
Path Shapes – An Alternative Method for Map Matching
and Fully Autonomous Self-Localization

Stefan Funke
FMI

Universität Stuttgart
Stuttgart, Germany

funke@fmi.uni-stuttgart.de

Sabine Storandt
FMI

Universität Stuttgart
Stuttgart, Germany

storandt@fmi.uni-stuttgart.de

ABSTRACT
We propose a novel scheme for map matching and fully
autonomous self-localization. Our scheme is based on the
unique characteristics of the shape of paths in a road net-
work. As uniqueness of path shapes comes as no surprise
in a world of infinite precision, we develop robust means of
comparing shapes of paths under imprecisions. Even under
this fuzzy comparison model, path shapes turn out to be
sufficiently characteristic to allow for map matching or fully
autonomous self-localization. We design an efficient data
structure which allows for very fast path shape queries.

Categories and Subject Descriptors
E.1 [DATA STRUCTURES]: Graphs and Networks

General Terms
Algorithms, Data Structures, Localization

Keywords
Map-matching, Suffix Tree

1. INTRODUCTION
Nowadays, the majority of cars are equipped with naviga-
tion systems – sometimes via a device already built in by
the car manufacturers, sometimes by dedicated navigation
systems that are bought in the aftermarket or simply by the
incorporated navigation system that comes with any Apple-
or Android-class phone. In a typical application scenario
the user expects the navigation system to guide her from
the current position to some destination, giving turn direc-
tions when necessary. To achieve this, the navigation system
needs to be aware of the current position of the car at any
time. As of now, there are mainly three localization schemes
which are most frequently employed:

GPS is a system of satellites that allow for a rather precise
localization (up to few meters) using a GPS receiver.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’11, November 1-4, 2011. Chicago, IL, USA
Copyright c� 2011 ACM ISBN 978-1-4503-1031-4/11/11...$10.00

GSM when connected to a cell phone network, the current
location can be estimated up to 50-500 meters from
the positions of nearby cell phone base stations [7].

WLAN while acquiring StreetView data, Google also
mapped and geocoded the IDs of Wifi networks along
the way allowing for localization with a precision of 1-2
kilometers.

Given free sight to at least 4 satellites, a GPS receiver can
determine a rather precise location in a few minutes. But
free sight to GPS satellites is not always available, e.g. in
urban environments or due to obstructing foliage. Further-
more, with GPS being administered by the US government,
its precision can be deteriorated at any time (called selected
availability). The other schemes require an active inter-
net connection to interact with the servers of the network
provider (GSM localization) or Google (WLAN or GSM lo-
calization) and do not provide sufficient precision for navi-
gation purposes.

The procedure of pinpointing a possibly fuzzy location mea-
surement to a concrete point on a map is called map match-
ing and is of interest in other scenarios apart from self-
localization. For example, the estimation of traffic flows
can be accomplished on the network operator side by an-
alyzing the imprecise GSM localizations of registered users
and reconstructing their trajectories.

Main topic of this paper is the development of a novel lo-
calization scheme which is fully autonomous, i.e. does not
require access to external information source like GPS, GSM
or WLAN. Its precision is superior to any GSM or WLAN
localization approach and comparable to GPS. We instru-
ment the particular structure of the ambient space, i.e., the
road network with the key idea being that we reduce the
map matching problem to the problem of retrieving path
shapes in a road network. A path shape is a description of a
path as a sequence of relative movements, e.g.

50m straight, 45◦left turn, 10m straight,
45◦right turn, 100m straight, . . .

Observe that neither an absolute direction nor absolute po-
sition information is contained in this description. The goal
is to find in the road network a vertex starting at which this
sequence of movements is possible (without leaving the road
network). In Figure 1 we have depicted (partial) matchings
for the path shape on the right. There are many small par-
tial matchings but only one that is a full match. Several
questions for this type of queries are of interest here:

Figure 1: Path shape (green) and its matches (longer than 200m) in the Taunus map for a fuzzy equality model. Blue
circles indicate path origins, first edges are marked red.

• how many such vertices exist for a given path shape?
how long a path shape is required for uniqueness?

• how can a road network preprocessed such that path
shapes can be efficiently retrieved?

Where can we expect to obtain such path shapes from? Most
new cars are equipped with a complex onboard computer
system which amongst others manages the Electronic Sta-
bility Control (ESC) System (ESP in Germany). ESC im-
proves a vehicle’s stability as it detects and minimizes skids
by monitoring lateral acceleration, vehicle rotation (yaw),
and individual road wheel speeds of the car. The very same
data can be extracted via vendor specific protocols of the
CAN-bus to obtain path shapes similar to the one above.
Path shapes (of worse quality) can be extracted from the ac-
celerometers of smartphones, which on the other hand might
enrich the path shape description by absolute directional in-
formation (via built-in compasses) – we will come back to
that towards the end of the paper.

