf) and average field length (avfl). In addition, each field has its own
“b-parameter” Bf .

tf ∗f :=
tf f

1 +Bf (lf
avfl − 1)

The final term pseudo-frequency, that is used in the BM25 formula, is
then obtained as weighted sum (field weight Wf) over the values for
each field:

tf ∗ =
∑

f

tf ∗f ·Wf

Originally, this improves ranking keyword queries on text by ac-
counting for document structure (for example, with fields like title, ab-

220

5.1. Ranking 229

stract, and body), but this extension also applies to fields that originate
from different triple predicates.

The effectiveness of BM25F for ad-hoc entity retrieval on RDF data
is demonstrated by Blanco, Mika, and Vigna [2011]. Some predicates
and domains are manually classified as important or unimportant (for
example, abstract and description are important properties, date and
identifier are unimportant). Everything not classified is treated neu-
trally. Important predicates have their own index field, which is then
boosted in the ranking function by using a higher field weight Wf . Im-
portant domains are boosted in a separate step after the BM25F value
is computed. Compared to vanilla BM25, this leads to 27% MAP in-
stead of 18% and 48% nDCG instead of 39% on the benchmark from
the SemSearch Challenge 2010 (see Section 4.5.3).

Neumayer, Balog, and Nørvåg [2012] show that creating language
models from virtual documents can outperform the fielded approach
above. An entity e is ranked by the probability p(q|e) of generating
the query q. Different possibilities for computing this model are sug-
gested. An unstructured model estimates term probabilities from the
virtual document of each entity. A structured model groups each en-
tity’s predicates (groups are attributes, names, incoming and outgoing
relations) and computes a model for each group’s virtual document.
The final score for an entity is a linear interpolation of these models
with manually chosen weights. Experiments on the benchmarks from
the SemSearch Challenges 2010 and 2011 show that the unstructured
model outperforms previous state of the art but is in turn outperformed
by the structured model. The authors also suggest a hierarchical lan-
guage model that is supposed to preserve the structure (i.e. predicates)
associated with entities, but the model fails to improve on previous
results.

Herzig et al. [2013] also rank entities (virtual documents) using
language models (LM). The work addresses two problems: identifying
entities that refer to the same real-world entity, and ranking for feder-
ated search (where results from multiple sources have to be combined).
The LM for an entity consists of multiple standard LMs, one for each
of its attributes. A similarity distance between two entities is com-

221

230 Advanced Techniques used for Semantic Search

puted by the Jensen-Shannon divergence (JSD) between the LMs for
attributes that both entities have in common. If this distance is below a
threshold, two entities are considered the same. Ranking for federated
search works as follows. The query is issued to the multiple sources
and the ranked results are used to create a new virtual document. This
virtual document consists of the contents of the virtual documents of
each result entity (weighted by rank). Then, a language model for the
query is computed from the virtual document, which serves as a form
of pseudo-relevance feedback. All entities are ranked by the similarity
(again using JSD) of their language model to that of the query. In a
final step, identical entities are merged as determined by the procedure
above or by explicit sameAs links.

5.1.2 Ranking of Entities from Text Linked to a Knowledge Base

Search on text linked to a knowledge base (see Sections 4.5 and 4.6) pro-
vides two sources of signals for ranking result entities: from the match-
ing text, and from the entity’s entry in the knowledge base. However, it
is not obvious how they should be combined for maximum effectiveness.

Fang et al. [2009] provide a simple but effective ranking approach
for keyword queries on text, which won the TREC Entity Track in 2009
(see Section 4.5.3). In the first step, answer candidates are extracted
from results (using basic NER techniques as described in Section 3)
of a query to Google. This establishes the link between the text and
an entity’s representation in the knowledge base. In addition, a sup-
porting passage (for an occurrence in text: the sentence; for an oc-
currence in a table: elements from the same column, column header,
and sentence preceding the table) is extracted for each entity. Enti-
ties are then ranked by the product of three relevance probabilities:
of the containing document to the query, of the containing passage,
and of the entity. Document relevance is computed using a standard
language model. Passage relevance is computed as a sum of similarity
scores (from WordNet) between all pairs of words in the passage and
the query. Entity relevance is computed as the frequency of the first
query keyword (which usually corresponds to the target type, see the
example above) in the entity’s list of Wikipedia categories.

222

5.1. Ranking 231

Kaptein and Kamps [2013] perform keyword search on Wikipedia
(where documents naturally correspond to entities) and additionally
make use of target categories that restrict the set of relevant entities.
For example, for the query works by charles rennnie mackintosh, an-
swers should be restricted to buildings and structures. These target
categories are either given as part of the query, or can be derived au-
tomatically from the result set of an issued keyword query. Instead of
simply filtering the result entities by the given or determined category,
the authors suggest using language models that are supposed to deal
with the hierarchical structure of categories. Two standard language
models are precomputed: one for each entity (that is, for its Wikipedia
page), and one for each category (that is, for the text from all entities
in that category). The final score is a weighted combination of the two
language models (how well they model the query) and an additional
pseudo-relevance feedback computed via links between the Wikipedia
pages of the top results. Weights for the combination are chosen man-
ually.

Schuhmacher, Dietz, and Ponzetto [2015] adapt the learning-to-
rank approach to keyword entity search on text, with entities already
linked to a knowledge base. For a given query, the entities from the
(top) documents matching the keyword query are retrieved and a fea-
ture vector is constructed for each query-entity pair. There are two
groups of features: text features (for example, the occurrence count of
the entity in text) and query features (for example, does the entity, or
an entity closely connected in the knowledge base, occur in the query).
The training set consists of queries with a given set of relevant entities.
A support vector machine is used for learning to rank. It uses a lin-
ear kernel that is enhanced with a function to compute the similarity
between two entities via their relatedness in the given knowledge base.
This is supposed to provide a form of pseudo-relevance feedback. The
approach is evaluated on an own benchmark that is constructed from
the TREC Robust and Web benchmarks (see Section 4.1.3).

223

232 Advanced Techniques used for Semantic Search

5.1.3 Ranking of Interlinked Entities

A knowledge base, or a collection of interlinked knowledge bases as in
semantic-web data, can be viewed as a graph with the entities as nodes
and the edges as relations; see Section 2.1.2 on Knowledge Bases.

Swoogle [Ding et al., 2004] adapts PageRank, the well-known algo-
rithm to compute query-independent importance scores for web pages,
to semantic-web data. Links between so-called semantic web documents
(RDF documents defining one or more entities) are weighted differently
depending on their type. Swoogle classifies links into four categories
(imports, uses-term, extends, and asserts). This is done by manually
defining which original RDF properties belong to which category. For
each of these types, a weight is assigned manually. The PageRank tran-
sition probability from node i to node j then depends on the sum of
weights of all links from i to j. This approach is feasible because only
a relatively small number of different link types is considered.

ObjectRank [Balmin, Hristidis, and Papakonstantinou, 2004]
adapts PageRank to keyword search on databases. The computed scores
depend on the query. Intuitively, a random surfer starts at a database
object that matches the keyword and then follows links pertaining to
foreign keys. Edge weights are, again, based on types and assigned man-
ually. For example, in a bibliographic database, citations are followed
with high probability. Like this, the approach allows relevant objects
to be found even if they do not directly mention the query keyword.

Agarwal, Chakrabarti, and Aggarwal [2006] combine PageRank
with the learning to rank approach. The input is a knowledge graph
(think of the semantic web) and a partial preference relation on the set
of entities (think of a user more interested in some entities than in oth-
ers). The goal is to learn edge weights such that the scores computed
by the PageRank process (with transition probabilities proportional
to these edge weights) reflect the given user preferences. Two scenar-
ios are considered: individual weights for each edge, and one weight
per edge type (predicate). For the first scenario, the problem is formu-
lated as a constrained flow optimization problem, where the constraints
come from the user preferences. For the second scenario, the problem
is solved using gradient descent optimization, where the loss function

224

5.1. Ranking 233

captures the user preferences (approximately only, so that it becomes
differentiable).

TripleRank [Franz et al., 2009] extends the HITS algorithm to
semantic-web data. HITS is a variant of PageRank, which computes
hub and authority scores for each node of a sub-graph constructed
from the given query. For TripleRank, the subgraph is represented as
a 3D tensor where each slice is the (entity-entity) adjacency matrix for
one predicate. Standard 3D tensor decomposition then yields n princi-
pal factors (corresponding to the singular values in the 2D case) and
three 2D matrices with n columns each. One of these matrices can be
interpreted as the underlying “topics” of the subgraph (expressed in
terms of relations). The entries in the other two matrices can be inter-
preted as hub and authority scores, respectively, of each entity in the
subgraph with respect to the identified topics.

5.1.4 Ranking of Entities Obtained from a Knowledge Base Search

SPARQL queries have precise semantics and, like SQL, the language
provides an ORDER BY attribute for an explicit ranking of the result
set; see Section 4.2 on Structured Search in Knowledge Bases. Still,
there are scenarios, where a ranking according to “relevance”, as we
know it from text search, is desirable.

Elbassuoni et al. [2009] construct language models for SPARQL
queries with support for keyword matching in literals. The language
model for the query is defined as a probability distribution over triples
from the knowledge base that match triples from the query. The lan-
guage model for a result graph is straightforward: it has probability 1
or 0 for each triple, depending on whether that triple is present in the
result graph (with some smoothing). Results are then ranked by their
Kullback-Leibler (KL) divergence to the query.

Broccoli [Bast et al., 2012] ranks result entities using a combination
of popularity scores for entities and frequency scores obtained from its
interactive query suggestions. For example, a simple query for Scientist
simply ranks all scientists in the indexed knowledge base by their pop-
ularity. But the query Scientist occurs-with information retrieval ranks
scientist according to how frequently they co-occur with the words in-

225

234 Advanced Techniques used for Semantic Search

formation retrieval in the given text collection. Suggestions are ranked
in a similar way. For example, the suggestions for predicates for Scien-
tist are ranked by how many scientists have that particular predicate.
This simple ranking provided average precision at 10 and MAP scores
of 67-81% and 42-44%, respectively, on two benchmarks (TREC Entity
Track 2009 and Wikipedia).

Bast, Buchhold, and Haussmann [2015] present an approach to com-
pute relevance scores for triples from type-like relations. Such a score
measures the degree to which an entity “belongs” to a type. For exam-
ple, one would say that Quentin Tarantino is more of a film director
or screenwriter than an actor. Such scores are essential in the ranking
of entity queries, e.g., “american actors” or “quentin tarantino profes-
sions”. To compute the scores, each entity and type is associated with
text. The text for entities is derived via linking to their occurrences in
Wikipedia. Text for entire types is derived from entities that have only
one entry in the particular relation. For the example above, text for the
profession actor is derived from entities that only have the profession
actor. Scores are then computed by comparing the text for an entity
to that for each type. For this, many different models are considered:
standard machine learning, a weighted sum of terms based on their tf-
idf values, and a generative model. The best models achieve about 80%
accuracy on a benchmark where human judges were able to achieve
90% and sensible baselines scored around 60%.

5.2 Indexing

Most of the work in this survey is concerned with the quality aspect of
semantic search. This section is concerned with the efficiency aspect.
Note that indirectly, efficiency is also relevant for quality: a method
with good result quality with a response time of minutes or worse is
impractical in many application scenarios.

Following our classification in Section 4, semantic indexing works
differently depending on the particular approach: Keyword search on
text (Section 4.1) is handled by an inverted index. The inverted index is
a well-researched data structure and important for information retrieval

226

5.2. Indexing 235

in general. A discussion of its particularities is beyond the scope of this
survey. Special indexes for structured search in knowledge bases are
already discussed at length in Section 4.2. Section 4.3 is concerned
with structured data extraction from text. Indexing is not an issue
here. Systems for keyword search on knowledge bases (Section 4.4)
and question answering (Sections 4.7, 4.8, and 4.9) are concerned with
finding the right queries and post-processing results. The way data is
indexed is adopted from other approaches. This leaves Sections 4.5 on
Keyword Search on Combined Data and 4.6 on Semi-Structured Search
on Combined Data where advanced indexing techniques are required.

In this section, we distinguish three basic approaches used by the
systems from that section: using an inverted index for knowledge base
data, semi-structured search based on an inverted index, and integrat-
ing keyword search into a knowledge base.

5.2.1 Using an Inverted Index for Knowledge Base Data

In Section 4.2 on Structured Search in Knowledge Bases we discussed
indexing techniques for full SPARQL support. However, semantic web
applications often have different requirements: (1) the data is extremely
heterogeneous, so that queries with anything but the simplest of seman-
tics are pointless; (2) predicate and object names can be very verbose,
so that keyword matching (only an optional add-on for a SPARQL
engine) is a must; (3) the data volume is large, so that speed is of pri-
mary concern. In such a scenario, the inverted index provides simple
solutions with high efficiency.

In the simplest realization, a virtual document is constructed for
each entity, consisting of (all or a subset of) the words from the triples
with that entity as subject; see Section 4.5.1. A standard inverted index
on these virtual documents then enables keyword queries which return
ranked lists of entities. A typical system in this vein is Semplore [Wang
et al., 2009].

A more advanced system is described by Blanco, Mika, and Vigna
[2011]. They study three variants of a fielded index, implemented using
MG4J (see Section 4.1.2). The variants have different trade-offs be-
tween query time, query expressibility, and result quality. In the basic

227

236 Advanced Techniques used for Semantic Search

variant, there are different fields for subject, predicate and object of a
triple and positional information is used to align items from the same
original triple. This allows keyword matches for object and predicate
names (e.g., find triples where the predicate matches author) at the
price of a larger query time compared to vanilla BM25 indexing. In
an alternative variant, there is a field for each distinct predicate. This
still allows to restrict matches to a certain predicate (e.g., foaf:author)
but keyword matches for predicates are no longer possible. In a refined
variant, predicates are grouped by importance into three classes, with
one field per class. This supports only keyword queries (without any
structure, like in the basic approach from the previous paragraph), but
with query times similar to vanilla BM25 indexing. Result quality is
vastly improved due to consideration of those fields in the ranking func-
tion: 27% MAP instead of 18% and 48% nDCG instead of 39% on the
benchmark from the SemSearch Challenge 2010 (see Section 4.5.3).

SIREn [Delbru, Campinas, and Tummarello, 2012] is built on
Lucene and supports keywords queries that correspond to star-shaped
SPARQL queries (with one entity at the center), where predicate and
relation names can be matched via keyword queries. There are inverted
lists for words in predicate names and for words in object names. Each
index item contains information about the triple to which it belongs,
namely: the id of the subject entity, the id of the predicate, the id of the
object (only for words in object names), and the position of the word
in the predicate or object. Standard inverted list operations can then
be used to answer a query for all entities from triples containing, e.g.,
author in the predicate name, and john and doe in the object name.
As of this writing, the software is available as open source1.

5.2.2 Semi-Structured Search Based on an Inverted Index

This is the method of choice for semi-structured search on combined
data, as described in Section 4.6. Often, an inverted index is combined
with techniques or even off-the-shelf software for indexing knowledge
bases, such as Virtuoso. However, the extra effort to achieve an efficient
combination usually happens on the side of the inverted index.

1https://github.com/rdelbru/SIREn

228

5.2. Indexing 237

In the most basic realization, for each occurrence of an entity from
the knowledge base in the text (for example, ... Obama ...), we add
an artificial word to the text (for example, entity:Barack Obama). The
inverted list for entity:Barack Obama then contains all occurrences of
this entity in the text. Standard inverted list operations enable queries
such as entity:Barack Obama audience pope (documents mentioning
him in the context of an audience with the pope).

We next discuss two simple options to enhance the query expres-
siveness for this approach, by not just allowing concrete entities in the
query, but semantic concepts ranging from types to arbitrary SPARQL
queries.

One option, that is taken by KIM [Popov et al., 2004], is to com-
pute the result for the knowledge base parts using a standard SPARQL
engine, and to add this to the keyword query as a disjunction of all the
result entities. This is simple but very inefficient when the number of
result entities is large. Another option, that is taken by Mìmir [Tablan
et al., 2015], is to add further artificial words to the index, which al-
low direct processing of more complex queries without resorting to the
SPARQL engine. For example, if in the example above we also add the
artificial word type:politician to the index, we could efficiently answer
queries such as type:politician audience pope (passages mentioning a
politician in the context of an audience with the pope). This works for
simple queries, but does not allow complex SPARQL queries. In this
case, Mìmir falls back to the inefficient KIM approach.

ESTER [Bast et al., 2007] solves this dilemma by adding artificial
entity:... and selected type:... words to the inverted index (just like in
the example above) and resorting to joins for all the remaining queries.
These joins require additional information in the index lists: triples
from the knowledge base are inserted into canonical documents for
each entity. Join operations on the entity:... words are needed to use this
information for matches outside of this canonical document. Therefore,
items in the inverted lists have to contain a word id in addition to
the usual document id, position, and score. However, using standard
compression techniques, the index size is comparable to that of an
ordinary inverted index, despite this addition.

229

238 Advanced Techniques used for Semantic Search

All the approaches described so far share the major drawback that
the result is inherently a list of document passages. For example, the
keyword query type:politician audience pope yields a list of matching
passages, possibly many of them with the same entity. From a usability
perspective, the more natural result would be a list of entities (ideally,
with the passages as result snippets). Worse than that, if this query
appears as a sub-query of a more complex query (e.g., looking for en-
tities of a certain type who co-occur with the result entities), we need
the list of entities (and not matching passages) to be able to process
that query.

Broccoli [Bast and Buchhold, 2013] solves this problem using a non-
trivial extension of the inverted index. The main technical idea is to
augment the inverted list for each word by information about the co-
occurring entities. For example, for the occurrence of the word edible
in a document containing the stalks of rhubarb and broccoli are edible,
the inverted list for edible would not only contain one item with the id
of that document (plus score and positional information) but also two
additional items with the ids for the entities rhubarb and broccoli. Each
entity occurrence hence leads to an extra item in all inverted lists that
have an entry for that document. Broccoli avoids a blow-up of the index
by indexing semantic contexts instead of whole documents, which at
the same time improves search quality (see Section 4.6.2). The knowl-
edge base part is handled by lists of id pairs for each relation, sorted by
either side. This is reminiscent of using PSO (predicate-subject-object)
and POS permutations, like for the systems from Section 4.2 on Struc-
tured Search on Knowledge Bases. Together, the extended inverted lists
and relation permutations allow that knowledge base facts and textual
co-occurrence can be nested arbitrarily in tree-shaped queries while
retaining very fast query times.

5.2.3 Integrating Keyword Search into a Knowledge Base

All major SPARQL engines feature integrations of keyword search; see
Section 4.2.1. There are two basic variants, depending on the desired
semantics of the integration.

230

5.3. Ontology Matching and Merging 239

To realize something like Virtuoso’s bif:contains predicate (see Sec-
tion 4.2), it suffices to pre-compute inverted lists for words in predicate
names and objects. Standard inverted list operations then lead to lists
of (ids of) predicates or objects, which can be processed further by
the SPARQL engine. Compared to the approach described for SIREn
above, the expressiveness is much larger (no longer restricted to star
queries). The price is a much larger processing time for some queries.
For example, the query author john doe requires a full scan over all
triples using the approach just described. The reason is that both, the
predicate and object part can match many items and that these do not
correspond to ranges but lists of ids. In the example, many ids may
match the keyword author and many ids may match john doe. While
these individual lists of ids are both efficiently retrieved, a subsequent
step towards matching triples is problematic.

To realize an index for text linked to a knowledge base, one could
add an id for each document (or short passage) to the knowledge base,
and add a special relation occurs-in (between words or entities and
the id of the document they occur in). This covers the expressiveness
of Broccoli, but with a much larger processing time. For example, the
query type:politician audience pope requires a full scan over all triples
of the occurs-in relation. Furthermore, such a relation becomes huge
with larger text corpora because it contains an entry for each word
occurrence in the collection. Note that adding a relation occurs-with
between word and entity occurrences instead, doesn’t provide the same
semantics. This doesn’t allow restricting multiple occurrences to the
same document or context.

5.3 Ontology Matching and Merging

Most semantic search systems work with some kind of knowledge base,
in particular, all the systems from Sections 4.2, 4.4, 4.5, 4.6, 4.8, and 4.9.
Most of these systems assume a single knowledge base with a consistent
schema/ontology, as defined in Section 2.1.2. However, to cover the data
relevant for a given application, often several different knowledge bases
need to be considered.

231

240 Advanced Techniques used for Semantic Search

For example, think of an application that requires knowledge on
movies as well as on books, and that there is a separate knowledge
base for each of the two domains. A problem is that these knowledge
bases may contain different representations of the same real-world en-
tity. For example, Stephen King is likely to be present as a novelist in
the book knowledge base and as a screenwriter in the movie knowl-
edge base. To make proper use of the data, their ontologies (their
classes/concepts, properties, relations) as well as their actual popu-
lation (instances) should either be linked or merged. This means, for
example, identifying links between identical persons, such as:

<movies:Stephen_King> <owl:sameAs> <books:Stephen_Edwin_King>

This is known as instance matching. Identifying links between classes,
which is referred to as ontology matching, is also important in that
context. For example, a script is a kind of written work:

<movies:Filmscript> <rdfs:subClassOf> <books:Written_Work>

Such links can be used to merge the ontologies into a single ontology in a
pre-processing step. This is known as ontology merging. Alternatively,
systems like Virtuoso, Jena, and Sesame (see Section 4.2.2) can be
configured to make use of such links during query time.

