
Contents
1 Knowledge Graphs 3

1.1 Introduction . 3

1.2 What is a knowledge graph . 5

1.2.1 Our toy knowledge graph, first version 5

1.2.2 RDF . 6

1.2.3 Our toy knowledge graph, second version 6

1.2.4 Reification . 7

1.2.5 Other kinds of information . 10

1.3 What knowledge graphs are out there . 10

1.3.1 Wikidata . 11

1.3.2 Freebase . 12

1.3.3 DBpedia . 13

1.3.4 YAGO . 13

1.3.5 UniProt . 14

1.3.6 PubChem . 14

1.3.7 DBLP . 15

1.3.8 OpenStreetMap (OSM) . 15

1.4 How to search a knowledge graph: structured query languages 15

1.4.1 SPARQL . 16

1.4.2 Cypher (Neo4j) . 21

1.4.3 GraphQL (Facebook) . 23

1.5 Engines and indexing . 25

1.5.1 Object identifiers . 25

1.5.2 Triple permutations . 27

1.5.3 Query planning . 29

1.5.4 Further improvements . 32

1.5.5 Virtuoso . 32

1.5.6 Blazegraph . 32

1.5.7 Neo4j . 33

1.6 How to search a knowledge graph: assisting the user 33

1.6.1 SPARQLAutocompletion . 34

1.6.2 Question Answering . 37

1

2 CONTENTS

1.7 Combination with text search and federated search 42

1.7.1 Keyword search in literals . 42

1.7.2 Search in an external text corpus linked to a knowledge graph 43

1.7.3 Federated search . 45

1.7.4 Use cases of federated search . 46

1.8 The future of knowledge graphs . 46

1 Knowledge Graphs
Hannah Bast, Johannes Kalmbach, Theresa Klumpp, Claudius Korzen
University of Freiburg, Germany

1.1 Introduction
Knowledge graphs have become an essential ingredient of information retrieval systems. There

is a plethora of specialized research papers as well as surveys on the topic. We here focus

on an aspect that has received little attention in existing overview papers so far: efficient

indexing of and search on knowledge graphs. We explain the key ideas with many examples,

which you can also try out live on a variety of (small and large) knowledge graphs; see

https://qlever.cs.uni-freiburg.de/ir-book/. This should make the chapter easy to follow also for

non-experts. Where there is more to know, we provide links to relevant surveys.

We also provide a gentle introduction into the basics and an insightful overview of existing

knowledge graphs and their main features, strengths, and weaknesses. We have structured this

chapter into sections that can be read largely independently from each other, provided that the

basics (explained in Section 1.2) are understood. Wherever there is a dependency on a previous

section, we point it out. Here is a quick overview over what each section is about.

What is a knowledge graph Knowledge graphs are directed graphs with labeled edges that

represent structured knowledge about the world. Each vertex stands for an entity, for example

Sanna Marin (former prime minister of Finland) or Helsinki (the capital of Finland). Each

directed edge stands for a relation between two entities and the label says what the relation

is. For example, there could be an edge from Sanna Marin to Helsinki, labeled place of birth.

Equivalently, the information captured by this edge could be formulated as a subject-predicate-

object triple, namely Sanna Marin - place of birth - Helsinki. Much of the beauty of knowledge

graphs comes from this simple and universal data model. However, this simple model also

implies a number of challenges. For example, how to cast more complex information into

this framework (like Sanna Marin being elected prime minister of Finland at a certain time in

a certain place) and how to query such information? We answer this and other questions in

Section 1.2.

What knowledge graphs are out there The idea behind knowledge graphs is old, but early

attempts like CYC have not been widely successful because they were too complex and too

ambitious in the kind of knowledge they tried to capture, yet lacked the human power and the

data [Lenat 1995]. The World Wide Web has brought us vast amounts of data in electronic

3

https://qlever.cs.uni-freiburg.de/ir-book/

4 Chapter 1 Knowledge Graphs

form and the possibility of crowdsourcing. As a consequence, the field has been reborn

and many large knowledge graphs have been developed over the past fifteen years. Some

contain general-purpose knowledge, like Freebase, Yago, DBpedia, orWikidata. Others contain

domain-specific knowledge, like UniProt (proteins), PubChem (chemistry), OpenStreetMap

(geodata), or DBLP (bibliographic data). Many big companies maintain their own knowledge

graphs, for example: Google, Microsoft, Amazon, Facebook, or WolframAlpha. In Section

1.3, we introduce eight popular knowledge graphs and briefly discuss their characteristics, and

their strengths and weaknesses.

How to search a knowledge graph The standard query language for knowledge graphs is

SPARQL, which is conceptually similar to SQL (the standard query language for databases)

but adapted to the simple subject-predicate-object data model. In principle, each knowledge

graph can be stored in a standard database and each SPARQL query can be translated into an

equivalent SQL query on that database [Chebotko et al. 2009]. But SPARQL is more natural for

data modeled as triples. Like SQL, SPARQL allows semantically precise queries, for example:

find all the current prime ministers of all countries in the world and when they were elected. In

Section 1.4, we discuss the basics of SPARQL and two other popular query languages: Cypher,

which is strongly related to SPARQL, and GraphQL, which is often mistaken as related, but

actually is not.1 SPARQL is conceptually simple, but finding the right entity names and how

the sought for information is represented can be extremely hard, even for experts.2 There

are various techniques to alleviate this, notably autocompletion and automatically translating

queries written in natural language to SPARQL queries. We discuss these two techniques in

Section 1.6.

Engines and indexing The largest knowledge graphs with a coherent schema3 have tens of

billions of triples; see Section 1.3. When combining several such knowledge graphs, we obtain

hundreds of billions of triples. Finding information in such vast datasets efficiently is a major

challenge, similar to finding information in the around 50 billion pages indexed by today’s

web search engines. SPARQL engines either build on existing database engines (recall the

equivalence of SPARQL and SQL mentioned above), or they precompute index data structures

specifically designed for knowledge graphs. In Section 1.5, we describe the key techniques

behind building a high-performance SPARQL engine. A popular open-source SPARQL engine

built on these techniques is QLever [Bast et al. 2022b]. We also discuss three other popular

SPARQL engines and their strengths and weaknesses (Virtuoso, Blazegraph, Neo4j).

1We include GraphQL because we did not find a lucid explanation anywhere of what GraphQL is and what it is not.
2This is not specific for SPARQL: related languages like SQL or CYPHER have the same problem.
3Note that generating enormous amounts of triples without a meaningful schema is trivial. For example, one could
crawl the web and for every word on every web page, add a triple stating that this word occurs on this web page. That
would give a very large knowledge graph, but not a very useful one.

1.2 What is a knowledge graph 5

Combination with text search and federated search One of the great strengths of RDF and

SPARQL is the easy interoperability of different datasets. In Section 1.7, we provide a brief

overview of the various ways to combine a knowledge graph with text data. The easiest way is

to have text as objects of selected triples (for example, the name or description of an entity).