1.1 Related Work
In all classical approaches to the map matching problem, we
are given a sequence of (possibly imprecise) location mea-
surements and aim at identifying the respective route in the
road network and the current position. This problem is well-
studied in different variations. The online version (measure-
ments have to be processed the moment they are taken) is
described amongst others by [9]. In the offline case the best
possible path in the map for a given measurement sequence
is chosen as the optimal one according to some scoring func-
tion. The score might for example be the Frechet-Distance,
see [1], or the objective function value of an integer program
[11]. In [4], the authors have shown that even very imprecise
GSM localization allow for a very accurate reconstruction of
the route a mobile user has travelled along in a network if
measurements for a long enough period can be gathered.
The respective algorithms are quite efficient, so a network
provider could easily track millions of users in real-time.
Different from the problem dealt with in this work these pa-
pers are all concerned with input data containing absolute
location information (though possibly very imprecise). Our
problem is more some kind of curve matching, where for a
given ’query curve’ we are interested in identifying a simi-
lar curve in a collection of curves (e.g. implicitly given by

an embedded graph) – with translations and rotations being
allowed. Different approaches have been proposed for this
problem, e.g. [6]. But most of them are very complicated
and even if they allow for partial matchings (e.g. [3], [2]),
they are not developed for comparing a reference curve with
a very large set of curve shapes efficiently. Nevertheless ten
years ago there was some effort in this direction [5] which
has not found its way into real-world applications, though.
This might be due to the limitations of sensorics at that
time.

1.2 Our Contribution
With a path shape being the result of a physical measure-
ment we cannot expect it to be precise and in particular to
match exactly the path shapes present in the road network
that we have at hand (typically in terms of an embedded
graph). So we first have to come up with suitable path shape
representations and means of imprecision-tolerant compar-
ison of two path shapes before we can design an efficient
preprocessing and retrieval scheme. We examine several
road networks of North America and Germany with respect
to their characteristics (under different representations and
comparison methods) in terms of uniqueness of (shortest)
path shapes. The results give rise to a novel scheme for
preprocessing road network graphs such that efficient and
robust (wrt to measurement errors) retrieval of path shapes
and hence map matching or fully autonomous localization
is possible. Our scheme is based in part on a reduction of
our path shape retrieval problem to a text retrieval problem
and employing generalized suffix trees (GST) [10].

2. MODELLING PATHS AS SHAPES
As a first step we have to think about how to model paths as
shapes and what notion of ”matching shapes/paths” is most
sensible. Ground truth is always the path in an embedded
graph G(V,E) given as a polyline. Consider the ground
truth path in Figure 2, left. It is very unlikely, though, that
this ground truth path can be constructed exactly from (typ-
ically imprecise) measurements of any kind. The polylines
that are reconstructed from measurements could for exam-
ple look like the bold red polyline in Figure 2, center, or the
bold blue line in Figure 2, right. Typically the orientation of
the blue and red polylines are not known, either, but are as-

Figure 2: Global vs. Local Matching of Path Shapes:
Ground truth (left), globally similar shape (center), lo-

cally similar shape (right). Important: typically the ori-

entations of the red and blue paths are not known and

are assumed to be known for visualization purposes only.

sumed to be known in this Figure for visualization purposes
only. In the polyline in the center, the global shape of the
polyline is still preserved whereas in the right polyline the
global shape is destroyed even though locally the sequence of
turns and straight line sections look very similar to ground
truth. It depends on the type of measurement error which
of the two notions of shape similarity are more appropriate.
Our methodology developed in the following will deal with
both. The notion of similarity as implied by the red poly-
line in the center of Figure 2 is pretty much what people
have looked at in the area of curve matching according to
Hausdorff or Frechet distance, for example. The notion of
similarity implied by the blue polyline on the right is closer
to what a verbal description of a path could look like: Drive
100m straight, then make a sharp right turn, then another
100m straight, then turn left, followed by 50m straight. Then
another turn to the left and 100m straight, . . . In a verbal
description it is hardly possible to specify the turns precise
enough that the general direction where one is heading is still
correct. Still, this sequence of (sharp) turns and straight
segments appears to bear enough information to allow for
matching similar paths in a network. While this is not the
main focus of the paper, the developed data structures could
also be of interest to match such a verbal description of a
path to a map.

In the following we will show how to model and compare
polylines such that similarity – be it global or local – can
be detected. It is obvious that for short paths the notions
of global or local similarity approach each other. This will
also be reflected in our experimental results later on.

2.1 Path Representations
Let us first determine a suitable representation of paths that
will later allow for robust (with respect to measurement er-
rors) comparisons. For a given path/polyline as a first step
we resample the polyline uniformly by cutting it into pieces
of let’s say 1 meter each. A path/polyline of length l will
hence be divided into l pieces. We choose two represen-
tations of this l-piece polyline P = s1, s2, . . . , sl, where si
denotes its i-th segment:

localAngle-Representation (LAR): P is represented by
the sequence of l − 1 angles (∠li−1li) for i = 2, . . . , l.

globalAngle-Representation (GAR): P is represented
by the sequence of l − 1 angles (∠l1li) for i = 2, . . . , l.

0

0

0

45

0

0

0

0

0

-45

0 -900000045

0

0

0

75

0

0

0

0

45

45

45

45

45

45

0

-90 -90-90-90-90-90-90-45

30

30

30

3030

30

Figure 3: Example path. Left: LAR representation.

Right: GAR representation relative to the first edge

(red).

In both cases we round the angles to integral (degree) values.
See Figure 3 for an example of the two representations of the
same polyline.

The two representations differ from each other as soon as
imprecisions of the measurements come into play. While
distances can be measured quite accurately (one of the au-
thors drives the > 800 km route from Stuttgart to Greif-
swald on a regular basis and experiences differences in the
odometer readings of less than a few hundred meters when
the same route is taken), measuring directional changes is
more challenging. The second representation is suitable for
measurements for which the directional error does not ac-
cumulate. For example, if distances are measured via an
odometer, but relative changes of direction are always mea-
sured via the change of angle towards a very distant land-
mark, we will get a polyline in which the directional change
is possibly imprecise but its error does not accumulate; also,
the overall shape of the path is somewhat preserved. The
first representation, on the other hand, is more suitable if
directional changes might accumulate, e.g. when the change
of direction is inferred from individual road wheel speeds (or
in a different scenario, as a verbal description). The latter
representation has the drawback that it might declare two
path shapes similar even if they do not look similar at first
sight on a global scale.