These problems have been studied (with minor differences) mainly
by the semantic web community and the database community. In a
relational database, tables and their columns and data types make up
the schema, analogously, to the defined classes, properties, and relations
in an ontology. A database row or record is the equivalent of an instance
in a knowledge base. Both communities make a distinction between
matching schemata and matching actual instances or database records.
Approaches to these tasks are very similar in both communities, so we
provide corresponding pointers for further reading. In the following,
we describe the general ideas used to tackle the problems. We focus
on methods, that target automatic solutions. In practice, most systems
integrate user feedback on some level.

232

5.3. Ontology Matching and Merging 241

5.3.1 Ontology Matching

Matching two ontologies means to determine an alignment between
them. An alignment is a set of correspondences between uniquely iden-
tified elements (e.g., classes and properties) that specifies the kind of
relation they are in. For example, whether two classes are equivalent,
or one subsumes the other. Shvaiko and Euzenat [2013] provide a good
survey on ontology matching. The database community refers to this
problem as data matching. We refer to Doan and Halevy [2005] for a
good survey on database related approaches.

Approaches: Approaches to ontology matching mainly make use
of matching strategies that use terminological and structural data
[Shvaiko and Euzenat, 2013]. Terminological data refers to string sim-
ilarities of, e.g., labels and comments in the ontology. The idea is that
highly similar names can indicate equivalence. Relationships between
classes (e.g., part-of, is-a) make up structural data. The intuition is
that classes in similar positions in the class hierarchy are more likely to
be the same. In addition to that, some approaches make use of the ac-
tual instances of a knowledge base, or try to perform logical reasoning.
The output of the different matchers is combined using pre-defined or
learned weights to derive a decision.

Benchmarks: In 2004, the Ontology Alignment Evaluation Initiative
(OAEI) started an annual benchmark to evaluate ontology matching
systems [Euzenat et al., 2011a]. Each year, a set of benchmarking
datasets that include reference alignments is published.2 Participation
was low in the beginning but since 2007 on average 17 groups partic-
ipate with a peak of 23 groups in 2013. Systems can compete against
each other and compare results. On a real world ontology matching
task, systems have shown to give results with above 90% F-measure
[Grau et al., 2013]. Shvaiko and Euzenat [2013] note that while great
progress was made in the first years, progress is slowing down. They
formulate a set of eleven major challenges that need to be tackled in
the near future, in particular, more efficient matching and matching
utilizing background knowledge.

2http://oaei.ontologymatching.org/

233

242 Advanced Techniques used for Semantic Search

5.3.2 Instance Matching

Instance matching refers to finding instances that represent the same
individual or entity. In the Semantic Web, these are linked using
owl:sameAs. In the database community, this is referred to as record
linkage, duplicate record identification or detection, and entity match-
ing (and some more). A lot of research on this problem has been in
done in that community . We refer to the surveys by Köpcke and Rahm
[2010] and by Elmagarmid, Ipeirotis, and Verykios [2007]. Most of the
approaches for instance matching are minor adaptations from those for
databases [Castano et al., 2011].

Approaches: Similar to ontology matching, to match two instances,
their attribute values are compared. This involves using string simi-
larity (e.g., edit distance and extensions, and common q-grams), pho-
netic similarity (similar sounding field names are similar, even if they
are spelled differently) or numerical similarity (difference) depending
on the data type. Then, learning based techniques represent such an
instance tuple as a feature vector of similarities and use a binary clas-
sifier. If no learning data is available, manually derived weights and
thresholds can be used. Extensions of these methods also consider re-
lationships to other instances, apply unsupervised learning techniques,
or apply additional rules based on domain knowledge.
Benchmarks: The benchmark by the Ontology Alignment Evaluation
Initiative (OAEI) contains several instance matching tasks since 2009.
Different knowledge bases are provided for which identical entities need
to be identified. The used knowledge bases consist of parts of real-
world knowledge bases like DBpedia [2007] or Freebase [2007]. Systems
have shown to provide up to 90% F-Measure on identifying identical
instances in these [Euzenat et al., 2010; Euzenat et al., 2011b].

5.3.3 Ontology Merging

Instead of using several inter-linked knowledge bases, it may be de-
sirable to merge them into a single coherent knowledge base. Merging
these involves merging their schema/ontology (concepts, relations etc.)
as well as merging duplicate instances. This requires, for example, re-

234

5.4. Inference 243

solving conflicting names and attribute values. Merging can be done
in an asymmetric fashion, where one or more ontologies are integrated
into a target ontology. In contrast, symmetric merging places equal
importance on all input ontologies.

Approaches: Most work in the research so far has focused on com-
puting alignments between ontologies. Bruijn et al. [2006] and Shvaiko
and Euzenat [2013] describe some approaches that perform merging
of ontologies. These usually take computed alignments between the
ontologies as input and perform semi-automatic merging. For exam-
ple, PROMPT [Noy and Musen, 2000] performs merging by iteratively
suggesting merge operations based on heuristics to the user, applying
the user-selected operation, and computing the next possible merge
operations. The fact that many systems are semi-automatic makes it
extremely hard to compare their performance and currently no widely
accepted benchmark exists.

The problem of merging actual instances has not received much at-
tention by the semantic web community. It has, however, been exten-
sively studied by the database community. Bleiholder and Naumann
[2008] give a good overview and present some systems on data fusion.
Strategies for resolving conflicts, such as different values for the same
attribute, are mainly rule based. Some common strategies are, for ex-
ample, asking the user what to do, using values from a preferred source,
or using the newest or average value.

5.4 Inference

Inference (or reasoning) means deriving information that is not directly
in the data, but can be inferred from it. For example, from the facts
that Marion Moon is an ancestor of Buzz Aldrin and that Buzz Aldrin
is an ancestor of Janice Aldrin, one can infer that Marion Moon is also
an ancestor of Janice Aldrin.

Surprisingly, only few systems make use of inference as an integral
part of their approach to semantic search. One of the few examples is
the question answering system by Lymba [Moldovan, Clark, and Bow-
den, 2007], which uses a reasoning engine in its answering process (see

235

244 Advanced Techniques used for Semantic Search

Section 4.7.3 on The PowerAnswer System). This is in line with the sur-
vey by Prager [2006], who observes the same for question answering. We
suppose that the reason for this is that current systems already struggle
solving lower level problems, such as information extraction and trans-
lating a query into a formal representation (semantic parsing). These
are, however, prerequisites for utilizing inference (let alone benefiting
from it). Nonetheless, inference will certainly play a more important
role in the future. As a result, here we focus on technical standards and
components that enable researchers to perform inference.

A lot of triple stores include an inference engine. In addition to
triples, these require as input a set of inference rules, for example, that
the facts A is ancestor of B, and B is ancestor C imply that A is
ancestor of C. First, we introduce some languages that can be used to
express these rules. We then describe some triple stores and engines
(also referred to as reasoners) that allow inference over triples.

5.4.1 Languages

We first describe languages that are mainly used to describe the schema
of an ontology. These allow expressing constraints for the facts of a
knowledge base, for example, that a child cannot be born before its
parents. This also allows inference, but, broadly speaking, with a focus
on taxonomic problems.

RDF Schema [RDFS, 2008] is an extension of the basic RDF vocab-
ulary. RDFS defines a set of classes and properties expressed in RDF,
that provides basic features for describing the schema of an ontology.
For example, using the RDFS elements rdfs:Class and rdfs:subClassOf
allows declaring a hierarchy of classes. This allows inferring missing
information, such as deriving missing class memberships based on the
defined class hierarchy. For example, one might derive that Buzz Aldrin
is a person from the fact that he is an astronaut and the definition that
astronaut is a sub-class of person.

The Web Ontology Language [OWL, 2004] is a family of languages
(OWL Lite, OWL DL, OWL Full) with different levels of expressive-
ness to describe ontologies. OWL is the successor of DAML+OIL. Like
RDFS, OWL is used to describe the schema and semantics of an ontol-

236

5.4. Inference 245

ogy, but with a much larger vocabulary and more options. For exam-
ple, it allows defining class equivalences and cardinality of predicates.
A prominent artifact of OWL is the owl:sameAs predicate, which is
used to link identical instances. OWL also allows expressing transitive
and inverse relationships enabling more complex inference.

The OWL 2Web Ontology Language [OWL 2, 2012] is the successor
of OWL. It extends OWL (and is backwards compatible) by addressing
some shortcomings in expressiveness, syntax, and other issues [Grau et
al., 2008]. Like OWL, it consists of a family of sub-languages (OWL
2 EL, OWL 2 QL, OWL 2 RL) also called profiles. These trade some
of their expressive power for more efficient reasoning and inference.
OWL 2 RL and QL are considered appropriate for inference with large
volumes of data.

Next, we describe three prominent languages, whose single purpose
is the description of inference rules. They allow expressing rules that
are either hard or impossible to define in the languages above.

The Rule Markup Language [RuleML, 2001] was defined by the Rule
Markup Initiative, a non-profit organization with members of academia
and industry. It is XML based and (in contrast to many other lan-
guages) allows reasoning over n-ary relations. RuleML has provided
input to SWRL as well as RIF (see below).

The Semantic Web Rule Language [SWRL, 2004] uses a subset of
OWL DL and RuleML. It extends the syntax of OWL but is more
expressive than OWL alone.

The Rule Interchange Format [RIF, 2010] was designed primarily
to facilitate rule exchange. It consists of three different dialects: Core,
Basic Logic Dialect (BLD), and Production Rule Dialect (PRD). RIF
is an XML language and specified to be compatible with OWL and
RDF. It also covers most features of SWRL.

5.4.2 Inference Engines

Most triple stores or RDF frameworks include a reasoning component.
We introduce a few prominent examples and describe their features.

A widely used benchmark for evaluating OWL reasoners is the
Leigh University Benchmark (LUBM) [Guo, Pan, and Heflin, 2005].

237

246 Advanced Techniques used for Semantic Search

It measures, besides other things, performance and soundness of in-
ference capabilities. The University Ontology Benchmark (UOBM) is
an extension thereof, focusing on a better evaluation of inference and
scalability [Ma et al., 2006]. Because results change frequently with
different hardware and software versions, we don’t provide them here.
Current results are usually available via, e.g., http://www.w3.org/
wiki/RdfStoreBenchmarking or the provider of the triple store.

We already introduced the triple stores of Virtuoso, Jena, and
Sesame in Section 4.2 on Structured Search in Knowledge Bases. Virtu-
oso also includes an inference engine that is able to reason on a subset
of the OWL standard (e.g., owl:sameAs, owl:subClassOf).

The triple store of Jena, TDB, also supports OWL and RDFS on-
tologies. It comes with a set of inference engines for RDFS and OWL
definitions as well as custom rules. An API allows integration of third-
party or custom reasoners.

Sesame includes a memory and disk-based RDF store. It provides
inference engines for RDFS and custom rules. Additional reasoners can
be integrated via an API.

GraphDB3, formerly OWLIM, is a product by OntoText, also avail-
able as a free version. It includes a triple store, an inference engine, and
a SPARQL query engine. GraphDB can be plugged into Sesame to pro-
vide a storage and inference back end. It can reason over RDFS, (most
of) SWRL, and several OWL dialects (including OWL-2 RL).

Pellet [Sirin et al., 2007] is an open source OWL 2 reasoner written
in Java. It can be integrated with different Frameworks, for example,
Apache Jena. Pellet supports OWL 2 as well as SWRL rules.

OpenCyc4 is a knowledge base platform developed by Cyc. It pro-
vides access to an ontology containing common sense knowledge and
includes an inference engine. The inference engine is able to perform
general logical deduction. OpenCyc uses its own rule language CycL,
which is based on first-order logic.

3http://www.ontotext.com/products/ontotext-graphdb/
4http://www.cyc.com/platform/opencyc/

238

6
The Future of Semantic Search

In this final section, let us briefly review the present state of the art in
semantic search, and let us then dare to take a look into the near and
not so near future. Naturally, the further we look into the future, the
more speculative we are. Time will tell how far we were off.

6.1 The Present

Let us quickly review the best results on the latest benchmarks from
the various subsections of our main Section 4: an nDCG@20 of about
30% for keyword search on a large web-scale corpus (Section 4.1); an
F1 score of around 40% for filling the slots of a given knowledge base
from a given text corpus (Section 4.3); a MAP score of around 25% for
keyword search on a large knowledge base (Section 4.4); an nDCGD@R
of about 30% for entity keyword search on a large web-scale corpus
(Section 4.5); an nDCG of about 50% for semi-structured search on
an annotated Wikipedia corpus (Section 4.6); an F1 score of around
50% for natural-language list questions on text (Section 4.7); an F1
score of around 50% for natural language questions on a knowledge
base (Section 4.8); and a similar score for the same kind of questions
on combined data (Section 4.9).

247

239

248 The Future of Semantic Search

The results for the basic NLP benchmarks are in a similar league
(considering that the tasks are simpler): an F1 score of around 75% for
large-scale named-entity recognition and disambiguation (Section 3.2),
a weighted F1 score (called Freval) of around 55% for sentence parsing
(Section 3.3), and an accuracy of about 70% for word analogy using
word vectors (Section 3.4).

These are solid results on a wide array of complex tasks, based
on decades of intensive research. But they are far from perfect. In
particular, they are far from what humans could achieve with their
level of understanding, if they had sufficient time to search or process
the data.

Let us look at three state-of-the-art systems for the scenarios from
the last three subsections of Section 4: PowerAnswer (Section 4.7),
Wolfram Alpha (Section 4.8), and Watson (Section 4.9). It is no coin-
cidence that these systems share the following characteristics: (1) the
main components are based on standard techniques that have been
known for a long time, (2) the components are very carefully engi-
neered and combined together, and (3) the “intelligence” of the system
lies in the selection of these components and their careful engineering
and combination.1 It appears that using the latest invention for a par-
ticular sub-problem does not necessarily improve the overall quality for
a complex task; very careful engineering is more important. See also
the critical discussion at the end of Section 4.1.

The Semantic Web, envisioned fifteen years ago, now exists, but
plays a rather marginal role in semantic search so far. It is employed
in some very useful basic services, like an e-commerce site telling a
search robot about the basic features of its products in a structured
way. But the Semantic Web is nowhere near its envisioned potential (of
providing explicit semantic information for a representative portion of
the Web). Results on benchmarks that use real semantic web data are
among the weakest reported in our main Section 4.

Machine learning plays an important role in making the current
systems better, mostly by learning the best combination of features

1The same can probably be said about a search engine like Google. The details
are not published, but telling from the search experience this is very likely so.

240

6.2. The Near Future 249

(many of which have been used in rule-based or manually tuned sys-
tems before) automatically. Important sources of training data are past
user interactions (in particular, clickthrough data), crowdsourcing (to
produce larger amounts of training data explicitly, using a large human
task force), and huge unlabelled text corpora (which can be used for
distant supervision). The results achieved with these approaches con-
sistently outperform previous rule-based or manually tuned approaches
by a few percent, but also not more. Also note that this is a relatively
simple kind of learning, compared to what is probably needed to “break
the barrier”, as discussed in Section 6.3 below.

Interestingly, modern web search engines like Google provide a
much better user experience than what is suggested by the rather
mediocre figures summarized above. In fact, web search has improved
dramatically over the last fifteen years. We see three major reasons
for this. First, the user experience in web search is mainly a matter of
high precision, whereas the results above consider recall as well. Second,
web search engines have steadily picked up and engineered to perfection
the standard techniques over the years (including basic techniques like
error correction, but also advanced techniques like learning from click-
through data, which especially helps popular queries). Third, a rather
trivial but major contributing factor is the vastly increased amount of
content. The number of web pages indexed by Google has increased
from 1 billion in 2000 to an estimated 50 billion in 2015 (selected from
over 1 trillion URLs). For many questions that humans have, there
is now a website with an answer to that question or a slight variant
of it, for example: Stack Overflow (programming) or Quora (general
questions about life). Social platforms like Twitter or Reddit provide
enormous amounts of informative contents, too.

6.2 The Near Future

Over the next years, semantic search (along the lines of the systems
we have described in Section 4) will mature further. The already large
amount of text will grow steadily. The amount of data in knowledge
bases will grow a lot compared to now.

241

250 The Future of Semantic Search

Knowledge bases will be fed more and more with structured data
extracted from the ever-growing amount of text. The basic techniques
will be essentially those described in Section 4.3, but elaborated fur-
ther, applied more intelligently, and on more and more data with faster
and faster machines. This extraction will be driven by learning-based
methods, based on the basic NLP methods explained in Section 3. Data
from user interaction will continue to provide valuable training data.
Data from the Semantic Web might provide important training infor-
mation, too (either directly or via distant supervision).

The combination of information from text and from knowledge
bases will become more important. The current state of the art in sys-
tems like Watson or Google Search is that the text and the knowledge
base are processed in separate subsystems (often with the knowledge
base being the junior partner), which are then combined post hoc in
a rather simple way. The two data types, and hence also the systems
using them, will grow together more and more. Large-scale annotation
datasets like FACC (see Table 2.3) and the systems described in Sec-
tion 4.6 on Semi-Structured Search on Combined Data already go in
that direction. The meager contents of Section 4.9 on Question An-
swering on Combined Data show that research in this area is only just
beginning. We will see much more in this direction, in research as well
as in the large commercial systems.

6.3 The Not So Near Future

The development as described so far is bound to hit a barrier. That
barrier is an actual understanding of the meaning of the information
that is being sought. We said in our introduction that semantic search
is search with meaning. But somewhat ironically, all the techniques
that are in use today (and which we described in this survey) merely
simulate an understanding of this meaning, and they simulate it rather
primitively.

One might hope that with a more and more refined such “simula-
tion”, systems based on such techniques might converge towards some-
thing that could be called real understanding. But that is not how
progress has turned out in other application areas, notably: speech

242

6.3. The Not So Near Future 251

recognition (given the raw audio signal, decode the words that were
uttered), image classification (given the raw pixels of an image, recog-
nize the objects in it), and game play (beat Lee Sedol, a grandmaster of
Go). Past research in all these areas was characterized by approaches
that more or less explicitly “simulate” human strategy, and in all these
approaches eventually major progress was made by deep neural net-
works that learned good “strategies” themselves, using only low-level
features, a large number of training examples, and an even larger num-
ber of self-generated training examples (via distant supervision on huge
amounts of unlabelled data or some sort of “self play”).

Natural language processing will have to come to a similar point,
where machines can compute rich semantic representations of a given
text themselves, without an explicit strategy prescribed by humans. It
seems that the defining characteristics of such representations are clear
already now: (1) they have to be so rich as to capture all the facets of
meaning in a human sense (that is, not just POS tags and entities and
grammar, but also what the whole text is actually “about”); (2) they
have to be hierarchical, with the lower levels of these representations
being useful (and learnable) across many diverse tasks, and the higher
levels building on the lower ones; (3) they are relatively easy to use, but
impossible to understand in a way that a set of rules can be understood;
(4) neither the representation nor the particular kind of hierarchy has
to be similar to the representation and hierarchy used by human brains
for the task of natural language processing.

The defining properties might be clear, but we are nowhere near
building such systems yet. Natural language understanding is just so
much more multifaceted than the problems above (speech recognition,
image classification, game play). In particular, natural language is much
more complex and requires a profound knowledge about the world on
many levels (from very mundane to very abstract). A representation
like word vectors (Section 3.4) seems to go in the right direction, but
can at best be one component on the lowest level. The rest is basically
still all missing.

Once we come near such self-learned rich semantic representations,
the above-mentioned barrier will break and we will be converging to-

243

252 The Future of Semantic Search

wards true semantic search. Eventually, we can then feed this survey
into such a system and ask: Has the goal described in the final section
been achieved? And the answer will not be: I did not understand ‘final
section’. But: Yes, apparently ;-)

244

Acknowledgements

We are very grateful to the three anonymous referees for their inspiring
and thorough feedback, which has improved both the contents and the
presentation of this survey considerably. And a very warm thank you
to our non-anonymous editor, Doug Oard, for his infinite patience and
tireless support on all levels.

253

245

Appendices

A Datasets

AQUAINT (2002). Linguistic Data Consortium, http : / / catalog . ldc .
upenn.edu/LDC2002T31.

AQUAINT2 (2008). Linguistic Data Consortium, http : / / catalog . ldc .
upenn.edu/LDC2008T25.

Blogs06 (2006). Introduced by [Macdonald and Ounis, 2006], http://ir.
dcs.gla.ac.uk/test_collections/blog06info.html.

