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Abstract. We provide a new benchmark, called Sparqloscope, for eval-
uating the query performance of SPARQL engines. The benchmark com-
bines three unique features, which separates it from other benchmarks:
1. Sparqloscope is generic in that it can be applied to any given RDF
dataset and it will then produce a comprehensive benchmark for that
particular dataset. Existing benchmarks are either synthetic, designed
for a fixed dataset, or require a query log.
2. Sparqloscope is comprehensive in that it considers most features of
the SPARQL 1.1 query language that are relevant in practice. In partic-
ular, it considers advanced features like EXISTS, and various SPARQL
functions for numerical values, strings, dates, language filters, etc.
3. Sparqloscope is specific in that it aims to evaluate relevant features
in isolation and as concisely as possible. The benchmark generated for a
given knowledge graph consists of only around 100 very carefully crafted
queries, the results of which can and should be studied individually and
not in aggregation.
Sparqloscope is free and open-source software and easy to use. As a
showcase, we use it to evaluate the performance of six SPARQL engines
(QLever, Virtuoso, MillenniumDB, GraphDB, Blazegraph, Jena) on two
widely used RDF datasets (DBLP and Wikidata). The full materials and
more are provided on https://purl.org/ad-freiburg/sparqloscope.
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1 Introduction

Recent years have seen a surge in the development of new SPARQL engines1, as
well as significant progress in existing ones. A recent survey lists and describes
over 100 such engines [2], and that list is far from complete. The query processing
performance of these engines varies widely, and a question of great practical
1 By SPARQL engine we mean a system that can read and store RDF data and then

process SPARQL queries on it; also called RDF database or triplestore.

https://purl.org/ad-freiburg/sparqloscope
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relevance is which engine performs how well in this respect. This is a surprisingly
hard question to answer, even for experts [16].

In the following, we first survey a selection of existing benchmarks and then
critically discuss their strengths and weaknesses. We then describe our new
benchmark and how it tries to address these weaknesses.

1.1 Existing benchmarks

The first three benchmarks we discuss all have the following form: they gen-
erate synthetic data of arbitrary given size, for a given manually constructed
ontology, and have a small fixed set of queries on this data. The Lehigh Univer-
sity Benchmark (LUBM) [12] was originally developed for OWL reasoners, but
quickly became the first widely adopted benchmark for the performance test-
ing of SPARQL engines. It uses a simple university-themed ontology and has
14 fixed queries, all of which consist of simple triple patterns, that is, each of
them can be computed by a sequence of join operations. The SP2Bench bench-
mark [22] uses a more complex ontology (based on the DBLP dataset [1] at that
time) and has 12 fixed queries, which are more complex than those of LUBM
and cover SPARQL constructs such as OPTIONAL, FILTER, ORDER BY, DISTINCT,
UNION, LIMIT, and OFFSET. The Berlin SPARQL benchmark (BSBM) [7] uses an
ontology from an enterprise setting, and 12 queries of varying complexity, which
cover FILTER, OPTIONAL, LIMIT, ORDER BY, DISTINCT, REGEX, UNION, DESCRIBE,
and CONSTRUCT. The queries use randomly sampled values from the dataset.

The Waterloo SPARQL Diversity Test Suite (WatDiv) [3] also generates syn-
thetic data of arbitrary given size, but has a much larger set of queries. The focus
is on basic graph patterns, with and without filters. The queries are generated
using a template-based approach with different profiles regarding the number of
triples patterns, join vertices, and join vertex degree. For their evaluation, the
authors generate 12,500 queries from 125 templates.

The next three benchmarks we discuss all operate on Wikidata, which has
emerged as the most widely used knowledge graph for general-purpose informa-
tion about the world. The Wikidata Graph Pattern Benchmark (WGPB) [13]
consists of 850 queries on the so-called truthy subset of Wikidata.2 Each query
involves two, three, or four triple patterns, for each of which the predicate is
fixed and the subject and object are free variables. Computing the query there-
fore requires one, two, or three join operations. The WDBench benchmark [4]
is a follow-up of WGPB and features five sets of queries: 280 queries with a
single triple pattern each, 681 queries with two or more triple patterns, 498
queries with two or more triple patterns involving at least one OPTIONAL join,
660 queries with a single pattern each with a property path of varying com-
plexity, and 539 queries involving a mix of triple patterns and property paths.
The Wikidata query service example queries (WDQS) [6] benchmark provides
a set of 298 example queries from the official Wikidata Query Service at that
time. The benchmark focuses on queries using the core SPARQL 1.1 features

2 About 40% of the complete dataset, see Section 3 for details.
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(excluding, for example, queries using GeoSPARQL functions). Many queries
involve language filters of the form FILTER(LANG(?label) = "en"), which are
very common for Wikidata and potentially expensive to compute.

The FEASIBLE benchmark [18] is based on query logs. Queries are not
taken literally from the log, but analyzed for frequently used predicates and other
patterns, which are then used to construct the benchmark queries. This is similar
in spirit to our benchmark, but we do not require a query log, and are therefore
also not restricted by the quality of the query log. Their benchmark covers
SELECT, ASK, CONSTRUCT, and DESCRIBE queries, involving UNION, DISTINCT,
ORDER BY, REGEX, LIMIT, OFFSET, OPTIONAL, FILTER, and GROUP BY.