Amore powerful way is to recognize and link entities from a knowledge graph in a separate

text corpus. We also provide a brief overview over the benefits and challenges of federated

search. In principle, federated search allows queries that gather data from multiple knowledge

graphs. For example, we may be interested in the geometric shape (such data is contained in

the OpenStreetMap data) of all countries, where a given language is officially spoken (such

information is contained in Wikidata). All that is needed for this are triples that relate entity ids

from one dataset to entity ids from the other dataset. The challenge is to execute such queries

efficiently, exchanging as little data as possible.

What else is there to know about knowledge graphs There are many more uses of and

challenges associated with knowledge graphs. In their recent survey, Hogan et al. [2021] give

a much broader overview and cover topics such as: graph models, schema representation,

reasoning, knowledge graph construction and completion and correction. That survey also lists

(in its Table 1) many recent surveys on particular aspects of knowledge graphs. None of these

cover the aspects of indexing and search from the ground up like this chapter (which therefore

nicely fills a gap in the literature). We here also provide other nuggets of information not

found elsewhere, for example, our characterization and critical discussion of several popular

knowledge graphs (Table 1.1) and our succinct description of the aforementioned GraphQL

query language (Section 1.4.3).

The future of knowledge graphs We conclude this chapter with a short glimpse into the

future (Section 1.8). In particular, we ponder the question which role knowledge graphs will

play given the dramatic progress made in the fields of deep learning and language models.

We believe that the two will co-exist for a long time to come, complementing each others

weaknesses.

1.2 What is a knowledge graph
In this section, we explain some basic concepts and terminology and introduce a toy knowledge

graph, which we will refer back to throughout the chapter.

1.2.1 Our toy knowledge graph, first version
Let us start by giving the toy knowledge graph as a set of triples, which make some statements

about a well-known actress and a well-known costume designer and their respective Oscars.

<Meryl Streep> <is a> <Person> .

<Meryl Streep> <gender> <Female> .

<Meryl Streep> <also known as> ”Mary Louise Streep” .

6 Chapter 1 Knowledge Graphs

<Meryl Streep> <birth date> ”1949-06-22” .

<Meryl Streep> <won award> <Best Actress> .

<Ruth E Carter> <is a> <Person> .

<Ruth E Carter> <gender> <Female> .

<Ruth E Carter> <won award> <Best Costume Design> .

<Best Actress> <is a> <Oscar> .

<Best Costume Design> <is a> <Oscar> .

Such a set of triples is called a knowledge graph. We already noted that we can equivalently

view a set of triples as a graph with directed labeled edges. Sometimes the term knowledge

base is used as a synonym for the term knowledge graph. In this chapter we exclusively use

the term knowledge graph, as it has become much more common. A graph representation of

the triples above (and a few additional triples, explained later) is shown in the upper part of

Figure 1.1 on page 22.

1.2.2 RDF
Modeling data as a set of subject-predicate-object triples is at the heart of the Resource Descrip-

tion Framework (RDF). Each component of a triple is denoted by a so-called International

Resource Identifier (IRI); these are the identifiers in <...> brackets in the example above.

An IRI is like a URI (used to give a web page a universally unambiguous name), but with

an extended character set (unlike for URIs, most Unicode characters are allowed in an IRI).

Objects can alternatively also be strings, called literals in RDF. In the example above, the third

and fourth triple have a literal object. RDF also has basic support for modeling data types. For

example, we could specify that the object of the fourth triple is a date and we will indeed do

that in our second (more elaborate) example below. Note that we can also use RDF to specify

logical relationships between predicates; for example, that the predicate <has author> is the

inverse of the predicate <is authored by>. For a formal definition of the RDF standard, see

https://www.w3.org/TR/rdf11-concepts.

RDF is often called a data format, which is not correct. Instead, RDF is a data model, and

there are various standardized ways to format – or as one often says serialize – data that fits

that model. Our toy knowledge graph above is given in the very simple and intuitive N-Triples

format: one triple per line, with a dot after each triple (to be read like a full stop terminating a

sentence). A related, but more compact format is Turtle; we will see an example of that below.

The historically first serialization was RDF/XML, which is falling out of fashion because it is

harder to parse than N-Triples or Turtle.

1.2.3 Our toy knowledge graph, second version
The toy knowledge graph above is simpler than is typical in two important ways. First, typical

IRIs are much longer, so that they are universally unambiguous (not just for the particular

https://www.w3.org/TR/rdf11-concepts

1.2 What is a knowledge graph 7

knowledge graph, but among all knowledge graphs on the planet, just like an URI). Second,

in most modern knowledge graphs, IRIs have abstract IDs and the human-readable names

and aliases are specified via dedicated predicates. This makes sense because there is typically

more than one name for an entity (just think of different languages) and there are different

entities that have the same name. Additionally, names can change, while identifiers should

be persistent. In Section 1.3, we will introduceWikidata, the largest (and de-facto standard)

general-purpose knowledge graph of our time. In Wikidata, Meryl Streep (identified by the

URI<http://www.wikidata.org/entity/Q873>) has 152 name triples as of this writing, including

the following three in English, Latvian, and Ukrainian :

<http://www.wikidata.org/entity/Q873> <http://schema.org/name> ”Meryl Streep”@en .

<http://www.wikidata.org/entity/Q873> <http://schema.org/name> ”Merila Strīpa”@lv .

<http://www.wikidata.org/entity/Q873> <http://schema.org/name> ”Меріл Стріп”@uk .

Here,@en,@lv, and@uk are language tags that explicitly state the language of a string literal.

Full IRIs are long, which makes input files in the N-Triples format large and cumbersome to

read. The so-called Turtle format alleviates this in several ways. In particular, it allows for the

definition of prefixes as well as for various useful shortcuts such as specifying multiple triples

for the same subject without repeating the subject every time. In Turtle, and using prefixes and

IRIs from Wikidata, the four triples about Meryl Streep from Section 1.2.1 (name and alias

triples omitted) can be compactly specified as follows.

@prefix wd: <http://www.wikidata.org/entity/>

@prefix wdt: <http://www.wikidata.org/prop/direct/>

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

wd:Q873 wdt:P31 wd:Q5 ; # instance of human

wdt:P21 wd:Q6581072 ; # gender female

wdt:P569 ”1949-06-22”^^xsd:dateTime ; # date of birth

wdt:P166 wd:Q103618 . # won award Oscar for Best Actress

Note that the prefixed names are just a shorthand for the full IRIs: for example, wd:Q873

is exactly equivalent to <http://www.wikidata.org/entity/Q873>. Also note the use of the

semicolon to specify that the following triple uses the same subject as the previous triple.4 The

comments on the right are not part of the data, but serve to clarify what the IRIs stand for in

Wikidata.