BTC (2009). Andreas Harth, the Billion Triples Challenge data set, http:
//km.aifb.kit.edu/projects/btc-2009.

BTC (2010). Andreas Harth, the Billion Triples Challenge data set, http:
//km.aifb.kit.edu/projects/btc-2010.

BTC (2012). Andreas Harth, the Billion Triples Challenge data set, http:
//km.aifb.kit.edu/projects/btc-2012.

ClueWeb (2009). Lemur Project, http://lemurproject.org/clueweb09.
ClueWeb (2012). Lemur Projekt, http://lemurproject.org/clueweb12.
ClueWeb09 FACC (2013). Evgeniy Gabrilovich, Michael Ringgaard, and

Amarnag Subramanya. FACC1: Freebase annotation of ClueWeb corpora,
Version 1 (Release date 2013-06-26, Format version 1, Correction level 0),
http://lemurproject.org/clueweb09/FACC1.

ClueWeb12 FACC (2013). Evgeniy Gabrilovich, Michael Ringgaard, and
Amarnag Subramanya. FACC1: Freebase annotation of ClueWeb corpora,
Version 1 (Release date 2013-06-26, Format version 1, Correction level 0),
http://lemurproject.org/clueweb12/FACC1.

254

246

255

CommonCrawl (2007). Retrieved from http://commoncrawl.org, December
2014.

CrossWikis (2012). Introduced by [Spitkovsky and Chang, 2012], http://
nlp.stanford.edu/data/crosswikis-data.tar.bz2.

DBpedia (2007). Introduced by [Lehmann, Isele, Jakob, Jentzsch, Kon-
tokostas, Mendes, Hellmann, Morsey, Kleef, Auer, and Bizer, 2015]. Re-
trieved from http://dbpedia.org, Feburary 2014. Statistics taken from
http://wiki.dbpedia.org/about, January 2016.

FAKBA1 (2015). Jeffrey Dalton, John R. Frank, Evgeniy Gabrilovich, Michael
Ringgaard, and Amarnag Subramanya. FAKBA1: Freebase annotation of
TREC KBA Stream Corpus, Version 1 (Release date 2015-01-26, Format
version 1, Correction level 0), http://trec-kba.org/data/fakba1.

Freebase (2007). Introduced by [Bollacker, Evans, Paritosh, Sturge, and Tay-
lor, 2008]. Retrieved from http://www.freebase.com, January 2016.
Statistics taken from http://www.freebase.com, January 2016.

GeoNames (2006). Retrieved from http://www.geonames.org, December
2014. Statistics taken from http : / / www . geonames . org / ontology /
documentation.html, January 2016.

MusicBrainz (2003). Retrieved from http://linkedbrainz.org/rdf/dumps/
20150326/, March 2015. Statistics taken by counting items in the down-
loaded dataset.

Paralex (2013). Introduced by [Fader, Zettlemoyer, and Etzioni, 2013], http:
//openie.cs.washington.edu.

Patty (2013). Introduced by [Nakashole, Weikum, and Suchanek, 2012], http:
//www.mpi-inf.mpg.de/yago-naga/patty.

Penn Treebank-2 (1995). Introduced by [Marcus, Santorini, and
Marcinkiewicz, 1993], https://catalog.ldc.upenn.edu/LDC95T7.

Penn Treebank-3 (1999). Introduced by [Marcus, Santorini, and
Marcinkiewicz, 1993], https://catalog.ldc.upenn.edu/LDC99T42.

Stream Corpus (2014). TREC Knowledge Base Acceleration Track, http:
//trec-kba.org/kba-stream-corpus-2014.shtml.

UniProt (2003). Retrieved from http : / / www . uniprot . org/, July 2014.
Statistics taken from http://sparql.uniprot.org/.well-known/void,
January 2016.

WDC (2012). Retrieved from http://webdatacommons.org, November 2013.

247

256 Appendices

Wikidata (2012). Retrieved from http : / / www . wikidata . org / wiki /
Wikidata : Database _ download, October 2014. Statistics taken from
https://tools.wmflabs.org/wikidata- todo/stats.php, January
2016.

Wikipedia LOD (2012). Introduced by [Wang, Kamps, Camps, Marx, Schuth,
Theobald, Gurajada, and Mishra, 2012], http://inex-lod.mpi-inf.
mpg.de/2013.

YAGO (2007). Introduced by [Suchanek, Kasneci, and Weikum, 2007]. Re-
trieved from http : / / yago - knowledge . org, October 2009. Statistics
taken from http://www.mpi-inf.mpg.de/departments/databases-
and - information - systems / research / yago - naga / yago / archive/,
January 2016.

YAGO2s (2011). Introduced by [Hoffart, Suchanek, Berberich, Lewis-Kelham,
Melo, and Weikum, 2011]. Retrieved from http://yago-knowledge.org,
December 2012. Statistics taken from [Hoffart, Suchanek, Berberich, and
Weikum, 2013].

B Standards

FOAF (2000). Friend of a Friend, www.foaf-project.org.
OWL (2004). OWL Web Ontology Language, http://www.w3.org/TR/owl-

features.
OWL 2 (2012). OWL 2 Web Ontology Language, http://www.w3.org/TR/

owl2-overview.
R2RML (2012). RDB to RDF Mapping Language, Suite of W3C Recommen-

dations, http://www.w3.org/TR/r2rml.
RDFS (2008). RDF Schema, http://www.w3.org/TR/rdf-schema.
RIF (2010). Rule Interchange Format, http : / / www . w3 . org / TR / rif -

overview.
RuleML (2001). Rule Markup Language, http://ruleml.org/1.0.
Schema.org (2011). Google, Yahoo, Microsoft, Yandex, http://schema.org.
SPARQL (2008). Query Language for RDF, W3C Recommendation, http:

//www.w3.org/TR/rdf-sparql-query.
SQL (1986). Structured Query Language.
SWRL (2004). A Semantic Web Rule Language, http : / / www . w3 . org /

Submission/SWRL.

248

References

Abadi, D., P. Boncz, S. Harizopoulus, S. Idreos, and S. Madden (2013). The
design and implementation of modern column-oriented database systems.
In: Foundations and Trends in Databases 5.3, pp. 197–280.

Agarwal, A., S. Chakrabarti, and S. Aggarwal (2006). Learning to rank net-
worked entities. In: KDD, pp. 14–23.

Agrawal, S., S. Chaudhuri, and G. Das (2002). DBXplorer: enabling keyword
search over relational databases. In: SIGMOD, p. 627.

Angeli, G., S. Gupta, M. Jose, C. D. Manning, C. Ré, J. Tibshirani, J. Y.
Wu, S. Wu, and C. Zhang (2014). Stanford’s 2014 slot filling systems. In:
TAC-KBP.

Arasu, A. and H. Garcia-Molina (2003). Extracting structured data from web
pages. In: SIGMOD, pp. 337–348.

Armstrong, T. G., A. Moffat, W. Webber, and J. Zobel (2009a). Has adhoc
retrieval improved since 1994? In: SIGIR, pp. 692–693.

Armstrong, T. G., A. Moffat, W. Webber, and J. Zobel (2009b). Improvements
that don’t add up: ad-hoc retrieval results since 1998. In: CIKM , pp. 601–
610.

Auer, S., C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives
(2007). DBpedia: a nucleus for a web of open data. In: ISWC/ASWC ,
pp. 722–735.

Balakrishnan, S., A. Halevy, B. Harb, H. Lee, J. Madhavan, A. Rostamizadeh,
W. Shen, K. Wilder, F. Wu, and C. Yu (2015). Applying WebTables in
practice. In: CIDR.

257

249

258 References

Balmin, A., V. Hristidis, and Y. Papakonstantinou (2004). ObjectRank:
authority-based keyword search in databases. In: VLDB, pp. 564–575.

Balog, K. and R. Neumayer (2013). A test collection for entity search in
DBpedia. In: SIGIR, pp. 737–740.

Balog, K., P. Serdyukov, and A. P. de Vries (2010). Overview of the TREC
2010 Entity Track. In: TREC .

Balog, K., P. Serdyukov, and A. P. de Vries (2011). Overview of the TREC
2011 Entity Track. In: TREC .

Balog, K., A. P. de Vries, P. Serdyukov, P. Thomas, and T. Westerveld (2009).
Overview of the TREC 2009 Entity Track. In: TREC .

Balog, K., Y. Fang, M. de Rijke, P. Serdyukov, and L. Si (2012). Exper-
tise retrieval. In: Foundations and Trends in Information Retrieval 6.2-3,
pp. 127–256.

Banko, M., M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni
(2007). Open information extraction from the Web. In: IJCAI , pp. 2670–
2676.

Bast, H. and I. Weber (2006). Type less, find more: fast autocompletion search
with a succinct index. In: SIGIR, pp. 364–371.

Bast, H., A. Chitea, F. M. Suchanek, and I. Weber (2007). ESTER: efficient
search on text, entities, and relations. In: SIGIR, pp. 671–678.

Bast, H. and B. Buchhold (2013). An index for efficient semantic full-text
search. In: CIKM , pp. 369–378.

Bast, H., B. Buchhold, and E. Haussmann (2015). Relevance scores for triples
from type-like relations. In: SIGIR, pp. 243–252.

Bast, H. and E. Haussmann (2013). Open information extraction via contex-
tual sentence decomposition. In: ICSC , pp. 154–159.

Bast, H. and E. Haussmann (2014). More informative open information ex-
traction via simple inference. In: ECIR, pp. 585–590.

Bast, H. and E. Haussmann (2015). More accurate question answering on
Freebase. In: CIKM , pp. 1431–1440.

Bast, H., F. Bäurle, B. Buchhold, and E. Haussmann (2012). Broccoli: seman-
tic full-text search at your fingertips. In: CoRR abs/1207.2615.

Bast, H., F. Bäurle, B. Buchhold, and E. Haußmann (2014a). Easy access to
the Freebase dataset. In: WWW , pp. 95–98.

Bast, H., F. Bäurle, B. Buchhold, and E. Haußmann (2014b). Semantic full-
text search with Broccoli. In: SIGIR, pp. 1265–1266.

250

259

Bastings, J. and K. Sima’an (2014). All fragments count in parser evaluation.
In: LREC , pp. 78–82.

Berant, J. and P. Liang (2014). Semantic parsing via paraphrasing. In: ACL,
pp. 1415–1425.

Berant, J., A. Chou, R. Frostig, and P. Liang (2013a). Semantic parsing on
freebase from question-answer pairs. In: EMNLP, pp. 1533–1544.

Berant, J., A. Chou, R. Frostig, and P. Liang (2013b). The WebQuestions
Benchmark. In: Introduced by [Berant, Chou, Frostig, and Liang, 2013a].

Bhalotia, G., A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan (2002).
Keyword searching and browsing in databases using BANKS. In: ICDE ,
pp. 431–440.

Bizer, C. and A. Schultz (2009). The Berlin SPARQL Benchmark. In: IJSWIS
5.2, pp. 1–24.

Blanco, R., P. Mika, and S. Vigna (2011). Effective and efficient entity search
in RDF data. In: ISWC , pp. 83–97.

Blanco, R., H. Halpin, D. M. Herzig, P. Mika, J. Pound, H. S. Thompson, and
D. T. Tran (2011). Entity search evaluation over structured web data. In:
SIGIR-EOS . Vol. 2011.

Bleiholder, J. and F. Naumann (2008). Data fusion. In: ACM Comput. Surv.
41.1, 1:1–1:41.

Boldi, P. and S. Vigna (2005). MG4J at TREC 2005. In: TREC .
Bollacker, K. D., C. Evans, P. Paritosh, T. Sturge, and J. Taylor (2008).

Freebase: a collaboratively created graph database for structuring human
knowledge. In: SIGMOD, pp. 1247–1250.

Bordes, A., S. Chopra, and J. Weston (2014). Question answering with sub-
graph embeddings. In: CoRR abs/1406.3676.

Bordes, A. and E. Gabrilovich (2015). Constructing and mining web-scale
knowledge graphs: WWW 2015 tutorial. In: WWW , p. 1523.

Broekstra, J., A. Kampman, and F. van Harmelen (2002). Sesame: a generic
architecture for storing and querying RDF and RDF schema. In: ISWC ,
pp. 54–68.

Bruijn, J. de, M. Ehrig, C. Feier, F. Martín-Recuerda, F. Scharffe, and M.
Weiten (2006). Ontology mediation, merging and aligning. In: Semantic
Web Technologies, pp. 95–113.

Bruni, E., N. Tran, and M. Baroni (2014). Multimodal Distributional Seman-
tics. In: JAIR 49, pp. 1–47.

251

260 References

Cafarella, M., A. Halevy, D. Wang, E. Wu, and Y. Zhang (2008). WebTables:
exploring the power of tables on the web. In: PVLDB 1.1, pp. 538–549.

Cai, Q. and A. Yates (2013). Large-scale semantic parsing via schema match-
ing and lexicon extension. In: ACL, pp. 423–433.

Carlson, A., J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M. Mitchell
(2010). Toward an architecture for never-ending language learning. In:
AAAI , pp. 1306–1313.

Carmel, D., M.-W. Chang, E. Gabrilovich, B.-J. P. Hsu, and K. Wang (2014).
ERD’14: entity recognition and disambiguation challenge. In: SIGIR,
p. 1292.

Castano, S., A. Ferrara, S. Montanelli, and G. Varese (2011). Ontology and
instance matching. In: Knowledge-Driven Multimedia Information Extrac-
tion and Ontology Evolution, pp. 167–195.

Charniak, E. (2000). A maximum-entropy-inspired parser. In: ANLP, pp. 132–
139.

Chen, D. and C. D. Manning (2014). A fast and accurate dependency parser
using neural networks. In: ACL, pp. 740–750.

Cheng, G., W. Ge, and Y. Qu (2008). Falcons: searching and browsing entities
on the semantic web. In: WWW , pp. 1101–1102.

Choi, J. D., J. R. Tetreault, and A. Stent (2015). It depends: dependency
parser comparison using a web-based evaluation tool. In: ACL, pp. 387–
396.

Cimiano, P., V. Lopez, C. Unger, E. Cabrio, A.-C. N. Ngomo, and S. Walter
(2013). Multilingual question answering over linked data (QALD-3): lab
overview. In: CLEF , pp. 321–332.

Coffman, J. and A. C. Weaver (2010). A framework for evaluating database
keyword search strategies. In: CIKM , pp. 729–738.

Coffman, J. and A. C. Weaver (2014). An empirical performance evaluation
of relational keyword search techniques. In: TKDE 26.1, pp. 30–42.

Cornolti, M., P. Ferragina, M. Ciaramita, H. Schütze, and S. Rüd (2014).
The SMAPH system for query entity recognition and disambiguation. In:
ERD, pp. 25–30.

Corro, L. D. and R. Gemulla (2013). ClausIE: clause-based open information
extraction. In: WWW , pp. 355–366.

Craven, M., D. DiPasquo, D. Freitag, A. McCallum, T. M. Mitchell, K. Nigam,
and S. Slattery (1998). Learning to extract symbolic knowledge from the
world wide web. In: AAAI , pp. 509–516.

252

261

Cucerzan, S. (2012). The MSR system for entity linking at TAC 2012. In:
TAC .

Cucerzan, S. (2007). Large-scale named entity disambiguation based on
Wikipedia data. In: EMNLP-CoNLL, pp. 708–716.

Cucerzan, S. (2014). Name entities made obvious: the participation in the
ERD 2014 evaluation. In: ERD, pp. 95–100.

Dang, H. T., D. Kelly, and J. J. Lin (2007). Overview of the TREC 2007
Question Answering Track. In: TREC .

Dang, H. T., J. J. Lin, and D. Kelly (2006). Overview of the TREC 2006
Question Answering Track. In: TREC .

Delbru, R., S. Campinas, and G. Tummarello (2012). Searching web data: An
entity retrieval and high-performance indexing model. In: J. Web Sem.
10, pp. 33–58.

Dill, S., N. Eiron, D. Gibson, D. Gruhl, R. V. Guha, A. Jhingran, T. Kanungo,
K. S. McCurley, S. Rajagopalan, A. Tomkins, J. A. Tomlin, and J. Y. Zien
(2003). A case for automated large-scale semantic annotation. In: J. Web
Sem. 1.1, pp. 115–132.

Ding, L., T. W. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari,
V. Doshi, and J. Sachs (2004). Swoogle: a search and metadata engine for
the semantic web. In: CIKM , pp. 652–659.

Doan, A. and A. Y. Halevy (2005). Semantic integration research in the
database community: a brief survey. In: AI Magazine, pp. 83–94.

Dong, X., E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T.
Strohmann, S. Sun, and W. Zhang (2014). Knowledge Vault: a web-scale
approach to probabilistic knowledge fusion. In: KDD, pp. 601–610.

Elbassuoni, S., M. Ramanath, R. Schenkel, M. Sydow, and G. Weikum (2009).
Language-model-based ranking for queries on RDF-graphs. In: CIKM ,
pp. 977–986.

Elliott, B., E. Cheng, C. Thomas-Ogbuji, and Z. M. Özsoyoglu (2009). A
complete translation from SPARQL into efficient SQL. In: IDEAS , pp. 31–
42.

Elmagarmid, A. K., P. G. Ipeirotis, and V. S. Verykios (2007). Duplicate
record detection: a survey. In: TKDE, pp. 1–16.

Etzioni, O., A. Fader, J. Christensen, S. Soderland, and Mausam (2011). Open
information extraction: the second generation. In: IJCAI , pp. 3–10.

253

262 References

Euzenat, J., A. Ferrara, C. Meilicke, J. Pane, F. Scharffe, P. Shvaiko, H. Stuck-
enschmidt, O. Sváb-Zamazal, V. Svátek, and C. dos Santos (2010). Results
of the ontology alignment evaluation initiative 2010. In: OM , pp. 85–117.

Euzenat, J., C. Meilicke, H. Stuckenschmidt, P. Shvaiko, and C. dos Santos
(2011a). Ontology alignment evaluation initiative: six years of experience.
In: J. Data Semantics 15, pp. 158–192.

Euzenat, J., A. Ferrara, W. R. van Hage, L. Hollink, C. Meilicke, A. Nikolov,
D. Ritze, F. Scharffe, P. Shvaiko, H. Stuckenschmidt, O. Sváb-Zamazal,
and C. dos Santos (2011b). Results of the ontology alignment evaluation
initiative 2011. In: OM , pp. 158–192.

Fader, A., S. Soderland, and O. Etzioni (2011). Identifying relations for open
information extraction. In: EMNLP, pp. 1535–1545.

Fader, A., L. S. Zettlemoyer, and O. Etzioni (2013). Paraphrase-driven learn-
ing for open question answering. In: ACL, pp. 1608–1618.

Fang, Y., L. Si, Z. Yu, Y. Xian, and Y. Xu (2009). Entity retrieval with hier-
archical relevance model, exploiting the structure of tables and learning
homepage classifiers. In: TREC .

Ferrucci, D. A., E. W. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyan-
pur, A. Lally, J. W. Murdock, E. Nyberg, J. M. Prager, N. Schlaefer,
and C. A. Welty (2010). Building Watson: An Overview of the DeepQA
Project. In: AI Magazine 31.3, pp. 59–79.

Ferrucci, D. A., A. Levas, S. Bagchi, D. Gondek, and E. T. Mueller (2013).
Watson: Beyond Jeopardy! In: Artif. Intell. 199, pp. 93–105.

Finkel, J. R., T. Grenager, and C. D. Manning (2005). Incorporating non-
local information into information extraction systems by gibbs sampling.
In: ACL, pp. 363–370.

Finkelstein, L., E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman,
and E. Ruppin (2002). Placing search in context: the concept revisited.
In: TOIS 20.1, pp. 116–131.

Frank, J., S. Bauer, M. Kleiman-Weiner, D. Roberts, N. Tripuaneni, C. Zhang,
C. Ré, E. Voorhees, and I. Soboroff (2013). Stream filtering for entity
profile updates for TREC 2013. In: TREC-KBA.

Frank, J., M. Kleiman-Weiner, D. A. Roberts, E. Voorhees, and I. Soboroff
(2014). Evaluating stream filtering for entity profile updates in TREC
2012, 2013, and 2014. In: TREC-KBA.

Frank, J. R., M. Kleiman-Weiner, D. A. Roberts, F. Niu, C. Zhang, C. Ré,
and I. Soboroff (2012). Building an entity-centric stream filtering test
collection for TREC 2012. In: TREC-KBA.

254

263

Franz, T., A. Schultz, S. Sizov, and S. Staab (2009). TripleRank: ranking
semantic web data by tensor decomposition. In: ISWC , pp. 213–228.

Fundel, K., R. Küffner, and R. Zimmer (2007). RelEx - relation extraction
using dependency parse trees. In: Bioinformatics 23.3, pp. 365–371.

Gabrilovich, E. and S. Markovitch (2007). Computing semantic relatedness
using Wikipedia-based Explicit Semantic Analysis. In: IJCAI . Vol. 7,
pp. 1606–1611.

