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Abstract

This article provides a comprehensive overview of the broad area of
semantic search on text and knowledge bases. In a nutshell, semantic
search is “search with meaning”. This “meaning” can refer to various
parts of the search process: understanding the query (instead of just
finding matches of its components in the data), understanding the data
(instead of just searching it for such matches), or representing knowl-
edge in a way suitable for meaningful retrieval.

Semantic search is studied in a variety of different communities with
a variety of different views of the problem. In this survey, we classify
this work according to two dimensions: the type of data (text, knowl-
edge bases, combinations of these) and the kind of search (keyword,
structured, natural language). We consider all nine combinations. The
focus is on fundamental techniques, concrete systems, and benchmarks.
The survey also considers advanced issues: ranking, indexing, ontol-
ogy matching and merging, and inference. It also provides a succinct
overview of natural language processing techniques that are useful for
semantic search: POS tagging, named-entity recognition and disam-
biguation, sentence parsing, and word vectors.

The survey is as self-contained as possible, and should thus also
serve as a good tutorial for newcomers to this fascinating and highly
topical field.

H. Bast, B. Buchhold, E. Haussmann. Semantic Search on Text and Knowledge
Bases. Foundations and TrendsR© in Information Retrieval, vol. 10, no. 2-3,
pp. 119–271, 2016.
DOI: 10.1561/1500000032.



1
Introduction

1.1 Motivation for this Survey

This is a survey about the broad field of semantic search. Semantics is
the study of meaning.1 In a nutshell, therefore, it could be said that
semantic search is search with meaning.

Let us first understand this by looking at the opposite. Only a
decade ago, search engines, including the big web search engines, were
still mostly lexical. By lexical, we here mean that the search engine looks
for literal matches of the query words typed by the user or variants of
them, without making an effort to understand what the whole query
actually means.

Consider the query university freiburg issued to a web search en-
gine. Clearly, the homepage of the University of Freiburg is a good
match for this query. To identify this page as a match, the search en-
gine does not need to understand what the two query words university
and freiburg actually mean, nor what they mean together. In fact, the
university homepage contains these two words in its title (and, as a

1The word comes from the ancient greek word sēmantikós, which means impor-
tant.
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1.1. Motivation for this Survey 121

matter of fact, no other except the frequent word of ). Further, the
page is at the top level of its domain, as can be seen from its URL:
http://www.uni-freiburg.de. Even more, the URL consists of parts
of the query words. All these criteria are easy to check, and they alone
make this page a very good candidate for the top hit of this query. No
deeper understanding of what the query actually “meant” or what the
homepage is actually “about” were needed.2

Modern search engines go more and more in the direction of accept-
ing a broader variety of queries, actually trying to “understand” them,
and providing the most appropriate answer in the most appropriate
form, instead of just a list of (excerpts from) matching documents.

For example, consider the two queries computer scientists and fe-
male computer scientists working on semantic search. The first query
is short and simple, the second query is longer and more complex.
Both are good examples of what we would call semantic search. The
following discussion is independent of the exact form of these queries.
They could be formulated as keyword queries like above. They could be
formulated in the form of complete natural language queries. Or they
could be formulated in an abstract query language. The point here is
what the queries are asking for.

To a human, the intention of both of these queries is quite clear:
the user is (most likely) looking for scientists of a certain kind. Prob-
ably a list of them would be nice, with some basic information on
each (for instance, a picture and a link to their homepage). For the
query computer scientists, Wikipedia happens to provide a page with
a corresponding list and matching query words.3 Correspondingly, the
list is also contained in DBpedia, a database containing the structured
knowledge from Wikipedia. But in both cases it is a manually compiled
list, limited to relatively few better-known computer scientists. For the
second query (female computer scientists working on semantic search),
there is no single web page or other document with a corresponding

2In this simple example, we are leaving aside the important issue of spam. That
is, someone deliberately putting misleading keywords in the title or even in the URL,
in order to fool search engines, and thus users, to consider the web page relevant.
Note that this query could also be solved using clickthrough data; see Section 1.2.2.

3http://en.wikipedia.org/wiki/List_of_computer_scientists

http://www.uni-freiburg.de
http://en.wikipedia.org/wiki/List_of_computer_scientists
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list, let alone one matching the query words. Given the specificity of
the query, it is also unlikely that someone will ever manually compile
such a list (in whatever format) and maintain it. Note that both lists
are constantly changing over time, since new researchers may join any
time.

In fact, even individual web pages matching the query are unlikely
to contain most of the query words. A computer scientist does not
typically put the words computer scientist on his or her homepage. A
female computer scientist is unlikely to put the word female on her
homepage. The homepage probably has a section on that particular
scientist’s research interests, but this section does not necessarily con-
tain the word working (maybe it contains a similar word, or maybe no
such word at all, but just a list of topics). The topic semantic search
will probably be stated on a matching web page, though possibly in
a different formulation, for example, intelligent search or knowledge
retrieval.

Both queries are thus good examples, where search needs to go
beyond mere lexical matching of query words in order to provide a sat-
isfactory result to the user. Also, both queries (in particular, the second
one) require that information from several different sources is brought
together to answer the query satisfactorily. Those information sources
might be of different kinds: (unstructured) text as well as (structured)
knowledge bases.

There is no exact definition of what semantic search is. In fact, se-
mantic search means a lot of different things to different people. And
researchers from many different communities are working on a large va-
riety of problems related to semantic search, often without being aware
of related work in other communities. This is the main motivation be-
hind this survey.

When writing the survey, we had two audiences in mind: (i) new-
comers to the field, and (ii) researchers already working on semantic
search. Both audiences should get a comprehensive overview of which
approaches are currently pursued in which communities, and what the
current state of the art is. Both audiences should get pointers for fur-
ther reading wherever the scope of this survey (defined in Section 1.2
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right next) ends. But we also provide explanations of the underlying
concepts and technologies that are necessary to understand the various
approaches. Thus, this survey should also make a good tutorial for a
researcher previously unfamiliar with semantic search.

1.2 Scope of this Survey

1.2.1 Kinds of Data

This survey focuses on semantic search on text (in natural language) or
knowledge bases (consisting of structured records). The two may also
be combined. For example, a natural language text may be enriched
with semantic markup that identifies mentions of entities from a knowl-
edge base. Or several knowledge bases with different schemata may be
combined, like in the Semantic Web. The types of data considered in
this survey are explained in detail in Section 2.1 on Data Types and
Common Datasets.

This survey does not cover search on images, audio, video, and other
objects that have an inherently non-textual representation. This is not
to say that semantic search is not relevant for this kind of data; quite
the opposite is true. For example, consider a user looking for a picture
of a particular person. Almost surely, the user is not interested in the
precise arrangements of pixels that are used to represent the picture.
She might not even be interested in the particular angle, selection, or
lighting conditions of the picture, but only in the object shown. This
is very much “semantic search”, but on a different kind of data. There
is some overlap with search in textual data, including attempts to map
non-textual to textual features and the use of text that accompanies the
non-textual object (e.g., the caption of an image). But mostly, search
in non-textual data is a different world that requires quite different
techniques and tools.

A special case of image and audio data are scans of text documents
and speech. The underlying data is also textual4 and can be extracted
using optical character recognition (OCR) and automatic speech recog-
nition (ASR) techniques. We do not consider these techniques in this

4Leaving aside aspects like a particular writing style or emotions when talking.
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survey. However, we acknowledge that “semantic techniques”, as de-
scribed in this survey, can be helpful in the text recognition process.
For example, in both OCR and ASR, a semantic understanding of the
possible textual interpretations can help to decide which interpretation
is the most appropriate.

1.2.2 Kinds of Search

There are three types of queries prevailing in semantic search: keyword,
structured, and natural language. We cover the whole spectrum in this
survey; see Section 2.2 on Search Paradigms.

Concerning the kind of results returned, we take a narrower view:
we focus on techniques and systems that are extractive in the sense that
they return elements or excerpts from the original data. Think of the
result screen from a typical web search engine. The results are nicely
arranged and partly reformatted, so that we can digest them properly.
But it’s all excerpts and elements from the web pages and knowledge
bases being searched in the background.

We only barely touch upon the analysis of query logs (queries asked)
and clickthrough data (results clicked). Such data can be used to de-
rive information on what users found relevant for a particular query.
Modern web search engines leverage such information to a significant
extent. This topic is out of scope for this survey, since an explicit “un-
derstanding” of the query or the data is not necessary. We refer the
user to the seminal paper of Joachims [2002] and the recent survey of
Silvestri [2010].

There is also a large body of research that involves the complex
synthesis of new information, in particular, text. For example, in au-
tomatic summarization, the goal is to summarize a given (long) text
document, preserving the main content and a consistent style. In multi-
document summarization, this task is extended to multiple documents
on a particular topic or question. For example, compile a report on
drug trafficking in the united states over the past decade. Apart from
collecting the various bits and pieces of text and knowledge required to
answer these questions, the main challenge becomes to compile these
into a compact and coherent text that is well comprehensible for hu-
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mans. Such non-trivial automatic content synthesis is out of scope for
this survey.

1.2.3 Further inclusion criteria

As just explained, we focus on semantic search on text and knowledge
bases that retrieves elements and excerpts from the original data. But
even there we cannot possibly cover all existing research in depth.

Our inclusion criteria for this survey are very practically oriented,
with a focus on fundamental techniques, datasets, benchmarks, and
systems. Systems were selected with a strong preference for those eval-
uated on one of the prevailing benchmarks or that come with a working
software or demo. We provide quantitative information (on the bench-
marks and the performance and effectiveness of the various systems)
wherever possible.

We omit most of the history and mostly focus on the state of the
art. The historical perspective is interesting and worthwhile in its own
right, but the survey is already long and worthwhile without this. How-
ever, we usually mention the first system of a particular kind. Also, for
each of our nine categories (explained right next, in Section 1.3), we
describe systems in chronological order and make sure to clarify the
improvements of the newer systems over the older ones.

1.2.4 Further Reading

The survey provides pointers for further reading at many places. Addi-
tionally, we provide here a list of well-known conferences and journals,
grouped by research community, which are generally good sources for
published research on the topic of this survey and beyond. In particular,
the bibliography of this survey contains (many) references from each
of these venues. This list is by no means complete, and there are many
good papers that are right on topic but published in other venues.

Information Retrieval: SIGIR, CIKM, TREC, TAC, FNTIR.
Web and Semantic Web: WWW, ISWC, ESWC, AAAI, JWS.
Computer linguistics: ACL, EMNLP, HLT-NAACL.
Databases / Data Mining: VLDB, KDD, SIGMOD, TKDE.
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1.3 Overview of this Survey

Section 1.4 provides a Glossary of terms that are strongly related to se-
mantic search. For each of these, we provide a brief description together
with a pointer to the relevant passages in the survey. This is useful for
readers who specifically look for material on a particular problem or
aspect.

Section 2 on Classification by Data Type and Search Paradigm de-
scribes the two main dimensions that we use for categorizing research
on semantic search:
Data type: text, knowledge bases, and combined data.
Search paradigm: keyword, structured, and natural language search.
For each data type, we provide a brief characterization and a list of
frequently used datasets. For each search paradigm, we provide a brief
characterization and one or two examples.

Section 3 on Basic NLP Tasks in Semantic Search gives an overview
of: part-of-speech (POS) tagging, named-entity recognition and dis-
ambiguation (NER+NED), parsing the grammatical structure of sen-
tences, and word vectors / embeddings. These are used as basic building
blocks by various (though not all) of the approaches described in our
main Section 4. We give a brief tutorial on each of these tasks, as well
as a succinct summary of the state of the art.

Section 4 on Approaches and Systems for Semantic Search is the
core section of this survey. We group the many approaches and systems
that exist in the literature by data type (three categories, see above)
and search paradigm (three categories, see above). The resulting nine
combinations are shown in Figure 1.1. In a sense, this figure is the main
signpost for this survey. Note that we use Natural Language Search and
Question Answering synonymously in this survey. All nine subsections
share the same sub-structure:

Profile ... a short characterization of this line of research
Techniques ... what are the basic techniques used
Systems ... a concise description of milestone systems or software
Benchmarks ... existing benchmarks and the best results on them



1.3. Overview of this Survey 127

Section 4.1
Keyword Search

on Text

Section 4.3
Structured Data 
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Section 4.7
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on Combined Data

Section 4.9
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on Combined Data
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Structured
Search
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Search
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Section 4.6
Semi-Struct. Search
on Combined Data

Figure 1.1: Our basic classification of research on semantic search by underlying
data (rows) and search paradigm (columns). The three data types are explained in
Section 2.1, the three search paradigms are explained in Section 2.2. Each of the
nine groups is discussed in the indicated subsection of our main Section 4.

Section 5 on Advanced Techniques for Semantic Search deals with:
ranking (in semantic entity search), indexing (getting not only good
results but getting them fast), ontology matching and merging (dealing
with multiple knowledge bases), and inference (information that is not
directly contained in the data but can be inferred from it). They pro-
vide a deeper understanding of the aspects that are critical for results
of high quality and/or with high performance.

Section 6 on The Future of Semantic Search provides a very brief
summary of the state of the art in semantic search, as described in the
main sections of this survey, and then dares to take a look into the near
and the not so near future.

The article closes with a long list of 218 references. Datasets and
standards are not listed as part of the References but separately in the
Appendices. In the PDF of this article, all citations in the text are
clickable (leading to the respective entry in the References), and so are
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most of the titles in the References (leading to the respective article on
the Web). In most PDF readers, Alt+Left brings you back to the place
of the citation.

The reader may wonder about possible reading orders and which
sections depend upon which. In fact, each of the six sections of this
survey is relatively self-contained and readable on its own. This is true
even for each of the nine subsections (one for each kind of semantic
search, according to our basic classification) of the main Section 4.
However, when reading such a subsection individually, it is a good idea
to prepend a quick read of those subsections from Section 2 that deal
with the respective data type and search paradigm: they are short and
easy to read, with instructive examples. Readers looking for specific
information may find the glossary, which comes right next, useful.

1.4 Glossary

This glossary provides a list of techniques or aspects that are strongly
related to semantic search but non-trivial to find using our basic clas-
sification. For each item, we provide a very short description and a
pointer to the relevant section(s) of the survey.

Deep learning for NLP: natural language processing using (deep)
neural networks; used for the word vectors in Section 3.4; some of the
systems in Section 4.8 on Question Answering on Knowledge Bases use
deep learning or word vectors; apart from that, deep NLP is still used
very little in actual systems for semantic search, but see Section 6 on
The Future of Semantic Search.

Distant supervision: technique to derive labeled training data using
heuristics in order to learn a (supervised) classifier; the basic principle
and significance for semantic search is explained in Section 4.3.2 on
Systems for Relationship Extraction from Text.

Entity resolution: identify that two different strings refer to the
same entity; this is used in Section 4.3.4 on Knowledge Base Construc-
tion and discussed more generally in Section 5.4 on Ontology Matching
and Merging.
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Entity search/retrieval: search on text or combined data that aims
at a particular entity or list of entities as opposed to a list of docu-
ments; this applies to almost all the systems in Section 4 that work
with combined data or natural language queries5; see also Section 5.1,
which is all about ranking techniques for entity search.
Knowledge base construction: constructing or enriching a knowl-
edge base from a given text corpus; basic techniques are explained in
Section 4.3.1; systems are described in Section 4.3.4.
Learning to rank for semantic search: supervised learning of
good ranking functions; several applications in the context of semantic
search are described in Section 5.1.
Ontology merging and matching: reconciling and aligning nam-
ing schemes and contents of different knowledge bases; this is the topic
of Section 5.3.
Paraphrasing or synonyms: identifying whether two words,
phrases or sentences are synonymous; systems in Section 4.8 on
Question Answering on Knowledge Bases make use of this; three
datasets that are used by systems described in this survey are: Patty
[2013] (paraphrases extracted in an unsupervised fashion), Paralex
[2013] (question paraphrases), and CrossWikis [2012] (Wikipedia
entity anchors in multiple languages).
Question answering: synonymous with natural language search in
this survey; see Section 2.2.3 for a definition; see Sections 4.7, 4.8, and
4.9 for research on question answering on each of our three data types.
Reasoning/Inference: using reasoning to infer new triples from a
given knowledge base; this is the topic of Section 5.4.
Semantic parsing: finding the logical structure of a natural language
query; this is described in Sections 4.8 on Question Answering on
Knowledge Bases and used by many of the systems there.
Semantic web: a framework for explicit semantic data on the web;
this kind of data is described in Section 2.1.3; the systems described

5A search on a knowledge base naturally returns a list of entities, too. However,
the name entity search is usually only used when (also) text is involved and returning
lists of entities is not the only option.
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in Section 4.5 deal with this kind of data; it is important to note that
many papers / systems that claim to be about semantic web data are
actually dealing only with a single knowledge base (like DBpedia, see
Table 2.2), and are hence described in the sections dealing with search
on knowledge bases.

Information extraction: extracting structured information from
text; this is exactly what Section 4.3 on Structured Data Extraction
from Text is about.

XML retrieval: search in nested semi-structured data (text with tag
pairs, which can be arbitrarily nested); the relevance for semantic
search is discussed in Section 4.5.3 in the context of the INEX series of
benchmarks.



2
Classification by Data Type and Search

Paradigm

In this section, we elaborate on our basic classification of semantic
search research and systems. The classification is along two dimensions:

Data type: text, knowledge bases, or combined data
Search paradigm: keyword, structured, and natural language search

In Section 2.1, we explain each of the three data types, providing a list
of frequently used datasets for each type. In Section 2.2, we explain
each of the three search paradigms along with various examples. The
resulting nine combinations are shown in Figure 1.1.

Why this Classification

Coming up with this simple classification was actually one of the hard-
est tasks when writing this survey. Our goal was to group together re-
search that, from a technical perspective, addresses similar problems,
with a relatively clear delineation between different groups (much like
in clustering problems). Most of the systems we looked at clearly fall
into one of our categories, and no other classification we considered
(in particular, refinements of the one from Figure 1.1) had that prop-
erty. Of course, certain “gray zones” between the classes are inevitable;

131



132 Classification by Data Type and Search Paradigm

these are discussed in the respective sections. For example, there is an
interesting gray zone between keyword and natural language queries,
which is discussed at the beginning of Section 2.2. Also, it is sometimes
debatable whether a dataset is a single knowledge base or a combina-
tion of different knowledge bases, which counts as combined data in our
classification; this is discussed in Section 2.1.2 on Knowledge Bases.

Also note that some other natural aspects are implicitly covered
by our classification: for example, the type of result is largely implied
by the type of data and the kind of search. Another complication (or
rather, source of confusion) is terminology mixup. To give just one ex-
ample, there is a huge body of research on the Semantic Web, but much
of this work is actually concerned with a single knowledge base (like
DBpedia, see Table 2.2), which requires mostly different techniques
compared to true semantic web data, which is huge and extremely het-
erogeneous. Our Glossary in Section 1.4 should help to resolve such
mixups, and, more generally, to locate (in this survey) material on a
given technique or aspect.

Yet other aspects are orthogonal to our primary classification, for
example: interactivity, faceted search, and details of the result presen-
tation. These could be added with advantage to almost any system for
semantic search. We briefly discuss such aspects in Section 2.3.

2.1 Data Types and Common Datasets

This section explains each of the three basic data types used in our
classification above: natural language text, knowledge bases, and com-
binations of the two. For each type, we provide a list of frequently
used datasets. All datasets are listed in a dedicated subsection of the
References section. In the PDF of this article, the references in the
tables below are clickable and lead to the corresponding entry in the
Appendix.

2.1.1 Text

Definition 2.1. For the purpose of this survey, text is a collection of
documents containing text, typically written in natural language. The
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text need not be orthographically or grammatically correct. It may
contain typical punctuation and light markup that exhibits some high-
level structure of the text, like title and sections. There may also be
hyperlinks between documents.

Remark: If there is markup that provides fine-grained annotations of
parts of the text (e.g., linking an entity mention to a knowledge base),
we count this as Combined Data, as discussed in Section 2.1.3.

Text is ubiquitous in the cyberworld, because it is the natural form of
communication between humans. Typical examples are: news articles,
e-mails, blog posts, tweets, and all kinds of web pages.

Web pages pose several additional challenges, like boilerplate con-
tent (e.g., navigation, headers, footers, etc., which are not actual con-
tent and can be misleading if not removed), spam, and dynamically
generated content. We do not discuss these aspects in this survey. On
the positive side, the hyperlinks are useful for search in general. Tech-
niques for exploiting hyperlinks in the context of semantic search are
discussed in Section 5.1.3 on Ranking of Interlinked Entities.

Commonly Used Datasets

Table 2.2 lists some collections of text documents that are often used
in research on semantic search.

Reference Documents Size zip Type
[AQUAINT, 2002] 1.0 million 3.0 GB n news articles
[AQUAINT2, 2008] 0.9 million 2.5 GB n news articles
[Blogs06, 2006] 3.2 million 25 GB n blog posts
[ClueWeb, 2009] 1.0 billion 5.0 TB y web pages
[ClueWeb, 2012] 0.7 billion 5.0 TB y web pages
[CommonCrawl, 2007] 2.6 billion 183 TB n web pages
[Stream Corpus, 2014] 1.2 billion 16.1 TB y web pages1

Table 2.1: Datasets of natural language text used in research on semantic search.
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The two AQUAINT datasets were heavily used in the TREC bench-
marks dealing with question answering on text; see Section 4.7. The
ClueWeb datasets are (at the time of this writing) the most used
web-scale text collections. The CommonCrawl project provides reg-
ular snapshots (at least yearly) of a large portion of the Web in various
languages. The Stream Corpus has been used in the TREC Knowledge
Base Acceleration tracks (see Section 4.3 on Structured Data Extraction
from Text) where knowledge about entities can evolve over time.

2.1.2 Structured Data / Knowledge Bases

Definition 2.2. For the purpose of this survey, a knowledge base is a
collection of records in a database, which typically refer to some kind of
“knowledge” about the world. By convention, records are often stored
as triples in the form subject predicate object.
To qualify as a knowledge base, identifiers should2 be used consistently:
that is, the same entity or relation should have the same name in dif-
ferent records. Collections of records / triples from difference sources
with different naming schemes are counted as Combined Data, which
is discussed in Section 2.1.3.

Here are four example records from the Freebase dataset (see Ta-
ble 2.2 below). The ns: is a common prefix, and the corresponding
identifiers are URIs; see the subsection on data formats below.

ns:m.05b6w ns:type.object.name ”Neil Armstrong”
ns:m.0htp ns:type.object.name ”Astronaut”
ns:m.05b6w ns:people.person.profession ns:m.0htp
ns:m.05b6w ns:people.person.date of birth ”08-05-1930”

Note that by the consistent use of identifiers we can easily derive infor-
mation like a list of all astronauts or astronauts born before a certain
date. We briefly discuss some related terminology and finer points.

1Web pages are timestamped, which allows treating the corpus as a stream of
documents.

2A small fraction of inconsistencies are unavoidable in a large knowledge base
and hence acceptable.
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Ontologies: an ontology is the (typically hierarchical) system of types
and relations behind a knowledge base. For example, the fact that
astronauts are persons and that all persons are entities are typical
ontological statements. WordNet [Miller, 1992] is a large ontology of
the concepts of general-purpose real-world knowledge. In a sense, an
ontology is therefore also a knowledge base, but on more “abstract”
entities. The distinction is not always sharp, however. For example,
WordNet also contains statements about “concrete entities”, like in a
typical knowledge base. Throughout this survey, we will consistently
use the term knowledge base when referring to collections of records as
defined above.

n-ary relations: It is easy to see that one can break down any struc-
tured data into triples, without loss of information. This is an instance
of what is called reification. An example is given at the end of Section
2.1.3 (Christoph Waltz’s Oscar).

n-tuples with n > 3: some knowledge bases also store tuples with
more than three components. Typical uses are: adding provenance in-
formation (the data source of a triple), adding spatial or temporal
information, assigning a unique id to a triple.

Triples vs. facts. vs. statements: the triples or n-tuples are some-
times referred to (somewhat optimistically) as facts or (more carefully)
as statements. This does not mean that they are necessarily true. They
may have entered the knowledge base by mistake, or they may just
express an opinion. Still, very often they are “facts” in the common
sense and it usually makes sense to think of them like that.

Graph representation: a knowledge base can also be thought of as a
graph, where the nodes are the entities and the edges are the relations.
When n-ary relations are involved, with n > 2, these edges become
hyperedges (connecting more than two entities) and the graph becomes
a hypergraph.

Commonly Used Datasets

Table 2.2 lists some often used knowledge bases. It is sometimes de-
batable when a dataset is a single knowledge base (as discussed in this
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section) or a combination of different knowledge bases (as discussed
in the next section). Our criterion, according to Definition 2.2 above,
is whether the bulk of the data follows a consistent ontology / nam-
ing scheme. For example, the bulk of DBpedias’s knowledge is stored
in dbpedia-owl:... relations which are used consistently across entities.
But there are also numerous dbprop:... relations, which correspond to a
wide variety of properties from the Wikipedia infoboxes, which do not
follow a strict underlying schema. Similarly, Freebase has numerous
relations from its “base” domain, which partly fill in some interesting
gaps and partly provide redundant or even confusing information.3

Reference #Triples #Entities Size Type
[YAGO, 2007] 20 M 2.0 M 1.4 GB Wikipedia
[YAGO2s, 2011] 447 M 9.8 M 2.2 GB Wikipedia
[DBpedia, 2007]4 580 M 4.6 M 3.8 GB Wikipedia
[GeoNames, 2006] 150 M 10.1 M 465 MB geodata
[MusicBrainz, 2003] 239 M 45.0 M 4.1 GB music
[UniProt, 2003] 19.0 B 3.8 B 130 GB proteins
[Freebase, 2007] 3.1 B 58.1 M 30 GB general
[Wikidata, 2012] 81 M 19.3 M 5.9 GB general

Table 2.2: Knowledge bases used in research on semantic search. All sizes are of
the compressed dataset.

We also remark that usually only a fraction of the triples in these
knowledge bases convey “knowledge” in the usual sense. For example,
the YAGO dataset contains about 3 million facts stating the length
of each Wikipedia page. Freebase contains 10 million facts stating the
keys of all Wikipedia articles. DBpedia has millions of rdf:type triples
relating entities to the countless synsets from WordNet. Also, many
facts are redundant. For example, in Freebase many relations have an

3For example, the type base.surprisingheights.surprisingly short people with
only fifteen entities, including Al Pacino.

4The number of triples and entities are for the English version. The multilingual
version features 3 billion triples and 38.8 million entities.
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inverse relation with the same statements with subject and object re-
versed. According to Bordes and Gabrilovich [2015], the number of
non-redundant triples in Freebase is 637 million, which is about one
third of the total number stated in the table above.

