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ABSTRACT
We show how to estimate population numbers for arbitrary
user-defined regions, down to the level of individual build-
ings. This is important for various applications like evacua-
tion planning, facility placement, or traffic estimation. How-
ever, census data with precise population numbers is typi-
cally only available at the level of cities, villages, or districts,
if at all.

Previous approaches either rely on available census data
for already small areas or on sophisticated input data like
high resolution aerial images. Our framework uses only
freely available data, in particular, OpenStreetMap data. In
the OpenStreetMap project, crowd-sourced data is collected
about street networks, buildings, places of interest as well
as all kind of regions and natural structures world-wide. We
use this data to learn three classifiers that are relevant for
the population distribution inside an area: residential vs. in-
dustrial vs. commercial landuse, inhabited vs. uninhabited
buildings, and single-family vs. multi-family houses. Once
learned, we can use these classifiers for population estima-
tion even in areas without any census data at all.

Our experiments show good average accuracy (measured
as the deviation from actual census data) for rural areas
(25%), metropolitan areas (10%), and cities in countries
other than that containing the training data (12%).

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Measurement
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Figure 1: Our implementation allows for popula-
tion estimation inside arbitrary user-defined regions.
The left image shows a coarse-grained example (on
OSM Tiles), the right image illustrates a query de-
manding fine-grained population information (visu-
alized on Bing Satellite Map Tiles).

1. INTRODUCTION
Fine-grained population estimates are the basis for various

applications like evacuation planning [18], studies on infec-
tion spreading [10], facility placement, or traffic estimation
[13]. It would be ideal for such applications if population
counts were available on the level of individual buildings.
This data is indeed recorded by registration offices, but due
to privacy issues, only aggregated numbers for larger admin-
istrative units (like cities, villages, or districts at best) get
published.

We present a framework that provides such fine-grained
estimates based on OpenStreetMap (OSM)1 data. OSM
data is freely available and contains information about street
networks, buildings, places of interest as well as all kind of
regions and natural structures world-wide. We use this data
to learn features that enable us to estimate the number of
inhabitants for individual buildings. Via simple aggregation
this allows us to estimate population numbers in arbitrary
user-defined regions. We provide a live demo for Germany2.
Figure 1 provides two screenshots, each at a different level
of granularity.

Unlike previous work, our approach does not only allow
interpolation from available census data, but also extrapo-
lation to regions where no such data is available. This is

1http://www.openstreetmap.org
2http://ad.informatik.uni-freiburg.de/publications
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explained in the following sections.

1.1 Related Work
The prevailing line of attack in previous work on popula-

tion estimation is by interpolation. It is assumed that pop-
ulation counts are available for a certain (sometimes already
fairly small) area. In the GPW project3, these counts are
simply uniformly divided over the (4x4km) cells of a grid.
More sophisticated approaches use all kinds of additional
information to better estimate the population distribution
within a given area.

LandScan [6] is a global population database which in-
terpolates census data to population counts for 1x1km grid
cells. They use multiple information sources to obtain a high
data quality. The final estimations are not openly available
but have to be purchased from the LandScanTM company.

In [12], building heights obtained from LiDAR (laser-based
remote sensing) data are used for that purpose. In [17], high-
resolution satellite images are used together with building
detection and classification tools. Both of these works pro-
vide population estimates on the level of individual build-
ings. However, the used data is expensive to gather and
generally not openly available.

In [15], the coarse estimates from the GPW project are
refined using satellite night-time light imagery. No explicit
accuracy numbers are provided, but correlations between
light frequency and population density.

Other features used for interpolation include landuse clas-
sification [5], street density [19], or so-called control points
like schools or hospitals that indicate that many people live
nearby [20]. These approaches work by dividing a given
area (with known population count) into zones with different
population densities. Within such a zone, again a standard
distribution is assumed. These methods therefore do not
lead to population estimates down to the level of individual
buildings. Our new approach uses landuse classification as
one of its ingredients; see Figure 2.

