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Abstract
The ability of tiny embedded devices to run large feature-rich pro-
grams is typically constrained by the amount of memory installed
on such devices. Furthermore, the useful operation of these devices
in wireless sensor applications is limited by their battery life. This
paper presents a call stack redesign targeted at an efficient use of
RAM storage and CPU cycles by a Java program running on a wire-
less sensor mote. Without compromising the application programs,
our call stack redesign saves 30% of RAM, on average, evaluated
over a large number of benchmarks. On the same set of bench-
marks, our design also avoids frequent RAM allocations and deal-
locations, resulting in average 80% fewer memory operations and
23% faster program execution. These may be critical improvements
for tiny embedded devices that are equipped with small amount of
RAM and limited battery life. However, our call stack redesign is
equally effective for any complex multi-threaded object oriented
program developed for desktop computers. We describe the re-
design, measure its performance and report the resulting savings
in RAM and execution time for a wide variety of programs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (Garbage Collection)

General Terms Algorithms, Design, Experimentation, Perfor-
mance

Keywords Wireless Sensor Networks, Call Stack, Memory Man-
agement, JVM, Java Virtual Machine, TakaTuka
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1. Introduction

Advancements in hardware and economies of scale have led to the
availability of inexpensive wireless sensor motes. The motes usu-
ally offer only a small amount of memory, limited computation
power, and short battery lifetime. Even with all these limitations on
an individual mote, these motes create a powerful wireless network
when deployed in large number and embedded deeply within large-
scale physical systems. Such a wireless network enables a wide
variety of applications progressively envisioned by sensor network
researchers. Some of such applications are environment monitor-
ing, military surveillance, forest fire monitoring, industrial control,
intelligent agriculture, and robotic exploration.

A common way of programming an application into wireless
sensor motes is by using a low level or a specially designed pro-
gramming language such as Assembly, C, or NesC [10]. These
languages usually produce code that is difficult to debug, extend,
reuse and maintain. To avoid the pitfalls of programming in a low-
level language, there is a growing interest to program the motes
using Java, a widely used high level programming language with
a large developer community. Towards this end, several Java Vir-
tual Machines (JVMs) for motes have been rolled out in recent
years [3, 6, 13]. The advantages of using Java include portabil-
ity, type safety and run-time garbage collection. However, Java—
originally designed for 32-bit processors—has inadequate memory
management and instruction set support for the 16-bit or 8-bit pro-
cessors that are mostly used in wireless sensor motes. This paper
proposes a new call stack design for Java from the standpoint of
tiny embedded devices (e.g motes) with smaller than 10 KB of
RAM. Our call stack redesign applies to all of the well-known
JVMs for tiny motes which are stack based and use interpreters
rather than Just-in-Time (JIT) compilers [3, 6, 13]. These JVMs
avoid the use of JIT compilation as it requires a relatively large
amount of memory—a scarce resource in motes—for storing and
dynamically producing the native code at run time [12]. Further-
more, many motes follow the Harvard architecture requiring the JIT
compiler to generate the native code in flash memory which has a
long write time, resulting in a slower program execution [24]. This
paper also assumes a JVM with a stack-based architecture, which
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results in a smaller Java binary [20], compared to register-based ar-
chitectures, and is used by most popular JVMs for motes [3, 6, 13].

We present CVCS (Compile-time Variable Chunk Scheme) and
VSS (Variable Slot Scheme): two techniques that lead to a new
stack design which is efficient in RAM and CPU utilization, with-
out requiring changes in the application programs. The following
provides a description of a typical function call stack design while
identifying the causes of resource wastage in that design.

1.1 General Call Stack Design
A call stack stores a chain of function frames which represents
the state information of functions under execution. The size of a
function frame is computed during program compilation [15]. A
new frame is pushed on the call stack when the function is actually
invoked during run time. The frame is destroyed (i.e., popped from
the call stack) when the function completes its execution [15]. For
embedded devices, this design leads to three sources of RAM and
CPU cycle wastage as is outlined in the following subsections.

foo

bar

utilized space

ISR waste

IFR waste
} one 4-byte slot

Figure 1. An example depicting two sources of RAM wastage.

1.1.1 Intra-frame RAM (IFR) waste
For each function, the frame size is computed during compilation
of the program such that the frame can accommodate all the local
variables as well as the maximum size of the operand stack required
for the execution of that function [15,20]. Thus, the space reserved
for a function frame is the maximum that is ever needed during
the execution of that function. While the space reserved for a
frame is fixed, the actual utilization of the frame varies as the
function execution progresses. It implies that the instantaneous
stack utilization for a function foo, at a point when it invokes
another function bar, may only be a fraction of the maximum
allocation, as indicated in Fig. 1. On invocation of function bar,
a corresponding frame is created and the execution of function
foo is put on hold until after the function bar returns. During
the execution of function bar, any unutilized frame space in foo
remains untouched and thus wasted. This waste, which we call the
Intra-Frame RAM (IFR) waste, can quickly accumulate when the
program is implemented using several nested functions. We present
CVCS in Section 2 that significantly reduces the IFR waste.

