
Efficient and Effective SPARQL Autocompletion
on Very Large Knowledge Graphs

Hannah Bast∗
University of Freiburg
Freiburg, Germany

bast@cs.uni-freiburg.de

Johannes Kalmbach∗
University of Freiburg
Freiburg, Germany

kalmbach@cs.uni-freiburg.de

Theresa Klumpp∗
University of Freiburg
Freiburg, Germany

therry.klumpp@gmail.com

Florian Kramer∗
University of Freiburg
Freiburg, Germany

kramerfl@cs.uni-freiburg.de

Niklas Schnelle∗
University of Freiburg
Freiburg, Germany

niklas.schnelle@gmail.com

ABSTRACT
We show how to achieve fast autocompletion for SPARQL queries
on very large knowledge graphs. At any position in the body of
a SPARQL query, the autocompletion suggests matching subjects,
predicates, or objects. The suggestions are context-sensitive and
ranked by their relevance to the part of the query already typed.
The suggestions can be narrowed down by prefix search on the
names and aliases of the desired subject, predicate, or object. All
suggestions are themselves obtained via SPARQL queries. For ex-
isting SPARQL engines, these queries are impractically slow on
large knowledge graphs. We present various algorithmic and en-
gineering improvements of an open-source SPARQL engine such
that these queries are executed efficiently. We evaluate a variety of
suggestion methods on three large knowledge graphs, including
the complete Wikidata. We compare our results with two widely
used SPARQL engines, Virtuoso and Blazegraph. Our code, bench-
marks, and complete reproducibility materials are available on
https://ad.cs.uni-freiburg.de/publications .

CCS CONCEPTS
• Information systems→ Users and interactive retrieval.

KEYWORDS
SPARQL, Autocompletion, Efficiency, Knowledge Graphs

ACM Reference Format:
Hannah Bast, Johannes Kalmbach, Theresa Klumpp, Florian Kramer, andNiklas
Schnelle. 2022. Efficient and Effective SPARQL Autocompletion on Very
Large Knowledge Graphs. In Proceedings of the 31st ACM International
Conference on Information and Knowledge Management (CIKM ’22), Octo-
ber 17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3511808.3557093

∗Author contributions are stated in Section 7.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557093

1 INTRODUCTION
In the widely used Resource Description Framework (RDF), a knowl-
edge graph can be represented as a set of subject-predicate-object
triples. Each subject, predicate, or object is either an Internation-
alized Resource Identifier (IRI), enclosed in angle brackets, or a
so-called literal, enclosed in quotes. Here is a toy example:
<Meryl_Streep> <is_a> <Person>
<Meryl_Streep> <gender> <Female>
<Meryl_Streep> <award_won> <Oscar_Best_Actress>
<Meryl_Streep> <birth_date> "1949-06-22"
<Oscar_Best_Actress> <is_a> <Oscar>

The standard query language for RDF is SPARQL. It allows queries
with precise and easily understandable semantics. For example, the
following query finds all women who won an Oscar.
SELECT ?entity ?award WHERE {
?entity <is_a> <Person> .
?entity <gender> <Female> .
?entity <award_won> ?award .
?award <is_a> <Oscar> }

The result for this query is a table with two columns, where each
row contains the name of the person and the name of the award.
For the example knowledge graph above, the result is:
<Meryl_Streep> <Oscar_Best_Actress>

The five example triples above come from Fbeasy (362M triples)
[4], an easy-to-use subset of Freebase (1.9B triples) [9]. The largest
general-purpose knowledge graph to date is Wikidata (9.9B triples,
as of 10-06-2021) [25]. Fbeasy has (human-)understandable IRIs
for all entities. In Wikidata, almost all IRIs are abstract, whereas
understandable names can be obtained via dedicated predicates; see
the example query below. Freebase uses a mix of understandable
and abstract IRIs. We consider all three knowledge graphs in this
paper; see Section 5.2 for details.

SPARQL is conceptually easy, but it can be hard, even for experts,
to formulate queries and to find the right IRIs. It becomes even
harder when IRIs are abstract. For example, here is the correct
SPARQL query on Wikidata to obtain the list of all Oscars of Meryl
Streep and the movies she won them for:
SELECT ?award ?film WHERE {
wd:Q873 p:P166 ?m .
?m pq:P1686 ?film_id .

1

https://ad.cs.uni-freiburg.de/publications
https://doi.org/10.1145/3511808.3557093
https://doi.org/10.1145/3511808.3557093

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Hannah Bast, Johannes Kalmbach, Theresa Klumpp, Florian Kramer, and Niklas Schnelle

1
2
3
4

SELECT * WHERE {
 ?x <is_a> P|
} <Person>

<Politician>
<Plant>

s = ?x <is_a> t = <Person> p = "P"

1
2
3
4
5

SELECT * WHERE {
 ?x <is_a> <Person> .
 ?x |
} <is_a>

<gender>
<birth_date>

s = ?x <is_a> <Person>. ?x t = <gender> p = ""

1
2
3
4
5

SELECT * WHERE {
 wd:Q873[Meryl Streep] p:P166[award won] ?m .
 ?m |
} ps:P166

pq:P585
pq:P1686

"award won"@en
"point in time"@en

"for work"@en

s = wd:Q873 p:P166 ?m . ?m t = pq:P1686 p = ""

1
2
3
4
5
6
7

SELECT * WHERE {
 wd:Q873[Meryl Streep] p:P166[award won] ?m .
 ?m pq:P1686[for work] ?film .
 ?m ps:P166[award won] ?award .
 ?award wdt:P31[instance of] |
} wd:Q19020

wd:Q1011547
wd:Q268200

"Oscars"@en
"Golden Globes"@en

"SAG Award"@en

s = wd:Q873 p:P166 ?m … ?award wdt:P31 t = wd:Q19020 p = ""

Figure 1: Four screenshots of our autocompletion in action, with three suggestions each. Top-left and top-right: Examples 1
and 2 from Section 1.1. The assignments below each screenshot show the values of the variables from our problem definition.

?m ps:P166 ?award_id .
?award_id wdt:P31 wd:Q19020 .
?award_id rdfs:label ?award .
?film_id rdfs:label ?film }

The wd:, wdt:, p:, pq:, ps:, and rdfs: are IRI prefixes.1 The IRI wd:Q873
stands forMeryl Streep andwd:Q19020 for the Academy Awards. The
p:P166 leads to a so-called statement node, representing a particular
award. The ps:P166 leads to the award entity and the pq:P1686 leads
to the awarded film. The wdt:P31 stands for instance of.

1.1 Problem Definition and Three Examples
The goal of this paper is to assist the user in typing the body of a
SPARQL query by providing suggestions for IRIs and literals at any
point in the query.2 The suggestions should be ranked by relevance
to the part of the query already typed. We first provide a formal
problem definition and then explain it at length via two examples
in the text and four examples depicted in Figure 1.

Definition. Consider a valid SPARQL query. Let 𝑠 be a prefix of the
contents of the WHERE clause (the part the user has already typed),
just before the next token (subject, predicate, or object) begins. Let
𝑡 be that next token (which we want the user to help finding). Let 𝑝
be a prefix of a name or alias of 𝑡 , possibly empty. The SPARQL Au-
tocompletion via SPARQL problem then is: Given 𝑠 and 𝑝 , construct
and process a SPARQL query, called autocompletion query or AC
query, with the following properties:

1Definitions omitted to save space; see https://en.wikibooks.org/wiki/SPARQL/Prefixes
2A typical user interface for SPARQL autocompletion also involves suggestions for
variable names or SPARQL constructs like OPTIONAL, FILTER, UNION or GROUP BY
at appropriate positions in the query. We omit this aspect here, as such suggestions
are not particularly challenging with respect to relevance or efficiency.

