
QLever: A�ery Engine for E�icient SPARQL+Text Search
Hannah Bast

University of Freiburg

79110 Freiburg, Germany

bast@cs.uni-freiburg.de

Björn Buchhold

University of Freiburg

79110 Freiburg, Germany

buchhold@cs.uni-freiburg.de

ABSTRACT

We present QLever, a query engine for e�cient combined search on

a knowledge base and a text corpus, in which named entities from

the knowledge base have been identi�ed (that is, recognized and

disambiguated). �e query language is SPARQL extended by two

QLever-speci�c predicates ql:contains-entity and ql:contains-word,

which can express the occurrence of an entity or word (the object of

the predicate) in a text record (the subject of the predicate). We eval-

uate QLever on two large datasets, including FACC (the ClueWeb12

corpus linked to Freebase). We compare against three state-of-the-

art query engines for knowledge bases with varying support for text

search: RDF-3X, Virtuoso, Broccoli. �ery times are competitive

and o�en faster on the pure SPARQL queries, and several orders of

magnitude faster on the SPARQL+Text queries. Index size is larger

for pure SPARQL queries, but smaller for SPARQL+Text queries.

CCS CONCEPTS

•Information systems →Database query processing; �ery

planning; Search engine indexing; Retrieval e�ciency;

KEYWORDS

SPARQL+Text; E�ciency; Indexing

1 INTRODUCTION

�is paper is about e�cient search in a knowledge base combined

with text. For the purpose of this paper, a knowledge base is a

collection of subject-predicate-object triples, where consistent iden-

ti�ers are used for the same entities. For example, here are three

triples from Freebase
1
, the world’s largest open general-purpose

knowledge base, which we also use in our experiments:

<Neil Armstrong> <is-a> <Astronaut>
<Neil Armstrong> <nationality> <American>
<Neil Armstrong> <books-wri�en> ”First on the moon”

A knowledge base enables queries that express the search intent

precisely. For example, using SPARQL (the de facto standard query

1
In our examples, we actually use Freebase Easy [4], a sanitized version of Freebase

with human-readable entity names. In the original Freebase, entity identi�ers are

alphanumeric, and human-readable names are available via an explicit name predicate.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM’17, November 6–10, 2017, Singapore.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4918-5/17/11. . . $15.00

DOI: h�ps://doi.org/10.1145/3132847.3132921

language for knowledge bases), we can easily search for all astro-

nauts and their nationalities as follows:

SELECT ?x ?y WHERE {
?x <is-a> <Astronaut> .
?x <nationality> ?y

} ORDER BY ASC(?x) LIMIT 100

�e result is a �at list of tuples ?x ?y, where ?x is an astronaut and ?y

their nationality. �e ORDER BY ASC(?x) clause causes the results

to be listed in ascending (lexicographic) order. �e LIMIT 100 clause

limits the result to the �rst 100 tuples. Note that if an astronaut has

k nationalities, they would contribute k tuples to the result. Also

note that the triples in the body of the query can contain variables

which are not speci�ed as an argument of the SELECT operator

and which are hence not shown in the result.

Keyword search in object strings. Knowledge bases can have

arbitrary string literals as objects. See the third triple in the ex-

ample above, where the object names the title of a book. SPARQL

allows regular expression matches for such literals. Commercial

SPARQL engines also o�er keyword search in literals. For Virtu-

oso (described in Section 2), this is realized via a special predicate

bif:contains, where the bif pre�x stands for built-in function. For

example, the following query searches for astronauts who have

wri�en a book with the words �rst and moon in the title:

SELECT ?x ?y WHERE {
?x <is-a> <Astronaut> .
?x <books-wri�en> ?w .
?w bif:contains “�rst AND moon”

}

Fully combined SPARQL+Text search. For our query engine,

we consider the following deeper integration of a knowledge base

with text. We assume that the text is given as a separate corpus, and

that named entity recognition and disambiguation (of the entities

from the knowledge base in the text) has been performed. �at is,

each mention of an entity of the knowledge base in the text has

been annotated with the unique ID of that entity in the knowledge

base. For example, the well-known FACC [13] dataset (which we

also use in our experiments in Section 5) provides such an annota-

tion of the ClueWeb12 corpus with the entities from Freebase. Here

is an example sentence from ClueWeb12 with one recognized entity

from Freebase (note how the entity is not necessarily referred to

with its full name in the text):

On July 20, 1969, Armstrong<Neil Armstrong> became the �rst hu-
man being to walk on the moon

With a knowledge base and a text corpus linked in this way, queries

of the following kind are possible:

SELECT ?x TEXT(?t) WHERE {
?x <is-a> <Astronaut> .
?t ql:contains-entity ?x .
?t ql:contains-word ”walk moon”

} ORDER BY DESC(SCORE(?t)) TEXTLIMIT 1 LIMIT 16

�is query �nds astronauts that have a mention in a text record that

also contains the words walk and moon (note that, for the sake of

brevity, ql:contains-word does not require an AND like bif:contains).
For our evaluation and all our examples in this paper, the text

records are sentences.
2

�e TEXT(?t) adds the text record that mentions the entity and

the two words as one component of each result tuple. �e ORDER
BY DESC(SCORE(?t)) causes the entities to be ranked by the number

of matching text records.
3

�e TEXTLIMIT operator limits the

number of distinct items per text record variable to be included

in the result. For the query above, we thus get 16 result tuples

consisting of an astronaut and one matching text record each, and

we get those 16 astronauts with the largest number of matching

text records. We call queries like the above SPARQL+Text queries

in this paper.

SPARQL+Text queries allow for powerful search capabilities.

For example, on Freebase+ClueWeb, the query above contains the

12 astronauts who actually walked on the moon (because many

sentences in the ClueWeb12 corpus mention that they did). Such

querying capabilities have been discussed and implemented in rela-

tively few systems so far; a good overview is given in [6, Section

4.6], a recent survey on the broad �eld of semantic search. In Section

5, we compare ourselves against the fastest existing such system,

as well as two other systems.

An important application of SPARQL+Text queries is �estion
Answering. One classical and much researched QA problem is to

translate natural language queries to SPARQL queries; see [6, Sec-

tion 4.8]. �ese systems work by generating candidate queries,

and rank them by their degree of “semantic match” to the natural

language query. In the process, o�en thousands of SPARQL queries

have to be processed for each natural-language query. �e faster

these queries can be processed, the more candidates the system can

consider. �e most recent systems have moved to querying a knowl-

edge base linked to text exactly in the way described above, for

example [15], who also work on Freebase+ClueWeb. Such systems

need to process large numbers of SPARQL+Text queries.

1.1 Contributions

�is paper describes and evaluates a system that can e�ciently pro-

cess SPARQL+Text queries even on large datasets like Freebase+Clue-

Web.
4

We consider the following as our main contributions:

• A query engine, called QLever, for a knowledge base linked to

a text corpus as described above, which e�ciently supports the

predicates ql:contains-word and ql:contains-entity and which is also

e�cient (and competitive) for pure SPARQL queries.