On December 16, 2014 Google announced that it plans to merge
the Freebase data into Wikidata and then stop accumulating new data
in Freebase. Freebase became read-only on March 30, 2015. At the time
of this writing, Wikidata was still relatively small, however.

Data Formats

A knowledge base can be stored in a general-purpose relational
database management system (RDBMS), or in special-purpose so-
called triple stores. The efficiency of the various approaches is discussed
in Section 4.2 on Structured Search on Knowledge Bases.

On the Web, knowledge base data is often provided in the form
of RDF (Resource Description Framework). RDF is complex, and we
refer the reader to Wikipedia or W3C for a complete description. What
is notable for this survey is that in RDF, identifiers are provided by a
URI (Universal Resource Identifier) and hence globally unambiguous.

Also note that RDF is an abstract description model and language,
not an explicit format. For practical purposes, many text serializations
exist. The first such serialization was proposed in 1999 by the W3C
and was based on XML, and thus very verbose. At the time of this
writing, less verbose text serializations are commonly used:

N-triples: the triples are stored in a text file, with a space between
subject, predicate, and object, and a simple dot to separate triples
(usually one triple per line).

N-quads: like N-triples, but with one additional field per triple that
provides an arbitrary context value (e.g., the source of the triple).

TSV: one triple or quad per line, with the three or four components
separated by a tab. TSV is an abbreviation for tab-separated values.

Turtle: allows an explicit nested representation. Depending on the
data, this can be more convenient for reading and producing than mere
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triples or quads. The price is a more complex format that requires more
complex parsers.

2.1.3 Combined Data

Text and knowledge bases are both natural forms to represent knowl-
edge. Text is the most natural form for humans to produce information.
A knowledge base is the most natural form to store information that
is inherently structured in the first place. Therefore, it makes sense
to combine data of these two types into a maximally comprehensive
dataset It also makes sense to consider multiple knowledge bases, since
a single knowledge base is usually limited to a certain scope. Of course,
it also makes sense to combine different text collections, but that is
trivial since there is no common structure or naming scheme to obey.

Definition 2.3. For the purpose of this survey, combined data is ob-
tained by one or both of the following two principles:
link: link a text to a knowledge base by recognizing mentions of entities
from the knowledge base in the text and linking to them
mult: combine multiple knowledge bases with different naming schemes
(such that the same entity or relation may exist with different names)

Both of these are used extensively in research in order to obtain what we
call combined data here. In the list of commonly used datasets in Table
2.3 below, it is indicated which dataset makes uses of which subset
of these principles. Note that realizing “link” is equivalent to solving
the named-entity recognition and disambiguation problem discussed in
Section 3.2.

Commonly Used Datasets

Table 2.3 lists a number of popular datasets of the “combined” type.
The number of “triples” for the Wikipedia LOD dataset, the two
ClueWeb FACC datasets, and the FAKBA1 dataset is the number of
entity mentions in the text that were linked to an entity from the
knowledge base (YAGO and DBpedia for the Wikipedia LOD dataset,
Freebase for the FACC and FAKBA1 dataset). Note that the ClueWeb
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Reference #Triples Size Type
[Wikipedia LOD, 2012] 70 million 61 GB link
[ClueWeb09 FACC, 2013] 5.1 billion 72 GB link
[ClueWeb12 FACC, 2013] 6.1 billion 92 GB link
[FAKBA1, 2015] 9.4 billion 196 GB link
[BTC, 2009] 1.1 billion 17 GB mult
[BTC, 2010] 3.2 billion 27 GB mult
[BTC, 2012] 1.4 billion 17 GB mult
[WDC, 2012] 17.2 billion 332 GB link+mult

Table 2.3: Commonly used datasets of the “combined” type. The last column indi-
cates which combination principles were used, according to the typology explained
at the beginning of the section.

FACC and FAKBA1 datasets only consist of the annotations and do
not include the full text from ClueWeb or the Stream Corpus from the
TREC Knowledge Base Acceleration track. The three BTC datasets
were obtained from a crawl of the Semantic Web, started from a se-
lection of seed URIs. Note that the BTC 2012 dataset contains all of
DBpedia and a selection of Freebase, which are both listed in Table
2.2 as individual knowledge bases. The WDC (Web Data Commons)
dataset is obtained by extracting structured data from CommonCrawl
(see Table 2.1). Both BTC and WDC are considered “semantic web
data”, which is explained in more detail below.

Text Linked to a Knowledge Base

The natural format to encode link information in text is XML. Here is
an example excerpt from the Wikipedia LOD collection from Table 2.3
above.

<paragraph> Mt. Morris is home of the <link>
<wikilink href="13135902.xml">Illinois Freedom Bell</wikilink>
<dbpedia href="http://dbpedia.org/.../Illinois_Freedom_Bell">
</dbpedia><yago ref="Illinois_Freedom_Bell"></yago>
</link>, which is located in the town square. [...]</paragraph>
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The main tasks of the INEX (Initiative for the Evaluation of XML
retrieval) series of benchmarks, discussed in Section 4.5.3, work with
this collection.

However, note that for the purposes of annotation, XML is a mere
convention, not a necessity. For example, the two FACC collections
from Table 2.3 above provide links between the ClueWeb collections
(from Table 2.1) and Freebase (from Table 2.2) as follows:

PDF 21089 21092 0.9976 m.0600q
FDA 21303 21306 0.9998 m.032mx
Food and Drug Administration 21312 21340 0.9998 m.032mx

The first column is the name of the entity in the text, the second and
third columns specify the byte offsets in the file, the fourth column is
the confidence of the link, and the fifth column is the Freebase id.

Semantic Web

The Semantic Web (SW) is an effort to provide “combined data” in
the sense above at a very large scale. The data from the Semantic Web
is often also called linked open data (LOD), because contents can be
contributed and interlinked by anyone, just like web pages (but in a
different format, see below). With respect to search, these are secondary
aspects. Throughout this survey, we therefore relate to this kind of
data as simply semantic web data. It makes uses of both principles of
combining data, as defined above:

link: provided by semantic markup for ordinary web pages.
mult: anyone can contribute + absence of a global schema.

The “mult“ principle is realized via RDF documents that can link to
each other, just like ordinary web pages can link to each other. For
example, here is an excerpt from the RDF page for the French city
Embrun (the showcase page of the GeoNames knowledge base from
Table 2.2). Note the use of prefixes like rdf: and gn: in the URI to keep
the content compact and readable also for humans.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
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xmlns:gn="http://www.geonames.org/ontology#" ... >
<gn:Feature rdf:about="http://sws.geonames.org/3020251/">
<gn:name>Embrun</gn:name>
<gn:countryCode>FR</gn:countryCode>
<gn:population>7069</gn:population>

The “link” principle is realized via semantic markup that is embed-
ded into regular web pages. For example, here is an excerpt from an
HTML page using so-called Microdata markup.

<title>Michael Slackenerny’s Homepage</title>
<section itemscope itemtype="http://schema.org/Person">
Hi, my name is <span itemprop="name">Michael Slackenerny</span>.
I am a <span itemprop="jobTitle">postdoctoral student</span> at
<span itemprop="affiliation">Stanford Univ</span>.</section>

The four most widely used formats for semantic markup are as
follows. The first three simply use HTML tags with existing or new
attributes.

Microdata: uses the dedicated attributes itemscope and itemprop
Microformats: (ab)uses the class attribute
RDFa: uses RDF-style attributes about, property, and contents
JSON-LD: uses JavaScript to provide Microdata-like markup

The advantage of JSON-LD over the other formats is that it allows a
cleaner separation of the ordinary content from the semantic content
(much in the spirit of frameworks like CSS, or libraries like jQuery).
As of this writing, all four of these formats are still widely used, and
no clear winner has emerged yet.

The use of semantic markup has increased steadily over the last
years. According to [Meusel, Petrovski, and Bizer, 2014], the number
of RDF quads (all of the above, except JSON-LD) in the WDC dataset
(see Table 2.3 below) has increased from 5.2 billion in the 2010 dataset,
to 7.4 billion in 2012, to 17.2 billion in 2013. Between 2012 and 2013,
the fraction of analyzed HTML pages and domains that use semantic
markup has more than doubled, up to 26% of pages and 14% of domains
in 2013. More recent statistics can be found in [Guha, Brickley, and
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MacBeth, 2015]. Here, a sample of 10 billion pages from a combination
of the Google index and Web Data Commons is analyzed. 31% of pages
have Schema.org markup, as discussed in the next subsection.

Challenges of Semantic Web Data

It is important to understand that semantic web data is not a single
knowledge base as defined in the previous section, because there is
no consistent naming scheme. This is not by accident, but rather by
design. Given the heterogeneity of contents and its providers on the
Web, it seems illusory to establish standard names for everything and
expect everyone to stick with it. The Semantic Web takes a minimalist
approach in this respect: content providers can use whatever names
they like, they only have to be globally unambiguous (URIs). We briefly
discuss three resulting challenges.

Standards: One (mostly social) approach is to enable and encourage
contributors to reuse existing schemes as much as possible. For common
concepts, this is already happening. One of the earliest schemes was
FOAF [2000] (Friend Of A Friend), which provided standard names for
relations related to a person, like: given names, family name, age, and
who knows who. A more recent and larger effort is Schema.org [2011],
collaboratively launched by Bing, Google, and Yahoo. Schema.org pro-
vides URIs for concepts such as creative works, events, organizations,
persons, places, product, reviews, which are relevant for many popular
web search queries.

Explicit links: Another approach is to enable contributors to pro-
vide explicit links between different names for the same entities or
concepts, via meta statements like <owl:sameAs>. An example for
different names for the same entity is: Barack Obama and Barack H.
Obama and B. Obama. Such links could also be identified by automatic
methods. This is discussed in more detail in Section 5.3 on Ontology
Matching and Merging.

Model mismatch: A more complex problem are relations, which can
not only be named differently, but also modeled in different ways. For
example, consider the YAGO and Freebase knowledge bases from Table
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2.2. In YAGO, the relation won award is used to express who won which
award. For example
Christoph Waltz won-award Oscar for Best Supporting Actor
In Freebase, that information is modeled via a so-called mediator ob-
ject, which has id ns:m.0r4b38v in the following example. For the sake
of readability, we replaced the ids of the other objects with human-
readable names and shortened the relation names.
Christoph Waltz award ns:m.0r4b38v
ns:m.0r4b38v name Oscar for Best Supporting Actor
ns:m.0r4b38v year 2012
ns:m.0r4b38v movie Django Unchained
ns:m.0r4b38v role Dr. King Schulz
The approach taken by YAGO is simpler, the approach taken by Free-
base allows to capture more information.

2.2 Search Paradigms

We distinguish between three major search paradigms: keyword search,
structured search, and natural language search. Each of them is ex-
plained in one of the following subsections. As a first approximation,
think of the name of the paradigm to describe the type of the query
that is being asked.
keyword search: just type a few keywords
structured search: a query in a language like SQL or SPARQL
natural language: a complete question, as humans typically pose it
Before we describe each of these paradigms, let us comment on some
of the finer points of this categorization:
Kind of result: We also considered a (further) categorization by the
kind of result but this turned out to be impractical. The kind of result
usually follows from the type of query and the type of data that is
being searched. Sometimes there are variations, but that usually does
not affect the fundamental approach. This is briefly explained in each of
the following subsections, and in more detail in the various subsections
of Section 4 on Approaches and Systems for Semantic Search.
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Search on combined data: When dealing with combined data (in
the sense of Section 2.1.3), there are two prevailing search paradigms.
One is basic keyword search, optionally extended with a specification of
the desired type of result entities (for example, astronauts who walked
on the moon with a restriction to entities of type person). This kind of
search is discussed in Section 4.5. The other is structured search that is
extended with a keyword search component (there are many variants
for the semantics of such an extension). This kind of search is discussed
in Section 4.6.

Keyword vs. natural language: Keyword search and natural lan-
guage search are less clearly delineated than it may seem. For example,
consider the simple query birth date neil armstrong. A state-of-the-art
system for keyword search on text will return (on a typical corpus,
say the Web) a prominent document that contains the query words in
prominent position (say, the Wikipedia article of Neil Armstrong). This
document will probably also contain the desired piece of information
(his birth date). We classify such a system under keyword search. A
state-of-the-art question answering system might understand the very
same query as an abbreviated natural language query (what is the birth
date of neil armstrong), much like a human would do when seeing the
four keywords above. It would then return the corresponding answer in
a human-friendly form. We classify such a system under natural lan-
guage search.
An example for the opposite case would be how to tell gzip to leave
the original file. This is clearly a natural language query. But, at the
time of this writing, there happens to be a web page with exactly that
title and the complete answer as content. Any state-of-the-art system
for keyword search will easily find this web page, without any semantic
analysis of the query whatsoever.
The bottom line is that the distinction between keyword search and
natural language search is best made not by the apparent form of the
query, but by the basic technique used to process the query. From this
point of view, it is then usually clear to which of the two categories a
given system belongs.
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2.2.1 Keyword Search

Query Keywords (typically few)
Example 1 space flight
Example 2 apollo astronauts

Result Documents or entities (or both) that are “relevant”
to the information need

Example 1 Documents on the topic of space flight
Example 2 Astronauts from the Apollo missions

Strength Easy and quick for the user to query

Weakness Often hard to guess the precise information need,
that is, what it means to be “relevant”

This is still the most ubiquitous search paradigm, and the one we
are most familiar with. All of the major web search engines use it. The
user types a few keywords and gets a list of matching items in return.
When the data is text, matching items are (snippets of) documents
matching the keywords. When the data is a knowledge base, matching
items are entities from the knowledge base. With combined data, the
result is a combination of these, usually grouped by entity.

The query processing is based on matching the components of the
query to parts of the data. In the simplest case, the keywords are
matched literally. In more sophisticated approaches, also variants of
the keywords are considered as well as variants or expansions of the
whole query. This is explained in more detail in Section 4.1 on Keyword
Search on Text. With respect to our classification, all such techniques
still count as keyword search.

In contrast, natural language search tries to “understand” the query.
This often means that the query is first translated to a logical form.
Then that logical form is matched to the data being searched.

Recall from the discussion at the beginning of this section that even
the most basic form of keyword search (which looks for literal matches
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of the query words) can answer a complex natural language query, when
there is a document with exactly or almost that question in, say, the
title. We still consider that keyword search in this survey.

2.2.2 Structured Search

Query Structured query languages like SPARQL
Example SELECT ?p WHERE {

?p has-profession Scientist .
?p birth-date 1970 }

Result Items from the knowledge base matching the query;
the order is arbitrary or explicitly specified (using
an ORDER BY clause in SPARQL)

Example Scientists born in 1970

Strength Maximally precise “semantics” = it is well-defined,
which items are relevant to the query

Weakness Cumbersome to construct queries; hard to impos-
sible to guess the correct entity and relation names
for large knowledge bases

Structured query languages are the method of choice when the data
is inherently structured, as described in Section 2.1.2 on Knowledge
Bases. Then even complex information needs can be formulated with-
out ambiguity. The price is a complex query language that is not suited
for ordinary users. For large knowledge bases, finding the right entity
and relation names becomes extremely hard, even for expert users. In-
teractive query suggestions (see Section 2.3) can alleviate the problem,
but not take it away.

The example query in the box above is formulated in SPARQL
[2008], the standard query language for knowledge bases represented
via triples. SPARQL is a recursive acronym for: SPARQL Protocol and
RDF Query Language. It is very much an adaption of SQL [1986],
the standard query language for databases. SQL is an acronym for:
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Structured Query Language. The translation from SPARQL to SQL is
discussed in Section 4.2 on Structured Search in Knowledge Bases.

On combined data (as discussed in Section 2.1.3), structured search
requires an extension of SPARQL by a text search component. A simple
realization of this is discussed in Section 4.2.1, a semantically deeper
realization is discussed in Section 4.6.1.

2.2.3 Natural Language Search

Query Natural language queries, often starting with one of
the 5W1H: Who, What, Where, When, Why, How

Example Who won the oscar for best actor in 2015 ?

Result The correct answer, in human-friendly form
Example Eddie Redmayne ... and maybe some disambiguat-

ing information, like a picture, his nationality, and
his birth date

Strength Most natural for humans, suitable for speech input

Weakness Ambiguity in natural language; queries can be very
complex; queries can require complex reasoning

This is the most natural form of communication for humans. In the
simplest case, queries ask for an entity from a single relationship, like in
the example above. More complex queries may ask for the combination
of several relationships, for example:

what is the gdp of countries with a literacy rate of under 50%

A query may also ask several questions at once, for example:

what is the population and area of germany

Natural language search may also accept and correctly process keyword
queries, for example: oscar best actor 2015 . As explained at the begin-
ning of Section 2.2, the yardstick is not the apparent form of the query
but the technique used to process it.
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Questions that require the synthesis of new information or complex
reasoning are out of scope for this survey. For example:5

HAL, despite your enormous intellect, are you ever frustrated by your
dependence on people to carry out your actions?

2.3 Other Aspects

Our basic classification focuses on the main aspects of a search
paradigm: the kind of queries that are supported and the basic tech-
nique used to process these queries. In actual systems, a variety of
other aspects can play an important role, too. We here name three
particularly important and widely used aspects:

Interactivity: The search engine may provide autocompletion, query
suggestions, and other means to aid the query construction. This is
particularly important for semantic search. The query language may be
more complex, and thus unaided query construction may be hard, even
for an expert. Precise formulation of the names of entities or relations
can be key to get meaningful results.
Interactivity can also help the system to get more information from the
user (on the query intent), which can help result quality. For example,
the query suggestions of Google steer users towards queries that the
search engine can answer well.

Faceted Search: Along with the results, the search engine may pro-
vide various kinds of categories to narrow, broaden, or otherwise modify
the search. Again, this is particularly important for semantic search.
For complex queries and when the result is not simply a single entity or
web page, one iteration may simply not be enough to get to the desired
results.

Result presentation: When searching for entities, it is often useful
to group the results by entity and accompany them with additional
information, like an appropriate picture. When the entity was extracted
from text, it can be useful to show a containing snippet of appropriate

5Question to the HAL 9000 computer in the movie “2001: A Space Odyssey”.
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size. When the entity comes from a knowledge base, it can be useful to
show some related information. When searching for entities that have a
geographical location (like cities or events), it is often useful to depict
those locations on a map. The map may be interactive in a number
of ways. For example, hits can be represented by markers and clicking
on a marker provides more detailed information or zooms in. When
searching for events, they could be shown on a timeline.

Note that these extensions make sense for any data type and any search
paradigm discussed in the previous sections. For example, if the results
are cities, it makes sense to show them on a map, no matter how the
query was formulated, and no matter whether the information came
from a knowledge base or from the Semantic Web.

Several of the systems described in our main Section 4 on Ap-
proaches and Systems for Semantic Search implement one or several
of these extensions. We provide details when we describe the respec-
tive systems. Apart from that, we do not delve deeper into these aspects
in this survey. We do acknowledge though that proper user interfaces
and result presentation are essential for the success of semantic search.
In fact, at the time of this writing, all the major search engines already
have basic features for each of the aspects discussed above.



3
Basic NLP Tasks in Semantic Search

Semantic search is about search with meaning. In text, this meaning
is expressed in natural language. Even a knowledge base, where much
of the meaning is implicit in the structure, has elements of natural
language, for example, in the (sometimes rather long) relation names
or in the object literals (which, in principle, can contain arbitrary text).

The following subsections discuss four basic techniques to capture
aspects of the meaning of natural language text: POS tagging and
chunking, entity recognition and disambiguation, sentence parsing, and
word vectors. These four techniques should be in the toolbox of every
researcher in the semantic search field.

Many of the systems described in our main Section 4 use one or
more of these techniques. However, even NLP-agnostic approaches can
achieve remarkable results for certain query classes. This is particularly
true for keyword search on text, as discussed in Section 4.1. Still, there
is no doubt that for queries above a certain complexity, natural lan-
guage understanding is essential. This is discussed further in Section 6
on The Future of Semantic Search.
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3.1 Part-of-Speech Tagging and Chunking

In Part-of-Speech (POS) tagging, the task is to assign to each word
from a sentence a tag from a pre-defined set that describes the word’s
grammatical role in the sentence.

Definition 3.1. Given a sentence s = (w1, . . . wn) and a set of available
POS tags T , POS tagging outputs a sequence t1, t2, . . . tn that assigns
each word wi a corresponding tag ti ∈ T .

Some typical POS tags are: NN (noun), VB (verb), adjective (JJ), RB
(adverb). Here is a POS-tagged example sentence using all of these:

Semantic/JJ search/NN is/VB just/RB great/JJ.

Depending on the application, POS tags of different granularity can
be considered. For example, the tags may distinguish between singular
(NN) and plural (NNS) nouns. Or between a regular adverb (RB), a
comparative (RBR), and a superlative (RBS).

A closely related problem is that of chunking, sometimes also re-
ferred to as shallow parsing. The task of chunking is to identify and tag
the basic constituents of a sentence, based on the POS-tagged words.

Definition 3.2. Given a sentence s = (w1, . . . wn) and a set of available
chunk tags C, chunking outputs word sequences identified by triples
(si, ei, ci) where si is the start index, ei the end index and ci ∈ C the
chunk type of chunk i. The chunks don’t overlap and don’t have to
cover all of the words.

Some typical chunking tags are: NP (noun phrase), VB (verb phrase),
ADJP (adjective phrase). A possible chunking of the example sentence
above, using all these tags, is:

NP(Semantic/JJ search/NN) VB(is/VB) ADJP(just/RB great/JJ).

Chunking is a natural first step for both entity recognition and sentence
parsing, which are discussed in the two subsections following this one.
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3.1.1 Benchmarks and State of the Art

A classical benchmark is provided as part of the Penn Treebank [Mar-
cus, Santorini, and Marcinkiewicz, 1993]. We describe it in more detail
in Section 3.3 on Sentence Parsing below.

Both POS tagging and chunking can be solved fast and with high
accuracy. For example, the well-known and widely-used Stanford POS
tagger [Toutanova et al., 2003] achieves an accuracy of 97% on the Penn
Treebank-3 [1999] dataset (2,499 stories from the Wall Street Journal).
This is close to the accuracy achieved by human experts (which is also
not perfect). Tagging speed was reported to be around 15,000 words
per second, on a typical server in 2008.1 In an experiment on a current
server with Intel Xeon E5-1650 (3.50GHz) CPUs, the Stanford POS
tagger was able to tag around 55,000 words per second.

An accuracy of 97% sounds impressive, but when looking at whole
sentences this means that only 56% of the sentences are tagged without
any error. But a fully correct tagging is important for sentence parsing;
see the subsection below. Manning [2011] explores options to achieve a
per-word accuracy of close to 100%.

3.1.2 Application to Short Text and Queries

For very short text, e.g., queries, the methods described here are less
successful. For example, in the query pink songs, the word “pink” cer-
tainly refers to the pop artist and not the color. However, a typical
POS tagger is not used to the telegraphic form of queries and would
thus incorrectly tag “pink” as an adjective.

Hua et al. [2015] present an approach to solve variants of POS tag-
ging and chunking for short texts. Unlike for regular text, the chunking
is done before tagging. Throughout the whole process, decisions are
made based on semantics, in particular, the coherence between can-
didate chunks and tags. This distinguishes the approach from those
for larger texts where the structure of grammatically well-formed sen-
tences plays a central role and probabilities of chains of tags determine
the outcome. In a subsequent step, the approach also solves a variant

1Reported on http://nlp.stanford.edu/software/pos-tagger-faq.shtml.

http://nlp.stanford.edu/software/pos-tagger-faq.shtml
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of the named-entity recognition and disambiguation problem that is
described in the next subsection.

Short text understanding is very useful for question answering since
it provides a semantic interpretation of the query. Thus, systems from
Section 4.8 and Section 4.9 often include components that address this
problem or variants tailored towards their particular use case.

3.2 Named-Entity Recognition and Disambiguation

Assume we are given a collection of text documents and a knowledge
base. In the simplest case, the knowledge base is just a list of entities
with their common name or names. Additional knowledge on these
entities may be helpful for the task defined next.

The task of Named-Entity Recognition (NER) is to recognize which
word sequences from the text documents might refer to an entity from
the knowledge base. For example, in the following sentence, all word
sequences referring to an entity which has its own page in the English
Wikipedia (as of the time of this writing), are underlined:

Buzz Aldrin joined Armstrong and became the second human to set foot
on the Moon.2

Definition 3.3. Given some text and a set of entity types T , NER
outputs word sequences which mention a named entity. The mentions
are identified by triples (si, ei, ti) where si is the start index, ei the end
index and ti ∈ T the entity’s type. The entity mentions don’t overlap
and aren’t nested.

Note that usually no knowledge base is required for NER. The task
is only to identify possible entity mentions (typically proper nouns)
which refer to an entity from a few classes. Most typically, these are:
person, location, and organization. For example, the Stanford NER tag-
ger [Finkel, Grenager, and Manning, 2005] is of this kind. If entities are
linked to a knowledge base in a subsequent step, the knowledge base can
be a valuable resource for NER already, e.g., in the form of a gazetteer.

2It is often arguable what exactly constitutes a named entity. For example, in
some cases it may be desirable to tag human and foot as well.
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The task of Named-Entity Disambiguation (NED) follows up on
NER. The task of NER is just to identify the word sequences, that is,
in the example above, underline them (and assign them a course type).
The task of NED is to decide for each identified sequence to exactly
which entity from the knowledge base it refers.

Definition 3.4. Given a knowledge base with entities E, some text and
a set of possible entity mentions (si, ei, ti) from NER, the task of NED
is to assign for each entity mention an entity from E ∪ ∅. If no entity
from E is mentioned, ∅ should be assigned.

For example, in the sentence above, the word Moon could refer to
any of the many moons in our solar system, or to the generic Moon, or
to one of the many people named Moon. However, it is clear from the
context of the sentence that the one moon from planet Earth is meant.
Likewise, the word Armstrong could refer to many different people:
Lance Armstrong, Louis Armstrong, Neil Armstrong etc. Again, the
context makes it clear that Neil Armstrong is meant. The task of NED
is to establish these “links” (indeed, NED is sometimes also referred to
as Named-Entity Linking).

Also note that, in the example above, the word Buzz on its own
could refer to a number of different entities: there are many people
with that name, there is a film with that name, there is a series of
video games with that name. It is part of the NER problem to find out
that the entity reference in this sentence consists of the word sequence
Buzz Aldrin and not just of the word Buzz.

For semantic search systems, we usually require NER and NED
together. In the overview below, we therefore only consider the state
of the art of research that considers both problems together.

3.2.1 Co-reference and Anaphora Resolution

It is a frequent phenomenon in natural language texts that an entity
is referred to not by its name but by a placeholder word. For example,
consider the following sentences:

The stalks of rhubarb are edible. Its roots are medicinally used. The
leaves of the plant are toxic.
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Co-reference and anaphora resolution means to identify all mentions
that refer to the same entity. The first underlined word (rhubarb) is an
entity reference in the sense above. The second underlined word (its) is
a pronoun, which in this case refers to the rhubarb from the sentence
before. The third underlined word (the plant) is a noun phrase, which
in this context does not refer to a plant in general, but again to the
rhubarb from the sentence before.