1.2.4 Reification
Knowledge graphs are strongly related to databases. In fact, we could quite naturally use a

standard relational database to store the triples from a knowledge graph. The distinguishing

4There is also the comma to specify that the following triple uses the same subject and predicate as the previous.

8 Chapter 1 Knowledge Graphs

feature of the RDF data model is that we do not need different tables with different schemas5.

There is just one big table with the universal subject-predicate-object schema. This is indeed

simple, but gives rise to the question whether all information fits into this simple schema.

For example, consider the information about the three Oscars of Meryl Streep, for her roles in

the films “Kramer vs. Kramer” (1980), “Sophie’s Choice” (1983), and “The Iron Lady” (2012).

A naive but wrong way to cast this information into triples would be as follows (temporarily

using the simpler N-Triples format with short IRIs again):

<Meryl Streep> <won award> <Best Supporting Actress> .

<Meryl Streep> <won award> <Best Actress> .

<Meryl Streep> <won award in year> ”1980” .

<Meryl Streep> <won award in year> ”1983” .

<Meryl Streep> <won award in year> ”2012” .

<Meryl Streep> <won award for film> <Kramer vs Kramer> .

<Meryl Streep> <won award for film> <Sophie’s Choice> .

<Meryl Streep> <won award for film> <The Iron Lady> .

The problem with this representation is that we lose information: from these triples, we can tell

which awards Meryl Streep has won, and for which films, and in which years. But we cannot

tell which award belongs to which film and to which year.

This kind of information seems to require an n-ary predicate, where n > 2, instead of

the binary predicates represented by triples.6 The corresponding graph would then become

a hypergraph. For the example above, we could have a 4-ary predicate called <award>,

expressed in 5-tuples (the fifth component is the predicate name) like these:

<award> <Meryl Streep> <Best Supporting Actress> ”1980” <Kramer vs Kramer>

<award> <Meryl Streep> <Best Actress> ”1983” <Sophie’s Choice>

<award> <Meryl Streep> <Best Actress> ”2012” <The Iron Lady>

We can represent n-ary predicates as triples through a simple technique called reification. For
each tuple from the n-ary predicate, we simply introduce a mediator entity, which connects to
each component of the tuple through a suitably chosen binary predicate. In Wikidata, these

mediator entities are called statement nodes and they have long alphanumerical IDs. For

example, the information about Meryl Streep’s 2012 Oscar is represented as follows (including

the relevant prefix definitions). For compactness, we have abbreviated the IRI of the statement

node, the full IRI is wds:Q873-6ad4311a-47f9-8d9b-7c91-d387e71529ac.

@prefix wd: <http://www.wikidata.org/entity/>

@prefix wds: <http://www.wikidata.org/entity/statement/>

@prefix p: <http://www.wikidata.org/prop/>

5A schema for a table specifies a name and a datatype for each column.
6Note that a triple also states the predicate name, hence we need triples, and not only pairs for binary predicates.

1.2 What is a knowledge graph 9

@prefix ps: <http://www.wikidata.org/prop/statement/>

@prefix pq: <http://www.wikidata.org/prop/qualifier/>

wd:Q873 p:P166 wds:Q873-6ad4311a . # award statement node

wds:Q873-6ad4311a ps:P166 wd:Q103618 ; # which award

pq:P585 ”2012” ; # point in time

pq:P1686 wd:Q269810 . # for work

This representation in Wikidata contains several clever ideas. First, the statement nodes have

a distinct prefix (wds:), and their alphanumerical IDs start with the ID of the entity to which

the statement node belongs (Q873 in this case). Second, the two predicates to and from the

statement node have a similar (but not identical) IRI, compared to their “direct” counterpart

that connects two entities without a statement node. Namely, the suffix is the same, only the

prefix differs (p: and ps: and pq: instead of wdt:). Third, the prefix depends on the “role” of

the predicate for this particular statement node; predicates with prefix p: lead from an entity to

a statement node, predicates with prefix ps: lead from the statement node to the information

that could also have been obtained directly via wdt:, and predicates with prefix pq: lead to

additional information.

Technically, wdt:P166 and p:P166 and ps:P166 (and there is also pq:P166 and even more

variants) are different IRIs. But they all “mean” the same predicate, just in different roles. In

the RDF dataset, this is expressed by a “meta” entity wd:P166, which is connected to all these

variants and to which the name predicate is connected. This elegantly solves the problem of

having consistent names for a set of predicates with the same general “meaning”.7

wd:P166 rdfs:label ”award received” .

wd:P166 wikibase:directClaim wdt:P166 .

wd:P166 wikibase:claim p:P166 .

wd:P166 wikibase:statementProperty ps:P166 .

wd:P166 wikibase:qualifier pq:P166 .

These tricks and subtleties are elegant and the result of a long collective experience in designing

knowledge graphs. However, they also make querying a knowledge graph hard, even for expert

users. For example, it is asking a lot from a user to understand and know that at a certain

point in a query, the variant of the predicate with prefix pq: is needed. We come back to this

important issue when we discuss formal query languages (Section 1.4) and when we discuss

how to assist the user in formulating queries in such a language (Section 1.6).

7 Freebase (a knowledge graph introduced in Section 1.3.2) also has statement nodes, called mediators, but there is no
mechanism to identify the corresponding different variants of a predicate (like the P166 variants in the example above)
as belonging to the same “meaning”.

10 Chapter 1 Knowledge Graphs

1.2.5 Other kinds of information
We have seen that complex n-ary information can be represented via triples without information
loss. But what about more fuzzy information? For example, consider the following sentence

about a well-known astronaut:

As Armstrong, whose great-grandfather Friedrich Wilhelm Kötter emigrated from Ladbergen

to the United States in 1864, was the first man to walk on the moon in 1969, many citizens of

Ladbergen became interested in their American relatives.

This sentence contains various pieces of information about entities that are found in a knowledge

graph such asWikidata (the astronaut NeilArmstrong, the municipality of Ladbergen, the Moon,

etc.). But the information is rather complex and not easily cast into triples. For example, which

predicate should we use to express that a person set foot on a celestial body or to express that a

certain group of people became interested in a certain other group due to certain circumstances?

It’s not impossible, but a knowledge graph with too many predicates or entities with subtle

semantics is impractical. Indeed, early attempts at constructing knowledge graphs (like the

aforementioned CYC) aimed at such a comprehensive modeling of knowledge and failed.

It is one of the beauties of natural language that it allows the expression of even complex

and fuzzy information in an effortless and flexible manner. Much information is therefore best

kept in the form of natural language text. This makes the combination of knowledge graphs

and text (which makes statements about entities from a knowledge graph in a looser manner)

all the more important. We come back to this in Section 1.7.

1.3 What knowledge graphs are out there
In this section, we introduce and compare prominent knowledge graphs that are publicly

available. Note that there are also a lot of enterprise knowlegde graphs, that is, knowledge

graphs which are used by companies for internal purposes or which are the basis of their

business model. However, such knowledge graphs are not publicly available and thus out of

scope for this section.