2
Text records could also be paragraphs, whole documents, or parts of sentences.

Of course, like in text search, the search result depends on the unit of text chosen.

3
�us, SCORE(?t) is currently just a shorthand for COUNT(*) in combination with

GROUP BY ?t. Customized ranking functions can be implemented, too.

4
�e important aspect of search quality is out of scope for this paper.

• A new benchmark of 159 SPARQL+Text queries from 12 cat-

egories, including pure SPARQL queries and real-world queries

adapted from the SemSearch Challenge [8].

• A performance evaluation on this benchmark, with a comparison

against three state-of-the-art query engines. QLever’s query times

are fastest for the pure SPARQL queries and fastest by several

orders of magnitude for the SPARQL+Text queries. On the large

Freebase+ClueWeb dataset, QLever achieves subsecond query times

even for complex SPARQL+Text queries; see Section 5.

• E�cient support for convenient text-search features, including:

text snippets as part of the result (see the TEXT(?t) above), scores

for ranking (see the SCORE(?t) above), and a TEXTLIMIT operator

for limiting the number of text snippets.

• Technical contributions are: index layouts for e�cient scan and

text operations; query planning for SPARQL+Text queries based on

dynamic programming; novel heuristics for result size estimation.

• All code, benchmark queries and our dataset are open source

and available on GitHub (h�ps://github.com/Buchhold/QLever).

QLever can easily be set up for any knowledge base linked to a text

corpus as described above.

2 RELATEDWORK

We distinguish three lines of related work: (1) other systems for

search on a knowledge base (KB) linked with a text corpus; (2)

SPARQL engines, with and without (limited) text-search capabil-

ities; (3) systems for searching the Semantic Web, which solve a

related, yet di�erent problem. As mentioned above, this paper is

concerned with e�cient indexing and querying. Concerning the

important aspect of the quality of these kinds of search, see the

overview in [6, Section 4.6].

2.1 Systems for a KB linked to a text corpus

�ree early systems for combined search on a knowledge base

linked to a text corpus are KIM [18], Mı́mir [19], and ESTER [7].

�ey all yield document-centric instead of entity-centric results

and are not suited for processing general SPARQL queries. Also,

they are e�cient only for very speci�c subclasses of queries.

Broccoli [5] is a follow-up work to ESTER which yields entity-

centric results. It was designed for interactive, incremental query

construction and supports a subset of SPARQL, namely tree-like

queries with exactly one variable in the SELECT clause. Broccoli has

no query planner and a simplistic KB index. We compare against

Broccoli (for a subset of our benchmark) in Section 5.

2.2 SPARQL engines

SPARQL engines can be used for search on a KB combined with

text in two ways: either by adding all co-occurrence information

as triples to the KB or by adding triples with text literals as object

and then using non-standard text-search features that are provided

by some SPARQL engines. In Section 5, we compare against both

variants, using RDF-3X for the �rst variant and Virtuoso for the

second. Both systems are brie�y described in the following, along

with two systems for more speci�c use cases.

A fundamental idea for tailor-made indices for SPARQL engines

is to store six copies of the data (triples), each sorted according to

one of the six possible permutations of subject, predicate and object

https://github.com/Buchhold/QLever

(SPO, SOP, PSO, SOP, OSP, OPS). �e �rst published use of this

idea was for Hexastore [20] and RDF-3X [17]. Our engine, QLever,

also makes use of this principle. In our evaluation, we use RDF-3X

because its code is publicly available.

RDF-3X has an advanced query planner, which, in particular,

�nds the optimal join order for commonly used query pa�erns like

star-shaped queries. �ery execution of RDF-3X is pipelined, that is,

joins can start before the full input is available. �is is further accel-

erated by a runtime technique called sideways information passing

(SIP): this allows multiple scans or joins with common columns

in their input to exchange information about which segments in

these columns can be skipped. QLever also has an advanced query

planner but forgoes pipelining and SIP in favor of highly optimized

basic operations and caching of sub-results.

SPARQL queries can be rewri�en to SQL [12] and all the big

RDBMSs now also provide support for SPARQL. A good represen-

tative of such a system is Virtuoso
5
, because it is widely used

in practice and in many SPARQL performance evaluations. It

is built on top of its own full-featured relational database and

provides both a SQL and a SPARQL front-end. Since Version 7,

triples are stored column-wise and indexed in a way correspond-

ing to the two permutations PSO and POS explained above. For

queries involving predicate variables, there are additional indices

and more permutations can be built on demand, thus boosting ef-

�ciency on such queries at the cost of increasing the index size.

Virtuoso supports full-text search via its bif:contains predicate, ex-

plained in Section 1. �is functionality is realized via a standard

inverted index and allows keywords to match literals from the

knowledge base. �e same approach is used by other SPARQL en-

gines with support for keyword search, for example, in Jena (see

h�p://jena.apache.org/documentation/query/text-query.html). As

explained in Section 1, this does not support entity occurrences

anywhere in the text like QLever’s ql:contains-entity predicate does.

�ere is also work on SPARQL engines with data layouts that are

tuned towards speci�c query pa�erns. One basic idea in this context

are property tables, where data that is o�en accessed together is

put in the same table (for example, a table for books, with one

row per book containing its ID, title, and year of publication). In

[21], joins between such tables are expedited by precomputing for

each URI its occurrences in all property tables. �ese approaches

require prior knowledge of typical query pa�erns. Since we explore

general-purpose SPARQL+Text search, we have not included these

systems in our evaluation.

2.3 Semantic Web Search

�e contents of the Semantic Web can be viewed as a huge collection

of triples, however, without a common naming scheme (which is

one of the de�ning characteristics of the Semantic Web, because

it makes distributed contribution of contents easy). �e query

language of choice is therefore not SPARQL but keyword queries,

maybe with a structured component. One notable such system

is Siren [11]. It supports queries that correspond to star-shaped

SPARQL queries, and predicates can be (approximately) matched by

keywords. Since this is a very speci�c subclass of SPARQL queries,

we do not include Siren in our evaluation in Section 5.

5
h�ps://virtuoso.openlinksw.com/

3 INDEXING

QLever has a knowledge-base index (Section 3.1) and a text index

(Section 3.2). �e knowledge-base index is designed such that the

data needed for all the basic Scan operations is stored contiguously

and without any extra data in between. For the text index, we use

redundancy to make sure that the data needed by the basic Text

operations is stored contiguously. �is is based on our previous

work [5], but with a number of simple but e�ective improvements.

3.1 Knowledge-Base Index

�e knowledge-base index is designed with the following goal:

Scan operations for query triples with either one or two variables

should be as e�cient as possible.