The three references together are called co-references because they
refer to the same entity. The last two references are called anaphora,
because they refer to an entity mentioned earlier in the text. Note that
anaphora are not needed for expressiveness, but for the sake of brevity
(pronouns are short) or variety (to avoid repeating the same name again
and again).

There are many variations of this task depending on the context.
Co-references can be within or across documents. Only references be-
tween noun-phrases can be considered or also between events described
by whole sentences.

For some of the semantic search systems described in Section 4 on
Approaches and Systems for Semantic Search, it is important that as
many entity references are recognized and disambiguated as possible
(high recall). In that case, anaphora resolution is just as important as
NER and NED. However, in papers or benchmarks solely about NER
or NED, anaphora resolution is usually not included as part of the
problem statement.

A recent survey on anaphora resolution is provided in the book
by Mitkov [2014]. Supervised approaches for co-reference resolution of
noun-phrases are surveyed by Ng [2010].

3.2.2 Benchmarks and State of the Art

At the time of this writing, there were two active benchmarks: TAC
and ERD. We briefly describe the setting and best results for each.

TAC: The Text Analysis Conference (TAC) is co-organized by the Na-
tional Institute of Standards (NIST) and the Linguistic Data Consor-
tium (LDC). The first TAC was held in 2008, and has since replaced
the Automatic Content Evaluation (ACE) series, which had similar
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goals and was last held in 2008. From 2009 until the time of this writ-
ing, TAC contained a track called Entity Linking [Ji, Nothman, and
Hachey, 2014], with a new benchmark every year. 3 In the benchmarks
before 2014, the offsets of the word sequences that have to be disam-
biguated are given as part of the problem. That is, the NER part,
according to our definition above, is already solved. For the NED part,
an additional challenge is added in that some of the word sequences do
not refer to any entity from the given knowledge base. It is part of the
problem, to identify these as new entities and group them accordingly if
there are several references to the same new entity. In 2014, a new end-
to-end English entity discovery and linking task was introduced. This
task requires to automatically extract entity mentions, link them to a
knowledge base, and cluster mentions of entities not in the knowledge
base.

The knowledge base used in all of the tasks was a collection of en-
tities (800K of them in 2013) of type person, organization, or location
from a dump of the English Wikipedia from October 2008. The corre-
sponding entries from the Wikipedia infoboxes were also provided. The
systems were evaluated on a mix of documents from news and posts to
blogs, newsgroups, and discussion fora.

The best system for the 2012 and 2013 benchmarks (and the 2014
variant that provided the perfect mention as an input) is the MS_MLI
system by Cucerzan [2012]. It achieved a variant of the F-measure
of 70%.4 These systems are adoptions of the approach described in
[Cucerzan, 2007]. The best system for the 2014 benchmark that also
performs entity discovery is the system by Monahan et al., 2014.

ERD: The Entity Recognition and Disambiguation Challenge (ERD)
was co-located with SIGIR 2014. An overview is given in [Carmel et al.,
2014]. As the name of the challenge says, the benchmark comprises both

3Other tracks of TAC are discussed in subsection 4.3.5 of the Section on Struc-
tured Data Extraction from Text.

4The variant is referred to as b-cubed+ in the TAC benchmarks. It groups
together all co-references in the same document into one cluster, and applies the F-
measure to these clusters, not to the individual references. This avoids giving undue
weight to frequent references in a document (which, by the way typical algorithms
work, will either all be correct or all be wrong).
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NER and NED, whereas TAC, before 2014, just asked for NED. Also
different from TAC, it was not required to recognize and disambiguate
entities that were not in the knowledge base.

The knowledge base for ERD was a dump of Freebase (see Table 2.2)
from September 2009, restricted to entities with a corresponding page
in the English Wikipedia at that same time. There were two tracks,
with a different text collection each. For the long track, parts of the
ClueWeb09 and ClueWeb12 collections (see Table 2.1) were used. For
the short track, web search queries from various past TREC tracks were
used. For both tracks, small test sets were provided for learning.

The best system in the long track was again the MS_MLI NEMO
system [Cucerzan, 2014], with an F-measure of 76%. That paper also
discusses (in its Section 1) the difference to the TAC benchmarks. The
best system in the short track was SMAPH by Cornolti et al. [2014],
with an F-measure of 69%.

3.2.3 Scale

The first large-scale NER+NED was performed by the SemTag project
from Dill et al. [2003]. They recognized and disambiguated 434 mil-
lion entity occurrences in 264 million web documents. Precision was
estimated (from a sample) to be 82%. A relatively small knowledge
base (TAP) was used, which explains the small number of recognized
occurrences per document and the relatively high precision.

The largest-scale NER+NED at the time of this writing was per-
formed by Google Research [Orr et al., 2013]. They recognized and
disambiguated 11 billion entities on 800 million documents from the
ClueWeb09 and ClueWeb12 collections (see Table 2.1). The knowledge
base used was Freebase, and the NER+NED was reportedly “optimized
for precision over recall”. Precision and recall were estimated (from a
sample) with 80-85% and 70-85%, respectively.

Note that the corpus from Orr et al. [2013] is only about 3 times
larger than the one used in the 10 year older study of Dill et al. [2003].
However, the number of entity occurrences is about 25 times larger.
Also note that the web crawl of the Common Crawl project from August
2014 contained around 2.8 billion web pages (200 TB), which is only
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about 3 times larger than both of the ClueWeb datasets together. In
2015, Google revealed that it knows over 30 thousand trillion different
URLs on the Web. However, only a fraction of these point to textual
content that is actually useful for search. Also, many URLs point to
similar content. As of 2015, the number of distinct web pages indexed
by Google is estimated to be around 50 billion.5

The bottom line is that web-scale NER+NED with a large general-
purpose knowledge base is feasible with good (but still far from perfect)
precision and recall.

3.3 Sentence Parsing

The goal of sentence parsing is to identify the grammatical structure
of a sentence. There are two kinds of representations that are widely
used: the constituent parse and the dependency parse. Both parses can
be viewed as a tree. In a constituent parse, the sentence is first split,
e.g., into a subject noun phrase (NP) and a predicate verb phrase (VP),
which are then recursively split into smaller components until the level
of words or chunks is reached.

Definition 3.5. A constituent parse of a sentence consists of a tree with
the individual words as its leaves. Labels of internal nodes represent
grammatical categories of the word sequences corresponding to their
subtree, e.g., noun phrase (NP), verb phrase (VP), subordinate clause
(SBAR), or independent clause (S). These can be nested recursively.
The root of the tree is usually labeled S.

In a dependency parse, each word in the sentence depends on ex-
actly one other word in the sentence, its head; the root of the tree
points to the main verb of the sentence.

Definition 3.6. A dependency parse of a sentence is a tree6 with indi-
vidual words as nodes. Nodes are connected via directed edges from the

5Source: http://www.worldwidewebsize.com, who extrapolate from the number
of hits for a selection of queries.

6This is often also referred to as a dependency graph, but for all practical pur-
poses it can be considered a tree.

 http://www.worldwidewebsize.com
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governor (head) to the dependent. Each node has exactly one governor.
Edges can be labeled with the grammatical relationship between the
words. The main verb of the sentence has an artificial ROOT node as
its head.

For example, the sentence from above has the following constituent
and dependency parse, respectively. For the constituent parse, the tree
structure is shown via nested parentheses labeled with constituent type.
The dependency parse only shows unlabeled arcs and no ROOT node.

S(NP((Semantic) (search)) VP(VB(is) ADJP((just) (great)))).
Semantic ← search ← is → great → just .

From a linguistic perspective, the two types of grammars are almost
equivalent [Gaifman, 1965]. Indeed, many widely used parsers (includ-
ing the Stanford parser referred to below) produce one type of parse
from which they can easily derive the other type of parse.

3.3.1 Semantic Role Labeling

Although this section is about sentence parsing, let us also briefly dis-
cuss Semantic Role Labeling (SRL) at this point. SRL goes beyond
sentence parsing in that it also assigns “roles” to the semantic argu-
ments of a predicate or verb of a sentence. For example, consider the
following two sentences:

John gives the book to Mary.
John is given the book by Mary.

Both have the same (structure of the) constituent parse tree. But the
role of John with respect to the verb give is different: in the first sen-
tence, he is the one who gives (his role is giver), in the second sentence,
he is the one who is given (his role is recipient).

Semantic Role Labeling looks very relevant for semantic search. For
example, for the query who was given the book, the correct answer is
different for each of the two sentences above. However, most semantic
search systems nowadays work with (surprisingly) shallow linguistic
technology. Many do not even use sentence parsing, and none of the
systems described in this survey uses SRL.
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There are two apparent reasons. One reason is that semantic search
is still in its infancy, with major challenges still to overcome even for
relatively basic search scenarios that do not involve any natural lan-
guage processing or only a relatively shallow one. The other reason
is that natural language processing has not yet reached the necessary
level of sophistication in order to be unreservedly useful for improving
search results. For a look further ahead see Section 6 on The Future of
Semantic Search.

3.3.2 Benchmarks and State of the Art

Datasets: A benchmark for sentence parsing (that is, a text annotated
by the correct parse for each sentence) is referred to as a Treebank. The
most widely used Treebank is the Penn Treebank [Marcus, Santorini,
and Marcinkiewicz, 1993]. It comprises 2,499 articles from the Wall
Street Journal from 1989 (about 44K sentences with about 1M words),
annotated for syntactic structure by human experts. The articles are
split into 25 sections with the convention to use sections 2-21 as a
training set and section 23 as test set. Remaining sections can be used
as development set. The Penn Treebank also contains the POS-tagged
Brown corpus (carefully selected English text from 15 genres, about
1M words, from 1961). There are also two follow-up benchmarks, called
Penn Treebank-2 [1995] and Penn Treebank-3 [1999].

More recent English Treebanks are Ontonotes 5.0 by Hovy et al.
[2006], which also contains articles from the Wall Street Journal, and
the Google Web Treebank by Petrov and McDonald [2012], which con-
sists of annotated sentences from the Web. However, most English
parsers are still trained and evaluated on the Penn Treebank.

CoNLL 2007 Shared Task: This task [Nivre et al., 2007] featured
two tracks on dependency parsing: one multilingual (with an English
sub-track), and one called domain adaptation (learn from one domain,
test on another). Two standard metrics emerged from that task: the
Labeled Attachment Score (LAS) and the Unlabeled Attachment Score
(UAS). Both are percentages, with 100% being a perfect result. UAS
measures the degree to which the structure is correct (head and arcs).
LAS also takes into account the correctness of the dependency labels.
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The best system in the English part of the multilingual track achieved
89.6% LAS and 90.6% UAS. The best system in the domain adaptation
track achieved 81% LAS and 83.4% UAS.

SANCL 2012 Shared Task: SANCL [Petrov and McDonald, 2012]
is the name of the Workshop on Syntactic Analysis of non-canonical
Language. Parsers were trained on the Penn Treebank (sections 2-21,
about 30K sentences), but evaluated on the Google Web Treebank.
Both dependency and constituent parsers were evaluated. The Stan-
ford parser achieved 80.7% precision and 79.6% recall in constituent
mode, and 83.1% LAS and 87.2% UAS in dependency mode. The best
constituent parser achieved 84.3% precision and 82.8% recall.

Socher et al. [2013] describe recent improvements to the Stanford
parser, and compare it to other state-of-the-art parsers. F-measures
between 85% and 92% are achieved.

It is noteworthy that good parsers achieve about equal figures for
precision and recall, which is why often only the F-measure is reported.
Already the early Charniak parser [Charniak, 2000] achieved both pre-
cision and recall of about 90% (on a relatively simple benchmark).

Note that with close to perfect chunking alone (which is a rela-
tively simple task) one already gets around 50% recall (all the min-
imal constituents are correct) and close to perfect precision, that is,
around 75% F-measure. But such a “parsing” would be quite useless
for semantic search or information extraction, where it is important to
detect which items of a sentence “belong together” semantically. Bast-
ings and Sima’an [2014] therefore introduce an alternative measure,
called FREVAL. This measure weighs each component by its height
in the parse tree (a leaf has height 1, the root has the largest height).
Mistakes in the larger components then incur a higher penalty in the
score. Using this measure, they report only 35% to 55% F-measure
for current state-of-the-art parsers. Indeed, these figures better reflect
our own experience of the limited use of sentence parsing for semantic
search, than the close to 90% achieved in the standard measures.

A further problem is that parsers perform worse on long sentences
than on short sentences. For example, Klein and Manning [2002] report
a drop in F-measure from about 90% for sentences with 10 words to
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about 75% for sentences with 40 words. Unfortunately, much of the
information in a text is often contained in long (and often complex)
sentences. This is exacerbated by the fact that available parser models
are usually trained on newswire text but applied to web-like text, which
is more colloquial and sometimes ungrammatical (see the results of
SANCL 2012 shared task above).

3.3.3 Performance and Scale

In terms of F-measure, the Charniak constituent parser achieves the
state-of-the-art result at 92% and claims about 1 second per sentence
[McClosky, Charniak, and Johnson, 2006; Charniak, 2000]. The recur-
sive neural network (constituent) parser from Socher et al. [2013] needs
about 0.8 seconds per sentence, and achieves 90% F-measure on the
Penn Treebank. Recently, parsers have improved parsing times con-
siderably while maintaining or improving state-of-the-art quality. The
greedily implemented shift-reduce based constituent parser that is part
of the Stanford CoreNLP toolkit [Manning et al., 2014] achieves com-
parable 88.6% F-measure but is about 30 times as fast (27 ms per sen-
tence). A recent neural network based dependency parser [Chen and
Manning, 2014] can process about 650 sentences per second (1.5 ms per
sentence) and produce state-of-the-art results (89.6% LAS and 91.8%
UAS on the Penn Treebank with Stanford dependencies). spaCy7 is
the currently fastest greedy shift-reduce based parser, which can pro-
cess about 13K sentences per second (0.08 ms per sentence) with state-
of-the-art performance (91.8% UAS on the Penn Treebank). A recent
comparison of parsers is given by Choi, Tetreault, and Stent [2015].

3.4 Word Vectors

Word vectors or word embeddings represent each word as a real-valued
vector, typically in a space of dimension much lower than the size of
the vocabulary. The main goal is that semantically similar words should
have similar vectors (e.g., with respect to cosine similarity). Also, word
vectors often have linear properties, since they are usually obtained by

7https://spacy.io/

https://spacy.io/
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(implicit or explicit) matrix factorization. For example, the methods
described below will produce similar vectors for queen and king, because
they are both monarchs, as well as similar vectors for queen - woman +
man and king. Word vectors are also popular as a robust representation
of words used as input to machine learning algorithms.

Research on word vectors has a long history in natural language
processing dating back to a famous statement by John Rupert Firth in
1957: You shall know a word by the company it keeps. Indeed, words
that occur in similar contexts are likely to be similar in meaning. This
implies that word vectors can be learned in an unsupervised fashion
from a huge text corpus, without additional knowledge input. In the
following, we discuss the main techniques, extensions to text passages,
and the most popular benchmarks.

Applying word vectors has recently gained interest. In this sur-
vey many of the approaches in Section 4.8 on Question Answering on
Knowledge Bases use it as part of the input to machine learning algo-
rithms in order to provide a notion of (semantic) synonyms. It is also
part of the future work planned for many recent systems, for example,
for Joshi, Sawant, and Chakrabarti [2014] in Section 4.9 on Question
Answering on Combined Data.

3.4.1 Main Techniques

The straightforward approach is to build a word-word co-occurrence
matrix [Lund and Burgess, 1996], where each entry counts how often
the two words co-occur in a pre-defined context (in the simplest case:
within a certain distance of each other). A row (or column) of the ma-
trix can then be considered as a (huge but sparse) word vector. From
there, a low-dimensional dense embedding can be obtained via matrix
factorization techniques. For example, using principal component anal-
ysis (PCA, typically computed from an eigenvector decomposition) or
non-negative matrix factorization (NMF, typically computed with a
variant of the EM algorithm) [Lee and Seung, 2000]. There are many
variations of this basic approach; for example, the co-occurrence ma-
trix can be row-normalized, column-normalized, or each entry can be
replaced by its positive pointwise mutual information.
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Explicit semantic analysis (ESA) [Gabrilovich and Markovitch,
2007] represents a word as a vector of weighted Wikipedia concepts.
The weight of a concept for a word is the tf-idf score of the word in
the concept’s Wikipedia article. The resulting word vectors are often
sparse, because each concept article contains only a small subset of
all possible words. By construction, longer text passages can be rep-
resented by the sum of the word vectors of the contained words. The
resulting vector is then supposed to be a good representation of what
the text “is about”. Like PCA and NMF, ESA can be combined with
standard ranking techniques (like BM25) to improve retrieval quality
in keyword search on text.

Word2vec [Mikolov et al., 2013a; Mikolov et al., 2013b] computes
(dense) word vectors using a neural network with a single hidden layer.
The basic idea is to use the neural network for the following task: given
a current word wi, predict the words wi+c occurring in its context
(a window around wi, e.g., positions −2,−1,+1,+2). The network is
trained on an arbitrary given text corpus, with the goal of maximizing
the product of these probabilities. Once trained, the word vectors can
be derived from the weights of the intermediate layer. Interestingly,
Levy and Goldberg [2014] could show that word2vec implicitly performs
a matrix factorization of the word-context matrix. The major advantage
over the explicit matrix factorization techniques from above is in space
consumption and training speed; see the next but one paragraph.

Glove [Pennington, Socher, and Manning, 2014] is a log-bilinear re-
gression model that, intuitively, is trained to predict word co-occurrence
counts. The model effectively performs a factorization of the log co-
occurrence count matrix [Levy, Goldberg, and Dagan, 2015]. Experi-
ments show that it performs similarly to word2vec; see the next para-
graph. It is also fast to train, but requires a co-occurrence count matrix
as input.

Levy, Goldberg, and Dagan [2015] perform an extensive compari-
son of the many approaches for word vectors, including word2vec, Glove
and co-occurrence based methods. They also give valuable advice on
how to choose hyperparameters for each model. In their experiments,
none of the techniques consistently outperforms others. Experiments
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also show that hyperparameters have a huge impact on the perfor-
mance of each model, which makes a direct comparison difficult. How-
ever, they report significant performance differences on a corpus with
1.5 billion tokens, in particular: half a day versus many days for the
training phases of word2vec vs. Glove, and an unfeasibly large memory
consumption for the explicit factorization methods.

3.4.2 Extensions to Text Passages

The straightforward approach to obtain a low-dimensional vector of the
kind above for an arbitrary text passage is to sum up or average over the
vectors of the contained words. This works well in some applications,
but can only be an approximation because it completely ignores word
order.

Le and Mikolov [2014] have extended word2vec to compute vectors
for paragraphs and documents. The vector is learned for the given
passage as a whole, and not just statically composed from individual
word vectors. On a sentiment analysis task, the approach beats simple
composition methods (as described in the previous paragraph) as well
as classical supervised methods (which do not leverage external text).

Two related problems are paraphrasing and textual entailment,
where the task is to determine for two given pieces of text, whether
they mean the same thing or whether the first entails the second, re-
spectively. For example, does John go to school every day entail John
is a student? Learning-based methods for paraphrasing and textual en-
tailment are discussed in Section 8.1 of the survey by Li and Xu [2014].

3.4.3 Benchmarks

There are two popular problems that allow an intrinsic evaluation of
word vectors. For each problem, several benchmark datasets are avail-
able.

Word similarity: This is a ranking task. Word pairs must be ranked
by how similar the two words are. For example, the words of the pair
(error, mistake) are more similar than (adventure, flood). Benchmarks
contain word pairs with human-judged graded similarity scores, often
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retrieved via crowdsourcing. The final quality is assessed by computing
rank correlation using Spearman’s ρ. Some relevant benchmarks are:

WordSim353 [Finkelstein et al., 2002]: 353 word pairs
SimLex-999 [Hill, Reichart, and Korhonen, 2015]: 999 word pairs
MEN [Bruni, Tran, and Baroni, 2014]: 3000 word pairs
Rare words [Luong, Socher, and Manning, 2013]: 2034 word pairs
Crowdsourcing benchmark [Radinsky et al., 2011]: 287 word pairs

For a recent performance comparison we refer to the experiments done
by Levy, Goldberg, and Dagan [2015]. Typical rank correlations are
between .4 and .8, depending on the dataset and the model.
Word analogy: Analogy questions are of the form “saw is to sees as
returned to ?” and the task is to fill in the missing word (returns).
More formally, the task is: given words a, a∗ and b find the word b∗

such that the statement “a is to a∗ as b is to b∗” holds. One variant of
this task addresses syntactic similarities, as in the example above. The
other variant focuses on semantic similarities as in “Paris is to France
as Tokyo is to ?” (Japan). To solve this task, simple vector arithmetic
is used. Most prominently:

arg max
b∗∈V \{a,a∗,b}

cos(b∗, a∗ − a+ b)

where V is the vocabulary. Levy, Goldberg, and Dagan [2015] improved
on that function, essentially by taking the logarithm. The resulting
function is called 3CosMul:

arg max
b∗∈V \{a,a∗,b}

cos(b∗, a∗) · cos(b∗, b)
cos(b∗, a) + ε

Notable benchmarks are from Microsoft Research [Mikolov, Yih, and
Zweig, 2013], which consists of 8,000 questions focusing on syntactic
similarities, and Google [Mikolov et al., 2013b], which consists of 19,544
questions for syntactic as well as semantic similarities. The evaluation
measure is the percentage of words b∗ that were correctly predicted.
Again, we refer to the experiments from Levy, Goldberg, and Dagan
[2015] for a recent comparison. Current models answer about 55% to
69% of these questions correctly.



4
Approaches and Systems for Semantic Search

This is the core section of this survey. Here we describe the multitude of
approaches to and systems for semantic search on text and knowledge
bases. We follow the classification by data type and search paradigm
from Section 2, depicted in Figure 1.1. For each of the nine resulting
subgroups, there is a subsection in the following. Each of these subsec-
tions has the same structure:

Profile ... a short characterization of this line of research
Techniques ... what are the basic techniques used
Systems ... a concise description of milestone systems or software
Benchmarks ... existing benchmarks and the best results on them

We roughly ordered the sections historically, that is, those scenarios
come first, which have been historically researched first (and the most).
Later sections correspond to more and more complex scenarios, with
the last one (Section 4.9 on Question Answering on Combined Data)
being the hardest, with still relatively little research to date. Also,
approaches and systems of the later section often build on research from
the more fundamental scenarios from the earlier sections. For example,
almost any approach that deals with textual data uses standard data
structures and techniques from classical keyword search on text.
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4.1 Keyword Search in Text

Data Text documents, as described in Section 2.1.1

Search Keyword search, as described in Section 2.2.1
This is classical full-text search: the query is a se-
quence of (typically few) keywords, and the result
is a list of (excerpts from) documents relevant to
the query
Methods aimed at a particular entity or list of en-
tities are addressed in Section 4.5

Approach Find all documents that match the words from the
query or variants/expansions of the query; rank the
results by a combination of relevance signals (like
prominent occurrences of the query words in the
document or occurrences in proximity); learn the
optimal combination of these relevance signals from
past relevance data

Strength Easy to use; works well when document relevance
correlates well with basic relevance signals

Limitation Is bound to fail for queries which require a match
based on a deeper understanding (of the query
or the matching document or both), or which re-
quires the combination of information from differ-
ent sources

This is the kind of search we are all most familiar with from the
large web search engines: you type a few keywords and you get a list
of documents that match the keywords from your query, or variations
of them.

A comprehensive treatment of this line of research would be a sur-
vey on its own. We instead provide a very brief overview of the most
important aspects (Section 4.1.1), widely used software which imple-
ments the state of the art (Section 4.1.2), and an overview over the
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most important benchmarks in the field and a critical discussion of the
(lack of major) quality improvements over the last two decades (Section
4.1.3).

4.1.1 Basic Techniques

With respect to search quality, there are two main aspects: the match-
ing between a keyword query and a document, and the ranking of the
(typically very many) matching documents. We do not cover perfor-
mance issues for keyword search on text in this survey. However, Sec-
tion 5.2 discusses various extensions of the inverted index (the standard
indexing data structure for keyword search on text) to more semantic
approaches.

Basic techniques in matching are: lemmatization or stemming
(houses→ house or hous), synonyms (search ↔ retrieval), error correc-
tion (algoritm ↔ algorithm), relevance feedback (given some relevant
documents, enhance the query to find more relevant documents), prox-
imity (of some or all of the query words) and concept models (matching
the topic of a document, instead of or in addition to its words). A re-
cent survey on these techniques, cast into a common framework called
learning to match, is provided by Li and Xu [2014].

Basic techniques in ranking are either query-dependent ranking
functions, like BM25 (yielding a score for each occurrence of a word
in a document) and language models (a word distribution per docu-
ment), or query-independent popularity scores, like PageRank (yielding
a single score per document). Hundreds of refinements and signals have
been explored, with limited success; see the critical discussion in the
benchmark section below. The most significant advancement of the last
decade was the advent of learning to rank (LTR): this enables leverage
of a large number of potentially useful signals by learning the weights
of an optimal combination from past relevance data. See [Liu, 2009]
for a survey with a focus on applicable machine learning techniques.
We discuss applications of LTR to other forms of semantic search in
Section 5.1 on Ranking.
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4.1.2 Popular State-Of-The-Art Software

Researchers have developed countless systems for keyword search on
text. A list is beyond the scope of this article, and bound to be very
incomplete anyway. Instead, we focus on open-source software and pro-
totypes that are widely used by the research community. Each of the
systems below provides basic functionality like: incremental index up-
dates (adding new documents without having to rebuild the whole in-
dex), fielded indices (to store arbitrary additional information along
with each document), distributed processing (split large text collec-
tions into multiple parts, which are then indexed and queried in par-
allel), standard query operators (like: conjunction, disjunction, prox-
imity), and multi-threading (processing several queries concurrently).
Also, each of the systems below is used as basis for at least one system
for more complex semantic search, which are described in one of the
following sections.

There are several studies comparing theses systems. For a qual-
ity comparison of some of these, see [Armstrong et al., 2009a]. For a
performance comparison, see [Trotman et al., 2012].

Apache’s Lucene1 is the most widely used open-source software
for basic keyword search. It is written in Java and designed to be
highly scalable and highly extensible. It is the most used software in
commercial applications. Lucene provides built-in support for some of
the basic matching and ranking techniques described in Section 4.1.1
above: stemming, synonyms, error correction, proximity, BM25, lan-
guage models.

Indri2 is written in C++. It is a general-purpose search engine, but
particularly used for language-model retrieval. Terrier3 is written in
Java, and provides similar functionality as Indri.