1.1.2 Frame allocation time (FAT) waste
The memory for a function frame may be allocated when that func-
tion is invoked and deallocated when the execution of that function
is completed (see Java specifications [15] Section 3.6). Memory
allocation is known to be a slow operation as it usually requires
searching for a memory block large enough to accommodate the
complete frame. This slow operation has to be carried out a num-
ber of times during the execution of a program for each function
invocation, thus it wastes significant CPU cycles. We refer to this
as Frame Allocation Time (FAT) waste.

To eliminate FAT waste and to make a Java program run faster,
a JVM designed for desktop computer may allocate a large portion

Figure 2. IRIS Mote: An IRIS mote used in our experimental
evaluation. The mote has 128 KB of flash, 8 KB of RAM, and
it uses an 8-bit AtMega128L processor. It is powered by two AA
batteries and is equipped with a 2.4 GHz radio for communication
with other motes.

of RAM for the call stack in advance instead of allocating RAM
for each individual frame. Thus, a new allocation will be required
only when that large portion of RAM is almost used and is no
longer able to accommodate a new frame. Although pre-allocating
a large-sized memory block for the call stack is useful on a desktop
computer, a JVM designed for motes should reserve memory more
carefully. This is to avoid a possible overbooking of the limited
amount of available RAM that is shared between the call stack and
the heap. Furthermore, a JVM for motes should also minimize FAT
waste to maximize battery lifetime. CVCS achieves both of the
above mentioned objectives, that is it reduces FAT waste without
allocating an arbitrarily large portion of RAM for the call stack.

1.1.3 Intra-slot RAM (ISR) waste
Another source of wasted RAM in the Java call stack stems from
the use of fixed allocation slots. A slot is an atomic unit of a
frame, which can hold at most one data item—from operand stack
or from local variables. A data item itself might occupy multiple
slots. Standard Java uses 4-byte slots so that data may be efficiently
accessed on a 32-bit processor1. When a data item of size smaller
than 4 bytes is stored in a 4-byte slot, some portion of that slot
remains unused and thus wasted as shown in Fig. 1. We refer to
this as Intra-Slot RAM (ISR) waste.

Wireless motes are usually equipped with an 8-bit or a 16-bit
processor. Thus, without compromising performance, a JVM may
save RAM on a mote by using smaller than 4-byte slot size. One
of our design goals is to allow the JVM to dynamically select the
slot size based on the processor type making it suitable to run on
processors of varying word sizes. However, achieving this goal is
challenging given that all the Java bytecode instructions support 32-
bit or 64-bit operations [15]. A possible solution is to modify the
instruction set for processors with another word length but this may
render the modification unsuitable for processors with yet another
different word length. Our design includes a novel solution, called
Variable Slot Scheme (VSS), which enables a JVM to choose slot
sizes depending upon the target processor.

In this paper, we present the design and evaluation of CVCS
and VSS using TakaTuka JVM [3, 4]. We selected TakaTuka be-
cause it is open-source, mature enough to support a wide variety
of benchmark programs and is designed for tiny wireless sensor
motes. The Java benchmarks are evaluated on widely used IRIS
motes (see Fig. 2) where each mote is equipped with only 8 KB
of RAM [2]. When evaluated over a large number of benchmark
programs of various types, our implementation of CVCS and VSS
results in average RAM savings of about 30% and about 80% re-
duction in the memory operations.

1 A 32-bit processor needs extra CPU cycles if a memory address other than
a multiple of 32 is accessed.
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Figure 3. Reduction in the RAM waste using chunks that carry
overlapping frames. The figure shows two instances in time of the
same chunk during the execution of the program.

1.2 Contributions
In the context of our new stack design, we make the following
contributions in this paper:

1. For the first time a compile-time redesign of the call stack
with runtime shrinking is presented, for object oriented, multi-
threaded programs. Contemporary work either uses a runtime
redesign or is limited to procedural programming as explained
in Section 5.

2. Use of a novel inter-procedural data flow analysis to calculate—
during compile time—the size of a memory chunk needed to
hold function frames in a nested call of given depth (see Fig-
ure 3).

3. A design that eliminates IFR waste by allowing overlapping
memory blocks holding the frames of nested functions.

4. A design which allows a programmer to select a slot size that
better matches the width of the hardware bus, thus bringing a
reduction in ISR waste.

5. A thorough evaluation of our new stack design using around
two dozen well-known benchmark programs in various cate-
gories.

1.3 Outline of the paper
The rest of the paper is organized as follows: We present Compile-
time Variable Chunk Scheme (CVCS) in Section 2. Section 3 de-
scribes our Variable Slot Scheme (VSS). Benchmarks used to eval-
uate our schemes, evaluation setups and comprehensive results are
given in Section 4. Related work is detailed in Section 5. Finally
we draw our conclusions in Section 6.

2. Compile-time Variable Chunk Scheme
Using current Java Virtual Machine (JVM) specifications, existing
implementations determine the size of a function frame at com-
pile time using an intra-procedural data-flow analysis [15]. Sub-
sequently, this pre-calculated size is used during the execution of
the program—when a function is invoked—to actually allocate the
memory for the function frame. This leads to FAT and IFR wastes.
In contrast, the CVCS design creates chunks (instead of function
frames) during the execution of the program; the size of a chunk is
also pre-calculated during the compile time but the data-flow anal-
ysis to compute this size is inter-procedural and field-sensitive.