Like [17] and [20], we sort the triples (S = subject, P = predicate,

O = object) in all possible ways and create six (SPO, SOP, PSO, POS,

OSP, OPS) permutations. In practice, we have found that for typical

semantic queries, two permutations (PSO and POS) su�ce. With

only these two permutations, one (only) loses the possibility to use

variables for predicates. For QLever, the user can always decide to

build 2 or all 6 permutations.

In the following, we use one permutation as our example: a PSO

permutation for a Film predicate with actors as subjects and movies

as objects. Figure 1 depicts example triples and the index lists we

build for them. Other permutations are indexed accordingly.

Example triples:

Brad Pi� (ID 6) Film (ID 17) Troy (ID 57)

Brad Pi� (ID 6) Film (ID 17) Twelve Monkeys (ID 59)

Bruce Willis (ID 8) Film (ID 17) Die Hard (ID 12)

Bruce Willis (ID 8) Film (ID 17) �e Sixth Sense (ID 55)

Bruce Willis (ID 8) Film (ID 17) Twelve Monkeys (ID 59)

Bruce Willis (ID 8) Film (ID 17) . . .

Cameron Diaz (ID 11) Film (ID 17) Annie (ID 4)

I. Pair index:

6 57 6 59 8 12 8 55 8 59 . . .︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸
II. a) Object lists:

�le content: 57 59 12 55 59 . . . 4 . . .︸ ︸ ︸ ︸ ︸︸
byte o�set: x0 x1 x2 x3

II. b) Subject + o�set pairs:

�le content: 6 x0 8 x1 11 x2 . . .︸ ︸ ︸ ︸ ︸ ︸
byte o�set: y0 y1 y2

III. Blocks to access subject + o�set pairs:

Block 1 �rst-S: 6 pos: y0

Block 2 �rst-S: 11 pos: y2

Figure 1: �e components of our knowledge-base index, ex-

empli�ed for a PSO permutation for a Film predicate.

http://jena.apache.org/documentation/query/text-query.html

To support a scan with two variables (i.e. for all triples with

a given predicate), we simply keep all pairs of subject and object

on disk: �is pair index is displayed as part I in Figure 1. If we

know where the list of pairs starts and the number of elements in

it, we can directly read it into memory. �is organization (pairs

instead of all subjects followed by all objects) has turned out to be

advantageous during query processing.

If a predicate is functional (only one object per subject) or rela-

tively small (below a threshold, we currently use 10,000 as default

value), then this is the only thing we index. In that simple case,

a scan with only one variable (i.e. a scan for objects with given

predicate and subject) is accomplished by �nding the correspond-

ing subject (with binary search) and taking the matching object(s)

next to it. If we were looking for subjects, we would use the POS

permutation instead.

For non-functional predicates the size of which exceeds our

threshold, we create another index list that allows us to read match-

ing objects without any overhead. �ink of a predicate has-instance
that holds type information for all entities in a large knowledge

base and a scan like <Person> <has-instance> ?x. Note that some-

thing like ?x <type> <Person> would be equivalent and use a POS

permutation instead. It is very important not to work through the

entire has-instance list. Further, it is a huge bene�t if a long list of

person entity IDs can be read directly from disk without skipping

over the ID of the type Person for every single one of them (as it

would be the case in the pair index).

�erefore, we �rst index all object lists alone (part II.a in Figure

1). Separately, we store, for each subject, the byte o�set of the start

of its object list (part II.b). To quickly read a list of objects for a

scan, we now only need to search for the correct entry in the list of

(subject, byte o�set) pairs and read between the byte o�set and the

byte o�set of its successor. In the case of the scan for all persons,

we read exactly the sorted list of person IDs from a continuous area

in the index �le and without any overhead.

However, there will still be predicates with many di�erent sub-

jects (and thus a long list of subject + o�set pairs). We neither want

to keep all of them in memory, nor read through all of them on

disk. �us, we split them into blocks. For each block, we then store

the lowest subject ID in that block and the byte o�set into the list

of subject-o�set pairs. �is is depicted in part III of Figure 1. We

keep this block information in memory (we also write it to the

index but read it on startup). Now, the number of subjects + o�set

pairs we have to read for the scan only depends on the number of

elements within a block and not on the number of subjects in the

entire predicate. If we have a functional predicate that exceeds the

size threshold, we also use the block information but let it point

into the pair index. �e object lists and subject-o�set pairs are not

necessary in that case.

We want to remark that there is a trade-o� between size and

speed here. First of all, we could also answer all queries with the pair

index, only. It would still be decently fast, just not ideal. Secondly,

we could add compression: the repeated subjects in the pair index

can be gap-encoded, and so can the objects lists and subject + o�set

pairs. We choose to not do this for a simple reason: For large

collections, the size of the text corpus usually dominates the size

of the knowledge base. If disk space consumption by the KB index

should be problematic for some input, it would be possible to add

compression without trouble and pay the price of slightly slower

queries because of the time needed to decompress lists.

3.2 Text Index

Our text index is an improved version of the index presented in [5].

For a comparison with variants of a classic inverted index, we also

refer to that paper. In particular, the index outperforms approaches

where arti�cial words are inserted to represent entities and groups

of entities (e.g., a special term for all entities of type person) and

those where a classic inverted index is combined with a forward

index to obtain co-occurring entities from matching text records.

Recall that we index text records that roughly correspond to

sentences. �e index items are tuples of text record ID, word ID,

score (and optionally a position), sorted by text record ID. �e

word ID allows entity postings to be interleaved with the regular

postings. �is is where the main idea behind the index comes into

play: To every inverted list, also add all co-occurring entities. �is

is basically a pre-computation for queries of the form “entities that

co-occur with <word>” (without aggregation by entity).

For QLever, we also follow the main idea behind this index, but

we split the list. Instead of interleaving word- and entity-postings,

we keep two lists for each term (or pre�x
6
). �us, we end up with

more, but shorter lists. Figure 2 illustrates these lists for a single

pre�x and a tiny example text excerpt.

Example text:

Text Record 21:

He<Cristiano Ronaldo> scored a header in 3 consecutive games.

Text Record 23:

He<Cristiano Ronaldo> headed it to Kroos<Toni Kroos>.

Text Record 50:

�e 2012 UCL<UEFA Champions League> �nal was decided by

Drogba<Didier Drogba>’s header.

Inverted lists for pre�x head*:

I. Word part (Assume IDs headed:17; header:18):

Record IDs: . . . 21 23 50 . . .

Word IDs: . . . 18 17 18 . . .

Scores: . . . 1 1 1 . . .

II. Entity part (IDs: Cristiano Ronaldo:12; Toni Kroos:43;

Didier Drogba:15; UEFA Champions League:52):

Record IDs: . . . 21 23 23 50 50 . . .

Word IDs: . . . 12 12 43 15 52 . . .

Scores: . . . 1 1 1 1 1 . . .

Figure 2: �e components of our text index, illustrated for

an example text excerpt and the pre�x “head*”.