MG4J [Boldi and Vigna, 2005] is written in Java. It makes use of
quasi-succinct indexes, which are particularly space-efficient and en-
able particularly fast query processing also for complex query opera-
tors. MG4J supports fielded BM25, which is used by various of the

1http://lucene.apache.org
2http://www.lemurproject.org/indri
3http://terrier.org

http://lucene.apache.org
http://www.lemurproject.org/indri
http://terrier.org
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approaches described in Section 4.5 on Keyword Search on Combined
Data.

4.1.3 Benchmarks

The classical source for benchmarks for keyword search on unstructured
text is the annual Text Retrieval Conference (TREC) series [Voorhees
and Harman, 2005], which began in 1992.4 TREC is divided into various
so-called tracks, where each track is about a particular kind of retrieval
task. Each track usually runs over a period of several years, with a
different benchmark each year. Each benchmark consists of a document
collection, a set of queries, and relevance judgments for each query.5

Keyword search on text documents was considered in the following
tracks: Ad-hoc (1992 - 1999, keyword search on the TIPSTER6 collec-
tion), Robust (2003 - 2005, hard queries from the ad-hoc track), Ter-
abyte (2004 - 2006, much larger document collection than in previous
tracks), and Web (1999 - 2004 and 2009 - 2014, web documents).

Armstrong et al. [2009a] and Armstrong et al. [2009b] conducted
an extensive comparative study of the progress of ad-hoc search over
the years. Systems were compared in two ways: (1) by direct compar-
ison of different results from different papers on the same (TREC ad-
hoc) benchmarks, and (2) by a comparison across benchmarks using
a technique called score standardization. Their surprising conclusion
from both studies is that results for ad-hoc search have not improved
significantly since 1998 or even earlier. New techniques were indeed
introduced, but the evaluations were almost always against weak base-
lines, instead of against the best previous state-of-the-art system.

Viewed from a different perspective, this study merely confirms a
typical experience of information retrieval researchers regarding key-
word search. The shortcomings are clear, and promising new ideas

4When researching proceedings, it helps to know that the first 9 TREC confer-
ences, from 1992 to 2000, are referenced by number: TREC-1, ..., TREC-9. Starting
from 2001, they are referenced by year: TREC-2001, TREC 2002, ...

5For the later (very large) collections, only partial relevance judgments (for the
top documents from each participating system) were available. This is called pooling.

6The TIPSTER collection comprises news articles, government announcements,
and technical abstracts.
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spring to mind relatively quickly. But a comprehensive and honest eval-
uation of any single idea over a large variety of queries is often sobering:
the results for some queries indeed improve (usually because relevant
documents are found, which were not found before), while the results
for other queries deteriorate (usually because of lower precision). Of-
ten, the two opposing effects more or less balance out, and it is mostly
a matter of careful parameter tuning to get a slight improvement out
of this.

A real improvement was brought along by the learning to rank
approach, discussed briefly in Section 4.1.1 above. With learning to
rank, a large number of potentially useful signals can be combined,
and the best “parameter tuning” can be learned automatically from
past relevance data. Indeed, the winners of the last three TREC Web
Tracks are all based on this approach.

In absolute terms, results remained relatively weak however, with
typical nDCG@20 values of around 30%. This makes it all the more
reasonable to go beyond this simple form of keyword search and aim at
deeper forms of understanding, which is exactly what the approaches
described in the following sections do.
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4.2 Structured Search in Knowledge Bases

Data A knowledge base, as described in Section 2.1.2

Search Structured search, as described in Section 2.2.2
The query is from a language like SPARQL; the
result is a list of matching items from the knowledge
base; the order is arbitrary or explicitly specified

Approach Store the knowledge base in a standard RDBMS
and rewrite queries to SQL; or use a dedicated in-
dex data structure and query engine

Strength Expert searches with a precise semantics; the
canonical back end for any service that involves
non-trivial queries to a knowledge base

Limitation Query formulation is cumbersome, especially for
complex queries; finding the right entity and re-
lation names becomes very hard on large knowl-
edge bases; the amount of information contained in
knowledge bases is small compared to the amount
of knowledge contained in text

Structured search in knowledge bases is not so much a technique
for semantic search on its own, but rather a basic building block for all
approaches that work with one or more knowledge bases.

4.2.1 Basic Techniques

There are two main approaches to storing a knowledge base: in a stan-
dard relational database management system (RDBMS), or in a system
dedicated to storing knowledge as collections of triples and hence often
called triple store. Both approaches are widely used. The design and
implementation of a typical triple store is described in Section 4.2.2
below.

When the knowledge base is stored in an RDBMS and the query lan-
guage is SPARQL, queries can be translated to equivalent SQL queries.
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A complete translation scheme is described in [Elliott et al., 2009].7
When the data is stored in an RDBMS using a non-trivial schema
(that is, not just one big table of triples), a mapping is needed to spec-
ify how to make triples out of this data. For this mapping, R2RML
[2012] has emerged as a standard. Given such a mapping, generating
a SQL query that can be executed as efficiently as possible becomes a
non-trivial problem [Unbehauen, Stadler, and Auer, 2013].

Traditional RDBMSs store their data row oriented, that is, the
items from one row are contiguous in memory. This is advantageous
when retrieving complete rows via direct access (e.g., via their key).
When storing a knowledge base in an RDBMS, column orientation is
the layout of choice. This is because typical SPARQL queries require
scans of very long runs of entries for one attribute. For example, to
find all people born in a given city, we need to determine all triples
with that city as their object. Also, these columns are typically highly
compressible. For the example just given, there will be long runs of
triples with the same city (if sorted by object). A simple run-length
encoding then saves both space and query time. A recent survey on
column-oriented databases aka column stores (with focus on efficiency)
is provided by Abadi et al. [2013].

The list of systems and benchmarks in Sections 4.2.2 and 4.2.3
below focuses on systems that explicitly support SPARQL. There are
two main aspects when comparing these systems: their performance
and which features they support.

Performance

It appears that dedicated triples stores have an advantage over
RDBMS-based systems. Dedicated triple stores can use index data
structures that are tailored to sets of triples (in particular, exploiting
the high repetitiveness and hence compressibility involved, see above).
Similarly, they can use query optimizers that exploit the structure of

7The SPARQL features ASK, CONSTRUCT, and DESCRIBE are treated spe-
cially, since they can only be approximated in SQL. They are not essential for the
expressiveness of SPARQL, however.
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typical SPARQL queries.8 It turns out, however, that RDBMS-based
approaches can still be superior, especially for complex queries, because
of their more mature query-optimizer implementations. This is briefly
discussed in the benchmark subsection below. Query planning and op-
timization are a research topic of their own, and we refer the interested
reader to [Schmidt, Meier, and Lausen, 2010].

Features

All the widely used systems below support the full SPARQL standard.
Research prototypes often focus on SELECT queries, details below.
Other features, which some but not all of the systems provide, are:
Reasoning: support for reasoning, e.g., using OWL or RDFS; this is
the topic of Section 5.4 on Inference.
Web API: query or modify the database via HTTP.
Exchangeable back end: plug in different back ends; in particular,
allow the choice between a dedicated triple store and an RDBMS.
Full-text search: support for keyword search in objects which are
string literals; here is an example using the syntax from Virtuoso’s
keyword search extension (the prefix bif stands for built-in function
and prefixes for the other relations are omitted):

SELECT ?p WHERE {
?p has-profession Astronaut .
?p has-description ?d .
?d bif:contains "walked AND moon" }

Note that already standard SPARQL enables regular-expression match-
ing of entity names via the FILTER regex(...) operation. In principle,
regular expressions can simulate keyword queries, but not very prac-
tically so. For example, a string literal matches the two keywords w1
and w2 if it matches one of the regular expressions w1.*w2 or w2.*w1 .

8From a more general perspective, such special-purpose databases are often
called NoSQL (acronym for “non (relational) SQL”, sometimes also interpreted as
“not only SQL”). Another example of a NoSQL database is Google’s BigTable,
which supports database-like queries on extremely large amounts of data that may
be stored distributed over thousands of machines.
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Note that entity names are also string literals. This simple kind
of search is hence also useful when the exact name of the entity is
not known, or for long names. For example, the entity name Barack
Hussein Obama would be found with the keyword query "barack AND
obama".

4.2.2 Systems

The three most widely used systems at the time of this writing are (in
chronological order of the year the system was introduced): Virtuoso9,
Jena10, and Sesame [Broekstra, Kampman, and Harmelen, 2002].

All three provide all of the features listed above. Virtuoso is written
in C, Jena and Sesame are written in Java. Virtuoso is different in
that it is also a full-featured RDBMS; in particular, it can run with
its own RDBMS as back end. For a performance comparison, see the
benchmarks below.

Traditional database companies, like Oracle or MySQL, have also
started to provide support for triple stores and SPARQL queries. How-
ever, at the time of this writing, they still lack the breadth of features
of systems like Virtuoso, Jena, or Sesame.

Details of the implementation of a dedicated triple store and
SPARQL engine are described in [Neumann and Weikum, 2009; Neu-
mann and Weikum, 2010], for a system call RDF-3X. The software is
open source. RDF-3X supports SELECT queries with the most im-
portant modifiers and patterns.11 RDF-3X builds an index for each of
the six possible permutations of a triple (SPO, SOP, OPS, OSP, POS,
PSO, where S = subject, P = predicate, O = object). This enables
fast retrieval of the matching subset for each part of a SPARQL query.
Join orders are optimized for typical SPARQL queries, including star-
shaped (all triples have the same variable as their subject) and paths
(the object of one triple is the subject of the next). Query plans are
ranked using standard database techniques, like estimating the cost

9http://virtuoso.openlinksw.com
10https://jena.apache.org
11Supported patterns: OPTIONAL and FILTER. Supported modifiers: ORDER

BY, DISTINCT, REDUCED, LIMIT, and OFFSET. Not supported: ASK, DE-
SCRIBE, and CONSTRUCT queries.

http://virtuoso.openlinksw.com
https://jena.apache.org
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via histogram counts. The authors provide a performance evaluation,
where RDF-3X is faster than two column-store RDBMs (MonetDB and
PostgreSQL) on a variety of datasets (including BTC’09 and UniProt
from Tables 2.3 and 2.2). This is inconsistent with the results from
the Berlin SPARQL benchmark, discussed below, where an RDBMs
(Virtuoso) wins when the data is very large.

Bast et al. [2014a] provide a system for the incremental construction
of tree-like SPARQL queries. The system provides context-sensitive
suggestions for entity and relation names after each keystroke. The
suggestions are ranked such that the most promising suggestions appear
first; this ranking is discussed in more detail in Section 5.1.4. As of this
writing, an online demo for Freebase (see Table 2.2) is available: http:
//freebase-easy.cs.uni-freiburg.de. The demo also addresses the
challenge of providing unique and human-readable entity names.12

SIREn [Delbru, Campinas, and Tummarello, 2012] uses an inverted
index (Lucene) to support star-shaped SPARQL queries (with one en-
tity at the center), where predicate and relation names can be matched
via keyword queries. We describe the index in more detail in Section
5.2.1 on Using an Inverted Index for Knowledge Base Data.

4.2.3 Benchmarks

The Berlin SPARQL Benchmark [Bizer and Schultz, 2009] is modeled
after a real use case: a consumer looking for a product on an e-commerce
website. 12 generic queries are chosen to model the SPARQL queries
sent to the back end during such a session. The queries are parame-
terized, e.g., by the type of product that the consumer is looking for
initially. The benchmark demands that the queries are asked in se-
quence, with multiple sequences being asked concurrently, again as in
a real setting. The dataset is modeled after a real set of products (with
various features and textual descriptions) and is synthetically gener-
ated, with an arbitrary, given size.

12The entity names from Freebase are not unique, and the identifiers are alpha-
numeric strings. In contrast, for example, Wikipedia has human-readable unique
identifiers for each of its entities.

http://freebase-easy.cs.uni-freiburg.de
http://freebase-easy.cs.uni-freiburg.de
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Bizer and Schultz [2009] compare a large variety of systems: explicit
triple stores (including: Jena, Sesame, and Virtuoso with its own triple
store back end), and SPARQL-to-SQL rewriters using an RDBMS (in-
cluding: MySQL and Virtuoso with its own RDBMS back end). Dataset
sizes used were 1M, 25M, and 100M triples. No single system came out
as the clear winner. However, for the largest datasets (100M), the best
RDBMS-based approach (Virtuoso) was about 10 times faster on aver-
age than the best dedicated triple store. The authors attribute this to
the more mature query optimizers of established RDBMS systems. It
is noted that the SPARQL-to-SQL rewriting takes up to half the time.

The DBpedia SPARQL Benchmark [Morsey et al., 2011] is a generic
benchmark that aims at deriving realistic SPARQL queries from an
arbitrary given query log for an arbitrary given knowledge base. In
particular, 25 query templates are derived for the DBpedia dataset
(see Table 2.2). Their evaluation confirms the performance differences
from previous benchmarks, notably Bizer and Schultz [2009], except
that the performance differences are even larger with realistic data and
queries.
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4.3 Structured Data Extraction from Text

Data Text documents, as described in Section 2.1.1
This includes web documents with markup that
helps to identify structure in the data

Search The main purpose of the systems described in this
section is to extract structured information from
text; the search is then an add-on or left to systems
as discussed in Section 4.2 on Structured Search in
Knowledge Bases

Approach Extract structured data from text; store in a knowl-
edge base or reconcile with an existing one; an al-
ternative for very simply structured queries is to
translate them to suitable keyword queries

Strength Make the vast amounts of structured data con-
tained in text documents accessible for structured
search

Limitation Extraction with high precision and recall is hard;
reconciling extracted information in a single knowl-
edge base is hard; some information is hard to ex-
press in structured form

A large part of the world’s information is provided in the form
of natural language text, created for humans. Large amounts of this
information could be naturally stored (and queried) in structured form.

4.3.1 Basic Techniques

We distinguish three kinds of approaches to access structured data con-
tained in text documents: relationship extraction from natural language
text, extraction of tables or infoboxes, and knowledge base construc-
tion. In a sense, the approaches build on each other, which is why we
describe them in this order.
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For each of the three approaches, we describe the state-of-the-
art systems and performance in Sections 4.3.2 - 4.3.4. For a holistic
overview of the whole field of information extraction from text we refer
to the excellent survey from Sarawagi [2008].

Relationship Extraction from Natural Language Text

Relationship extraction aims at extracting subject-predicate-object tu-
ples from a given collection of natural language text. Consider the fol-
lowing sentence from Wikipedia:

Aldrin was born January 20, 1930, in Mountainside Hospital, which
straddles both Glen Ridge and Montclair

In basic relationship extraction, the searched relation is part of the
input. For example, extract all triples for the place of birth relation
from a given text. For the sentence above such a triple would be:

Buzz Aldrin place of birth Glen Ridge

The subject and object may or may not be linked (one also says:
grounded) to a matching entity from a given knowledge base (in the
example they are: we use the names from an – imaginary in this case –
knowledge base, not from the original sentence). Since the relation was
given, the predicate is easily grounded. Depending on the verb, there
may be multiple objects (in the example, there is just one).

Banko et al. [2007] introduced Open Information Extraction (OIE),
where the goal is to extract as many tuples as possible (for any relation)
from the given text. For the example sentence above, a typical OIE
system would extract:

Aldrin was born Glen Ridge

Unlike for the triple above, the subject and, especially, the predicate are
not grounded, but are simply expressed using words from the sentence.

Specialized Extraction

Web documents often contain additional structure in the form of
markup for some of the contents. Two notable such sub-structures
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are tables and Wikipedia infoboxes. Tables are interesting because a
lot of structured information contained in text is formatted as tables.
Balakrishnan et al. [2015] report that they have indexed over a hun-
dred million HTML tables that contain interesting structured data.13
Infoboxes are interesting because Wikipedia covers a lot of general-
purpose knowledge with high quality. In Section 4.3.3 below, we discuss
several systems developed for these sub-structures.

There is also vast literature on domain-specific extraction, in par-
ticular, for the life sciences. For example, extract all pairs of proteins
(subject and object) that interact in a certain way (predicate) from a
large collection of pertinent publications. The main challenge for such
systems is domain-specific knowledge (e.g., the many variants how pro-
tein names are expressed in text), which is beyond the scope of this
survey.

Knowledge Base Construction

Basic extraction processes, as described in the previous two subsections,
yield a (typically very large) collection of elements of structured data,
often triples. To obtain a knowledge base, as described in Section 2.1.2,
two challenging steps are still missing: entity resolution and knowledge
fusion, which we briefly explain here.

For entity resolution, sometimes also called entity de-duplication,
strings referring to the same entity must be mapped to a unique iden-
tifier for that entity. For example, the extraction process might yield
the two triples:

Buzz Aldrin born in Glen Ridge
Aldrin born in Montclair

Here, the two subjects are different strings but refer to the same entity.
Depending on the extraction process, this might also happen for the
predicates.

For knowledge fusion, different triples might contain conflicting or
complementary information, which needs to be resolved or unified. For
the two triples above, both provide correct information in a sense (the

13Note that HTML tables are often used in web pages merely for formatting.
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hospital where Aldrin was born straddles both Glen Ridge and Mont-
clair). A system might also choose to discard one triple (because, in
this case, place of birth is a functional relation, that is, for each subject
there can be only one “true” object).

An excellent overview of the creation of state-of-the-art knowledge
bases is given in the tutorial by Bordes and Gabrilovich [2015].

4.3.2 Systems for Relationship Extraction from Text

Early approaches to relationship extraction make use of hand-crafted
rules or patterns. A classical example is the pattern NP such as NP,
which if matched in a text likely points to a hyponomy relation between
the two noun phrases [Hearst, 1992].

The next generation of systems was based on supervised classifi-
cation using linguistic features such as phrase chunks and dependency
paths [Zhou et al., 2005; Fundel, Küffner, and Zimmer, 2007] or tree
kernels [Zelenko, Aone, and Richardella, 2003]. Zhou et al. [2005] re-
port 55.5% F-measure (63.1% precision and 49.5% recall) over a set of
43 relations on a corpus of the NIST Automatic Content Extraction
(ACE) program.14 Again, we refer to the survey by Sarawagi [2008] for
a good overview.

A common problem for supervised approaches is that labeled train-
ing data is required for each relation to be extracted. Therefore, recent
approaches make use of distant supervision [Mintz et al., 2009] to de-
rive (noisy) training data. The idea is to find training examples for
each relation, by finding sentences in which entities, that are known
to be in the given relation, co-occur. This is possible with large-scale
public domain knowledge bases like Freebase, covering many relations
and entities, and a large text corpus, where mentioned entities have
been identified. Note that distant supervision is a technique that can
be applied for other tasks as well. In general, whenever noisy training
data can be derived using an authoritative source, one can speak of
distant supervision.

Of course, the assumption that co-occurring entities are in the given
relation does not always hold. For example, the entities Neil Armstrong

14https://www.ldc.upenn.edu/collaborations/past-projects/ace

https://www.ldc.upenn.edu/collaborations/past-projects/ace
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and Wapakoneta can co-occur in a sentence because it states that Arm-
strong was born in Wapakoneta or because he took flying lessons there.
Hence, recent approaches focus on better learning from this kind of
noisy data [Riedel, Yao, and McCallum, 2010; Hoffmann et al., 2011;
Surdeanu et al., 2012].

There is no standard annual benchmark for evaluation, and results
differ based on the considered relations and used corpus. The much
compared-to work by Hoffmann et al. [2011] reports around 60% F-
measure (72.4% precision and 51.9% recall) across all extracted rela-
tions.

The first approaches to Open Information Extraction (OIE) mainly
used patterns over shallow NLP, e.g., part-of-speech tags. Given a set of
seed entities that are in a specified relation, TextRunner learns surface
patterns from a text corpus and the initial bootstrap set is enriched
with additional entities [Yates et al., 2007]. Later systems combined
manually crafted rules with classifiers learned via this bootstrapping
process, e.g., ReVerb [Fader, Soderland, and Etzioni, 2011; Etzioni et
al., 2011].

More recent systems tend to utilize deeper NLP (dependency or
constituent parses), e.g., OLLIE [Mausam et al., 2012] learns patterns
on dependency parses. The currently best approaches use manually
crafted rules over deep NLP, notably ClausIE [Corro and Gemulla,
2013] and CSD-IE [Bast and Haussmann, 2013] (extended by Bast and
Haussmann [2014] to make triples more informative). Both systems
report around 70% of correct extractions with around twice as many
correct extractions as OLLIE [Mausam et al., 2012].

Triples from OIE systems can be used for semantic search in a va-
riety of ways. In [Fader, Zettlemoyer, and Etzioni, 2013], the triples
are searched directly, with parts of the query being matched to parts
of the triples, making extensive use of paraphrases. This approach
only works when the elements from the result sets correspond to
individual triples. A demo of this kind of search is provided under
http://openie.allenai.org. In [Bast et al., 2014b], triples are used
to establish semantic context (which entitites and words “belong to-
gether”) in semi-structured search on combined data; the system is

http://openie.allenai.org
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described in Section 4.6.2. In principle, OIE triples could also be used
for knowledge base construction. However, all of the systems described
in Section 4.3.1 below work with a fixed set of relations. This takes
away the burden of the problem of predicate name resolution (which
is hard, see Section 4.8.1). Additionally, the schema of the knowledge
base provides a filter on which triples are actually useful. For example,
OIE systems also extract triples like

John cheered for his team

that are usually not desirable to include in a knowledge base.

4.3.3 Systems for Specialized Extraction

WebKB [Craven et al., 1998] was one of the first systems to extract
triples from hyperlinked documents, namely the website of a computer
science department. In their approach, web pages stand for entities (for
example, the homepage of a person stands for that person) and links
between web pages indicate relations (for example, a link between a
person’s homepage and the department homepage is a strong indicator
that that person works in that department). The correspondence be-
tween web pages and entities is learned in a supervised fashion using a
Naive Bayes classifier with standard word features. Relations are also
learned using FOIL (rule-based, supervised learning) with link paths
(for example, a link from a person to a department) and anchor text (for
example, the word department in the anchor text) as features. In their
evaluation, 450 instances of 6 classes are classified with 73% precision
and 291 instances of 3 relations are extracted with 81% precision.

EXALG [Arasu and Garcia-Molina, 2003] is a system for gathering
knowledge from websites that fill templates with structured data. The
goal is to deduce the template without any human input, and then use
the deduced template to extract data. Mapping the extracted data to
an existing ontology is not part of the system. Technically, the system
works in two stages. In the first stage, it collects tokens that occur
(exactly) equally often and thus indicate a template (e.g., a label like
Name:). In the second stage, the data values are extracted. These are
expected to be found between the re-occurring tokens from stage one.
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Limaye, Sarawagi, and Chakrabarti [2010] present a system that ex-
tracts structured information from tables contained in web documents.
In a preprocessing step, for each table, its cells, columns, and col-
umn pairs are mapped to entities, types, and relations from the YAGO
knowledge base. For example, consider a table with two columns: names
of persons and their birth place. The cells are mapped to particular
persons and places, respectively, the columns are mapped to the types
person and location, and the column pair is mapped to the relation
born in. The mappings are learned using features such as: the simi-
larity between the entity name and the text in the cell, the similarity
between a relation name and a column header, and whether entity pairs
from a labeled relation are already in this relation according to YAGO.
WebTables [Cafarella et al., 2008] is a system for finding web tables in
the first place. For example, given the keyword query city population,
find tables on the Web containing information about cities and their
population.15

4.3.4 Systems for Knowledge Base Construction

YAGO [2007] is a knowledge base originally obtained from Wikipedia’s
infoboxes and from linking Wikipedia’s rich category information to
the WordNet [Miller, 1992] taxonomy using basic NLP techniques. For
example, the Wikipedia category German Computer Scientists can be
(easily) linked to the WordNet category Computer Scientist, and from
the WordNet taxonomy one can then infer that an entity with that cat-
egory is also a Scientist and a Person. More recent versions of YAGO
also contain statements from matching patterns in text, as well as ex-
tensive spatial and temporal information [Hoffart et al., 2013].

DBpedia [Auer et al., 2007] is a community effort to extract struc-
tured information from Wikipedia. The most important part are tem-
plates that extract structured data fromWikipedia infoboxes. However,
there are also other extractors, including some that harvest informa-
tion from full text using NLP techniques [Lehmann et al., 2015]. For
example, there is an extractor that infers the gender of a person from
the usage of pronouns in the person’s article.

15WebTables is used in several Google products; see [Balakrishnan et al., 2015].
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The Never-Ending Language Learner (NELL) [Carlson et al., 2010;
Mitchell et al., 2015] is a system that constructs a knowledge base
from the Web in a staged fashion, where previously learned knowledge
enables further learning. NELL has been running 24 hours/day since
January 2010, and so far has acquired a knowledge base with over 80
million confidence-weighted statements. It started with a small knowl-
edge base that defines a basic ontology (that is, a set of types and
predicates of interest) and a handful of seed examples. In each cycle,
the current knowledge base is used to train several components, which
are then used to update the knowledge base. These components in-
clude: relationship extraction (see Section 4.3.2), removing mutually
exclusive statements (see Section 4.3.1), and inference modules that
generate new statements (if two people have the same parents, they
should also be in a sibling relationship).

Google’s Knowledge Vault [Dong et al., 2014] is a web-scale prob-
abilistic knowledge base that combines extractions from web content
with knowledge derived from existing repositories. Knowledge Vault
contains three major components. First, triple extractors that utilize
distant supervision using basic NLP features derived from POS tagging,
NER+NED, dependency parsing, and co-reference resolution (see Sec-
tion 3). Second, graph-based priors that predict possibly missing triples
(with a probability) based on what is already stored in the knowledge
base. For example, one can infer a missing instance of a sibling rela-
tion, if two persons have the same parent. Missing parent triples can
also be hinted at by a sibling triple, but with less confidence as the
other way round. These predictions are made without manually speci-
fied rules. The final component is knowledge fusion that computes the
probability of a triple being true, based on agreement between differ-
ent extractors and priors. According to [Bordes and Gabrilovich, 2015],
Knowledge Vault contained 302M high-confidence facts in 2015.

DeepDive [Zhang, 2015; Wu et al., 2015] provides the basic building
blocks for knowledge base construction systems. An initial knowledge
base and a text corpus are required. Users of DeepDive have to provide
extractors, training examples, and rules. Extractors can be off-the-shelf
tools or tailor-made and extract entity occurrences from the text (as
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offsets) and whatever else might be a useful feature: POS tags, de-
pendency parses, etc. Training examples are typically obtained using
distant supervision (explained in Section 4.3.2), but can also be pro-
vided manually. Rules can state something like “if a person smokes, the
person is likely to have cancer”. DeepDive then learns weights for those
rules and performs inference without the developer having to worry
about the algorithmic intricacies. Therefore, it creates a probabilistic
model and jointly learns: (1) optimal weights for the user-defined rules,
and (2) probabilities for candidate triples to be added to the knowledge
base. In the example above, smoking makes cancer more probable, but
that does not mean every smoker necessarily has cancer. The weight for
that rule is learned from existing data and, together with evidence from
the text (typical patterns or formulations), determines the confidence
of new statements that might be added to the knowledge base.