CVCS allows a single chunk to carry multiple frames leading
to less frequent runtime memory allocations, which results in a

1 p u b l i c s t a t i c vo id f o o b a r ( . . . ) {
2 i f ( . . . ) {
3 f o o b a r ( . . . ) ;
4 }
5 . . . .
6 }

Figure 4. Offline data-flow analysis limitation in the presence of a
recursive function.

reduction in FAT waste and, therefore, an increase in the lifetime
of power-constrained devices. As our results indicate (Section 4),
the steady state memory utilization using CVCS remains lower than
the case when CVCS is not used, even though the size of a chunk is
at least as large as a single function frame. This is because CVCS
also exploits using the memory area that is allocated to but not
utilized by a function frame during the time that function makes a
nested call. In essence, this means a complete elimination of the
IFR waste, except for the last frame of each chunk. A chunk is
allocated—upon a function invocation—either when there exists no
chunk in the memory or when the chunk at the top of the stack does
not have enough memory space left to accommodate all the data
items of the invoked function. A chunk is deallocated (i.e., popped
from the call stack) if and only if it has no data item left.

The CVCS design circumvents the IFR waste (through frame
overlaps) and the FAT waste (through pre-allocated chunks), and is
best explained with an example shown in Fig. 3. The figure shows
that the last four slots in the frame of foo are not utilized at the
time when foo makes a nested call to function bar. These four
slots are guaranteed to remain unused until bar returns. We use
this fact to start storing the data items of function bar from the first
unused slot in the chunk—a slot that would be used by function foo
but only after function bar returns. Thus, foo and bar share those
four slots that would otherwise remain allocated but unutilized. The
figure shows only two functions sharing slots with each other but
in complex programs, multiple functions could share the same set
of slots.

This sharing in CVCS reduces the IFR waste and makes addi-
tional RAM available to a program, such that larger programs can
be facilitated to run on memory-constrained devices. Figure 3 also
illustrates the boundary case when two slots at the end of function
bar remain unused (assuming that the frame of a function invoked
by bar can not fit into the remaining slots of the chunk). Any space
in the current chunk, after the frame of bar function, is also unuti-
lized but is shrinkable, as we describe in Section 2.2.

2.1 Chunk size calculations

The compiler for TakaTuka has built-in Data-Flow Analysis (called
OGC-DFA) that is inter-procedural context sensitive, field sensitive
and flow sensitive [4]. During the compilation of a program, we
use OGC-DFA to construct the method call graph and determine
the size of a frame needed on each instruction. This information
is fed into the following equation to calculate the size of chunk for
function f , given a depth d of nested method calls originating for f :

Cf,d =

{
max(Ff ,max

i
(Ff,i +max

g
(Cg(f,i),d−1))) if d > 0,

0 if d = 0.
(1)

In the above equation, Ff is the total size of a frame of the
function f . Ff,i is the maximum size of function f ’s frame at
instruction i and g(f, i) is the function g invoked by the instruction
i of the function f .
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Figure 5. Reduction in the RAM waste (in addition to the one
shown in Figure 3) using VSS.

2.2 Shrinking chunk size

The OGC-DFA takes into account all the functions that could
be invoked and instructions that could be executed at runtime in
the worst possible scenario. At runtime a subset of the methods
analyzed by OGC-DFA are invoked and a subset of instructions are
executed. The lack of exact information about a program, during its
compilation affects the outcome of Equation 1, as the chunk size
calculated using it could be larger than the RAM actually needed
at runtime. To overcome this shortcoming, we shrink the size of
current chunk before creating a new chunk. Recall that a new chunk
is created only when the current chunk does not have sufficient
space left to accommodate all the data items of a newly invoked
function. Before creating such new chunk, we shrink any unused
space available in the current chunk that is not part of the last frame
of the chunk. Fig. 3 shows one slot at the end of the chunk that
will be removed when a new chunk will be created because that
slot is not part of the last frame of the chunk and the three empty
slots at the end of the chunk are not sufficient to accommodate the
next frame. The exact process of shrinking chunk size may differ
for each JVM depending upon its implementation details. In the
TakaTuka JVM, the shrinking requires updating a free-list, to make
extra slots available for future use.

2.3 Selection of depth

The depth d in Eq. 1 determines how many levels of nested function
calls are to be accommodated in a single chunk. To save RAM, the
depth d should be selected carefully. A small value of d will result
in a higher IFR waste and more frequent chunk allocations, whereas
a large value of d will cause RAM overbooking increasing the
likelihood of a heap overflow. Furthermore, a large value of d will
also increase the probability of error in the chunk size calculation
based on Eq. 1. For example, assume that foobar in Fig. 4 might
be called at most n times during the program execution. Given that
the value of n is unknown during the compilation of program, the
Cfoobar,d for d > n will return a chunk size greater than actually
needed for the execution of the program. In conclusion, the depth d
should be selected carefully — neither too large nor too small.

3. Variable Slot Scheme
A frame is composed of multiple fixed-size slots [6, 15] each
of which can hold at most one data item. This design facilitates
constant-time lookup of any data item by indexing into the frame.
In Java, the maximum number of slots required by the frame of
a function is calculated during compilation. These numbers are
stored in the Java binary and are used for memory allocation dur-
ing program execution. Standard Java has 4-byte slots as Java was

originally designed for 32-bit processors. There are two implica-
tions of having 4-byte slots:

• Each data item in a frame is always stored at a memory offset
that is a multiple of 32, leading to a fast data access on a 32-
bit processor. A 32-bit processor needs extra CPU cycles if a
memory address other than a multiple of 32 is accessed.

