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ABSTRACT
Computing shortest paths in road networks with millions of
nodes and edges is challenging on its own. In the last few
years, several preprocessing-based acceleration techniques
have been developed to enable query answering orders of
magnitudes faster than a plain Dijkstra computation. But
most of these techniques work only if the metric which de-
termines the optimal path is static or rarely changes. In con-
trast to that, we aim at answering personalized route plan-
ning queries. Here, every single query comes with a specifi-
cation of its very own metric. This increases the combina-
torial complexity of the problem significantly. We develop
new preprocessing schemes that allow for real-time personal-
ized route planning in huge road networks while keeping the
memory footprint of the preprocessed data and subsequent
queries small.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks

General Terms
Algorithms

Keywords
Route Planning, Personalization

1. INTRODUCTION
Common route planners based on Spatial Network Data

Bases (SNDBs), as Google Maps or Bing Maps, allow to
specify starting location and destination, and compute the
optimal route between them very efficiently. Here, the op-
timal route typically means the quickest or shortest route.
Such route planning engines neglect, though, that the notion
of optimality differs vastly from person to person. Some
users indeed only care about reaching their destination as
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Figure 1: Example for personalized routes with fixed
source and target in a road network. Every color
represents a user with his indivual route preferences.

quickly as possible, but others want to minimize fuel con-
sumption or prefer scenic routes. Often a fair trade-off be-
tween several such preferences leads to the envisioned result.
Moreover, the individual driving style differs (e.g. speeder
or leisurely driver) and other aspects like the type of the car
can have an effect on certain metrics as travel time, turn
costs or energy consumption. Hence we define the problem
of personalized route planning as follows:

Given a street network G(V,E), we have for each edge
e ∈ E a d-dimensional non-negative cost vector c(e) ∈ Rd

(e.g. c1 corresponding to travel time, c2 to gas price, and so
on). A query consists not only of source and target s, t ∈ V
but also of non-negative weights α1, α2, · · · , αd, where the αi

are either determined by factors like vehicle characteristics,
fuel prices or express in general the importance of edge cost
component i for the user. The goal is to compute the path
p from s to t in G which minimizes

∑
e∈p α

T c(e).
Figure 1 illustrates a set of routes based on varying choices

of α (for d = 10 natural metrics). We observe that different
α lead to significantly differing routes. Hence individual user
preferences should not be ignored in route planning engines.

For the classical route planning problem of finding the
minimum cost path considering single static cost values, var-
ious speed-up techniques have been developed (like contrac-
tion hierarchies (CH) [15], transit nodes [3] or hub labels [2])
that improve on the Dijkstra baseline significantly. In fact,
they reduce query times from several seconds (on continental



sized street networks) to milliseconds or even microseconds
by making use of precomputed auxiliary data.

But not all edge costs are as unshakable as distances.
When considering e.g. travel times, the edge cost values
vary significantly over the day (e.g. due to the morning
rush hour), and unpredictable events like accidents can lead
to streets being totally blocked. To take care of this, time-
dependent variants of speed-up schemes have been developed
(e.g. time-dependent CH [4]), which work on edge cost func-
tions rather than scalar values. Furthermore, fast update
procedures have been designed which adapt the auxiliary
data to changed cost values rather than recomputing this
data from scratch (see e.g. [15] or [5]). But these update
methods are only applicable if few edge costs are modified
at a time. If a significant fraction of all edges in the network
change their costs, updates are typically too slow. There-
fore a new type of speed-up frameworks has been developed,
which allows for customization, i.e. switching the whole met-
ric on demand. Incarnations of this idea are the customizable
route planning approach (CRP) [6] and customizable con-
traction hierarchies (CCH) [9]. They allow to update e.g.
the travel time on all edges in a large network in less than 15
seconds on a single core (with good parallelizability, though).
This is surely sufficient for incorporating real-time traffic in-
formation. Subsequent queries can then be answered in the
order of milliseconds. In [9] it was claimed that customiza-
tion times are also in the order of milliseconds, but a later
published erratum [10] corrected the unit to seconds. So the
problem with those methods in context of our application
is, that despite customization times being small, they are
comparable to the runtimes of a plain Dijkstra computation
in the network. So if every query comes with its own metric
preference, one can run Dijkstra instead of customizing and
answering the query subsequently. Therefore, new methods
have to be developed to enable answering personalized route
planning queries significantly faster than the Dijkstra base-
line. As high-dimensional cost vectors increase the size of
the input data already significantly, special care has to be
taken to compute concise auxiliary data.

1.1 Related Work
Many SNDB-based route planning engines feature the com-

putation of alternative routes. So besides the shortest route
from A to B, two or three other routes are presented along
to the user in order to provide him with some freedom of
choice. But here, the goal is rather to find alternatives which
are sufficiently distinguishable from the shortest route but
still close-to-optimal for the considered, static metric [1].
Personal preferences are not incorporated.

Another form of flexibility is to forbid certain kinds of
roads in a query, as roads with toll costs or interstates [14]
(e.g. Google Maps and Bing Maps allow such queries). But
such restrictions are yes or no decisions, no trade-offs are
considered. We can easily include restrictions in our person-
alized model, by defining suitable edge metrics and setting
the respective αi to ∞ in a query.

In [13], the personalization problem was considered but
only for d = 2; also α could not be chosen completely freely
there. For this model a modified CH approach combined
with landmarks [16] leads to a speed-up of three orders of
magnitude over the Dijkstra baseline.