Gaifman, H. (1965). Dependency systems and phrase-structure systems. In:
Information and Control 8.3, pp. 304–337.

Gövert, N., N. Fuhr, M. Lalmas, and G. Kazai (2006). Evaluating the ef-
fectiveness of content-oriented XML retrieval methods. In: Information
Retrieval 9.6, pp. 699–722.

Grau, B. C., I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider, and
U. Sattler (2008). OWL 2: the next step for OWL. In: J. Web Sem. 6.4,
pp. 309–322.

Grau, B. C., Z. Dragisic, K. Eckert, J. Euzenat, A. Ferrara, R. Granada,
V. Ivanova, E. Jiménez-Ruiz, A. O. Kempf, P. Lambrix, A. Nikolov, H.
Paulheim, D. Ritze, F. Scharffe, P. Shvaiko, C. T. dos Santos, and O.
Zamazal (2013). Results of the ontology alignment evaluation initiative
2013. In: OM , pp. 61–100.

Guha, R. V., R. McCool, and E. Miller (2003). Semantic search. In: WWW ,
pp. 700–709.

Guha, R., D. Brickley, and S. MacBeth (2015). Schema.org: evolution of struc-
tured data on the web. In: ACM Queue 13.9, p. 10.

Guo, Y., Z. Pan, and J. Heflin (2005). LUBM: a benchmark for OWL knowl-
edge base systems. In: J. Web Sem. 3, pp. 158–182.

Halpin, H., D. Herzig, P. Mika, R. Blanco, J. Pound, H. Thompson, and D. T.
Tran (2010). Evaluating ad-hoc object retrieval. In: IWEST .

Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text
corpora. In: COLING, pp. 539–545.

Herzig, D. M., P. Mika, R. Blanco, and T. Tran (2013). Federated entity
search using on-the-fly consolidation. In: ISWC , pp. 167–183.

Hill, F., R. Reichart, and A. Korhonen (2015). SimLex-999: Evaluating Se-
mantic Models With (Genuine) Similarity Estimation. In: Computational
Linguistics 41.4, pp. 665–695.

255

264 References

Hoffart, J., F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo, and
G. Weikum (2011). YAGO2: exploring and querying world knowledge in
time, space, context, and many languages. In: WWW , pp. 229–232.

Hoffart, J., F. M. Suchanek, K. Berberich, and G. Weikum (2013). YAGO2:
A spatially and temporally enhanced knowledge base from Wikipedia. In:
Artif. Intell. 194, pp. 28–61.

Hoffmann, R., C. Zhang, X. Ling, L. S. Zettlemoyer, and D. S. Weld (2011).
Knowledge-based weak supervision for information extraction of overlap-
ping relations. In: ACL, pp. 541–550.

Hovy, E. H., M. P. Marcus, M. Palmer, L. A. Ramshaw, and R. M. Weischedel
(2006). OntoNotes: the 90% solution. In: HLT-NAACL, pp. 57–60.

Hristidis, V. and Y. Papakonstantinou (2002). DISCOVER: keyword search
in relational databases. In: VLDB, pp. 670–681.

Hua, W., Z. Wang, H. Wang, K. Zheng, and X. Zhou (2015). Short text
understanding through lexical-semantic analysis. In: ICDE , pp. 495–506.

Ji, H., R. Grishman, and H. T. Dang (2011). Overview of the TAC 2011
Knowledge Base Population Track. In: TAC-KBP.

Ji, H., J. Nothman, and B. Hachey (2014). Overview of TAC-KBP 2014 entity
discovery and linking tasks. In: TAC-KBP.

Ji, H., R. Grishman, H. T. Dang, K. Griffit, and J. Ellisa (2010). Overview of
the TAC 2010 Knowledge Base Population Track. In: TAC-KBP.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In:
KDD, pp. 133–142.

Joshi, M., U. Sawant, and S. Chakrabarti (2014). Knowledge graph and corpus
driven segmentation and answer inference for telegraphic entity-seeking
queries. In: EMNLP, pp. 1104–1114.

Kaptein, R. and J. Kamps (2013). Exploiting the category structure of
Wikipedia for entity ranking. In: Artif. Intell. 194, pp. 111–129.

Katz, B. (1997). Annotating the world wide web using natural language. In:
RIAO, pp. 136–159.

Katz, B., G. C. Borchardt, and S. Felshin (2006). Natural language annota-
tions for question answering. In: FLAIRS , pp. 303–306.

Klein, D. and C. D. Manning (2002). Fast exact inference with a factored
model for natural language parsing. In: NIPS , pp. 3–10.

256

265

Kolomiyets, O. and M. Moens (2011). A survey on question answering tech-
nology from an information retrieval perspective. In: Inf. Sci. 181.24,
pp. 5412–5434.

Köpcke, H. and E. Rahm (2010). Frameworks for entity matching: a compar-
ison. In: DKE, pp. 197–210.

Le, Q. V. and T. Mikolov (2014). Distributed representations of sentences and
documents. In: ICML, pp. 1188–1196.

Lee, D. D. and H. S. Seung (2000). Algorithms for non-negative matrix fac-
torization. In: NIPS , pp. 556–562.

Lehmann, J., R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S.
Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer (2015). DBpedia
- A large-scale, multilingual knowledge base extracted from Wikipedia. In:
Semantic Web 6.2, pp. 167–195.

Lei, Y., V. S. Uren, and E. Motta (2006). SemSearch: a search engine for the
semantic web. In: EKAW , pp. 238–245.

Levy, O. and Y. Goldberg (2014). Neural word embedding as implicit matrix
factorization. In: NIPS , pp. 2177–2185.

Levy, O., Y. Goldberg, and I. Dagan (2015). Improving Distributional Similar-
ity with Lessons Learned from Word Embeddings. In: TACL 3, pp. 211–
225.

Li, G., S. Ji, C. Li, and J. Feng (2009). Efficient type-ahead search on relational
data: a TASTIER approach. In: SIGMOD, pp. 695–706.

Li, H. and J. Xu (2014). Semantic matching in search. In: Foundations and
Trends in Information Retrieval 7.5, pp. 343–469.

Limaye, G., S. Sarawagi, and S. Chakrabarti (2010). Annotating and Search-
ing Web Tables Using Entities, Types and Relationships. In: PVLDB 3.1,
pp. 1338–1347.

Liu, T. (2009). Learning to rank for information retrieval. In: Foundations
and Trends in Information Retrieval 3.3, pp. 225–331.

Lopez, V., V. S. Uren, M. Sabou, and E. Motta (2011a). Is question answering
fit for the Semantic Web?: A survey. In: Semantic Web 2.2, pp. 125–155.

Lopez, V., C. Unger, P. Cimiano, and E. Motta (2011b). Proceedings of the 1st
workshop on question answering over linked data (QALD-1). In: ESWC .

Lopez, V., C. Unger, P. Cimiano, and E. Motta (2012). Interacting with linked
data. In: ESWC-ILD.

257

266 References

Lopez, V., C. Unger, P. Cimiano, and E. Motta (2013). Evaluating question
answering over linked data. In: J. Web Sem. 21, pp. 3–13.

Lund, K. and C. Burgess (1996). Producing high-dimensional semantic spaces
from lexical co-occurrence. In: Behavior research methods, instruments, &
computers 28.2, pp. 203–208.

Luong, T., R. Socher, and C. D. Manning (2013). Better word representations
with recursive neural networks for morphology. In: CoNLL, pp. 104–113.

Ma, L., Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, and S. Liu (2006). Towards a
complete OWL ontology benchmark. In: ESWC , pp. 125–139.

Macdonald, C. and I. Ounis (2006). The TREC Blogs06 collection: Creating
and analysing a blog test collection. In: Department of Computer Science,
University of Glasgow Tech Report TR-2006-224 1, pp. 3–1.

Manning, C. D. (2011). Part-of-speech tagging from 97% to 100%: is it time
for some linguistics? In: CICLING, pp. 171–189.

Manning, C. D., M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D.
McClosky (2014). The Stanford CoreNLP natural language processing
toolkit. In: ACL, pp. 55–60.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz (1993). Building a
large annotated corpus of English: the Penn Treebank. In: Computational
Linguistics 19.2, pp. 313–330.

Mass, Y. and Y. Sagiv (2012). Language models for keyword search over data
graphs. In: WSDM , pp. 363–372.

Mausam, M. Schmitz, S. Soderland, R. Bart, and O. Etzioni (2012). Open lan-
guage learning for information extraction. In: EMNLP-CoNLL, pp. 523–
534.

Mayfield, J., J. Artiles, and H. T. Dang (2012). Overview of the TAC 2012
Knowledge Base Population Track. In: TAC-KBP.

Mayfield, J. and R. Grishman (2015). TAC 2015 Cold Start KBP Track. In:
TAC-KBP.

McClosky, D., E. Charniak, and M. Johnson (2006). Effective self-training for
parsing. In: HLT-NAACL.

Meusel, R., P. Petrovski, and C. Bizer (2014). The WebDataCommons Mi-
crodata, RDFa and Microformat dataset series. In: ISWC , pp. 277–292.

Mikolov, T., W. Yih, and G. Zweig (2013). Linguistic regularities in continuous
space word representations. In: NAACL, pp. 746–751.

258

267

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean (2013a). Dis-
tributed representations of words and phrases and their compositionality.
In: NIPS , pp. 3111–3119.

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013b). Efficient estimation
of word representations in vector space. In: CoRR abs/1301.3781.

Miller, G. A. (1992). WordNet: A Lexical Database for English. In: Commun.
ACM 38, pp. 39–41.

Mintz, M., S. Bills, R. Snow, and D. Jurafsky (2009). Distant supervision
for relation extraction without labeled data. In: ACL/IJCNLP, pp. 1003–
1011.

Mitchell, T. M., W. W. Cohen, E. R. H. Jr., P. P. Talukdar, J. Betteridge,
A. Carlson, B. D. Mishra, M. Gardner, B. Kisiel, J. Krishnamurthy, N.
Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. A. Platanios, A. Ritter,
M. Samadi, B. Settles, R. C. Wang, D. T. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling (2015). Never-ending learning. In:
AAAI , pp. 2302–2310.

Mitkov, R. (2014). Anaphora resolution. Routledge.
Moldovan, D. I., C. Clark, and M. Bowden (2007). Lymba’s PowerAnswer 4

in TREC 2007. In: TREC .
Monahan, S., D. Carpenter, M. Gorelkin, K. Crosby, and M. Brunson (2014).

Populating a knowledge base with entities and events. In: TAC .
Morsey, M., J. Lehmann, S. Auer, and A.-C. N. Ngomo (2011). DBpedia

SPARQL benchmark - performance assessment with real queries on real
data. In: ISWC , pp. 454–469.

Nakashole, N., G. Weikum, and F. M. Suchanek (2012). PATTY: A taxonomy
of relational patterns with semantic types. In: EMNLP, pp. 1135–1145.

Neumann, T. and G. Weikum (2009). Scalable join processing on very large
RDF graphs. In: SIGMOD, pp. 627–640.

Neumann, T. and G. Weikum (2010). The RDF-3X engine for scalable man-
agement of RDF data. In: VLDB J. 19.1, pp. 91–113.

Neumayer, R., K. Balog, and K. Nørvåg (2012). On the modeling of entities
for ad-hoc entity search in the web of data. In: ECIR, pp. 133–145.

Ng, V. (2010). Supervised noun phrase coreference research: the first fifteen
years. In: ACL, pp. 1396–1411.

Nivre, J., J. Hall, S. Kübler, R. T. McDonald, J. Nilsson, S. Riedel, and D.
Yuret (2007). The CoNLL 2007 Shared Task on dependency parsing. In:
EMNLP-CoNLL, pp. 915–932.

259

268 References

Noy, N. F. and M. A. Musen (2000). PROMPT: algorithm and tool for auto-
mated ontology merging and alignment. In: AAAI , pp. 450–455.

Oren, E., R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn, and G. Tum-
marello (2008). Sindice.com: a document-oriented lookup index for open
linked data. In: IJMSO 3.1, pp. 37–52.

Orr, D., A. Subramanya, E. Gabrilovich, and M. Ringgaard (2013). 11 billion
clues in 800 million documents: a web research corpus annotated with
freebase concepts. In: Google Research Blog.

Park, S., S. Kwon, B. Kim, and G. G. Lee (2015). ISOFT at QALD-5: hybrid
question answering system over linked data and text data. In: CLEF .

Pennington, J., R. Socher, and C. D. Manning (2014). Glove: global vectors
for word representation. In: EMNLP, pp. 1532–1543.

Petrov, S. and R. McDonald (2012). Overview of the 2012 shared task on
parsing the web. In: SANCL. Vol. 59.

Pickover, C. A., ed. (2012). This is Watson 56.3–4: IBM Journal of Research
and Development.

Popov, B., A. Kiryakov, D. Ognyanoff, D. Manov, and A. Kirilov (2004). KIM
- a semantic platform for information extraction and retrieval. In: Natural
Language Engineering 10.3-4, pp. 375–392.

Pound, J., P. Mika, and H. Zaragoza (2010). Ad-hoc object retrieval in the
web of data. In: WWW , pp. 771–780.

Pound, J., A. K. Hudek, I. F. Ilyas, and G. E. Weddell (2012). Interpreting
keyword queries over web knowledge bases. In: CIKM , pp. 305–314.

Prager, J. M. (2006). Open-domain question-answering. In: Foundations and
Trends in Information Retrieval 1.2, pp. 91–231.

Qi, Y., Y. Xu, D. Zhang, and W. Xu (2014). BUPT_PRIS at TREC 2014
knowledge base acceleration track. In: TREC .

Radinsky, K., E. Agichtein, E. Gabrilovich, and S. Markovitch (2011). A word
at a time: computing word relatedness using temporal semantic analysis.
In: WWW , pp. 337–346.

Reddy, S., M. Lapata, and M. Steedman (2014). Large-scale Semantic Parsing
without Question-Answer Pairs. In: TACL 2, pp. 377–392.

Riedel, S., L. Yao, and A. McCallum (2010). Modeling relations and their
mentions without labeled text. In: ECML PKDD, pp. 148–163.

Sarawagi, S. (2008). Information Extraction. In: Foundations and Trends in
Databases 1.3, pp. 261–377.

260

269

Schmidt, M., M. Meier, and G. Lausen (2010). Foundations of SPARQL query
optimization. In: ICDT , pp. 4–33.

Schuhmacher, M., L. Dietz, and S. P. Ponzetto (2015). Ranking entities for
web queries through text and knowledge. In: CIKM , pp. 1461–1470.

Shvaiko, P. and J. Euzenat (2013). Ontology matching: state of the art and
future challenges. In: TKDE 25.1, pp. 158–176.

Silvestri, F. (2010). Mining query logs: turning search usage data into knowl-
edge. In: Foundations and Trends in Information Retrieval 4.1-2, pp. 1–
174.

Sirin, E., B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz (2007). Pellet: A
practical OWL-DL reasoner. In: J. Web Sem. 5.2, pp. 51–53.

Socher, R., J. Bauer, C. D. Manning, and A. Y. Ng (2013). Parsing with
compositional vector grammars. In: ACL (1), pp. 455–465.

Spitkovsky, V. I. and A. X. Chang (2012). A cross-lingual dictionary for en-
glish wikipedia concepts. In: LREC , pp. 3168–3175.

Suchanek, F. M., G. Kasneci, and G. Weikum (2007). YAGO: a core of se-
mantic knowledge. In: WWW , pp. 697–706.

Surdeanu, M. (2013). Overview of the TAC 2013 Knowledge Base Population
evaluation: english slot filling and temporal slot filling. In: TAC-KBP.

Surdeanu, M. and H. Ji (2014). Overview of the english slot filling track at
the TAC 2014 Knowledge Base Population evaluation. In: TAC-KBP.

Surdeanu, M., J. Tibshirani, R. Nallapati, and C. D. Manning (2012). Multi-
instance multi-label learning for relation extraction. In: EMNLP-CoNLL,
pp. 455–465.

Tablan, V., K. Bontcheva, I. Roberts, and H. Cunningham (2015). Mímir: An
open-source semantic search framework for interactive information seeking
and discovery. In: J. Web Sem. 30, pp. 52–68.

Tonon, A., G. Demartini, and P. Cudré-Mauroux (2012). Combining in-
verted indices and structured search for ad-hoc object retrieval. In: SIGIR,
pp. 125–134.

Toutanova, K., D. Klein, C. D. Manning, and Y. Singer (2003). Feature-
rich part-of-speech tagging with a cyclic dependency network. In: HLT-
NAACL, pp. 173–180.

Tran, T., H. Wang, and P. Haase (2009). Hermes: data web search on a pay-
as-you-go integration infrastructure. In: J. Web Sem. 7.3, pp. 189–203.

261

270 References

Tran, T., P. Cimiano, S. Rudolph, and R. Studer (2007). Ontology-based in-
terpretation of keywords for semantic search. In: ISWC/ASWC , pp. 523–
536.

Trotman, A., C. L. A. Clarke, I. Ounis, S. Culpepper, M. Cartright, and S.
Geva (2012). Open source information petrieval: a report on the SIGIR
2012 workshop. In: SIGIR Forum 46.2, pp. 95–101.

Unbehauen, J., C. Stadler, and S. Auer (2013). Optimizing SPARQL-to-SQL
rewriting. In: IIWAS , p. 324.

Unger, C., L. Bühmann, J. Lehmann, A. N. Ngomo, D. Gerber, and P.
Cimiano (2012). Template-based question answering over RDF data. In:
WWW , pp. 639–648.

Unger, C., C. Forascu, V. Lopez, A. N. Ngomo, E. Cabrio, P. Cimiano, and S.
Walter (2014). Question answering over linked data (QALD-4). In: CLEF ,
pp. 1172–1180.

Unger, C., C. Forascu, V. Lopez, A. N. Ngomo, E. Cabrio, P. Cimiano, and S.
Walter (2015). Question answering over linked data (QALD-5). In: CLEF .

Voorhees, E. M. (1999). The TREC-8 Question Answering Track Report. In:
TREC .

Voorhees, E. M. (2000). Overview of the TREC-9 Question Answering Track.
In: TREC .

Voorhees, E. M. (2001). Overview of the TREC 2001 Question Answering
Track. In: TREC .

Voorhees, E. M. (2002). Overview of the TREC 2002 Question Answering
Track. In: TREC .

Voorhees, E. M. (2003). Overview of the TREC 2003 Question Answering
Track. In: TREC .

Voorhees, E. M. (2004). Overview of the TREC 2004 Question Answering
Track. In: TREC .

Voorhees, E. M. and H. T. Dang (2005). Overview of the TREC 2005 Question
Answering Track. In: TREC .

Voorhees, E. M. and D. K. Harman (2005). TREC: Experiment and evaluation
in information retrieval. Vol. 63. MIT press Cambridge.

Wang, H., Q. Liu, T. Penin, L. Fu, L. Zhang, T. Tran, Y. Yu, and Y. Pan
(2009). Semplore: A scalable IR approach to search the Web of Data. In:
J. Web Sem. 7.3, pp. 177–188.

262

271

Wang, Q., J. Kamps, G. R. Camps, M. Marx, A. Schuth, M. Theobald, S.
Gurajada, and A. Mishra (2012). Overview of the INEX 2012 Linked
Data Track. In: CLEF .

Wu, S., C. Zhang, F. Wang, and C. Ré (2015). Incremental Knowledge Base
Construction Using DeepDive. In: PVLDB 8.11, pp. 1310–1321.

Xu, K., Y. Feng, and D. Zhao (2014). Answering natural language questions
via phrasal semantic parsing. In: CLEF , pp. 1260–1274.

Yahya, M., K. Berberich, S. Elbassuoni, M. Ramanath, V. Tresp, and G.
Weikum (2012). Natural language questions for the web of data. In:
EMNLP-CoNLL 2012 , pp. 379–390.

Yates, A., M. Banko, M. Broadhead, M. J. Cafarella, O. Etzioni, and S. Soder-
land (2007). TextRunner: open information extraction on the web. In:
HLT-NAACL, pp. 25–26.

Yih, W., M. Chang, X. He, and J. Gao (2015). Semantic parsing via staged
query graph generation: question answering with knowledge base. In:
ACL, pp. 1321–1331.

Yu, J. X., L. Qin, and L. Chang (2010). Keyword search in relational
databases: a survey. In: IEEE Data Eng. Bull. 33.1, pp. 67–78.

Zaragoza, H., N. Craswell, M. J. Taylor, S. Saria, and S. E. Robertson (2004).
Microsoft cambridge at TREC 13: web and hard tracks. In: TREC .

Zelenko, D., C. Aone, and A. Richardella (2003). Kernel methods for relation
extraction. In: Journal of Machine Learning Research 3, pp. 1083–1106.

Zenz, G., X. Zhou, E. Minack, W. Siberski, and W. Nejdl (2009). From key-
words to semantic queries - Incremental query construction on the seman-
tic web. In: J. Web Sem. 7.3, pp. 166–176.