• A data item smaller than 32 bits2 is also stored in a 32-bit slot,
leading to waste of precious RAM space.

For a 32-bit processor, the slot size of 4 bytes presents a trade-
off between execution speed and total RAM consumption. A wire-
less sensor mote usually has either an 8-bit or a 16-bit processor.
For such processors, there is no slow-down as long as the slot size
is greater or equal to the processor’s word size. Therefore, the use
of smaller than 4-byte slots on a wireless sensor mote can result in
RAM savings without undermining the speed of bytecode execu-
tion.

This section presents Variable Slot Scheme (VSS) that offers an
option to the programmer to select from 8, 16, and 32-bit slot sizes
at compile-time. The resulting bytecode uses fixed size slots at run
time maintaining the constant time access to the data stored in slots.
VSS takes a standard Java binary (the class file generated for 32-
bit machines) and transforms it into another Java binary that uses
the slot size selected by the programmer. To accomplish this, VSS
needs to extend the Java bytecode instruction set by introducing
new instructions that support VSS. The following section discusses
the design of VSS in detail.

3.1 VSS Instruction Design
The standard Java bytecode instructions support only 32-bit or 64-
bit operations [15]. In Sun JVM, data of size smaller than 32 bits
is sign extended to a 32-bit integer before being stored in a local
variable or on the operand stack of a function [15]. Subsequently,
any operation carried out on that data is the same as that for a 32-bit
integer. Therefore, introducing VSS in the TakaTuka JVM requires
extending the Java bytecode instruction set to support smaller than
32-bit data types.

The JVM specification defines only 204 out of 256 possible
opcodes for bytecode instructions [15]. The VSS could use those
256−204 = 52 available opcodes to create customized instructions
for supporting smaller than 32-bit operations. However, the size and
complexity of the JVM increases with the number of instructions
it supports. Therefore, in order to fit the JVM on a mote’s flash a
conservative approach in the extension of Java bytecode instruction
set is required. We have considered two possible extensions of the
Java bytecode to support the VSS. These extensions are explained
using a simple example.
Example: Fig. 6 shows Java source of a simple function addTwo
that returns the sum of two input variables: a 16-bit short and
an 8-bit byte. The Java binary of function addTwo generated by
the standard Java compilation is shown in Fig. 7. The frame of the
function addTwo requires five 32-bit slots, including three slots for
local variables requiring 3 × 32 = 96 bits of RAM, and two slots
for operand stack requiring 2× 32 = 64 bits of RAM.

3.1.1 Specialized Operations and Data Access
This extension introduces a new instruction for a smaller than 32-
bit data type corresponding to each existing instruction of 32-bit
and 64-bit data types. For example, corresponding to the standard
Java instruction IADD, a new instruction SADD is introduced for
adding two 16-bit shorts. Fig. 8 shows the Java binary with
extended instruction set for function addTwo. The number of slots
required by the function, using VSS, depends upon the slot size

2 In Java, data types short, byte, boolean and char use less than 4 bytes.
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1 p u b l i c s t a t i c i n t addTwo ( s h o r t s , byte b ) {
2 i n t i = s + b ;
3 re turn i ;
4 }

Figure 6. Source code of function addTwo that adds a short and
a byte.

1 ILOAD 1
2 ILOAD 2
3 IADD
4 ISTORE 3
5 ILOAD 3
6 IRETURN

Figure 7. Java binary of function addTwo.

1 LOAD SHORT CHAR 1
2 LOAD BYTE BOOLEAN 2
3 BYTE2SHORT
4 SADD
5 SHORT2INT
6 ISTORE 3
7 ILOAD 3
8 IRETURN

Figure 8. Java binary of function addTwo with “Specialized oper-
ations and data access” described in Section 3.1.1.

selected by the programmer during creation of Java binary. If 8-bit
slot size is selected then the local variables will need seven slots
(i.e., 7 × 8 = 56 bits of RAM) and the operand stack will require
four 8-bit slots. In contrast, in case 16-bit slot size is selected then
the local variables will need four slots (i.e., 4 × 16 = 64 bits of
RAM) and the operand stack will require two 16-bit slots. Thus the
RAM consumption is reduced significantly with smaller slot sizes.

The main drawback of the “Specialized operations and data
access” extension is that it will increase the size and complexity
of JVM significantly. This is because Java has dozens of standard
instructions for 32-bit and 64-bit operations (e.g., IADD, IMUL,
IAND) and this scheme will require creating 8 and 16-bit versions
of those instructions.

The Darjeeling JVM [6] has a bytecode extension for supporting
16-bit data types that is similar to the extension presented here.
Unlike the goal set for the VSS, the Darjeeling JVM does not have
the option to choose slot size during the program compilation as
slot size for Darjeeling programs is always equals to 16-bit. The
16-bit slot size could lead to the reduction in the performance of
JVM on a 32-bit processor and ISR waste on an 8-bit processor.