2.2 Robust Comparison of Path Representa-
tions

A naive way of comparing two paths π1, π2 represented as
a sequence of angles a1, a2, . . . , al and b1, b2, . . . , bl by GAR
or LAR is to check whether ai = bi, ∀i = 1 . . . l. Of course
this will rarely lead to a match even if we have very precise
measurement devices at hand.

A first approach to soften the equality condition is to use an
angle tolerance tα and declare paths with representations
a1, a2, . . . , al and b1, b2, . . . , bl equal if |ai − bi| ≤ tα. Still
this condition seems too harsh, in particular, if e.g. due
to different resampling, a sharp bend shows up at the i-th
position in one representation of the same path whereas at
position i+ 1 in the other representation, see Figure 4.

Figure 4: With the red

edge the paths are equal.

Without it the two dashed

sections get compared and

the paths are declared un-

equal unless ta ≥ 90.

Figure 5: Black: Curve

derived from the map. Red:

The same curve recon-

structed by measurements.

This problem of different resampling can be tackled by al-
lowing a ’wobbling’ comparison, i.e. the paths are consid-
ered equal if there exists a function φ : {1, . . . l} → {1, . . . l}
with φ(i + 1) ≥ φ(i) for i = 1, . . . l − 1, φ(i) ∈ [max(0, i −
w),min(i+w, l)] for some range w ∈ N and |ai−aφ(i)| ≤ ta.
The existence of such a function φ can be easily checked by a
left-to-right sweep over the two path representations. Note
that this also takes care of systematic under- or overesti-
mation of distances in the measurements, so the function φ
could also be thought of a regauging of the odometer.

Angle tolerances and wobbling do not get rid of the prob-
lem that a 90◦turn might show up in one representation as
a sequence of nine 10◦turns whereas in the other as one sin-
gle 90◦turn, though. This is a quite natural problem which
might not even be induced by measurement errors but by dif-
ferent ways drivers make a 90◦turn, see Figure 5. Similarly,
unexpected obstacles like potholes might incur artefacts in
the path shape that prevent a proper matching. Depending
on the representation – GAR or LAR – we will have to come
up with different remedies.

InGAR, we allow small sections of the paths to differ. This
can be achieved by defining a range r ∈ N and a percent-
age c ∈ [0,1], such that for every section of the path p of
length r at least c · r angles are equal to the other path’s
corresponding section according to one of the previous com-
parison approaches (exact or with tolerances or with wob-
bling). We call this approach range-based comparison
(RBC). Unfortunately, RBC only applies for GAR, since
LAR is based on local deviations as main representation.

Instead of allowing (1−c)r angles in each section of length r
to disagree, in case of LAR, we introduce a moving average
over the angles, so called sum-based comparison (SBC).
Two path representations A and B are declared equal if any
path section of length r the sums of angle differences of A
and B on that section are equal (exact or with tolerance
c), see Figure 6. In case of LAR, SBC replaces the angle-
by-angle comparison with tolerances but could be combined
with wobbling to handle distance deviations.

0
45

-45
-45

45 0

0 0 0
-90

0

0

0 0
-45

-45

0

0
-30

-60

0

0 15 -15
-70

-40

20

Figure 6: Left: Avoiding an obstacle (red). The sum of
the angle differences is 0 in conformity with the direct

path (dotted). Right: Four possibilities for driving a

curve, all resulting in a sum of −90.

3. CHARACTERISTIC PATH SHAPES ON
REAL-WORLD GRAPHS

Our goal is to use (imprecise) path shapes for map matching
and self-localization in a road network. For this goal to be
achievable at all, we first need to make sure that paths in
real-world networks are sufficiently ’characteristic’, that is,
paths that are long enough have a unique path shape – even
under imprecision-tolerant comparisons.

To that end we performed the following experiment: First
we pick a random shortest path π = v1, v2, . . . , vk, con-
struct its angle representation p = a1, a2, . . . , al (LAR or
GAR). Now we are interested whether there exists another
shortest path π� = w1, w2, . . . , wk� with angle representation
p� = b1, b2, . . . , bl� which shares a long, ’similar’ (according to
the comparisons defined in the previous section) prefix. Or,
in other words we are interested in finding the minimal i such
that the prefix a1, a2, . . . , ai is unique amongst the angle rep-
resentations of all shortest paths in the network (if such an i
exists). The following modified Dijkstra when called on each
vertex in the graph – we call it ’shape-preserving Dijkstra’
(SPD) – achieves exactly this. SPD starting at a vertex v
proceeds like a ’normal’ Dijkstra, but pushes a vertex w into
the priority queue only if the angle representation (LAR or
GAR) of the path from v to w is equal (according to our
comparison function) to a prefix of a1, . . . , ai of a1, . . . , al.
The call of SPD on v essentially only explores paths as long
as they have a similar LAR/GAR prefix as π. The length
of the unique prefix then corresponds to the length of the
longest explored path when SPD has been started on every
vertex in the network (excluding the path π, of course).