The AC query returns a table with each row corresponding to a
suggestion and the following three columns:
?entity (an entity from the knowledge graph),
?name (a name or alias of that entity, starting with 𝑝),
?score (an estimate of the relevance of this entity suggestion).
The rows are sorted in descending order of ?score. There are three
objectives:
Relevance: One of the rows contains 𝑡 in the ?entity column and
that row should be as high up in the table as possible.
Sensitivity: As many of the suggestions as possible should continue
the SPARQL query in a meaningful way, namely such that there
exists a continuation with a non-empty result. We call such a sug-
gestion context-sensitive, or just sensitive.
Efficiency: The query should be processed as quickly as possible.

Example 1Assume thatwe have typed the body of the first SPARQL
query from the introduction until before the first object; see below.
This is the 𝑠 from the definition. The symbol marks the cursor
position and the prefix 𝑝 is "P". The token 𝑡 we are looking for at
this position is <Person>. The knowledge graph is Fbeasy.

?x <is_a> P

The following AC query computes a table containing each object
?entity and its name ?name such that the name starts with P and
the triple ?x <is_a> ?entity exists. The table is sorted in descending
order of the number of such triples for each ?entity.

1. SELECT ?entity ?name ?score WHERE {
2. { SELECT ?entity (COUNT(?x) AS ?score) WHERE {
3. ?x <is_a> ?entity

2

https://en.wikibooks.org/wiki/SPARQL/Prefixes

Efficient and Effective SPARQL Autocompletion on Very Large Knowledge Graphs CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

4. } GROUP BY ?entity }
5. BIND(STR(?entity) AS ?name) . FILTER REGEX(?name, "^P")
6. } ORDER BY DESC (?score)

The first three result rows for that query look as follows. Note that
for this knowledge graph, the name of an entity is simply the IRI,
interpreted as a string (that is what the STR function does).

<Person> "Person" 3970825
<Politician> "Politician" 127809
<Plant> "Plant" 60459

Relevance: The desired token 𝑡 is the first suggestion.
Sensitivity: By construction of the AC query, all suggested entities
lead to a non-empty result.
Efficiency: Virtuoso and Blazegraph (introduced in Section 4) mate-
rialize each matching ?name and check the regular expression for
each of them. Our approach avoids this; see Section 4.

Example 2 Now assume that we have typed the SPARQL query
until the following 𝑠 . The desired token 𝑡 at the cursor position is
<gender>. The prefix 𝑝 is empty.

?x <is_a> <Person> .
?x

The following AC query gives us a ranked list of predicates that lead
to a non-empty result. The score for each predicate is the number
of distinct persons that have a triple with that predicate. The reason
for the DISTINCT is explained more below and in Section 3.

1. SELECT ?entity ?name ?score WHERE {
2. { SELECT ?entity (COUNT(DISTINCT ?x) AS ?score) WHERE {
3. ?x <is_a> <Person> . ?x ?entity ?object
4. } GROUP BY ?entity }
5. BIND(STR(?entity) AS ?name)
6. } ORDER BY DESC (?score)

The first three result rows for this AC query are as follows:

<is_a> "is_a" 3970825
<gender> "gender" 2276146
<birth_date> "birth_date" 1915167

Relevance and Sensitivity: The rowwith the desired token 𝑡 is second
in this table and, again by construction, the AC query only returns
predicates that lead to a hit. Since <gender> is a frequent predicate
of entities of type <Person>, it occurs high up in the list and the
user does not even have to type a single letter to get it on the first
page of suggestions. It is important to note that without the first
triple in the AC query above (the Agnostic approach evaluated in
Section 5), <gender> would not be among the top suggestions.

Efficiency: Virtuoso and Blazegraph first join the two triples from
line 3 into a large table (one row for each triple of each person,
37M for the query above), and then group by predicate. This is
very expensive and leads to a timeout. For these engines (not for
ours), we therefore remove the DISTINCT; see Section 5.3. This
gives slightly worse suggestions, but at least some suggestions at
all. We can solve such queries very fast (0.1s for the query above),
using a general technique described in Section 4.1.

Figure 1 shows two more AC queries for the Wikidata knowledge
graph, where IRIs are abstract and we need to filter on the names
of these IRIs, obtained via the rdfs:label predicate.

It is important to note that the construction of our AC queries
(Section 3) is generic and works for arbitrary knowledge graphs.

1.2 Our contributions
We consider the following as our main contributions:
• We develop the idea of providing SPARQL autocompletion via
SPARQL queries. TheseAC queries can be processed by any (standard-
conforming) SPARQL engine. The basic idea is already found in
previous work, but in less generality, without an efficient solution,
and without an extensive quality evaluation. See Sections 2 and 3.
• We extend an existing SPARQL engine such that these AC
queries can be processed efficiently. Our extensions are technically
challenging, comprise algorithmic ideas and algorithm engineering,
and are valuable also beyond autocompletion. See Section 4.
• We show how to to realize AC queries with good (though not
optimal) quality also for two existing and widely used SPARQL
engines (Virtuoso and Blazegraph), despite their less efficient query
processing. Again, see Section 4.
• We provide an extensive evaluation of all three SPARQL engines
on three large knowledge graphs, including the complete Wiki-
data. In particular, we explore the trade-offs between sensitivity,
relevance and efficiency. See Section 5.
• We achieve strong results. For example, on Wikidata we can
realize sub-second response times with an average relevance (MRR)
of 43% per token without typing anything, and over 90% when
typing only three characters.
• Our code, benchmark, reproducibilitymaterials, and aweb-based
tool for the interactive exploration of our results are publicly avail-
able on https://ad.cs.uni-freiburg.de/publications .

2 RELATEDWORK
Campinas et al. [12] present and investigate AC queries for predi-
cates and types (that is, objects of a type predicate). Their AC queries
operate on a smaller graph summary, which helps efficiency, but
harms relevance. In contrast, our AC queries operate on the original
data and work for objects of any kind.

In a follow-up paper, Campinas [11] presents a system called
Gosparqled, which uses AC queries similar to ours, but with a LIMIT
(of 10, 100 or 500) on the inner subquery before the GROUP BY
(line 4 in Section 1.1). They evaluate the effect of the LIMIT by
computing the Jaccard similarity of the set of suggestions to that
of the respective query without LIMIT. For each suggestion, the
desired token is removed from the full query, which helps efficiency
a lot because of the restrictive context. In Section 5, we evaluate
their method (under the name Sensitive-Trunc) more realistically,
by computing actual relevance of the suggestions on real queries
typed from beginning to end.

Jarrar and Dikaiakos [16] present autocompletion for a variant
of SPARQL, called MashQL. Their AC queries are only context-
sensitive for linear-shaped queries. For example, if the user has
already typed ?x1 <place of birth> ?x2 . ?x2 <country> ?x3 . ?x3 ,
MashQL will consider this context. But if the user has typed ?x

3

https://ad.cs.uni-freiburg.de/publications

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Hannah Bast, Johannes Kalmbach, Theresa Klumpp, Florian Kramer, and Niklas Schnelle

<place of birth> <Berlin> . ?x <gender> <Female> . ?x , MashQL
will suggest predicates without taking the previous context into
account. To be able to run the AC queries more efficiently, they
use two graph summaries. In one graph summary, entities with
the same outgoing paths are grouped together and in the other
one, entities with the same incoming paths are grouped together.
These summaries only lead to context-sensitive results for the above
mentioned linear-shaped queries.

De la Parra and Hogan [13] present a follow-up to an earlier
(arXiv) version of our paper [7]. Like [12], they disregard ranking,
but instead of computing a subset of the context-sensitive sug-
gestions they compute a superset. Despite the publicly available
benchmark from [7] (which they cite), they claim that “there is no
existing benchmark for autocompletion” and evaluate on a very
narrow class of queries (two triples, one predicate fixed, looking
for suggestions for the other predicate).