Table 1.1 gives an overview of four general-purpose and four domain-specific knowledge

graphs which are widely used in research and beyond. Each knowledge graph is given together

with metrics describing its size (in the columns 2-4) and its content (in the columns 5-10). The

precise definitions can be found under https://qlever.cs.uni-freiburg.de/ir-book.

Tr. the number of all triples in the knowledge graph

S the number of distinct subjects

P the number of distinct predicates

Direct triples that do not fall into any of the following categories

Reified triples that contain a mediator node; see Section 1.2.4

Type triples that specify a type (e.g., via the rdf:type predicate)

Label triples that specify a label, name or title (e.g., via the rdfs:label predicate)

https://qlever.cs.uni-freiburg.de/ir-book

1.3 What knowledge graphs are out there 11

Desc. triples that specify a description (e.g., via the schema:description predicate)

Meta triples that specify meta information (e.g., modification dates)

In the following, we give further details to the listed knowledge graphs, each together with

a concise summary of its historical background and some general remarks. A publicly

accessible SPARQL endpoint for each of these knowledge graphs is available at https:

//qlever.cs.uni-freiburg.de.

Name # Tr. # S # P Direct Reified Type Label Desc. Meta

Wikidata 18B 1.9B 51K 7.8% 23.4% 19.2% 14.7% 15.7% 19.1%

Freebase 3.1B 125M 785K 3.3% 10.3% 31.6% 41.8% 0.8% 12.2%

DBpedia 839M 43M 55K 43.1% – 20.2% 7.5% 11.0% 18.2%

YAGO 3 121M 15M 100 32.2% – 20.7% 44.0% – 3.1%

Uniprot 112B 23B 237 31.9% 11.7% 16.8% 10.6% 0.8% 28.0%

PubChem 14B 3.8B 395 10.3% 39.6% 22.6% 22.4% – 4.3%

DBLP 374M 48M 68 29.6% 47.4% 15.4% 4.4% – 3.1%

OSM 13B 1.2B 92K 68.7% 21.6% 8.9% 0.7% – –

Table 1.1 An overview of four general-purpose knowledge graphs (in the upper half of the table) and four

domain-specific knowledge graphs (in the lower half of the table). An “–” entry means that the

respective knowledge graph contains no triples of that category. All of these statistics have been

computed using SPARQL queries. To inspect and run those queries, click on the name of the

knowledge graph in the first column of the table or visit https://qlever.cs.uni-freiburg.de/ir-book.

1.3.1 Wikidata
Wikidata [Vrandecic and Krötzsch 2014] was released by theWikimedia Foundation in 2012. It

is currently the largest, most comprehensive, and also most popular general-purpose knowledge

graph. Similarly to Wikipedia, Wikidata will probably keep this status for decades to come.

Wikidata uses alphanumerical IRIs following a carefully crafted schema, in particular for its

large portion of reified n-ary information; see the examples in Section 1.2. In case of disputed,
uncertain, contradictory, or historical statements, Wikidata also provides information as to the

preferred piece of information. For example, Wikidata contains 34 statements on the population

of New York City at different times, with the most current one being marked as preferred via

a dedicated triple. On the other hand, Wikidata is still far from complete, even for “popular”

information that is available (even in tabular form) inWikipedia articles. For example, Wikidata

has information about only 9 of the 23 Olympic gold medals won by Michael Phelps.

https://qlever.cs.uni-freiburg.de
https://qlever.cs.uni-freiburg.de
https://qlever.cs.uni-freiburg.de/ir-book/statistics-wikidata
https://qlever.cs.uni-freiburg.de/ir-book/statistics-freebase
https://qlever.cs.uni-freiburg.de/ir-book/statistics-dbpedia
https://qlever.cs.uni-freiburg.de/ir-book/statistics-yago-3
https://qlever.cs.uni-freiburg.de/ir-book/statistics-uniprot
https://qlever.cs.uni-freiburg.de/ir-book/statistics-pubchem
https://qlever.cs.uni-freiburg.de/ir-book/statistics-dblp
https://qlever.cs.uni-freiburg.de/ir-book/statistics-osm-planet
https://qlever.cs.uni-freiburg.de/ir-book

12 Chapter 1 Knowledge Graphs

Wikidata is multilingual and provides labels for entities and predicates in more than 400

languages. It is heavily used by different Wikimedia pages; for example Wikipedia, which uses

Wikidata for automatically assembling the interlanguage links (that is, the links of a Wikipedia

article to equivalent articles in other languages) or some of the infoboxes (that is, the tables that

can be found in the upper right of many articles). While many older knowledge graphs (see the

following sections) are based on the information from Wikipedia’s infoboxes, Wikimedia’s

long-term goal is the other way round: to automatically assemble all infoboxes fromWikidata.8

To acquire new data, Wikidata uses a semi-crowdsourced approach. In principle, even

unregistered users are allowed to add and update information via theWikidata website. However,

high-traffic entities (that is, entities that are used by ≥ 500 Wikimedia pages) can only be

changed by privileged users.9 Changes are instantly visible to the public. Wikidata regularly

integrates other datasets as well, for example, open government data or the bibliographies of

national libraries. Integrating the retired knowledge graph Freebase, which we introduce next,

is an on-going process [Tanon et al. 2016].

1.3.2 Freebase
Freebase [Bollacker et al. 2008] was started by a company called Metaweb in 2007. It featured

a web interface that allowed (registered) users to add and edit entities in a single click. In July

2010, Freebase was acquired by Google and became Google’s knowledge graph [Singhal 2012].

In 2016, Freebase was closed to the public. Around that time, it was the largest general-purpose

knowledge graph. Freebase allowed users to add their own predicates, which resulted in an

inflated number of predicates of very limited use. Freebase contains 785K predicates, compared

to only 32K predicates in the current version of Wikidata. However, more than 700K of these

predicates are only used in one or two triples.

