
Sparqloscope
A generic benchmark for the comprehensive and 
concise performance evaluation of SPARQL engines

Talk @ ISWC 2025

Nara, 4th November 2025

Hannah Bast, J. Kalmbach, C. Ullinger, R. Textor-Falconi
Department of Computer Science
University of Freiburg



Sparqloscope @ ISWC 2025, 04.11.2025 Slide 1/8

Performance evaluation is hard

 Let's look at the following SPARQL query on Wikidata

SELECT ?person ?name ?image (COUNT(*) AS ?count)
WHERE {

?person wdt:P31/wdt:P279* wd:Q5 .
?person wdt:P18 ?image .
?person rdfs:label ?name FILTER (LANG(?label) = "en") .
?person ^schema:about/schema:isPartOf ?site .

}
GROUP BY ?person ?name ?image
ORDER BY DESC(?count)

People on Wikidata ranked by the number of pages linking to them

https://qlever.dev/wikidata/moLK2D

https://qlever.dev/wikidata-iswc/moLK2D


Sparqloscope @ ISWC 2025, 04.11.2025 Slide 2/8

Performance evaluation is hard

 Results for six RDF databases on Wikidata   truthy, 8 B triples 
(measured on an AMD Ryzen 9 with enough RAM and disk space)

Apache Jena Java 837s

Blazegraph Java 157s

GraphDB Java 153s

MillenniumDB C++ 101s

Virtuoso C 79s

QLever C++ 3s

All six systems implement the SPARQL standard (with some deviations)

Why the huge performance differences?



Sparqloscope @ ISWC 2025, 04.11.2025 Slide 3/8

Performance evaluation is hard

 Why the huge performance differences
SELECT ?person ?label ?image (COUNT(*) AS ?count) WHERE {

?person wdt:P31/wdt:P279* wd:Q5 .
?person wdt:P18 ?image .
?person rdfs:label ?label FILTER (LANG(?label) = "en") .
?person ^schema:about/schema:isPartOf ?site .

} GROUP BY ?person ?label ?image ORDER BY DESC(?count)

Is it because of the first property path? wdt:P31/wdt:P279* is huge
Is it because of the huge rdfs:label?   717 millions triples
Is it because of the large GROUP BY?   1.2 million groups
Is it because of the large final result?  materialize 1.2M × 4 table

Or is it the combination of these or of some of these?
And is this query typical or an outlier?



Sparqloscope @ ISWC 2025, 04.11.2025 Slide 4/8

Sparqloscope

 We introduce a new benchmark called Sparqloscope,
with three distinguishing features

– Specific Exactly one query for each SPARQL feature
Pinpoint what a system does good and what it does bad

– Comprehensive Covers most of the SPARQL standard
Most other benchmarks focus on a subset of the features

– Generic Generates benchmark for any given RDF dataset
Input: RDF dataset, output: benchmark for that dataset

– Easy to use  You just need a SPARQL endpoint for the dataset
python3 generate-benchmark.py --sparql-endpoint …

The idea is that you cannot overfit on Sparqloscope
if a system is good on Sparqloscope, then it's a good system



Sparqloscope @ ISWC 2025, 04.11.2025 Slide 5/8

Queries

 Sparqloscope has only 105 queries ... here a four of them
– JOIN of two very large tables with a small result

Evaluates how efficient the basic join algorithm is
– GROUP BY with COUNT, with many small groups

Different algorithm required for "many groups" vs. "few groups"
– LANGuage filter on large predicate

Used in many queries, a good system should optimize this
– Export a very large result

Systems vary widely in their ability to materialize large results

Sparqloscope finds queries with these properties automatically 
(via carefully engineered SPARQL queries on the given endpoint)

See https://github.com/ad-freiburg/sparqloscope

https://github.com/ad-freiburg/sparqloscope


Sparqloscope @ ISWC 2025, 04.11.2025 Slide 6/8

Performance evaluation

 Part of the paper is a performance evaluation of the six 
aforementioned systems on two RDF datasets

– DBLP ~ 500 million triples

– Wikidata Truthy ~ 8 billion triples

We would have loved to evaluate on larger datasets as well,
but most systems struggle already with 10 billion triples

Side remark: QLever can handle more than one trillion triples
(on a single machine, without any special treatment whatsoever)



Sparqloscope @ ISWC 2025, 04.11.2025 Slide 7/8

Performance evaluation

 Results on DBLP with ~ 500 million triples
("Query time" is the geometric mean over all 105 queries)

System Code Load time Index size Query time

Apache Jena Java 70.6 min 54 GB 15.3 s

Blazegraph Java 40.3 min 34 GB 13.4 s

GraphDB Java 25.4 min 35 GB 5.8 s

MillenniumDB C++ 14.7 min 20 GB 1.3 s

Virtuoso C 12.4 min 14 GB 0.5 s

QLever C++ 5.3 min 9 GB 0.2 s

Detailed results on https://qlever.dev/evaluation

https://qlever.dev/evaluation


Sparqloscope @ ISWC 2025, 04.11.2025 Slide 8/8

Performance evaluation

 Results on Wikidata Truthy with ~ 8 billion triples
("Query time" is the geometric mean over all 105 queries)

System Code Load time Index size Query time

Apache Jena Java 21.0 h 684 GB 216.0 s

Blazegraph Java 22.6 h 500 GB 124.4 s

GraphDB Java 20.4 h 453 GB 108.3 s

MillenniumDB C++ 4.2 h 317 GB 23.3 s

Virtuoso C 13.8 h 373 GB 10.1 s

QLever C++ 3.1 h 149 GB 2.3 s

Detailed results on https://qlever.dev/evaluation

https://qlever.dev/evaluation

	Sparqloscope�A generic benchmark for the comprehensive and concise performance evaluation of SPARQL engines��
	Performance evaluation is hard
	Performance evaluation is hard
	Performance evaluation is hard
	Sparqloscope
	Queries
	Performance evaluation
	Performance evaluation
	Performance evaluation