Bast et al. [3] present a system called Broccoli, which provides
context-sensitive suggestions for tree-shaped queries and depicts
the queries as trees. The underlying query language is equivalent
to SPARQL, restricted to trees and basic graph patterns. The focus
of the paper is on extending the query language by a text-search
component and on providing efficient autocompletion for this com-
ponent as well.

Ferré [15] presents a system called SPARKLIS, which helps the
user construct a subclass of SPARQL queries using a faceted-search
interface and a user-friendly representation, similar to Broccoli. Sug-
gestions are obtained via AC queries to an arbitrary given SPARQL
endpoint. To address efficiency issues, there is a LIMIT as described
for Gosparqled above. Prefix search and ranking are supported to a
limited extent, synonyms or aliases not at all. There is a user study,
but no quality evaluation like the one in Section 5.

There is a wide literature on other approaches to assist the user
in creating SPARQL queries (or otherwise getting results from a
knowledge graph) by other means than token-based autocomple-
tion. In particular: SemFacet [1], BrowseRDF [21], SPARQLets-Finder
[23], SnipSuggest [17], Aqqu [6], Question AC [2], AutoSPARQL [19],
SQLSUGG [14]. They are not directly relevant to our work in this
paper, so we omit a detailed discussion due to the space restrictions.

3 AC QUERY TEMPLATES
In Section 1.1, we have already seen AC queries for two concrete
examples. In this section, we show how these can be generalized to
arbitrary knowledge graphs. All AC queries explained in this section
are provided in full on https://ad.cs.uni-freiburg.de/publications .

Our approach is completely generic. All we need for a given
knowledge graph is a predicate path %name-path%, used to ob-
tain names and aliases from IRIs3 and a predicate path %ranking-
path%, used to obtain counts for ranking IRIs if no context is given4.
The next subsection shows how these are used in concrete AC

3Wikidata: rdfs:label|skos:altLabel to obtain names for subjects and objects, and
^(<>|!<>)/(rdfs:label|skos:altLabel) for predicates: the ^(<>|!<>) follows an arbi-
trary predicate in reverse direction; Freebase: fb:type.object.name|fb:common.topic.alias
for all; Fbeasy: the identity predicate (!(<>|!<>))? for all, which plays the role of the
BIND(STR ...) in the examples from Section 1.1.
4Wikidata: ^schema:about (all Wikimedia links of an entity); Freebase:
fb:type.object.type (all types of an entity); Fbeasy: <is-a> (dito). A meaningful
default setting would be <>|!<>, which matches any predicate.

queries. Technically, there is no need to restrict them to predicate
paths; this only serves to make our AC queries easier to display.

It is also important to note that the ranking with %ranking-
path% is only needed for AC queries without context, in particular,
for our agnostic baseline (see Section 5.4). There is a meaningful
default setting for any knowledge graph.5

Sensitive AC queries: We use the part 𝑠 of the SPARQL query
body already typed; see our definition in Section 1.1. We first need
to compute the %context%, which is the part of 𝑠 that is actually
“connected” to the triple at the current cursor position.

Let 𝑇 be the partial triple that is currently being typed. Let S
be the set of all finished triples inside 𝑠 . Construct an undirected
graph with node set S ∪ {𝑇 } and an edge between two nodes if
they share a variable. Then %context% is 𝑠 without 𝑇 and without
all nodes in S that are not reachable from 𝑇 .5 It can be computed
with a breadth-first search starting from 𝑇 . Further, let %subject%
and %predicate% be the subject and predicate of the triple at the
current cursor position (if they already exist) and let %prefix% be
the prefix (possible empty) typed by the user.

All our AC queries follow the same template: a subquery comput-
ing the suggested entities and their scores and a surrounding part
adding the names and filtering by the given %prefix%. An entity
can have multiple matching names, hence the outer GROUP BY.

1. SELECT ?entity (SAMPLE(STR(?name)) AS ?name)
2. (SAMPLE(?score) AS ?score) WHERE {

%entity-score-subquery%
6. ?entity %name-path% ?name .
7. FILTER REGEX(STR(?name), "^%prefix%")
8. } GROUP BY ?entity ORDER BY DESC (?score)

Here is %entity-score-subquery% for subject suggestions; for
these, %context% is always empty; see its definition above.

3. { SELECT ?entity (COUNT(?r) AS ?score) WHERE {
4. ?entity %ranking-path% ?r
5. } GROUP BY ?entity }

Here is %entity-score-subquery% for predicate suggestions. If
%subject% is a variable, %x% is DISTINCT %subject%, otherwise
?object. Together with the template above, this and the following
subquery generalize Examples 1 and 2 from Section 1.1, which also
provide an intuition for the score.

3. { SELECT ?entity (COUNT(%x%) AS ?score) WHERE {
4. %context% . %subject% ?entity ?object
5. } GROUP BY ?entity }

Here is %entity-score-subquery% for object suggestions.

3. { SELECT ?entity (COUNT(?entity) AS ?score) WHERE {
4. %context% . %subject% %predicate% ?entity
5. } GROUP BY ?entity }

Agnostic and Unranked AC queries: Agnostic queries trade off
relevance for efficiency. For subject and object suggestions, the

5For the sake of brevity, this simplified description assumes a WHERE clause without
FILTER, OPTIONAL, UNION, MINUS, and sub-queries. In our implementation and
evaluation, we do consider these properly as well (it is straightforward). The details
can be found under https://ad.cs.uni-freiburg.de/publications.

4

https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications

Efficient and Effective SPARQL Autocompletion on Very Large Knowledge Graphs CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

agnostic AC query is identical to the sensitive AC query for sub-
ject suggestions above (which never has context). For predicate
suggestions, the agnostic AC query is like the respective sensitive
query, but with empty %context%. In Section 5, we see that we can
always process these queries in time below one second.

The unranked AC queries are just like the agnostic AC queries,
but without the final ORDER BY.

4 EFFICIENT AC QUERIES
This section describes our main techniques to make AC queries
efficient. In our evaluation in Section 5, we impose a timeout for
each AC query (a user is onlywilling towait so long for suggestions).
Efficiency is therefore a prerequisite for quality.

We implement the extensions described in the following subsec-
tions as extensions of the open-source SPARQL engine QLever [5].
In our evaluation, we compare this to Virtuoso [24] and Blazegraph
[8]. Virtuoso is one of the most widely used SPARQL engines and
Blazegraph is the SPARQL engine behind the Wikidata Query Ser-
vice [26]. The general architecture of all three engines is similar:
they all map IRIs to internal IDs, and store multiple permutations
of the triples (represented via their IDs) in order to speed up the
basic query processing operations, most notably joins.

4.1 AC Queries for Predicates Using Patterns
Our predicate AC queries involve queries of the following kind,
where %context% are the completed triples from the part 𝑠 of the
SPARQL query that has already been typed; see our definition in
Section 1.1.

SELECT ?entity (COUNT(DISTINCT ?x) AS ?score) WHERE {
%context% . ?x ?entity ?object

} GROUP BY ?entity

As explained for Example 2 of Section 1.1, existing SPARQL engines
materialize all matches for %context% . ?x ?entity ?object before
computing the GROUP BY. If %context% constrains ?x little or not
at all, this is very expensive to compute.

We want to stress that these queries do not just occur in the con-
text of autocompletion. For example, users of the SPARQL endpoint
for the huge UniProt knowledge graph (94B triples) formulate many
“discovery” or “statistics” queries that are of a similar form as our
AC queries [10]. The rule miner from [18] is based on queries like
the above, but has its own data structures to process them because
existing SPARQL are too slow or time out.