In [1], footprints of buildings and points of interest (POIs)
are extracted from OSM data, like in our approach. Their
areal interpolation proceeds in three main steps. First, lan-
duse classification (from an urban atlas) is used to identify
residential areas. Second, residential areas are divided into
grid cells and population numbers per cell are estimated us-
ing selected POIs as control points. Third, the estimate
for each grid cell is divided among the contained buildings
proportional to their base area. Unlike our approach, they
rely on the availability of census data on an already fine-
grained level (districts with about 2,000 inhabitants). Also,
evaluation is provided only within a large city (Hamburg,
Germany). It was observed in [16], that population estima-
tion methods which work well in metropolitan areas often
fail in rural areas (for example, due to sparseness of POIs).

In [2], population counts are also based on OSM data. For
a given area with a known population, a Voronoi diagram for
all points in the street network is computed which partitions
the area into cells. Then to every point a population number
is assigned that is proportional to the accumulated length
of living streets inside its Voronoi cell. The estimates are
further adjusted based on the surrounding street density.
This approach works without fine-grained census data and
for any kind of area, just like our approach. We therefore

3Gridded population of the world: http://sedac.ciesin.
columbia.edu/data/collection/gpw-v3.

1. Landuse Classification

2. Inhabited/Uninhabited Classification

3. Single/Multi-Family House Classification

4. Population Estimation

residential

commercial

industrial

Figure 2: The four main steps in our population
estimation framework.

use this approach as a baseline in our evaluation. As we see
in Section 5, we achieve much improved estimates.

1.2 Contribution and Overview
We consider the following as our main contributions:

• A new approach to population estimation on the level
of individual buildings that is based on freely available data
(OSM) and does not require fine-grained census data. Unlike
previous approaches, our learning-based approach can not
only intrapolate from available census data, but it can also
extrapolate to regions where no such data is available.

• An evaluation which shows much improved estimates over
previous work that is based on freely available data and
does not require fine-grained census data. In particular, we
achieve good average accuracy (measured as the deviation
from actual census data) for rural areas (25%), metropolitan
areas (10%), and cities in countries other than that contain-
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ing the training data (12%).

• A complete implementation with a working demo (see the
link in the introduction).

Our approach works in the following four main steps, which
are illustrated in Figure 2.

• Classification of Landuse. Like in previous approaches,
we use the landuse of an area (residential vs. industrial vs.
commercial) as a feature indicative of its population dis-
tribution. We develop a classification tool for areas with
unknown landuse in OSM.

• Classification of Inhabited vs. Uninhabited. In previous
work, binary asymmetric mapping [7] was used to subdi-
vide an area into populated and unpopulated cells. We go
one step further and also classify buildings as inhabited (e.g.
residential houses, apartment buildings) or uninhabited (e.g.
schools, shops, restaurants, industrial buildings, office build-
ings). The landuse, as determined by the previous classifier,
is used as one of the features.

• Classification of Single-Family vs. Multi-Family Houses.
The number of inhabitants per building is clearly correlated
with the number of floors. We show how to classify buildings
into single-family and multi-family houses when the building
height is unknown.

• Final Population Estimation. We use all previously gath-
ered information, and population numbers for some selected
cities and villages (from OpenGeoDB4) to estimate the num-
ber of inhabitants per building.

2. DATA EXTRACTION FROM OSM
The goal of the OSM project is to create a free map of the

world, by collecting geo-information contributed by volun-
teers and making it easily accessible for everyone. OSM
data is composed of three kinds of elements: nodes (as
latitude and longitude), ways (referencing nodes) and re-
lations which are compositions thereof (i.e. referencing sets
of nodes, ways or other relations). All three elements can be
augmented with tags, which allow to name and classify the
data and provide arbitrary additional information. Tags are
key-value pairs of various types. For example a way could
have the tag: key = building, value = residential house.
Many tags are specified in the OSM wiki5, but they can
be chosen arbitrarily. We use OSM to extract relevant data
for population estimation. Here, relevant refers to anything
which indicates the quantity or absence of population. In
the following, we provide a detailed overview of the data we
extracted from OSM.