The problem of dealing with personalized queries for ar-
bitrary dimensions d was considered first in [12]. There, a

CH variant was introduced which takes care of all possible
weighted metric combinations (i.e. arbitrary choices of α).
For d = 2 a speed-up of about three orders of magnitude over
the Dijkstra baseline was reported, and a speed-up about a
factor of 150 to 200 for d = 3. While in theory the algo-
rithms presented in this paper work for arbitrary dimension
d, the experiments showed that query times increase notably
with the dimension. But the main bottleneck for practical
use in high dimensions (so large values of d) is the construc-
tion time of the auxiliary data. In fact, the preprocessing
time was shown to grow exponentially in d, which limits its
applicability.

In [11] up to 64 metrics were considered in the context of
personalized route planning. The speed-up compared to the
Dijkstra baseline reported there is about a factor 8, for fewer
metrics up to 13. The algorithm is based upon constructing
a k-Path Cover (k-PC) for G and augmenting the induced
overlay graph with cost vectors. As noted in [11] this ap-
proach unfortunately has a prohibitive space consumption
for practical use in very large networks. We will use the
core idea behind k-PC to develop a general approach for
tackling the personalized route planning problem. More-
over the algorithms developed in this paper will decrease
the memory footprint of k-PC dramatically, which results in
a much wider applicability.

Finally, in [8] it was stated that the highly tuned version
of CRP described there can also be used for answering per-
sonalized queries. Indeed, customization times between 300
and 1200 milliseconds can be achieved with their approach
(corresponding to a speed-up of 10 to 60 over Dijkstra). In a
follow-up paper [7], the customization procedure was trans-
ferred to the GPU, allowing for a further speed-up. But
all these results are based on heavy parallelization (12 CPU
cores in [8] and an ASUS NVIDIA GTX Titan with 14 mul-
tiprocessing units, each with 192 cores, so 2688 cores in total
in [7]); sequential times are still comparable to the runtime of
a plain Dijkstra. Of course, having the ability to parallelize
is an advantage, but especially in a client/server architec-
ture it is not ideal if a single user query occupies that many
cores (and more importantly space to temporarily store the
result of the customization phase).

Our goal is to preprocess the graph in a way that sequen-
tial query answering is much faster than a Dijkstra compu-
tation but at the same time a query does not demand more
space than a normal Dijkstra run for a single user.

1.2 Contribution
We provide the following new results and ideas on person-

alized route planning:

• Schemes for customizable route planning are imprac-
tical for personalized queries because customization
takes too long. We design a new abstract framework
that integrates customization partly in the preprocess-
ing and partly in the query answering phase. Applying
this framework, we can automatically turn customiza-
tion approaches into personalization approaches.

• We identify as the key challenge of personalized route
planning schemes the task of pruning sets of high-
dimensional cost vectors efficiently. We develop several
pruning algorithms that are used to reduce sets in an
optimality preserving way. For k-PC, we can thereby
decrease the space consumption of the auxiliary data



Figure 2: Example of a k-Path Cover for k = 4 (red
nodes), and the induced overlay graph (blue edges).

to less than 5% of the numbers reported in [11].

• Our extensive experimental study proves that our new
developed personalized route planning techniques are
the first to achieve a speed-up of a factor of more than
50 over the Dijkstra baseline for high dimensions. At
the same time, our approaches exhibit manageable pre-
processing times and small memory footprints.

2. PERSONALIZATION WITH K-PC
In this section, we first review how k-Path Covers (k-PC)

can be instrumented for personalized route planning. Sub-
sequently, we design an abstract two-phase framework for
personalized route planning based on the core ideas of k-PC.
This framework will turn out to be very useful for develop-
ing new efficient personalization approaches, as elaborated
in Section 3.

2.1 k-Path Covers
Following the definition in [11], a k-Path Cover on a graph

G(V,E) is a subset of the nodes W ⊆ V , such that for every
simple path in G consisting of k nodes at least one of those
nodes is contained in W , see Figure 2 for an example. Effi-
cient computation of a concise cover is possible as described
in [11] (e.g., less than two minutes for the road network of
whole Germany and k = 32 on a single core).

k-Path Covers can be instrumented for personalized route
planning as follows. First, an overlay graph is computed,
which contains an edge between any two neighbors in the
cover. Here, two cover nodes are neighbors if there exists
a simple path between them in G not containing any other
cover node (see again Figure 2 for an illustration). Then
every edge (u, v) in the overlay graph is augmented with
cost vectors. More concretely, for every simple path p from
u to v without another cover node on it, the accumulated
cost vector

∑
e∈p c(e) is assigned to (u, v), see Figure 3 for

an example. This completes the preprocessing phase.
In a query, first local Dijkstra computations are run from

s and t (reversely) until all paths in the Dijkstra search
tree contain at least one settled cover node. The remaining
search between nodes settled in the runs from s and t is
conducted in the overlay graph only. During the search edges
are relaxed using α provided with the query. So every cost
vector assigned to an overlay graph edge is multiplied with
α and the minimum resulting scalar value defines the cost.
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Figure 3: Example graph with two metrics (d = 2).
Cover nodes are red, the overlay graph consisting
of a single edge is blue. As there are three differ-
ent simple paths from one cover node to the other,
the overlay edge between them gets assigned three
labels.

The query times are dominated by the search in the over-
lay graph, in particular by the number of edges and cost
vectors assigned to these edges. These values also define
the space consumption of k-PC. As the number of simple
paths between two nodes can be exponential in the number
of nodes in the network, assigning all cost vectors to every
edge in the overlay graph becomes very space intensive al-
ready for rather small values of d and k. We will present
methods to reduce the number of cost vectors without com-
promising optimality of the query result in Section 4.