Zhang, C. (2015). DeepDive: A Data Management System for Automatic
Knowledge Base Construction. PhD thesis. University of Wisconsin-
Madison.

Zhiltsov, N., A. Kotov, and F. Nikolaev (2015). Fielded sequential dependence
model for ad-hoc entity retrieval in the web of data. In: SIGIR, pp. 253–
262.

Zhou, G., J. Su, J. Zhang, and M. Zhang (2005). Exploring various knowledge
in relation extraction. In: ACL, pp. 427–434.

Zhou, Q., C. Wang, M. Xiong, H. Wang, and Y. Yu (2007). SPARK: adapting
keyword query to semantic search. In: ISWC/ASWC , pp. 694–707.

263

Broccoli: Semantic Full-Text Search at your Fingertips

Hannah Bast, Florian Bäurle, Björn Buchhold, Elmar Haussmann
Department of Computer Science

University of Freiburg
79110 Freiburg, Germany

{bast,baeurlef,buchholb,haussmann}@informatik.uni-freiburg.de

ABSTRACT
We present Broccoli, a fast and easy-to-use search engine
for what we call semantic full-text search. Semantic full-
text search combines the capabilities of standard full-text
search and ontology search. The search operates on four
kinds of objects: ordinary words (e.g., edible), classes (e.g.,
plants), instances (e.g., Broccoli), and relations (e.g., occurs-
with or native-to). Queries are trees, where nodes are ar-
bitrary bags of these objects, and arcs are relations. The
user interface guides the user in incrementally construct-
ing such trees by instant (search-as-you-type) suggestions of
words, classes, instances, or relations that lead to good hits.
Both standard full-text search and pure ontology search
are included as special cases. In this paper, we describe
the query language of Broccoli, the main idea behind a
new kind of index that enables fast processing of queries
from that language as well as fast query suggestion, the
natural language processing required, and the user inter-
face. We evaluated query times and result quality on the
full version of the English Wikipedia (40 GB XML dump)
combined with the YAGO ontology (26 million facts). We
have implemented a fully functional prototype based on our
ideas and provide a web application to reproduce our qual-
ity experiments. Both are accessible via http://broccoli.

informatik.uni-freiburg.de/repro-corr/ .

1. INTRODUCTION
In this paper, we describe a novel implementation of what

we call semantic full-text search. Semantic full-text search
combines traditional full-text search with structured search
in knowledge databases or ontology search as we call it in
this paper.

In traditional full-text search you type a (typically short)
list of keywords and you get a list of documents containing
some or all of these keywords, hopefully ranked by some no-
tion of relevance to your query. For example, typing broccoli
leaves edible in a web search engine will return lots of web
pages with evidence that broccoli leaves are indeed edible.

In ontology search, you are given a knowledge database
which you can think of as a store of subject-predicate-object
triples. For example, Broccoli is-a plant or Broccoli native-
to Europe. These triples can be thought of to form a graph
of entities (the nodes) and relations (the edges), and ontol-
ogy search allows you to search for subgraphs matching a
given pattern. For example, find all plants that are native
to Europe.

Many queries of a more “semantic” nature require the
combination of both approaches. For example, consider the
query plants with edible leaves and native to Europe, which
will be our running example in this paper. A satisfactory an-
swer for this query requires the combination of two kinds of
information. First, a list of plants native to Europe. This is
hard for full-text search but a showcase for ontology search,
see above. Second, for each plant the information whether
its leaves are edible or not. This kind of information can be
easily found with a full-text search for each plant, see above.
But it is quite unlikely (and unreasonable) to be contained
in an ontology, for reasons explained in Section 2.3.

The basic principle of our combined search is to find con-
textual co-occurrences of the words from the full-text part
of the query with entities matching the ontology part of the
query. Consider the sentence: The stalks of rhubarb are ed-
ible, but its leaves are toxic. Assume for now that we can
recognize entities from the ontology in the full text (we come
back to this in Section 3.2). In this case, the two underlined
words both refer to rhubarb, which our ontology knows is
a plant that is native to Europe. Obviously, this sentence
should not count as evidence that rhubarb leaves are edible.
We handle this by decomposing each sentence into what we
call its contexts: the parts of the sentence that “belong”
together. In this case the stalks of rhubarb are edible and
rhubarb leaves are toxic. An arc from the query tree now
matches if and only if its elements co-occur in one and the
same context.

Figures 1 and 2 show screenshots of our search engine in
action for our example query. The figures and their captions
also explain how the query can be constructed incrementally
in an easy way and without requiring knowledge of a partic-
ular query language on the part of the user. We encourage
the reader to try our online demo that is accessible via http:

//broccoli.informatik.uni-freiburg.de/repro-corr/ .

1

ar
X

iv
:1

20
7.

26
15

v3
 [

cs
.I

R
]

 1
8

Ju
l 2

01
3

264

Words

Cabbage (34)

Broccoli (58)

Lettuce (23)

Instances:

1 - 3 of 421

House plant (17)

Garden plant (24)

Crop (16)

Classes:

1 - 3 of 28

 Broccoli

Ontology: Broccoli

Broccoli: is a plant; native to Europe.

Document: Edible plant stems

The edible portions of Broccoli are the stem tissue, the flower buds, as

well as the leaves.

Cabbage

Ontology: Cabbage

Cabbage: is a plant; native to Europe.

Document: Cabbage

The only part of the plant that is normally eaten is the leafy head.

Your Query:

Plant

occurs-with edible leaves

native-to

Hits: 1 - 2 of 421

Europe

occurs-with <Anything>

Relations:

1 - 3 of 7

cultivated-in <Location>

belongs-to <Plant family>

(67)

(58)

 type here to extend your query …

Figure 1: A screenshot of the final result for our example query. The box on the top right visualizes the
current query as a tree. There is always one node in focus (shown in bold), in this case, the root of the tree.
The large box below shows the hits grouped by instance (of the class from the root node) and ranked by
relevance (if Broccoli is among the hits, we always rank it first). Evidence both from the ontology and the
full text is provided. For the latter, a whole sentence is shown, with parts outside of the matching context
grayed out. With the search field on the top left, the query can be extended further. The four boxes below
provide context-sensitive suggestions that depend on the current focus in the query, here: suggestions for
subclasses of plants, suggestions for instances of plants that lead to a hit, suggestions for relations to further
refine the query. One of the suggestions is always highlighted, in this case the cultivated-in relation. It can
be directly added to extend the query by pressing Return.

1.1 Our contribution
Broccoli supports a subset of SPARQL1 (essentially trees

with a single free variable at the root) for the ontology part
of queries. Moreover, it allows a special occurs-with relation
that can be used to specify co-occurrence of a class (e.g.,
plant) or instance (e.g., Broccoli) with an arbitrary com-
bination of words, instances, and further subqueries. Both
traditional full-text search and pure ontology search are sub-
sumed as special cases. This gives a very powerful query
language. See Section 4 for details.

For the occurs-with relation, we provide a novel kind of
pre-processing that decomposes sentences into contexts of
words that belong together. In particular, this considers
enumerations and sub-clauses. Previous approaches have
used co-occurrence in a whole paragraph or sentence, or
based on word proximity; all of these often give poor re-
sults. See Section 3 for details.

We present the key idea behind a novel kind of index that
supports fully interactive query times of around 100 mil-
liseconds and less for a collection as large as the full English
Wikipedia (40 GB XML dump, 418 million contexts of the
kind just described). Previous approaches, including adap-
tations of the classic inverted index, yield query times on
the order of seconds or even minutes for the kind of queries

1http://www.w3.org/TR/rdf-sparql-query

we support on collections of this size. See Section 2.1 for
related work, and Section 5 for details.

All the described features have been implemented into a
fully functional system with a comfortable user interface.
There is a single search field, as in full-text search, and sug-
gestions are made after each keystroke. This allows the user
to incrementally construct semantic full-text queries without
prior knowledge of a query language. Results are ranked by
relevance and grouped by instance, and displayed together
with context snippets that provide full evidence for why that
particular instance is shown. See Figures 1 and 2 for an ex-
ample, and Section 6 for details.

We provide experimental results on the result quality for
the English Wikipedia combined with the YAGO ontology
[20]. For the quality results, we used 46 Queries from the
SemSearch List Search Track (e.g., Apollo astronauts who
walked on the Moon), 15 queries from the TREC 2009 Entity
Track benchmarks (e.g., Airlines that currently use Boeing
747 planes) and 10 lists from Wikipedia (e.g. List of partic-
ipating nations at the Winter Olympic Games). We allow
reproducing our results at http://broccoli.informatik.

uni-freiburg.de/repro-corr/ . See Section 7 for the de-
tails of our experiments.

We want to remark that the natural language processing,
the index, and the user interface behind Broccoli are com-

2

265

Words:

1 - 3 of 1.377

Plan (drawing) (132)

Plane (geometry) (215)

Planar graph (124)

Entities:

1 - 3 of 535

Planet (12.420)

Plant (16.266)

Plant (building complex) (4.288)

Classes:

1 - 3 of 36

Words:

1 - 3 of 178

Leather (53)

Leaf (81)

Lead (24)

Entities:

1 - 3 of 67

Leader (3.432)

League (5.557)

Learning disorder (53)

Classes:

1 - 3 of 33

Baobab (52)

Broccoli (58)

Alfalfa (17)

Entities:

1 - 3 of 67

House plant (49)

Garden plant (98)

Crop (36)

Classes:

1 - 3 of 47

occurs-with <Anything>

Relations:

1 - 3 of 8

native-to <Location>

cultivated-in <Location>

(97)

(82)

 plant, the CLASS edible leaves native-to, the RELATION

occurs-with

Plant

edible leaves occurs-with

Plant

ANYTHING
No query yet

plans

planned

plants

(61.838)

(60.569)

(56.481)

leaves

leaf

leafy

(4.617)

(1.600)

(264)

Figure 2: Snapshots of the query, search field, and suggestion boxes for three stations in the construction
of our example query. Column 1: At the beginning of the query, after having typed plan. Column 2: After
the class plant has been selected and the occurs-with relation has been added and having typed edible lea.
Column 3: After having selected edible leaves. The focus automatically goes back to the root node.

plex problems each on their own. The contribution of this
paper is the overall design of the system, the basic ideas
for each of the mentioned components, an implementation
of a fully functional prototype based on these ideas, and a
first performance and quality evaluation providing a proof
of concept. Optimization of the various components is the
next step in this line of research; see Section 8.

2. RELATED WORK
Putting the work presented in this paper into context is

hard for two reasons. First, the literature on semantic search
technologies is vast. Second, “semantic” means so many
different things to different researchers. We roughly divide
work in this broad area into four categories, and discuss each
category separately in the following four subsections.

2.1 Combined ontology and full-text search
Ester [7] was the first system to offer efficient combined

full-text and ontology search on a collection as large as the
English Wikipedia. Broccoli improves upon Ester in three
important aspects. First, Ester works with inverted lists
for classes and achieves fast query times only on relatively
simple queries. Second, Ester does not consider contexts
but merely syntactic proximity of words / entities. Third,
Ester’s simplistic user interface was ok for queries with one
relation, but practically unusable for more complex queries.

Various other systems offering combinations of full-text
and ontology search have been proposed. Semplore [22] sup-
ports a query language similar to ours. However, elements
from the ontology are not recognized in their contexts, but

there is simply one piece of text associated with each in-
stance (which would correspond to a single large context in
our setting). Queries are processed with a standard inverted
index , and no particular UI is offered. In Hybrid Search [8],
the full text and the ontology are searched separately with
standard methods (Lucene and Sesame), and then the re-
sults are combined. There is no particular natural language
processing. Concept Search [15] adds information about
identified noun phrases and hyponyms to the index. Queries
are bags of words, which are interpreted semantically. The
query processing uses standard methods (Lucene), with very
long inverted lists for the semantic index items. GoNTogle
[14] combines full text with annotations which are searched
separately and then combined, similarly as in [8]. Queries
are bags of words. There is no full ontology search and no
particular natural language processing. Faceted Wikipedia
Search [16] offers a user interface with similarities to ours.
However, the query language is restricted, there is noth-
ing comparable to our contexts but only a small abstract
per entity like in [22], and query processing is DB-based
and very slow, despite the relatively small amount of data.
SIREN2 provides an integration of pure ontology search into
Lucene. How to combine the then possible full-text and on-
tology searches is up to the user of the framework. Finally,
systems like [23] try to interpret a given keyword query se-
mantically and translate it into a suitable SPARQL query
for pure ontology search.

2http://siren.sindice.com

3

266

2.2 Systems for entity retrieval
Entity retrieval is a line of research which focuses on

search requests and corresponding result lists centered around
entities (instead of around documents, as in traditional search).
Since 2009, there is also a corresponding Entity Track at
TREC3. The tasks of this track are both simpler and harder
than what we aim at in this paper.

They are harder because the overall goal is entity retrieval
from web pages. The ClueWeb09 collection introduced at
TREC 2009 is 25 TB of text. The relative information con-
tent is, however, low as is typical for web contents. More-
over, identifying a representative web page for an entity is
part of the problem.

To make the tasks feasible at all under these circum-
stances, the queries are relatively simple. For example, Air-
lines that currently use Boeing 747 planes.4 Even then the
tasks remain very hard, and, for example, NDCG@R figures
average only around 30% even for the best systems [4].

Broccoli queries can be trees of arbitrary degree and depth.
All entities that have a Wikipedia page are supported. And,
most importantly, the query process is interactive, providing
the user with instant feedback of what is in the collection
and why a particular result appears. This is key for con-
structing queries that give results of high quality.

The price we pay is a more extensive pre-processing as-
suming a certain “cleanliness” of the input collection. Our
natural language processing currently requires around 1600
core hours on the 40 GB XML dump of the English Wikipedia.
And Wikipedia’s rule of linking the first occurrence of an
important entity in an article to the respective Wikipedia
article helps us for an entity recognition of good quality; see
Section 3.2. Bringing Broccoli’s functionality to web search
is a very reasonable next step, but out of scope for this ar-
ticle.

Another popular form of entity retrieval is known as ad-
hoc object retrieval [18]. Here, the search is on structured
data, as discussed in the next subsection. Queries are given
by a sequence of keywords, similar as in full-text search, for
example, doctors in barcelona. Then query interpretation
becomes a non-trivial problem; see Section 2.4.

2.3 Information extraction and ontology search
Systems for ontology search have reached a high level of

sophistication. For example, RDF-3X can answer complex
SPARQL queries on the Barton dataset (50 million triples)
in less than a second on average [17].

As part of the Semantic Web / Linked Open Data [9]
effort, more and more data is explicitly available as fact
triples. The bulk of useful triple data is still harvested from
text documents though. The information extraction tech-
niques employed range from simple parsing of structured
information (for example, many of the relations in YAGO
or DBpedia [2] come from the Wikipedia info boxes) over
pattern matching (e.g., [1]) to complex techniques involv-
ing non-trivial natural language processing like in our paper
(e.g., [5]). For a relatively recent survey, see [19].

Our work differs from this line of research in two impor-
tant aspects: (1) the full text remains part of the index that

3http://ilps.science.uva.nl/trec-entity
4In our framework these are queries with two nodes and one
occurs-with edge.

is searched at query time; and (2) our system is fully inter-
active and keeps the human in the loop in the information
extraction process. This has the following advantage:

Ontologies are good for facts like which plants are native
to which regions, who was born where on which date, etc.
Such facts are easy to define and can be extracted from ex-
isting data sources in large quantity and with reasonable
quality. And once in the ontology, they are easily combin-
able, permitting queries that would not work with full-text
search.

But for more complex facts like our broccoli has edible
leaves, it is the other way round. They are easy to express
and search in full text, but tedious to define, include, and
maintain in an ontology. Let alone the problem of guessing
the right relation names when searching for them.

By keeping the full text, we can leverage the intelligence
of the user at query time. The query Plant occurs-with edi-
ble leaves does not specify the type of the relation between
the occurrence of the plant and the occurrence of the words
edible and leaves. Yet a moment’s thought reveals that it is
quite likely that a context matching these elements gives us
what we want. Similarly as in full-text search, there is often
no need to be overly precise in order to get what you want.
And just like the result snippets in full-text search, Broc-
coli’s result snippets provide instant feedback on whether
the listed plant is really one with edible leaves.

Finally, if information extraction is desired nevertheless,
Broccoli can be a useful tool for interactively exploring the
collection with respect to the desired information, and for
formulating appropriate queries.

2.4 Systems for question answering
Question answering (QA) systems provide similar func-

tionality as our semantic full-text search. The crucial dif-
ference is that questions can be asked in natural language,
which makes the answering part much harder. The system
is burdened with the additional and very complex task of
“translating”, in one way or the other, the given natural
language query into a more formal query or queries that can
be fed to a search engine and / or a knowledge database.

The perfect QA system would obviate the need for a sys-
tem like ours here. But research is still far from achieving
that goal. All state-of-the-art QA systems, including the big
commercial ones, are specialized to quite particular kinds
of questions. For example, Wolfram Alpha works perfectly
for Which cities in China have more than 10 million in-
habitants, but does not work if more is replaced by less or
China by Asia, and does not even understand the question
Which plants have edible leaves. IBM’s Watson was tuned
for finding the single most probable entity when given one of
the (intentionally obscured) clues from the Jeopardy! game.
And both of these systems lack transparency: it is hard to
predict whether a question will be understood correctly, it
is hard to understand the reasons for a missing or wrong
answer, and there is no possibility of interaction or query
refinement.

For our semantic full-text search both the query language
and the relation between a given query and its result are
well-defined and maximally transparent to the user; see the
discussion in Section 2.3. The price we pay is query formu-
lation in a non-natural language. The success of full-text
search has shown that as long as the language is simple
enough, it can work.

4

267

3. INPUT DATA AND NATURAL LANGUAGE
PRE-PROCESSING

3.1 Input data
Broccoli requires two kinds of inputs, a text collection and

an ontology. The text collection consists of documents con-
taining plain text. The ontology consists of typed relations
with each relation containing an arbitrary set of fact triples.
The subjects and objects of the triples are called instances.
Each instance belongs to one or more classes. The classes
are organized in a taxonomy; the root class is called Entity.

3.2 Entity recognition
The first step is to identify mentions of or referrals to

instances from the ontology in the text documents. Consider
the following sentence, which will be our running example
for this section:

(S) The usable parts of rhubarb, a plant from the Polygo-
naceae family, are the medicinally used roots and the edible
stalks, however its leaves are toxic.

Both rhubarb and its refer to the instance Rhubarb from
our ontology, which in turn belongs to the classes Plant and
Vegetable (among others).

Our entity recognition on the English Wikipedia is sim-
plistic but reasonably effective. As a rule, first occurrences of
entities in Wikipedia documents are linked to their Wikipedia
page. When parsing a document, whenever a part or the full
name of that entity is mentioned again in the same section
of the document (for example, Einstein referring to Albert
Einstein), we recognize it as that entity.

We resolve anaphora in an equally simplistic way. Namely,
we assign each occurrence of he, she, it, her, his, etc. to the
last recognized entity of matching gender. We also recognize
the pattern the <class> as the entity of the document if it
belongs to <class>, for example, the plant in the document
of Broccoli.

Our results in Section 7.5 suggest that, on Wikipedia,
these simple procedures give already a reasonable accuracy.

3.3 Natural language processing
The second step is to decompose document texts into what

we call contexts, that is, sets of words that “belong” to-
gether. The contexts for our example sentence (S) from
above are:

(C1) rhubarb, a plant from the Polygonaceae family

(C2) The usable parts of rhubarb are the medicinally used
roots

(C3) The usable parts of rhubarb are the edible stalks

(C4) however rhubarb leaves are toxic

This will be crucial for the quality of our results, because we
do not want to get rhubarb in our answer set when searching
for plants with edible leaves. Note that we assume here that
the entity recognition and anaphora resolution have already
been done (underlined words). Also note that we do not care
whether our contexts are grammatically correct and form a
readable text. This distinguishes our approach from a line
of research called text simplification [12].

In the following, we will only consider contexts that are
part of a single sentence. Indeed, after anaphora resolution,
it seems that most simple facts are expressed within one and
the same sentence. Our evaluation in Section 7.5 confirms
this assumption.

Our context decomposition consists of two parts, each de-
scribed in the following subsections.

3.3.1 Sentence constituent identification (SCI)
The task of SCI is to identify the basic “building blocks”

of a given sentence. For our purposes various kinds of sub-
clauses and enumeration items will be important, because
they usually contain separate facts that have no direct re-
lationship to the other parts of the sentence. For example,
in our sentence (S) from above, the relative clause a plant
from the Polygonaceae family refers to rhubarb but has noth-
ing to do with the rest of the sentence. Similarly, the two
enumeration items the medicinally used roots and the edible
stalks have nothing to do with each other (except that they
both refer to rhubarb); in particular, rhubarb roots are not
edible and rhubarb stalks are not medicinally used. Finally
the part however its leaves are toxic needs to be considered
separate from the preceding part of the sentence. As will
become clear in the following, we consider these as enumer-
ation items on the top level of the sentence.