Freebase provides labels and descriptions in more than 240 languages. Like Wikidata,

Freebase provides a large amount of n-ary information, reified via so-called mediator nodes.
However, while Wikidata has encoded in its schema which predicates represent the same

meaning and which carry the “main” piece of information from an n-ary piece of information
(see Section 1.2.4), Freebase does not contain this information. Freebase uses IRIs with

alphanumerical IDs for entities, while the IRIs for predicates are human-readable, with a

hierarchical structure.10

8A list of Wikipedia articles that already use a Wikidata-based infobox can be found at https://w.wiki/_2Rq.
9 https://www.wikidata.org/wiki/Wikidata:Protection_policy
10 For example, the IRI of Meryl Streep is fb:m.0h0wc, while the predicates related to n-ary award information are
called fb:award.award winner.awards won, fb:award.award honor.award, fb:award.award honor.year, etc. The
prefix fb: stands for <http://rdf.freebase.com/ns/>.

https://w.wiki/_2Rq
https://www.wikidata.org/wiki/Wikidata:Protection_policy

1.3 What knowledge graphs are out there 13

1.3.3 DBpedia
DBpedia [Lehmann et al. 2015] was released by researchers at the universities of Leipzig and

Berlin in 2007. In contrast to Wikidata and Freebase, the content of DBpedia is not created

manually but automatically extracted from (semi-)structured data of Wikipedia articles, for

example, the infoboxes or the categories. The extracted data are then matched to the DBpedia

schema using a rule-based approach. The rules and the schema can be defined and extended

by (privileged) users. Since 2018, a similar approach is used to also match statements from

Wikidata to the DBpedia schema [Ismayilov et al. 2018]. In Table 1.1, we analyze the core

release of DBpedia, which only contains statements extracted fromWikipedia.

DBpedia contains many cross-references that connect the entities to equivalent entries

in other knowledge graphs and is therefore seen as a hub in the LOD cloud. In the core

release, the IDs in the IRIs of the entities are the human-readable Wikipedia page IDs (e.g.,

Meryl Streep). The IDs in the IRIs of the predicates are also human-readable (e.g., birthDate).

DBpedia contains many different predicates with a similar or even the same meaning, which

complicates the formulation of meaningful queries considerably. For example, there are

predicates dbr:birthDate, dbo:birthDate, dbp:dateOfBirth and dbp:datebirth. This is due to the

use of different identifiers in the Wikipedia infoboxes and due to ambiguous rules created by

the DBpedia users. Even the union of such predicates is usually far from complete, because the

Wikipedia infoboxes are far from complete. DBpedia provides labels for entities and predicates

in 125 languages. In principle, it also provides n-ary information, but the coverage and quality
of that information is far below that of Wikidata or Freebase, again because of the limited

information in Wikipedia’s infoboxes.

1.3.4 YAGO
YAGO [Suchanek et al. 2008] was released by researchers at the Max Planck Institute for

Informatics in 2006. Like DBpedia, it extracts (semi-)structured data from the infoboxes

and categories of Wikipedia articles. In contrast to DBpedia, the extraction process is not

crowd-sourced but combined with the the concept hierarchy of WordNet.11 YAGO matches

the categories of the Wikipedia articles to the concepts of WordNet and thereby establishes

a huge12 hierarchy of classes, but of questionable usefulness. In particular, there are many

overly specific classes (for example, Plant pathogens and diseases by causal agent), many

classes with unclear semantics (for example, there is a concept entry which contains a subset

of songs), and many canonical classes are missing (for example, there is no category person).

With respect to its predicates, YAGO’s schema is very compact and much clearer than that of

DBpedia, but YAGO also contains less information.

11WordNet, https://wordnet.princeton.edu, is a lexicon for the English language that provides sets of words and
concepts with the same meaning (so-called synsets) and their hierarchical relations.
12YAGO 3 has five times more classes than Wikidata, but is over a 100 times smaller.

https://wordnet.princeton.edu

14 Chapter 1 Knowledge Graphs

Over time, YAGO was extended by (1) temporal facts extracted from Wikipedia and spatial

facts extracted from GeoNames13 (YAGO 2, released in 2010) and (2) multilinguality (YAGO

3, released in 2015). In 2020, YAGO 4 was released, which, however, does not follow the

original idea behind YAGO anymore, as it matches the facts of Wikidata to a schema derived

from schema.org [Tanon et al. 2020]. For that reason, we do not analyze YAGO 4 in Table 1.1,

but YAGO 3. Like in DBpedia, the IRIs of the entities and predicates are human-readable: for

example, yago:Meryl Streep (like the Wikipedia article) or yago:wasBornOnDate. Labels for

entities and predicates are provided in more than 300 languages.

1.3.5 UniProt
UniProt [The UniProt Consortium 2017] is the world’s largest protein knowledge graph and

was released by the UniProt consortium in 2002. The knowledge graph is subdivided into the

following parts: the UniProt Archive (UniParc), the UniProt knowledge graph (UniProtKB)

and the UniProt Reference Clusters (UniRef). UniParc contains protein sequences in form

of strings, together with some basic information like the protein names. UniProtKB contains

(1) manually and automatically created annotations for the protein sequences in UniParc, for

example: descriptions, classifications, or cross-references to other datasets, and (2) references

to (scientific) publications that discuss the protein sequences. UniRef contains clusters of

similar protein sequences. There is a lot of n-ary information, for example, the provenance of
the annotations or metrics describing the quality of the annotations. The names, descriptions

and all annotations are given in one language (English). The IDs in the IRIs of the entities are

numerical (e.g., the IRI of SARS-CoV-2 is uniprot:2697049), while the IDs in the IRIs of the

predicates are human-readable (e.g., core:scientificName).

1.3.6 PubChem
PubChem [Fu et al. 2015] is the world’s largest chemistry database and was released by the

National Institutes of Health (NIH) in 2004. It particularly provides comprehensive information

about (1) compounds, substances, proteins, genes, and their interrelations, (2) cross references to

equivalent entries in other datasets (e.g., UniProt or Wikidata), and (3) references to (scientific)

publications which discuss a given topic or concept. PubChemRDF [Fu et al. 2015], an official

part of PubChem, provides the data as an RDF knowledge graph.

The IDs of entity IRIs are alphanumerical; for example, the IRI of Aspirin is pub-

chem:CID2244. Most predicate IRIs are based on alphanumerical IDs (for example, chem-

inf:CHEMINF_000477 connects a molecule to its normalized counterpart). Labels and

descriptions are only provided in English. PubChem makes heavy use of reification, but in an

unusual way. For example, there is a single huge predicate has-attribute (with billions of triples)

that links to mediator objects with IRIs that are the concatenation of subject and relation name

13 https://www.geonames.org/

https://www.geonames.org/

1.4 How to search a knowledge graph: structured query languages 15

(for example, descriptor:CID2244 Exact Mass or descriptor:CID2244 Molecular Formula).

It would be more natural (and also easier for query engines, see Section 1.5) to have a separate

predicate for each relation (for example, one predicate for exact mass and one for molecular

formula).

1.3.7 DBLP
DBLP [Ley 2009] is a bibliography database focused on topics from computer science which

was started at the University of Trier in 1993. DBLP contains metadata of more than 5 million

publications (e.g., their titles, authors, and publication dates) and of more than 2 million authors

(e.g., their full names, affiliations, and links to their homepages). For many years, the dataset

was distributed in form of a large single XML file. Since 2021, an RDF dump of the data is

available as well.