2.2 Abstract Personalization Framework
The k-PC approach for personalized route planning con-

sists of two phases, a preprocessing and a query phase.

1. In the preprocessing phase, first an overlay graph is
constructed which considers only the topology of the
road network. Up to this point no metric is involved.
In this overlay graph, edges represent (sets of) simple
paths in the original network. Then the second step of
the preprocessing consists of assigning cost vectors to
the edges in the overlay graph, one per corresponding
simple path in the original network.

2. In the query phase, the precomputed overlay graph
is used to find the optimal route, by relaxing overlay
graph edges where possible instead of considering the
respective complete paths in the original network.

We observe that these two phases are not tied to the specific
overlay graph construction based on k-PC. Other metric-
independent overlay graph construction schemes could be
plugged in without invalidating the correctness. In the next
section, we show that overlay graphs as used for customiz-
able route planning serve our purpose very well.

3. FROM CUSTOMIZABLE
TO PERSONALIZABLE

The two existing approaches for customization – customiz-
able route planning (CRP) and customizable contraction
hierarchies (CCH) – are both three phase approaches: In
the first (preprocessing) phase, a metric-independent over-
lay graph is constructed. In the second phase, the actual
customization phase, the graph and the auxiliary data are
coated with a metric. The metric is given explicitly as one
scalar value per edge. In the third phase, queries are an-
swered by making use of the auxiliary data computed in the
first two phases.



Of course, we could use customization techniques directly
to solve the personalized route planning problem. For that
purpose, we compute for given α the explicit edge costs
for the original network and customize with those. Then
the whole graph is personalized. But as already mentioned
above, conventional customization takes considerably more
time than query answering. As for personalized route plan-
ning customization has to be redone with every query, we
cannot use customization approaches straightaway for real-
time answers.

We now describe CCH and CRP in detail and point out
some modifications which allow to trade customization time
against query time, such that in combination for personal-
ized queries better timings are achievable. Subsequently, we
develop new personalizable variants of CCH and CRP that
follow the two phase approach rather than the three phase
approach – making those schemes much more suitable for
personalized queries.

3.1 Customizable CH (CCH)
In the preprocessing phase of CCH [9], the original graph

G is augmented with overlay edges (so called shortcuts)
which span simple paths in the network. The basic oper-
ation to construct such shortcuts is node contraction. Here,
a node v and its adjacent edges get removed from the graph,
and edges between all former direct neighbors of v are in-
serted (avoiding self-loops and not inserting edges that are
already present in the graph). These edges are the short-
cuts. So a shortcut always spans two edges, with each of
these being either an original edge or also a shortcut. After
contracting all nodes in the network one-by-one, the short-
cuts constructed in the process are added to the original
graph G, resulting in a new CH-graph G′. The order in
which the nodes are contracted is crucial for the number of
shortcuts in the end. The goal is to find an ordering for
which the resulting graph is sparse. We refer to the rank of
a node in that order as the label of the node.

In the customization phase first all original edges are aug-
mented with the new costs in a single sweep. To assign
correct cost values to the shortcuts as well, they are sorted
increasingly by the maximum node label that led to the in-
sertion of the shortcut (or would have, if it has not already
been there). Obviously, the costs of a shortcut can only be
influenced by shortcuts with a lower rank in this ordering.
Then the shortcuts are parsed in the respective order. For
each shortcut, all node contraction steps that would have led
to that particular shortcut insertion are considered. For ev-
ery such contraction, the summed costs of the two edges that
the shortcuts spans are the potential costs of the shortcut.
Of course, in the end the minimum among all potential costs
is chosen. Note, that the respective edge pairs can be stored
during the contraction process to make the customization
more efficient. In the original paper [9], a shortcut {u,w}
with a corresponding edge pair {u, v}, {v, w} is called a lower
triangle, because v has to have a smaller node label than u
and w. So essentially one has to evaluate all lower triangles
to get the correct cost value for the shortcut.

Queries are answered in the same manner as for conven-
tional CH-graphs [15]. By construction, for every pair of
nodes s, t there exists a shortest path in G′ with the node
labels only increasing at first, and then monotonously de-
creasing until t. Therefore, a shortest path can be found via
a bi-directional Dijkstra computation; with the forward run
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Figure 4: Assignment of cost vectors to shortcut
edges for d = 2. Node heights in the image corre-
spond to node labels. Each lower triangle has to be
evaluated and the cost vectors have to be combined.
The uppermost shortcut receives six vectors as a re-
sult of combining three cost vectors assigned to the
left shortcut and two vectors assigned to the right
shortcut.

from s considering only edges which point to higher node
labels, and vice versa in the backward run from t.

Accelerating Customization. The customization times for
CCH are determined by the number of shortcut edges in the
overlay graph as well as the number of lower triangles which
have to be evaluated to compute the correct edge costs. In a
typical CH overlay graph construction, nodes that are con-
tracted late (i.e. nodes with high labels) induce many short-
cuts as due to earlier shortcut insertions they have a lot of
direct neighbors. Also those lately inserted shortcuts often
span many long simple paths in the original network, result-
ing in many lower triangles which have to be considered in
customization.