Formally, SCI computes a tree with three kinds of nodes:
enumeration (ENUM), sub-clause (SUB), and concatenation
(CONC). The leaves contain parts of the sentence and a
concatenation of the leaves from left to right yields the whole
sentence again. See Figure 3 for the SCI tree of the above
sentence.

ENUM

ENUM

CONC

SUB
The usable parts

of rhubarb

a plant from the

Polygonaceae family

are

the medicinally

used roots
the edible stalks

however rhubarb

leaves are toxic

Figure 3: The SCI tree for our example sentence af-
ter anaphora resolution. The head of the sub-clause
is printed in bold.

We construct our SCI trees based on the output of a state-
of-the-art constituent parser. We use SENNA [13], because
of its good trade-off between parse time (around 35ms per
sentence) and result quality (see Section 7.5).

We transform the parse tree using a relatively small set
of hand-crafted rules. Here is a selection of the most im-
portant rules; the complete list consists of only 11 rules but
is omitted here for the sake of brevity. In the following de-
scription when we speak of an NP (noun phrase), VP (verb
phrase), SBAR (subordinate clause), or PP (prepositional
phrase) we refer to nodes in the parse tree with that tag.

(SCI 1) Mark as ENUM each node, for which the children
(excluding punctuation and conjunctions) are either all NP
or all VP.

(SCI 2) Mark as SUB each SBAR. If it starts with a word
from a positive-list (e.g., which or who) define the first NP
on the left as the head of this SUB; this will be used in (SCR
0) below.

5

268

(SCI 3) Mark as SUB each PP starting with a preposition
from a positive-list (e.g., before or while), and all PPs at the
beginning of a sentence. These SUBs have no head.

(SCI 4) Mark as CONC all remaining nodes and contract
away each CONC with only text nodes in its subtree (by
merging the respective text).

As our quality evaluation in Section 7.5 shows, our rules
work reasonably well.

3.3.2 Sentence constituent recombination (SCR)
In SCR we recombine the constituents identified by the

SCI to form our contexts, which will be the units for our
search. Recall that the intuition is to have contexts such
that only those words which “belong” together are in the
same context. SCR recursively computes the following con-
texts from a SCI tree or subtree:

(SCR 0) Take out each subtree labeled SUB. If a head was
defined for it in (SCI 2), add that head as the leftmost child
(but leave it in the SCI tree, too). Then process each such
subtree and the remaining part of the original SCI tree (each
of which then only has ENUM and CONC nodes left) sepa-
rately as follows:

(SCR 1) For a leaf, there is exactly one context: the part of
the sentence stored in that leaf.

(SCR 2a) For an inner node, first recursively compute the
set of contexts for each of its children.

(SCR 2b) If the node is marked ENUM, the set of contexts
for this node is computed as the union of the sets of contexts
of the children.

(SCR 2c) If the node is marked CONC, the set of contexts
for this node is computed as the cross-product of the sets of
contexts of the children.

We remark that once we have the SCI tree, SCR is straight-
forward, and that the time for both SCI + SCR is negligible
compared to the time needed for the full-parse of the sen-
tences.

4. QUERY LANGUAGE
Queries to Broccoli are rooted trees with arcs directed

away from the root. The root is either a class or an instance.
There are two types of arcs: ontology arcs and occurs-with
arcs. Both have a class or instance as source node.

Ontology arcs are labeled by a relation from the ontology.
The two nodes must be classes or instances matching the
source and target type of the relation. The class or instance
at the target node may be the root of another arbitrary tree.

For occurs-with arcs, the target node can be an arbitrary
set of words, prefixes, instances or classes. The instances
or classes may themselves be the root of another arbitrary
query. Example queries are given in Figures 1 and 2.

To give an example of a more complex query: in Figure 1
we could replace the instance node Europe by a class node
Location and add to it an occurs-with arc with the word
equator in its target node. The intention of this query would
be to obtain plants with edible leaves native to regions at or
near the equator.

5. INDEX AND QUERY PROCESSING
The index and query processing of Broccoli are described

in detail in [6]. In this section, we summarize why standard
indexes are not suited for Broccoli and describe the main
idea behind our new index.

There are sophisticated systems for both, full-text search
and search in ontologies. Since our queries combine both
tasks, three ways to answer our queries using those system
come to mind: (1) incorporate ontology information into an
inverted index; (2) incorporate full-text information into a
triple store; (3) use an inverted index for the full-text part
of the query, a triple store for the ontology part of the query,
and then combine the results somehow.

Neither approach is perfectly suited for our use-case. In
a nutshell, approach (1) produces document-centric results
and cannot be used to answer complex queries that involve
join operations. Approach (2) needs a relation (e.g. occurs-
in-context featuring both, words and entities) of the size of
our entire index to make use of the contexts produced in our
contextual sentence decomposition. Efficient queries require
a special purpose index over this relation, which already goes
in the direction of our approach. Finally, approach (3) will
get a list of contexts as a result from the full-text index and
has to derive all entities that occur in those contexts. This
mapping is not trivial to achieve efficiently, especially since
a full mapping from contexts to entities usually does not fit
in memory for large collections. Apart from that, we allow
queries that demand co-occurrence with some entity from a
list that can be the root of another query (e.g. a query for
politicians that are friends with an astronaut who walked
on the moon). This would require a second mapping in the
other direction: from entities to contexts. In summary, the
two problems are: Given a list of contexts C, produce a list
E of entities that occur in those contexts. Given a list of
contexts C and an entity list E, limit C to contexts that
include at least one entity from E.

The main idea behind our new index solves these two
problems. We use what we call context lists instead of stan-
dard inverted lists. The context list for a prefix contains
one index item per occurrence of a word starting with that
prefix, just like the inverted list for that prefix would. But
along with that it also contains one index item for each oc-
currence of an arbitrary entity in the same context as one of
these words. For example, consider the context the usable
parts of rhubarb are its edible stalks, with recognized entities
underlined. And let us assume that we have an inverted list
for each 4-letter prefix. Then the part of the context list
for edib* pertaining to this context (which has id, say, 14)
would be:

edib*:

... C14 C14 C14 ...

... #edible #Rhubarb #Stalk ...

... 1 1 1 ...

... 8 5 9 ...

The numbers in the first row are context ids. The # in the
second row means that not the actual entities (with capital
letters) or words are stored, but rather unique ids for them.
The third row contains the score for each index item. The
fourth row contains the position of the word or entity in
the respective context. The context lists are sorted by con-
text id, and, for equal context ids, by word/entity id, with
entities coming after the words.

6

269

Since entity postings are included in those lists, we can
easily solve the two problems introduced above. Actually,
our index and query processing support many additional
features like excerpt generation, suggestions, prefix search,
search for documents instead of entities or ranges over val-
ues. For details on those features and a detailed description
of the query processing, we again refer the reader to [6].

6. USER INTERFACE
For a convincing proof of concept for our interactive se-

mantic search, we have taken great care to implement a fully
functional and intuitive user interface. In particular, there
is no need for the user to formulate queries in a language
like SPARQL. We claim that any user familiar with full-text
search will learn how to use Broccoli in a short time, simply
by typing a few queries and following the various query sug-
gestions. The user interface is completely written in Java
using the Goole Web Toolkit5.

The introduction and screenshots (Figures 1 and 2) have
already provided a foretaste of the capabilities of our user
interface. Here is a list of its most important further fea-
tures:

(UI 1) Search as you type: New suggestions and results
with every keystroke. Very importantly, Broccoli’s sugges-
tions for words, classes, instances, and relations are context-
sensitive. That is, the displayed suggestions actually lead to
hits, and the more / higher-scored hits they lead to, the
higher they are ranked.

(UI 2) Pre-select of most likely suggestion: Broccoli knows
four kinds of objects: words, classes, instances, and rela-
tions. Depending on where you are in the query construc-
tion, you get suggestions for several of them. A new user
may be overwhelmed to understand the different semantics
of the different boxes. For that reason, after every keystroke
Broccoli highlights the most meaningful suggestion, which
can be selected by simply pressing Return.

(UI 3) Visual query representation: At any time, the current
query is shown as a tree, with a color code for the various
elements that is consistent with the suggestion boxes.

(UI 4) Change of focus / root: A click on any node in the
query tree will change the focus of the query suggestions
to that node. A double-click on any class or instance node
will make that node the root of the tree and re-group and
re-rank the results accordingly.

(UI 5) Full history support: The forward and backward but-
tons of the browser can be used to undo or redo single steps
of the query creation process. Furthermore the current URL
of the interface can always be used to store its current state
or to exchange created queries with others.

(UI 6) Tutorial: Besides some pre-built example queries,
the interface also provides a tutorial mode that shows how
to create a search query step by step.

7. EXPERIMENTS

7.1 Input data
Our text collection is the text from all documents in the

English Wikipedia, obtained via download.wikimedia.org

in January 2013. Some dimensions of this collection: 40 GB

5http://code.google.com/webtoolkit

XML dump, 2.4 billion word occurrences (1.6 billion without
stop-words), 285 million recognized entity occurrences and
200 million sentences which we decompose into 418 million
contexts.

As ontology we use the latest version of YAGO from Oc-
tober 2009. We manually fixed 92 obvious mistakes in the
ontology (for example, the noble prize was a laureate and
hence a person), and added the relation Plant native-in Lo-
cation for demonstration purposes. Altogether our variant
of YAGO contains 2.6 million entities, 19,124 classes, 60 re-
lations, and 26.6 million facts.

7.2 Pre-processing
We use a UIMA6 pipeline to pre-process the Wikipedia

XML. The pipeline includes self-written components to parse
the Wikipedia markup, tokenize text, parse sentences using
SENNA [13], perform entity-recognition and anaphora res-
olution (see section 3.2), and decompose the sentences (see
section 3.3). We want to note that all these components
can easily be exchanged. In principle, this allows Broccoli
to work with any given text collection and ontology.

The full parse with SENNA was scaled out asynchronously
on a cluster of 8 PCs, each equipped with an AMD FX-8150
8-core processor and 16 GB of main memory. A final non-
UIMA component writes the binary index which is kept in
three separate files. The file for the context lists has a size
of 37 GB. The file for the relation lists has a size of 0.5 GB.
And the file for the document excerpts has a size of 276 GB,
which could easily be reduced to 85 GB by eliminating the
redundant and debug information the file currently contains.

7.3 Computing environment
The code for the index building and query processing is

written entirely in C++. The code for the query evalua-
tion is written in Perl, Java, C++ and JavaScript. Our
pre-processing components are written in C++ or Java. All
performance tests were run on a single core of a Dell Pow-
erEdge server with 2 Intel Xeon 2.6 GHz processors, 96 GB
of main memory, and 6x900 GB SAS hard disks configured
as Raid-5.

7.4 Query times
For detailed experiments on query times, we refer to the

paper describing the index behind Broccoli [6]. In said pa-
per, we have evaluated our system on 8,000 queries of differ-
ent complexity and 35,000 suggestions. Therefore we here
omit a detailed breakdown and limit ourselves to the figures
reported in Table 1.

Query set average median 90%ile 99%ile

Hit queries 52ms 23ms 139ms 393ms

Suggestion 19ms 6ms 44ms 193ms

Table 1: Statistics of query times over 8,000 queries
and 35,000 suggestions.

On our collection, 90% of the queries finish within 140ms,
99% within 400ms. Suggestions are even faster. The break-
down in [6] shows that for a combination of Wikipedia and
YAGO, only queries that include text take siginificant time.
Purely ontological queries finish within 2ms on average.

6http://uima.apache.org/

7

270

#FP #FN Precision Recall F1 P@10 R-Prec MAP nDCG

SemSearch
sections 44, 117 92 0.06 0.78 0.09 0.32 0.42 0.44 0.45
sentences 1, 361 119 0.29 0.75 0.35 0.32 0.50 0.49 0.50
contexts 676 139 0.39 0.67 0.43† 0.25 0.52 0.45 0.48

Wikipedia lists
sections 28, 812 354 0.13 0.84 0.21 0.46 0.38 0.33 0.41
sentences 1, 758 266 0.49 0.79 0.58 0.82 0.65 0.59 0.68
contexts 931 392 0.61 0.73 0.64∗ 0.84 0.70 0.57 0.69

TREC
sections 6, 890 19 0.05 0.82 0.08 0.28 0.29 0.29 0.33
sentences 392 38 0.39 0.65 0.37 0.58 0.62 0.46 0.52
contexts 297 36 0.45 0.67 0.46∗ 0.58 0.62 0.46 0.55

Table 2: Sum of false-positives and false-negatives and averages for other measures over all SemSearch,
Wikipedia list and TREC queries for Broccoli when running on sections, sentences or contexts. For contexts,
the results for the SemSearch and Wikipedia list benchmarks can be reproduced using our web application
at http://broccoli.informatik.uni-freiburg.de/repro-corr/ . ∗, † denotes a p-value < 0.02, < 0.003 for the
two-tailed t-test against the sentences baseline.

7.5 Result quality
We performed an extensive quality evaluation using topics

and relevance judgments from several standard benchmark-
ing tasks for entity retrieval: the Yahoo SemSearch 2011
List Search Track [21], the TREC 2009 Entity Track [4] and,
similarly as in [7], a random selection of ten Wikipedia fea-
tured List of ... pages. To allow reproducability we provide
queries and relevance judgments as well as the possibilty to
evaluate (and modify) the queries against a live running sys-
tem for the SemSearch List Track and the Wikipedia lists at
http://broccoli.informatik.uni-freiburg.de/repro-corr/

. The TREC Entity Track queries were used for an in-depth
quality evaluation that does not allow for an easy reproduc-
tion. Therefore we do not provide them in our reproducabil-
ity web application. In the following we first describe each
of the tasks in more detail.

The SemSearch 2011 List Search Track consisted of 50
topics asking for lists of entities in natural language, e.g.
Apollo astronauts who walked on the Moon. The publicly
available results were created by pooling the results of par-
ticipating systems and are partly incomplete. Furthermore,
the task used a subset of the Billion Triple Challenge Linked
Data as collection, and some of the results referenced the
same entity several times, e.g. once in DBPedia and once
in OpenCyc. Therefore, we manually created a new ground
truth consisting of Wikipedia entities. This is possible be-
cause most topics were inspired by Wikipedia lists and can
be answered completely by manual investigation. Three of
the topics did not contain any result entities in Wikipedia,
and we ignored one additional topic because it was too
controversial to answer with certainty (books of the Jewish
canon). This leaves us with 46 topics and a total of 384
corresponding entities in our ground truth7 . The original
relevance judgments only had 42 topics with primary results
and 454 corresponding entities, including many duplicates.

The TREC 2009 Entity Track worked with the ClueWeb09
collection and consisted of 20 topics also asking for lists of
entities in natural language, e.g. Airlines that currently use
Boeing 747 planes, but in addition provided the source en-
tity (Boeing 747) and the type of the target entity (organi-
zation). We removed all relevance judgments for pages that
were not contained in the English Wikipedia; this approach

7 available at http://broccoli.informatik.
uni-freiburg.de/repro-corr/

was taken before in [11] as well. This leaves us with 15 topics
and a total of 140 corresponding relevance judgments.

As third benchmark we took a random selection of ten
of Wikipedia’s over 2,400 manually compiled featured en.

wikipedia.org/wiki/List_of_... pages8, e.g. the List of
participating nations at the Winter Olympic Games. Wiki-
pedia lists are manually compiled by humans, but actually
they are answers to semantic queries, and therefore per-
fectly suited for a system like ours. In addition, the featured
Wikipedia lists undergo a review process in the community,
based on, besides other attributes, comprehensiveness. For
our ground truth, we automatically extracted the list of en-
tities from the Wikipedia list pages. This leaves us with
10 topics and a total of 2,367 corresponding entities in our
ground truth7.

For all of these tasks we manually generated queries in our
query language corresponding to the semantics of the topics.
We relied on using the interactive query suggestions of our
user interface, but did not fine-tune our queries towards the
results. An automatic translation from natural language to
our query language is part of future work (see section 8).
We want to stress that our goal is not a direct comparison
to systems that participated in the tasks above. For that,
input, collection and relevance judgments would have to be
perfectly identical. Instead, we want to show that our sys-
tem allows to construct intuitive queries that provide high
quality results for these tasks.

We first evaluated the impact of our context decomposi-
tion from Section 3.3 (contexts) on result quality, by compar-
ing it against two simple baselines: taking each sentence as
one context (sentences) and taking each section as one con-
text (sections). Table 2 shows that compared to sentences,
our contexts decrease the (large) number of false-positives
significantly for all benchmarks. For the TREC benchmark
even the number of false-negatives decreases. This is the
case because our document parser pre-processes Wikipedia
lists by appending each list item to the preceding sentence
(before the SCI+SCR phase). These are the only types of
contexts that cross sentence boundaries and a rare excep-
tion. For the Wikipedia list benchmark we verified that this
technique did not cause any results that are in the lists from
which we created the ground truth. Since the sentence level

8http://en.wikipedia.org/wiki/Wikipedia:Featured_
lists

8

271

does not represent a true superset of our contexts we also
evaluated on the section level. We can observe a decrease
in the number of false-negatives (a lot of them due to ran-
dom co-occurrence of query words in a section) which does
not outweigh the drastic increase of the number of false-
positives. Overall, context decomposition results in a signif-
icantly increased precision and F-Measure, which confirms
the positive impact on the user experience that we have ob-
served.

Considering the ranking related measures in Table 2 we
see a varying influence for the context based approach. The
number of cases where ranking quality improves, remains
unchanged or decreases is roughly balanced. This looks sur-
prising, especially since the increase in F-measure is sig-
nificant, but the reason is simple. So far our system uses
simplistic ranks, determined by mere term frequency. We
plan to improve on that in the future; see Section 8. We
want to stress the following though. Most semantic queries,
including all from the TREC and SemSearch benchmark,
have a small set of relevant results. We believe that for such
queries the quality of the result set as a whole is more im-
portant than the ranking within the result set. Still, for the
TREC benchmark, R-precision on contexts is 0.62 and, for
the SemSearch benchmark, mean average precision is 0.45.
The best run from the TREC 2009 Entity Track when re-
stricted to the English Wikipedia had an R-precision of 0.55
as reported in [11, Table 10]. The best result for the Sem-
Search List Search Track was a mean average precision of
0.279 [3]. Again, these results cannot be compared directly,
but they do provide an indication of the quality and poten-
tial of our system.

7.6 Error analysis
To identify areas where our system can be improved we

manually investigated the reasons for the false-positives and
false-negatives when using contexts. We used the TREC
benchmark for this, because it has a reasonable number
of queries and relevance judgments that still allow a costly
manual inspection of the results. We defined the following
error categories. For false-positives: (FP1) a true hit which
was missing from the ground truth; (FP2) the words in the
context have a different meaning than what was intended
by the query; (FP3) due to an error in the ontology ; (FP4)
a mistake in the entity recognition; (FP5) a mistake by the
parser. (FP6) a mistake in our context decomposition. For
false-negatives: (FN1) there seems to be no evidence for this
entity in the Wikipedia based on the query we used. It is
possible that the fact is present but expressed differently,
e.g., by the use of synonyms of our query words; (FN2)
the query elements are spread over two or more sentences;
(FN3) a mistake in the ontology ; (FN4) a mistake in the
entity recognition; (FN5) a mistake by the parser ; (FN6) a
mistake in our context decomposition.

#FP FP1 FP2 FP3 FP4 FP5 FP6

297 55% 11% 5% 12% 16% 1%

#FN FN1 FN2 FN3 FN4 FN5 FN6

36 22% 6% 26% 21% 16% 8%

Table 3: Breakdown of errors by category.

Table 3 provides the percentage of errors in each of these
categories. The high number in FP1 is great news for us:
many entities are missing from the ground truth but were
found by Broccoli. Errors in FN1 occur when full-text search
with our queries on whole Wikipedia documents does not
yield hits, independent from our contexts. Tuning queries
or adding support for synonyms can decrease this num-
ber. FP2 and FN2 comprise the most severe errors. They
contain false-positives that still match all query parts in
the same context but have a different meaning and false-
negatives that are lost because contexts are confined to sen-
tence boundaries. Fortunately, both numbers are quite small.

The errors in categories FP and FN 3-5 depend on im-
plementation details and third-party components. The high
number in FN3 is due to errors in our current ontology,
YAGO. A closer inspection revealed that, although the facts
in YAGO are reasonably accurate, it is vastly incomplete in
many areas (e.g., the acted-in relation contains only one ac-
tor for most movies). Preliminary experiments suggest that
switching to Freebase [10] in the future will solve this and
improve the results considerably (see section 8). To miti-
gate the errors caused by entity recognition and anaphora
resolution (FP4+FN4), a more sophisticated state-of-the-art
approach is easily integrated. Parse errors are harder. As-
suming a perfect constituent parse for every single sentence,
especially those with flawed grammar, is not realistic. Still,
those errors do not expose limits of our approach. We hope
to enable SCI+SCR without a full-parse in the future (see
Section 8). The low number of errors due to our context
decomposition (FP6+FN6) demonstrates that our current
approach (Section 3.3) is already pretty good. Fine-tuning
the way we decompose sentences might decrease this number
even further.