Note, that using fuzzy comparisons we might not be able to
always find such a prefix if there are several possible sources,
see Figure 7. Hence in that case we let our procedure return
the minimal prefix that contains a unique suffix.
We used three test graphs for evaluation: The German Taunus
(’T’, small graph), the road network of Massachusetts (’MA’,
graph of medium size) – particularly interesting because it
contains many of grid-like subgraphs and whole Germany
(’GER’) as an example of a large graph. The main figures
of these graphs can be found in Table 1. Identifying the
unique prefix for every possible (maximal) shortest path is
too time-consuming, even for the German Taunus. There-
fore we restricted ourselves to a large number of (s, t)-pairs
chosen uniformly at random, for which we first computed
the shortest path using normal Dijkstra. Then we started
for every node a SPD computation and let them run until
all PQs are empty.

For a choice of comparison models the average prefix lengths
as well as maximum prefix lengths and timings can be found
in Table 2 sub-divided according to the used path model.
Moreover the plot in Figure 8 shows the average prefix length
for a wide range of comparison parameters for GAR. Figure
9 shows for Massachusetts, that prefix lenghts are actually
concentrated around their mean. In Figure 10 one can get an
impression how the number of matching paths in relation to
a reference path decreases, if the number of considered edges
grows. It looks like an exponential decrease for all used com-
parison models, which explains the shortness of unique path
prefixes. Interestingly the graph of Germany (more than 50
times larger than the one of Massachusetts) exhibits shorter
unique prefixes, probably because of the less ’planned’ struc-
ture of the road network due to historical reasons.

nodes edges avg path length
T 11220 24119 5.6 km

MA 294345 731874 101.5 km
GER 18575544 38798358 452.5 km

Table 1: Number of nodes and edges of our bench-

mark graphs, along with the average path length in these

graphs in kilometers.

GAR avg query avg prefix max prefix
time (sec) length (m) length (m)

t = 0 T 0.02 72 604
MA 1.13 246 2869

GER 86.24 169 1607
t = 5 T 0.03 125 1280

MA 1.68 575 8439
GER 94.75 274 4148

t = 10 T 0.05 355 4781
r = 50m MA 2.36 3084 32337
c = 0.9 GER 134.37 684 8430

LAR avg query avg prefix max prefix
time (sec) length (m) length (m)

t = 0 T 0.03 74 599
MA 1.31 279 4480

GER 90.24 182 1351
t = 5 T 0.03 123 1561

MA 1.85 641 23497
GER 95.35 287 5047

t = 10 T 0.11 222 1840
r = 50m MA 3.73 1413 41036

GER 144.45 946 78796

Table 2: Unique prefix lengths in different sized road
networks, with t denoting the angle tolerance and r (and

c) being the parameters for RBC or SBC. Query time

(in seconds) denotes the time until prefix uniqueness has

been established by SPD for an s − t path. Query time

and the prefix length (in meters) are average values of

1000 random queries.

In any case, even for rather relaxed similarity measures, path
shapes become unique quite early, e.g. for LAR, angle toler-
ance tα = 10◦ over a range of 50 meters, the average length
of the characteristic prefix of a shortest path is only 946
meters. So path shapes in principle seem to be a viable
means for localization in a road network. Note that our SPD
algorithm is already an algorithm to perform this localiza-
tion. The running times for larger networks are prohibitive,
though (note that starting a SPD at every single vertex of
the network scales badly with the network size). In the next
section we will present a data structure which allows this
localization several orders of magnitudes faster.

One might wonder whether examining only shortest paths is

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750

n
u
m

b
e
r

o
f
p
a
th

s

unique prefix length (meters)

Figure 9: Distribution of unique prefix lengths for MA
with ta = 0.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 5 10 15 20 25 30

n
u
m

b
e
r

o
f
m

a
tc

h
in

g
 e

d
g
e
s

percentage of covered path

t=5
t=10, r=50, p=0.9

t=20, r=100, p=0.5

Figure 10: Number of matching edges of the Taunus
graph in relation to the position on the reference path

for some selected models.

too severe a restriction. In case of map matching e.g. for
traffic estimation this is less of an issue since users tend to
move on at least piecewise shortest paths, see also [4], but
also for the application scenario of a navigation system this
seems ok; even when wandering around one tends to do so
on at least piecewise shortest paths. If those pieces are at
least as long as the characteristic prefix length, restricting
to shortest is fine. So in the following we will focus on the
preprocessing and analysis of shortest paths, even though
in principle we could also consider all possible paths – this
will be the focus of future work. Furthermore we see from
Table 2 that using LAR or GAR does not really make that
much of difference – which comes as no surprise since for
short paths, LAR and GAR are essentially equivalent. We
will focus on GAR in the following (mostly due to historical
reasons), exactly the same techniques apply for LAR, the
results are very similar, too.

t

s1
s2

5

Figure 7: Source not identi-
fiable for a comparison model

with ta >= 5.

 10

 100

 1000

 10000

 100000

t=
0

t=
5

t=
1
0

t=
1
5

t=
2
0

t=
2
5

t=
3
0

t=
3
5

t=
4
0

t=
4
5

r=
 2

5
, p

=
0
.9

0
, t=

0
 t=

1
0

 t=
2
0

r=
 2

5
, p

=
0
.7

5
, t=

0
 t=

1
0

 t=
2
0

r=
 2

5
, p

=
0
.5

0
, t=

0
 t=

1
0

 t=
2
0

r=
 5

0
, p

=
0
.9

0
, t=

0
 t=

1
0

 t=
2
0

r=
 5

0
, p

=
0
.7

5
, t=

0
 t=

1
0

 t=
2
0

r=
 5

0
, p

=
0
.5

0
, t=

0
 t=

1
0

 t=
2
0

r=
1
0
0
, p

=
0
.9

0
,t=

0
 t=

1
0

 t=
2
0

r=
1
0
0
, p

=
0
.7

5
,t=

0
 t=

1
0

 t=
2
0

r=
1
0
0
, p

=
0
.5

0
,t=

0
 t=

1
0

 t=
2
0

a
vg

.
p
re

fix
 le

n
g
th

 (
m

)

GER
MA

T

Figure 8: Average prefix lengths under different comparison models for 1000 ex-
amples each.