There are a multitude of other benchmarks that are either very similar to one
of the benchmarks discussed above or less related to the work in this paper. No-
table examples are: FedBench [21] (federated queries, mix of real and synthetic
data), LargeRDFBench [17] (federated queries, more than one billion triples
of real data), FedShop [10] (federated query scaling, synthetic data), SPARQL
Query Generator [9] (OWL semantics, queries randomly generated from ontolo-
gies), SQCFramework [19] (query containment, based on a query log), DBpedia
SPARQL Benchmark [14] (real queries on DBpedia, distilled from query logs),
SRBench [26] (for streaming RDF/SPARQL, real data), and ParlBench [23] (10
hand-crafted queries on Dutch parliament data).

A meta-analysis of 11 selected SPARQL benchmarks can be found in [20].

1.2 Critical discussion of these benchmarks

All benchmarks previous to this work were either based on a fixed real-world
dataset, or they generate synthetic data of different sizes. The exception was
FEASIBLE, which can work with any RDF dataset, but requires a query log for
query generation. Our goal is to get the best from these worlds and design a tool
that can be used to generate a benchmark for any knowledge graph, given only
the RDF data. We discuss the benefits of this approach in Section 1.3.

None of the previous benchmarks comes close to covering the complete set
of SPARQL features. For example, with the exception of the WDQS example
queries, none of them covers EXISTS, triple patterns with three free variables,
language filters, and most SPARQL functions. In the words of [20], “Synthetic
benchmarks often fail to contain important SPARQL clauses.” Our goal is a
benchmark that covers most of the features that are relevant in practice.

None of the previous benchmarks systematically tested individual SPARQL
features in isolation, or only to a limited extent. To clarify what we mean by
this, consider the following query, which computes all persons in Wikidata with
their English label, ordered by the number of pages linking to them (PREFIX
declarations omitted for brevity):

SELECT ?person ?label ?sitelinks WHERE {
?person wdt:P31/wdt:P279* wd:Q5 .
?person ^schema:about/wikibase:sitelinks ?sitelinks .
?person rdfs:label ?label . FILTER (LANG(?label) = "en")

} ORDER BY DESC(?sitelinks)
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This is a typical query for Wikidata, and most SPARQL engines have trou-
ble computing it efficiently. The question is, why are they having trouble. Is it
because of one of the property paths? Or because of the large rdfs:label pred-
icate and the language filter? Or because of the ORDER BY? Or because of the
time needed to materialize the large result of almost 7 million rows with three
columns each? This requires a careful query analysis with usually much effort
(depending on the engine’s support for such analyses). Our goal is to simplify
this by having a dedicated query for each practically relevant feature.

Finally, the more thorough of the previous benchmarks have hundreds or even
thousands of queries. An evaluation then has to resort to aggregate measures like
means. Our goal is a moderate number of queries, which can be inspected in-
dividually. For example, in order to evaluate how well an engine can join two
large predicates with a small result, there is no need to run dozens or even hun-
dreds of queries; a single carefully crafted query is enough. That way, individual
strengths or weaknesses of an engine can be pinpointed very effectively.

1.3 Contributions

We provide Sparqloscope, a benchmark generator with the following properties:
Sparqloscope is generic in the sense that it can produce a benchmark for
an arbitrary given RDF dataset. This has three advantages. First, it naturally
allows performance evaluations at different scales (by choosing datasets of differ-
ent sizes). Second, the input can be real-world as well as synthetic data. Third, it
provides an easy way to evaluate the suitability of a particular SPARQL engine
for a new dataset. The generation process is described in detail in Section 2.
Sparqloscope is comprehensive in that it covers a large subset of features
of the SPARQL 1.1 query language relevant in practical applications. In partic-
ular, Sparqloscope includes all the features from the benchmarks discussed in
Section 1.1 and more, for example: EXISTS, triple patterns with three variables,
SPARQL functions operating on numeric values or strings, and language filters.
The coverage is not complete yet (see Section 1.4), but we designed Sparqloscope
to be very easy to extend and we expect it to grow over time.
Sparqloscope is specific in the sense that it aims to evaluate features in isola-
tion and as concisely as possible. By isolation we mean that each query measures
the performance of only one particular feature (as much as possible). That way,
when an engine is particularly slow or fast on a query, it is clear that it is due
to its implementation for that particular feature. By concise we mean that our
benchmark consists of only around 100 very carefully crafted queries, which can
and should be studied individually. This becomes clear in Section 2.
Sparqloscope is easy to use and automatic. For a given benchmark, all that
needs to be done is set up a SPARQL endpoint and then run the Sparqloscope
generator, which is a Python script. For a large dataset, the first stage can take
considerable time; see Section 2.1. However, Sparqloscope caches these results by
default, so that subsequent runs of the benchmark generation are much faster.
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Sparqloscope is free and open-source software and can be accessed un-
der https://purl.org/ad-freiburg/sparqloscope. Along with the generator
script and detailed instructions, we also provide ready-to-use benchmarks for a
selection of widely used knowledge graphs, including those from our evaluation
in Section 3. Further benchmarks can be provided upon request.
Finally, we use Sparqloscope to evaluate six SPARQL engines (QLever, Virtuoso,
MillenniumDB, GraphDB, Blazegraph, Jena) on two benchmarks generated with
Sparqloscope for DBLP (∼500 M triples) and Wikidata Truthy (∼8 B triples).
This is only meant as a showcase and not as a complete performance evaluation.
The point is to demonstrate that Sparqloscope provides interesting insights that
would be much harder to obtain otherwise; see the discussion in Section 3.1.