Naturally, an evaluation should not treat entities missing
in the ground-truth in the same way as actual errors. Ta-
ble 4 provides quality measures for our benchmark based
on sentences and contexts under three conditions: (origi-
nal) evaluation based on the original TREC ground-truth;
(+missing) with the entities from FP1 added to the ground
truth; (+correct) with the errors leading to FP and FN 3,4,5
corrected.

F1 P@10 R-Prec MAP

Sentences
original 0.37 0.58 0.62 0.46
+missing 0.55 0.77 0.76 0.60

Contexts
original 0.46 0.58 0.62 0.46
+missing 0.65 0.79 0.77 0.62
+correct 0.86 0.94 0.92 0.85

Table 4: Quality measures on TREC 2009 queries
for three different levels of corrections.

The numbers for +correct show the high potential of our
system and motivate further work correcting the respective
errors. As argued in the discussion after Table 3, many
corrections are easily applied, while some of them remain
hard to correct perfectly.

8. CONCLUSIONS AND FUTURE WORK
We have presented Broccoli, a search engine for the inter-

active exploration of combined text and ontology data. We
have described the index, the natural language processing,

9

272

and the user interface behind Broccoli. And we have pro-
vided reproducible evidence that Broccoli is indeed fast and
gives search results of good quality.

So far, we have implemented all the basic ideas we deemed
necessary to provide a convincing proof of concept. Based
on this work, there are a lot of interesting directions for
future research.

The underlying ontology plays a major role for our system.
By switching from YAGO to Freebase we expect a great im-
provement of the overall quality through a better coverage
of relations and thus proposals and results (see Tables 3 and
4 in the previous section). Our current approaches to entity
recognition and anaphora resolution work well, but it might
be possible to further improve result quality by incorporat-
ing more elaborate state-of-the-art approaches. This would
also allow the system to be more easily applied to other
collections than Wikipedia (our current heuristics rely on
its structure, see Section 3.2). Integrating simple inference
heuristics could help to reduce the number of errors that
are caused by facts that are spread over several sentences. A
high-quality sentence decomposition without the need for an
expensive and error-prone full parse should further increase
result quality. While query times are already low, optimized
query processing and clever caching strategies have the po-
tential to further improve speed. To investigate how to best
approach performance and quality improvements, an eval-
uation of Broccoli on a larger, web-like collection should
provide valuable insights. Automatically transforming nat-
ural language queries into our query language could help
users that are accustomed to keyword queries in construct-
ing their queries. Finally, a user study of our UI and the
whole system is an important next step.

Acknowledgments

This work is partially supported by the DFG priority pro-
gram Algorithm Engineering (SPP 1307) and by the German
National Library of Medicine (ZB MED).

9. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: extracting

relations from large plain-text collections. In ACM
DL, pages 85–94, 2000.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. G. Ives. Dbpedia: A nucleus for a
web of open data. In ISWC, pages 722–735, 2007.

[3] K. Balog, M. Ciglan, R. Neumayer, W. Wei, and
K. Nørv̊ag. Ntnu at semsearch 2011. In Proc. of the
4th Intl. Semantic Search Workshop, 2011.

[4] K. Balog, A. P. de Vries, P. Serdyukov, P. Thomas,
and T. Westerveld. Overview of the TREC 2009
Entity Track. In TREC, 2009.

[5] M. Banko, M. J. Cafarella, S. Soderland,
M. Broadhead, and O. Etzioni. Open information
extraction from the web. In IJCAI, pages 2670–2676,
2007.

[6] H. Bast and B. Buchhold. An index for efficient
semantic full-text search. In CIKM, 2013.

[7] H. Bast, A. Chitea, F. M. Suchanek, and I. Weber.
Ester: efficient search on text, entities, and relations.
In SIGIR, pages 671–678, 2007.

[8] R. Bhagdev, S. Chapman, F. Ciravegna,
V. Lanfranchi, and D. Petrelli. Hybrid search:
Effectively combining keywords and semantic searches.
In ESWC, pages 554–568, 2008.

[9] C. Bizer, T. Heath, and T. Berners-Lee. Linked data -
the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1–22, 2009.

[10] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In
SIGMOD Conference, pages 1247–1250, 2008.

[11] M. Bron, K. Balog, and M. de Rijke. Ranking related
entities: components and analyses. In CIKM, pages
1079–1088, 2010.

[12] R. Chandrasekar, C. Doran, and B. Srinivas.
Motivations and methods for text simplification. In
COLING, pages 1041–1044, 1996.

[13] R. Collobert. Deep learning for efficient discriminative
parsing. Journal of Machine Learning Research -
Proceedings Track, 15:224–232, 2011.

[14] G. Giannopoulos, N. Bikakis, T. Dalamagas, and
T. K. Sellis. Gontogle: A tool for semantic annotation
and search. In ESWC, pages 376–380, 2010.

[15] F. Giunchiglia, U. Kharkevich, and I. Zaihrayeu.
Concept search. In ESWC, pages 429–444, 2009.

[16] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta,
S. Robinson, M. Bürgle, H. Düwiger, and U. Scheel.
Faceted wikipedia search. In BIS, pages 1–11, 2010.

[17] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB J.,
19(1):91–113, 2010.

[18] J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object
retrieval in the web of data. In WWW, pages 771–780,
2010.

[19] S. Sarawagi. Information extraction. Foundations and
Trends in Databases, 1(3):261–377, 2008.

[20] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago:
A large ontology from wikipedia and wordnet. J. Web
Sem., 6(3):203–217, 2008.

[21] T. Tran, P. Mika, H. Wang, and M. Grobelnik.
Semsearch’11: the 4th semantic search workshop. In
WWW (Companion Volume), 2011.

[22] H. Wang, Q. Liu, T. Penin, L. Fu, L. Zhang, T. Tran,
Y. Yu, and Y. Pan. Semplore: A scalable IR approach
to search the web of data. J. Web Sem., 7(3):177–188,
2009.

[23] G. Zenz, X. Zhou, E. Minack, W. Siberski, and
W. Nejdl. From keywords to semantic queries -
incremental query construction on the semantic web.
J. Web Sem., 7(3):166–176, 2009.

10

273

Künstliche Intelligenz manuscript No.
(will be inserted by the editor)

A Quality Evaluation of KB+Text Search

Hannah Bast · Björn Buchhold · Elmar Haussmann

Received: date / Accepted: date

Abstract We provide a quality evaluation of KB+Text
search, a deep integration of knowledge base search and

standard full-text search. A knowledge base (KB) is
a set of subject-predicate-object triples with a com-
mon naming scheme. The standard query language is

SPARQL, where queries are essentially lists of triples
with variables. KB+Text extends this search by a spe-
cial occurs-with predicate, which can be used to express
the co-occurrence of words in the text with mentions of

entities from the knowledge base. Both pure KB-search
and standard full-text search are included as special
cases.

We evaluate the result quality of KB+Text search

on three different query sets. The corpus is the the
full version of the English Wikipedia (40 GB XML
dump) combined with the YAGO knowledge base (26

million triples). We provide a web application to re-
produce our evaluation, which is accessible via http:

//ad.informatik.uni-freiburg.de/publications.

Keywords Knowledge Bases · Semantic Search ·
KB+Text Search · Quality Evaluation

1 Introduction

KB+Text search combines structured search in knowl-

edge bases with traditional full-text search.

Department of Computer Science
University of Freiburg
79110 Freiburg, Germany
Tel.: +49 761 203-8163
E-mail: {bast,buchhold,haussmann}@cs.uni-freiburg.de

In traditional full-text search, the data consists of
text documents. The user types a (typically short) list

of keywords and gets a list of documents containing
some or all of these keywords, hopefully ranked by some
notion of relevance to your query. For example, typing

broccoli leaves edible in a web search engine will return
lots of web pages with evidence that broccoli leaves are
indeed edible.

In knowledge base search, the data is a knowledge

base, typically given as a (large) set of subject-predicate-
object triples. For example, Broccoli is-a plant or Broc-
coli native-to Europe. These triples can be thought of to
form a graph of entities (the nodes) and relations (the

edges), and a language like SPARQL allows to search
for subgraphs matching a given pattern. For example,
find all plants that are native to Europe.

The motivation behind KB+Text search is that many

queries of a more “semantic” nature require the com-
bination of both approaches. For example, consider the
query plants with edible leaves and native to Europe,

which will be our running example in this paper. A sat-
isfactory answer for this query requires the combination
of two kinds of information:

(1) A list of plants native to Europe; this is hard for full-

text search but a showcase for knowledge base search.

(2) For each plant the information whether its leaves are
edible or not; this is easily found with a full-text search
for each plant, but quite unlikely to be contained in a

knowledge base.

In a previous work [4], we have developed a sys-
tem with a convenient user interface to construct such

274

2 Hannah Bast et al.

queries incrementally, with suggestions for expanding
the query after each keystroke. We named the system
Broccoli, after a variant of the example query above,
which was our very first test query. Figure 1 shows a

screenshot of Broccoli in action for this example query.

1.1 Our contribution

The main contribution of this paper is a quality evalua-
tion of KB+Text search on three benchmarks, including

a detailed error analysis; see Section 4. On the side, we
recapitulate the basics of KB+Text search (Section 2)
and we provide a brief but fairly broad overview of ex-

isting quality evaluations for related kinds of “semantic
search” (Section 3).

2 The Components of KB+Text Search

We briefly describe the main components of a system for

KB+Text search, as far as required for understanding
the remainder of this paper. KB+Text search operates
on two kinds of inputs, a text collection and a knowl-
edge base. The text collection consists of documents

containing plain text. The knowledge base consists of
entities and their relations in the form of triples. This
input is pre-processed, indexed, and then queried as

follows.

2.1 Entity recognition

In a first step, mentions of entities from the given knowl-
edge base are recognized in the text. Consider the fol-

lowing sentence:

(S) The usable parts of rhubarb are the medicinally used

roots and the edible stalks, however its leaves are toxic.

Assuming the provided knowledge base contains the en-
tity Rhubarb, the words rhubarb and its are references
to it. When we index the English Wikipedia and use

YAGO as a knowledge base, we make use of the fact
that first occurrences of entities in Wikipedia docu-
ments are linked to their Wikipedia page that iden-
tifies a YAGO entity. Whenever a part or the full name

of that entity is mentioned again in the same section
of the document (for example, Einstein referring to Al-
bert Einstein), we recognize it as that entity. We resolve

references (anaphora) by assigning each occurrence of
he, she, it, her, his, etc. to the last recognized entity

of matching gender. For text without Wikipedia anno-

tations, state-of-the art approaches for named entity
recognition and disambiguation, such as Wikify! [20],
can be used instead.

2.2 Text segmentation

The special occurs-with relation searches for co-occurrences

of words and entities as specified by the respective arc in
the query; see Figure 1 and 2.4 below. We identify seg-
ments in the input text to which co-occurrence should

be restricted. Identifying the ideal scope of these seg-
ments is non-trivial and we experiment with three set-
tings: (1) complete sections, (2) sentences and (3) con-

texts, which are defined as sets of words that “belong
together” semantically. The contexts for our example
sentence (S) from above are:

(C1) The usable parts of rhubarb are the medicinally
used roots
(C2) The usable parts of rhubarb are the edible stalks

(C3) however rhubarb leaves are toxic

Note that, because entities and references (underlined

words) have been identified beforehand, no information
is lost. The rationale behind contexts is to make the
search more precise and “semantic”. For example, we
would not want Rhubarb to be returned for a query for

plants with edible leaves, since its leaves are actually
toxic. Nevertheless Rhubarb, edible, and leaves co-occur
in sentence (S) above. However, they do not co-occur

in either of (C1), (C2), (C3). To compute contexts, we
follow an approach for Open Information Extraction
(OIE) described in [8].

2.3 Indexing

An efficient index for KB+Text search is described in

[5]. This index provides exactly the support needed
for the system shown in Figure 1: efficient process-
ing of tree-shaped KB+Text queries (without variables

for relations), efficient excerpt generation, and efficient
search-as-you-type suggestions that enable a fully in-
teractive incremental query construction.

2.4 Query language

KB+Text extends classic KB-search by the special occurs-

with predicate. This predicate can be used to specify
co-occurrence of a class (e.g., plant) or instance (e.g.,

275

A Quality Evaluation of KB+Text Search 3

Words

Cabbage (34)

Broccoli (58)

Lettuce (23)

Instances:

1 - 3 of 421

House plant (17)

Garden plant (24)

Crop (16)

Classes:

1 - 3 of 28

 Broccoli

Ontology: Broccoli

Broccoli: is a plant; native to Europe.

Document: Edible plant stems

The edible portions of Broccoli are the stem tissue, the flower buds, as

well as the leaves.

Cabbage

Ontology: Cabbage

Cabbage: is a plant; native to Europe.

Document: Cabbage

The only part of the plant that is normally eaten is the leafy head.

Your Query:

Plant

occurs-with edible leaves

native-to

Hits: 1 - 2 of 421

Europe

occurs-with <Anything>

Relations:

1 - 3 of 7

cultivated-in <Location>

belongs-to <Plant family>

(67)

(58)

 type here to extend your query …

Fig. 1 A screenshot of Broccoli, showing the final result for our example query. The box on the top right visualizes the current
KB+Text query as a tree. The large box below shows the matching instances (of the class from the root node, plant in this
case). For each instance, evidence is provided for each part of the query. In the panel on the left, instances are entities from the
knowledge base, classes are groups of entities with the same object according to the is-a predicate, and relations are predicates.
The instances are ranked by the number of pieces of evidence (only a selection of which are shown). With the search field on the
top left, the query can be extended further. Each of the four boxes below the search field provide context-sensitive suggestions
that depend on the current focus in the query. For the example query: suggestions for subclasses of plants, suggestions for
instances of plants that lead to a hit, suggestions for relations to further refine the query. Word suggestions are displayed as
soon as the user types a prefix of sufficient length. These suggestions together with the details from the hits box allow the user
to incrementally construct adequate queries without prior knowledge of the knowledge base or of the full text.

Broccoli) with an arbitrary combination of words, in-

stances, and further sub-queries. When processing the
query, this co-occurrence is restricted to the segments
identified in the pre-processing step described in Sec-
tion 2.2 above.

A user interface, like the one shown in Figure 1,
guides the user in incrementally constructing queries

from this language. In particular, a visual tree-like rep-
resentation of the current query is provided after each
keystroke, along with hits for that query and sugges-

tions for further extensions or refinements.

3 Related Work

The literature on semantic search technologies is vast,

and “semantic” means many different things to dif-
ferent researchers. A variety of different and hard-to-

compare benchmarks have therefore emerged, as well
as various stand-alone evaluations of systems that per-

form KB+Text or variants of it.
We briefly discuss the major benchmarks from the

past decade, as well as the relatively few systems that

explicitly combine full-text search and knowledge base
search. A more comprehensive overview over the field
of semantic search on text and knowledge bases is pro-

vided in [6].

3.1 TREC entity tracks

The goal of the TREC Entity Tracks were queries search-
ing for lists of entities, just like in our KB+Text search.
They are particularly interested in lists of entities that
are related to a given entity in a specific way. Thus, the

task is called ”related entity finding”. A typical query
is airlines that currently use boeing 747 planes. Along

276

4 Hannah Bast et al.

with the query, the central entity (boeing 747) as well
as the the type of the desired target entities (airlines)
were given.

For the 2009 Entity Track [3], the underlying data
was the ClueWeb09 category B collection. ClueWeb091

is a web corpus consisting of 1 billion web pages, of
which 500 million are in English. The category B col-
lection is a sub-collection of 50 million of the English

pages. Runs with automatic and manual query con-
struction were evaluated. This task turned out to be
very hard, and the overall best system achieved an
NDCG@R of 31% and a P@10 of only 24% - albeit

with automatic query construction. When restricting
the results to entities from Wikipedia, the best system
achieved an NDCG@R of 22% and a P@10 of 45% [12].

We use the queries from this track as one of our bench-
marks in Section 4 (for later tracks no Wikipedia based
groundtruth is available).

For the 2010 Entity Track [1], the full English por-

tion of the ClueWeb09 dataset was used (500 million
pages). The task remained hard, with the best sys-
tem achieving an NDCG@R of 37% and a R-Precision
(P@10 was not reported that year) of 32% even for

manually tuned queries (and 30% for automatic runs).

In 2010, an additional task was added, Entity List
Completion (a similar task but with an additional set of
example result entities given for each query) with BTC

20092 as the underlying dataset. This is a dataset con-
sisting of 1.14 billion triples crawled from the semantic
web. The BTC dataset contains the complete DBpe-
dia [18]. It turned out that the best performing ap-

proaches all boost triples from DBpedia to obtain good
results. Still, working with the dataset turned out dif-
ficult, with the best systems achieving and R-Precision

of 31% (NDCG@R was not reported).

In the 2011 track [2], another semantic web dataset
was used (Sindice 2011 [13]). However, the number of
participating teams was very low, and results were dis-

appointing compared to previous years.

3.2 SemSearch challenges

The task in the SemSearch challenges is also referred to

as ad-hoc object retrieval [17] The user inputs free-form
keyword queries, e.g. Apollo astronauts who walked on

1 http://lemurproject.org/clueweb09/
2 BTC = billion triple challenge, https://km.aifb.kit.

edu/projects/btc-2009/

the moon or movies starring Joe Frazier. Results are
ranked lists of entities. The benchmarks were run on
BTC 2009 as a dataset.

In the 2010 challenge [17], there were 92 queries,

each searching only for a single entity. The best system
achieved a P@10 of 49% and a MAP of 19%.

In the 2011 challenge [10], there were 50 queries.

The best system achieved a P@10 of 35% and a MAP
of 28%. The 2011 queries are one of our benchmarks in
Section 4.

3.3 The INEX Series

INEX (Initiative for the Evaluation of XML Retrieval)
has featured many search tasks. While the focus is on

XML retrieval, among others, two tracks are remark-
ably similar to the other benchmarks discussed here.

The Entity Ranking Track (from 2007 to 2009) and
the Linked-Data Track (2012 and 2013) work on the

text from Wikipedia and use intra-Wikipedia links to
establish a connection between entities and an ontology
or an entire knowledge base (since 2012, entities are

linked to their representation in DBPedia). Queries are
very similar to those of the TREC Entity Track from
above: given a keyword query (describing a topic) and

a category, find entities from that category relevant for
that topic. However, few participants actually made use
of linked data in their approaches and the results were
inconclusive.

3.4 Question Answering

Question answering (QA) systems provide a function-
ality similar to KB+Text. The crucial difference is that

questions can be asked in natural language (NL), which
makes the answering part much harder. Indeed, the
hardest part for most queries in the QA benchmarks

is to “translate” the given NL query into a query that
can be fed to the underlying search engine.

In the TREC QA tracks, which ran from 1999 to

2007, the underlying data were corpora of text docu-
ments. An overview of this long series of tracks is given
in [15]. The corpora were mainly newswire documents,
later also blog documents. The series started with rel-

atively simple factoid questions, e.g. Name a film in
which Jude Law acted, and ended with very complex
queries based on sequences of related queries, including,

e.g., temporal dependencies. For list questions, such as
Who are 6 actors who have played Tevye in ’Fiddler

277

A Quality Evaluation of KB+Text Search 5

on the Roof’?, which are similar to the kind we con-
sider in this paper, the best system in 2007 achieved an
F-measure of 48%.

In the QALD (Question Answering over Linked Data)

series of benchmarks [19], the underlying data is again a
large set of fact triples. The task is to generate the cor-
rect SPARQL query from a given NL question of vary-

ing difficulty, e.g. Give me all female Russian astronauts
[14]. This is very different from the other benchmarks
described above, where a perfect query (SPARQL or

keyword) typically does not exist.
Various tracks used different sets of facts triples

from DBpedia and MusicBrainz (facts about music).
In the last two runs, QALD-4 [24] and QALD-5 [25],

the best system achieved an an F-measure of 72% and
63%, respectively.

3.5 Systems for KB+Text and similar paradigms

Systems for a combined search in text documents and
knowledge bases were previously proposed in [7] (ES-

TER), [9] (Hybrid Search), [22] (Mı́mir), [26] (Sem-
plore), and [16] (Concept Search). None of these sys-
tems consider semantic context as described in Section

2.2. For all these systems, only a very limited quality
evaluation has been provided.

Hybrid Search is evaluated on a very specialized
corpus (18K corporate reports on jet engines by Rolls

Royce). For Concept Search, a similarly small dataset
of 29K documents constructed from the DMoz web di-
rectory.

For ESTER, only two simple classes of queries are
evaluated: people associated with <university> and list
of counties in <US state>. A precision of 37% and 67%,
respectively, is reported for each class.