QLever makes a second improvement to the index: We only store

word IDs when necessary: With pre�x-search disabled or for a list

6
Just like [5], we can optionally index pre�xes instead of words and �lter for exact

words from those lists.

with only one word (e.g., for lists for short words, most stopwords,

and all concrete entities which are treated just like words), the

word ID list (in part I) becomes trivial. �is is bene�cial because

of our �rst improvement. In the original index from [5], almost

no list would be a�ected in that way, as there are (almost) always

interleaved entities which we now keep separately.

�e improvements have two main bene�ts: (1) An intelligent

query execution can only read exactly what is needed; this is de-

scribed in more detail in Section 4.4. (2) �ere is now zero overhead

for classic full-text queries (no entities involved) because if we

ignore the extra entity lists, we have a normal inverted index.

All lists are stored compressed. Just like in the index from [5],

we gap-encode record IDs and frequency-encode word IDs and

scores, and then use the Simple8b [2] compression algorithm on all

of them.

3.3 Vocabulary

We do not store strings directly in either index but assign a numer-

ical ID to all items from the KB and from the text, based on their

lexicographical order. We also translate all values (�oat, integer

and dates, in the input KB and from queries) into an internal rep-

resentation where the lexicographical order corresponds to their

actual order. We also support negative values. �is enables e�cient

comparisons in Filter clauses by simply comparing the respective

IDs.

We store the vocabulary partly in memory and partly on disk.
7

Items on disk start with a special character so that they come last

in the lexicographic order. �ey are stored on disk as depicted in

Figure 3.

On-disk vocabulary or snippet literals:

�le content: i0 i1 . . . im−1 o0 o1 . . . om−1

↑ ↑ . . . ↑ ︸ ︷︷ ︸
o0 o1 . . . om−1 byte o�sets into i’s

Figure 3: �e �rst part of the �le’s contents are them items i j
written without any separator. �e second part arem o�sets

oj into the �rst part of the �le, and always mark the byte

o�set at the end of the respective element.

On startup, we read only the last l (= ID size, usually 8 or 4)

bytes of the �le. �is gives us the location where o0 is stored. With

this information, we now have random access to the i’th item by

just two seeks and reading 2 · l + |i | bytes. We use the same data

structure for providing result snippets for text queries (then with

entire text records as items ii).

4 QUERY PROCESSING

Our query processing has two parts: query planning and query

execution. In the following, we describe the basic operations of

QLever’s query execution trees and their semantics (Section 4.1),

7
For Freebase, less than 1% of the literals use 50% of the space. We make use of

that by externalizing long literals (>50 chars) to disk.

our dynamic programming algorithm for query planning (Section

4.2), our heuristics for estimating result sizes and costs used during

query planning (Section 4.3), and �nally the algorithms to e�ciently

execute our basic operations (Section 4.4).

4.1 Basic Operations

�e building blocks that comprise QLever’s execution trees are

from a �xed set of basic operations. Many of them are standard

operations and their semantics should be self-explanatory, namely:

Scan, Join, Sort, Distinct, Filter and Order by. In the following,

we describe the semantics of the less obvious operations.

Text no filter is a text operation that returns entities that co-

occur with one or more words or concrete entities.

Input: words or concrete entities

Output Columns: record ID, score, entity ID, (. . .)

Options: textlimit, #output-entities

�e Textlimit limits the number of text records for each match

(i.e. for each entity or for each combinations of entities depending

on the #output-entities option) to include in the result. For simple

entity-word co-occurrence, there are exactly 3 columns in the op-

eration’s result. When the SPARQL variable for the text record is

connected to more than one other variable, then more than one

entity column is required (which can be controlled through the

#output-entities option). In that case, the text operation has to

produce the cross product of co-occurring entities within each text

record. �is happens, for example, in the following query, which

asks for persons who are friends with a scientist:

SELECT ?x WHERE {
?x <is-a> <Person> . ?y <is-a> <Scientist> .
?t ql:contains-entity ?x . ?t ql:contains-entity ?y .
?t ql:contains-word ”friend*”

}

Text with filter is a text operation similar to the one before,

but with an additional sub-result as input. �e operation has the

same e�ect as a Join between the result of a Text no filter op-

eration and the additional sub-result. However, it can be more

e�cient than computing the result of Text no filter and joining

a�erwards.

Input: sub-result, �lter column index in sub-result,

words or concrete entities

Output Columns: record ID, score, cols of sub-result, (. . .)

Options: textlimit, #output-entities

�e idea is that, e.g., for the query above, the list of scientists

can be much smaller than the list of entities that co-occur with

“friend*”. Text with filter uses the list of scientists to �lter the

text postings as early as possible. �is is described in Section 4.4.

Figure 6 shows two example query plans for the same query that

di�er because of the kind of text operation they use.

Two column join is a Join where the joined sub-results have to

match in two instead of one column.

Input: le� sub-result, right sub-result,

4 join column indices (2 le�, 2 right)

Output Columns: cols of le� sub-result,

cols of right sub-result w/o join columns

�is operation is only relevant for ”cyclic” queries, e.g.:

SELECT ?a1 ?a2 ?f WHERE {
?a1 <Film performance> ?f .
?a2 <Film performance> ?f .
?a1 <Spouse> ?a2

}

A possible execution tree is to join the Film performance lists on

the column pertaining to the �lm (?f) and thus create all triples

of actor+actor+movie that performed together in that �lm, and

then use the Spouse list to �lter it and only keep rows with pairs of

actors that are also spouses. When we ”�lter” by that Spouse list,

we require two columns to match between the two sub-results and

thus perform a Two column join.

4.2 �ery Planning

For each SPARQL query, we �rst create a graph. Each triple pa�ern

in the query corresponds to a node in that graph. �ere is an edge

between nodes that share a variable. Figure 4 depicts the graph for

the example query (persons that are friends with a scientist) from

Section 4.1.

?x <is-a> <Person> ?y <is-a> <Scientist>

?t ql:contains-entity ?x ?t ql:contains-entity ?y

?t ql:contains-word ”friend*”

?x ?y

?t

?t ?t

Figure 4: Graph for the �rst query from Section 4.1.

Text operations naturally form cliques (all triples are connected

via the variable for the text record). We turn these cliques into a

single node each, with the word part stored as payload. �is is

shown in Figure 5.

?x <is-a><Person> ?y <is-a> <Scientist>

words:”friend*” vars:?x,?y

?x ?y

Figure 5: Text cliques collapsed for the graph from Figure 4.

We then build a query execution tree from this graph. Nodes of

this tree are the basic operations discussed in Section 4.1. We rely

on dynamic programming to �nd the optimal execution tree. �is

has already been studied for relational databases (see [16] for an

overview) and has been adapted by SPARQL engines like RDF-3X.

Let n be the number of nodes in the graph. We then create

a DP table with n rows where the k’th row contains all possible

query execution trees for sub-queries of size k (= k nodes of the

graph are included). We seed the �rst row with the n Scan (or

Text no filter) operations pertaining to the nodes of the graph.