• Building Footprints. Buildings can be represented in
OSM as single nodes or ways/relations if the building
footprint is available. At some places the coverage of
building footprints is poor. This primarily affects small
isolated villages, which are often sparsely populated
[8]. Also the quality of the footprints varies. Building
shapes might be simplified or several buildings might
be combined into one big block. If the building foot-
print is mis-shaped (that is, lines crossing the interior,
e.g., due to missing or wrong nodes), we replace their
footprints with the respective bounding rectangle.

4http:www.opengeodb.org
5http://wiki.openstreetmap.org/wiki/MapFeatures

• Building Tags. Ideally, we would like to have a tag for
every building providing the number of its occupants.
In the current OSM data, less than 1% of the build-
ings in Germany exhibit such a tag. For the others, we
have to estimate this number. We therefore extract,
if available, the building type (e.g., apartment, house,
church), the amenity (e.g., kindergarten, theater, po-
lice, waste disposal) and look for shop tags (e.g., mall
or shopping center). We also look for indications about
the building height or volume to later classify resi-
dential houses in single family or multi-family houses.
Only 5% of the houses in Germany exhibit a direct tag
containing this information.

• Points and Regions of Interest. Besides buildings, there
are other indicators for low or high population num-
bers. Specifically, we consider the boundaries for parks,
playgrounds and tourist attractions of any kind.

• Landuse and Places. In OSM, there is a designated tag
to assign landuse to an area (typically described via an
OSM relation). Examples are residential area, com-
mercial area, industrial area, forest, meadow, or farm-
yard. The majority of buildings in Germany (91.5%)
are located in an area with specified landuse. More-
over, we consider place categories (villages, towns, sub-
urbs, etc.).

• Street Network Data. A street is typically stored as a
way in OSM. While the street names are not impor-
tant for our application, the street categories (highway,
living road, pedestrian, etc.) are. The street network
is used in the baseline approach (based on a Voronoi
diagram) as well as in our approach.

Finally, we also extract the boundaries of selected cities and
villages for which we know the precise census data from
OpenGeoDB. This information will be used in the very last
step of our framework. Note, that in contrast to most previ-
ous work, we only use census data on a coarse-grained level,
and only in the training phase, not when predicting.

3. ENRICHING OSM DATA
As discussed above, building tags necessary for precise

population estimation are incomplete in OSM. We now de-
scribe how to learn the missing information from available
data. This step in our approach could hence also be used
as a standalone automatic tool for enhancing the OSM data
coverage.

For other parts of the data, like street categories, simi-
lar approaches were investigated before [9]. To the best of
our knowledge, we are the first to present a learning-based
approach that predicts new landuse and building tags. In
order to compute the required features efficiently, we store
all extracted entities in an R-Tree [3]. For ways or relations,
we store the respective centroid.

3.1 Landuse Classification
In a later step, we want to be able to classify buildings

as residential vs. non-residential. We therefore first like to
know the landuse of the area the building is located in. A
house without a tag indicating that it is a business of any
kind in a residential area is very likely to be a living house,

http:www.opengeodb.org
http://wiki.openstreetmap.org/wiki/Map Features


whereas a building in an industrial area is not. As mentioned
before, only about a tenth of all buildings in Germany are
not within an area of known landuse. These are perfect
conditions for a learning-based approach, since there is a
large and diverse set of training data.

We first subdivide areas without a landuse tags in smaller
units, using large streets as boundaries. As long as the area
of the unit does not drop below a certain threshold (50,000
square meters), we determine the most important street in
the area (using OSM street categories) and use it to cut
the unit in half (possibly elongating the street to obtain a
complete cut). We here assume that the type of landuse is
consistent within a sufficiently small area.

We use the following features in our approach to classify
the computed units: contained or near-by place specifica-
tions such as hamlet or suburbs, the building density ex-
pressed by the total number of buildings in the area, the
average building size, the number of schools and universities
in with a distance of at most three kilometers from the unit,
and the number of leisure facilities, playgrounds and parks
within a distance of 500 meters from the unit. For each of
these features, a high number is indicative of a residential
area.