DBLP provides entity labels like the publication titles or the author names only in one

language (i.e., in the language in which the entities appear in the literature) and is therefore, from

a technical point of view, unilingual. The IDs of the entity IRIs are sometimes alphanumerical

and sometimes human-readable. For example, some authors are identified by IRIs with

numerical IDs (e.g., dblp pid:6304 or dblp pid:10012-1), other authors by IRIs containing

their full names (e.g., dblp pid:PeterStone). The IRIs belonging to predicates contain human-

readable IDs (e.g., dblp:authoredBy). There are also reified statements that provide the authors

of a publication in the same order in which they appear on the publication.

1.3.8 OpenStreetMap (OSM)
OSM [OpenStreetMap contributors 2021] is an open source project that was started by Steve

Coast in 2004. Its goal is to provide freely accessible map data for the world in a crowd-sourced

manner. Each OSM object has a geometric shape (a point, line, or multi-polygon, depending

on the nature of the object)14, as well as structured information in the form of key-value pairs

(for example the name of a river or the type of a street). For Table 1.1 above, we have used

the OSM2RDF project (https://osm2rdf.cs.uni-freiburg.de/) which converts the OSM data

to RDF in a straightforward way, with one triple per shape (using WKT literals)15, and one

triple per key-value pair. We have only included OSM objects with at least one key-value

pair. A related project, which provides only a smaller portion of the OSM data, is described on

https://wiki.openstreetmap.org/wiki/Sophox.

1.4 How to search a knowledge graph: structured query languages
Knowledge graphs allow semantically precise queries to retrieve information. In this section,

we discuss three formal query languages: SPARQL, Cypher, and GraphQL. As it turns out,

GraphQL is actually not a query language for knowledge graphs, but often mistaken for one

14Typical examples are: a park bench (point), a road or river (line), or a country border (multi-polygon).
15 See https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

https://osm2rdf.cs.uni-freiburg.de/
https://wiki.openstreetmap.org/wiki/Sophox
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

16 Chapter 1 Knowledge Graphs

because of its name; hence we briefly discuss it here as well. Angles et al. [2017] give a more

detailed account, and they also discuss Gremlin, a close relative of Cypher. In Section 1.6, we

discuss the important topic of how to make formal query languages accessible to non-expert

users (via SPARQL autocompletion and question answering).

1.4.1 SPARQL
SPARQL (SPARQL Protocol And RDF Query Language) is the de-facto standard query

language for RDF knowledge graphs, as described in Section 1.2. We will explain the most

important concepts of SPARQL’s SELECT queries by example. For the full specification, see

https://www.w3.org/TR/sparql11-overview; be warned though that it’s not an easy read.

Example 1. The following SPARQL query asks for all female Oscar winners.

SELECT ?x ?award WHERE {

?x <is a> <Person> .

?x <gender> <Female> .

?x <won award> ?award .

?award <is a> <Oscar>

}

Using the toy knowledge graph from Section 1.2.1, the result is the following table with two

columns and two rows:

?x ?award

<Meryl Streep> <Best Actress>

<Ruth E Carter> <Best Costume Design>

The query consists of a SELECT clause and a WHERE clause. The SELECT clause specifies a

sequence of variables, separated by spaces (in the example: ?x ?award). In SPARQL, variables

start with a question mark. In our example, the WHERE clause consists of a sequence of four

triples. Each element of a triple can be an IRI (like <is a> or <Female>), a variable (like ?x

or ?award) or a literal (there is none in the query above). The result of the query is a table with

k columns, where k is the number of variables in the SELECT clause (k = 2 in our example).

A row of the result table corresponds to an assignment of each variable of the WHERE clause

to an IRI or literal. Each assignment must match in the sense that each triple of the WHERE

clause exists in the knowledge graph, when plugging in the entity or literal for each variable.

For the query above on our toy knowledge graph, there are two such assignments.

Example 2. Let us next look at a query with prefixed names, as explained in Section 1.2.3,

and reified triples, as explained in Section 1.2.4. The knowledge graph is Wikidata, and

we have omitted the definition of the prefixes to save space.16 Since Wikidata uses IRIs

with alphanumerical IDs, we added comments with the canonical names to make it easier to

16 See https://en.wikibooks.org/wiki/SPARQL/Prefixes for the definitions of all the Wikidata prefixes.

https://www.w3.org/TR/sparql11-overview
https://en.wikibooks.org/wiki/SPARQL/Prefixes

1.4 How to search a knowledge graph: structured query languages 17

understand the query. The query asks for all Oscars of Meryl Streep and the movies she won

them for.

SELECT ?award name ?film name WHERE {

wd:Q873 p:P166 ?m . # Meryl Streep award received

?m pq:P1686 ?film id . # for work

?m ps:P166 ?award id . # award received

?award id wdt:P31 wd:Q19020 . # instance of Academy Awards

?film id rdfs:label ?film name . # canonical name

?award id rdfs:label ?award name . # canonical name

FILTER(LANG(?film name)=“en”) .

FILTER(LANG(?award name)=“en”) .

}

� Click to run query on QLever

The result on the complete Wikidata is the following table with two columns, one for each

variable in the SELECT clause, and three rows, one for each of Meryl Streep’s Oscars.

?award name ?film name

“Academy Award for Best Supporting Actress”@en “Kramer vs. Kramer”@en

“Academy Award for Best Actress”@en “Sophie’s Choice”@en

“Academy Award for Best Actress”@en “The Iron Lady”@en

The keyword FILTER restricts the result table to rows that fulfill the specified expression.

For the query above, we filter the names by language. Otherwise, for each row in the result

above, we would have obtained k1 · k2 rows, where k1 is the number of names for the award
and k2 is the number of names for the film (one name per language). On the current version

of Wikidata, the result would then have 79 ·42+76 ·60+79 ·52 = 11,986 rows. This cross-

product phenomenon is typical for SPARQL queries, and we come back to it in Section 1.5.

Another expression commonly used with filters is REGEX(?literal, r), where ?literal is a

variable that represents a literal. It evaluates to true if ?literal matches the regular expression r;
see Section 1.6.1 for examples.

Example 3. Our third query introduces yet more concepts that are explained below. The query

asks for all human Oscar winners, sorted by the number of Oscars they won. Again, we have

omitted the prefix definitions and added comments.

SELECT ?winner id

(SAMPLE(?winner name) AS ?winner)

(COUNT(?award id) AS ?count)

WHERE {

?winner id wdt:P31 wd:Q5 . # instance of human

?winner id p:P166/ps:P166 ?award id . # award received

https://qlever.cs.uni-freiburg.de/ir-book/oscars-meryl-streep

18 Chapter 1 Knowledge Graphs

?award id wdt:P31 wd:Q19020 . # instance of Academy Awards

?winner id rdfs:label ?winner name . # label

FILTER (LANG(?winner name) = “en”) .

}

GROUP BY ?winner id

ORDER BY DESC(?count) ?winner

� Click to run query on QLever

At the end of the query, we used so-called solution modifiers, with the following semantics.