Therefore, customization times can be improved by not
contracting all nodes in the network but stopping the pro-
cess at some point. This idea was already used for other
CH-based applications where full contraction results in too
high preprocessing time or space consumption (see e.g. [12]).
The remaining uncontracted nodes are called the core of
the graph. Optimal query answering can still be guaran-
teed when considering edges between core nodes in the bi-
directional Dijkstra run as well. In the extreme scenario,
where all nodes in the network are core nodes, we end up
with zero shortcuts and a conventional bi-directional Dijk-
stra computation. So customization times are small but
query times are high. With no core nodes, it is the other way
around. So there should exist some point to stop the con-
traction process, such that customization times and query
sum up to the minimal possible value. This yields the best
trade-off point for answering personalized queries with CCH.

Personalizable Contraction Hierarchies (PCH). Let us now
modify CCH to work in a two phase manner like the k-Path
Cover based approach. That means in particular that we
want to avoid the necessity of the customization phase. We
will call the resulting scheme personalizable contraction hi-
erarchies (PCH).

The preprocessing phase starts just like for CCH with the
construction of the overlay graph G′. But then, in addition,
we augment the CH-graph with the d-dimensional cost vec-



tors, proceeding similarly to the former customization phase.
So for every lower triangle corresponding to a shortcut, we
combine the cost vectors of the respective edge pair to a new
vector and assign this vector to the shortcut (see Figure 4 for
a small example). While in the CCH setting, every shortcut
receives exactly one value, the number of vectors assigned to
a shortcut {u,w} using PCH corresponds to the number of
paths between u and w not containing a node with a label
higher than the minimum of the labels of u and w.

Queries are also answered in the bi-directional way de-
scribed above. The only difference is, that now the edge
costs have to be determined during edge relaxation by mul-
tiplying α with every cost vector assigned to the edge and
picking the minimum value.

Again, just like for the k-Path Cover approach, large num-
bers of cost vectors assigned to (shortcut) edges, increase the
query time significantly and result in a huge space consump-
tion for storing the augmented overlay graph.

3.2 Customizable Route Planning (CRP)
The preprocessing phase for CRP [8] starts by partitioning

the graph into c cells of roughly the same size for some pa-
rameter c. The goal is to construct these cells such that the
number of nodes at the border of the cells and the number
of edges connecting different cells is small. Then between
all pairs of border nodes of a single cell (with border nodes
being adjacent to an edge connecting to another cell) over-
lay edges are inserted. To make customization and query
answering more efficient later on, the partitioning approach
is typically employed in a multi-layer fashion. So every cell
is considered as a small graph on its own, and partitioning
and overlay graph construction is recursively applied (until
the cell size drops below a certain threshold).

Customization works bottom-up just like for CCH. After
the original edges are augmented with new costs, the overlay
edges of the cells on the lowest level are considered. Their
costs can be computed via one-to-many Dijkstra runs (one
for every border node) with the search being restricted to the
specific cell. Cells on the next higher level use the overlay
graphs of the cells below for this purpose, and so forth. In
the more sophisticated variant of CRP described in [8], the
authors use CH to construct the overlay graphs and compute
the respective costs. In fact, they fix an ordering of the nodes
in each cell a priori, and perform the contraction process
on demand. With a fixed cost metric, a shortcut {u,w}
spanning {u, v} and {v, w} is only inserted if u, v, w is a
shortest path from u to w.

Queries are answered by a bi-directional Dijkstra compu-
tation on the final overlay graph. Only cells containing s or
t have to be inspected more closely, i.e. the runs start at a
level where s or t are actually contained in the graph and
then work their way up in the hierarchy of layers.

Accelerating Customization. In the CRP approach the num-
ber of generated overlay edges per cell is quadratic in the
number of border nodes of this cell. All nodes being in a
single partition, or every node forming a partition on its
own, results both in zero overlay edges and no acceleration
in query answering. Choosing the number of partitions c
between 1 and |V | leads to trade-offs between more over-
lay edges (i.e. higher customization times) and better query
times. Again, like for CCH, there is a optimal trade-off when
accumulated customization and query times are minimal.
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Figure 5: Overlay graph construction and cost vec-
tor assignment for a cell. The red nodes a, b, c are
the border nodes of the cell. The inner nodes are
contracted in the order w, v, u.

Personalizable Route Planning (PRP). In order to improve
the performance of CRP for personalized queries, we per-
form similar changes to the construction scheme as for CCH.
After the computation of the metric-independent auxiliary
data (multi-level partitioning and overlay graph construc-
tion), we assign cost vectors to the overlay edges in a bottom-
up fashion. Hereby, in a cell, the cost vectors for an overlay
edge {u, v} correspond to all simple paths between u and v
in the cell. In congruency with [8], we could also use CH in-
side the cells. In fact, they use kind of a CCH scheme there
(even though the paper was published earlier than [9]), so we
replace CCH by our PCH variant described above. We call
the resulting approach personalizable route planning (PRP).

In Figure 5, the process of applying PCH to a cell is illus-
trated. We observe two problems when assigning the cost
vectors: The first problem is that some simple paths are
represented by a cost vector despite never being optimal.
For example, compare the path u,w, v to u, v. The edge
{v, w} is initially augmented with the cost vector (2, 1). Af-
ter the contraction of w, it additionally receives the vector
(16, 6) resulting from summing up the vectors assigned to
{u,w} and {v, w}. As (2, 1) is cheaper in both dimensions,
no choice of α in a query will include the path from u to v via
w. So the cost vector (16, 6) is superfluous. This does not
affect correctness, but increases the space consumption and
the query times later on. Note, that this also happens when
using k-PC or PCH directly. The second problem is that the
concatenation of simple paths has not to be a simple path it-
self. Consider the label (22, 15) assigned to the overlay edge
{b, c}. It is the result of summing up the labels (5, 5) and
(17, 10). Those two labels stem from the simple paths b, v, u
and u, v, w, c respectively. So the combined path that leads
to the label (22, 15) is indeed b, v, u, v, w, c. Obviously this
never makes sense, as b, v, w, c is a better choice no matter
what cost vectors are assigned to the edge {u, v}.