�en we create row a�er row by trying all possible merges. �e

k’th row is created by merging all valid combinations of rows i and

j , such that i + j = k . A combination is valid if: (1) �e trees do not

overlap, i.e. no node is covered by both of them, and (2) there is an

edge between one of their contained nodes in the query graph.

Whenever we merge two subtrees, a Join operation is created.

Any subtree whose result is not yet sorted on the join column,

is prepared by an extra Sort operation. �ere are two special

cases: (1) If at least one subtree is a Text no filter operation, we

create both possible plans: a normal Join and a Text with filter

operation.
8

(2) If they are connected by more than one edge, we

create a Two column join.

Before we return a row, we prune away execution trees that

are certainly inferior to others: We only keep the tree with the

lowest cost estimate for each group of equivalent trees. Trees are

equivalent if they cover the same triples from the original query,

cover the same Filter clauses from the original query, and their

result tables are ordered by the same variable/column.

Record Score Scientist Person ↓

JOIN

join-col le�: 0

join-col right: 3

Person ↓

SCAN (perm: POS)

P: <is-a>

O: <Person>

Record Score Scientist Enity ↓

SORT

sort-col: 3

Record Score Scientist ↓ Enity

JOIN

join-col le�: 2

join-col right: 0

Record Score Entity 1 ↓ Enity 2

SORT

sort-col: 2

Record Score Entity 1 Enity 2

TEXT NO FILTER

#out-vars: 2

words: ”friend*”

Scientist ↓

SCAN (perm: POS)

P: <is-a>

O: <Scientist>

Record Score Scientist Person ↓

JOIN

join-col le�: 0

join-col right: 3

Person ↓

SCAN (perm: POS)

P: <is-a>

O: <Person>

Record Score Scientist Enity ↓

SORT

sort-col: 3

Record Score Scientist Enity

TEXT WITH FILTER

#out-vars: 1

words: ”friend*”

Scientist ↓

SCAN (perm: POS)

P: <is-a>

O: <Scientist>

Figure 6: Two (out of many possible) example execution

trees for the query from Figure 5. �e right one is smaller,

because of the complex Text with filter operation.

A�er each row, we apply all Filter operations possible (i.e. all

variables from the �lter are covered somewhere in the query). For

the next round, each remaining candidate is considered in two vari-

ants: with all possible �lters applied and with none of them applied

(but not with all subsets of �lters). �e exception is the last row,

where all Filters have to be taken. Modi�ers like Order by or

Distinct are applied in the end. Finally, the tree with the lowest

cost estimate is used. Figure 6 shows two of many possible execu-

tion trees that are created for the example query and graphs from

above.

8
When a Text with filter operation is created, one subtree is kept as a child

and the Text no filter operation is removed / included in the operation.

4.3 Cost, Size and Multiplicity Estimates

To decide which execution tree to prefer, we need to estimate their

costs. If we know the sizes of all (sub)-results, cost estimates are

straightforward: We count the elements touched (usually just the

size of in- and output), or use a simple function like n · loд(n) for

a Sort and account for di�erences between hashmap and array

access.

�e interesting part is ge�ing estimates for the size s of a sub-

result and the number of distinct elements di within each column

(or their multiplicity mi = s/di). �ese values are most interesting

for Scan, Join and Text operations. In the following, we describe

how they are computed. For Scans this is rather easy. For Join

and Text operations, the computation is more complex, but ge�ing

these estimates right is crucial for �nding good execution trees.

SCAN: For Scan operations with two variables, we know their size

from what we keep in memory for each pair index (see Figure 1).

We also compute both multiplicitiesm0,m1 when we construct the

index and keep their logarithms in memory (1 byte each). For Scan

operations with only one variable, we simply execute the Scan

before the query planning. In that case, we also know that d0 = s ,
as there should not be any duplicates.

JOIN: For Join operations we compute the size as

s := α ·ma ·mb ·min(da ,db)
wherema andmb are the multiplicities of the join columns in their

respective sub-results (i.e. in the two tables used as input to the

join), da anddb are the numbers of distinct entities in them, and α is

a correction factor (because not all elements from the join columns

will match their counterparts). We also have to calculate all di in

the result of the join. �erefore, we regard orig, the input of the

join from which the result column i originates. Let sorig be the size

of that input and djoin,or iд be the number of distinct elements in

its join column. Let di,orig be the number of distinct elements in the

column that becomes column i a�er the join. Further, let d
join,other

be the number of distinct elements in the join column of the other

input/operand of the join. We then adjust the size of orig to the

portion that can at most match in the join:

s ′
orig

:= sorig · α ·min(djoin,orig,djoin, other
)/djoin, orig

With this we can estimate the new number of distinct elements as:

di := min(di, orig, s
′
orig
)

TEXT: For Text no filter, we �rst describe the simple case where

Textlimit is 1 and only one co-occurring entity shall be returned

in each result row: We estimate

s := max(1, l/100)
where l is the length of the entity part (see Figure 2) of the smallest

involved index list In this simple case, all multiplicities are 1. If

Textlimit t > 1 or with more than one entity to co-occur within a

record, this does not remain true. Let s0 be the estimated number of

entities that co-occur with the text part, i.e. the s from the simple

case. Let o be the desired number of output entities to co-occur

within each record. Let e be the average number of occurrences per

entity across the whole collection. We account for the Textlimit

as st := s0 ·min(t , e) and then for multiple output entities as s�nal =
pow(st ,o). All column multiplicities are thenmi := pow(st , (o−1)).

For Text with filter, we simply compute s , di andmi as we

would for the equivalent combination of Text no filter and extra

Join operation.

4.4 �ery execution

We compute results for our execution trees in a bo�om up fash-

ion and employ an early materialization strategy (see [1] for an

overview of di�erent strategies). Each operation in our query pro-

cessing constructs a result table with columns for all involved vari-

ables (see also Figure 6). We do not do any pipelining. �is has two

bene�ts: (1) the simplicity allows us to create very e�cient routines

for our operations; (2) we can cache and reuse all sub-results within

and across queries.

Most of our basic operations from Section 4.1 are implemented in

the straightforward way. All Join operations are realized as merge

joins using the straightforward linear-time “zipper” algorithm. If

one side is much smaller than the other, we use binary search to

advance in the larger list. In the following we describe operations

with non-obvious algorithms.

For Text no filter we compute tuples (record ID, score, entity
ID). Such a tuple means that the entity co-occurs with all words of

the text operation in k records, where k is the score.9 �e record ID
is from one of these k records. How many of the k records appear

in the result is controlled by the Textlimit operator.

For the word with the smallest index list
10

, we �rst obtain the

precomputed list of co-occurring entities (the “Entity Part” in Figure

2). For each other word, we obtain the precomputed inverted list of

occurrences in the text records (the “Word Part” in Figure 2). �is is

a signi�cant improvement over the query processing in [5], where

all the information is read for all lists. We then intersect (using

k-way “zipper”) these lists on record ID. For each pair of record and

entity, we aggregate (sum up) the scores. �is gives us parallel lists

of record ID, score, entity ID, sorted by record ID.