1.4 Limitations

Sparqloscope does not cover the complete SPARQL 1.1 standard yet, but its
coverage is significantly larger than for existing benchmarks and we designed it
to be very easy to extend. Here is a list of the current limitations:
1. Sparqloscope currently only generates SELECT queries. It could be easily ex-
tended to also support ASK queries (which basically are SELECT queries with
a LIMIT of 1) and CONSTRUCT queries (which are SELECT queries followed by
some export logic). Note that benchmarking DESCRIBE queries is only moder-
ately meaningful, since their semantics are not precisely defined by the standard
and are interpreted very differently by different engines.
2. Sparqloscope does not yet evaluate FROM [NAMED] and GRAPH clauses. This will
be added in the future. Note that many datasets (including DBLP and Wikidata
Truthy from our evaluation in Section 3) do not make use of named graphs.
3. Sparqloscope evaluates the quality and speed of query planning only to a lim-
ited extent. This is a direct consequence of its feature-isolation property, which
leads to syntactically simple queries that are expensive to compute but easy to
plan. However, Sparqloscope does cover a variety of query planning challenges,
like many triple patterns or UNION followed by join; see Section 2.3.
4. Sparqloscope does not evaluate the performance of update operations, which
would require a significantly more complex benchmark infrastructure. In partic-
ular, such an evaluation would have to consider both the time for the update
operations and the effect they have on the internal index data structures of the
engine and, thus, subsequent queries. We consider this out of scope [sic] for now.

2 The Benchmark

Sparqloscope’s benchmark generation proceeds in three stages. Stage 1 precom-
putes statistics of the RDF dataset, given only a SPARQL endpoint. Stage 2
uses these results to compute concrete values for a set of placeholders. Stage 3
generates the concrete benchmark queries from a set of templates by substituting
the placeholders with their values. We explain each of these stages in detail.

https://purl.org/ad-freiburg/sparqloscope
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2.1 Precomputing statistics for the RDF dataset

To obtain meaningful queries generically, we first need to analyze the given
dataset. In particular, we precompute the following result sets using only a
SPARQL endpoint for the dataset. The respective (carefully crafted) SPARQL
queries can be found at https://purl.org/ad-freiburg/sparqloscope.
predicate_sizes For each predicate, we precompute the number of triples con-
taining it. This can be achieved with a single query.
predicate_sizes_numeric, predicate_sizes_strings, predicate_sizes_date
For each predicate, we precompute the number of triples in which it appears with
a numeric, string, or date object, respectively. This is important for evaluating
functions that only take arguments of the respective datatype.
join_subject_sizes, join_object_sizes, join_diagonal_sizes For each
pair of different predicates, we precompute the size of the result when joining
the two predicates on the subject, on the object, or diagonally (join the subject
of one predicate with the object of the other). This is important for evaluating
group graph patterns where the results have a certain size.
multiplicity_object, multiplicity_subject For each predicate, we pre-
compute the average multiplicity of an object or subject, respectively. This is
important for evaluating GROUP BY queries with different group sizes, which can
make a big difference for query performance and choosing the best algorithm.
In our evaluation, we use QLever for this precomputation because it can compute
these queries efficiently (and at all) also when the data is large; see Section 3.
Still, this precomputation takes considerable time on large datasets (for example,
10 hours on Wikidata Truthy). We therefore implemented a caching mechanism:
When first computed, the results of complex queries are saved to disk. In sub-
sequent queries, these results can be accessed via a SERVICE request, served
by Sparqloscope while it is running. Thus all computation can be done with
SPARQL queries, without having to resort to a special syntax or mechanism.

2.2 Computing values for the placeholders

Using the statistics computed in Stage 1, Sparqloscope can now compute con-
crete values for the various placeholders used in its query templates. In the
following, we explain this for a subset of these placeholders. The full list can be
inspected at https://purl.org/ad-freiburg/sparqloscope.
pred_join_1, pred_join_2 Compute two distinct predicates that have a non-
empty join result when being joined on the subject. Compute multiple instan-
tiations for these placeholders with different size characteristics, e.g., one large
and one small predicate, or two large predicates with a small result.
pred_join_multi_1, pred_join_multi_2 Compute two distinct predicates that
have a non-empty join result when being joined on the subject and the object
(?s <p1> ?o. ?s <p2> ?o). Again, compute multiple instantiations with dif-
ferent size characteristics.