To answer the kind of query shown above efficiently, we make
the following preprocessing. It is based on the simple observation
that in typical RDF data, the set of distinct predicates is the same
for many subjects. This observation has been exploited before for
other problems: In [20], it is used for join optimization. In [22], it is
used for automatic schema extraction.
1. Let S be the set of all distinct subjects in the knowledge graph.
For each 𝑥 ∈ S, compute the set of the distinct predicates from
all triples that have 𝑥 as subject. This set is called the (predicate)
pattern of 𝑥 . From these sets, compute the set P of distinct patterns.
2. Give consecutive IDs to the patterns from P and store the map
from IDs to patterns in an array of size |P |.
3. Store the map from each subject to its pattern ID in an array of

size |S|.
The following table provides statistics of this pre-processing for our
three knowledge graphs. The fourth column counts the total size of
the patterns, where the size of a pattern is the number of predicates
and each pattern is counted once. The fifth column specifies the
total memory consumption of the result of the pre-processing.

|S| |P | ∑
P∈P |P| Mem

Fbeasy 60M 0.3M 3M 0.3GB
Freebase 476M 3.1M 95M 2.5GB
Wikidata 2068M 4.4M 160M 9.0GB

To process the above query, we make use of these precomputed pat-
terns as follows, where steps 2 and 3 can be (and are) parallelized:
1. Let 𝑆 ⊆ S be the set of subjects ?x from %context% or 𝑆 = S if
%context% is empty.
2. Look up the pattern IDs from all 𝑥 ∈ 𝑆 in the precomputed array
and compute a map 𝑐 : P𝑆 → N that, for each pattern ID that
occurs at least once, counts how many 𝑥 ∈ 𝑆 have that pattern ID.
This can be done in time linear in the size of 𝑆 .
3. For each pattern 𝑃 ∈ P𝑆 , retrieve the corresponding set of predi-
cate IDs and for each 𝑝 in that set, increase a counter (initially 0)
by 𝑐 (𝑃). This takes time linear in

∑
𝑃 ∈P𝑆

|𝑃 |.
4. Sort the encountered 𝑝 by the final counter values. This yields
the result for the query above.

The worst case for this algorithm is that every subject has a dif-
ferent predicate pattern and exactly one triple for each predicate.
Then |P𝑆 | = |𝑆 |, each 𝑐 (𝑃) is 1, and Step 3 does exactly what the
naive algorithm described in Section 1.1 would do. However, in
realistic knowledge graphs, many subjects share the exact same
set of predicates, so that |P𝑠 | < |𝑆 |, and∑𝑃 ∈P𝑆

|𝑃 | is much smaller
than the total number of triples of all 𝑥 ∈ 𝑆 .

For example, consider the AC query above for Fbeasy, with%con-
text% = ?x <is_a> <Person>. In Fbeasy, there are 4.0M persons
with a total of 37M triples. They have only |P𝑠 | = 115K distinct
patterns with

∑
𝑃 ∈P𝑆

|𝑃 | = 1.4M predicates. With QLever extended
as described above, the query can be solved in under 0.1s. With the
standard query processing, QLever would take 6.6s, of which 1.6s
are spent on sorting 37M elements.

The graph summaries from [12] (see Section 2) realize the special
case when the %context% is one triple that specifies the type.

4.2 Prefix filtering
Here is an AC query, similar to the one from Example 1 in Section
1.1, but on Wikidata (wdt:P50 relates written works to authors):

1. SELECT ?entity (SAMPLE(?name) AS ?name)
2. (SAMPLE(?score) AS ?score) WHERE {
3. { SELECT ?entity (COUNT(?entity) AS ?score) WHERE {
4. ?x wdt:P50 ?entity
5. } GROUP BY ?entity }
6. ?entity rdfs:label|skos:altLabel ?name
7. FILTER REGEX(STR(?name), "^P")
8. } GROUP BY ?entity ORDER BY DESC(?score)

5

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Hannah Bast, Johannes Kalmbach, Theresa Klumpp, Florian Kramer, and Niklas Schnelle

Blazegraph and Virtuoso both time out on this query because they
materialize all ?name strings and check the regular expression for
each of them. In QLever, each IRI or literal has a unique internal ID
and for each data type (string, integer, float), the order by ID is ex-
actly the same as the natural order for that data type. A FILTERwith
a prefix regex can then be realized with two binary searches. Only
for the final result are IDs translated to the strings they represent.

This trick also permits the following optimization for longer
prefixes.6 For object AC queries, which all have the form above
(what differs is the %context% of line 4 and the prefix in line 7 by
which we filter), we simply swap line 5 with lines 6 and 7. The effect
is that when the triples of line 4 yield a large intermediate result,
this is now significantly reduced before the GROUP BY.

4.3 Caching and pinned results
We have extended QLever by a thread-safe least-recently-used
(LRU) query cache, which does not only store final results of a
query, but also results from the intermediate operations. We made
the query planner cache-aware: the cost estimate for computing
the result of a cached query is zero and the exact size is known.
This is crucial for the processing of sequences of similar SPARQL
queries, as it naturally happens in our setting.

Our cache also allows pinning results. These results will not be
removed by an LRU eviction (but there is a special command to
clear the cache completely). In our evaluation, we pin the results
of two queries: the query that provides the canonical name, score7,
and aliases for each entity that can occur as subject or object, and
the query that provides the same information for each entity that
can occur as predicate. We pin the first result in two orders: by
entity (for efficient joins with the %context%) and by alias (for
efficient filtering by prefix). Even for the large Wikidata, the size of
these pinned results is just 6.7GB.

5 EVALUATION
In this section, we describe how we evaluated our approach, and
then present and discuss the results of this evaluation. Repro-
ducibility materials are available on https://ad.cs.uni-freiburg.de/
publications. In particular, a web-based analysis tool is provided
that permits an interactive exploration of the performance details
for each individual AC query.

5.1 SPARQL Engines and Hardware
We evaluate our own extension of QLever, described in Section 4,
against Virtuoso and Blazegraph, briefly described at the beginning
of that section. All experiments were performed on a standard PC
with an AMD Ryzen 7 3700X CPU, 128 GB of DDR-4 RAM and
4 TB SSD storage (NVME, Raid 0).8 For easy reproducibility, all
experiments where run inside docker containers.

QLever was configured with a memory limit of 70GB for query
processing, of which 30GB were available to the query cache; see
Section 4.3. Before each experiment, the query cache was cleared

6In our evaluation, we apply this when the prefix length is ≥ 3.
7The score only matters for subject AC queries, which are rare, and for agnostic queries,
which we use in our evaluation as a baseline (see Section 5.4).
8We also ran our experiments on HDD storage (Raid 5), and found little difference.
However, indexing on HDD is much slower for Virtuoso and Blazegraph.

and the results of the queries without context were pinned, as ex-
plained in Section 4.3. For Virtuoso, we use the latest release candi-
date of the open-source edition (7.2.6), configured using the largest
memory preset for 64GB of RAM.9 For Blazegraph, we used the lat-
est stable release (2.1.5), configured according to Blazegraph’s own
recommendations for running Wikidata [8]. In particular, Blaze-
graph gets 16GB for the JVM heap, while the rest of the RAM is
used for disk caching by the operating system.

We took great care to get the best query times for each engine,
given its capabilities. To avoid bad query plans, we used slightly
different formulations of the AC queries for each engine. As already
discussed for Example 2 in Section 1.1, we dropped the DISTINCT
in the predicate AC queries for Virtuoso and Blazegraph because
otherwise almost all of these queries would fail for these engines.
Apart from this, all AC queries give the same result for each engine.