We then aggregate by entity and, for each entity, keep the t
records with the largest score, where t is given by the Textlimit

modi�er (default: t = 1). We achieve this via a single scan over the

records and a hash map, which for each entity maintains a sorted

set of at most t (record, score) pairs, containing the records with

the largest scores seen so far. We count the number of all matching

records for each entity (or combination of entities) and use this as

the score in the �nal tuple. In some queries, the operation may need

to produce more than one co-occurring entity (recall the example

query in Section 4.1). In that case, we build the cross product of

entities within each text record and use the hash map above with

entity tuples (instead of single entities) as keys.

For a Text with filter operation, we store the sub-result

in a hash set. We use it to �lter postings from the entity list, that

we read from our index (see above), before we intersect with other

word lists. When �ltering, we keep all postings from all records

that contain an entity from the �lter. A�er the intersection, we

are o�en le� with a lot fewer postings that we have to aggregate

subsequently.

Another interesting case are Joins with triples that consist of

three variables. Since our index is optimized for Scan operations

9
More sophisticated scoring schemes are possible, too.

10
�e length of an index list for a word is the total number of occurrences of all

words with the same pre�x, see Section 3.2.

with one or two variables, we have to follow a di�erent strategy

here. We avoid a full index Scan for possibly billions of triples.

Instead we perform a Scan for each distinct entity that is to be

joined with the full index. Our query planning ensures that we

organize execution trees so that there are few of these distinct

entities.

5 EVALUATION

We evaluate QLever by comparing it against three systems that

each are, to our best knowledge, the most e�cient representatives

of their kind: RDF-3X, a pure SPARQL engine with a purpose-

built index and query processing; Virtuoso, a commercial SPARQL

engine, built on top of a relational database, with its own text-

search extension; and Broccoli, an engine for combined search on

a knowledge base and text, which supports a subset of SPARQL.

For RDF-3X, we use the latest version 0.3.8 and add an explicit

contains predicate with triples such as <record:123> <contains>
<word:walk> and<record:123> <contains> <Neil Armstrong>. �is

is enough to answer all queries that do not involve pre�x search.

We have also tried using two predicates, contains-word and contains-
entity. For most queries the e�ects were small, sometimes leading

to slightly faster query times, sometimes to slightly slower query

times. However, there was a single query where using two predi-

cates caused it to take over 3000 seconds (presumably due to a bug

or weakness in the query planning), thus unrealistically increasing

average times. �erefore, we report results for runs with a single

contains relations for RDF-3X.

For Virtuoso, we use the latest stable release, version 7.2.4.2,

and con�gure it to use the largest recommended amount and size

of bu�ers (we have tried using even more, without noticeable posi-

tive e�ects). We also add triples of an arti�cial contains predicate

between text records and entities. �e text records themselves are

each connected to a text literal with the record’s contents, such

as <record:123> <contains> <Neil Armstrong> and <record:123>
<content> “He walked on the moon”. We use Virtuoso’s full-text

index for these literals and use its special bif:contains predicate to

search them. We also considered other setups (including less expres-

sive ones without explicit text-record entities) which we describe

as variants in Section 5.4.

Broccoli natively supports queries with text search similar to

QLever. However, it only searches for lists of entities and never for

entire tuples. �eries have to be tree-shaped. �is limits the number

of queries in our evaluation that can be answered by Broccoli.

We conducted all experiments on a server with a Intel Xeon CPU

E5-1630 v4 @ 3.70GHz and 256GB RAM. Before the run for each

approach, we explicitly cleared the disk cache and then ran our

entire query set within one go. In Section 5.4, we also report results

for runs with warm caches and �nd a speedup factor of roughly

two across all systems.

5.1 Datasets

We evaluate the systems described above on two datasets.

FreebaseEasy+Wikipedia: �is dataset consist of the text of

all Wikipedia articles from July 2016 linked to the FreebaseEasy

knowledge base [4]. FreebaseEasy is a derivation from Freebase [9]

with human-readable identi�ers, a rei�ed schema (without mediator

objects), and containing all the Freebase triples with actual “knowl-

edge” but discarding many “technical” triples and non-English lit-

erals. �e example queries used throughout this paper use entity

and predicate names from FreebaseEasy. �e version used in our

experiments has 362 million triples, the Wikipedia text corpus has

3.8 billion word and 494 million entity occurrences. �is dataset

is similar to the Wikipedia LOD dataset used in many of the INEX

benchmarks (see Table 2.3 from [6]), but with about seven times

more triples and a more recent version of Wikipedia.

Freebase+ClueWeb: �is dataset is based on FACC [13], which

is a combination of Freebase [9] and ClueWeb12 [10]. We omi�ed

stopwords (which have no e�ect on query times when they are

not used in queries) and limit ourselves to annotations within sen-

tences (the FACC corpus also contains annotations within titles

and tables but these are not useful for our kind of search). For this

dataset, we use the less readable original Freebase dataset, because

the FACC corpus links Freebase’s machine IDs to their occurrences

in the text. �is also gives us a larger set of triples to index. �e

resulting dataset has a knowledge base with 3.1 billion triples and

a text corpus with 23.4 billion word and 3.3 billion entity occur-

rences. �ese numbers are roughly ten times larger than for the

FreebaseEasy+Wikipedia dataset.

5.2 �eries

We distinguish the following 12 sets of queries and report average

query times for each of them. �is explicitly shows which kinds of

queries cannot be answered by one of the systems at all, and which

kinds of queries are hard to answer for which system.

One Scan: 10 queries that can be answered with a single scan.

One Join: 10 queries that can be answered with a single join be-

tween the result of two scans.

Easy SPARQL: 10 pure SPARQL queries with small result sizes.

Complex SPARQL: 10 SPARQL queries that involve several joins,

either star-shaped, paths, or mixed.

Values + Filter: 10 SPARQL queries that makes use of values (in-

tegers, �oats or dates) and Filter operations on them that compare

against �xed values or each other.

Only text: 10 queries that do not involve a KB part. One or multi-

ple words and pre�xes are used to search for matching records (5

queries) or co-occurring entities (5 queries).

Is-a + Word: 10 queries for entities of a given type that co-occur

with a given term.

Is-a + Pre�x: 10 queries for entities of a given type that co-occur

with a given pre�x.

SemSearch W: 49 queries from the SemSearch’10 challenge, con-

verted to SPARQL+Text queries without using word pre�x search.

SemSearch P: 10 queries from the SemSearch’10 challenge, con-

verted to SPARQL+Text queries using word pre�x search.

Complex Mixed: 10 queries that mix several knowledge-base and

text triple pa�erns, sometimes nested; no pre�x search involved.