All unnecessary labels (either due to problem 1 or 2 or



both) are colored gray in Figure 5. We observe that even
for small examples their number can be huge. Of course, we
would like to avoid the insertion of such unnecessary labels
as far as possible. In the next section, we explain how to
detect unnecessary labels efficiently and describe pruning
procedures to get rid of those.

4. PRUNING COST VECTORS
As observed in the last section, at the heart of all of

the three potential approaches for answering personalized
queries (k-PC, PRP, PCH) lies the need to attach as few
cost vectors as possible to edges in the overlay graph in or-
der to keep space consumption and query times low. But as
an overlay edge naively gets assigned at least one cost vector
per corresponding simple path in the road network, the sets
of cost vectors per edge are likely to become huge. Hence
the question arises for each edge whether at least some of
the assigned cost vectors can be pruned. Obviously, in order
to guarantee optimality, we can only prune cost vectors that
are never part of an optimal solution for sure – no matter
how the individually chosen weights α look like.

In the following, we denote with S the set of vectors as-
sociated with a single edge. We explain in detail pruning
oracles that reduce the size of S without compromising op-
timality of the query result.

4.1 Pruning Dominated Vectors
The most straightforward strategy to prune vectors from

S is by domination. A vector v ∈ Rd dominates another
vector v′ ∈ Rd if vi ≤ v′i ∀i = 1, . . . , d and vi < v′i for at
least one i ∈ {1, . . . , d}.

One can compare each vector v to every other vector v′ in
the set, checking component-wise if vi ≤ v′i for i = 1, · · · , d
in order to prune out all dominated vectors. This leads to a
runtime of O(d|S|2).

For large sets S a quadratic runtime might be prohibitive
for using the dominance pruner, though. Alternatively, we
could select a good set of candidates from S and check only
for those if they dominate other vectors in S. A natural
choice for a promising set is to pick for each dimension the
vector with minimum value in the respective component.
This provides us with d candidates and accordingly a run-
time of O(d|S|). This approach can easily be extended to
select d2 many candidates by picking the minimum vector
not for every dimension but the combination of every two
dimensions. This results in a runtime of O(d2|S|).

4.2 Pruning Spanned Vectors
Of course, pruning by domination is not sufficient on its

own, as not every non-dominated vector is optimal for some
choice of α. The following Lemma characterizes superfluous,
non-dominated cost vectors that can never be optimal no
matter what α has been chosen.

Lemma 1. A vector v ∈ Rd can be pruned from a set of
vectors S ⊂ Rd if a convex combination v′ of at most d other
vectors from S dominates v.

Proof. Assume for contradiction that for given α vec-
tor v uniquely defines the minimum cost αT v = z, that is,
v cannot be pruned. Let w1, w2, · · · , wd be the d vectors
that span v′ which dominates v. So we can represent v′ as
γ1w1 + γ2w2 + · · · + γdwd with

∑d
i=1 γi = 1, γi ≥ 0. By

the domination property we know that αT (γ1w1 + γ2w2 +

· · ·+ γdwd) ≤ z as well. This formula can be rearranged as
follows:

γ1α
Tw1 + γ2α

Tw2 + · · ·+ γdα
Twd ≤ z

As αT v = z is the minimum among all possible vectors, we
conclude that αTwi > z for i = 1, · · · , d. Plugging this
observation in the formula above, we get:

d∑
i=1

γiα
Twi >

d∑
i=1

γiz = z

d∑
i=1

γi = z

This obviously contradicts the fact that the left hand side
is less or equal to z. Hence the initial assumption that v is
necessary to get the minimum cost for some α is wrong, and
v can be pruned.

Lemma 1 tells us that a vector v can be pruned if it is
dominated by a vector v′ spanned by d other vectors. Given
a set of d vectors w1, w2, · · · , wd, the test whether a vector
v is pruned by them boils down to checking whether the fol-
lowing system of linear inequalities has at least one feasible
solution:

γ1w11 + γ2w21 + · · ·+ γdwd1 ≤ v1
γ1w12 + γ2w22 + · · ·+ γdwd2 ≤ v2

· · ·
γ1w1d + γ2w2d + · · ·+ γdwdd ≤ vd

γ1 + γ2 + · · ·+ γd = 1

So one way of constructing a pruning oracle is to select d
vectors from S and prune other vectors using them. But
looking at all possible selections, namely

(|S|
d

)
many, this

quickly becomes too expensive. Selecting b bases, and check-
ing for each vector if it is pruned by the base, the runtime
is O(b · |S| · poly(d)). Checking everything would lead to
b = O(|S|d). Hence the goal is to keep b small while pruning
as many vectors as possible.

Just like for dominance pruning, we can select a base
greedily by picking the minimum cost vector for every di-
mension, or the best cost vectors for each two dimensions
combined. In practice, the resulting set of vectors quickly
prunes a large fraction of superfluous vectors out of S. We
therefore call this approach the quick pruning oracle.

4.3 Triangle Pruning
So far, we considered the set of cost vectors assigned to a

single edge as input for our pruning oracles. But taking the
structure of the overlay graph into account further pruning
is possible.