Furthermore, we consider the number of small shops, the
number of offices and the number of craft producers. For
each of these features, a high number makes a residential
area less likely. Moreover, we consider the street density
for living streets and others. A high number of living streets
makes a residential area more likely, a high number of streets
of other types less likely. We query a pre-computed R-Tree
to obtain all these numbers.

3.2 Inhabited or Uninhabited Buildings
Many existing approaches for population estimation dis-

tribute the people living in an area uniformly among the
buildings in that area or proportional to the building sizes.
This leads to distortions when the area also contains indus-
trial and commercial buildings, or hospitals, schools, police
stations, garages and the like. We therefore try to identify
uninhabited buildings so that we can ignore them for the
final population estimation.

The OSM tags only classify a small fraction of all buildings
into inhabited and uninhabited. Figure 3 shows examples of
industry buildings which are not tagged as such. Our goal
is to, again, learn the correct values for the missing tags.
One important feature is the landuse. As explained above,
buildings in residential areas without any tag indicating a
business are very likely to be inhabited. Additionally, we
consider the base area of the building. The intuition is that
very large base areas are often indicative for factories or
supermarkets. We also regard the complexity of the base
area by counting the number of nodes on the OSM way
that describes the building footprint. Moreover, we use all
the features described above for the landuse classification
but with a smaller distance from the object to be classified
(which are now individual buildings instead of areas).

The training data is as follows. For uninhabited buildings,
we use the 6% of buildings in Germany with an amenity tag
that clearly marks them as non-residential. For inhabited
building, we choose houses with a suitable tag as well as
houses located in well-mapped residential areas without any
tag.

Figure 4: As there are two playgrounds in the in-
ner courtyard, the surrounding buildings are likely
to accommodate multiple families each despite their
rather small base areas.

3.3 Single or Multi-Family Houses
The number of people living in a single building naturally

varies to a great extent. In particular, the number of in-
habitants in multi-family houses and apartment buildings
is usually significantly higher than in single family houses.
The OSM data is very incomplete when it comes to build-
ing heights and tags that indicate how many floors or flats
are in a building. Our goal is again to learn the missing
information.

If building footprints are available, the base area is again a
good feature for classification. Also the number of entrances
or address specifications provides some insight. Moreover,
we again use the number of shops, parks and playgrounds in
the neighborhood together with the building density as fea-
tures. For instance, if there are many playgrounds but few
buildings, these buildings are likely to accommodate many
families; see Figure 4 for an example. Another feature is the
type or place of the locality: we differentiate between ham-
lets, villages, suburbs and towns. The idea is that villages
and hamlets tend to have less multi-story buildings.

Our training data is as follows. In the OSM data, about
6% of the buildings have a tag that mark them as single-
family houses and 0.5% of the buildings are marked as apart-
ments (multi-story building).

3.4 Classifier Choice
We expect the relationship between many of the features

and the target to be rather simple. For example, we expect
that the larger the number of factories the more likely it is
that an area’s landuse is industrial. For such feature-target
correlations, a suitable learning method is logistic regression.

Nevertheless, we also have to deal with some more com-



Figure 3: The left image depicts an industrial area according to OSM data. Several of the buildings inside
do not exhibit amenity or name tags. Still these are no living houses as to be observed in the satellite image
on the right. But being located in an industrial zone and having a large base area allows to classify these
buildings correctly as uninhabited with our approach.

plex relationships between features and targets. For exam-
ple, a very large base area makes a building unlikely to be
a residential building. But so does a very small area, since
it is indicative of something like a garage or shed and not
an inhabited house. So for this feature, the correlation to
the target is not linear but reaches its maximum for medium
values.

Also some features need to be considered in combination.
For example, an untagged building in a residential area is
very likely to be inhabited, whereas an untagged building
in a non-residential area is not. For such conditional (if ...
then ... else) dependencies, random forests are the method of
choice. Both of these classifiers often work well with default
parameters (using, e.g., scikit-learn [14]) and the learned
models are easy to interpret.