The GROUP BY aggregates all rows with the same value for the specified variables (multiple

variables are possible). In the result, there will hence be exactly one row for each winner id.

For the other variables, we then have to state how we want their values to be aggregated. The

SAMPLE(?winner name) means that we want to pick the value of winner name from any of

the rows. Note that for the query above, there is only one (English) name per winner, and so

all the rows of one winner (with the different Oscars) contain the same name anyway. The

COUNT(?award id) counts the number of entries in the specified column. Note that this is

exactly the number of rows in the group, independent of the variable. We could have also

writtenCOUNT(DISTINCT?award id), asking for the number of distinct entries in the specified

column. The keyword ORDER BY asks for an ordering of the result rows, the keyword DESC

asks for descending order (the default is ascending order), and the two arguments specify the

primary and secondary sort key (any number of keys is possible). Counts are sorted numerically,

string literals and IRIs are sorted lexicographically.

The p:P166/ps:P166 in the WHERE clause is called a predicate path. It is equivalent to

having the two triples ?winner id p:P166 ?x and ?x ps:P166 ?award id, but it avoids the

intermediate variable ?x. Note that using wdt:P166 instead of p:P166/ps:166 would ask for the

distinct categories of Academy Awards a person won. This is because the predicate wdt:P166

only knows that Meryl Streep won, for example, an “Academy Award for Best Actress”, but

not how often. The following is an excerpt from the result table. The full result has over 2000

rows (one per Oscar winner). Understand that it is no coincidence that the winner names in the

last entries starts with Z.

?winner id ?winner ?count

wdt:Q8704 “Walt Disney” 24

wdt:Q727904 “Cedric Gibbons” 11

wdt:Q367032 “Alfred Newman” 9

…

wdt:Q350704 “Max Steiner” 3

wdt:Q873 “Meryl Streep” 3

wdt:Q692550 “Michael Kahn” 3

…

https://qlever.cs.uni-freiburg.de/ir-book/oscar-winners

1.4 How to search a knowledge graph: structured query languages 19

wdt:Q16210211 “Zoltan Elek” 1

wdt:Q220548 “Zoran Perisic” 1

wdt:Q111342771 “Zsuzsanna Sipos” 1

Example 4. With our fourth query, we introduce the OPTIONAL keyword and explain its

subtle semantics. The query asks for all Canadian astronauts and their Hindi name, if they have

one, and if not their Arabic name.

SELECT ?astronaut ?name WHERE {

?astronaut wdt:P106 wdt:Q11631 . # occupation astronaut

?astronaut wdt:P27 wd:Q16 . # nationality Canadian

OPTIONAL { ?astronaut rdfs:label ?name . FILTER(LANG(?name)=“hi”) }

OPTIONAL { ?astronaut rdfs:label ?name . FILTER(LANG(?name)=“ar”) }

}

� Click to run query on QLever

In the previous three example queries, all results were tables with an entry in every cell. More

generally, a table entry can also be UNDEF.17 To understand the result of the query above, it

will be crucial to understand how UNDEF values originate and what their semantics is when

joining tables.

According to the SPARQL standard, the two OPTIONAL clauses in the query are processed

one after the other, top to bottom. The first OPTIONAL computes a so-called optional join

between the following two tables. The table on the left is the result of the first two lines of the

query. The table on the right is the result of the { . . . } after the first OPTIONAL in the query.

We only show three lines of each table; the number in parentheses gives the total number of

rows.

All Canadian astronauts (15)

?astronaut

wd:Q16297 # William Shatner

wd:Q1687593 # Jeremy Hansen

wd:Q240769 # Julie Payette

. . .

All entities with their Hindi name (700,475)

?astronaut ?name

wd:Q10002 ”इंसकेडी”@hi

wd:Q17601 ”घर्डै प्रांत”@hi

wd:Q240769 ”जूली पयेटे”@hi

. . .

The tables are joined on the columns with equal variable names, which in this case is only

?astronaut. If an astronaut from the left is found in the table on the right (that is, has a name in

Hindi), a row with that astronaut and name will be in the result. If an astronaut on the left is

17 In the SPARQL standard, a result is more formally defined as a sequence of bindings of the variables in the SELECT
clause. Each binding corresponds to a table row, with an UNDEF value in each columns where the respective variable
is unbound.

https://qlever.cs.uni-freiburg.de/ir-book/canadian-astronauts

20 Chapter 1 Knowledge Graphs

not found in the table on the right, we still have a row with that astronaut in the result, but the

entry in the column ?name (which only exists in the right table) will be UNDEF. For readers

familiar with SQL, this corresponds to the semantics of a left outer join there.

The second OPTIONAL computes an optional join between the following two tables. The

table on the left is the result of the first optional join we just described. The table on the right

is the result of the { . . . } after the second OPTIONAL from our query above. Note that it has

mere presentational reasons that the neighboring rows below pertain to the same astronaut (the

table on the right has many more rows than the table on the left, but we only show three that

belong to an astronaut).

Canadian astronauts + Hindi name (15)

?astronaut ?name

wd:Q16297 UNDEF

wd:Q1687593 UNDEF

wd:Q240769 ”जूली पयेटे”@hi

. . .

All entities + their Arabic name (5,900,123)

?astronaut ?name

wd:Q16297 UNDEF

wd:Q1687593 ” نسناهيميريج ”@ar

wd:Q240769 ” تييابيلوج ”@ar

. . .

These two tables have the same two column names and are hence joined on both columns. The

respective first rows match because they are the same, and that row hence appears in the result

as well. The respective second rows match because the entities in the first column match (both

wd:Q1687593) and by definition UNDEF matches any value.18 The respective third rows do

not match, but the row on the left still appears in the result because it is an optional join.19 The

result of this second optional join, which is also the final result of the query, hence contains the

following three rows:

?astronaut ?name

wd:Q16297 UNDEF

wd:Q1687593 ” نسناهيميريج ”@ar

wd:Q240769 ”जूली पयेटे”@hi

. . .

In total, the final result has 15 rows, one for each Canadian astronaut, with the Hindi name for

two of them, the Arabic name for nine of them, and an UNDEF name for four of them.

The query above is a typical use case for OPTIONAL and easy to understand: add Hindi

names, withArabic names as backup (and we could also have English names as further backup).

In general, however, joins (optional or not) of tables with UNDEF values are complicated and

hard to understand, in particular, when there are multiple join columns with UNDEF values in

18 Indeed, if the table on the right would contain k different rows which all have wd:Q1687593 in the first column,
they would all match the wd:Q1687593 UNDEF row from the table on the left.
19Without the second OPTIONAL, this row would only appear in the result if the Hindi and Arabic name happen to be
identical.