5.2 Knowledge Graphs
We evaluate on the following three knowledge graphs, already intro-
duced in Section 1. We deliberately chose three knowledge graphs
with related content (general knowledge in this case), but different
sizes and combinations of human-understandable vs. abstract IRIs.
Fbeasy [4]: 362M triples, 50M subjects, 2K predicates. All IRIs are
simple and understandable (e.g. <Meryl_Streep> or <gender>).
Freebase [9]: 1.9B triples, 125M subjects, 785K predicates. Entity
IRIs are abstract (e.g. fb:m.05dfkg3 for Meryl Streep), but most pred-
icate IRIs are understandable (e.g. fb:people.person.gender).
Wikidata [25]: 9.9B triples, 1.8B subjects, 41K predicates (dump
from 10.06.2021). Almost all IDs are abstract (e.g. wd:Q873 for Meryl
Streep and wdt:P21 for gender). We removed all non-English lan-
guage literals to help Virtuoso and Blazegraph, because these en-
gines do not support efficient language filters.

5.3 Autocompletion (AC) queries
The basis for our evaluation were all example queries from theWiki-
data Query Service [26]. They cover a wide spectrum of SPARQL
queries: from simple to complex, using features like UNION, OP-
TIONAL, MINUS, predicate paths, subqueries, and covering the
whole breadth of the content in the knowledge graph. We had to
exclude some queries for technical reasons, which left 301 queries
for Wikidata. We translated these queries as faithfully as possi-
ble and provided that an answer existed to Freebase (115 queries)
and to Fbeasy (99 queries). All the details are provided under
https://ad.cs.uni-freiburg.de/publications.

From these full SPARQL queries, we generate AC queries by con-
ceptually “typing” the queries from left to right, top to bottom.
Specifically, for a given mode and a given SPARQL query, we gener-
ate AC queries from the templates described in Section 3 as follows:
1. Consider each token (subject, predicate, or object) in the query
that is either an IRI or a literal.10 For each such token do:

9When scaling this preset up to 128GB we found no significantly different results, but
frequently ran into problems with the out-of-memory killer.
10We exclude the special name predicates (fb:type.object.name for Freebase, rdfs:label
for Wikidata) because they occur in almost every query and are trivial to suggest and
would only distort our results. In the 301 Wikidata queries, there are 408 triples of
the form ?x rdfs:label ?label (similarly for Freebase). After having typed the subject
variable, rdfs:label is then always among the most frequent suggestions.

6

https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications

Efficient and Effective SPARQL Autocompletion on Very Large Knowledge Graphs CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Fbeasy (315 tokens) ≤ 0.2s ≤ 1.0s Max Sensitivity MRR7 KS7
Unranked Qlever 100% 100% 281ms 0: 3% 3: 24% 7: 61% 0: 0% 3: 39% 7: 69% 7.21
Agnostic Qlever 100% 100% 362ms 0: 48% 3: 44% 7: 56% 0: 25% 3: 85% 7: 97% 3.58
Sensitive-Trunc Blazegraph 24% 95% 3% > 5s 0: 100% 3: 100% 7: 100% 0: 50% 3: 69% 7: 82% 4.26
Sensitive-Trunc Virtuoso 15% 38% 2% > 5s 0: 100% 3: 100% 7: 100% 0: 56% 3: 79% 7: 87% 3.14
Sensitive Qlever 93% 99% 2605ms 0: 100% 3: 100% 7: 100% 0: 68% 3: 96% 7: 98% 1.69
Mixed-Trunc Blazegraph 25% 98% 1000ms 0: 95% 3: 72% 7: 73% 0: 50% 3: 93% 7: 95% 2.49
Mixed-Trunc Virtuoso 14% 100% 1000ms 0: 92% 3: 72% 7: 79% 0: 52% 3: 93% 7: 97% 2.35
Mixed Qlever 93% 100% 1000ms 0: 99% 3: 100% 7: 100% 0: 67% 3: 96% 7: 98% 1.70

Freebase (479 tokens) ≤ 0.2s ≤ 1.0s Max Sensitivity MRR7 KS7
Unranked Qlever 100% 100% 355ms 0: 3% 3: 8% 7: 16% 0: 0% 3: 24% 7: 55% 8.93
Agnostic Qlever 100% 100% 367ms 0: 42% 3: 25% 7: 25% 0: 12% 3: 83% 7: 94% 4.41
Sensitive-Trunc Blazegraph 25% 92% 5% > 5s 0: 100% 3: 100% 7: 100% 0: 43% 3: 76% 7: 76% 3.73
Sensitive-Trunc Virtuoso 35% 50% 13% > 5s 0: 100% 3: 100% 7: 100% 0: 44% 3: 76% 7: 77% 3.98
Sensitive Qlever 91% 98% 3074ms 0: 100% 3: 100% 7: 100% 0: 60% 3: 98% 7: 99% 1.99
Mixed-Trunc Blazegraph 23% 99% 1000ms 0: 78% 3: 69% 7: 65% 0: 43% 3: 94% 7: 97% 2.55
Mixed-Trunc Virtuoso 29% 100% 1000ms 0: 87% 3: 73% 7: 73% 0: 47% 3: 96% 7: 98% 2.40
Mixed Qlever 90% 100% 1000ms 0: 99% 3: 99% 7: 100% 0: 60% 3: 98% 7: 99% 2.00

Wikidata (1244 tokens) ≤ 0.2s ≤ 1.0s Max Sensitivity MRR7 KS7
Unranked Qlever 99% 100% 445ms 0: 0% 3: 3% 7: 23% 0: 0% 3: 9% 7: 52% 10.89
Agnostic Qlever 99% 100% 476ms 0: 27% 3: 28% 7: 34% 0: 6% 3: 62% 7: 91% 6.02
Sensitive-Trunc Blazegraph 18% 82% 13% > 5s 0: 100% 3: 100% 7: 100% 0: 44% 3: 71% 7: 67% 4.80
Sensitive-Trunc Virtuoso 34% 52% 10% > 5s 0: 100% 3: 100% 7: 100% 0: 44% 3: 80% 7: 84% 3.92
Sensitive Qlever 57% 85% 4% > 5s 0: 100% 3: 100% 7: 100% 0: 44% 3: 93% 7: 97% 2.93
Mixed-Trunc Blazegraph 3% 98% 1000ms 0: 89% 3: 36% 7: 46% 0: 42% 3: 74% 7: 92% 3.94
Mixed-Trunc Virtuoso 30% 100% 1000ms 0: 84% 3: 70% 7: 72% 0: 36% 3: 81% 7: 96% 3.63
Mixed Qlever 55% 100% 1000ms 0: 90% 3: 94% 7: 96% 0: 43% 3: 93% 7: 98% 2.86

Table 1: Query times, sensitivity, and relevance for three knowledge graphs, six completionmodes, and three SPARQL engines.
Sensitive-Trunc is an improved version of the best previous work. For each token, three AC queries were issued, for prefix
lengths 0, 3, and 7. The columns for Sensitivity and MRR7 show average results per prefix length. The “Max” column shows
the maximum query time or the fraction of AC queries that timed out after 5s. For MRR7 and KS7, the timed-out queries are
treated as if the desired token appeared at position∞ and the number of keystrokes required is the length of the token plus 1.

2. Compute %context% as described in Section 3 (only needed for
the sensitive AC queries), and depending on the position of the
token, also determine %subject% and %predicate%.
3. Choose a name from the %name-path% predicate path (canoni-
cal name and aliases) for that token uniformly at random.
4. From that name, compute three prefixes for %prefix%, of lengths
0 (the empty word), 3, and 7; the next but one paragraph explains
why. For prefix lengths 3 and 7, if the name has fewer characters,
we change the AC query such that it requires a full-word match.
5. For each prefix length, pick the AC query template from Section
3 according to the position of the token (subject, predicate, object)
and the mode (unranked, agnostic, sensitive). Plug in %context%
and %prefix%, and depending on the position also %subject% and
%predicate%.