https://purl.org/ad-freiburg/sparqloscope
https://purl.org/ad-freiburg/sparqloscope
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pred_star_1, pred_star_2, pred_star_3 Compute three large predicates that
have a large result when joined on the subject. Note that here and in the fol-
lowing, by large result we mean the largest join result that is not more than
three times larger than the sum of the input sizes. This is important to avoid
queries that compute (almost) Cartesian products with enormous results, which
no engine can compute in a reasonable amount of time.
pred_chain_1, pred_chain_2, pred_chain_3 Compute three large predicates
that have a large result when joined as a chain, as in ?x <p1>/<p2>/<p3> ?y.
For the placeholders predicate_star_k and predicate_chain_k, we first ob-
tain candidates from join_subject_sizes and join_diagonal_sizes (which
contain the join sizes for pairs) and then compute the size of the three-way join
for these candidates. We do not precompute the sizes of all possible three-way
star and chain joins because that is infeasible on large knowledge graphs.
pred_large The predicate with the most triples in the knowledge graph.
pred_large_numeric, pred_large_string, pred_large_date The largest pred-
icate where the all the objects are numeric, strings, or dates, respectively.
pred_transitive Compute a predicate that is highly transitive, meaning that
?s <p>+ ?o is much larger than the number of triples in the predicate without
the transitive + operator. This is computed by finding candidate predicates that
have a non-empty diagonal self-join (?s <p>/<p> ?o) and by then evaluating
the size of the transitive hull of these candidates. We choose the predicate that
maximizes the ratio between the size of the transitive hull and the size of the
predicate.

2.3 Generating the queries

In a final step the placeholder values computed in Stage 2 (which depend on the
given knowledge graph) are substituted into query templates (which are indepen-
dent of the knowledge graph) to obtain the final benchmark queries. In the fol-
lowing, we describe a selection of these templates and resulting queries. The full
set of query templates, as well as the concrete benchmark for a variety of knowl-
edge graphs, can be found at https://purl.org/ad-freiburg/sparqloscope.

Basic graph patterns Sparqloscope contains the following templates that use
the placeholders from the previous section:

SELECT (COUNT(*) AS ?count) {
?s %pred_join_1% ?o1 .
?s %pred_join_2% ?o2 .

}

SELECT (COUNT(*) AS ?count) {
?s %pred_join_multi_1% ?o .
?s %pred_join_multi_2% ?o .

}
SELECT (COUNT(*) AS ?count) {

?s %pred_star_1% ?o1 .
?s %pred_star_2% ?o2 .
?s %pred_star_3% ?o3 .

}

SELECT (COUNT(*) AS ?count) {
?x1 %pred_chain_1% ?x2 .
?x2 %pred_chain_2% ?x3 .
?x3 %pred_chain_3% ?x4 .

}
These templates cover the typical join patterns, in particular simple joins be-

https://purl.org/ad-freiburg/sparqloscope
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tween two triples on one and two columns, star joins, and chain joins. Like most
query templates, they use the COUNT(*) aggregate which forces the computation
of the full joins to determine the result size, but doesn’t materialize the full
(possibly large) result. This is an example of how we isolate the evaluation of a
particular feature, in this case the join of two or more graph patterns.

Optional graph patterns The templates are similar to the ones for basic graph
patterns (BGPs) above, but with the last triple moved into an OPTIONAL. For
the BGPs with three triples (chain and star) there are also templates with the
last two triples inside a single OPTIONAL. For example, the following templates
are derived from the chain BGP:

SELECT (COUNT(*) AS ?count) {
?x1 %pred_chain_1% ?x2 .
?x2 %pred_chain_2% ?x3 .
OPTIONAL {

?x3 %pred_chain_3% ?x4 .
}

}

SELECT (COUNT(*) AS ?count) {
?x1 %pred_chain_1% ?x2 .
OPTIONAL {

?x2 %pred_chain_2% ?x3 .
?x3 %pred_chain_3% ?x4 .

}
}

These templates cover the following interesting cases:
1. Different size characteristics of the left and right side of an optional join.
2. The left/right argument of OPTIONAL being the result of a join on the same
variable as the optional join (using the star join placeholders).
3. The left/right argument of OPTIONAL being the result of a join on a different
variable than the optional join (using the chain join placeholders).

Minus and Exists The templates are the same as for OPTIONAL but with
OPTIONAL replaced by MINUS or FILTER EXISTS respectively.

Group By The templates in this group [sic] all have the following form:
SELECT ?x (COUNT(*) AS ?count) {

%triples%
} GROUP BY ?x
ORDER BY DESC(?count)
LIMIT 10
The feature we want to isolate with these queries is the actual grouping. That is
why we choose the COUNT(*) aggregate, which is cheap to compute. The perfor-
mance of the harder to compute aggregates is evaluated separately, see the next
paragraph. The purpose of the ORDER BY and LIMIT is to force the computation
of all intermediate results without having a large final result. The placeholder
triples is substituted with one of the following:
1. A single triple ?s %p1% ?x.
2. Two triples ?s %p1% ?x. ?s2 %p2% ?x that are joined on the grouped variable.
3. Two triples ?s %p1% ?o. ?s %p2% ?x that are joined on a variable different
from the grouped variable.
Each of these three substitutions results in two queries: one for which the values
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for the placeholders p1 and p2 are chosen such that average group size is large,
and one where they are chosen such that the average group size is small.

Aggregate functions The templates have the following form:
SELECT (%agg%(?x) AS ?agg) {
?s %pred% ?x

}
Here, agg is replaced by one of the aggregate functions defined by SPARQL
(COUNT, MIN, MAX, AVG, SAMPLE, GROUP CONCAT). The predicate pred is chosen
such that ?x is bound to valid inputs for the aggregates. For example pred is
pred_large_numeric from Section 2.2 when agg is AVG. These queries isolate
the performance of computing the aggregate functions, as the grouping is trivial,
because there is a single implicit group.