In Figure 6, an example is provided where not only cost
vectors but a whole overlay edge can be pruned. The basic
idea is to consider an overlay edge {u,w} and all induced
triangles, i.e. all pairs of edges {u, v}, {v, w}. For such a
pair, we compute the set of cost vectors induced by their
concatenation. Then we augment the set with the cost vec-
tors directly assigned to {u,w} and run our pruning oracles
on the resulting set. Cost vectors originally belonging to
{u,w} that are pruned from this set are never needed for
optimal query answering. If all vectors belonging to {u,w}
are pruned, we can even delete the edge. Note, that this is
a valid approach for all our personalization schemes. The
red nodes in the example illustration could either be cover
nodes resulting from the k-PC approach, or border nodes



(5,2)
(1,7)

u

v

w

(4,3)

(9,6)
(8,8)

Figure 6: Triangle structure in the overlay graph.
The overlay edge {u,w} is superfluous as the cost
vectors induced by the path u, v, w, namely (9, 5) and
(5, 10) dominate or span the vectors (9, 6) and (8, 8)
assigned to {u,w}.

# nodes # edges

Stuttgart ST 1,024,885 2,079,185

Southern Germany SG 6,603,683 13,466,194

Germany GER 21,721,456 44,108,723

Table 1: Benchmark graphs. The graphs are ex-
tracted from OSM and are cut-outs of the road net-
work of Germany.

from the PRP approach, or nodes in the PCH overlay graph
if the rank order of the nodes is either u, v, w or w, v, u.

As accessing the triangles simply consists of comparing
the outgoing edges of u to the ingoing edges of w to retrieve
suitable nodes v, the performance of the triangle pruning
mainly depends on the efficiency of the pruning oracles.

5. EXPERIMENTAL EVALUATION
We implemented all described approaches to answer per-

sonalized route planning queries, namely Dijkstra, k-Path
Cover (k-PC), customizable contraction hierarchy (CCH),
personalizable contraction hierarchy (PCH), customizable
route planning (CRP) and personalizable route planning
(PRP). Timings were measured on a single core of an In-
tel(R) i7-3770K CPU with 3.40GHz and 32GB RAM. The
respective implementations are written in C++. Further-
more, we implemented the routine for pruning sets of multi-
dimensional cost vectors, which is used as a subroutine for
k-Path Cover, PCH and PRP. For that part of the imple-
mentation we used the Computational Geometry Algorithms
Library (CGAL), [17], in particular their exact linear pro-
gramming solver. Unless stated otherwise, query times are
averaged over 1000 queries and the same source-target pairs
are used when comparing different approaches.

5.1 Data and Settings
As benchmark data we used real-world street networks

of varying size extracted from OSM1. The main features
of our benchmark instances are collected in Table 1. For
every edge (v, w) in the road network we defined ten cost
values: Distance (euclidean distance with a precision of 1
meter), travel time (in seconds), positive height difference
with the elevations of nodes in the road network being com-
puted using SRTM data2 (precision of one meter), distance
on large/medium/small roads using OSM road categories as

1openstreetmap.org
2http://srtm.csi.cgiar.org/

d # polls # vectors time ER time total

1 9.6 · 106 1.9 · 107 2,638 ms 7,908 ms

2 1.0 · 107 2.1 · 107 2,852 ms 8,385 ms

5 1.1 · 107 2.2 · 107 2,996 ms 8,564 ms

10 1.1 · 107 2.3 · 107 3,101 ms 9,097 ms

32 1.1 · 107 2.2 · 107 4,262 ms 10,119 ms

64 1.1 · 107 2.3 · 107 6,147 ms 12,370 ms

Table 2: Experimental results on the GER network
using personalizable Dijkstra. Cost values were cre-
ated randomly. Timings are given in milliseconds,
ER denotes the time for edge relaxation i.e. for
evaluating the edge costs according to α. All values
are averaged over 1000 random queries.

basis, gas price according to the formula in [13] (with one-
tenth of a cent as basic unit), energy consumption for elec-
tric vehicles (in Watt) , unit (uniformly 1 per edge) allowing
to distinguish between curvy and rather straight routes as
in OSM curves are typically modeled by many small edges
while long straight roads consist of few edges only, and quiet-
ness penalizing large roads and roads in dense road clusters
(indicating city centers), with the penalty being proportional
to the length of such a road, and zero for all others.

To test the performance of our algorithms for d > 10,
we additionally created random cost metrics. We sticked
to OSM data for benchmarking, since it is publicly available
and allows for easy generation of many sensible metrics. For
other data sets like DIMACS/TIGER/PTV which are some-
times used, this is far more difficult. The latter contain only
two metrics (travel time and distance) or are not available
to everyone due to licensing issues.

5.2 Experimental Results
We first evaluate the Dijkstra baseline and then proceed

to demonstrate how the k-PC approach benefits from our
developed pruning oracles. Finally, we investigate our new
designed PCH and PRP approaches, showing their suitabil-
ity for personalized queries in huge road networks.

Dijkstra Baseline. We evaluated the performance of Dijkstra
for personalized queries on the GER network for dimension
d between 1 and 64 (see Table 2), and for all benchmark
graphs for d = 10 (see Table 3). We provide the number
of polls (i.e. extractions of nodes from the priority queue),
the number of evaluated cost vectors (which for Dijkstra
equals the number of considered edges), the time to evalu-
ate the cost vectors and the total query time. We observe
that the time for answering personalized queries with Dijk-
stra for moderate dimensions d is not dominated by the time
for evaluating the edge cost vectors, and evaluation times as
well as the total time for answering queries increase only
slowly with growing d. The search space, i.e. the number
of considered edges/vectors is almost unaffected by d. We
furthermore observe by comparing the rows for d = 10 and
GER in both tables, that real-world metrics lead to slightly
better query times than randomly created ones.