3.1.2 Specialized Data Access Only
A better way to implement VSS is to employ the existing instruc-
tions provided by standard Java for all 32-bit operations but design
a new set of customized 8-bit and 16-bit instructions for storing and
retrieving information from operand stack and local variables. If a
standard 32-bit operation requires a data item that is stored in less
than 4 bytes then use casting instructions to convert data into 32
bits before applying the standard 32-bit operation. It implies that
besides introducing new customized instructions for loading, stor-
ing and casting data, the rest of the Java bytecode instruction set
will remain unchanged. We have carefully designed six new byte-
code instructions that can be used to implement VSS for different
types of processors. These new instructions are listed in Table 1.

The increase in the JVM size to support VSS is small because it
only needs to support six new instructions. Furthermore, the JVM
will be suitable for different kinds of processors and save RAM
without any additional change in it. Therefore, we have selected
“Specialized data access only” to extend the TakaTuka JVM and
for detailed evaluation. The Java binary of function addTwo with
the TakaTuka VSS extension is shown in Fig. 9.

Both of the above bytecode extensions introduce new instruc-
tions for moving data between the operand stack and the local vari-
ables. For example, both extensions need a LOAD SHORT CHAR in-
struction to load a 16-bit value onto the operand stack. However,
unlike the first extension, the TakaTuka VSS extension does not
duplicate all the 32-bit integer operations (there is no SADD in
Fig. 9). This significantly reduces the number of additional instruc-
tions required to support the VSS.

Instruction Description
LOAD SHORT CHAR index Loads data of type short or a char

on the operand stack of a function.
STORE SHORT CHAR index Stores data of type short or a char

in a local variable of a function.
LOAD BYTE BOOLEAN index Loads a data of type byte or a boolean

on the operand stack of a function.
STORE BYTE BOOLEAN index Stores data of type byte or a boolean

in a local variable of a function.
CAST STACK LOCATION Casts a given stack location to integer.
index type
METHOD STACK LOCATION Casts a given stack location
index from-type to-type with given type to another type.

Table 1. Set of additional bytecode instructions in the TakaTuka
VSS Extension.

3.2 Changing Bytecode for Supporting VSS
Given the source code of a program, the TakaTuka JVM creates
Java binary in two steps: (1) it uses standard Java compilation for
the creation of the class files from the program source code, (2) it
transforms the class files into the TakaTuka binary, called Tuk [3].
The Tuk file is optimized for efficient RAM and flash usage. The
Tuk file creation and optimizations are performed on a desktop
computer before the application is transferred to a mote for exe-
cution. Therefore, the optimization process does not consume re-
sources of a mote. We have extended offline compilation of the
Tuk file with VSS to decrease RAM consumption. The VSS up-
dates the bytecode during the creation of the Tuk file based on the
selection of the slot size by the programmer. We now describe how
VSS updating of the bytecode is carried out.

3.2.1 Reducing Input Parameters Size
The local variables of a function consist of its input parameters and
the variables defined within the body (called body-variables). For
example, the function addTwo in Fig. 6, has three local variables
including two input parameters s, b and one body-variable i.

The type information of the input parameters is included within
the Java binary. Using this information, the Java binary is updated,
by replacing 32-bit load and store instructions with corresponding
smaller than 32-bit instructions. That is the first instruction ILOAD
of function addTwo in Fig. 7 is replaced by LOAD SHORT CHAR in
Fig. 9 based on the input parameter type information.

3.2.2 Reducing Operand Stack Size
In order to determine the number of slots required by the operand
stack, it is necessary to analyze the bytecode of the function. To this
end, we developed the VSS Data-Flow Analyzer (VSS-DFA) that
is an extension of the Bytecode Verification Data-Flow Analyzer
(BV-DFA) [4, 15].

The Java bytecode is verified using BV-DFA and is then input
to the VSS engine. The VSS engine modifies this already verified
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1 LOAD SHORT CHAR 1
2 LOAD BYTE BOOLEAN 2
3 CAST STACK LOCATION 0 BYTE
4 CAST STACK LOCATION 1 SHORT
5 IADD
6 ISTORE 3
7 ILOAD 3
8 IRETURN

Figure 9. Java binary of function addTwo with TakaTuka VSS
extension: “Specialized data access only”.

bytecode by adding load and store instructions for smaller than 32-
bit data types. Subsequently, the engine runs VSS-DFA to rean-
alyze the updated bytecode. If now any verification errors in the
changed bytecode are discovered, they could only be due to the
newly added smaller than 32-bit load and store instructions. These
errors are corrected by inserting typecast instructions in the byte-
code of the function. The VSS-DFA also calculates the reduced
frame size for each function based on newly added smaller than
32-bit instructions. Several additional enhancements needed in BV-
DFA to realize the VSS-DFA are part of the implementation details
and are omitted here.

3.2.3 Reducing the Size of body-variables
Unlike the input parameters, the type information for body vari-
ables is not included in the Java binary. Therefore, their size must
be computed during data-flow analzsis. The TakaTuka VSS engine
uses a simple algorithm to estimate the types of body-variables.
This algorithm works as follows:

1. During VSS the data flow analyzer computes the maximum size
of the data that is ever stored in a body-variable.

2. The type of a body-variable is determined based on the maximum-
sized data stored in it. For example, if a body-variable never
stores data of size greater than 16 bits during analysis, then that
variable should have either char or short type. The runtime
semantics of both char and short are the same, so it is safe to
choose any of these types for that variable.