Property Paths The templates have the following form:
SELECT (COUNT(*) AS ?count) {
%transitive_triples%

}
Here transitive_triples is one of the following, using the pred_transitive
placeholder from Section 2.2:
1. ?s %pred_transitive%+ ?o (full transitive closure).
2. ?x %p_join% ?y . ?y %pred_transitive%+ ?z (join between simple triple
and transitive closure) for predicates p_join with different size characteristics,
obtained from the join_diagonally_sizes statistics from Section 2.1.
3. %constant_iri% %pred_transitive%+ ?o, where constant_iri is computed
such that the result size is maximized.

Builtin functions The templates in this group have the following form:
SELECT (%agg%(?result) AS ?agg) {

?s %pred% ?o.
BIND (%func% AS ?result)

}
The three placeholders are instantiated as follows:
1. func is a function expression like STRBEFORE(?o, "a").
2. pred is a predicate such that ?o binds to suitable inputs for func. For ex-
ample, if func is a function that accepts strings, then pred is the placeholder
pred_large_strings from Section 2.2.
3. agg is an aggregate function such that the query result a single number. This
forces the evaluation of func for each input. We use aggregate functions that re-
turn numeric values, in order to minimize the overhead of the aggregation (e.g.,
AVG(STRLEN(?result)) for functions that return strings).
Here is a complete example template for the STRBEFORE function:
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SELECT (AVG(STRLEN(?result)) AS ?agg) {
?s %pred_strings% ?o.
BIND (STRBEFORE(?o, "a") AS ?result)

}

For the commonly used REGEX function, Sparqloscope contains multiple such
templates for different regular expressions (regexes), namely
1. A regex that only denotes an exact substring match ("comp").
2. A regex that denotes a prefix match ("^comp")
3. A complex regex that includes special characters ("[Mm]illenn?ium").

Filter We use the following template:
SELECT (COUNT(*) AS ?count) {

?s %pred_largest% ?o.
FILTER (?s=?o)

}

We use the function ?s=?o because it is cheap to evaluate (the purpose of this
query is to measure filtering performance, not expression evaluation). It typically
filters out most rows. We also use the analogous template with FILTER(?s!=?o)
to evaluate a filter that preserves most of the rows. Additionally, we use the
following FILTER template:
SELECT (COUNT(*) AS ?count) {

?s %pred_numeric% ?o.
FILTER (?o > %percentile%)

}
where percentile is substituted for the median, 70 percentile and 95 percentile
of the objects of pred_large_numeric (these values are precomputed in stage
2). Such queries can be implemented efficiently using binary search and we want
Sparqloscope to detect if an engine implements this optimization.

Union We include templates like the following:
SELECT (COUNT(*) AS ?count) {

?s %pred_union_small% ?o1.
{ ?s %pred_union_large_1% ?o2 }
UNION
{ ?s %pred_union_large_2% ?o3 }

}
The predicates are chosen such that the pairwise joins between the small predi-
cate and one of the large predicates have a small result. Such queries are faster
if the engine “pulls” the join with pred_union_small into the UNION.

Statistic queries We also include queries that compute statistics over the com-
plete dataset, e.g., SELECT (COUNT(DISTINCT ?s) AS ?c) {?s ?p ?o}, which
computes the number of distinct subjects in the dataset. An engine can optimize
such queries by leveraging precomputed metadata for its index data structures
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or even by precomputing the result. We include these queries because they are
frequently used in practice, and to detect such optimizations.

Result serialization We use the following template for different values of the
placeholder num_rows, to evaluate how fast an engine can materialize results:
SELECT * {

?s %pred_largest% ?o.
} LIMIT %num_rows%

3 Evaluation

We use Sparqloscope to generate benchmarks for two widely used datasets, and
we evaluate six engines (five of them widely used, one relatively new) on these
benchmarks. The full materials needed to reproduce our evaluation can be found
at https://purl.org/ad-freiburg/sparqloscope. All evaluations were run
on a machine running Ubuntu 24.04 LTS, equipped with an AMD Ryzen 9
9950X CPU (16 cores, 32 threads, 5.8 GHz), 190 GiB of DDR5 memory and
four 8 TB NVMe disks in a RAID 0 configuration.

Datasets and settings (regarding memory and timeout)
The DBLP dataset contains manually curated bibliographic information on pub-
lications in computer science [1]. We use the dataset from 17.03.2025, which has
502,364,008 triples. For this dataset, we give each engine 32 GiB of RAM and
set the query timeout to 180 s (3 minutes).
The Wikidata Truthy dataset is a subset of Wikidata, a collaboratively edited
knowledge graph hosted by the Wikimedia foundation. The so-called “truthy”
subset consists of a selection of statements marked as most pertinent for each
property. We use the dataset from 22.04.2025, which has 7,941,292,526 triples.
For this dataset, we give each engine 64 GiB of RAM and set the query timeout
to 300 s (5 minutes).

SPARQL engines
We evaluate the following six SPARQL engines: QLever [5] (developed by the
University of Freiburg and QLeverize AG), Virtuoso [11] (developed by Open-
Link Software), MillenniumDB [25] (developed by the Chilean Millennium In-
stitute for Foundational Research on Data), GraphDB [15] (developed by On-
totext), Blazegraph [24] (originally developed by Systap LLC, abandoned since
2018), and Jena [8] (a project of the Apache Software Foundation since 2012).