Very Large Text: 10 queries that return or involve a very large

number of matches from the text; most use word pre�xes.

�e queries within most of these sets were chosen by hand with

the goal to create queries with a sensible narrative. For example,

a query from the Very Large Text set is for soccer players who

played somewhere in Europe and also somewhere in the US. �e

upside is, that those queries are more realistic than automatically

generated ones, especially w.r.t the selectivity of combinations with

subqueries. �e downside is, obviously, that they are hand-picked.

�erefore we also incorporated the queries from the SemSearch

Challenge’s [8, 14] query set by translating them to SPARQL+Text

queries (in the straightforward way). �ese queries are based on real

user queries from search engine log �les and can be answered very

well using our corpus. We omi�ed three queries where the desired

results were not contained in Freebase. For example, Freebase does

not contain the relevant entities for the query axioms of set theory.

�e remaining queries can mostly be expressed by specifying a

type and several words to co-occur. Some require entity-entity

co-occurrence, some can be answered using only the knowledge

base, and 10 of them can be expressed much be�er using a pre�x.

Since word pre�x search is not possible in RDF-3X and signi�cantly

slower in Virtuoso, we put these queries into their own categories.

For text queries, we have not included the text records (neither

the ID nor the text) in the SELECT clause of the query and we use a

DISTINCT modi�er for the remaining variables. �is is important

for fairness, because otherwise competitors would have to produce

much larger output for some queries than Broccoli and QLever.

For the Freebase+ClueWeb dataset we use the same queries,

but adapt them to Freebase. Finding the corresponding predicates,

types, and entity IDs is not always easy and thus manual translation

of queries is a lot of work. �erefore, we only translate the most

interesting query sets, in particular the ones that also involve text;

see Table 2 below.

5.3 Results

FreebaseEasy+Wikipedia: Table 1 lists the average query times

for each of the categories as well as the size of the index on disk

and the amount of memory that was used (by the process; while

runs all started with an empty disk cache, it may have been used

during the run). QLever is fastest across all categories and produces

the fastest result for 89% of all individual queries.

�e results are not surprising for SPARQL+Text queries, for

which QLever (and to some extent also Broccoli) was explicitly

designed. However, QLever also beats the competition on pure

SPARQL queries. Most notably, the di�erence is large for the Com-
plex SPARQL set. �e price payed for this e�ciency is best re�ected

in the index size without text. We deliberately add redundancy

in our knowledge-base index (see Section 3.1) for the sake of fast

query times. �e reason for this choice is re�ected in the total

index size: with a large text corpus, the size of the knowledge base

becomes less and less relevant, but e�ective compression of the

text index is much more important.

Freebase+ClueWeb: Table 2 reports query times of QLever for

the �ve hardest query categories. We do not report numbers for

the other systems, because they failed to index this large dataset

in reasonable time on our available hardware (256 GB RAM and

11
�e size of the index �les needed to answer the queries from this evaluation

is actually only 52 GB. Not all permutations of the KB-index are necessary for the

queries, but virtuoso and RDF-3X build them as well and, unlike QLever, do not keep

them in separate �les.

12
20 GB for the permutations that are really needed.

13
All systems were set up to use as much memory as ideally useful to them. All of

them are able to answer the queries with less memory used.

Table 1: Average query times for queries from 12 categories

(Section 5.2) on FreebaseEasy+Wikipedia (Section 5.1).

RDF-3X Virtuoso Broccoli QLever

One Scan 584 ms 1815 ms 162 ms 47 ms

One Join 743 ms 2738 ms 117 ms 41 ms

Easy SPARQL 98 ms 337 ms - 74 ms

Complex SPARQL 3349 ms 14.2 s - 262 ms

Values + Filter 623 ms 430 ms - 59 ms

Only Text 10.7 s 15.0 s 427 ms 191 ms

Is-a + Word 1776 ms 941 ms 178 ms 78 ms

Is-a + Pre�x - 20.5 s 310 ms 118 ms

SemSearch W 1063 ms 766 ms 196 ms 74 ms

SemSearch P - 107.8 s 273 ms 125 ms

Complex Mixed 5876 ms 13.6 s - 208 ms

Very Large Text - 3673 s 632 ms 605 ms

Index Size 138 GB 124 GB 39 GB 73 GB
11

Index w/o Text 17 GB 9 GB 8 GB 49 GB
12

Memory Used
13

30 GB 45 GB 10 GB 7 GB

more than enough disk space). For Virtuoso, we aborted the loading

process a�er two weeks.

For the sake of practical relevance, we considered two variants

of QLever, or rather of the queries. For the �rst variant (QLever),

we use the same queries as for FreebaseEasy+Wikipedia, which for

Freebase yields only IDs. For the second variant (QLever+N), we

use enhanced queries that return human-readable names. �is is

achieved by adding a triple ?x fb:type.object.name.en ?xn for each

result variable ?x (and replacing ?x by?xn in the SELECT clause),

where the predicate is the subset of Freebase’s huge type.object.name
predicate restricted to English.

Table 2: Average query times for QLever for queries from

the 5 hardest categories (Section 5.2) on Freebase+ClueWeb

(Section 5.1). For QLever+N, queries have been augmented

such that the result does not just contain the Freebase IDs

but also the Freebase names.

cold cache warm cache

QLever QLever+N QLever QLever+N

Only Text 1279 ms 1382 ms 840 ms 881 ms

SemSearch W 390 ms 479 ms 214 ms 262 ms

SemSearch P 613 ms 755 ms 339 ms 376 ms

Complex Mixed 1021 ms 1273 ms 603 ms 714 ms

Very Large Text 2245 ms 2289 ms 1849 ms 1885 ms

We can see that this very large dataset (almost 10 times larger

than FreebaseEasy+Wikipedia), does not cause any problems for

QLever. We are con�dent that an increase in size by another order

of magnitude would be no problem either. However, we are not

aware of a knowledge base linked to a text corpus of that dimension.

5.4 Variants

To verify the robustness of our results, we considered a few variants

of the setup described above, concerning caching and the realization

of searching the text corpus.

Warm caches: Table 3 reports the same values as Table 1 but

with warm disk caches. �at is, all parts of the index �les relevant

for the benchmark are cached in main memory. �e application

caches (that is, whatever caching the systems use internally) are

still empty. All systems perform roughly twice as fast compared to

the runs with cold caches.

Table 3: Repetition of the experiments from Table 1 with

warm disk cache.