3. Finally, the bytecode is changed on the basis of that type.

The above algorithm does not guarantee that the size of each
body-variable will be minimized, however, the algorithm is still
useful in saving precious RAM.

4. Results and Discussion
For a comparative evaluation of CVCS/VSS with a typical frame-
based scheme, our selected benchmarks included programs that
are either developed for sensor motes or are flexible enough to
adjust their memory requirements based on program parameters.
Table 2 shows our selected programs divided into five different
categories. Programs in the first category are network-centric while
those in the remaining four categories can be run on individual
motes without requiring a networked setup. These programs vary
from small single-threaded to large-sized with multiple threads [1,
19, 21, 22]. As our evaluation platform, we used IRIS motes (see
Fig 2) which are equipped with only 8KB of RAM enforcing strict
memory constraints [2, 14]. In case a program goes beyond the
given RAM constraint, the TakaTuka JVM ceases its execution and
throws an exception. For each program, we obtained results using
different metrics described in the following subsection.

4.1 Performance Metrics
• RAM Reserved: The amount of RAM reserved by the call

stack at a given point of execution of a program. This includes
RAM that is currently in use at that point as well as the RAM

Wireless Sensor Networks
1 CTP [11] an address-free collection protocol
2 Dymo [7] a on-demand routing protocol

Network Algorithms
3 Dijkstra [1] Link state routing protocol
4 Bellman-Ford Distance vector routing protocol
5 Floyd-Warshall [1] Shortest path in a weighted graph
6 Kosaraju [1] Strongly connected component
7 Tarjan [1] Least common ancestor of nodes
8 Edmonds [1] Optimum branching algorithm

Searching and Sorting
9 QuickSort 0(NlogN) sorting algorithm
10 HeapSort 0(NlogN) sorting algorithm
11 Red-Black Tree Self balancing binary tree

Maths and Engineering
12 MatrixMul [19] N ×N matrices multiplication
13 NQueen [19] N queens placement problem

Memory Benchmarks
14 GCBench [4, 21] Designed to mimic memory usage

behavior of real applications.
15 GCOld [4, 21] GC benchmark developed

by Oracle Inc
16 HeapTest [22] Memory benchmark developed

for SunSpot motes.
17 Benchmark [22] Memory benchmark developed

for SunSpot motes.

Table 2. Set of Benchmarks used for evaluation.

reserved at that point for the possible future use. The main
criteria of determining the effectiveness of a scheme should
be its reduction of the RAM reserved, because the smaller the
RAM reserved by the call stack the greater the chance that a
mote will be able to accommodate a bigger and feature rich
program. Furthermore, smaller RAM reserved for the call stack
means that a large portion of RAM is left for the heap hence the
heap can accommodate more and larger objects.

• RAM Waste: The RAM reserved by the call stack but not yet
utilized. The RAM waste is a subset of RAM reserved. Un-
like RAM reserved, smaller RAM waste alone is not sufficient
to establish superiority and effectiveness of one scheme over
another. However, a scheme should try to reduce waste to de-
crease the total RAM reserved and make more RAM available
to a program.

• Number of Allocations: The total number of allocations for
maintaining the call stack that occur during the execution of a
program. This does not include the number of allocations on the
heap as a scheme for the call stack has no effect on them. The
reduction in the number of allocations and deallocations results
in a faster program execution and increased battery lifetime of
a mote.

• Execution Speed: We also measure the total time taken by each
program to complete its execution and percentage reduction in
that time when CVCS and VSS is used.

4.2 Single Machine Programs

All programs in our evaluation list, except for those in the first cat-
egory in Table 2, can be executed on a single wireless mote without
requiring a networked environment. For each of these programs, we
measure the RAM reserved and RAM waste at the entry and exit of
each function invocation.
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Figure 10. CVCS with Shrinking: Average percentage reduction
in RAM reserved by the call stack, compared to a frame-based
scheme. In the figure, CVCS 2 means CVCS with depth d = 2.

CVCS 2 CVCS 4 CVCS 6 CVCS 8
0

10

20

30

40

50

60

70

%
 R

e
d

u
c
t
io

n

Figure 11. RAM Waste: Average percentage reduction in the
RAM wasted by the call stack with the use of CVCS (compared
to a frame-based scheme).

4.2.1 CVCS
Fig. 10 shows the average percentage reduction in the RAM re-
served by the call stack of a program with the CVCS compared to a
frame-based scheme. The results are shown with different depths d
(see Eq. 1). The average RAM waste during the execution of each
program is shown in Fig. 11 and average number of memory al-
locations is shown in Fig 12. We make the following observations
and inferences from these graphs:

• CVCS always performs better (in terms of RAM reserved)
compared to a frame-based scheme even for small d.

• The savings in RAM reserved increases with d but on IRIS
mote d = 6 is sufficient to realize the maximum gains (for the
set of benchmarks evaluated). The average percentage reduc-
tion in RAM reserved using CVCS with shrinking is 18.72%
with d = 6. A further increase to d = 8 results in less mem-
ory reduction, because some requests for allocating big chunks
were not fulfilled during the execution of the benchmarks. If
insufficient memory is available to create a chunk for multiple
methods, a smaller chunk to fit a single method is created, de-
teriorating the result for d = 8.