Angeli et al. [2014] present a system based on DeepDive. This sys-
tem was the best performing system at the 2014 TAC-KBP slot filling
task [Surdeanu and Ji, 2014], which is described below. Distant su-
pervision is performed with Freebase as a source of training data. To
improve upon this, a manual feedback round is added to find features
that are good indicators of the relation or not.

4.3.5 Benchmarks

For the basic task of relationship extraction, there is no widely agreed-
upon benchmark. Rather, each of the systems described in Section
4.3.2 comes with its own benchmark (as briefly summarized above).
The likely reason is the many variants of the extraction task: which
relations to extract (fixed subset or open), the subjective judgment
which triples are actually entailed by the text (and hence counted as
correct), whether to extract triples or n-tuples, optimize for precision
or for recall, etc.

Since 2009, the TAC conference series has a Knowledge Base Pop-
ulation (KBP) track. Overview papers from 2010 to 2014 are available
via the conference’s website: [Ji et al., 2010; Ji, Grishman, and Dang,
2011; Mayfield, Artiles, and Dang, 2012; Surdeanu, 2013; Surdeanu
and Ji, 2014]. Over the years, KBP has always featured two tasks that
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are crucial to knowledge base construction: Entity Linking (see Section
3.2), and a so-called Slot Filling task, where missing facts about enti-
ties are retrieved and thus these slots are filled in a knowledge base.
Since 2012, KBP also includes a Cold Start task, where a knowledge
base is constructed from scratch and then evaluated as a whole.

The slot filling task is most relevant to this section. First of all, it
evaluates the main aspect of knowledge base construction: to retrieve
facts from a text corpus. Second, it is an example for searching with
structured queries on text itself. The goal of the task is, given an en-
tity (e.g., a particular person) together with the names of a number
of relations (e.g., countries of residence), compute the missing objects
(e.g., the countries of residence of the given person). All of them are
attributes of either persons or organizations. Each query contains the
name of the entity, its type (person or organization), and a link to one
occurrence in the corpus of the task.

The text corpus consists of documents from multiple sources, with
newswire text and web documents (1 million documents each) making
up the biggest part. The knowledge base includes nodes for entities
based on a dump of the English Wikipedia from October 2008. Results
are evaluated against manually judged extractions based on pooling.
Annotations from previous years are provided as additional training
data to facilitate the use of the reference knowledge base.

The slot filling task is consistently lively with 15, 15, 11, 19, and 18
participants over the years. The best performing system in 2014 is the
system by Angeli et al. [2014] described above. The system achieves
37% F-measure with 55% precision and 28% recall.

The cold start task introduced in 2012 has become its own track
and replaced the classic KBP track in 2015 [Mayfield and Grishman,
2015]. Differently from the other tasks, no knowledge base is given as
input. Instead, it is built from scratch using a given document collec-
tion and a predefined schema. This collection consists of 50K English
documents from newswire text and discussion forum posts. According
to the schema, systems have to recognize person, organization, and
geopolitical entities (entity discovery task) , their relations (slot filling
task) in the text corpus, and populate a knowledge base.
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Also in 2012, the TREC conference series introduced a Knowledge
Base Acceleration (KBA) track [Frank et al., 2012; Frank et al., 2013;
Frank et al., 2014]. The streaming slot filling task is similar to the slot
filling task of KBP, except that the data is given as a stream (with time
stamps for each document), and the knowledge about entities evolves
over time. As the stream of documents progresses, the entities change
and evolve, so KBA systems must detect when vital, new information
appears that would motivate an update to the knowledge base. The
data comes from the Stream Corpus (see Table 2.1). Systems are eval-
uated by similarity between their slot fills and those found by humans
(using cosine similarity between word vectors when taking all slot fills
as bags of words). The best system [Qi et al., 2014] achieves a similar-
ity of 61%. It makes use of training data from the non-streaming TAC
KBP task (described above) to learn patterns on dependency parses of
sentences (see Section 3.3).
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4.4 Keyword Search on Knowledge Bases

Data A knowledge base, as described in Section 2.1.2

Search Keyword search, as described in Section 2.2.1
The query is a sequence of (typically few) keywords;
the result is a SPARQL query or a ranked list of
matching items from the knowledge base

Approach Match keywords to entities from the knowledge
base; generate candidates for SPARQL queries from
these matching entities; rank candidate queries us-
ing graph, lexical, and IR measures; some overlap
with the techniques from Section 4.8

Strength Easier access to structured data for simple queries

Limitation Is bound to fail for complex search intents that can-
not be adequately (unambiguously) expressed by a
keyword query

The main strength of a knowledge base is that even complex queries
can be asked with precise semantics. The main drawback is that it is
challenging to formulate these queries. For arbitrarily complex search
requests, a complex query language is inevitable. However, for relatively
simple search requests, a simpler kind of search is feasible. Keyword
search has the strong benefit of being an established search paradigm
that users are already accustomed to.

There is a small overlap with Section 4.8 on Question Answering
on Knowledge Bases. According to our discussion at the beginning of
Section 2.2, we distinguish systems by technique and not by the ap-
parent form of the query. The core of the approaches in this section
is to match keywords to entities and then find small subgraphs in the
knowledge base connecting these entities. The approaches in Section
4.8 go further, for example, by also trying to match relation names, or
by considering grammatical structure.
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4.4.1 Basic Techniques

Systems for keyword search on knowledge bases, or more generally on
relational databases, view the data as a graph. For knowledge bases, the
graph structure is already given, for relational databases, it is induced,
e.g., by foreign key relations. Keywords are then mapped to nodes in
this graph. Typically, an inverted index over the (words of the) en-
tity, class, or relation names is used. This allows to efficiently match
keywords to nodes of the graph during run-time. Using standard tech-
niques as described in Section 4.1, word variants and synonyms can be
matched as well; for example, matching the keyword cmu to a knowl-
edge base entity Carnegie Mellon University.

A problem is that keyword queries might mention relations differ-
ently from how they are represented in a knowledge base or might not
mention them at all. For example, the keyword query films by francis
ford coppola doesn’t explicitly mention a directed relation. Therefore,
systems try to connect the elements that were identified via the key-
words, to form a connected (sub-)graph. This can be done by exploring
the neighborhood of identified elements and finding the smallest (span-
ning) tree connecting all elements. Often, this is an instance of the
Steiner tree problem, which is NP-complete. Hence, a lot of work tries
to find efficient and good approximations. From the matched graph, a
structured query can be derived, for example, by replacing identified
classes with result variables.

Because words from the query can match several components of the
graph, the translation results in several candidate queries which need to
be ranked. Techniques for ranking these make use of two main factors:
the relevance and the structure of the matching (sub-)graph. For rele-
vance, ranking functions from information retrieval (see Section 4.1 on
Keyword Search on Text) can be adapted to this setting, e.g., by assum-
ing that each matched subgraph corresponds to a virtual document. In
addition, the popularity of matching nodes (for example, derived via
PageRank) and the quality of the keyword mappings (e.g., via the Lev-
enshtein distance) can be considered. The structure of the matching
graphs is incorporated, for example, by ranking smaller graphs higher.
The intuition behind this is that simpler queries are more likely to be
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correct. Similarly, the number of joins of the corresponding query can
be considered (as a proxy for query complexity).

To improve usability, some systems also include user feedback in the
translation process. This is done, for example, by suggesting keyword
completions that lead to results, or by allowing the user to select the
correct interpretation for each keyword (when several are possible).

Below, we first introduce systems designed for keyword queries on
general relational databases, followed by systems specifically designed
for knowledge bases.

4.4.2 Systems for Keyword Search on Relational Databases

Keyword search on relational databases is an actively researched field
on its own. The survey by Yu, Qin, and Chang [2010] gives a good
overview. Coffman and Weaver [2010] and Coffman and Weaver [2014]
perform a qualitative evaluation of many state-of-the-art systems on a
benchmark they introduce for that purpose (see below).

DBXplorer [Agrawal, Chaudhuri, and Das, 2002], DISCOVER
[Hristidis and Papakonstantinou, 2002] and BANKS [Bhalotia et al.,
2002] were the first prominent systems for keyword search on relational
databases. DBXplorer and DISCOVER use the number of joins to rank
answers, while BANKS tries to find the smallest matching subgraph.
Subsequent work refines and combines the techniques mentioned above
to improve results.

Tastier [Li et al., 2009] includes the user in answering keyword
queries. In addition to translating to a SQL query it provides context-
sensitive auto-completion of keyword queries, similar to what is de-
scribed in [Bast and Weber, 2006]. This is achieved via specialized
data structures (mainly a trie over words in the database) that allow
computing completions of keywords that lead to results.

GraphLM [Mass and Sagiv, 2012] applies language models for rank-
ing. Keyword queries are matched to subgraphs which correspond to
a possible answer. Nodes in each subgraph have text associated with
them via different fields: title (e.g., names), content (all attributes and
their values) and structural (only attribute names). This allows learn-
ing a language model for each subgraph and field, which can then be
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used to compute, e.g., p(q|atitle), the probability that a query q is gen-
erated by the title field of subgraph a. Ranking also incorporates node
and edge weights. Intuitively, nodes with high in-degrees and unique
edges are more important. The system outperforms all of the previ-
ous systems on the benchmark by Coffman and Weaver [2010] that is
described in Section 4.4.2 below.

4.4.3 Systems for Keyword Search on Knowledge Bases

SemSearch [Lei, Uren, and Motta, 2006] was one of the first systems for
keyword queries on knowledge bases. It accepts keyword queries with
some additional structure, e.g., there is syntactic sugar for including
types in queries and operators AND and OR are supported. An inverted
index is used that maps keywords to classes, instances and properties of
the knowledge base. The matching elements are combined in all possible
ways using several query templates to obtain a structured query in
SeRQL (a predecessor of SPARQL).

Tran et al. [2007] suggest a similar method to translate keyword
queries to SPARQL queries. Keywords are mapped to entities (via their
URIs and labels) of the knowledge base via an inverted index (imple-
mented with Lucene). Starting at the matched entities, the knowledge
base is explored in order to find subgraphs connecting the matched
elements. The matching subgraphs are ranked by the lengths of their
paths (with the intuition that smaller lengths correspond to better
paths) and translated into a SPARQL query.

SPARK [Zhou et al., 2007] uses more sophisticated techniques, e.g.,
synonyms from WordNet and string metrics, for mapping keywords to
knowledge base elements. The matched elements in the knowledge base
are then connected by finding minimum spanning trees from which
SPARQL queries are generated. To select the most likely SPARQL
query, a probabilistic ranking model that incorporates the quality of
the mapping and the structure of the query is proposed.

Zenz et al. [2009] follow an interactive and incremental approach
to translate a keyword query into a SPARQL query. For each keyword
provided by the user, a choice of a possible interpretation (with respect
to the final SPARQL query) is presented. When the user selects an
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interpretation for one keyword, the number of possible interpretations
of the remaining keywords is reduced. This allows to incrementally
construct complex SPARQL queries from keyword queries.

Hermes [Tran, Wang, and Haase, 2009] can search on multiple,
possibly interlinked, knowledge bases.16 In a preprocessing step, the
knowledge bases are partly unified using maps between the various el-
ements of the knowledge bases and their respective ontologies. Hermes
also precomputes a map from potential search terms to elements of the
knowledge bases. Keyword queries can then be mapped to candidate
subgraphs in the resulting meta knowledge base. The candidates are
ranked, preferring shorter paths containing important elements which
match the keywords well. The system is evaluated on a combination of
seven knowledge bases (including DBpedia, Freebase, and GeoNames,
see Table 2.2) with a total of around 1.1B triples.

Pound et al. [2012] focus on keyword queries from the logs of the
Yahoo web search engine. Keywords of a query are first tagged as en-
tity, type, or relation mentions. The mentions are then arranged by
mapping them to one of ten structured query templates. Both steps
are learned via manually annotated queries from a query log using
straightforward machine learning. In a final step, standard techniques
as described above are used to map the mentions to entities and rela-
tions of a knowledge base. The system is evaluated using 156 manually
annotated queries from the Yahoo query log and YAGO as a knowledge
base.

4.4.4 Benchmarks

Coffman and Weaver [2010] introduce a benchmark on three datasets:
selected data from Mondial17 (geographical knowledge), IMDB, and
Wikipedia, respectively. For each dataset, 50 queries were manually
selected and binary relevance judgments for results are provided by
identifying all possible correct answers. Evaluation metrics are those

16As such, it seems that Hermes should be described in Section 4.5 on Keyword
Search in Combined Data. However, due to the unification process, the system is
technically more similar to the systems in this section.

17http://www.dbis.informatik.uni-goettingen.de/Mondial
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typical for information retrieval: precision at 1, mean reciprocal rank,
and mean average precision. The authors evaluate nine recent state-
of-the-art system on this benchmark. Many previous claims cannot be
corroborated, which shows the shortcomings of previous evaluations.
The evaluation also shows no clear winner, but that most systems score
comparably on average, with different systems performing best on dif-
ferent datasets. In a follow-up evaluation, the GraphLM system [Mass
and Sagiv, 2012] discussed above produced the consistently best results.

Balog and Neumayer [2013] assembled queries from a variety of
previous benchmarks by mapping relevant entities to DBpedia. Some
of these benchmarks were originally designed for semantic web data
(like BTC; see Table 2.3), but the best systems mostly return results
from the (comparably tiny) DBpedia part only. The new benchmark
includes keyword queries (e.g., from the TREC Entity Tracks; see Sec-
tion 4.5.3) as well as natural language queries (e.g., from QALD-2;
see Section 4.8.5). Evaluation metrics are MAP (mean average preci-
sion) and precision at 10. Several baselines have been evaluated on the
benchmark but adoption is slow. The current best performing system
is from Zhiltsov, Kotov, and Nikolaev [2015], which achieves a MAP of
23%, an absolute improvement of 4% over one of the baselines.

In theory, benchmarks for question answering on knowledge bases
(discussed in Section 4.8.5) could also be used by transforming natural
language queries into keywords. In fact, some of those benchmarks also
provide keyword versions of the questions. Obviously, this will fail when
questions are more complex than what a keyword query can reasonably
express.
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4.5 Keyword Search on Combined Data

Data Combined data, as described in Section 2.1.3
Specifically here, text with entity annotations or
semantic web data

Search Keyword search, as described in Section 2.2.1
Results are ranked lists of entities, maybe aug-
mented with text snippets matching the query; op-
tionally restricted to entities of a given type

Approach For each entity, create a virtual text document
from (all or a selection of) text associated with it;
search these documents using techniques from Sec-
tion 4.1; alternatively, first search given text using
techniques from Section 4.1, then extract entities
from the results and rank them

Strength Easy-to-use entity search on combined data; works
well when the data provides sufficiently strong rel-
evance signals for the keyword, just as in keyword
search on text

Limitation Similar precision problems as for keyword search
on text; see the box at the beginning of Section 4.1

Many keyword queries actually ask for an entity or a list of entities
instead of a list of documents. In a study by Pound, Mika, and Zaragoza
[2010] on a large query log from a commercial web-search engine, 40%
of queries are for a particular entity (e.g., neil armstrong), 12% are for
a particular lists of entities (e.g., astronauts who walked on the moon),
and 5% are asking for a particular attribute of a particular entity (e.g.,
birth date neil armstrong).

Section 4.4 discusses one option for such queries: keyword search on
knowledge bases. In this section, we consider combined data, which for
keyword search is typically either semantic web data (multiple knowl-
edge bases with different naming schemes and extensive use of string
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literals; see Section 2.1.3) or text with entity annotations (this is the
simplest form of text linked to a knowledge base; also see Section 2.1.3).

4.5.1 Basic Techniques

There are two prevalent approaches: search in virtual documents (one
per entity) and standard keyword search on text followed by an entity
extraction and ranking step.

In the virtual document approach, all or some of the data related
to a particular entity (relation names, object names, string literals) is
collected in a single virtual document for that entity. This makes par-
ticular sense for semantic web data, where the extreme heterogeneity
of the data makes a structured search hard. Also, in some applications,
there is a document per entity in the first place. A notable example is
Wikipedia, which is used in all of the INEX benchmarks, discussed in
Section 4.5.3 below. Given one document per entity (virtual or real),
the result corpus can be searched using techniques from Section 4.1.
The ranking of this kind of documents is discussed in detail in Section
5.1.1. Efficient indexing is discussed in Section 5.2.1. All of the systems
described in Section 4.5.2 below are based on the virtual document
approach, and they are all for semantic web data.

In the search and extract approach, the first step is keyword search
on text. Many systems use one of the off-the-shelf systems from Section
4.1.2 for this task, or a web search engine like Google. In a second step,
entities are extracted from the results (either from the full documents
or only from the result snippets). This is trivial for collections like
FACC (see Table 2.3), where entity annotations are part of the data.
In a third step, entities are ranked. This is where the intelligence of
systems using this approach lies. We hence describe them in Section
5.1.2 from our section on Ranking.

In both of these approaches, entity resolution (that is, different
names or URIs for the same entity) is a challenge. The Semantic Web
allows users to provide explicit links between such entities, notably
via relations such as owl:sameAs or dbpedia:redirect/disambiguate. Not
surprisingly, making use of such links can considerably improve result
quality [Tonon, Demartini, and Cudré-Mauroux, 2012]. Section 5.1.1
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describes a method that uses language models, which are normally
used for ranking, for automatically establishing owl:sameAs links in
semantic web data. Section 5.1.3 is about ranking interlinked entities
(obtained from a semantic web search) in general, where owl:sameAs
links also influence scores.

A special case of keyword search on combined data is expertise
retrieval, where the goal is to retrieve a list of experts on a given topic.
For example, find experts on ontology merging from a collection of
W3C documents. The experts are persons, and it is either part of the
problem to identify their mentions in the text (this is an instance of
NER+NED; see Section 3.2) or these annotation are already provided.
Note that the underlying knowledge base is then a simplistic one: just
the entities (persons) and their names. The typical approaches are via
virtual documents or via search and extract, as discussed above. A
recent survey is provided by Balog et al. [2012].

4.5.2 Systems (all for Semantic Web Data)

Guha, McCool, and Miller [2003] describe an early prototype for search
on the Semantic Web. At that time, hardly any semantic web data was
available yet. The data was therefore artificially created via scraping18
from a small selection of websites. Their main use case is single-entity
search, that is, part or all of the query denotes an entity. Aspects dis-
cussed are disambiguation of entity names in the query (user inter-
action is suggested as a solution), disambiguation of entity names in
matching documents (this is essentially the NER+NED problem from
Section 3.2), and which of the usually many triples about the entity to
show (various simple heuristics are discussed). The final result about
the matching entity is shown in an infobox on the right, similar to
how the large web search engines do it nowadays (except that those in-
foboxes do not come from the Semantic Web, but rather from a single,
well-curated knowledge base).

Swoogle [Ding et al., 2004] was one of the fist engines to provide key-
word search on the Semantic Web. Swoogle indexes n-grams to leverage

18Scraping refers to extracting structured data from ordinary websites, often via
simple web-site specific scripts.
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the information hidden in the often long URIs of entity and relation
names. Also, an n-gram index enables approximate search. The index is
augmented by metadata, so that search results can be restricted by cer-
tain criteria (e.g., to results in a particular language). The system also
comprises a crawler and custom ranking function. As of this writing,
there was still a demo available at http://swoogle.umbc.edu.

Falcons [Cheng, Ge, and Qu, 2008] provides a similar functionality
as Swoogle, with the following additional features. The search can be
restricted to entities of a given certain type (e.g., to type conference
when the query19 is beijing 2008 ). The search can also be restricted to
a particular knowledge base (e.g., to only DBpedia). In the (default)
entity-centric view, matching triples are grouped by entity, and for each
entity a selection of the matching triples are displayed. Different URIs
from the same entity are not merged. As of this writing, there was still
a demo available at http://ws.nju.edu.cn/falcons.

Sindice [Oren et al., 2008] offers similar functionality on a dis-
tributed very large scale by using Hadoop and MapReduce. It also
inspects schemata to identify properties that uniquely identify an en-
tity, e.g., foaf:personalHomepage, which allows retrieval based on the
property and its value. The system is not designed to be an end-user
application but to serve other applications that want to locate informa-
tion sources via an API. Unfortunately, as of this writing, the service
was no longer available.

Glimmer [Blanco, Mika, and Vigna, 2011] constructs a virtual doc-
ument for each entity using fielded BM25F. The particular index is
described in Section 5.2.1. This allows customizing the contribution
weight of contents from certain data sources and relations. Both qual-
ity and performance are evaluated on the WDC dataset (see Table 2.3)
with queries from the SemSearch Challenge 2010 (see Section 4.5.3 be-
low). Queries are keywords, possibly annotated by fields or relations
they should match. As of this writing, a live demo is available under
http://glimmer.research.yahoo.com.

19The WWW’08 conference, where this paper was presented, took place in Bei-
jing.

http://swoogle.umbc.edu
http://ws.nju.edu.cn/falcons
http://glimmer.research.yahoo.com
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As of this writing, there is no single system that searches the totality
of semantic web data with a coverage and result quality even remotely
comparable to that of the large commercial web search engines. This
is largely due to the fact that, although the data is large in size, the
amount of information contained is tiny compared to the regular web.
It is also noteworthy that approaches with good results, like Glimmer
above, boost high-quality contents like DBpedia. Indeed, as of this
writing, all major commercial systems rely on internal well-curated
knowledge bases; see Section 4.8 on Question Answering on Knowledge
Bases.

4.5.3 Benchmarks

There are three notable series of benchmarks for keyword search on
combined data, in particular, semantic web data: the TREC Entity
Track (2009 - 2011), the SemSearch Challenge (2010 and 2011), and
the INEX series of benchmarks (2006 - 2014). The QALD (Question
Answering on Linked Data) benchmarks are described in Sections 4.8.5
(Question Answering on Knowledge Bases) and 4.9.4 (Question An-
swering on Combined Data).

We remark that participation in these competitions was low (gen-
erally below 10 participating groups, sometimes only a couple of par-
ticipants). However, the datasets and queries continue to be used in
research papers related to semantic search.

TREC Entity Track (2009 - 2011): An overview of each of the
three tracks is provided in [Balog et al., 2009; Balog, Serdyukov, and
Vries, 2010; Balog, Serdyukov, and Vries, 2011]. A typical query is:

airlines that currently use boeing 747 planes

The central entity of the query (boeing 747 ) and the type of the target
entities (airlines) was explicitly given as part of the query. There were
two kinds of datasets: text (ClueWeb, see Table 2.1) and semantic web
data (BTC’10, see Table 2.3).20

20In the TREC Entity Track 2009, only ClueWeb’09 was used. In the TREC
Entity Track 2011, the Sindice dataset was used instead of BTC’10. However, the
Sindice dataset is no longer available, which is why we do not list it in Table 2.3.
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The best systems that worked with the BTC’10 dataset used the
virtual document approach described in Section 4.5.1 above. That is,
although the queries appear more as natural language queries (see the
example above), the processing is clearly keyword search style. Ac-
cording to our discussion at the beginning of Section 2, we make the
distinction between these two kinds of search by technique. This also
explains why we describe this benchmark in this section and not in
Section 4.9 on Question Answering on Combined Data.

The best system that worked with the ClueWeb’09 dataset used
the extract and search approach described in Section 4.5.1 above. It
is mainly about ranking, and hence described in Section 5.1.2 (right
at the beginning). Interestingly, the system chose to ignore the official
dataset and instead used Google Search for the initial retrieval step.

The best results for the main task (related entity finding, like for the
query above) were an nDCG@R of 31%, 37%, and 25% in 2009, 2010,
and 2011, respectively. The best result for the related task of entity list
completion (where some result entities are given) was a mean average
precision of 26% in 2010.

SemSearch Challenge (2010 and 2011): An overview over each of
these two challenges is provided in [Halpin et al., 2010] and [Blanco
et al., 2011]. In 2010, queries were keyword queries asking for a single
entity (for example, university of north dakota). In 2011, there were two
tasks: keyword queries for a single entity (like in 2010, but new queries)
and keyword queries for a list of entities (for example, astronauts who
landed on the moon). Both challenges used the BTC’09 dataset (see
Table 2.3).

The best approaches again construct virtual documents and use a
fielded index and corresponding ranking function. The winner in 2010
achieved a precision at 10 of 49% and a mean average precision of 19%.
In 2011, the best result for the single-entity task was a precision at
10 of 26% and a mean average precision of 23%. The best result for
the entity-list task was a precision at 10 of 35% and a mean average
precision of 28%.

INEX (2006 - 2014): INEX (Initiative for the Evaluation of XML
Retrieval) has featured several ad-hoc search tasks. The dataset was
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Wikipedia with an increasing amount of annotations, all represented in
XML; see Section 2.1.3 for an example. From 2006 - 2008, annotations
were obtained from Wikipedia markup (in particular: infoboxes, links,
and lists). In 2009, cross-references to entities from YAGO (see Table
2.2) were added to the Wikipedia links, as well as for each page as a
whole. In 2012, additional cross-references to DBpedia (see Table 2.2)
were added. The resulting dataset is Wikipedia LOD (see Table 2.3).

The goal of the early ad-hoc tasks (2006 - 2010) was similar to that
of the TREC ad-hoc tasks described in Section 4.1.3. Queries were
also similar, for example, olive oil health benefit (from 2013) or guitar
classical bach (from 2012). One notable difference was the focus on
the retrieval of (XML) elements rather than whole documents, and the
incorporation of the proper focus of these elements (not too large and
not too small) in the quality measure. See [Gövert et al., 2006] for an
overview paper on this aspect of XML retrieval.

The INEX Entity Ranking Track (2007 - 2009) is similar to the
TREC Entity Track from above: given a keyword query (describing
a topic) and a category, find entities from that category relevant for
that topic. For example, find entities from the category art museums
and galleries that are relevant for impressionist art in the netherlands
(from 2007).

The INEX Linked-Data Track (2012 and 2013) explicitly encour-
aged the use of the external knowledge bases (YAGO and DBpedia)
to which the Wikipedia content was linked. However, few participants
made use of that information and the results were inconclusive.