Improving k-PC. Next we want to measure the impact of
our pruning oracles on the k-PC based approach. To com-
pare the runtime and the pruning quality of our oracles, we
created benchmark input sets of varying size by running the
k-PC approach on the ST network and collecting the cost



d = 10 # polls # vectors time ER time total

ST 5.4 · 105 1.1 · 106 112 ms 312 ms

SG 2.9 · 106 6.1 · 106 685 ms 1,957 ms

GER 1.1 · 107 2.2 · 107 2,815 ms 8,275 ms

Table 3: Experimental results on all benchmark
graphs using Dijkstra and d = 10 real metrics.
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Figure 7: Percent of remaining vectors after pruning
in dependency of the original vector set size for our
three pruning oracles. Both axes are in logscale.

vectors for every edge naively. Then we applied individually
the naive dominance pruner with quadratic runtime (dom-
q), the dominance pruner which greedily selects d+ d2 vec-
tors and compares to those (dom-d2) and the quick pruner
which searches for spanned vectors (quick). The solution
quality is depicted in Figure 7, the respective runtimes in
Figure 8. We observe that for all our pruning oracles the size
of the vector sets is reduced dramatically, especially for large
vector sets. So for example for vector sets of size around 218,
less than 0.3% of the vectors remain after dominance prun-
ing, for our quick pruning oracle only about 0.1%, i.e. less
than 25 vectors. Considering the runtime, we see that dom-
q exhibits the expected quadratic runtime and therefore is
impractical for larger inputs. The runtime of dom-d2 con-
verges to the runtime of the quick pruning oracle; both are
considerably faster than dom-q on large sets. Based on these
observations, we use a pipeline of first dom-d2, then quick
and finally (on assumingly small remaining sets) dom-q for
the experiments to come.

We applied the described pipeline to the k-PC based over-
lay graphs for all our benchmark instances. In Table 4, we
present timings for the overlay graph construction and the
pruning process along with numbers that indicate the global
reduction of vectors. We used different values of k depending
on the size of the graph. We observe that for larger values
of k our pruning oracles reduce the number of vectors to less
than 5% of the original vectors (and therefore also the space
consumption of the overlay graph). And even more impor-
tant, especially very large sets of cost vectors assigned to
single edges were reduced significantly. These are typically
the bottlenecks for query answering. Accordingly, we ob-
serve improved runtimes for the k-PC approach. In Table 5,
we see that the speed-up for GER compared to the Dijkstra
baseline is over 20. Using unpruned vector sets, the speed-
up was only about 12. For ST and k = 40 we even have a
speed-up of over 30. We expect that the larger graphs would
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Figure 8: Average pruning time in ms in dependency
of the vector set size for our three pruning oracles.
Again, both axes are in logscale.

time # vectors time

d = 10 overlay original pruned pruning

ST, k = 40 22.8 s 6,295,791 4.8% 471.5 s

SG, k = 30 113.0 s 41,306,510 52.1% 3420.1 s

GER, k = 24 143.6 s 52,739,551 64.3% 7134.5 s

Table 4: Preprocessing step for k-PC including over-
lay graph construction and assignment of cost vec-
tors.

also benefit from greater k values. Future work should focus
on accelerating the computation of k-PC overlay graphs in
order to make this applicable.

New Personalization Schemes. Next, we are going to present
results for using our newly developed personalization schemes,
namely PCH and PRP.

For comparison, we first evaluate the respective customiza-
tion approaches CCH and CRP on personalized queries. We
claimed that for both CCH and CRP, there is an optimal
way to preprocess the graph such that the sum of customiza-
tion and query time is minimized. This sum equals the query
time for personalized queries. In Figures 9 query times in
dependency of the overlay graph construction are presented
for CCH on the example of the ST graph. We observe as
postulated that stopping the contraction process for CCH
earlier (for ST after contracting 99% of all nodes) provides
better query times than full contraction (as customization
time and total time increase significantly in the end). Ex-
periments with varying cell sizes for CRP revealed that the
best query times for CCH and CRP are comparable. We
conducted respective experiments on all our test graphs and
observed that the speed-up compared to the Dijkstra base-
line is at most 2 for conventional CCH/CRP and increases

d = 10 # polls # vectors time speed-up

ST 12,545 72,497 10 ms 31

SG 85,610 386,334 73 ms 27

GER 343,498 1,287,112 378 ms 22

Table 5: Experimental results on query answering
with k-PC.
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lower triangles

time # shortcuts avg. max.

ST 4.48 s 1,889,036 0.6 16

SG 32.15 s 12,146,778 0.6 15

GER 118.79 s 40,290,730 0.6 18

Table 6: Overlay graph construction for PCH.

up to 4 with our modifications. Nevertheless real-time query
answers for huge road networks are not within reach using
those techniques.