• The saving in RAM reserved comes with a reduction in the
number of allocations and deallocations required to maintain
the call stack. Fig. 12 shows that using CVCS, with d = 8 and
shrinking, requires on the average about 80% fewer allocations
to maintain the call stack as compared with the typical frame
based scheme. Furthermore, the number of allocations in CVCS
remains small no matter what d is selected.

4.2.2 Variable Slot Scheme
We now measure the performance of the Variable Slot Scheme
(VSS) with slot size of 1 and 2 bytes. The evaluation of VSS is
carried out using two kinds of observables:
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Figure 12. Number of Allocations: Average percentage reduction
in the number of allocations achieved by using CVCS.
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Figure 13. Average percentage reduction in the size of frames by
the VSS. These results are based on reduction calculated in the
frame size during the compilation of the programs.
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Figure 14. Aggregated average percentage reduction in the RAM
reserved by the call stack with the VSS and CVCS, during the
execution of the programs.

1. The average percentage reduction in the frames size at compi-
lation.

2. The average percentage reduction in the RAM reserved for call-
stack during program execution.

The Java binary includes information about the maximum frame
size needed during the lifetime of a function to accommodate its
complete state information. This information is used by the JVM to
create a frame during the execution of a program. We first measure
the reduction in frame size, realized by using VSS, during the
compilation of a program. Fig. 13 shows that, for the programs in
the last four categories in Table 2, the size of each frame is reduced
by 29.9%, on average, for a slot size of 2 bytes and 30.10% for
a slot size of 1 byte. Savings decrease when going from 2-byte to
1-byte slots because the benchmark programs made little or no use
of 1-byte data types (i.e., boolean and byte).

We now measure the reduction in the RAM reserved for call
stack during the execution of program. To this end, we record
RAM reserved at each function call and at its return. Fig. 14
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shows that at run time on average RAM reserved decreases by
11.16% and 10.03% with 2-byte and 1-byte slot size respectively.
We note that the majority of benchmarks in Table 2 are taken from
independent sources and hence are not designed specifically to
save RAM using smaller than 4-byte data types. Thus, the reported
savings may further increase if a programmer who is aware of
the VSS optimization deliberately chooses smaller data types (e.g.
short in place of integer) where appropriate.

In TakaTuka JVM, the RAM reserved with 1-byte slot size
could be larger as compared to 2-byte slot size during program
execution. This is because each slot uses one extra bit overhead
and using 1-byte slot size usually double the number of slots,
proportionally increasing that 1-bit overhead. If a program is using
only a few 1-byte data types then the per-slot overhead may exceed
RAM saved using 1-byte slot size as compared to 2-byte slot size.
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Figure 15. Execution Time: Average percentage reduction in the
execution time of programs as compared to a frame based scheme.

4.2.3 Execution Speed
Fig. 15 shows that the benchmarks’ execution time is reduced by
23.58% on average with CVCS. We attribute this reduction in
execution time to the smaller number of memory operations and
the reduction of FAT waste.

The IRIS mote has an 8-bit processor. Therefore, a program run-
ning on IRIS can access a memory address that is not a multiple of
32 bits without any overhead making IRIS suitable for VSS op-
timization. However, VSS engine increases the size of Java byte-
code by adding casting instructions (as explained in Section 3),
so that the number of instruction dispatches increases. These extra
instruction dispatches result in slightly slower program execution
with VSS. However, on average the programs run faster when both
VSS and CVCS are used together as compared to the typical frame
based scheme as shown in Fig. 15.
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Figure 16. RAM Reserved in Routing Protocols: Average per-
centage reduction (relative to a frame-based scheme) in RAM re-
served by the call stack with the use of CVCS and VSS.

4.3 Multi-Machine Programs
We now evaluate CVCS and VSS using two well-known network
layer protocols for wireless sensor networks (i.e. CTP and Dymo as
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Figure 17. RAM Waste in Routing Protocols: Average percent-
age reduction (relative to a frame-based scheme) in RAM wasted
by the call stack with the use of CVCS and VSS.
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Figure 18. Number of Allocations in Routing Protocols: Aver-
age percentage reduction in the number of allocations by the CVCS
(compared to a frame-based scheme).

listed in Table 2) . For evaluating CVCS/VSS with these protocols,
we built a network of IRIS motes and designated two of the motes
as a source and a destination.

The CTP is a tree-based collection protocol [11]. Few motes in
a network advertise themselves as root of the network. Based on
such advertisements, each non-root mote determines which of its
neighbors is either a root or nearer to one of the roots. In steady
state operation of CTP, a set of distributed trees are created by the
non-root motes, each tree ending at a root mote. The CTP is an
address-free protocol in which the data is always transmitted from
a non-root towards the nearest root mote. In contrast, Dymo is a
routing protocol where any mote can send packets to any other mote
in the network [7].

We have developed a simple application on top of these multi-
threaded network protocols. In our application, the source-mote
sends a data packet (containing a counter) periodically towards the
destination after a fixed interval of 500ms. The destination receives
that packet through intermediate motes. The destination mote is
connected with a desktop computer through a serial port. Each
packet received at the destination mote is printed on the desktop
computer attached to it.