RDF-3X Virtuoso Broccoli QLever

One Scan 534 ms 1254 ms 118 ms 30 ms

One Join 711 ms 3036 ms 47 ms 13 ms

Easy SPARQL 45 ms 170 ms - 16 ms

Complex SPARQL 2475 ms 4505 ms - 125 ms

Values + Filter 532 ms 465 ms - 30 ms

Only Text 3638 ms 10.3 s 304 ms 82 ms

Is-a + Word 1715 ms 429 ms 85 ms 30 ms

Is-a + Pre�x - 14.6 s 145 ms 58 ms

SemSearch W 991 ms 397 ms 112 ms 28 ms

SemSearch P - 107 s 175 ms 43 ms

Complex Mixed 2775 ms 5127 ms - 68 ms

Very Large Text - 1799 s 533 ms 439 ms

Application caches and query order: �e internal caching

mechanisms of the various systems are hard to compare. While

Virtuoso caches only parts of the queries, Broccoli and QLever can

cache entire queries, so that a repetition of a query is instant. �e

order of queries within a run does have an e�ect: All approaches

take longer when they access large lists for the �rst time, e.g., when

they scan for all persons or the �rst time Virtuoso or RDF-3X access

the data for the contains predicate. �erefore, we compared random

permutations of our queries. �is lead to some distortion across

query sets but the overall average over all categories never changed

signi�cantly. For the tables above, we made sure that all approaches

were fed the queries in the same order.

Virtuoso variants: We also evaluated a variant of Virtuoso

without bif:contains, just like we did for RDF-3X. �e results were

similar but slightly worse (14% slower overall) than for RDF-3X. We

tried another variant of Virtuoso where, instead of fully simulating

ql:contains, we directly connected entities with literals for the text

records (one triple per record-contains-entity) and search them via

bif:contains. �is was faster than the approach reported in Table 1

but still within the same order of magnitude (hence much slower

than QLever) and without the possibility to express entity-entity

co-occurrences so that not all the queries could be answered.

6 CONCLUSIONS

We have presented QLever, a search engine for the e�cient process-

ing of SPARQL+Text queries on a text corpus linked to a knowledge

base. For queries using both the SPARQL and the Text part, QLever

outperforms existing engines by a large margin, and it is also be�er

for pure SPARQL queries. On a single machine, QLever works on

datasets as large as Freebase+ClueWeb (23.4 billion words, 3.1 bil-

lion triples), which other engines failed to process in a reasonable

time on a single machine.

QLever could and should be developed further in several direc-

tions. So far, incremental index updates (INSERT operations) are

not supported. Caching plays an important role already (by reusing

results for subtrees of the query), but more sophisticated schemes

could boost performance further in practice. A convenient user

interface (maybe inspired by [3]) would be important to ease the

process of query construction and to be able to explore a given

dataset.

REFERENCES

[1] D. J. Abadi, D. S. Marcus., D. J. DeWi�, and S. R. Madden. 2007. Materialization

strategies in a column-oriented DBMS. In ICDE. IEEE, 466–475.

[2] V. N. Anh and A. Mo�at. 2010. Index compression using 64-bit words. So�w.,
Pract. Exper. 40, 2 (2010), 131–147.

[3] H. Bast, F. Bäurle, B. Buchhold, and E. Haussmann. 2012. Broccoli: semantic

full-text search at your �ngertips. CoRR abs/1207.2615 (2012).

[4] H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann. 2014. Easy access to the

Freebase dataset. In WWW. 95–98.

[5] H. Bast and B. Buchhold. 2013. An index for e�cient semantic full-text search.

In CIKM. 369–378.

[6] H. Bast, B. Buchhold, and E. Haussmann. 2016. Semantic Search on Text and

Knowledge Bases. Foundations and Trends in Information Retrieval 10, 2-3 (2016),

119–271.

[7] H. Bast, A. Chitea, F. M. Suchanek, and I. Weber. 2007. ESTER: e�cient search

on text, entities, and relations. In SIGIR. 671–678.

[8] R. Blanco, H. Halpin, D. M. Herzig, P. Mika, J. Pound, H. S. �ompson, and D. T.

Tran. 2011. Entity search evaluation over structured web data. In SIGIR-EOS.

[9] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. 2008. Freebase:

a collaboratively created graph database for structuring human knowledge. In

SIGMOD. 1247–1250.

[10] ClueWeb. 2012. (2012). �e Lemur Projekt h�p://lemurproject.org/clueweb12.

[11] R. Delbru, S. Campinas, and G. Tummarello. 2012. Searching web data: An entity

retrieval and high-performance indexing model. J. Web Sem. 10 (2012), 33–58.

[12] B. Ellio�, E. Cheng, C. �omas-Ogbuji, and Z. Meral Özsoyoglu. 2009. A complete

translation from SPARQL into e�cient SQL. In IDEAS. 31–42.

[13] E. Gabrilovich, M. Ringgaard, and A. Subramanya. 2013. (2013). FACC1: Freebase

annotation of ClueWeb corpora, Version 1 Release date 2013-06-26, Format

version 1, Correction level 0, h�p://lemurproject.org/clueweb12/FACC1.

[14] H. Halpin, D. Herzig, P. Mika, R. Blanco, J. Pound, H. �ompson, and D. T. Tran.

2010. Evaluating ad-hoc object retrieval. In IWEST.

[15] M. Joshi, U. Sawant, and S. Chakrabarti. 2014. Knowledge Graph and Cor-

pus Driven Segmentation and Answer Inference for Telegraphic Entity-seeking

�eries. In EMNLP. ACL, 1104–1114.

[16] G. Moerko�e and T. Neumann. 2006. Analysis of Two Existing and One New

Dynamic Programming Algorithm for the Generation of Optimal Bushy Join

Trees without Cross Products. In VLDB. 930–941.

[17] T. Neumann and G. Weikum. 2010. �e RDF-3X engine for scalable management

of RDF data. VLDB J. 19, 1 (2010), 91–113.

[18] B. Popov, A. Kiryakov, D. Ognyano�, D. Manov, and A. Kirilov. 2004. KIM - a

semantic platform for information extraction and retrieval. Natural Language
Engineering 10, 3-4 (2004), 375–392.

[19] V. Tablan, K. Bontcheva, I. Roberts, and H. Cunningham. 2015. Mı́mir: An

open-source semantic search framework for interactive information seeking and

discovery. J. Web Sem. 30 (2015), 52–68.

[20] C. Weiss, P. Karras, and A. Bernstein. 2008. Hexastore: sextuple indexing for

semantic web data management. PVLDB 1, 1 (2008), 1008–1019.

[21] M. Wylot, J. Pont, M. Wisniewski, and P. Cudré-Mauroux. 2011.

dipLODocus[RDF] - Short and Long-Tail RDF Analytics for Massive Webs of

Data. In ISWC. 778–793.

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 Systems for a KB linked to a text corpus
	2.2 SPARQL engines
	2.3 Semantic Web Search

	3 Indexing
	3.1 Knowledge-Base Index
	3.2 Text Index
	3.3 Vocabulary

	4 Query Processing
	4.1 Basic Operations
	4.2 Query Planning
	4.3 Cost, Size and Multiplicity Estimates
	4.4 Query execution

	5 Evaluation
	5.1 Datasets
	5.2 Queries
	5.3 Results
	5.4 Variants

	6 Conclusions
	References