Our take on the usability of XML-style retrieval for semantic search
is as follows. XML shines for deeply nested structures, with a mix be-
tween structured and unstructured elements. Indeed, query languages
like XPath and XQuery are designed for precise retrieval involving com-
plex paths in these structures. However, datasets actively used in se-
mantic search at the time of this writing have a flat structure (triples
or simple links from the text to entities from the knowledge base; see
Tables 2.2 and 2.3). The core challenge lies in the enormous size and
ambiguity of the data (queries, text, and entity and relation names),
which is nothing where XML can specifically help.
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4.6 Semi-Structured Search on Combined Data

Data Combined data, as described in Section 2.1.3
Specifically here, text linked to a knowledge base

Search Structured search, as described in Section 2.2.2, ex-
tended with a keyword search component
Results are ranked lists of entities, maybe aug-
mented with matching text snippets or matching
information from the knowledge base

Approach Store data in an inverted index or extensions of it;
use separate indexes for the text and the knowledge
base or use tailor-made combined indexes; provide
special-purpose user interfaces adapted for the par-
ticular kind of search

Strength Combines the advantages of text (widely available)
and knowledge bases (precise semantics); good for
expert search and as a back end for question
answering

Limitation Queries with a complex structured part have the
same usability problems as described at the begin-
ning of Section 4.2

Since combined data contains both structured and unstructured el-
ements, it is natural that queries also contain a mix of structured and
unstructured elements. Simple text search extensions of SPARQL are
discussed already in Section 4.2. This section considers more sophisti-
cated extensions.

4.6.1 Basic Techniques

Text linked to a knowledge base allows searches for co-occurrences of
arbitrary keywords with arbitrary subsets of entities, as specified by a
structured query on the knowledge base. A simple example would be
to search for all politicians (all entities in the knowledge base with that
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profession) that co-occur with the keywords audience pope. This could
be expressed as an extended keyword query, where some keywords are
concepts from the knowledge base, for example:

type:politician audience pope

This kind of search can easily be supported by an inverted index, with
an artificial index item (like the type:politician) added for each mention
of a politician in the text. Alternatively, XML search engines supporting
languages like XPath or even XQuery could be used. However, this
would be cracking a nut with a sledgehammer; see the discussion at the
end of Section 4.5.3, after the description of the INEX benchmarks.

As a more complex example, consider the example query from the
introduction female computer scientists who work on semantic search.
This is naturally expressed as a structured query (that expresses the
knowledge base part) extended with a keyword search component (that
expresses the co-occurrence with the given keywords). In the syntax of
the Broccoli system, discussed below, this can be written as:

SELECT ?p WHERE {
?p has-profession Computer_Scientist .
?p has-gender Female .
?p occurs-with "semantic search" }

For this more general class of queries the simple annotation trick fails,
at least for a knowledge base of significant size. We then cannot anno-
tate each entity in the text with all the information that is available
about it in the knowledge base. The ways to index such data, as well as
their strengths and limitations, are discussed in detail in Section 5.2.2
on Semi-Structured Search Based on an Inverted Index.

It is important to understand the difference between a relation like
occurs-with and a simple text search extension like bif:contains dis-
cussed in Section 4.2.1. Consider the query above with the last triple
replaced by

?p has-description ?d . ?d bif:contains "semantic AND search"

That query requires each matching entity to stand in a has-description
relation to a string literal containing the desired keywords. This is



4.6. Semi-Structured Search on Combined Data 205

unlikely to be fulfilled by a typical knowledge base. In contrast, the
original query from above only requires that a matching entity co-
occurs with the given keywords somewhere in the text corpus. This is
realistic for a sufficiently large text corpus.

4.6.2 Systems

KIM [Popov et al., 2004] was one of the first systems to provide semi-
structured search on text linked to a knowledge base, as described
above. Results are documents that mention entities from the structured
part of the query as well as the specified keywords. The text is indexed
with Lucene (see Section 4.1.2), including for each entity an inverted
index of the occurrences of that entity in the text. The knowledge
base is indexed with Sesame (see Section 4.2.2). The results from the
two indexes are combined by computing the union of the inverted lists
of the entities matching the structured part of the query. This runs
into efficiency problems when the structured part matches very many
entities (for example, a structured query for just person).

Ester [Bast et al., 2007] provides similar functionality as KIM, but
achieves scalability with a special-purpose combined index, adapted
from [Bast and Weber, 2006]. The index also provides fast query sug-
gestions after each keystroke, for words from the text as well as for
elements from the knowledge base. The system was evaluated on a
variant of the Wikipedia LOD dataset (see Table 2.3).

Broccoli [Bast et al., 2012; Bast et al., 2014b] provides extended key-
word search as well as extended structured search; an example query
for the latter is given above. The structured part of the query is re-
stricted to tree-like SPARQL queries. Co-occurrence of entities from
the text with entities from the knowledge base can be restricted to the
semantic contexts from [Bast and Haussmann, 2013], as explained in
Section 4.3.1 on Relationship Extraction from Natural Language Text.
Interactive query suggestions are provided, and an elaborate user inter-
face is provided. Results can be grouped by entity, with matching text
snippets. A tailor-made index for the efficient support of these features
is provided, which is explained in Section 5.2.2. The system is evalu-
ated on a variant of the Wikipedia LOD dataset (see Table 2.3) with
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queries adapted from the TREC Entity Track 2011 and the SemSearch
Challenge 2011, as explained in Section 4.6.3 below. As of this writing,
a live demo is available: http://broccoli.cs.uni-freiburg.de.

Mìmir [Tablan et al., 2015] is an extension of KIM. Compared to
KIM, simple queries are implemented more efficiently (for example, a
search for cities that occur with certain keywords), and full SPARQL is
supported for the structured part of the query (though not particularly
efficiently when combined with keyword search). For the text corpus,
MG4J is used (see Section 4.1.2). The ranking function is customizable,
in particular, BM25 is supported (see Section 4.1.1). Results are match-
ing documents, grouping by entities is not supported. The software is
open source.

4.6.3 Benchmarks

There are no widely used benchmarks that are explicitly designed for
semi-structured search on combined data.

However, the benchmarks from Section 4.5.3 (TREC Entity Track,
SemSearch Challenge, and INEX) can be easily adapted for this sce-
nario. Namely, most of the queries of these benchmarks have a part
pertaining to information best found in a knowledge base and a part
pertaining to information best found in text. For example, for the query
astronauts who landed on the moon (SemSearch Challenge 2011, entity-
list task), the information who is an astronaut is best taken from a
knowledge base, whereas the information who landed on the moon is
best found in text. The semi-structured representation for this query
is similar to the example given in Section 4.6.1 above.

The Broccoli system, discussed in Section 4.6.2 above, has adapted
the queries from the TREC Entity Track 2009 (main task: related entity
finding) and the SemSearch Challenge 2011 (entity-list task) in this
manner. On a variant of the Wikipedia LOD dataset (Table 2.3), an
nDCG of 48% and 55%, respectively, is achieved.

The queries for the QALD (Question Answering on Linked Data)
benchmarks, which are described in Sections 4.8.5 and 4.9.4, can be
adapted in a similar way. QALD-5 features a track with explicitly semi-
structured queries; see Section 4.9.4.

http://broccoli.cs.uni-freiburg.de
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4.7 Question Answering on Text

Data Text documents, as described in Section 2.1.1

Search Natural language queries, as described in Section
2.2.3; the results are passages or statements from
the text that answer the question

Approach Derive suitable keyword queries and the answer
type from the question; extract answer candidates
from the (many) result snippets and rank them;
optionally use reasoning and an external general-
purpose knowledge base

Strength The most natural kind of queries on the most abun-
dant kind of data

Limitation Questions that require combination of facts not
found in the text; or questions with complex
structure

Question answering on text became popular in the early 1990s,
when large amounts of natural language texts started to become avail-
able online. With the advent of the world wide web, the field blossomed.
According to the scope of this survey, as explained in Section 1.2, we
here focus on so-called extractive question answering, where the desired
answers can be found in the text and no synthesis of new information
is required. Indeed, most research on question answering on text is of
exactly this kind.

4.7.1 Basic Techniques

Prager [2006] gives an excellent survey of the development of the field
until 2006. The survey by Kolomiyets and Moens [2011] focuses on
techniques (and less on complete systems) and surveys some more re-
cent research like co-reference resolution and semantic role labeling (as
discussed in Section 3.3).
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In 2007, the popular series of TREC Question Answering bench-
marks (described below) ended. In all issues, a single system, Lymba’s
PowerAnswer and its predecessors, beat the competing systems by a
large margin. We briefly describe that system below. At the time of this
writing, we still consider it the state of the art in (extractive) question
answering on text.

The field has since moved away from only text as a data source.
Just around the time of the last TREC QA benchmark, large general-
purpose knowledge bases like YAGO, DBpedia, and Freebase (see Table
2.1.2) started to gain momentum and comprehensiveness. This spawned
extensive research activity on question answering on such knowledge
bases, which we describe in Section 4.8 on Question Answering on
Knowledge Bases. Note that a question like:

what is the average gdp of countries with a literacy rate below 50%

is relatively easy to answer from a knowledge base, but very hard to an-
swer from text alone (unless the text contains that piece of information
explicitly, which is unlikely).

At about the same time, IBM started its work on Watson, aimed
at competing against human experts in the Jeopardy! game. Watson
draws on multiple data sources, including text as well as the knowledge
bases just mentioned. Therefore, we describe that work in Section 4.9
on Question Answering on Combined Data.21

Search engines like WolframAlpha or Google also accept natural
language queries, but as of this writing, the answers do not come from
text, but rather from an internal (well-curated) knowledge base; see
Subsection 4.8.4 of the section on Question Answering on Knowledge
Bases.

4.7.2 The START System

START [Katz, 1997; Katz, Borchardt, and Felshin, 2006] was the first
web-based question answering system. It is one of the few systems with

21John Prager, the author of the above-mentioned survey, was a member of the
team working on Watson.
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a reliable online demo22, which has been up and running continuously
since 1993 to this day. It answers natural language queries by first
extracting structured information (basically: nested subject-predicate-
object triples) from sentences and storing them in a knowledge base.
Compared to full-fledged knowledge base construction, as described in
Section 4.3 on Structured Data Extraction from Text, the constructed
knowledge base does not have a single consistent schema and is fuzzy.
The system answers questions by transforming them into the same
triple-like representation and matching them against the knowledge
base. Matched facts are then translated back to a natural language
sentence that is presented to the user.

4.7.3 The PowerAnswer System

We briefly describe Lymba’s PowerAnswer [Moldovan, Clark, and Bow-
den, 2007], the undisputed winner of the TREC Question Answering
track. The system can still be considered state of the art at the time of
this writing. In particular, its basic architecture is typical for a system
that does question answering on text.

Depending on the type of question (factoid, list, definition etc.), the
system implements different strategies. Each strategy has the following
main components:

Answer type extraction: determine the answer type of the query;
for example, the answer for who ... could be a person or organization,
but not a place or date.

Keyword query generation: generate one or more keyword queries,
which are then issued to a text search engine, with standard techniques
as described in Section 4.1.

Passage retrieval: retrieve passages from the documents matching
these keyword queries that could possibly be an answer to the question.

Answer extraction: extract potential answers from the retrieved
passages; rank those answers by a score that reflects the “relevance” to
and the degree of “semantic match” with the question.

22http://start.csail.mit.edu/index.php

http://start.csail.mit.edu/index.php
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The process involves subsystems solving many of the natural language
processing problems discussed in Section 3. In particular, answer ex-
traction often makes use of POS tagging, chunking, and named-entity
recognition and disambiguation. Particular kinds of entities relevant
for the kind of questions asked in the TREC benchmarks are events,
dates, and times.

In the TREC benchmarks, the answer is eventually to come from
the reference text corpus (typically AQUAINT, as described below).
However, PowerAnswer also issued keyword queries against external
sources like amazon.com, imdb.com, and Wikipedia to find candidate
answers. These were then used, in turn, to find correct answers in the
TREC collection.

Candidate answers are ranked using pre-trained language models
and scoring functions, using state-of-the-art techniques known from
keyword search on text as described in Section 4.1. PowerAnswer also
makes use of COGEX, a logic prover with basic reasoning capabilities,
to re-rank candidate answers. COGEX is similar to the inference en-
gines we describe in Section 5.4 on Inference and Reasoning (where
we restrict ourselves to publicly available systems). It generates a logic
form of the question and candidate answer and performs a proof by
contradiction. As part of the reasoning it also makes use of real world
knowledge (e.g., that Sumatra is a part of Asia) and natural language
statements (e.g., that the verb invent is a hyponym of create). The
proofs (if they succeed) output a confidence score, which depends on
the rules and axioms that were applied. The score is used as part of
ranking the candidate answers.

4.7.4 Benchmarks

The TREC Questions Answering Track ran from 1999 - 2007, with 9
issues altogether. There is a comprehensive overview article for each
year, describing the individual tasks as well as the participating sys-
tems and their results [Voorhees, 1999; Voorhees, 2000; Voorhees, 2001;
Voorhees, 2002; Voorhees, 2003; Voorhees, 2004; Voorhees and Dang,
2005; Dang, Lin, and Kelly, 2006; Dang, Kelly, and Lin, 2007]. Par-
ticipation was strong, with at least 20 participating groups, peaking
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in 2001 with 36 groups. Lymba’s PowerAnswer, described above, and
its predecessors participated and dominated the competition in each
year. For example, in 2007, PowerAnswer scored an accuracy of 70.6%
on factoid questions and of 47.9% on list questions with a runner-up
accuracy of 49.4% and 32.4%, respectively.

All tracks made use of the AQUAINT or AQUAINT2 text cor-
pus. The last two tracks also made use of the BLOG’06 corpus. These
datasets are described in Table 2.1.

The TREC Entity Tracks (2009 - 2011) featured entity-centric
search on ClueWeb (see Table 2.1) as one of their tasks. Overview pa-
pers and example queries are provided in Section 4.5 on Keyword Search
on Combined Data, since other tasks from these tracks used semantic
web data. The systems working on ClueWeb used similar techniques as
described for Lymba’s PowerAnswer above. However, the Entity Track
tasks additionally required that systems return an authoritative URL
for each result entity, and not just its name. This made the task con-
siderably harder.

In 2015, a new TREC LiveQA track was initiated, with the goal
to “revive and expand the [Question Answering track described above,
but] focusing on live questions from real users”. However, many of the
questions asked there can hardly be considered extractive. One of the
three examples questions from the track’s call for participation reads:

Is the ability to play an epic guitar solo attractive in a woman? Or do
you see it as something aggressive and a turn off?

Apart from being sexist, such questions usually require synthesis of new
information and are hence out of scope for this survey.
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4.8 Question Answering on Knowledge Bases

Data A knowledge base, as described in Section 2.1.2

Search Natural language queries, as described in Section
2.2.3; the result is a SPARQL query or a ranked
list of matching items from the knowledge base

Approach Generate candidates for SPARQL queries by ana-
lyzing the structure of the question and mapping
parts of the question to entities and relations from
the knowledge base; rank query candidates and ex-
ecute the top query to retrieve the answer

Strength User-friendly access to the growing amount of data
that is available in knowledge bases

Limitation Very hard for complex queries, especially when
the knowledge base is large; only a fraction of the
world’s information is stored in knowledge bases

Leveraging the rapidly growing amount of information in knowledge
bases via natural language queries is a relatively young field. There is
some overlap with Section 4.4 on Keyword Search on Knowledge Bases,
which is discussed at the beginning of that section. The difference be-
comes clearer when reading and comparing Subsection 4.4.1 from that
section and Subsection 4.8.1 below.

4.8.1 Basic Techniques

The goal of the typical systems from this section is the same as for
the typical systems from Section 4.4: translate the given question to a
(SPARQL) query that expresses what the question is asking for. The
basic mechanism is also similar to that described in Section 4.4.1: con-
sider a set of candidate queries (which stand for possible interpretations
of the question) and from that set pick the one that represents the given
question best. However, the way these candidate sets are generated and
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how the best query is selected from that set is more sophisticated, going
much more in the direction of what could be called “understanding”
the question.

As in Section 4.4, recognizing entities from the knowledge base in
the query (the NER+NED problem from Section 3.2) is a crucial com-
ponent. However, all of the systems in this section also try to recognize
relation names from the knowledge base in the question. This is harder
than recognizing entities, because of the much larger variety in which
relation names can be expressed in natural language.

A typical approach for recognizing relation names is via indicator
words or synonyms that are learned from a text corpus by distant
supervision (explained in Section 4.3.2) or by using datasets obtained
via distant supervision, e.g., Patty [2013]. Another approach is to use
corpora of paraphrased questions, such as Paralex [2013], to derive
common paraphrases.

Natural language questions are often longer and provide more in-
formation than keyword queries. For example, compare in what films
did quentin tarantino play to quentin tarantino films. The natural lan-
guage question is more explicit about the expected type of result (films)
and more precise about the relation (films in which Quentin Tarantino
acted, not films which he directed). At the same time, natural lan-
guage questions can also be more complex. For example, who was born
in vienna and died in berlin.

Some of the systems below exploit this additional information by
performing a linguistic analysis of the question. This is done with ex-
isting taggers and parsers (see Sections 3.1 and 3.3), or by training new
special-purpose parsers. The result provides the linguistic or semantic
structure of the question, which can be used to generate a template for
a SPARQL query. It remains to fill in the entity and relation names.
It turns out that a joint optimization of the structure (and hence the
query template) and the entity and relation names works better than
solving the two problems independently.

Selecting a query from the set of candidate queries is also more
complex than for the systems in Section 4.4. The techniques sketched
above provide a rich set of features for determining how well a candidate
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query matches the given question. A typical approach is to use these
features for learning to rank the candidates from given training data.
This enables solving even hard questions (in the sense that the correct
SPARQL query is hard to find using simple matching techniques) as
long as there are enough examples in the training data. For example,
answering the question who is john garcia with singer requires under-
standing that the who is part of the question is asking for the profession
of the person that follows.

Section 4.8.5 below describes three widely used benchmarks: Ques-
tion Answering on Linked Data (QALD), Free917, and WebQuestions.
The QALD benchmarks sparked from the semantic web community,
while Free917 and WebQuestions were initiated by the computational
linguistic community. We first describe systems that were evaluated on
QALD, followed by systems evaluated on Free917 and WebQuestions.

4.8.2 Systems Evaluated on QALD

The AutoSPARQL system [Unger et al., 2012] bases its translation on a
linguistic analysis of the question. Using a lexicon of manually-designed
domain-independent expressions (such as most or more than) query
templates are instantiated from the structure of the question. To derive
SPARQL queries, the templates are instantiated with elements from
the knowledge base. Queries are then ranked by preferring prominent
entities but also by considering string similarities of the knowledge
base mapping. The system was evaluated on 39 of the 50 questions of
QALD-1, of which it was able to answer 19 perfectly.

DEANNA [Yahya et al., 2012] formulates the task of translating
a given question to a SPARQL query as an integer linear program.
The program incorporates the identification of concept and relation
phrases in the question, mapping these to the knowledge base, and a de-
pendency parse to generate (SPARQL) triple candidates. Aliases from
YAGO2s [2011] and relation phrases from ReVerb [Fader, Soderland,
and Etzioni, 2011] are used to map to entities and relations from the
knowledge base. Additionally, semantic coherence and similarity mea-
sures are incorporated. The system was evaluated on QALD-1, where
it was able to answer 13 out of 27 questions correctly.
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Xser [Xu, Feng, and Zhao, 2014] performs the translation in two
separate phases. The first phase identifies relevant phrases (mentioned
entities, relations, types) in the question, independently of the knowl-
edge base. The identified phrases are arranged in a DAG to represent
the structure of the question. Training data is used to learn a model
and parser for this. The second phase maps the identified phrases to
entities and relations from the knowledge base. For the experiments on
DBpedia, the Wikipedia miner tool23 is used to find matching entities,
and the data from Patty [2013] is used to map to relations. Xser was
the best performing system at QALD-4 and QALD-5, beating other
systems by a wide margin (more than 30% absolute F-measure). Ac-
cording to the authors (private communication), the system achieves
69% and 39% accuracy on Free917 and WebQuestions, respectively.
This is about 10% below the current state of the art on these bench-
marks (see below).

4.8.3 Systems Evaluated on Free917 and WebQuestions

Sempre [Berant et al., 2013a] produces a semantic parse of a question
by recursively computing logical forms corresponding to subsequences
of a question. The generation is guided by identified entities in the
question, a mapping of phrases to relations from the knowledge base,
and a small set of composition rules. Logical forms are scored with a
log-linear model and translated into a corresponding SPARQL query on
Freebase. Sempre achieves 62% accuracy on Free917 and 36% accuracy
on WebQuestions.

Parasempre [Berant and Liang, 2014] uses a set of fixed query pat-
terns that are matched to each question. Each pattern is then trans-
lated back into a canonical natural language realization using a set
of rules and the Freebase schema. A log-linear model chooses the re-
alization that best paraphrases the original question. The model uti-
lizes word vector representations and a corpus of paraphrases [Paralex,
2013]. Parasempre achieves 69% accuracy on Free917 and 40% accuracy
on WebQuestions.

23https://github.com/dnmilne/wikipediaminer

https://github.com/dnmilne/wikipediaminer
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Graphparser [Reddy, Lapata, and Steedman, 2014] uses distant su-
pervision to generate learning examples (questions and their answer)
from natural language sentences. Intuitively, this is achieved by remov-
ing an identified entity from a sentence and reformulating the sentence
as a question for that entity. To translate a question, an existing CCG
parser (a kind of constituent parser) is used to retrieve a logical form.
This logical form is then matched to a graph in which identified entities
and relations are mapped to Freebase. Graphparser was evaluated on
a subset of Freebase, where it achieves 65% accuracy on Free917 and
41% accuracy on WebQuestions.

Bordes, Chopra, and Weston [2014] take an alternative approach
that involves neither named-entity recognition nor sentence parsing,
and not even POS tagging. Instead, word vectors (see Section 3.4) of
words and of entities and relations from Freebase are learned. This
is done by using the given training data, augmented by synthetically
generated question answer pairs. The idea is to learn the embeddings in
such a way that the embedding of a question is close to the embedding
of its answer entity. No intermediate structured query is generated. The
system achieves 39% accuracy on WebQuestions.

Aqqu [Bast and Haussmann, 2015] directly constructs a SPARQL
query by matching a fixed set of query patterns to the question. The
patterns are matched by first identifying candidates for entity men-
tions in the question. Candidate queries are then generated by match-
ing patterns on the subgraphs of these entities in the knowledge base.
This way, only candidates that have an actual representation in the
knowledge base are created. The candidates are ranked using a learn-
ing to rank approach. Features include the quality of entity matches
and besides others, distant supervision and n-gram based approaches
of matching the relations of a candidate query to the question. For en-
tity synonyms, CrossWikis [2012] is utilized. The system achieves 76%
accuracy on Free917 and 49% accuracy on WebQuestions.

STAGG [Yih et al., 2015], like Aqqu, directly constructs a SPARQL
query using the knowledge base. Starting from identified entities it also
incrementally constructs query candidates. To control the search space,
STAGG only considers a limited number of top candidates, scored by
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a learned function, for extension at each step. For scoring the candi-
dates it also uses a learning to rank approach. In contrast to Aqqu, it
uses more sophisticated techniques based on deep learning for match-
ing relations of query candidates to the question. It also allows adding
constraints to queries (e.g., first or last for dates) and, in theory, allows
arbitrary patterns to be generated. In practice, however, patterns are
constrained (very similar to those of Aqqu) in order to keep the search
space tractable. The system achieves 53% accuracy on WebQuestions.

4.8.4 Commercial Systems

WolframAlpha can answer questions about general knowledge. As of
this writing, no technical publications were available, but their FAQ24

is quite informative concerning the scope and basic techniques used.
On the back end side, Wolfram Alpha uses its own internal knowledge
base, which is a carefully curated combination of various high-quality
knowledge bases. It also uses real-time data (like weather or market
prices), which is curated using heuristics. NLP techniques are used,
combined with publicly available data. For example, Wikipedia is used
for linguistic disambiguation (such that the big apple is a synonym
for NYC ). The implementation uses Mathematica as a programming
language.

Facebook Graph Search25 supports personalized searches on the
relations between persons, places, tags, pictures, etc. An example query
is photos of my friends taken at national parks. Results are based on
the relationships between the user and her friends and their interests
expressed on Facebook. Graph Search was introduced by Facebook in
March 2013. It was reduced to a much restricted version (eliminating
most search patterns) in December 2014, mainly due to privacy issues.

Google Search answers an increasing fraction of natural language
queries from its internal knowledge base, called Knowledge Graph. As
of this writing, the Knowledge Graph is based on Freebase (and not on
the much larger Knowledge Vault described in Section 4.3.4) and there
is no published work on how this search works.

24http://www.wolframalpha.com/faqs.html
25http://en.wikipedia.org/wiki/Facebook_Graph_Search

http://www.wolframalpha.com/faqs.html
http://en.wikipedia.org/wiki/Facebook_Graph_Search
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4.8.5 Benchmarks

Question Answering over Linked Data (QALD) [Lopez et al., 2011b;
Lopez et al., 2012; Cimiano et al., 2013; Unger et al., 2014; Lopez et al.,
2013; Unger et al., 2015] is an annual benchmark of manually selected
natural language queries with their SPARQL equivalent. The questions
are of varying complexity, for example:

Who is the mayor of Berlin?
What is the second highest mountain on Earth?
Give me all people that were born in Vienna and died in Berlin.

The name seems to imply semantic web data, but the datasets are DB-
pedia and MusicBrainz (see Table 2.2), which we consider as knowledge
bases in this survey. For the first version of the benchmark (QALD-1)
50 training questions and 50 test questions were used. Later versions
used between 50 and 100 training and test questions. Systems were
evaluated by comparing the set of answers returned by a system to
the answers in the ground truth (i.e., those returned by the correct
SPARQL query) and computing precision and recall for each question.
Averages of these on all queries and the resulting F-measure are used
to compare systems globally.

The benchmark started in 2011 (QALD-1) with 2 participating
groups. Since then participation has constantly increased to 7 groups
for QALD-5. Later versions included questions in multiple languages
and hybrid questions that require combining search on text as well as
knowledge bases. The best system at QALD-4 and QALD-5 was Xser
[Xu, Feng, and Zhao, 2014], described above, with an F-measure of 72%
and 63%, respectively.

Free917 [Cai and Yates, 2013] is a benchmark consisting of 917 ques-
tions and their structured query (SPARQL) equivalent on Freebase. For
example, when was starry night painted and:

SELECT DISTINCT ?x WHERE {
fb:en.de_sternennacht fb:visual_art.artwork.date_completed ?x }

The goal is, given the question (and knowing the schema of Freebase),
to automatically compute the corresponding structured query. Ques-
tions and their SPARQL equivalent were constructed manually. All
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questions are such that the corresponding entities and relation indeed
occur in Freebase; this makes the benchmark simpler than a real-world
task with arbitrary questions from real users. 30% of the questions
are explicitly marked as test questions and 70% are reserved for learn-
ing. As an evaluation metric, accuracy (the percentage of questions
answered exactly as in the ground truth) is used. The current best
system, Aqqu [Bast and Haussmann, 2015], achieves an accuracy of
76%.