4. POPULATION ESTIMATION
At this point we are able to differentiate between different

types of areas and buildings. This gives us insight into the
urban structures of a city. We can exclude sets of buildings
from being populated at all, which enhances the accuracy
of our estimate primarily in commercial and industrial ar-
eas. We know whether a building is a multi-family house or
a single-family house. Combined with the data about the
locality we obtain information about the specific character
of an area. For example, many multi-family houses within a
city’s center suggest a congested urban area. With all those
features we are finally able to distribute a given population
among the buildings of a certain area. To be independent
from local census data we extrapolate the results we gain for
a small number of cities and villages, again with the help of
machine learning.

4.1 Feature Selection
There are basically two kinds of information we are trying

to incorporate in the extrapolation: information about the
building itself and information about its environment.

To describe the building itself we use its base area, if its a
single-family house or a multi-family house and if the build-
ing contains a business of any kind.

To describe the environment we use previously obtained
landuse and place data because buildings within villages and
suburbs are not as densely populated as those within a cities

Figure 5: Houses with similar base area in a city.
Houses on the left side of the large street are likely
to have less floors and accommodate less occupants
than houses on the right, though.

core. To provide a measure of the size and populousness of
the environment we consider the number of schools, shopping
malls within a distance of up to 5 kilometers, the number of
suburbs, villages, cities within a distance of up to 30 kilome-
ters, and the size of the city where the building is located.
Finally, we also use the number of shops, parks, and play-
grounds within the neighborhood.

Figure 5 shows that both aspects, the building itself and
its environment, are important for correct population esti-
mation.

4.2 Obtaining Training Data
We take cities, city districts and villages of various sizes

and distribute respective census data from OpenGeoDB among
local buildings with a weighted areal interpolation scheme
[17] to provide a ground truth for the following extrapola-
tion.

population(i) =
weight(i)·area(i)∑

b∈buildings weight(b)·area(b) · total population

To determine the weight we use multiple parameters. Unin-
habited houses have a weight of zero. For inhabited houses,
one parameter is the type of building (single-family vs. multi-



Figure 6: Small village in OSM. The grey area is
tagged with landuse=residential and the streets also
indicate that people are living in that area, but no
buildings are present at all.

family). A building receives a penalty if the building is not
only a living house but also contains a shop or some kind
of business. A penalty is also given for buildings within
hamlets and villages, because they are not as densely popu-
lated as in towns. Another parameter is the landuse of the
containing area.

4.3 Machine Learning Approach
One method to learn the number of inhabitants per build-

ing is linear regression. As explained above, this makes sense
for linear feature-target correlations: for example, a larger
base area usually means more inhabitants. Besides linear
regression, we also use regression trees [11]: these are a vari-
ant of decision trees which are suitable to learn real-valued
functions instead of classifiers.

4.4 Handling Areas without Buildings
In [4], the number of buildings in Germany is estimated

to be about 38 million. The current number of building
footprints in the OSM data is about 18.9 millions. If indi-
vidual buildings are missing in otherwise well-mapped areas,
the distortion in the population estimation is minor. But if
whole residential areas are without any buildings (see Figure
6 for an example), our approach as described so far fails.

We found this to happen almost exclusively for small vil-
lages. We then make use of two other clues about the popu-
lation number: the area of the village and the street network
data. We could use the described Voronoi-baseline approach
as a fall-back since it only relies on street network data. But
we decided to learn a population estimator purely based on
the area and the accumulated street length. Due to the miss-
ing building footprints, we use simple areal interpolation by
distributing the inhabitants uniformly in the village area.

5. EXPERIMENTAL EVALUATION
In this section, we first evaluate each of the described

classifiers to enrich the OSM data. Subsequently, we show
that the selected features for population estimation allow for
accurate predictions in metropolitan as well as rural areas.

Target Prediction Precision

resid. indus. comm.

residential 841 83 76 84.10%

industrial 89 778 133 77.80%

commercial 111 212 677 67.70%

Recall 80.79% 72.51% 76.41% 76.53%

Table 1: Results for landuse classification with our
approach, based on 1000 samples for each class.