The three metrics (RAM reserved, RAM waste and number
of allocations) are measured before and after the invocation of
each function. Fig. 16 shows that during program execution av-
erage RAM reserved is decreased by 19.13% and 49.92% at CTP
source and destination, respectively, when both CVCS and VSS
are employed. Similarly, RAM reserved for Dymo is decreased by
26.58% at the source node and 25.69% at destination with the use
of CVCS and VSS. The corresponding reduction in the RAM waste
for both network protocols is shown in Fig. 17. Finally, the number
of allocations to maintain call stack is reduced by 88% on average
for Dymo and CTP protocols (Fig. 18).
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Figure 19. Percentage increase in the storage (flash) utilization.

4.4 Efficacy and Limitations
An IRIS mote has 128KB of flash memory and 8KB of RAM.
TakaTuka is a small JVM that has to be stored in the mote’s flash
along with the Java binary of the program [3]. Our stack redesign
reduces the amount of RAM required to run a program but it
increases the size of the Java binary and of the JVM to be stored in
flash memory. The JVM size is increased because new functions are
added in the JVM to support CVCS and VSS. Furthermore, VSS
adds new bytecode instructions to the Java binary to support smaller
than 4-byte operations (as explained in Section 3). Fig. 19 shows
that a program needs, on average, about 4% extra flash memory
to store the modified JVM and the Java binary if VSS and CVCS
are used together. This increase is not a problem because a mote
is equipped with flash memory that is typically many times larger
than the RAM [24]. Thus, we believe that this trade-off of a few
KBs increase in flash storage to decrease the RAM is acceptable
for wireless sensor motes.

5. Related Work
Much work in the area of embedded computing is geared towards
reducing memory consumption. This survey of related work only
considers approaches that concentrate on optimizing the handling
of the run-time stack.

A groundbreaking work by Regehr and coworkers [17] applies
abstract interpretation to ensure that there is no stack overflow. In
contrast to our work, they consider interrupt-driven programs and
do not change the frame layout (which is not an option because they
are working with assembly language).

Choi and Han [8] consider optimizing for a hardware supported
stacked register window, which could be regarded as a fixed size
memory chunk managed by the processor. They also try to mini-
mize the IFR waste by applying liveness analysis, but they do not
consider the interaction with memory allocation in a multi-threaded
run-time environment.

A similar topic is considered by Yang and coworkers [23]. They
study an interprocedural algorithm that performs register allocation
across procedures. Their goal is to manage the cost of the proces-
sor’s window management.

Yi and coworkers [25] propose an adaptive scheme for adjusting
the stack size in a sensor operating system based on a function’s
stack usage. This scheme is similar to our chunked allocation, but
does not attempt to further optimize unused slots in stack frames.
As another difference, they infer the frame sizes from assembly
code, whereas our Java-based system obtains the frame size from
the compiler.

Schäckeler and Shang [18] observe that many local variables
are dead at recursive calls and propose to allocate them globally
thus evading them from stack frames. Taken to the extreme, this
idea amounts to the well-known tail call optimization [9], where the
entire frame is reused by the next function call if all local variables
are dead and there is no further computation after the call.

Many authors propose elaborate schemes for sharing or reallo-
cating the stack space between different threads (e.g., [16]). How-
ever, these schemes operate at run time and do not touch the frame
layout, whereas our work is based on compile-time analysis that
optimizes the frame layout. Biswas and coworkers [5] propose a
refined scheme, where (besides a run-time component) they permit
a stack segment to grow into an area used by dead variables.

6. Conclusions
This paper presents a new design of the function call stack, using
CVCS and VSS, to increase RAM availability and program execu-
tion speed.

CVCS allows a frame to overlap with other frames, thus re-
ducing the RAM required for the execution of a program. By
using chunks, CVCS also reduces the number of allocations re-
quired for maintaining the call stack. During compilation, it uses
an inter-procedural data-flow analysis to estimate the size of mem-
ory chunks used at runtime for storing frames. During execution
CVCS employs a shrinking strategy to reduce any overbooking
of RAM caused by the limitations of compile-time analysis. To
the best of the authors’ knowledge such a compile-time stack re-
design for object-oriented multi-threaded languages has never been
attempted before.

VSS empowers the programmer to choose smaller than 4-byte
slot size on an 8-bit or 16-bit wireless sensor mote during compi-
lation. The selection of a smaller slot size saves RAM that would
otherwise be wasted when a smaller than 4-byte data is stored in
a 4-byte long slot. We have developed a data-flow analysis that
changes the Java bytecode during compilation based on the selec-
tion of a slot size by the programmer.

We have used a wide variety of single and multi-threaded
object-oriented programs, taken from independent sources to eval-
uate the performance of our schemes. As shown in Fig. 14 and
Fig. 16, CVCS and VSS reduce the RAM required by the call stack
of a program on average by 30%. They also reduce the number
of allocations and deallocations by 80% (Fig. 12 and Fig. 18), on
average.

In conclusion, our stack design enables the execution of feature-
rich programs on a mote with tiny RAM with execution speed
increased by 23% on average and increased battery lifetime. Our
schemes could be adopted in any stack-based virtual machine with
little or no modification.
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