WebQuestions [Berant et al., 2013b] is a benchmark that consists of
5,810 questions and their answers from Freebase (i.e., no corresponding
SPARQL query). For example, what type of music did vivaldi write and
the answer classical music. In order to obtain the questions, 100,000
candidates were generated using the Google Suggest API and Ama-
zon Mechanical Turk was used to identify those, which actually have
an answer in Freebase. These questions are more realistic (i.e., more
colloquial) than those of Free917, which also makes the benchmark
considerably harder. 40% of the questions are used as test questions
and 60% are reserved for learning. The average F-measure over all test
questions is used as evaluation metric. This is computed by comparing
the result set of a system to the result set in the ground truth for each
question and computing individual F-measures and their average. The
current best system, STAGG [Yih et al., 2015], achieves an F-measure
of 53%.
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4.9 Question Answering on Combined Data

Data Combined data, as described in Section 2.1.3: text
linked to a knowledge base, multiple knowledge
bases, or semantic web data

Search Natural language queries, as described in Section
2.2.3; the result is (close to) the answer one would
expect from a human

Approach A melting pot of all techniques from the previ-
ous sections; plus techniques to evaluate the con-
fidence and combine the answers from the various
sources; current approaches are still relatively sim-
plistic, however

Strength The ultimate “semantic search”: free-form queries
on whatever data there is

Limitation This line of research is still in its infancy; but it will
be the future

In a sense, this is the ultimate “semantic search”. Users can formu-
late queries in natural language, and the system draws on a variety of
data sources to answer it: text, knowledge bases, and combinations of
the two (including semantic web data).

As of this writing, there is still little research for this scenario.
In particular, we know of only one recent benchmark (the QALD-5
hybrid track with only three participants) and few notable systems;
see below. This is understandable given what we have seen in the last
two subsections: that natural language queries are hard already when
restricting to “only” textual data or when restricting to (usually a
single) knowledge base.

4.9.1 Basic Techniques

Technically, question answering on combined data is a big melting pot
of techniques, in particular, those from the three previous subsections:
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Question Answering from Text, Question Answering from Knowledge
Bases, and Keyword or Semi-Structured Search on Combined Data,
which in turn draw heavily on techniques from the previous subsec-
tions. In Section 4.9.2, we provide a longer description of the popular
Watson system. Apart from Watson, there has been little research on
this topic so far. In Section 4.9.3 we describe a recent system.

Commercial search engines like Google also provide question an-
swering capabilities on both text and knowledge bases. At the time of
this writing, there is no published work on how these subsystems are
combined. However, answers appear to come from two different sub-
systems. If the answer comes from the knowledge base, the result is
displayed in an infobox on the right, or as a list of entities on the top
of the usual search results. If the answer comes from annotated text,
it is displayed with a corresponding snippet, again on top of the usual
result list. So far, there is no evidence of a deeper integration of the
two kinds of data.

A survey that addresses question answering specifically for the Se-
mantic Web is provided by Lopez et al. [2011a].

4.9.2 Watson

IBM’s Watson [Ferrucci et al., 2010; Ferrucci et al., 2013] was devel-
oped to compete with human experts in the well-known Jeopardy! game
show. In Jeopardy, the question is formulated as an assertion (called
“claim”) and the answer has to be formulated as a question. The follow-
ing example clarifies that this is just an entertaining twist of classical
question answering; technically the transformation of one to the other
is trivial.

Classical: What drug has been shown to relieve the symptoms of ADD
with relatively little side effects? Ritalin.
Jeopardy: This drug has been shown to relieve the symptoms of ADD
with relatively few side effects. What is Ritalin?

The goal of Watson was to answer roughly 70% of the questions with
greater than 80% precision in 3 seconds or less. This would be enough
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to beat the best human experts in the game; a goal eventually reached
in a much publicized show in 2011.

Watson answers questions using both text and knowledge bases.
Among the text data sources are: Wikipedia, several editions of the
Bible, and various encyclopedias and dictionaries. These were expanded
to contain text extracted from the Web. Overall, the corpus contained
8.6 million documents with a size of 59 GB. Among the knowledge
bases are: DBpedia, YAGO, and Freebase (see Table 2.2).

The Watson system consists of a pipeline of steps. Each step is very
carefully designed and adjusted to the particular type and distribution
of Jeopardy questions. The steps are of varying complexity and make
use of state-of-the-art techniques where necessary, but also resort to
simple but effective heuristics when sufficient. Here, we outline the
main steps and relate them to other techniques in this survey when
appropriate. For a comprehensive technical description, we refer to a
special issue of the IBM Journal by Pickover [2012] consisting of a series
of twelve papers (each about 10 pages) solely about Watson.

Question analysis: First, the focus and lexical answer type of the
question is determined. For example, in

A new play based on this Sir Arthur Conan Doyle canine classic opened
on the London stage in 2007.

the focus is this and the lexical answer type is classic. This is done
using manually designed rules, e.g., “use the word this as focus and use
its head word (classic) as a lexical answer type”. The rules make use
of a linguistic analysis of the question, e.g., a syntactic parse, its log-
ical structure (similar to semantic role labeling) and identified named
entities; see Section 3 on Basic NLP Tasks in Semantic Search.

Using rules, the question is also categorized into different types, e.g.,
puzzle or definition question. These require slightly different approaches
later on.

Relations mentioned in the question are identified as well. This is
done using human-made rules as well as machine learning. The rules
for about 30 relations, with 10 to 20 rules per relation, make use of
identified types. For example, from a David Lean classic the relation
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directorOf can be extracted. The corresponding rule matches if a direc-
tor (David Lean) is used as an adjective of a film synonym (classic). The
machine-learning based approach uses distant supervision (explained in
Section 4.3.2) to learn relation mentions for about 7K relations from
DBpedia and Wikipedia. The identified relations are simple in the sense
that they only connect one entity to a relation. This is in contrast to
some of the techniques in Section 4.8 on Question Answering on Knowl-
edge Bases, where the goal is a formal representation of the (meaning
of the) whole question.

Finally, the question is also decomposed into subquestions, which
can be answered independently. For example,
This company with origins dating back to 1876 became the first U.S.
company to have 1 million stockholders in 1951.
contains two major hints: that the company has “origins dating back to
1876” and that it was “the first U.S. company to have 1 million stock-
holders in 1951”. The decomposition is done via rules on a syntactic
parse of the sentence. Answers from different subquestions are synthe-
sized at the end with a model that is specifically trained to combine
the results (lists of entities) of individual subquestions.
Hypothesis generation: After analyzing the question, the system
generates candidate answers by searching multiple data sources (text
and knowledge bases) independently. The focus in this step is on recall,
with the assumption that later steps can weed out incorrect candidates
and improve precision. A correct candidate answer not generated in
this step will lead to a wrong final answer.

For search in text, standard techniques for keyword search (see
Section 4.1) are applied to find documents and passages that contain
keywords of the question. Candidate answers are extracted, e.g., from
the title of the documents and passages using named-entity recognition.
The applied techniques are similar to those of state-of-the-art systems
for question answering on text (see Section 4.7).

Knowledge bases are queried for entities that are related to those
mentioned in the question. These serve as additional candidate answers.
If relations were identified in the question, these are also used for query-
ing the knowledge bases. For each pair of a single entity and relation
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in the question, a SPARQL query is derived and executed to retrieve
additional candidate answers. In total, this phase typically generates
several hundreds of candidate answers.

Soft filtering: The list of candidates obtained from the steps so far
is often very long. For performance reasons, the list is filtered using
lightweight machine learning, for example, based on how well the lexical
answer type matches the candidate. The idea is to weed out candidates
that are easy to identify as unlikely answers. Only about 100 candidate
answers remain.

Hypothesis and evidence scoring: Now, evidence is collected for
each remaining candidate. For example, passages that mention the an-
swer entity along the question keywords are retrieved. Structured data
is also used, e.g., in geospatial and temporal reasoning. For example,
in

This picturesque Moorish city lies about 60 miles northeast of
Casablanca.

the latitude and longitude of Casablanca can be retrieved from DB-
pedia and compared to candidate answers and the identified relation
northeast.

The retrieved evidence is passed to scorers that determine the de-
gree to which the evidence supports the candidate answer. More than
50 different scorers are used in total. They range from relatively sim-
ple string matching (between the question and the retrieved passages),
to learning-based reasoning (for example, on spatial or temporal dis-
tance). According to the authors, no single algorithm dominates, but
it is the ensemble that makes a difference.

Merging and ranking: In a final step, answer candidates are merged
and then ranked. Merging is necessary because candidates can have dif-
ferent surface forms but refer to the same entity, for example, John F.
Kennedy and J.F.K. This can happen because entities are retrieved
from many different sources (text, DBpedia, Freebase etc.) and no
canonical entity representation is enforced before this merging step.

The answer candidates are then ranked, based on the previously
computed evidence scores. The question type is also taken into account.
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This is important, since, for example, different features are important
for factoid questions and puzzle-type questions. Ranking is done via
a machine learning framework that takes as input a set of candidate
answers with their evidence scores and outputs a confidence score for
each candidate that indicates whether it is the final correct answer.
Candidates ranked by their confidence scores are the final output of
Watson.

4.9.3 Other Systems

Joshi, Sawant, and Chakrabarti [2014] answer entity-oriented (tele-
graphic) keyword queries on a text linked to a knowledge base
(ClueWeb + FACC, see Table 2.3). Telegraphic queries are abbrevi-
ated natural language queries, for example, first american in space.26
Given a question, the system computes a score for all possible entities,
ea, as answer. For this, the question is first split into entity, target type,
relation, and contextual (everything else) segments. Then, evidence is
collected from the knowledge base or text. For example, for the entity
identified in the question, eq, the relation to a possible answer entity,
ea, is retrieved from the knowledge base. A score is computed (using a
language model) indicating how well the relation segment of the ques-
tion expresses this knowledge-base relation. Furthermore, a text index
is queried for snippets mentioning both eq and ea, scored by an adap-
tation of BM25. The final ranking incorporates the scores above as well
as further evidence, like answer type information and a likelihood for
the segmentation (several are possible). Overall, this is similar to the
systems described in Section 4.8, but with a full-text component added
to the underlying search. The system is evaluated on adapted queries
from TREC (Section 4.1.3), INEX (Section 4.5.3), and WebQuestions
(Section 4.8.5). On the WebQuestions dataset it achieves an nDCG@10
of 47% compared to Sempre, an approach only utilizing the knowledge
base (see Section 4.8), with 45%. On the TREC and INEX questions
they achieve an nDCG@10 of 54% versus 25% with Sempre.

26See our discussion on the gray zone between keyword queries and natural lan-
guage queries at the beginning of Section 2.2.
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4.9.4 Benchmarks

The QALD series, described in Section 4.8 on Question Answering on
Knowledge Bases, featured a hybrid search task in 2015. The benchmark
contains ten hybrid questions, for example:

Who is the front man of the band that wrote Coffee & TV?

The correct answer requires the combination of triples with information
from the textual description of the entity (both contained in DBpedia,
see Table 2.2). For example, for the example question above, the in-
formation who is a front man is contained only in the text. Only five
systems participated in this benchmark. The best F-measure of only
26% was achieved by the ISOFT system [Park et al., 2015].

The INEX series, described in Section 4.5.3 on Keyword Search on
Combined Data, featured a Jeopardy! task in 2012 and 2013. However,
participation was low, with only a single group in 2013.



5
Advanced Techniques used for Semantic Search

This section is about four more advanced aspects of semantic search:
ranking, indexing, ontology matching and merging, and inference. They
are advanced in the sense that powerful semantic search engines can
be built with relatively simplistic solutions for these aspects. Indeed,
this is the case for several state of the art systems and approaches from
Section 4. However, when addressed properly, they can further boost
result quality and/or performance.

5.1 Ranking

Many of the systems from our main Section 4 produce a list of entities
as their result. In our descriptions so far, we have focused on how the set
of result entities is retrieved from the respective data. In this section,
we elaborate on the aspect of ranking these entities. We also (but not
exclusively) include research on ranking techniques that have not been
implemented as part of a full-fledged system.

The following subsections roughly correspond to the representa-
tion of the entities that should be ranked: entities associated with vir-
tual documents (typically obtained from keyword search on combined
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data; see Section 4.5), entities obtained from text linked to a knowl-
edge base (typically obtained from keyword or semi-structured search
on combined data; see Sections 4.5 and 4.6), interlinked entities (from
a knowledge base or from semantic web data), and entities obtained
from a structured or semi-structured search (as described in Section
4.2 and Section 4.6).

In the following, we assume basic knowledge about standard ranking
techniques for document-centric keyword search on text, such as: BM25
scoring, language models, and PageRank.

5.1.1 Ranking of Entities Associated with (Virtual) Documents

A standard approach for entity search in heterogeneous data is to con-
struct, for each entity, a virtual document consisting of (all or a se-
lection of) text associated with the entity in the given data (typically:
semantic-web data); see Section 4.5. A ranking can then be obtained
by using standard techniques for keyword search in text, like BM25 or
language models.

The original structure (provided by triples) does not necessarily
have to be discarded. It can be preserved in a fielded index and by
a ranking function like BM25F, which is an extension of BM25 by
Zaragoza et al. [2004]. In comparison to standard BM25, BM25F com-
putes a field-dependent normalized term frequency tf ∗f which, instead
of document length and average document length, uses field length
(lf ) and average field length (avfl). In addition, each field has its own
“b-parameter” Bf .

tf ∗f :=
tf f

1 +Bf ( lf
avfl − 1)

The final term pseudo-frequency, that is used in the BM25 formula, is
then obtained as weighted sum (field weight Wf ) over the values for
each field:

tf ∗ =
∑

f

tf ∗f ·Wf

Originally, this improves ranking keyword queries on text by ac-
counting for document structure (for example, with fields like title, ab-
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stract, and body), but this extension also applies to fields that originate
from different triple predicates.

The effectiveness of BM25F for ad-hoc entity retrieval on RDF data
is demonstrated by Blanco, Mika, and Vigna [2011]. Some predicates
and domains are manually classified as important or unimportant (for
example, abstract and description are important properties, date and
identifier are unimportant). Everything not classified is treated neu-
trally. Important predicates have their own index field, which is then
boosted in the ranking function by using a higher field weight Wf . Im-
portant domains are boosted in a separate step after the BM25F value
is computed. Compared to vanilla BM25, this leads to 27% MAP in-
stead of 18% and 48% nDCG instead of 39% on the benchmark from
the SemSearch Challenge 2010 (see Section 4.5.3).

Neumayer, Balog, and Nørvåg [2012] show that creating language
models from virtual documents can outperform the fielded approach
above. An entity e is ranked by the probability p(q|e) of generating
the query q. Different possibilities for computing this model are sug-
gested. An unstructured model estimates term probabilities from the
virtual document of each entity. A structured model groups each en-
tity’s predicates (groups are attributes, names, incoming and outgoing
relations) and computes a model for each group’s virtual document.
The final score for an entity is a linear interpolation of these models
with manually chosen weights. Experiments on the benchmarks from
the SemSearch Challenges 2010 and 2011 show that the unstructured
model outperforms previous state of the art but is in turn outperformed
by the structured model. The authors also suggest a hierarchical lan-
guage model that is supposed to preserve the structure (i.e. predicates)
associated with entities, but the model fails to improve on previous
results.

Herzig et al. [2013] also rank entities (virtual documents) using
language models (LM). The work addresses two problems: identifying
entities that refer to the same real-world entity, and ranking for feder-
ated search (where results from multiple sources have to be combined).
The LM for an entity consists of multiple standard LMs, one for each
of its attributes. A similarity distance between two entities is com-
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puted by the Jensen-Shannon divergence (JSD) between the LMs for
attributes that both entities have in common. If this distance is below a
threshold, two entities are considered the same. Ranking for federated
search works as follows. The query is issued to the multiple sources
and the ranked results are used to create a new virtual document. This
virtual document consists of the contents of the virtual documents of
each result entity (weighted by rank). Then, a language model for the
query is computed from the virtual document, which serves as a form
of pseudo-relevance feedback. All entities are ranked by the similarity
(again using JSD) of their language model to that of the query. In a
final step, identical entities are merged as determined by the procedure
above or by explicit sameAs links.

5.1.2 Ranking of Entities from Text Linked to a Knowledge Base

Search on text linked to a knowledge base (see Sections 4.5 and 4.6) pro-
vides two sources of signals for ranking result entities: from the match-
ing text, and from the entity’s entry in the knowledge base. However, it
is not obvious how they should be combined for maximum effectiveness.

Fang et al. [2009] provide a simple but effective ranking approach
for keyword queries on text, which won the TREC Entity Track in 2009
(see Section 4.5.3). In the first step, answer candidates are extracted
from results (using basic NER techniques as described in Section 3)
of a query to Google. This establishes the link between the text and
an entity’s representation in the knowledge base. In addition, a sup-
porting passage (for an occurrence in text: the sentence; for an oc-
currence in a table: elements from the same column, column header,
and sentence preceding the table) is extracted for each entity. Enti-
ties are then ranked by the product of three relevance probabilities:
of the containing document to the query, of the containing passage,
and of the entity. Document relevance is computed using a standard
language model. Passage relevance is computed as a sum of similarity
scores (from WordNet) between all pairs of words in the passage and
the query. Entity relevance is computed as the frequency of the first
query keyword (which usually corresponds to the target type, see the
example above) in the entity’s list of Wikipedia categories.
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Kaptein and Kamps [2013] perform keyword search on Wikipedia
(where documents naturally correspond to entities) and additionally
make use of target categories that restrict the set of relevant entities.
For example, for the query works by charles rennnie mackintosh, an-
swers should be restricted to buildings and structures. These target
categories are either given as part of the query, or can be derived au-
tomatically from the result set of an issued keyword query. Instead of
simply filtering the result entities by the given or determined category,
the authors suggest using language models that are supposed to deal
with the hierarchical structure of categories. Two standard language
models are precomputed: one for each entity (that is, for its Wikipedia
page), and one for each category (that is, for the text from all entities
in that category). The final score is a weighted combination of the two
language models (how well they model the query) and an additional
pseudo-relevance feedback computed via links between the Wikipedia
pages of the top results. Weights for the combination are chosen man-
ually.

Schuhmacher, Dietz, and Ponzetto [2015] adapt the learning-to-
rank approach to keyword entity search on text, with entities already
linked to a knowledge base. For a given query, the entities from the
(top) documents matching the keyword query are retrieved and a fea-
ture vector is constructed for each query-entity pair. There are two
groups of features: text features (for example, the occurrence count of
the entity in text) and query features (for example, does the entity, or
an entity closely connected in the knowledge base, occur in the query).
The training set consists of queries with a given set of relevant entities.
A support vector machine is used for learning to rank. It uses a lin-
ear kernel that is enhanced with a function to compute the similarity
between two entities via their relatedness in the given knowledge base.
This is supposed to provide a form of pseudo-relevance feedback. The
approach is evaluated on an own benchmark that is constructed from
the TREC Robust and Web benchmarks (see Section 4.1.3).
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5.1.3 Ranking of Interlinked Entities

A knowledge base, or a collection of interlinked knowledge bases as in
semantic-web data, can be viewed as a graph with the entities as nodes
and the edges as relations; see Section 2.1.2 on Knowledge Bases.

Swoogle [Ding et al., 2004] adapts PageRank, the well-known algo-
rithm to compute query-independent importance scores for web pages,
to semantic-web data. Links between so-called semantic web documents
(RDF documents defining one or more entities) are weighted differently
depending on their type. Swoogle classifies links into four categories
(imports, uses-term, extends, and asserts). This is done by manually
defining which original RDF properties belong to which category. For
each of these types, a weight is assigned manually. The PageRank tran-
sition probability from node i to node j then depends on the sum of
weights of all links from i to j. This approach is feasible because only
a relatively small number of different link types is considered.

ObjectRank [Balmin, Hristidis, and Papakonstantinou, 2004]
adapts PageRank to keyword search on databases. The computed scores
depend on the query. Intuitively, a random surfer starts at a database
object that matches the keyword and then follows links pertaining to
foreign keys. Edge weights are, again, based on types and assigned man-
ually. For example, in a bibliographic database, citations are followed
with high probability. Like this, the approach allows relevant objects
to be found even if they do not directly mention the query keyword.

Agarwal, Chakrabarti, and Aggarwal [2006] combine PageRank
with the learning to rank approach. The input is a knowledge graph
(think of the semantic web) and a partial preference relation on the set
of entities (think of a user more interested in some entities than in oth-
ers). The goal is to learn edge weights such that the scores computed
by the PageRank process (with transition probabilities proportional
to these edge weights) reflect the given user preferences. Two scenar-
ios are considered: individual weights for each edge, and one weight
per edge type (predicate). For the first scenario, the problem is formu-
lated as a constrained flow optimization problem, where the constraints
come from the user preferences. For the second scenario, the problem
is solved using gradient descent optimization, where the loss function
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captures the user preferences (approximately only, so that it becomes
differentiable).

TripleRank [Franz et al., 2009] extends the HITS algorithm to
semantic-web data. HITS is a variant of PageRank, which computes
hub and authority scores for each node of a sub-graph constructed
from the given query. For TripleRank, the subgraph is represented as
a 3D tensor where each slice is the (entity-entity) adjacency matrix for
one predicate. Standard 3D tensor decomposition then yields n princi-
pal factors (corresponding to the singular values in the 2D case) and
three 2D matrices with n columns each. One of these matrices can be
interpreted as the underlying “topics” of the subgraph (expressed in
terms of relations). The entries in the other two matrices can be inter-
preted as hub and authority scores, respectively, of each entity in the
subgraph with respect to the identified topics.

5.1.4 Ranking of Entities Obtained from a Knowledge Base Search

SPARQL queries have precise semantics and, like SQL, the language
provides an ORDER BY attribute for an explicit ranking of the result
set; see Section 4.2 on Structured Search in Knowledge Bases. Still,
there are scenarios, where a ranking according to “relevance”, as we
know it from text search, is desirable.

Elbassuoni et al. [2009] construct language models for SPARQL
queries with support for keyword matching in literals. The language
model for the query is defined as a probability distribution over triples
from the knowledge base that match triples from the query. The lan-
guage model for a result graph is straightforward: it has probability 1
or 0 for each triple, depending on whether that triple is present in the
result graph (with some smoothing). Results are then ranked by their
Kullback-Leibler (KL) divergence to the query.

Broccoli [Bast et al., 2012] ranks result entities using a combination
of popularity scores for entities and frequency scores obtained from its
interactive query suggestions. For example, a simple query for Scientist
simply ranks all scientists in the indexed knowledge base by their pop-
ularity. But the query Scientist occurs-with information retrieval ranks
scientist according to how frequently they co-occur with the words in-
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formation retrieval in the given text collection. Suggestions are ranked
in a similar way. For example, the suggestions for predicates for Scien-
tist are ranked by how many scientists have that particular predicate.
This simple ranking provided average precision at 10 and MAP scores
of 67-81% and 42-44%, respectively, on two benchmarks (TREC Entity
Track 2009 and Wikipedia).

Bast, Buchhold, and Haussmann [2015] present an approach to com-
pute relevance scores for triples from type-like relations. Such a score
measures the degree to which an entity “belongs” to a type. For exam-
ple, one would say that Quentin Tarantino is more of a film director
or screenwriter than an actor. Such scores are essential in the ranking
of entity queries, e.g., “american actors” or “quentin tarantino profes-
sions”. To compute the scores, each entity and type is associated with
text. The text for entities is derived via linking to their occurrences in
Wikipedia. Text for entire types is derived from entities that have only
one entry in the particular relation. For the example above, text for the
profession actor is derived from entities that only have the profession
actor. Scores are then computed by comparing the text for an entity
to that for each type. For this, many different models are considered:
standard machine learning, a weighted sum of terms based on their tf-
idf values, and a generative model. The best models achieve about 80%
accuracy on a benchmark where human judges were able to achieve
90% and sensible baselines scored around 60%.

5.2 Indexing

Most of the work in this survey is concerned with the quality aspect of
semantic search. This section is concerned with the efficiency aspect.
Note that indirectly, efficiency is also relevant for quality: a method
with good result quality with a response time of minutes or worse is
impractical in many application scenarios.

Following our classification in Section 4, semantic indexing works
differently depending on the particular approach: Keyword search on
text (Section 4.1) is handled by an inverted index. The inverted index is
a well-researched data structure and important for information retrieval
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in general. A discussion of its particularities is beyond the scope of this
survey. Special indexes for structured search in knowledge bases are
already discussed at length in Section 4.2. Section 4.3 is concerned
with structured data extraction from text. Indexing is not an issue
here. Systems for keyword search on knowledge bases (Section 4.4)
and question answering (Sections 4.7, 4.8, and 4.9) are concerned with
finding the right queries and post-processing results. The way data is
indexed is adopted from other approaches. This leaves Sections 4.5 on
Keyword Search on Combined Data and 4.6 on Semi-Structured Search
on Combined Data where advanced indexing techniques are required.

In this section, we distinguish three basic approaches used by the
systems from that section: using an inverted index for knowledge base
data, semi-structured search based on an inverted index, and integrat-
ing keyword search into a knowledge base.

5.2.1 Using an Inverted Index for Knowledge Base Data

In Section 4.2 on Structured Search in Knowledge Bases we discussed
indexing techniques for full SPARQL support. However, semantic web
applications often have different requirements: (1) the data is extremely
heterogeneous, so that queries with anything but the simplest of seman-
tics are pointless; (2) predicate and object names can be very verbose,
so that keyword matching (only an optional add-on for a SPARQL
engine) is a must; (3) the data volume is large, so that speed is of pri-
mary concern. In such a scenario, the inverted index provides simple
solutions with high efficiency.

In the simplest realization, a virtual document is constructed for
each entity, consisting of (all or a subset of) the words from the triples
with that entity as subject; see Section 4.5.1. A standard inverted index
on these virtual documents then enables keyword queries which return
ranked lists of entities. A typical system in this vein is Semplore [Wang
et al., 2009].

A more advanced system is described by Blanco, Mika, and Vigna
[2011]. They study three variants of a fielded index, implemented using
MG4J (see Section 4.1.2). The variants have different trade-offs be-
tween query time, query expressibility, and result quality. In the basic
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variant, there are different fields for subject, predicate and object of a
triple and positional information is used to align items from the same
original triple. This allows keyword matches for object and predicate
names (e.g., find triples where the predicate matches author) at the
price of a larger query time compared to vanilla BM25 indexing. In
an alternative variant, there is a field for each distinct predicate. This
still allows to restrict matches to a certain predicate (e.g., foaf:author)
but keyword matches for predicates are no longer possible. In a refined
variant, predicates are grouped by importance into three classes, with
one field per class. This supports only keyword queries (without any
structure, like in the basic approach from the previous paragraph), but
with query times similar to vanilla BM25 indexing. Result quality is
vastly improved due to consideration of those fields in the ranking func-
tion: 27% MAP instead of 18% and 48% nDCG instead of 39% on the
benchmark from the SemSearch Challenge 2010 (see Section 4.5.3).