4. EFFICIENTPREFIXHANDLINGUSING
GENERALIZED SUFFIX TREES

If we consider the sequence of angles defining a path as a
concatenated string, classical string search algorithms can
be used to identify a path in the ’text’ which describes the
whole road network.
To find a string pattern of size m in time O(m) in a text of
length n, n � m, the latter has to be preprocessed. One
method to do so is constructing a (generalized) suffix tree
of the text. A GST represents all suffixes of a set of strings
S1, · · ·Sk, fulfilling the following characteristics:

• each tree edge is labelled with a non-empty string

• there is no inner node with degree 1

• any suffix of a string corresponds to a unique path in
the tree (starting from the root) with the concatenated
edge labels along that path starting with this suffix

A suffix can be grafted into a GST by first identifying its
longest prefix that already exists in the tree by tree traversal.
If the path of this prefix ends in a leaf node, we just add
the remaining characters of the suffix to the according edge
label. If the path ends in an inner node, we have to create
a new edge and a new leaf representing the last part of the
suffix. Also the path could end implicitly, that means the
according edge label contains additional characters, that are
not in the suffix. Hence this edge has to be split and so its
label, such that we derive a new inner node that represents
the longest prefix. Then we can proceed as described before.
By performing this for every suffix occurring in S1, · · · , Sk

we obtain a GST of this set of strings. Note that there are
more efficient ways of constructing GSTs, see [10], but as we
will have to determine the set of strings S1, . . . , Sk online,
this more efficient construction does not apply for us.

With the GST being constructed, the question whether a
given pattern is contained in S1, . . . , Sk can be answered
in time linear in size of this pattern, if the alphabet size
is bounded, as we can associate an array with every node,
which for each letter of the alphabet stores the edge (if any)
whose label starts with this letter. So a query starts in
the root of the GST, looking for an outgoing edge with a

label, that begins with the first ’letter’ of the pattern. If
such an edge exists, we have to compare the respective edge
label to the related pattern prefix element by element. If
they are equal, we can go to the end point of the edge and
repeat the search with the remaining elements of the pattern.
If we always find a match, the pattern is contained in the
underlying set of strings. The number of its occurrences
equals then the number of leaves of the subtree beneath the
last visited node. If at some point no match can be found,
the pattern is not contained in S1, . . . , Sk.

For a practical implementation, some tricks can be applied.
For example, long straight parts of a path induce long se-
quences of the same ’angles’ (both LAR or GAR), which
can be stored in a compressed manner without affecting con-
struction and properties of the GST. While not improving
any theoretical worst-case bound, the practical performance
is greatly improved.

4.1 Online GST Creation
Our required GST has to contain every minimal unique path
prefix occurring in G(V,E). But going through all possible
paths and identifying in each case the unique prefix with the
method described in Section 3 is far too time consuming.

Observation 1. A prefix of length l is unique if it is not
equal to any other occurring prefix with length ≤ l for the
employed comparison model.

Using this simple observation we can develop an efficient ap-
proach to create the GST. We start a Dijkstra computation
from every v ∈ V , stopping only when the first element in
the priority queue (PQ) has a distance label greater than a
given maximal distance dmax (or the PQ became empty).
Then this Dijkstra run is frozen, i.e. we keep the actual pri-
ority queue, as well as the distance and predecessor labels.
Now for all vertices that were pushed into the PQ we com-
pute the LAR/GAR for the respective path up to a maximal
length of dmax starting from the source vertex. Note, that
for each vertex w with dist[w] > dmax we do not have a real

endpoint of the prefix in the map and therefore have to use
an implicit vertex instead.
The representations then get grafted into our tree T . To
that end, every node has a tag, whether its unique, and a
pair of vertex IDs, marking the start and endpoint of the
respective path (−1, if the endpoint is implicit). If a node
is revisited with a different end point, its initial true unique
tag is set to false (implicit nodes are always false tagged). If
the endpoint is the same but the start point differs, we have
the situation as depicted in Figure 7. Here the node stays
unique but we add the additional source to the node. Hav-
ing performed this for all frozen Dijkstra computations, we
check in T for the newly created nodes, if they are labelled
unique. For every unique node the search subtree below the
respective target vertex does not need to be considered any-
more for any related source, pruning the search space of the
respective Dijkstra run considerably. As long as there are
non-empty PQs of some Dijkstra runs, we repeat this proce-
dure, while increasing dmax in every round (see Figure 11).
Note, that there might be superfluous nodes and edges in
T after each round, namely the subtrees beneath nodes la-
belled unique as well as edges and nodes referring to im-
plicit nodes. These nodes and edges can be deleted. At this

s
d max

Figure 11: Prefix elongation from source s. The smaller
circle indicates the previous maximal distance. Blue

points mark nodes, which were settled in the current

round. Red points show implicit nodes, that have to be

considered to assure prefix uniqueness on ’real’ nodes.

The green point marks the endpoint of an already unique

prefix, therefore the respective subtree can be ignored.

point we have created a GST on the necessary prefixes of
path shapes, which is sufficient to answer exact path shape
queries. As queries will be based on inherently imprecise
measurements, we have to think about how our GST data
structure is of use for similarity searches.