5.1 Data and Settings
We downloaded the OSM data for Germany in XML for-

mat (16-02-2015)6 and extracted the relevant parts for our
application as listed in Section 2. Our experiments were con-
ducted on an AMD FX(tm)-8150 Processor with 3.6 GHz
and 32 GB RAM. Moreover, we downloaded boundary data
of various European and other cities7 and subsequently ex-
tracted the same kind of data as we did for Germany.

5.2 Classifier Evaluation
We first provide results on Baden-Württemberg, a large

state in Germany with an area of 35,751.5 km2 and about
10.7 million inhabitants. We present detailed results on the
quality of our three learned classifiers that we later use for
the final population estimation: kind of landuse, inhabited
vs. uninhabited buildings, and single-family vs. multi-family
houses. For every class we used a set of 1,000 randomly cho-
sen samples from the existing training data in the learning
phase. We also conducted experiments with larger samples,
but observed no significant difference in the quality of the
results.

5.2.1 Landuse Classification
The first step in our framework is the landuse classifica-

tion. We distinguish between residential, commercial and
industrial landuse. Figure 1 shows the prediction accuracy
of our random forests classifier. For residential areas, we cor-
rectly predict the landuse in over 84% of all cases. The re-
sults for commercial and industrial areas are slightly worse.
The main source of misclassification is when there are too
few buildings with any tag at all in the area of interest or
close-by. We observe that a mix-up between residential and
commercial landuse is more likely than a mix-up between
residential and industrial landuse. The reason is that, for
the latter, features that are not based on building tags (e.g.,
building and street density) allow for a better distinction.
Classification with logistic regression instead of with ran-
dom forests leads to an overall accuracy of only 63%. This
shows that the complex relationship between our features is
better captured using random forests.

We used our classifier to predict the landuse for 8.5% of
uncovered buildings in OSM. Most of them were classified
as residential. Manual sample checks using satellite images
showed that the classifier works well and therefore allows to
enrich the OSM data.

5.2.2 Inhabited vs. Uninhabited Buildings
The next step is to decide whether a building has inhabi-

tants or not.

6www.geofabrik.de
7https://osm.wno-edv-service.de/boundaries/
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Target Prediction Precision

inhab. uninhab.

inhabited 976 24 97.60%

uninhabited 72 928 92.80%

Recall 93.13% 97.48% 95.20%

Table 2: Quality analysis of our learned classifier for
inhabited vs. uninhabited buildings, based on 1000
samples for each class.

Target Prediction Precision

multi single

multi 927 73 92.70%

single 108 892 89.20%

Recall 89.57% 92.44% 90.95%

Table 3: Prediction quality for single-family vs.
multi-family houses, based on 1000 samples for each
class.

We computed area under curve (AUC) scores for all our
selected features. We observe highest correlations for base
area size, residential landuse, number of buildings in a ra-
dius of 25 and 50 meters and number of garages in a radius
of 25 to 500 meters. Figure 2 shows that a random forests
classifier gives very accurate predictions, with an overall pre-
cision of 95.2%. Again, classification using logistic regression
performed worse with an overall accuracy of 82.8%.

5.2.3 Single-Family vs. Multi-Family Houses
The last step of supplementing the OSM data consists

of dividing the residential buildings into single-family and
multi-family houses. We rely on the previous learning step
here and only consider buildings which we classified as in-
habited. Figure 7 illustrates the learned feature weights us-
ing Random Forest. We see that closeness to several facilities
and parking lots plays an important role in the classification
process, as well as base-area size and complexity (as mea-
sured by the number of nodes in the footprint).

As shown in Figure 3, the prediction accuracy is not as
good as for the inhabited vs. uninhabited classification step.
But still over 90% of buildings are classified correctly.

5.3 Population Number Estimates
Finally, we want to evaluate how accurate the population

estimation based on existing and newly learned OSM data
is. Since we do not have access to fine-grained census data,
we cannot compute the accuracy of our approach on the level
of individual buildings. Instead, we aggregate the number of
inhabitants in different kinds of regions and compare these
numbers to the census data for the respective region, as
obtained from OpenGeoDB.