We deliberately did not evaluate AC queries after every keystroke,
for the following reason: Ideally, a user does not have to type any-
thing, and the desired token is suggested highly ranked already
for prefix length 0. But if the suggestions for prefix length 0 are
not good, the user needs an idea of what to type anyway and she
might as well type a few letters instead of just one. We chose 7 as a
representative for a prefix length that is not too long, yet should
sufficiently narrow down the search for most tokens.

5.4 Modes
We evaluate the followingmodes. The exact AC queries are available
on https://ad.cs.uni-freiburg.de/publications. It is important to note
that we are comparing against an improved version of the best
previous work: Sensitive-Trunc below is similar to [11], but the
latter uses no ranking and only works for predicates and types.

7

https://ad.cs.uni-freiburg.de/publications

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Hannah Bast, Johannes Kalmbach, Theresa Klumpp, Florian Kramer, and Niklas Schnelle

Sensitive: These are the AC queries explained in Section 1.1. They
are ideal regarding sensitivity, but a challenge regarding efficiency.
While our extension of QLever can handle these queries, Blazegraph
and Virtuoso often time out. We therefore evaluate these engines
on modified AC queries explained next.
Sensitive-Trunc: All our AC queries have the same structure: an
“inner” part, enclosed by a SELECT . . . WHERE with a GROUP
BY, followed by a prefix filter; see Sections 1.1, 4.1, 4.2, and 3. For
Blazegraph, we truncate this inner part (before the GROUP BY is
computed) by LIMIT 10.000 on Fbeasy and by LIMIT 100.000 on
Freebase and Wikidata. The same approach was used in [11] for
a less general class of AC queries; see Section 2. For Virtuoso, we
use its “Anytime” feature with a timeout of 5 seconds. Virtuoso
then produces a subset of the full result approximately within that
time frame. This feature, which is unique to Virtuoso, gives slightly
better results than mere truncation.
Agnostic: Agnostic AC queries completely ignore the context of the
token. They return all entities where a name matches the prefix,
ordered by a precomputed score.11 These queries are always fast
(see Section 4), but at the expense of sensitivity and relevance.
Unranked: Like Agnostic, but rank the suggestions alphabetically.
Mixed: Simultaneously issue an agnostic and a sensitive query. If
the sensitive query finishes within 1s, take that result, otherwise
take the result of the agnostic query.
Mixed-Trunc: Like Mixed, but using Sensitive-Trunc instead of Sen-
sitive for prefix length 0. For Blazegraph and Virtuoso, we evalute
this mode instead of Mixed for the following reason that will be-
come clear in Section 5.6: For prefix lengths 3 and 7, the relevance of
Agnostic is quite good, and better than Sensitive-Trunc. For prefix
length 0, the relevance of Agnostic is very poor, and with Sensitive-
Trunc, Blazegraph and Virtuoso at least have a chance to produce
better results (whereas Sensitive often times out).
We set the timeout for all sensitive AC queries (for all knowledge
graphs and all engines) to 5s. Note that the timeout for mixed mode
is just 1s. We deliberately set this lower to also explore the effects
of different timeouts on relevance. Also, 1s is more what a user
would expect from an interactive experience.

5.5 Evaluation metrics
We evaluate both objectives from our definition in Section 1.1.
Efficiency: We report the percentage of AC queries that can be
processed faster than 0.2s (this feels close to instantaneous) and
faster than 1.0s (noticeable delay, but still acceptable). If no query
times out, we also report the maximum query time; otherwise, we
report the percentage of AC queries that timed out.
Sensitivity: For each AC query, we compute the percentage of sug-
gestions that lead to a non-empty result; see Section 1.1. By defini-
tion, this is 100% for the sensitive and sensitive-trunc AC queries.
Note that agnostic or unranked queries might also produce some
sensitive suggestions, but cannot identify them.
Relevance: Of utmost importance to a user is the rank of the desired
token in the list of suggestions We evaluate this as follows. We
assume that suggestions are shown on “pages” of𝑘 suggestions each.
11The details of this scoring are provided in Section 3. For example, we use the number
of Wikimedia sitelinks as a score for subjects and objects on Wikidata.

Ideally, the desired token is on the first page (which is displayed
after each keystroke). In our evaluation, we take 𝑘 = 7. We use the
following two metrics:
MRR𝒌 (mean reciprocal rank): For each AC query, the reciprocal
rank is 1/𝑟 , where 𝑟 is the index of the suggestion page on which
the desired token occurs, that is, at a position in (𝑟 − 1) ·𝑘 .. 𝑟 ·𝑘 − 1,
with the first position being 0. We report the mean reciprocal rank
of all AC queries with a particular prefix length (0, 3, and 7). The
maximum value of MRR7 is 100%; it is achieved when each token
appears on the first page of suggestions.

Note that the reciprocal rank is a very natural measure in our
setting: we only have one relevant item and the “gain” for the user
indeed decreases sharply with the index of the page where the item
occurs. A user would rather continue typing instead of scrolling
down much further in the list of suggestions.
KS𝒌 (number of keystrokes): For each token, the number of
keystrokes is the minimal prefix length (out of 0, 3, and 7), for
which the token appears on the first page of suggestions. If it is not
on the first page even for prefix length 7, we take the number of
keystrokes for that token as the length of the name of the token
plus 1. This corresponds to typing the full name and indicating that
it is not a prefix, but the full name.

5.6 Main results and discussion
Table 1 summarizes our main results on all AC queries with con-
text12, which we now discuss. We immediately see that for all
benchmarks and modes, the better the relevance (MRR7), the less a
user has to type to find the desired token (KS7). Concerning rele-
vance, the following discussion therefore focuses on the MRR7.

Wewant to emphasize that the explanation of many of the follow-
ing observations required a deep understanding of the respective
engines and would not have been possible without the interac-
tive exploration capabilities of our analysis tool, available under
https://ad.cs.uni-freiburg.de/publications.
Sensitive AC queries help relevance a lot. Compare the MRR7
of Agnostic and Sensitive using QLever on Wikidata. The values
at prefix length 0 are 6% vs. 44%. This shows that without typing
anything, the desired token is hardly ever on the first pages of
suggestions with Agnostic, but frequently on the first or second
page for Sensitive. This case is particularly important because if
you have to type something, then you already need an idea what
you are looking for; see Figure 1 on Page 2 (examples at the bottom).
After typing three letters, the result is almost always on the first
page for Sensitive, and Agnostic is also becoming better.
Sensitive AC queries are feasible with QLever, but require
truncation for Virtuoso and Blazegraph. Even on the very
largeWikidata, our extension of QLever can compute fully sensitive
suggestions in ≤ 1s for 85% of all AC queries. Only 4% of these
AC queries time out after 5s on Wikidata, and none at all on the
smaller knowledge graphs.

Without truncation, many AC queries time out for Blazegraph
and Virtuoso (47% and 25%, respectively, on Wikidata). These num-
ber are not reported in Table 1, but on https://ad.cs.uni-freiburg.
12With context means that not included are subject AC queries or predicate AC queries
with variable subject and empty %context% because context-sensitivity plays no role
for those queries and our methods (Agnostic, Sensitive, Mixed) all give the same results.

8

https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications

Efficient and Effective SPARQL Autocompletion on Very Large Knowledge Graphs CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

de/publications. With truncation, the results are on par with those
of QLever for prefix length 0. The reason is that when relevance is
high for an empty prefix, this usually means that there are few sug-
gestions, in which case truncation does not harm. If there are many
possible suggestions, the truncation often eliminates the desired
token, which then cannot be suggested even when a longer prefix is
typed (because the truncation comes before the prefix filter). Also,
our extension of QLever can make use of longer prefixes for more
efficient query processing, leading to less timeouts; see Section 4.2.
The result is that the MRR on longer prefixes is significantly better
for QLever than for Blazegraph and Virtuoso.
Agnostic AC queries are always fast; relevance is bad for pre-
fix length 0 but quite good for longer prefix lengths. All ag-
nostic AC queries can be processed in well under one second be-
cause a large part of the results are pre-computed; see Section
4.3. The only non-trivial work to do at query time is to filter the
precomputed results by the typed prefix.