4.2 GST – Fuzzy Tree Traversals and Con-
struction

So far we have learned how to construct a GST under a
imprecision-intolerant comparison model. Of course, our
goal is to construct and use our GST in a imprecision-tolerant
manner. To that end let us first describe a fuzzy tree traver-
sal, whose goal it is to determine all strings in the GST which

are similar (according to one of our imprecision-tolerant
comparison notions) to some given query string a1, . . . , al.
We obtain those strings by traversing the GST from the root,
exploring not only the single path which matches but all
paths which are ’similar’ to the query string. Unfortunately,
creating a GST as described in the previous section together
with fuzzy tree traversal does not really solve our problem,
as a typical query will then return several strings. Our GST
creation procedure only made sure that under exact com-
parisons the path prefixes were long enough to guarantee
uniqueness, for imprecision-tolerant queries, longer prefixes
might be necessary.

To that end we have to modify the procedure for deciding
whether a node in the GST is unique or needs to be further
explored. In case of exact queries we get this information by
a simple tree search, for fuzzy queries we have to employ the
above described fuzzy tree traversal each time we add a path
and mark all nodes inside the matching tree as non-unique
if the respective target does not equal the one on the new
path. This would increase construction time considerably,
so we apply a more efficient approach. Additionally we at-
tach to each node in the GST the length of the respective
prefix as well as a pointer to its parent node. This allows
for checking for a certain path in the tree if it is similar
to any other contained path by selecting all nodes with an
attached length greater or equal to the length of this path
and performing a backwards tree traversal as long as the
two paths are similar according to the employed comparison
model. Hence we can decide at the end of each round for
every newly created node with a unique tag whether this
tag is feasible. This improves running time, as the number
of unique nodes after grafting all path codes up to a certain
length into the tree is considerably smaller than the number
of temporary unique nodes during the prefix elongations.

4.3 Correctness and Runtime
Correctness. Our algorithm for building the GST is funda-
mentally different from common GST constructions like [10]
in that the set of strings S1, . . . , Sk we want to represent
in the tree is not given explicitly right from the start but is
identified during construction. Therefore it actually requires
proof, that our output tree is a GST.

Lemma 1. The created tree T is a GST.

Proof. Assume p ∈ T , but q /∈ T with q being a suf-
fix of p. q /∈ T implies that q has a unique prefix which is
strictly shorter. But then p has to have a strictly shorter
unique prefix as well and therefore p /∈ T , contradiction to
our assumption.

According to Lemma 1 we can employ the standard machin-
ery for (exact) string search in GSTs. As the alphabet in
our case size O(1) (there are only 360 integral angle values)
we obtain a query time of O(l) for a query of length l.

Runtime. The algorithm consists of three phases:

I. Identifying shortest paths in the graph via Dijkstra
computations

II. Graft all shortest path encodings into the GST

III. Extract all unique nodes from the GST und update the
according PQs, clean the GST from superfluous nodes
and edges

If all Dijkstra computations run until the end, we need
O(n2 log n + nm) for phase I. Grafting a path representa-
tion of length l into the GST takes time O(l), overall we
might have Ω(n2) paths of length Ω(n) and therefore a total
runtime of θ(n3) for part II. In the last phase there can be
only O(n2) paths, which equals the total effort for that part.
So overall we can only guarantee a runtime of O(n3), but
this is not the running time experienced in practice, since
there the unique prefixes tend to be very small (see previous
section). So far, we have not striven for a better theoretical
running time.

4.4 Answering Queries
At query time, we are given a candidate path shape as some
polyline ; we transform this path shape to the desired repre-
sentation (LAR or GAR) and then employ the constructed
GST to identify a source vertex s for this path shape in our
map by performing a (fuzzy) tree traversal until identifying
a unique node. As we are not only interested in the starting
point and the end point of the unique prefix, but its corre-
sponding path in the map, we can run a single SPD from
the identified starting point. In contrast to the naive em-
ployment of n SPD computations this reduces the running
time by orders of magnitudes.

In large networks, even this single SPD execution could be
too expensive, as its running time is typically superlinear
in the length of the longest path explored. In this case, a
natural speed-up technique is the piece-wise reconstruction
(similar to the one employed in [4] for map matching): If
a path is very long, we expect the unique prefix to be rela-
tively short. That means, if we consider the remaining path
without this prefix, it still should be long enough to contain
a unique prefix on its own. Again we can find this prefix
by using the GST. Therefore we can reconstruct the path
piecewise by identifying the paths of the unique prefixes one
after the other and concatenate them. If there remains a
non-unique tail, we have to start a SPD in the last correctly
identified vertex to reconstruct the whole path.

5. EXPERIMENTAL RESULTS
In this section we first discuss how the map preprocessing
can be performed efficiently in practice. Afterwards the
query times for exact and fuzzy queries are evaluated. Fi-
nally we introduce quality metrics for the map matching
problem and analyze how accurate our approach is in re-
lation to the density and the precision of the given mea-
surements. Our implementation is written in C++, timings
were taken on a single core of an AMD Opteron 6172 with
2.1 GHz and 96 GB RAM. In the following tables we restrict
to the GAR model, since – as seen in Section 3 – for short
paths they are essentially equivalent. We have conducted
the same experiments with the LAR model and experienced
very similar results.

5.1 Preprocessing
We build generalized suffix trees for all three test graphs.
In order to do so, we need to choose an initial value for
dmax and decide how it should be increased in every round.