We used three benchmark sets to evaluate the popula-
tion estimates for Baden-Würtemberg. The first set con-
tains large cities, the second set contains medium-sized cities
and towns, and the third set contains villages and rural ar-
eas. The places were chosen randomly for each set. For
each place, we computed the population numbers using the
Voronoi-baseline as well as our approach.

We learned feature weights on a set of 20 selected districts,
villages, towns and cities after interpolating the population

numbers for these regions as described in Section 4.2. Then
we computed the respective feature vector for every build-
ing in Baden-Württemberg and estimated the number of
inhabitants on that basis. To compare our results to coarse-
grained census data, we aggregated the population numbers
of buildings in our benchmark regions. Table 4 shows an
excerpt of the results. We make the following observations:

• The population numbers for large cities are fairly ac-
curate when using our estimation tool. On average,
the number differs less than 10% from census data.
For Mannheim, Karlsruhe and Heilbronn our estimate
matches the value from the census data almost per-
fectly. The estimates of the baseline approach are far
too small, because the accumulated length and density
of the streets does not reveal the population density
along those streets sufficiently.

• For villages and small towns, the estimation quality is
not as good as for cities, with an average difference
of about 25% from census data. The reason is that
here small absolute errors translate into large relative
errors. In a village with 1,000 similar living houses it
is very difficult to determine for each of these houses,
whether it is inhabited by a single person, a couple
or a family with one or more children. This remains
true even if complete information about the size and
nature of the houses would be available. This could
easily lead to a factor of two or more of over- or un-
derestimation. Therefore, we deem our results with a
maximal difference of 53% to be of good quality also
for this benchmark set.

Figure 8 depicts the region with the maximal relative
error (of our tool as well as of the baseline approach).
It is a rather large region with long streets but only
very few houses and inhabitants. This is particularly
problematic for the baseline approach, which overesti-
mates the population in this region by a factor of more
than 10.

• For medium-sized cities, the average deviation from
the census data is about 18%. The deviation depends
strongly on the characteristics and the structure of the
city. For example, for cities consisting of a main part
and several incorporated villages the estimation was
worse than for more homogeneous cities.

Our approach outperforms the baseline in over 90% of the
tested benchmark regions. Moreover, the maximal absolute
and relative error are both much smaller with our approach.

5.4 Scalability to Germany
and Other Countries

Next, we want to show that the classifiers learned on
Baden-Württemberg data are suitable to compute popula-
tion numbers for other parts of Germany as well. For that
purpose, we selected seven cities in Germany and compared
the census data to our estimation. The results are provided
in Table 5. We observe that for all cities but Oldenburg
the estimated number of inhabitants is quite accurate. For
Oldenburg we predicted almost twice the number of real in-
habitants. This can be explained by a very dense building
development in the city center as illustrated in Figure 9.
There are plenty of buildings without a road connection and



Figure 7: Learned feature weights for single/multi-house classification using random forests.

Figure 8: Benchmark region with maximum rela-
tive error for the baseline (1085%) as well as for our
approach (53%).

a large number of shops of all kinds. This leads our tool
to overestimate the building heights and number of people
living in that area.

For the other cities we are on average only 10.5% away
from the census data. This is consistent with our results on
large cities in Baden-Württemberg.

To put the numbers into perspective, one has to consider
that, over time, the population numbers vary significantly, in
particular in large cities. For example, Hamburg had 1.707
million inhabitants in 2011, which increased to 1.799 million
in 2012. This is a plus of about 5%. In 2013, the number
dropped again to 1.734 million. Of course, also the number
and shape of buildings in the city changes, but population
numbers are prone to change more quickly.

Figure 9: Cut-out of the city center of Oldenburg.

Finally, we went one step further and also considered cities
in other countries. We checked six large European cities as
well as one city in the U.S. of A. (Seattle). Table 6 shows
that, even for these cities, our classifiers (trained on parts
of Germany) produces useful estimates. Of course, we could
learn our classifiers individually for each country, or even on
a more fine-grained level, and thus get even better results.
But the numbers in Table 6 indicate that our approach ex-
trapolates surprisingly well (with an average relative error of
only 12.5%) and that the selected features seem to be valid
in other countries, too.