QLever, MillennniumDB, Blazegraph, and Jena are free and open-source soft-
ware. Virtuoso has a commercial closed-source version and a free open-source
version, and we use the latter. GraphDB is closed-source with a free edition,
which we use. QLever and MillenniumDB are written in C++. Virtuoso is writ-
ten in C. GraphDB, Blazegraph, and Jena are written in Java.

Our evaluation uses QLever at commit bb1bb54, Virtuoso at version 7.2.15,
MillenniumDB at commit ecbf6dd, GraphDB at version 11.0.0, Blazegraph at
version 2.1.6 RC and Apache Jena at version 5.5.0.

https://purl.org/ad-freiburg/sparqloscope
https://github.com/ad-freiburg/qlever/tree/bb1bb545dc099b30bf4d400ea55398fa4d3b5e1d
https://github.com/MillenniumDB/MillenniumDB/tree/ecbf6dde5a5864f088eee3b0836ad6adba1d623b
https://github.com/blazegraph/database/releases/tag/BLAZEGRAPH_2_1_6_RC
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Sparqloscope results for DBLP (502,364,008 triples)

Queries (30 of 105 shown) QLV VTS MDB GDB BLZ JNA

BGP (2 triples): large result 0.01 0.48 4.75 20.52 85.55 44.88
BGP (2 triples): small result 0.01 0.35 0.01 1.14 4.57 7.62
BGP (3 triples): star 1.13 1.34 12.68 24.58 81.23 63.16
BGP (3 triples): chain 0.50 1.65 14.22 81.52 96.65 ×
Optional: large predicates 0.25 0.54 7.33 32.02 54.22 85.30
Optional: 3 triple star 0.91 0.56 12.24 36.29 129.98 163.22
Optional: 3 triple chain 3.46 2.14 35.57 67.77 56.69 ×
Minus: large predicates 0.24 0.47 5.17 5.68 36.42 102.37
Minus: 3 triple star 0.88 0.65 11.20 19.81 149.45 ×
Minus: 3 triple chain 3.34 1.51 13.94 32.83 164.29 ×
Exists: large predicates 0.50 0.48 5.30 43.57 47.88 38.16
Exists: 3 triple star 1.23 0.58 11.49 59.07 141.76 139.12
Exists: 3 triple chain 4.57 1.51 14.68 56.37 57.36 75.73
Union: constrained by small join 0.05 0.42 1.13 6.17 9.37 22.59
Group by: few groups 0.01 0.23 1.81 13.94 0.06 ×
Group by: many groups 0.82 29.34 8.73 19.05 96.66 139.58
Group by: numeric min 0.05 0.10 0.12 1.41 3.87 1.66
Count distinct: low multiplicity 5.07 19.10 24.34 11.58 23.35 85.14
Transitive path: plus 0.07 × 0.10 0.32 11.89 0.65
Transitive path: join and plus 0.04 × 0.10 0.24 3.26 0.57
Regex: contains 6.16 2.20 1.60 10.97 18.67 34.85
Regex: prefix 0.01 1.56 10.89 10.74 16.70 33.04
String: strbefore function 5.03 1.59 6.56 12.66 5.54 34.18
String: strstarts function 3.81 1.52 1.45 11.91 7.60 33.52
Result export: small 0.05 0.01 0.00 0.01 0.01 0.02
Result export: large 0.93 0.06 0.26 0.82 0.47 6.03
Numeric: round function 0.09 0.08 0.14 2.43 3.68 1.66
Numeric: filter ≥ median 0.03 0.03 0.15 1.41 3.78 19.49
Filter: English literals 0.01 7.79 0.38 5.91 45.03 14.24
Date: year function 0.09 0.46 0.10 3.43 14.19 4.11

Aggregate metrics QLV VTS MDB GDB BLZ JNA

percentage failed 0.0% 4.9% 0.0% 0.0% 14.7% 18.6%
geometric mean (penalty 2) 0.18 0.53 1.25 5.91 13.58 15.29
geometric mean (penalty 10) 0.18 0.57 1.25 5.91 17.20 20.64
median 0.19 0.55 2.54 11.52 17.14 33.18

Table 1. Evaluation results of six engines (QLV: QLever, VTS: Virtuoso, MDB: Mil-
lenniumDB, GDB: GraphDB, BLZ: Blazegraph, JNA: Apache Jena) on the DBLP
benchmark created using Sparqloscope. All query times are given in seconds. A red
cross × signifies that the query timed out or failed; these queries are considered with
twice and ten times the timeout for the computation of the geometric mean. The best
result for a query is highlighted in blue. The upper part of the table shows only a se-
lection of the full benchmark (which contains 105 queries), with a focus on the queries
discussed in Section 3.1. The aggregate metrics below are for the full benchmark.
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Sparqloscope results for Wikidata Truthy (7,941,292,526 triples)