The larger the growth rate, the more paths have to be con-
sidered in one round. Because we cannot decide which of
them already contain unique prefixes before the end of the
round, there can be many superfluous encodings, tree traver-
sals, creation of new nodes and edges as well as deletions.
Choosing the growth rate of dmax very small, we might have
rounds where no new paths are feasible at all, still we have
to spend time on that. Figure 12 shows the preprocessing
time for MA depending on an additive growth rate for dmax

(added after each round). The minimum is near 150m, so
we chose this as additive growth rate. The preprocessing
time can be even improved, when employing this constant
growth rate until 75% of the Dijkstra runs have completed
and double the growth rate in each round afterwards.

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300 350 400
p

re
p

ro
ce

ss
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

growth rate

Figure 12: Preprocessing time for the MA graph de-

pending on of the growth rate of dmax.

In Figure 13 we see that the number of completed Dijkstra
computations (PQ ran empty) depending on the search ra-
dius follows a typical saturation curve. Up to 1250m there
is an exponential increase, so 85% of the Dijkstra runs have
completed at this point; the remaining 15% runs have fin-
ished when the search radius exceeds 3750m. The resulting

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 500 1000 1500 2000 2500 3000 3500

#
 f

in
is

h
e

d
 D

ijk
st

ra
 c

o
m

p
u

ta
tio

n
s

search radius (meters)

Figure 13: Number of completed Dijkstra computations
versus search radius for the online GST creation of MA.

preprocessing time for all three benchmark graphs can be

found in Table 3 along with the final size of the according
GST and the maximal search radius, that was necessary to
make all prefixes unique. The effort required for preprocess-
ing might look prohibitive at first sight (for Germany 2− 3
days on a single core and using about 70 GB of RAM on
our server), but remember that this preprocessing time has
to be spent only once. The resulting data structure is less
than 2 GB in size, hence comparable to the road network
representation itself, and can easily be stored even on mo-
bile devices with microSD cards (typical size 8 GB). As the
parallel Dijkstra computations are inherently parallelizable,
we expect further speed-up in that respect.

T MA GER
ta = 0 time (sec) 2 185 13105

nodes (GST) 51793 2593809 86271669
search radius (m) 1350 5293 4680

ta = 5 time (sec) 11 1701 114487
nodes (GST) 77784 2789902 117638920

search radius (m) 2703 16350 9125
ta = 10 time (sec) 46 3781 196580
r = 50 # nodes (GST) 135265 3805956 697329542
c = 0.9 search radius (m) 5004 42800 12750

Table 3: Experimental results of the online GST cre-
ation for exact and fuzzy paths.

5.2 Query Times
We presented two approaches to answer a query, i.e. to
identify a given path shape in the map: In Section 3 we
described the naive way to tackle the problem, by starting
a SPD in each vertex and waiting until all these runs have
finished. Using GSTs to extract the path’s source as de-
scribed in Section 4, we can answer a query using only a
single SPD, starting in that particular source. The query
times of these approaches are collected in Table 4 for some
selected comparison models. Timings contain path encod-
ing as well as the summed runtime of all necessary SPDs
and where appropriate the time for performing a (fuzzy)
tree traversal. Unsurprisingly the naive approach ends up

T MA GER
ta = 0 naive 0.0235 1.1355 86.241

GST+SPD 0.0002 0.0008 0.027
ta = 5 naive 0.0347 1.6810 94.750

GST+SPD 0.0010 0.0720 0.304
ta = 10 naive 0.0522 2.3649 134.374
r = 50m GST+SPD 0.0035 0.1318 2.233
c = 0.9

Table 4: Overview of query times for selected compar-
ison models using different map matching approaches.

Timings (in seconds) are averaged over 1000 random

queries.

last for all considered inputs. Employing the GST for iden-
tifying the source and subsequent path exploration using a
single SPD leads to a speed up of factor of 3000 for answering
exact queries in the Germany graph.

5.3 Accuracy
To evaluate the accuracy of our approach we performed two
different experiments: On one hand we checked under which
comparison models an exact path from the map can still be

identified uniquely. On the other hand we simulated impre-
cise measurements by perturbing and subsampling the input
data and then asked for which comparison models the cor-
rect path in the map still matches this input.
To measure the quality we compare our resulting path p� to
the correct path p using the same metrics as in [8]:

• AN (p, p
�) denotes the percentage of edges of p that are

not matched by p�

• AL(p, p
�) denotes the percentage of the length of p that

was not covered by p�

The only possible reason for an exact path not to be identi-
fied correctly is the path being too short and hence occurring
multiple in the map. This means we either get AN = AL = 0
in case of a unique match or AN = AL = 1 otherwise. For
fuzzy queries our quality measures can take any value in
[0, 1], because apart from paths being too short, source and
target vertices of a path can be ambiguous under the chosen
comparison model. For the evaluation we chose the road

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1000 10000 100000

p
e
rc

e
n
ta

g
e

max path length

t=0 AN
t=0 AL
t=0 ID
t=5 AN
t=5 AL
t=5 ID

t=10,r=50,c=0.9 AN
t=10,r=50,c=0.9 AL
t=10,r=50,c=0.9 ID

Figure 14: Quality of our approach measured for some
selected comparison models. AN, AL, ID are averaged

over 1000 random queries with AN=AN , AL=AL and ID

denoting the percentage of exactly identified paths.

network of Massachusetts, because retrieving path shapes is
most challenging here due to the grid-like substructures. In
Figure 14 one can see the quality of our results for paths de-
rived from the map, that are restricted by their lengths. As
to be expected, the error rate is high for short paths but im-
proves rapidly with growing path lengths, identifying almost
100% of the paths totally correct even for fuzzy models.