Next we studied our new personalization schemes PCH
and PRP. Let us have a closer look at the preprocessing
phase of PCH: The first step is the metric-independent over-
lay construction. We contracted about 99% of the nodes in
our test graphs and let the remaining nodes be core nodes.
Contracting more nodes led to worse space consumption and
query time, contracting less nodes resulted also in slower
queries. The results are summarized in Table 6. We observe
that the number of shortcuts is smaller than the number of
original edges for all graphs, so the overlay graph has a size
comparable to the original graph. The number of lower tri-
angles that have to be considered in the personalization step
is also rather small and moreover seems to be independent
of the graph size. The outcome of the personalization step
is investigated in Table 7. Our pruning pipeline as well as
the triangle pruning approach turned out to be crucial for
the preprocessing to complete. Applying only dominance
pruning, for example, led to thousands of vectors assigned
to overlay edges even in the ST graph. Using our described
pruning strategies, the average number of vectors per edge
becomes very small. But there are some overlay edges which
exhibit quite large vector sets. These are typically shortcuts
between core nodes. In Table 8 we report the query times
for PCH. While the number of polls is reduced by over two
orders of magnitude compared to the Dijkstra baseline, the
speed-up is more than a factor of 50 as we have to consider
several vectors per relaxed edge (three on average) and the
node degree in the overlay graph is larger than in the orig-
inal graph. But as the number of polls also is an indicator
for how much space is needed in a query, we conclude that
PCH significantly improves on the Dijkstra baseline in terms
of query times and space consumption.

vectors

d = 10 time total avg. max.

ST 240.2 s 4,521,560 1.145 174

SG 1812.1 s 28,201,283 1.105 512

GER 8982.7 s 90,982,610 1.098 1,498

Table 7: Personalization step for PCH.

d = 10 # polls # vectors time speed-up

ST 3,148 82,106 5 ms 62

SG 23,077 480,826 34 ms 57

GER 212,459 1,587,009 164 ms 50

Table 8: Query answering statistics for PCH.

Finally, we consider PRP which uses PCH as a subroutine.
We used a three-layer variant for the overlay graph construc-
tion, with the lowest level exhibiting cells of roughly 4,000
nodes. The next two layers combine four cells of the layer
below into a single cell. In Table 9, the number of bor-
der nodes and overlay edges induced by the partitioning of
the graph on the lowest level are provided. Only very few
nodes in the graph become border nodes which is beneficial
as it leads to sparse overlay graphs. Each cell is then con-
sidered as graph on its own. We applied PCH to all those
cells by manifesting the border nodes as core nodes. Then
we ran queries on the resulting graph. The experimental
results for all test graphs are collected in Table 10. In addi-
tion, Table 11 shows the dependency of the performance on
the dimension d on the example of the SG graph. Query
answering with PRP slightly outperforms query answering
with PCH because less vectors are evaluated in a query. The
reason might be that in PRP we have indirectly more con-
trol about how many simple paths an overlay edge spans by
fixing cell sizes and inserting overlay edges only inside cells.
Also queries with source and target in the same cell are an-
swered by only considering edges inside this cell. For those
queries, runtimes are significantly better for PRP than for
PCH which affects the average value.

Inspecting the results for GER and varying dimensions,
we see that the speed-up naturally decreases when adding
more metrics, as potentially more necessary cost vectors are
assigned to overlay edges in the graph. Nevertheless, even
for d = 64 PRP leads to a speed-up of about factor 20,
resulting in query times clearly below a second.

5.3 Comparison of Personalization Schemes
We showed that all three discussed schemes for personal-

ization, k-PC, PCH and PRP, provide significant speed-up
over the Dijkstra baseline. k-PC exhibits the smallest speed-
up, but at the same time the most concise auxiliary data.

# cells # border nodes # overlay edges

ST 253 6,922 1,877,894

SG 1,636 46,526 12,051,865

GER 5,430 165,447 39,945,430

Table 9: Partitioning and cell contraction for PRP
on the lowest level.



d = 10 # polls # vectors time speed-up

ST 2,985 45,771 4 ms 78

SG 24,975 293,412 29 ms 67

GER 179,301 1,283,488 128 ms 65

Table 10: Experimental results on all benchmark
graphs for PRP.

d # polls # vectors time speed-up

1 1.5 · 105 6.9 · 105 71 ms 111

2 1.7 · 105 7.3 · 105 78 ms 107

5 1.7 · 105 7.7 · 105 82 ms 104

10 1.6 · 105 1.3 · 106 135 ms 67

32 1.6 · 105 2.5 · 106 287 ms 35

64 1.8 · 105 4.9 · 106 612 ms 20

Table 11: PRP results on GER with randomly cre-
ated metrics.

PCH and PRP both exhibit a large speed-up with PRP be-
ing the most efficient approach in our experiments. But pre-
processing and query answering is easier for PCH. In fact,
PCH could be interpreted as PRP on a single cell. Also PCH
is a necessary subroutine for PRP. We conclude that all three
schemes have their justifications. We also want to note that
our schemes are not competitive for d = 2 compared to pre-
vious approaches custom-tailored for that scenario. But the
ability for personalization on the level we desire demands
a significantly higher dimension, and for those values of d
our schemes are the first to allow for real-time personalized
queries in huge road networks.

6. CONCLUSIONS AND FUTURE WORK
We argued and experimentally proved that customization

approaches are unsuitable to answer personalized route plan-
ning queries efficiently. Including customization times for
each personalized query they are at most a factor of 4 faster
than plain Dijkstra in a single thread setting. Our newly de-
signed personalization schemes demand only very little space
on query time and achieve speed-ups by a factor of 20 to 100
over Dijkstra even for high dimensions. The performance of
our personalization schemes heavily relies on the careful as-
signment of cost vectors to the constructed overlay graph.
We investigated how to prune sets of such vectors efficiently.
Apart from accelerating the pruning process further, future
work includes the investigation of other speed-up techniques
for conventional route planning or customization which can
be combined with our methods for further speed-up. Accel-
eration schemes for the static/unpersonalized case achieve
speed-ups of a factor of 1, 000 or even more over the Dijk-
stra baseline. Hence the question arises whether the cost of
personalization can be further reduced.
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