Queries (30 of 105 shown) QLV VTS MDB GDB BLZ JNA

BGP (2 triples): large result 6.15 15.66 105.81 × × ×
BGP (2 triples): small result 0.35 1.47 4.80 24.40 170.88 ×
BGP (3 triples): star 10.50 10.46 206.79 × × ×
BGP (3 triples): chain 6.95 36.17 287.28 × × ×
Optional: large predicates 14.68 × × × × ×
Optional: 3 triple star 25.45 37.82 148.65 × × ×
Optional: 3 triple chain 148.14 214.60 × × × ×
Minus: large predicates 15.27 165.91 × × × ×
Minus: 3 triple star 25.18 11.65 95.79 × × ×
Minus: 3 triple chain 141.06 176.87 224.45 × × ×
Exists: large predicates 33.38 123.49 × × × ×
Exists: 3 triple star 36.99 12.09 93.15 × × ×
Exists: 3 triple chain 164.97 176.78 226.25 × × ×
Union: constrained by small join 1.76 4.08 19.03 108.04 223.79 ×
Group by: few groups 0.01 0.05 0.03 0.34 0.09 ×
Group by: many groups 24.13 × × × × ×
Group by: numeric min 0.65 2.73 1.81 149.42 80.48 ×
Count distinct: low multiplicity 189.08 × × × × ×
Transitive path: plus 1.88 × 6.75 20.58 279.72 ×
Transitive path: join and plus 0.05 × 0.09 0.19 1.75 ×
Regex: contains 189.74 83.48 × × × ×
Regex: prefix 0.02 85.16 × × × ×
String: strbefore function 150.03 95.48 × × × ×
String: strstarts function 117.91 79.75 293.74 × × ×
Result export: small 0.02 0.02 0.01 0.03 0.18 ×
Result export: large 1.20 10.91 1.12 6.25 24.48 ×
Numeric: round function 1.36 3.15 2.09 173.60 117.49 ×
Numeric: filter ≥ median 0.19 1.84 2.06 × 87.57 ×
Filter: English literals 0.01 × × × × ×
Date: year function 1.24 3.64 2.16 × 111.34 ×

Aggregate metrics QLV VTS MDB GDB BLZ JNA

percentage failed 2.0% 14.7% 30.4% 61.8% 58.8% 100.0%
geometric mean (penalty 2) 2.43 11.36 22.78 111.20 123.21 600.00
geometric mean (penalty 10) 2.51 14.40 37.15 300.49 317.54 3000.00
median 2.41 15.84 69.97 × × ×

Table 2. Evaluation results of six engines (QLV: QLever, VTS: Virtuoso, MDB: Mil-
lenniumDB, GDB: GraphDB, BLZ: Blazegraph, JNA: Apache Jena) on the Wikidata
Truthy benchmark created using Sparqloscope. All query times are given in seconds.
A red cross × signifies that the query timed out or failed; these queries are considered
with twice and ten times the timeout for the computation of the geometric mean. The
best result for a query is highlighted in blue. The upper part of the table shows only a
selection of the full benchmark (which contains 105 queries), with a focus on the queries
discussed in Section 3.1. The aggregate metrics below are for the full benchmark.
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3.1 Results

Tables 1 and 2 provide an excerpt of our evaluation for the named engines and
datasets, showing results for 30 out of 105 queries each and some aggregate
measures. The full results (and more benchmarks and evaluations) can be found
at https://purl.org/ad-freiburg/sparqloscope-evaluation.

It is important to note that this evaluation is meant as a showcase for our
benchmark, and not as a complete performance evaluation. The point is to
demonstrate how Sparqloscope can reveal specific strengths and weaknesses of
an engine. In some cases, we know the reasons for a particular slow or fast query
time and provide an explanation (often for QLever, as it is our own engine).
In other cases, this needs further investigation. In any case, we learn something
about the engines that was not obvious from the start. Most of the explanations
in the following pertain to the results for Wikidata Truthy, which is larger and
therefore more challenging. Once more, note how the small number of queries
(105 for the whole benchmark) allows the investigation and discussion of indi-
vidual queries instead of having to interpret opaque aggregate measures.

Basic Graph Patterns QLever is fastest for basic graph patterns. It is much
faster than Virtuoso, which in turn is much faster than MillenniumDB. The
three Java engines are yet much slower and all time out for the larger Wiki-
data Truthy. These queries show how much optimization potential there is even
for this basic (and fundamental) SPARQL operation. QLever performs so well
because it heavily optimizes read time (by storing its disk-based index data in
large compressed blocks) and write time (in this case by not producing any result
bindings when only a count is needed; without this optimization QLever would
be on par with Virtuoso), and by a very carefully engineered join algorithm.

Optional, Minus, and Exists For these queries, the trend is similar as for
the basic graph patterns, but the difference between QLever and Virtuoso is less
pronounced. For the 3-triple star, Virtuoso is faster on both datasets. The rea-
son is that OPTIONAL, MINUS, and EXISTS are more complex operations with less
predictable access patters, which QLever has not fully mastered yet, whereas the
maturity of Virtuoso’s underlying relational database shines through. Again, the
three Java engines are much slower and all fail on Wikidata Truthy.

Group By QLever is the only engine that can compute all GROUP BY queries
without encountering a timeout. In particular, it is the only engine that can han-
dle GROUP BY with many different groups on Wikidata Truthy. This is a good ex-
ample of Sparqloscope’s ability to pinpoint individual strengths and weaknesses
of an engine (apparently, none of the other engines has considered this relevant
use case). QLever is also fastest in aggregating results (except for GROUP_CONCAT
of strings, see the full results at the link above).

Property Paths QLever is fastest for all queries involving transitive closure
(via the + operator). MillenniumDB is on par when the subject is fixed. Virtuoso
fails for all these queries on Wikidata Truthy; apparently computing the transi-
tive closure does not map well to Virtuoso’s underlying relational database. All

https://purl.org/ad-freiburg/sparqloscope-evaluation
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engines fail for the query with the largest result (not shown in the table, see the
full results at the link above). This shows the significantly higher complexity of
computing the transitive closure relative to other SPARQL operations.