For prefix length 0, the desired token will rarely be among the
top suggestions because of the complete lack of contextual infor-
mation. But a prefix length of 3 or even 7 is often enough to restrict
the suggestions sufficiently, even without %context% (which by
definition is empty for Agnostic). This is important in order to
understand the results for the mixed AC queries, discussed below.

Virtuoso and Blazegraph both perform very poorly for agnostic
AC queries, which is why we do not report them in Table 1. The
reason is that both engines handle prefix searches on large lists of
strings very inefficiently. See the discussions in Section 1.1 (after
Example 1) and in Section 4.2.
With agnostic suggestions, typinghelps relevancemore than
it helps sensitivity. When typing more letters, relevance in-
creases much more than sensitivity. For example, when typing
seven letters with Agnostic on Wikidata, the MRR7 is 91% and al-
most as high as with Sensitive, but sensitivity is only 27%. That is,
the desired token will often be on the first page of suggestions, but
mixed with suggestions which do not lead to a non-empty result.
In a best case, the non-sensitive suggestions are merely confusing
because they have nothing to do with the part of the query already
typed. In a worst case, there are multiple suggestions with the same
name, and the user has no way to figure out which is the desired
one. The latter is not unusual for very large knowledge graphs.13

Mixed AC queries are a good compromise between sensitiv-
ity and performance. Mixed always produces a result within 1s
and so never times out. The reason is that agnostic AC queries can
always be processed in under 1s. The price is that some of the sug-
gestions may not be context-sensitive. But note that a user interface
could indicate whether the suggestion came from the agnostic or
from the sensitive AC query.

Our extension of QLever achieves essentially the same MRR7
scores as in Sensitive mode, but always within 1s and with only
a small sacrifice in sensitivity. The reason is that we can process
most sensitive AC queries in ≤ 1s.

Blazegraph and Virtuoso show an improved MRR7 for long pre-
fixes, but at the price of a sigificantly reduced sensitivity (because
for many queries, the sensitive AC query times out). Also note that
13For example, Wikidata knows six entities with name female, but only one of them is
used for wdt:P21 (gender).

since Blazegraph and Virtuoso cannot efficiently process agnostic
queries by themselves (for our evaluation, these queries were com-
puted via QLever), they cannot support mixed mode out of the box.
Indeed, the Wikidata Query Service (realized using Blazegraph)
[26] uses a separate service for its agnostic autocompletion.
Unranked AC queries perform very poorly on large knowl-
edge graphs. Recall that the suggestions of Unranked are the same
as those of Agnostic, but without ranking them by score. We include
this mode in our evaluation to verify how important ranking is. On
Wikidata, even for a prefix length of 3, the relevance of Unranked
is very poor (MRR7 = 9%). For a prefix length of 7, the MRR7 rises
to 52%, but it’s still much worse than the 91% of Agnostic. Note
that ranking for autocompletion is mainly an efficiency problem:
often a very large number of suggestions has to be computed and
sorted. In some of the previous work we discussed, ranking was
omitted due to this reason; see Section 2.

6 CONCLUSIONS
We showed how to perform context-sensitive SPARQL autocom-
pletion with very good relevance and efficiency, for a large variety
of queries on three different knowledge graphs. All suggestions
were themselves provided via standard SPARQL queries, on the
same knowledge graph. That way, our scheme can be used with
any standard-conforming SPARQL engine.

We saw that on very large knowledge graphs (like Wikidata),
many autocompletion queries are hard for existing SPARQL en-
gines. We showed three ways out. First, we showed how to extend
an existing open-source SPARQL engine to deal with most of these
hard queries efficiently. Our extensions are useful also beyond au-
tocompletion, since they speed up classes of SPARQL queries that
occur frequently. Second, we introduced a mixed mode that sacri-
fices sensitivity for efficiency. Third, we showed how truncation
helps slower engines.

Our code, benchmark, and all materials needed for reproducing
our results are publicly available on https://ad.cs.uni-freiburg.de/
publications . That page also links to a demo page, where one
can try our context-sensitive autocompletion live on a number of
knowledge graphs (including Fbeasy, Freebase, and Wikidata).

Interesting directions for future work are: improve the pattern
processing in Section 4.1 to also benefit from patterns that are
similar but not necessarily identical (this would further improve
query times onWikidata), improve the running time of the sensitive
AC queries that still time out (see Section 5.6), compute approximate
scores via sampling in order to be able to handle queries with a
very large context, and extend the autocompletion mechanism to
suggest more than just individual tokens (for example, predicate
paths or predicate and object at the same time).

7 AUTHOR CONTRIBUTIONS
J.K. and H.B. were the driving forces behind this work. J.K. did
around 80% of the implementation and the evaluation. H.B. im-
plemented the evaluation web app. J.K. and H.B. wrote the paper
together. T.K. created the benchmark queries and wrote an ini-
tial version of the related work section. N.S. worked on an early
prototype. F.K. implemented the pattern pre-computation.

9

https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Hannah Bast, Johannes Kalmbach, Theresa Klumpp, Florian Kramer, and Niklas Schnelle

REFERENCES
[1] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska,

and Dmitriy Zheleznyakov. 2016. Faceted search over RDF-based knowledge
graphs. Journal of Web Semantics (J. Web Semant.) 37-38 (2016), 55–74. http:
//www.cs.ox.ac.uk/files/8303/main.pdf

[2] Konstantine Arkoudas and Mohamed Yahya. 2019. Semantically Driven Auto-
completion. In Conference on Information and Knowledge Management (CIKM’19).
2693–2701. https://doi.org/10.1145/3357384.3357811

[3] Hannah Bast, Florian Bäurle, Björn Buchhold, and Elmar Haussmann. 2012. Broc-
coli: Semantic full-text search at your fingertips. Computing Research Repository
(CoRR) (2012). https://arxiv.org/pdf/1207.2615.pdf

[4] Hannah Bast, Florian Bäurle, Björn Buchhold, and Elmar Haußmann. 2014. Easy
access to the Freebase dataset. In The Web Conference (WWW’14) (Companion Vol-
ume). 95–98. https://ad-publications.cs.uni-freiburg.de/WWW_FreebaseEasy_
BBBH_2014.pdf

[5] Hannah Bast and Björn Buchhold. 2017. QLever: A Query Engine for Efficient
SPARQL+Text Search. In Conference on Information and Knowledge Management
(CIKM’17). 647–656. https://ad-publications.cs.uni-freiburg.de/CIKM_qlever_
BB_2017.pdf

[6] Hannah Bast and Elmar Haussmann. 2015. More accurate question answering on
Freebase. In Conference on Information and Knowledge Management (CIKM’15).
1431–1440. https://doi.org/10.1145/2806416.2806472

[7] Hannah Bast, Johannes Kalmbach, Theresa Klumpp, Florian Kramer, and Niklas
Schnelle. 2021. Efficient SPARQL Autocompletion via SPARQL. Computing
Research Repository (CoRR) (2021). https://arxiv.org/pdf/2104.14595.pdf

[8] Blazegraph [n.d.]. Blazegraph. https://blazegraph.com/docs/bigdata_
architecture_whitepaper.pdf, retrieved 30.01.2021. Wikidata setup: https://www.
mediawiki.org/wiki/Wikidata_Query_Service/User_Manual.