Semplore is evaluated on a combination of DBpe-
dia (facts from Wikipedia) and LUBM (an ontology
for the university domain). A P@10 of more than 80%

is reported for 20 manually constructed queries. For
many of those, the text part is simply keyword search
in entity names, e.g., all awards matching the keywords

nobel prize. Those queries then trivially have perfect
precision and recall. We have only a single such query
in our whole quality evaluation, all other queries com-
bine knowledge base and full-text search in a non-trivial

manner.
Mı́mir is only evaluated with respect to query re-

sponse times and in a user study where users were asked

to perform four search tasks. For these tasks, success
and user satisfaction with the system were tracked.

4 Evaluation

4.1 Input data

The text part of our data is all documents in the English

Wikipedia, obtained via download.wikimedia.org in
January 2013.3 Some dimensions of this collection: 40
GB XML dump, 2.4 billion word occurrences (1.6 bil-
lion without stop-words), 285 million recognized entity

occurrences and 200 million sentences which we decom-
pose into 418 million contexts.

As knowledge base we used YAGO from October

2009.4 We manually fixed 92 obvious mistakes in the
KB (for example, the noble prize was a laureate and
hence a person), and added the relation Plant native-
in Location for demonstration purposes. Altogether our

variant of YAGO contains 2.6 million entities, 19,124
classes, 60 relations, and 26.6 million facts.

We build a joint index over this full text and this

KB, as described in [5]. As described there, the resulting
index file has a size of 14 GB with query times typically
well below 100 ms [5, Table 1].

4.2 Query Benchmarks

We evaluated the quality of our KB+Text search on

the dataset just described on three query benchmark.
Each benchmark consists of a set of queries, and for
each query the set of relevant entities for that query

on the dataset above. Two of these query benchmarks
are from past entity search competitions, described in
Section 3: the Yahoo SemSearch 2011 List Search Track
[23], and the TREC 2009 Entity Track [3]. The third

query benchmark is based on a random selection of ten
Wikipedia featured List of ... pages, similarly as in [7].

To allow reproducibility, we provide queries and rel-

evance judgments as well as the possibility to evaluate
(and modify) the queries against a live running system
for the SemSearch List Track and the Wikipedia lists

under http://broccoli.informatik.uni-freiburg.

de . The TREC Entity Track queries were used for an
in-depth quality evaluation that does not allow for an
easy reproduction. Therefore we do not provide them

in our reproducibility web application.

3 We chose this slightly outdated version for technical rea-
sons. The corresponding Wikimedia data from 2017 is (only)
about 50% larger but otherwise has the same characteristics
and would not lead to principally different results.
4 There is a more recent version, called YAGO2, but the

additions from YAGO to YAGO2 are not really interesting
for our search.

278

6 Hannah Bast et al.

Table 1 Sum of false-positives and false-negatives and averages for other measures over all SemSearch, Wikipedia list and
TREC queries for the evaluated system when running on sections, sentences or contexts. The ∗ and † denote a p-value of
< 0.02 and < 0.003, respectively, for the two-tailed t-test compared to the figures for sentences.

#FP #FN Prec. Recall F1 R-Prec MAP nDCG

SemSearch

sections 44, 117 92 0.06 0.78 0.09 0.32 0.42 0.44

sentences 1, 361 119 0.29 0.75 0.35 0.32 0.50 0.49

contexts 676 139 0.39 0.67 0.43† 0.52 0.45 0.48

WP lists

sections 28, 812 354 0.13 0.84 0.21 0.38 0.33 0.41

sentences 1, 758 266 0.49 0.79 0.58 0.65 0.59 0.68

contexts 931 392 0.61 0.73 0.64∗ 0.70 0.57 0.69

TREC

sections 6, 890 19 0.05 0.82 0.08 0.29 0.29 0.33

sentences 392 38 0.39 0.65 0.37 0.62 0.46 0.52

contexts 297 36 0.45 0.67 0.46∗ 0.62 0.46 0.55

The SemSearch 2011 List Search Track consists of 50

queries asking for lists of entities in natural language,
e.g. Apollo astronauts who walked on the Moon. The
publicly available results were created by pooling the

results of participating systems and are partly incom-
plete. Furthermore, the task used a subset of the BTC
dataset (see Section 3), and some of the results refer-

enced the same entity several times, e.g., once in DBpe-
dia and once in OpenCyc. Therefore, we manually cre-
ated a new ground truth consisting only of Wikipedia
entities (compatible with out dataset). This was pos-

sible because most topics were inspired by Wikipedia
lists and can be answered completely by manual inves-
tigation. Three of the topics did not contain any result

entities in Wikipedia, and we ignored one additional
topic because it was too controversial to answer with
certainty (books of the Jewish canon). This leaves us
with 46 topics and a total of 384 corresponding entities

in our ground truth. The original relevance judgments
only had 42 topics with primary results and 454 corre-
sponding entities, including many duplicates.

The TREC 2009 Entity Track worked with the Clue-
Web09 collection and consisted of 20 topics also asking
for lists of entities in natural language, e.g. Airlines

that currently use Boeing 747 planes, but in addition
provided the source entity (Boeing 747) and the type
of the target entity (organization). We removed all rel-
evance judgments for pages that were not contained in

the English Wikipedia; this approach was taken before
in [12] as well. This leaves us with 15 topics and a total
of 140 corresponding relevance judgments.

As a third benchmark we took a random selection
of ten of Wikipedia’s over 2,400 en.wikipedia.org/

wiki/List_of_... pages5. For example, List of par-

ticipating nations at the Winter Olympic Games. These
lists are manually created by humans, but actually they
are answers to semantic queries. The lists also tend to
be fairly complete, since they undergo a review pro-

cess in the Wikipedia community. This makes them per-
fectly suited for a quality evaluation of our system. For
the ground truth, we automatically extracted the list

of entities from the Wikipedia list pages. This leaves
us with 10 topics and a total of 2,367 corresponding
entities in our ground truth.

For all of these tasks we manually generated KB+Text
queries corresponding to the intended semantics of the
original queries. We relied on using the interactive query
suggestions of the user interface, but did not fine-tune

queries towards the results. We want to stress that our
goal is not a direct comparison to systems that partici-
pated in the tasks above. For that, input, collection and

relevance judgments would have to be perfectly identi-
cal. Instead, we want to evaluate whether KB+Text can
provide high quality results for these tasks.

4.3 Quality results

Table 1 evaluates the precision and recall for all three
benchmarks. As described in Section 2, the key com-
ponent of our KB+Text search is the occurs-with rela-
tion, which searches for co-occurrences of the specified

words / entities. We compare three segmentations for
determining co-occurrence, as described in Section 2.2:
sections, sentences, and semantic contexts.

5 http://en.wikipedia.org/wiki/Wikipedia:Featured_

lists

279

A Quality Evaluation of KB+Text Search 7

Compared to sentences, semantic contexts decrease
the (large) number of false-positives significantly for all
three benchmarks.6 Using co-occurence on the section
level7, we can observe a decrease in the number of false-

negatives (a lot of them due to random co-occurrence
of query words in a section). However, this does not
outweigh the drastic increase of the number of false-

positives. Overall, semantic contexts yield the best pre-
cision on all three benchmarks, and also the best F-
measure. This confirms the positive impact on the user

experience that we have observed.

Note that Table 1 does not include any ranking-
related measures, like precision at 10 (P@10) or mean

average precision (MAP). This is a common procedure
in knowledge base search, where queries (typically for-
mulated in SPARQL) deliver result sets, in no particu-

lar expected order; see [19] for a survey of benchmarks.
Indeed, when you consider queries like nicole kidmann
siblings or continents in the world, it’s primarily about

the set, not about the order. Also note that most se-
mantic queries, including all from the TREC and Sem-
Search benchmark, have a small set of relevant results.
Nevertheless, in the TREC entity search benchmark,

expected results were ranked lists of entities.8 In our
detailed analysis of this benchmark in Section 4.4 be-
low, we therefore also provide measures for a simplis-

tic ranking we have implemented. We simply ordered
entities by the number of matching segments (= the
snippets displayed in the screenshot of Figure 1).

4.4 Error analysis

KB+Text search, as described in Section 2 is a com-
plex task, with many potential sources for errors. For
the TREC benchmark, using contexts as segments, we

manually investigated the reasons for the false-positives
and false-negatives. We defined the following error cat-
egories.

6 For the TREC benchmark even the number of false-
negatives decreases. This is because when segmenting into
contexts the document parser pre-processes Wikipedia lists
by appending each list item to the preceding sentence. These
are the only types of contexts that cross sentence boundaries
and a rare exception. For the Wikipedia list benchmark we
verified that this technique did not cause any results that are
in the lists from which we created the ground truth.
7 Sections are indeed a super-set of semantic contexts.
8 This saved participants of this benchmark the trouble of

providing a cut-off value for what to include in the result and
what not.

For false-positives:

(FP1) a true hit was missing from the ground truth;
(FP2) the context has the wrong meaning9;
(FP3) due to an error in the knowledge base;
(FP4) a mistake in the entity recognition;

(FP5) a mistake by the parser10;
(FP6) a mistake in computing contexts.

For false-negatives:

(FN1) there seems to be no evidence for this entity in

Wikipedia based on the query we used (the fact might
be present but expressed using different words);
(FN2) the query elements are spread over two or more

sentences;
(FN3) a mistake in the knowledge base;
(FN4) a mistake in the entity recognition;
(FN5) a mistake by the parser (analogous to FP5);

(FN6) a mistake in computing contexts.

Table 2 Breakdown of all errors (false-positives and false-

negatives) by category.

#FP FP1 FP2 FP3 FP4 FP5 FP6

297 55% 11% 5% 12% 16% 1%

#FN FN1 FN2 FN3 FN4 FN5 FN6

36 22% 6% 26% 21% 16% 8%

Table 2 provides the percentage of errors in each
of these categories. The high number in FP1 is great
news for us: many entities are missing from the ground

truth but were found by the system. Errors in FN1
occur when full-text search with our queries on whole
Wikipedia documents does not yield hits, independent

from semantic contexts. Tuning queries or adding sup-
port for synonyms can decrease this number. FP2 and
FN2 comprise the most severe errors. They contain
false-positives that still match all query parts in the

same context but have a different meaning and false-
negatives that are lost because contexts are confined
to sentence boundaries. Fortunately, both numbers are

quite small.

The errors in categories FP and FN 3-5 depend
on implementation details and third-party components.

9 This means, that the words occur in the context (other-
wise this would not be a bit), but with a meaning different
from what was intended by the query.
10 The sentence parse are required to compute contexts.

280

8 Hannah Bast et al.

Table 3 Quality measures for the TREC benchmark for the original ground truth, with missing relevant entities, and with

errors from categories FP and FN 3,4,5 corrected.

Prec. Recall F1 P@10 R-Prec MAP nDCG

TREC Entity Track, best n/a n/a n/a 0.45 0.55 n/a 0.22

KB+Text, orig 0.45 0.67 0.46 0.58 0.62 0.46 0.55

KB+Text, orig + miss 0.67 0.73 0.65 0.79 0.77 0.62 0.70

KB+Text, orig + miss + corr 0.88 0.89 0.86 0.94 0.92 0.85 0.87

The high number in FN3 is due to errors in the used
knowledge base, YAGO. A closer inspection revealed

that, although the triples in YAGO are reasonably ac-
curate, it is vastly incomplete in many areas. For ex-
ample, the acted-in relation contains only one actor for

most movies. This could be mitigated by switching to a
more comprehensive knowledge base like Freebase [11];
indeed, our latest demo of Broccoli is using Freebase in-

stead of YAGO [4]. To mitigate the errors caused by en-
tity recognition and anaphora resolution (FP4+FN4),
a more sophisticated state-of-the-art approach is eas-
ily integrated. Parse errors are harder. The current ap-

proach for determining contexts heavily relies on the
output of a state-of-the art constituent parser. Assum-
ing a perfect parse for every single sentence, especially

those with flawed grammar, is not realistic. Still, those
errors do not expose limits of KB+Text search with se-
mantic contexts. The low number of errors due to the
context computation (FP6+FN6) demonstrates that the

current approach (Section 2.2) is already pretty good.
Fine-tuning the way we decompose sentences might de-
crease this number even further.

Table 3 provides an updated evaluation, with all the

errors induced by “third-party” components (namely
FP and FN 3,4,5) corrected. The last row shows the
high potential of KB+Text search and motivates fur-

ther work correcting the respective errors. As argued in
the discussion after Table 2, many corrections are eas-
ily applied, while some of them remain hard to correct
perfectly.

The first line of Table 3 shows the best results from
the TREC 2009 Entity Track (TET09), when restricted
to entities from the English Wikipedia; see [12, Ta-
ble 10]. There are a few things to note in this com-

parison. First, TET09 used the ClueWeb09 collection,
category B. However, that collection contains the En-
glish Wikipedia, and participants were free to restrict

their search to that part only. Indeed, the best sys-
tems strongly boosted results from Wikipedia. Second,

results for TET09 were not sets but ranked lists of enti-
ties, hence absolute precision and recall figures are not

available. Our results are for the simplistic ranking ex-
plained above. Third, we created our queries manually,
as described at the end of Section 4.2 above. However,
TET09 also permitted manually constructed queries,

but those results were not among the best. Fourth, the
ground truth was approximated via pooling results from
the then participating systems [3]. This is a disadvan-

tage for systems that are evaluated later on the same
ground truth [21]. Still, our quality results are better
even on the original ground truth, and much better with

missing entities (FP1) added.

5 Conclusions and Future Work

We have evaluated the quality of KB+Text search on
three benchmarks, with very promising results. A de-
tailed error analysis has pointed out the current weak
spots: missing entities in the knowledge base, missing

evidence in the full text, errors in the entity recogni-
tion, errors in the full parses of the sentences. Promis-
ing directions for future research are therefore: switch

to a richer knowledge base (e.g., Freebase), switch to a
larger corpus than Wikipedia (e.g., ClueWeb), develop
a more sophisticated entity recognition, try to deter-

mine semantic context without full parses.

References

1. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the
TREC 2010 Entity Track. In: TREC (2010)

2. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the
TREC 2011 Entity Track. In: TREC (2011)

3. Balog, K., de Vries, A.P., Serdyukov, P., Thomas, P.,
Westerveld, T.: Overview of the TREC 2009 Entity
Track. In: TREC (2009)

4. Bast, H., Bäurle, F., Buchhold, B., Haußmann, E.: Se-
mantic full-text search with broccoli. In: SIGIR, pp.
1265–1266. ACM (2014)

281

A Quality Evaluation of KB+Text Search 9

5. Bast, H., Buchhold, B.: An index for efficient semantic
full-text search. In: CIKM (2013)

6. Bast, H., Buchhold, B., Haussmann, E.: Semantic search
on text and knowledge bases. Foundations and Trends in
Information Retrieval 10(2-3), 119–271 (2016). DOI 10.
1561/1500000032. URL http://dx.doi.org/10.1561/

1500000032

7. Bast, H., Chitea, A., Suchanek, F.M., Weber, I.: Ester:
efficient search on text, entities, and relations. In: SIGIR,
pp. 671–678 (2007)

8. Bast, H., Haussmann, E.: Open information extraction
via contextual sentence decomposition. In: ICSC (2013)

9. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi,
V., Petrelli, D.: Hybrid search: Effectively combining key-
words and semantic searches. In: ESWC, pp. 554–568
(2008)

10. Blanco, R., Halpin, H., Herzig, D.M., Mika, P., Pound,
J., Thompson, H.S., Duc, T.T.: Entity search evaluation
over structured web data. In: SIGIR Workshop on Entity-
Oriented Search (JIWES) (2011)

11. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Tay-
lor, J.: Freebase: a collaboratively created graph database
for structuring human knowledge. In: SIGMOD, pp.
1247–1250 (2008)

12. Bron, M., Balog, K., de Rijke, M.: Ranking related enti-
ties: components and analyses. In: CIKM, pp. 1079–1088
(2010)

13. Campinas, S., Ceccarelli, D., Perry, T.E., Delbru, R., Ba-
log, K., Tummarello, G.: The sindice-2011 dataset for
entity-oriented search in the web of data. In: Workshop
on Entity-Oriented Search (EOS), pp. 26–32 (2011)

14. Cimiano, P., Lopez, V., Unger, C., Cabrio, E., Ngomo,
A.C.N., Walter, S.: Multilingual question answering over
linked data (QALD-3): Lab overview. In: CLEF, pp. 321–
332 (2013)

15. Dang, H.T., Kelly, D., Lin, J.J.: Overview of the TREC
2007 Question Answering Track. In: TREC (2007)

16. Giunchiglia, F., Kharkevich, U., Zaihrayeu, I.: Concept
search. In: ESWC, pp. 429–444 (2009)

17. Halpin, H., Herzig, D.M., Mika, P., Blanco, R., Pound,
J., Thompson, H.S., Tran, D.T.: Evaluating ad-hoc ob-
ject retrieval. In: Workshop on Evaluation of Semantic
Technologies (WEST) (2010)

18. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kon-
tokostas, D., Mendes, P.N., Hellmann, S., Morsey,
M., van Kleef, P., Auer, S., Bizer, C.: Dbpedia - A
large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web 6(2), 167–195 (2015). DOI
10.3233/SW-140134. URL http://dx.doi.org/10.3233/

SW-140134

19. Lopez, V., Unger, C., Cimiano, P., Motta, E.: Evaluating
question answering over linked data. J. Web Sem. 21,
3–13 (2013)

20. Mihalcea, R., Csomai, A.: Wikify! Linking documents to
encyclopedic knowledge. In: CIKM, pp. 233–242 (2007)

21. Sanderson, M.: Test collection based evaluation of infor-
mation retrieval systems. Foundations and Trends in In-
formation Retrieval 4(4), 247–375 (2010)

22. Tablan, V., Bontcheva, K., Roberts, I., Cunningham, H.:
Mı́mir: An open-source semantic search framework for in-
teractive information seeking and discovery. J. Web Sem.

30, 52–68 (2015). URL http://www.sciencedirect.com/

science/article/pii/S1570826814001036

23. Tran, T., Mika, P., Wang, H., Grobelnik, M.: Sem-
search’11: the 4th Semantic Search Workshop. In: WWW
(Companion Volume) (2011)

24. Unger, C., Forascu, C., López, V., Ngomo, A.N., Cabrio,
E., Cimiano, P., Walter, S.: Question answering over
linked data (QALD-4). In: Working Notes for CLEF 2014
Conference, Sheffield, UK, September 15-18, 2014., pp.
1172–1180 (2014). URL http://ceur-ws.org/Vol-1180/

CLEF2014wn-QA-UngerEt2014.pdf

25. Unger, C., Forascu, C., López, V., Ngomo, A.N., Cabrio,
E., Cimiano, P., Walter, S.: Question answering over
linked data (QALD-5). In: Working Notes of CLEF
2015 - Conference and Labs of the Evaluation forum,
Toulouse, France, September 8-11, 2015. (2015). URL
http://ceur-ws.org/Vol-1391/173-CR.pdf

26. Wang, H., Liu, Q., Penin, T., Fu, L., Zhang, L., Tran,
T., Yu, Y., Pan, Y.: Semplore: A scalable IR approach
to search the web of data. J. Web Sem. 7(3), 177–188
(2009)

282

	Abstract
	Kurzzusammenfassung
	Acknowledgments
	1 Introduction
	2 List of Publications
	2.1 Publications With Peer Review
	2.2 Publications Without Peer Review

	3 Contributions
	3.1 Semantic Full-Text Search
	3.1.1 Problem, Related Work, and Contributions
	3.1.2 Approach
	3.1.3 Experiments and Results

	3.2 Contextual Sentence Decomposition
	3.2.1 Problem, Related Work, and Contributions
	3.2.2 Approach
	3.2.3 Experiments and Results

	3.3 Relevance Scores for Triples
	3.3.1 Problem, Related Work, and Contributions
	3.3.2 Approach
	3.3.3 Experiments and Results

	3.4 Question Answering on Knowledge Bases
	3.4.1 Problem, Related Work, and Contributions
	3.4.2 Approach
	3.4.3 Experiments and Results
	3.4.4 Matching Relations in Questions Using Deep Learning

	3.5 Semantic Search Survey

	4 Future Work
	Bibliography
	Appendix: Publications
	A Case for Semantic Full-Text Search (2012)
	Semantic Full-Text Search with Broccoli (2014)
	Easy Acccess to the Freebase Dataset (2014)
	Open Information Extraction via Contextual Sentence Decomposition (2013)
	More Informative Open Information Extraction via Simple Inference (2014)
	Relevance Scores for Triples from Type-Like Relations (2015)
	WSDM Cup 2017: Vandalism Detection and Triple Scoring (2017)
	More Accurate Question Answering on Freebase (2015)
	Semantic Search on Text and Knowledge Bases (2016)
	Broccoli Semantic Full-Text Search at your Fingertips (2012)
	A Quality Evaluation of KB+Text Search (under submission, 2017)