Normally the input won’t be a polyline describing exactly a
path in the map, but the angles might differ due to measure-
ment uncertainty, the length of the driven route might vary
slightly and depending on the density of the measurements
we might miss some turn changes. If the angle and length
deviation is bounded by a constant, we can use these values
directly as angle tolerance and allowed wobbling range and
therefore we can still guarantee to identify the path, if it is
long enough. The results of the simulation of such queries
can be found in Table 5. At first we randomly added to
each angle a value in {−5,−4, · · · , 4, 5} (row 1:angles ±5).
The resulting path shape is typically not present in the map,

hence without an angle tolerance we are not able to identify
the path. Next, we perturbed the edge lengths randomly,
but restricted the new total path length to differ not more
than a half percent from the original one (average 1 km de-
viation for MA). Only a comparison model using wobbling
(here with a range of 250 m) enables us to match the path in
the map. Finally we simulated different measurement densi-
ties. Sparse measurements lead to smoother polylines, that
exhibit quite big differences to the original path on small sec-
tions. Therefore only a model with range-based comparison
leads to usable results.

Perturbation ta = 0 ta = 5 ta = 10, r = 50
c = 0.9, w = 250

angles ±5 0.989/0.991 0.000/0.000 0.000/0.000
length ±0.5% 0.881/0.931 0.864/0.888 0.005/0.001
density 1 m 0.000/0.000 0.000/0.000 0.001/0.000
density 2 m 0.966/0.973 0.942/0.940 0.002/0.003
density 5 m 0.991/0.995 0.977/0.982 0.014/0.017
density 10 m 0.993/0.998 0.992/0.995 0.058/0.061

Table 5: AN/AL for several input perturbations and

comparison models (averaged over 1000 examples).

6. FUSIONWITH OTHER INFORMATION
If additional information apart from the relative movement
pattern is available, the problem gets easier, of course; for
example, many mobile devices nowadays have an electronic
compass built-in which can be used to enrich the path
shape information. In this case, we would naturally encode
the path as sequence of (absolute) directions; the number
of paths with the same shape representation shrinks drasti-
cally compared to the models considered so far, see Figure
15. Unsurprisingly this results in much faster preprocessing
and query times.

Figure 15: Reference path (red) and its matches under
the comparison model ta = 5, left with compass informa-

tion, right without (GAR).

Our approach can also be combined with imprecise but ab-
solute location information in a natural way by exclud-
ing possible source/target vertices in the GST traversal while
answering queries. Car manufacturers have been using tech-
niques to incorporate relative movement patterns for their
self-localization, they are only meant as a backup for a pre-
cise localization method like GPS during short periods of
time (e.g. while driving through a tunnel), though. We can
also make use of very imprecise location information like ’we
are currently in the state of Bavaria’.

Furthermore, height information can also be acquired
fully autonomously (at least about the change of height via
a barometer) and incorporated into a description of a path
shape. While probably not of much use in the midwest of
the US, the height profiles of routes in the Alpes might be
characteristic even without any (horizontal) directional in-
formation.

7. CONCLUSIONS
We have presented a novel approach for self-localization and
map matching which is based on the acquisition and retrieval
of relative movement patters which we call path shapes. While
directional information so far has been used only as a backup
for short periods of time when e.g. GPS is unavailable, we
have shown that it is fully sufficient for self-localization and
map matching on its own. Natural future directions of re-
search are reduction of the preprocessing times, considera-
tion of all possible paths instead of shortest only, and incor-
poration of other information sources.

8. REFERENCES
[1] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching

planar maps. J. Algorithms, 49:262–283, 2003.

[2] E. M. Arkin, L. Chew, D. Huttenlocher, K. Kedem,
and J.S.B. Mitchell. An efficiently computable metric
for comparing polygonal shapes. In 1st Symp. on
Discr. Algorithms(SODA), pages 129–137, 1990.

[3] M. de Berg and A. Cook IV. Go with the flow: The
direction-based frechet distance of polygonal curves.
In Proc. 1st Int. ICST Conf. on Theory and Practice
of Algorithms in Computer Systems (TAPAS), 2011.

[4] J. Eisner, S. Funke, A. Herbst, A. Spillner, and
S. Storandt. Algorithms for matching and predicting
trajectories. In Proc. of the 13th Workshop on
Algorithm Engineering and Experiments (ALENEX),
2011.

[5] ERTICO. Agora website.
http://www.ertico.com/agora-website, 2000.

[6] M. Frenkel and R. Basri. Curve matching using the
fast marching method. EMMCVPR, pages 35–51,
2003.

[7] Mohamed Ibrahim and Moustafa Youssef. Cellsense:
A probabilistic rssi-based gsm positioning system.
CoRR, abs/1004.3178, 2010.

[8] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei
Wang, and Yan Huang. Map-matching for
low-sampling-rate gps trajectories. In Proceedings of
the 17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems,
pages 352–361, 2009.

[9] M. Quddus, W. Ochieng, and R. Noland. Current
map-matching algorithms for transport applications:
state-of-the art and future research directions.
Transportation Research Part C: Emerging
Technologies, 15:312 – 328, 2007.

[10] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14:249–260, 1995. 10.1007/BF01206331.

[11] H. Yanagisawa. An offline map matching via integer
programming. In Proc. 20th International Conference
on Pattern Recognition (ICPR), pages 4206–4209.
IEEE, 2010.