SIREn [Delbru, Campinas, and Tummarello, 2012] is built on
Lucene and supports keywords queries that correspond to star-shaped
SPARQL queries (with one entity at the center), where predicate and
relation names can be matched via keyword queries. There are inverted
lists for words in predicate names and for words in object names. Each
index item contains information about the triple to which it belongs,
namely: the id of the subject entity, the id of the predicate, the id of the
object (only for words in object names), and the position of the word
in the predicate or object. Standard inverted list operations can then
be used to answer a query for all entities from triples containing, e.g.,
author in the predicate name, and john and doe in the object name.
As of this writing, the software is available as open source1.

5.2.2 Semi-Structured Search Based on an Inverted Index

This is the method of choice for semi-structured search on combined
data, as described in Section 4.6. Often, an inverted index is combined
with techniques or even off-the-shelf software for indexing knowledge
bases, such as Virtuoso. However, the extra effort to achieve an efficient
combination usually happens on the side of the inverted index.

1https://github.com/rdelbru/SIREn

https://github.com/rdelbru/SIREn
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In the most basic realization, for each occurrence of an entity from
the knowledge base in the text (for example, ... Obama ...), we add
an artificial word to the text (for example, entity:Barack Obama). The
inverted list for entity:Barack Obama then contains all occurrences of
this entity in the text. Standard inverted list operations enable queries
such as entity:Barack Obama audience pope (documents mentioning
him in the context of an audience with the pope).

We next discuss two simple options to enhance the query expres-
siveness for this approach, by not just allowing concrete entities in the
query, but semantic concepts ranging from types to arbitrary SPARQL
queries.

One option, that is taken by KIM [Popov et al., 2004], is to com-
pute the result for the knowledge base parts using a standard SPARQL
engine, and to add this to the keyword query as a disjunction of all the
result entities. This is simple but very inefficient when the number of
result entities is large. Another option, that is taken by Mìmir [Tablan
et al., 2015], is to add further artificial words to the index, which al-
low direct processing of more complex queries without resorting to the
SPARQL engine. For example, if in the example above we also add the
artificial word type:politician to the index, we could efficiently answer
queries such as type:politician audience pope (passages mentioning a
politician in the context of an audience with the pope). This works for
simple queries, but does not allow complex SPARQL queries. In this
case, Mìmir falls back to the inefficient KIM approach.

ESTER [Bast et al., 2007] solves this dilemma by adding artificial
entity:... and selected type:... words to the inverted index (just like in
the example above) and resorting to joins for all the remaining queries.
These joins require additional information in the index lists: triples
from the knowledge base are inserted into canonical documents for
each entity. Join operations on the entity:... words are needed to use this
information for matches outside of this canonical document. Therefore,
items in the inverted lists have to contain a word id in addition to
the usual document id, position, and score. However, using standard
compression techniques, the index size is comparable to that of an
ordinary inverted index, despite this addition.
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All the approaches described so far share the major drawback that
the result is inherently a list of document passages. For example, the
keyword query type:politician audience pope yields a list of matching
passages, possibly many of them with the same entity. From a usability
perspective, the more natural result would be a list of entities (ideally,
with the passages as result snippets). Worse than that, if this query
appears as a sub-query of a more complex query (e.g., looking for en-
tities of a certain type who co-occur with the result entities), we need
the list of entities (and not matching passages) to be able to process
that query.

Broccoli [Bast and Buchhold, 2013] solves this problem using a non-
trivial extension of the inverted index. The main technical idea is to
augment the inverted list for each word by information about the co-
occurring entities. For example, for the occurrence of the word edible
in a document containing the stalks of rhubarb and broccoli are edible,
the inverted list for edible would not only contain one item with the id
of that document (plus score and positional information) but also two
additional items with the ids for the entities rhubarb and broccoli. Each
entity occurrence hence leads to an extra item in all inverted lists that
have an entry for that document. Broccoli avoids a blow-up of the index
by indexing semantic contexts instead of whole documents, which at
the same time improves search quality (see Section 4.6.2). The knowl-
edge base part is handled by lists of id pairs for each relation, sorted by
either side. This is reminiscent of using PSO (predicate-subject-object)
and POS permutations, like for the systems from Section 4.2 on Struc-
tured Search on Knowledge Bases. Together, the extended inverted lists
and relation permutations allow that knowledge base facts and textual
co-occurrence can be nested arbitrarily in tree-shaped queries while
retaining very fast query times.

5.2.3 Integrating Keyword Search into a Knowledge Base

All major SPARQL engines feature integrations of keyword search; see
Section 4.2.1. There are two basic variants, depending on the desired
semantics of the integration.
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To realize something like Virtuoso’s bif:contains predicate (see Sec-
tion 4.2), it suffices to pre-compute inverted lists for words in predicate
names and objects. Standard inverted list operations then lead to lists
of (ids of) predicates or objects, which can be processed further by
the SPARQL engine. Compared to the approach described for SIREn
above, the expressiveness is much larger (no longer restricted to star
queries). The price is a much larger processing time for some queries.
For example, the query author john doe requires a full scan over all
triples using the approach just described. The reason is that both, the
predicate and object part can match many items and that these do not
correspond to ranges but lists of ids. In the example, many ids may
match the keyword author and many ids may match john doe. While
these individual lists of ids are both efficiently retrieved, a subsequent
step towards matching triples is problematic.

To realize an index for text linked to a knowledge base, one could
add an id for each document (or short passage) to the knowledge base,
and add a special relation occurs-in (between words or entities and
the id of the document they occur in). This covers the expressiveness
of Broccoli, but with a much larger processing time. For example, the
query type:politician audience pope requires a full scan over all triples
of the occurs-in relation. Furthermore, such a relation becomes huge
with larger text corpora because it contains an entry for each word
occurrence in the collection. Note that adding a relation occurs-with
between word and entity occurrences instead, doesn’t provide the same
semantics. This doesn’t allow restricting multiple occurrences to the
same document or context.

5.3 Ontology Matching and Merging

Most semantic search systems work with some kind of knowledge base,
in particular, all the systems from Sections 4.2, 4.4, 4.5, 4.6, 4.8, and 4.9.
Most of these systems assume a single knowledge base with a consistent
schema/ontology, as defined in Section 2.1.2. However, to cover the data
relevant for a given application, often several different knowledge bases
need to be considered.
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For example, think of an application that requires knowledge on
movies as well as on books, and that there is a separate knowledge
base for each of the two domains. A problem is that these knowledge
bases may contain different representations of the same real-world en-
tity. For example, Stephen King is likely to be present as a novelist in
the book knowledge base and as a screenwriter in the movie knowl-
edge base. To make proper use of the data, their ontologies (their
classes/concepts, properties, relations) as well as their actual popu-
lation (instances) should either be linked or merged. This means, for
example, identifying links between identical persons, such as:

<movies:Stephen_King> <owl:sameAs> <books:Stephen_Edwin_King>

This is known as instance matching. Identifying links between classes,
which is referred to as ontology matching, is also important in that
context. For example, a script is a kind of written work:

<movies:Filmscript> <rdfs:subClassOf> <books:Written_Work>

Such links can be used to merge the ontologies into a single ontology in a
pre-processing step. This is known as ontology merging. Alternatively,
systems like Virtuoso, Jena, and Sesame (see Section 4.2.2) can be
configured to make use of such links during query time.

These problems have been studied (with minor differences) mainly
by the semantic web community and the database community. In a
relational database, tables and their columns and data types make up
the schema, analogously, to the defined classes, properties, and relations
in an ontology. A database row or record is the equivalent of an instance
in a knowledge base. Both communities make a distinction between
matching schemata and matching actual instances or database records.
Approaches to these tasks are very similar in both communities, so we
provide corresponding pointers for further reading. In the following,
we describe the general ideas used to tackle the problems. We focus
on methods, that target automatic solutions. In practice, most systems
integrate user feedback on some level.
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5.3.1 Ontology Matching

Matching two ontologies means to determine an alignment between
them. An alignment is a set of correspondences between uniquely iden-
tified elements (e.g., classes and properties) that specifies the kind of
relation they are in. For example, whether two classes are equivalent,
or one subsumes the other. Shvaiko and Euzenat [2013] provide a good
survey on ontology matching. The database community refers to this
problem as data matching. We refer to Doan and Halevy [2005] for a
good survey on database related approaches.

Approaches: Approaches to ontology matching mainly make use
of matching strategies that use terminological and structural data
[Shvaiko and Euzenat, 2013]. Terminological data refers to string sim-
ilarities of, e.g., labels and comments in the ontology. The idea is that
highly similar names can indicate equivalence. Relationships between
classes (e.g., part-of, is-a) make up structural data. The intuition is
that classes in similar positions in the class hierarchy are more likely to
be the same. In addition to that, some approaches make use of the ac-
tual instances of a knowledge base, or try to perform logical reasoning.
The output of the different matchers is combined using pre-defined or
learned weights to derive a decision.

Benchmarks: In 2004, the Ontology Alignment Evaluation Initiative
(OAEI) started an annual benchmark to evaluate ontology matching
systems [Euzenat et al., 2011a]. Each year, a set of benchmarking
datasets that include reference alignments is published.2 Participation
was low in the beginning but since 2007 on average 17 groups partic-
ipate with a peak of 23 groups in 2013. Systems can compete against
each other and compare results. On a real world ontology matching
task, systems have shown to give results with above 90% F-measure
[Grau et al., 2013]. Shvaiko and Euzenat [2013] note that while great
progress was made in the first years, progress is slowing down. They
formulate a set of eleven major challenges that need to be tackled in
the near future, in particular, more efficient matching and matching
utilizing background knowledge.

2http://oaei.ontologymatching.org/

http://oaei.ontologymatching.org/
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5.3.2 Instance Matching

Instance matching refers to finding instances that represent the same
individual or entity. In the Semantic Web, these are linked using
owl:sameAs. In the database community, this is referred to as record
linkage, duplicate record identification or detection, and entity match-
ing (and some more). A lot of research on this problem has been in
done in that community . We refer to the surveys by Köpcke and Rahm
[2010] and by Elmagarmid, Ipeirotis, and Verykios [2007]. Most of the
approaches for instance matching are minor adaptations from those for
databases [Castano et al., 2011].

Approaches: Similar to ontology matching, to match two instances,
their attribute values are compared. This involves using string simi-
larity (e.g., edit distance and extensions, and common q-grams), pho-
netic similarity (similar sounding field names are similar, even if they
are spelled differently) or numerical similarity (difference) depending
on the data type. Then, learning based techniques represent such an
instance tuple as a feature vector of similarities and use a binary clas-
sifier. If no learning data is available, manually derived weights and
thresholds can be used. Extensions of these methods also consider re-
lationships to other instances, apply unsupervised learning techniques,
or apply additional rules based on domain knowledge.

Benchmarks: The benchmark by the Ontology Alignment Evaluation
Initiative (OAEI) contains several instance matching tasks since 2009.
Different knowledge bases are provided for which identical entities need
to be identified. The used knowledge bases consist of parts of real-
world knowledge bases like DBpedia [2007] or Freebase [2007]. Systems
have shown to provide up to 90% F-Measure on identifying identical
instances in these [Euzenat et al., 2010; Euzenat et al., 2011b].

5.3.3 Ontology Merging

Instead of using several inter-linked knowledge bases, it may be de-
sirable to merge them into a single coherent knowledge base. Merging
these involves merging their schema/ontology (concepts, relations etc.)
as well as merging duplicate instances. This requires, for example, re-
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solving conflicting names and attribute values. Merging can be done
in an asymmetric fashion, where one or more ontologies are integrated
into a target ontology. In contrast, symmetric merging places equal
importance on all input ontologies.

Approaches: Most work in the research so far has focused on com-
puting alignments between ontologies. Bruijn et al. [2006] and Shvaiko
and Euzenat [2013] describe some approaches that perform merging
of ontologies. These usually take computed alignments between the
ontologies as input and perform semi-automatic merging. For exam-
ple, PROMPT [Noy and Musen, 2000] performs merging by iteratively
suggesting merge operations based on heuristics to the user, applying
the user-selected operation, and computing the next possible merge
operations. The fact that many systems are semi-automatic makes it
extremely hard to compare their performance and currently no widely
accepted benchmark exists.

The problem of merging actual instances has not received much at-
tention by the semantic web community. It has, however, been exten-
sively studied by the database community. Bleiholder and Naumann
[2008] give a good overview and present some systems on data fusion.
Strategies for resolving conflicts, such as different values for the same
attribute, are mainly rule based. Some common strategies are, for ex-
ample, asking the user what to do, using values from a preferred source,
or using the newest or average value.

5.4 Inference

Inference (or reasoning) means deriving information that is not directly
in the data, but can be inferred from it. For example, from the facts
that Marion Moon is an ancestor of Buzz Aldrin and that Buzz Aldrin
is an ancestor of Janice Aldrin, one can infer that Marion Moon is also
an ancestor of Janice Aldrin.

Surprisingly, only few systems make use of inference as an integral
part of their approach to semantic search. One of the few examples is
the question answering system by Lymba [Moldovan, Clark, and Bow-
den, 2007], which uses a reasoning engine in its answering process (see
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Section 4.7.3 on The PowerAnswer System). This is in line with the sur-
vey by Prager [2006], who observes the same for question answering. We
suppose that the reason for this is that current systems already struggle
solving lower level problems, such as information extraction and trans-
lating a query into a formal representation (semantic parsing). These
are, however, prerequisites for utilizing inference (let alone benefiting
from it). Nonetheless, inference will certainly play a more important
role in the future. As a result, here we focus on technical standards and
components that enable researchers to perform inference.

A lot of triple stores include an inference engine. In addition to
triples, these require as input a set of inference rules, for example, that
the facts A is ancestor of B, and B is ancestor C imply that A is
ancestor of C. First, we introduce some languages that can be used to
express these rules. We then describe some triple stores and engines
(also referred to as reasoners) that allow inference over triples.

5.4.1 Languages

We first describe languages that are mainly used to describe the schema
of an ontology. These allow expressing constraints for the facts of a
knowledge base, for example, that a child cannot be born before its
parents. This also allows inference, but, broadly speaking, with a focus
on taxonomic problems.

RDF Schema [RDFS, 2008] is an extension of the basic RDF vocab-
ulary. RDFS defines a set of classes and properties expressed in RDF,
that provides basic features for describing the schema of an ontology.
For example, using the RDFS elements rdfs:Class and rdfs:subClassOf
allows declaring a hierarchy of classes. This allows inferring missing
information, such as deriving missing class memberships based on the
defined class hierarchy. For example, one might derive that Buzz Aldrin
is a person from the fact that he is an astronaut and the definition that
astronaut is a sub-class of person.

The Web Ontology Language [OWL, 2004] is a family of languages
(OWL Lite, OWL DL, OWL Full) with different levels of expressive-
ness to describe ontologies. OWL is the successor of DAML+OIL. Like
RDFS, OWL is used to describe the schema and semantics of an ontol-
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ogy, but with a much larger vocabulary and more options. For exam-
ple, it allows defining class equivalences and cardinality of predicates.
A prominent artifact of OWL is the owl:sameAs predicate, which is
used to link identical instances. OWL also allows expressing transitive
and inverse relationships enabling more complex inference.

The OWL 2Web Ontology Language [OWL 2, 2012] is the successor
of OWL. It extends OWL (and is backwards compatible) by addressing
some shortcomings in expressiveness, syntax, and other issues [Grau et
al., 2008]. Like OWL, it consists of a family of sub-languages (OWL
2 EL, OWL 2 QL, OWL 2 RL) also called profiles. These trade some
of their expressive power for more efficient reasoning and inference.
OWL 2 RL and QL are considered appropriate for inference with large
volumes of data.

Next, we describe three prominent languages, whose single purpose
is the description of inference rules. They allow expressing rules that
are either hard or impossible to define in the languages above.

The Rule Markup Language [RuleML, 2001] was defined by the Rule
Markup Initiative, a non-profit organization with members of academia
and industry. It is XML based and (in contrast to many other lan-
guages) allows reasoning over n-ary relations. RuleML has provided
input to SWRL as well as RIF (see below).

The Semantic Web Rule Language [SWRL, 2004] uses a subset of
OWL DL and RuleML. It extends the syntax of OWL but is more
expressive than OWL alone.

The Rule Interchange Format [RIF, 2010] was designed primarily
to facilitate rule exchange. It consists of three different dialects: Core,
Basic Logic Dialect (BLD), and Production Rule Dialect (PRD). RIF
is an XML language and specified to be compatible with OWL and
RDF. It also covers most features of SWRL.

5.4.2 Inference Engines

Most triple stores or RDF frameworks include a reasoning component.
We introduce a few prominent examples and describe their features.

A widely used benchmark for evaluating OWL reasoners is the
Leigh University Benchmark (LUBM) [Guo, Pan, and Heflin, 2005].
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It measures, besides other things, performance and soundness of in-
ference capabilities. The University Ontology Benchmark (UOBM) is
an extension thereof, focusing on a better evaluation of inference and
scalability [Ma et al., 2006]. Because results change frequently with
different hardware and software versions, we don’t provide them here.
Current results are usually available via, e.g., http://www.w3.org/
wiki/RdfStoreBenchmarking or the provider of the triple store.

We already introduced the triple stores of Virtuoso, Jena, and
Sesame in Section 4.2 on Structured Search in Knowledge Bases. Virtu-
oso also includes an inference engine that is able to reason on a subset
of the OWL standard (e.g., owl:sameAs, owl:subClassOf ).

The triple store of Jena, TDB, also supports OWL and RDFS on-
tologies. It comes with a set of inference engines for RDFS and OWL
definitions as well as custom rules. An API allows integration of third-
party or custom reasoners.

Sesame includes a memory and disk-based RDF store. It provides
inference engines for RDFS and custom rules. Additional reasoners can
be integrated via an API.

GraphDB3, formerly OWLIM, is a product by OntoText, also avail-
able as a free version. It includes a triple store, an inference engine, and
a SPARQL query engine. GraphDB can be plugged into Sesame to pro-
vide a storage and inference back end. It can reason over RDFS, (most
of) SWRL, and several OWL dialects (including OWL-2 RL).

Pellet [Sirin et al., 2007] is an open source OWL 2 reasoner written
in Java. It can be integrated with different Frameworks, for example,
Apache Jena. Pellet supports OWL 2 as well as SWRL rules.

OpenCyc4 is a knowledge base platform developed by Cyc. It pro-
vides access to an ontology containing common sense knowledge and
includes an inference engine. The inference engine is able to perform
general logical deduction. OpenCyc uses its own rule language CycL,
which is based on first-order logic.

3http://www.ontotext.com/products/ontotext-graphdb/
4http://www.cyc.com/platform/opencyc/

http://www.w3.org/wiki/RdfStoreBenchmarking
http://www.w3.org/wiki/RdfStoreBenchmarking
http://www.ontotext.com/products/ontotext-graphdb/
http://www.cyc.com/platform/opencyc/


6
The Future of Semantic Search

In this final section, let us briefly review the present state of the art in
semantic search, and let us then dare to take a look into the near and
not so near future. Naturally, the further we look into the future, the
more speculative we are. Time will tell how far we were off.

6.1 The Present

Let us quickly review the best results on the latest benchmarks from
the various subsections of our main Section 4: an nDCG@20 of about
30% for keyword search on a large web-scale corpus (Section 4.1); an
F1 score of around 40% for filling the slots of a given knowledge base
from a given text corpus (Section 4.3); a MAP score of around 25% for
keyword search on a large knowledge base (Section 4.4); an nDCGD@R
of about 30% for entity keyword search on a large web-scale corpus
(Section 4.5); an nDCG of about 50% for semi-structured search on
an annotated Wikipedia corpus (Section 4.6); an F1 score of around
50% for natural-language list questions on text (Section 4.7); an F1
score of around 50% for natural language questions on a knowledge
base (Section 4.8); and a similar score for the same kind of questions
on combined data (Section 4.9).

247
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The results for the basic NLP benchmarks are in a similar league
(considering that the tasks are simpler): an F1 score of around 75% for
large-scale named-entity recognition and disambiguation (Section 3.2),
a weighted F1 score (called Freval) of around 55% for sentence parsing
(Section 3.3), and an accuracy of about 70% for word analogy using
word vectors (Section 3.4).

These are solid results on a wide array of complex tasks, based
on decades of intensive research. But they are far from perfect. In
particular, they are far from what humans could achieve with their
level of understanding, if they had sufficient time to search or process
the data.

Let us look at three state-of-the-art systems for the scenarios from
the last three subsections of Section 4: PowerAnswer (Section 4.7),
Wolfram Alpha (Section 4.8), and Watson (Section 4.9). It is no coin-
cidence that these systems share the following characteristics: (1) the
main components are based on standard techniques that have been
known for a long time, (2) the components are very carefully engi-
neered and combined together, and (3) the “intelligence” of the system
lies in the selection of these components and their careful engineering
and combination.1 It appears that using the latest invention for a par-
ticular sub-problem does not necessarily improve the overall quality for
a complex task; very careful engineering is more important. See also
the critical discussion at the end of Section 4.1.

The Semantic Web, envisioned fifteen years ago, now exists, but
plays a rather marginal role in semantic search so far. It is employed
in some very useful basic services, like an e-commerce site telling a
search robot about the basic features of its products in a structured
way. But the Semantic Web is nowhere near its envisioned potential (of
providing explicit semantic information for a representative portion of
the Web). Results on benchmarks that use real semantic web data are
among the weakest reported in our main Section 4.

Machine learning plays an important role in making the current
systems better, mostly by learning the best combination of features

1The same can probably be said about a search engine like Google. The details
are not published, but telling from the search experience this is very likely so.
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(many of which have been used in rule-based or manually tuned sys-
tems before) automatically. Important sources of training data are past
user interactions (in particular, clickthrough data), crowdsourcing (to
produce larger amounts of training data explicitly, using a large human
task force), and huge unlabelled text corpora (which can be used for
distant supervision). The results achieved with these approaches con-
sistently outperform previous rule-based or manually tuned approaches
by a few percent, but also not more. Also note that this is a relatively
simple kind of learning, compared to what is probably needed to “break
the barrier”, as discussed in Section 6.3 below.

Interestingly, modern web search engines like Google provide a
much better user experience than what is suggested by the rather
mediocre figures summarized above. In fact, web search has improved
dramatically over the last fifteen years. We see three major reasons
for this. First, the user experience in web search is mainly a matter of
high precision, whereas the results above consider recall as well. Second,
web search engines have steadily picked up and engineered to perfection
the standard techniques over the years (including basic techniques like
error correction, but also advanced techniques like learning from click-
through data, which especially helps popular queries). Third, a rather
trivial but major contributing factor is the vastly increased amount of
content. The number of web pages indexed by Google has increased
from 1 billion in 2000 to an estimated 50 billion in 2015 (selected from
over 1 trillion URLs). For many questions that humans have, there
is now a website with an answer to that question or a slight variant
of it, for example: Stack Overflow (programming) or Quora (general
questions about life). Social platforms like Twitter or Reddit provide
enormous amounts of informative contents, too.

6.2 The Near Future

Over the next years, semantic search (along the lines of the systems
we have described in Section 4) will mature further. The already large
amount of text will grow steadily. The amount of data in knowledge
bases will grow a lot compared to now.
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Knowledge bases will be fed more and more with structured data
extracted from the ever-growing amount of text. The basic techniques
will be essentially those described in Section 4.3, but elaborated fur-
ther, applied more intelligently, and on more and more data with faster
and faster machines. This extraction will be driven by learning-based
methods, based on the basic NLP methods explained in Section 3. Data
from user interaction will continue to provide valuable training data.
Data from the Semantic Web might provide important training infor-
mation, too (either directly or via distant supervision).

The combination of information from text and from knowledge
bases will become more important. The current state of the art in sys-
tems like Watson or Google Search is that the text and the knowledge
base are processed in separate subsystems (often with the knowledge
base being the junior partner), which are then combined post hoc in
a rather simple way. The two data types, and hence also the systems
using them, will grow together more and more. Large-scale annotation
datasets like FACC (see Table 2.3) and the systems described in Sec-
tion 4.6 on Semi-Structured Search on Combined Data already go in
that direction. The meager contents of Section 4.9 on Question An-
swering on Combined Data show that research in this area is only just
beginning. We will see much more in this direction, in research as well
as in the large commercial systems.

6.3 The Not So Near Future

The development as described so far is bound to hit a barrier. That
barrier is an actual understanding of the meaning of the information
that is being sought. We said in our introduction that semantic search
is search with meaning. But somewhat ironically, all the techniques
that are in use today (and which we described in this survey) merely
simulate an understanding of this meaning, and they simulate it rather
primitively.

One might hope that with a more and more refined such “simula-
tion”, systems based on such techniques might converge towards some-
thing that could be called real understanding. But that is not how
progress has turned out in other application areas, notably: speech
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recognition (given the raw audio signal, decode the words that were
uttered), image classification (given the raw pixels of an image, recog-
nize the objects in it), and game play (beat Lee Sedol, a grandmaster of
Go). Past research in all these areas was characterized by approaches
that more or less explicitly “simulate” human strategy, and in all these
approaches eventually major progress was made by deep neural net-
works that learned good “strategies” themselves, using only low-level
features, a large number of training examples, and an even larger num-
ber of self-generated training examples (via distant supervision on huge
amounts of unlabelled data or some sort of “self play”).

Natural language processing will have to come to a similar point,
where machines can compute rich semantic representations of a given
text themselves, without an explicit strategy prescribed by humans. It
seems that the defining characteristics of such representations are clear
already now: (1) they have to be so rich as to capture all the facets of
meaning in a human sense (that is, not just POS tags and entities and
grammar, but also what the whole text is actually “about”); (2) they
have to be hierarchical, with the lower levels of these representations
being useful (and learnable) across many diverse tasks, and the higher
levels building on the lower ones; (3) they are relatively easy to use, but
impossible to understand in a way that a set of rules can be understood;
(4) neither the representation nor the particular kind of hierarchy has
to be similar to the representation and hierarchy used by human brains
for the task of natural language processing.

The defining properties might be clear, but we are nowhere near
building such systems yet. Natural language understanding is just so
much more multifaceted than the problems above (speech recognition,
image classification, game play). In particular, natural language is much
more complex and requires a profound knowledge about the world on
many levels (from very mundane to very abstract). A representation
like word vectors (Section 3.4) seems to go in the right direction, but
can at best be one component on the lowest level. The rest is basically
still all missing.

Once we come near such self-learned rich semantic representations,
the above-mentioned barrier will break and we will be converging to-
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wards true semantic search. Eventually, we can then feed this survey
into such a system and ask: Has the goal described in the final section
been achieved? And the answer will not be: I did not understand ‘final
section’. But: Yes, apparently ;-)
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