String functions For string functions (like STRAFTER or STRBEGINS), Virtuoso
is consistently the fastest engine. QLever is next, with roughly the same time for
each function. This indicates that the bottleneck is not the function evaluation,
but the way that the strings are stored and loaded. QLever stores its strings
individually compressed, whereas Virtuoso’s underlying relational database em-
ploys small-string optimizations, which are still missing in QLever. The three
Java engines are much slower and all time out on Wikidata Truthy.

Numeric functions For numeric functions, QLever is consistently much faster
than the other engines. All engines are at least one order of magnitude faster
when evaluating numeric functions than when evaluating string functions. This
indicates that they have a special handling for numeric literals, which apparently
is best implemented for QLever. For all engines, the implementation of integer lit-
erals is vulnerable to overflows. This problem is worst for MillenniumDB, where
almost all numeric queries on Wikidata Truthy give wrong results.

Range-like filters QLever implements filters via binary search whenever possi-
ble. This includes numeric relational filters like ?x > 3, but also expressions like
REGEX(?x, "^auto"), which are equivalent to prefix matching. For the respec-
tive queries, QLever beats the other engines by a large margin, which indicates
that only QLever implements this (practically very relevant) optimization. The
performance difference is particularly pronounced for prefix regexes, where the
other engines have to load all involved strings and evaluate the regex.

Other filters QLever is faster than Virtuoso when the input is large and most
results are filtered out, whereas Virtuoso is faster when only few results are fil-
tered out (this is not shown in Tables 1 and 2, see the full evaluation at the link
above). This is another good example of Sparqloscope’s pinpointing property.

Export QLever and MillenniumDB export results at a similar speed, with a
slight edge for MillenniumDB, probably due to QLever storing its IRIs and liter-
als individually compressed (to save storage). Virtuoso is much slower for large
results and silently truncates its output to at most 1 million rows (one of Vir-
tuoso’s many idiosyncrasies). Somewhat surprisingly, GraphDB is on par with
Virtuoso.

Loading Wikidata Truthy QLever, Virtuoso, and MillenniumDB each load
the Wikidata Truthy data in around 3 hours, but QLever requires significantly
less RAM (20 GB vs. 64 GB). GraphDB required 70 GB of heap space and had
to be resumed twice from a checkpoint after out-of-memory crashes; the whole
process took over 24 hours. For Blazegraph, the data was loaded in chunks of
one million triples and took over two days (this could have been accelerated
somewhat using bulk loading). For Apache Jena, loading did not finish within
one week. These experiences are the reason why we did not evaluate the engines
on even larger datasets. QLever can handle datasets with hundreds of billions of
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triples in a resourceful manner. Virtuoso can also handle datasets of that size,
but requires much more RAM and at least twice the disk space. For Millenni-
umDB, RAM consumption during loading becomes prohibitively large. For the
Java engines, much larger datasets are out of reach.

Impact of dataset size Most of the discussion above relates to the benchmark
on the larger Wikidata Truthy dataset (ca. 8 B triples). On the smaller DBLP
dataset (ca. 500 M triples), the trends are similar but the difference between the
engines are less pronounced. In particular, the weaker engines profit more when
the data fits completely into RAM, whereas QLever is designed to not rely on
this. Also, the current version of QLever incurs a fixed overhead for each query
(mostly due to query planning), which is negligible for large datasets but shows
for smaller datasets. This shortcoming will soon be addressed by QLever’s devel-
opers. Virtuoso fails computing the transitive closure even on the smaller DBLP
data, which points to a systematic problem.

4 Conclusion

We have presented the Sparqloscope benchmark generator, which automatically
generates benchmark queries for any given RDF dataset, comprehensively covers
a large set of SPARQL 1.1 features, evaluates the individual features in isola-
tion, and includes no more queries than necessary. The result is a benchmark of
moderate size (105 queries), so that each result can (and should) be inspected
individually, instead of having to interpret opaque aggregate metrics.

We have used Sparqloscope to evaluate and compare the performance of
six SPARQL engines (QLever, Virtuoso, MillenniumDB, GraphDB, Blazegraph
and Jena) on two widely used datasets (DBLP and Wikidata). The benchmark
revealed many interesting strengths and weaknesses of the engines. This is use-
ful both for their users (to help them understand the performance they expe-
rience), as well as for the developers (to help them understand and improve
on the revealed weaknesses). All benchmarks and results are publicly available
on https://purl.org/ad-freiburg/sparqloscope. We will add more bench-
marks, engines, and evaluations over time and upon request.

Sparqloscope is easy to extend and will be extended in the future. In particu-
lar, we plan to add queries for named graphs and some of the SPARQL functions
that are not yet covered. We have already used and will continue to use insights
from Sparqloscope to improve our own engine, QLever.

Resource Availability Statement: Source code and documentation are available
on GitHub via https://purl.org/ad-freiburg/sparqloscope and are released
publicly under the Apache 2.0 License. An archived copy of the exact version
used for evaluation and the full results are available on Zenodo via https:
//doi.org/10.5281/zenodo.15387491.
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app for the visualization of the results.
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