Region Population Abs. Error Rel. Error
Burgholzhof C 2774

B 908 -1866 -67%
E 2156 -618 -22%

Gundelfingen C 11554
B 12710 1156 10%
E 11124 -430 -4%

Heitersheim C 5968
B 12452 6484 109%
E 3298 -2670 -45%

Kirchzarten C 9758
B 14405 4647 48%
E 6836 -2922 -30%

Kenzingen C 9518
B 31194 21676 228%
E 12284 2766 29%

Opfingen C 4108
B 13989 9881 241%
E 3475 -633 -15%

Ihringen C 5865
B 23366 17501 298%
E 6241 376 6%

Simonswald C 3024
B 35838 32814 1085%
E 4632 1608 53%

Herbolzheim C 10251
B 34642 24391 238%
E 14916 4665 46%

Stühlinger C 18316
B 5917 -12399 -68%
E 16791 -1525 -8%

Müllheim C 18454
B 49096 30642 166%
E 15752 -2702 -15%

Fellbach C 44403
B 28856 -15547 -35%
E 33152 -11251 -25%

Lörrach C 48307
B 34216 -14091 -29%
E 44026 -4281 -9%

Baden-Baden C 53012
B 103036 50024 94%
E 42905 -10107 -19%

Ulm C 119218
B 127389 8171 7%
E 101931 -17287 -15%

Stuttgart C 604297
B 294367 -309930 -51%
E 538410 -65887 -11%

Pforzheim C 117754
B 101136 -16618 -14%
E 83251 -34503 -29%

Mannheim C 296690
B 203605 -93085 -31%
E 296930 240 0%

Karlsruhe C 299103
B 216051 -83052 -28%
E 297266 -1837 -1%

Heilbronn C 118122
B 116572 -1550 -1%
E 116905 -1217 -1%

Heidelberg C 152113
B 119242 -32871 -22%
E 166390 14277 9%

Freiburg C 220286
im Breisgau B 172285 -48001 -22%

E 226803 6517 3%

Table 4: Results for population estimation: B de-
notes the Voronoi-baseline, E our estimation and C
the census data.

City Population Abs. Error Rel. Error
Munich C 1388852

E 990396 -398456 -29%
Aachen C 240086

E 235124 -4962 -2%
Hannover C 514137

E 573738 59601 11%
Münster C 296599

E 314471 17872 6%
Düsseldorf C 593682

E 657101 63419 10%
Hamburg C 1734420

E 1639908 -94512 -5%
Oldenburg C 159610

E 301699 142089 89%

Table 5: Population estimation for German cities.
C denotes census data, E the estimated value.

City Population Abs. Error Rel. Error
Marselle C 850726

E 606168 -244558 -28%
Brussels C 1138854

E 1099289 -39565 -3%
Bern C 126598

E 129903 3305 3%
Copenhagen C 583348

E 465761 -117587 -20%
Cambridge C 123867

E 143693 19826 16%
Seattle C 652405

E 684084 31679 5%

Table 6: Population estimation for European and
U.S. cities.

6. CONCLUSIONS AND FUTURE WORK
We presented a framework for population estimation which

uses OpenStreetMap data to estimate population counts on
the level of individual buildings. Our approach uses census
data and areal interpolation only to create training data.
From these, we can learn population numbers for areas with-
out any available census data. Therefore, in contrast to most
previous work, our framework does not only allow for inter-
polation but also for extrapolation. Our experiments showed
the potential of our approach to estimate population num-
bers world-wide, while using only a very limited amount of
training data.

There are various possibilities to improve our framework.
First, better OpenStreetMap data will eventually lead to
better population estimates automatically. For example, a
better coverage of building footprints or amenity tags would
be helpful. Moreover, the estimation quality for medium-
sized cities could possibly be improved when regarding ad-
ditional features. Often they are composed of the actual city
and several incorporated villages. A partitioning approach
which recognizes areas of homogeneous structure could be
used to take care of such differences. Historical data could
contribute here as well. Other additional information sources,
such as traffic flows (from openly available GPS tracks),
could further improve the quality of our estimates.
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