[9] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In International Conference on Management of Data (SIGMOD’08).
1247–1250. https://dl.acm.org/doi/10.1145/1376616.1376746

[10] Jerven Bolleman. 2021. The UniProt SPARQL endpoint. https://sparql.uniprot.org
personal communication.

[11] Stéphane Campinas. 2014. Live SPARQL Auto-Completion. In International
Semantic Web Conference (ISWC’14) Posters & Demos. 477–480. https://pdfs.
semanticscholar.org/2628/15d156def72810bad221d1f2db1799f12daf.pdf

[12] Stéphane Campinas, Thomas Perry, Diego Ceccarelli, Renaud Delbru, and Gio-
vanni Tummarello. 2012. Introducing RDF Graph Summary with Application to
Assisted SPARQL Formulation. In International Workshop on Database and Expert
Systems Applications (DEXA’12, Workshops). 261–266. http://www.renaud.delbru.
fr/doc/pub/webs2012-sparqled.pdf

[13] Gabriel de la Parra and Aidan Hogan. 2021. Fast Approximate Autocompletion
for SPARQL Query Builders. In Visualization and Interaction for Ontologies and
Linked Data (VOILA at ISWC’21). http://ceur-ws.org/Vol-3023/paper10.pdf

[14] Ju Fan, Guoliang Li, and Lizhu Zhou. 2011. Interactive SQL query suggestion:
Making databases user-friendly. In International Conference on Data Engineering
(ICDE’11). 351–362. https://doi.org/10.1109/ICDE.2011.5767843

[15] Sébastien Ferré. 2017. Sparklis: An expressive query builder for SPARQL
endpoints with guidance in natural language. Semantic Web 8, 3 (2017), 405–418.
https://pdfs.semanticscholar.org/e11f/644f0296f8c0a0342790a7ef20fc2ea94ae1.
pdf

[16] Mustafa Jarrar and Marios D. Dikaiakos. 2012. A Query Formulation Language
for the Data Web. IEEE Transactions on Knowledge and Data Engineering 24, 5
(2012), 783–798. http://www.jarrar.info/publications/JD10b.pdf

[17] Nodira Khoussainova, YongChul Kwon, Magdalena Balazinska, and Dan Suciu.
2010. SnipSuggest: Context-Aware Autocompletion for SQL. Proceedings of the
VLDB Endowment (PVLDB) 4, 1 (2010), 22–33. https://doi.org/10.14778/1880172.
1880175

[18] Jonathan Lajus, Luis Galárraga, and Fabian M. Suchanek. 2020. Fast and Exact
Rule Mining with AMIE 3. In European Semantic Web Conference (ESWC’20).
36–52. https://doi.org/10.1007/978-3-030-49461-2_3

[19] Jens Lehmann and Lorenz Bühmann. 2011. AutoSPARQL: Let Users Query
Your Knowledge Base. In Extended Semantic Web Conference (ESCW’11). 63–79.
https://doi.org/10.1007/978-3-642-21034-1_5

[20] Thomas Neumann and Guido Moerkotte. 2011. Characteristic sets: Accurate
cardinality estimation for RDF queries with multiple joins. In International Con-
ference on Data Engineering (ICDE’11). 984–994. https://doi.org/10.1109/ICDE.
2011.5767868

[21] Eyal Oren, Renaud Delbru, and Stefan Decker. 2006. Extending Faceted Naviga-
tion for RDF Data. In International Semantic Web Conference (ISWC’2006). 559–572.
https://link.springer.com/content/pdf/10.1007%2F11926078_40.pdf

[22] Minh-Duc Pham, Linnea Passing, Orri Erling, and Peter A. Boncz. 2015. De-
riving an Emergent Relational Schema from RDF Data. In The Web Conference
(WWW’15). 864–874. https://doi.org/10.1145/2736277.2741121

[23] Karima Rafes, Serge Abiteboul, Sarah Cohen Boulakia, and Bastien Rance. 2018.
Designing Scientific SPARQL Queries Using Autocompletion by Snippets. In

International Conference on e-Science (e-Science’18). 234–244. https://ieeexplore.
ieee.org/document/8588657

[24] Virtuoso [n.d.]. OpenLink Virtuoso. http://docs.openlinksw.com, re-
trieved 30.01.2021. RDF Index Scheme: http://docs.openlinksw.com/virtuoso/
rdfperfrdfscheme.

[25] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledge base. Communications of the ACM (Comm. ACM) 57, 10 (2014), 78–85.
https://dl.acm.org/doi/10.1145/2629489

[26] Wikimedia [n.d.]. Wikidata Query Service (WDQS). https://query.wikidata.org.
Example queries retrieved on 23.10.2020.

10

http://www.cs.ox.ac.uk/files/8303/main.pdf
http://www.cs.ox.ac.uk/files/8303/main.pdf
https://doi.org/10.1145/3357384.3357811
https://arxiv.org/pdf/1207.2615.pdf
https://ad-publications.cs.uni-freiburg.de/WWW_FreebaseEasy_BBBH_2014.pdf
https://ad-publications.cs.uni-freiburg.de/WWW_FreebaseEasy_BBBH_2014.pdf
https://ad-publications.cs.uni-freiburg.de/CIKM_qlever_BB_2017.pdf
https://ad-publications.cs.uni-freiburg.de/CIKM_qlever_BB_2017.pdf
https://doi.org/10.1145/2806416.2806472
https://arxiv.org/pdf/2104.14595.pdf
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual
https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual
https://dl.acm.org/doi/10.1145/1376616.1376746
https://sparql.uniprot.org
https://pdfs.semanticscholar.org/2628/15d156def72810bad221d1f2db1799f12daf.pdf
https://pdfs.semanticscholar.org/2628/15d156def72810bad221d1f2db1799f12daf.pdf
http://www.renaud.delbru.fr/doc/pub/webs2012-sparqled.pdf
http://www.renaud.delbru.fr/doc/pub/webs2012-sparqled.pdf
http://ceur-ws.org/Vol-3023/paper10.pdf
https://doi.org/10.1109/ICDE.2011.5767843
https://pdfs.semanticscholar.org/e11f/644f0296f8c0a0342790a7ef20fc2ea94ae1.pdf
https://pdfs.semanticscholar.org/e11f/644f0296f8c0a0342790a7ef20fc2ea94ae1.pdf
http://www.jarrar.info/publications/JD10b.pdf
https://doi.org/10.14778/1880172.1880175
https://doi.org/10.14778/1880172.1880175
https://doi.org/10.1007/978-3-030-49461-2_3
https://doi.org/10.1007/978-3-642-21034-1_5
https://doi.org/10.1109/ICDE.2011.5767868
https://doi.org/10.1109/ICDE.2011.5767868
https://link.springer.com/content/pdf/10.1007%2F11926078_40.pdf
https://doi.org/10.1145/2736277.2741121
https://ieeexplore.ieee.org/document/8588657
https://ieeexplore.ieee.org/document/8588657
http://docs.openlinksw.com
http://docs.openlinksw.com/virtuoso/rdfperfrdfscheme
http://docs.openlinksw.com/virtuoso/rdfperfrdfscheme
https://dl.acm.org/doi/10.1145/2629489
https://query.wikidata.org

	Abstract
	1 Introduction
	1.1 Problem Definition and Three Examples
	1.2 Our contributions

	2 Related Work
	3 AC Query Templates
	4 Efficient AC Queries
	4.1 AC Queries for Predicates Using Patterns
	4.2 Prefix filtering
	4.3 Caching and pinned results

	5 Evaluation
	5.1 SPARQL Engines and Hardware
	5.2 Knowledge Graphs
	5.3 Autocompletion (AC) queries
	5.4 Modes
	5.5 Evaluation metrics
	5.6 Main results and discussion

	6 Conclusions
	7 Author contributions
	References