1.4 How to search a knowledge graph: structured query languages 21

all of them. Note that OPTIONAL is related to UNDEF only in so far, that optional joins are a

typical source of UNDEF values, but there are other sources as well.20

1.4.2 Cypher (Neo4j)
Cypher is a data representation and query language for a so-called labeled property graph

(LPG), defined in the following and often just called property graph. Cypher was developed by

Neo4j, Inc. in 2011 and was originally a proprietary language, intended for use with the graph

database Neo4j (discussed in Section 1.5). It became an open standard in 2015.

A property graph is very similar to a knowledge graph, with the following differences. In

a property graph, each node and each edge can have one or more properties. A property is

a key-value pair, where the key is an IRI and the value is a literal. Properties correspond

to triples that have a literal object. For example, the triple <Meryl Streep> <birth date>

“1949-06-22” can be represented by a property for <Meryl Streep> with key birth date and

value “1949-06-22”. Each node can also have zero or more labels. Node labels correspond to

triples from type-like predicates. For example, the triple <Meryl Streep> <is a> <Person>

can be represented by assigning the label Person to the node that represents Meryl Streep in the

LPG. All other triples are expressed using relationships. Each relationship is annotated with

exactly one label that corresponds to the name of the predicate.

The following lines specify a property graph that is a slightly extended version of our toy

knowledge graph from Section 1.2.1. Figure 1.1 shows the corresponding property graph and

the equivalent knowledge graph.

(P1: Person { name: “Meryl Streep”,

also known as: “Meryl Louise Streep”,

birth date: “1949-06-22” }),

(P2: Person { name: “Ruth E. Carter” }),

(O1: Oscar { name: “Best Actress” }),

(O2: Oscar { name: “Best Costume Design” }),

(F: { name: “Female” }),

(P1) − [:GENDER] −> (F),

(P2) − [:GENDER] −> (F),

(P1) − [:WON AWARD {year: “1983”, film: “Sophie’s Choice”}] −> (O1),

(P2) − [:WON AWARD] −> (O2)

Note the pictorial character of the syntax. Entities are written in parentheses, resembling a

labeled node in the graph. Relationships are written as arrows with the relationship label in

square brackets, resembling a labeled box.

Property graphs can be seen as an alternative way to realize reification, namely via properties

and labels. In knowledge graphs, reification is realized via intermediate nodes. There is an

20 For example, we can specify an arbitrary sequence of bindings explicity using a VALUES clause.

22 Chapter 1 Knowledge Graphs

<Meryl Streep>

<Female> <Person>

<.. .>

”1983”

<Ruth E Carter>

”1949-06-22”

”Mary Louise Streep”

”Sophie’s Choice”

<Best Costume Design>

<Oscar>

<Best Actress>
<w

on
aw
ard

>

<is
a>

<
al
so

k
n
o
w
n

as
>

<birth
date>

<g
en
de
r>

<award>

<y
ea
r>

<film>

<gender>

<won award>

<i
s
a>

<
is

a>

<
is

a>

Person

name: ”Meryl Streep”
also known as: ”Mary Louise Streep”

birth date: ”1949-06-02”

Person

name: ”Ruth E. Carter”

Oscar

name: ”Best Actress”

Oscar

name: ”Best Costume Design”

name: ”Female”

WON AWARD

year: ”1983”
film: ”Sophie’s Choice”

WON AWARD

GENDER

GENDER

Figure 1.1 Two different representations of the knowledge graph from Section 1.2.1 plus some additional

triples including reification: a regular knowledge graph (top) and a property graph (bottom).

With their additional features, property graphs are able to represent the same data more densely

than a regular graph. However, property graphs are not more powerful with respect to the

information they can represent. The empty node in the knowledge graph is a statement node

(see Section 1.2.4). Its IRI is omitted here; it is often a variation of the IRI of the subject.

1.4 How to search a knowledge graph: structured query languages 23

important difference, however: one cannot specify a link between two properties or a property

and a node. For example, in Figure 1.1, we cannot link the property value Sophie’s Choice to a

node representing that film. If needed, one could also introduce intermediate nodes in property

graphs. However, typical queries would then be processed very inefficiently. This is explained

in Section 1.5, where we discuss a typical query engine for property graphs (Neo4j).

Similar to SPARQL, Cypher contains different keywords for formulating queries. The

MATCH keyword is used to describe the search pattern, andWHERE is used to further filter

or constrain the pattern. These two correspond to what is written in theWHERE clause of a

SPARQL query. Indeed, it makes no difference for the semantics of a Cypher query, whether a

constraint is specified in theMATCH clause or in theWHERE clause. The RETURN clause

specifies the desired output and corresponds to the SELECT clause of a SPARQL query. The

following example shows two equivalent Cypher queries to find all Oscar winners in 1983 and

the movies they won them for.

MATCH (x:Person) − [rel:WON AWARD] −> (:Oscar)

WHERE rel.year=“1983”

RETURN x.name rel.film

MATCH (x:Person) − [rel:WON AWARD { year: “1983”}] −> (:Oscar)

RETURN x.name rel.film

Another query language for property graphs is Gremlin. Similar to Cypher, it organizes

data in nodes and directed edges and distinguishes between “relationships”, “properties” and

“labels”. However, the syntax of how to create and query a graph differs from Cypher; see the

aforementioned survey by Angles et al. [2017].

1.4.3 GraphQL (Facebook)
GraphQL (“Graph Query Language”) is an application query language which was developed

for building and querying APIs. However, due to its name, it is often mistaken as a query

language for knowledge graphs. GraphQL was created by Facebook in 2012 for internal use

and released as an open project in 2015.

GraphQL has a schema, like a knowledge graph, but with an important difference. In a

knowledge graph, the schema is a property of the data and the syntax of a SPARQL query is

independent of that schema (and the same is true for property graphs and Cypher). In GraphQL,

the schema is defined by the user (in accordance with the underlying data), and it determines

the semantics and the structure of the queries that are allowed. Figure 1.2 provides an example.

The schema can be implemented in any language even though it is most widely used with

JavaScript. You can find a list of tools and libraries for various programming languages on

GraphQL’s website.21

21 https://graphql.org/code/

https://graphql.org/code/

24 Chapter 1 Knowledge Graphs

type Actor { type Oscar { type Movie { type Query {

id: ID! id: ID! id: ID! actor(id: ID!): Actor

name: String! category: String! name: String! }

movies: [Movie]! forWork: Movie! year: Int

oscars: [Oscar] year: Int }

} }

Figure 1.2 An example of a GraphQL schema. The first three items are regular Object Types. Each object

type has so-called fields, here for example “id” or “name”. These fields specify what can

appear in a part of a GraphQL query that operates on our Object Type. The last item is a special

type that every schema needs, the Query Type. It defines the entry point of a GraphQL query

(see Figure 1.3). “ID”, “String” and “Int” are built-in scalar types. An exclamation point

indicates that this is a required field. Squared brackets represent an array.

A GraphQL query looks like a nested JSON map, where the values are either nested JSON

maps or omitted. Using the example query in Figure 1.3, we will now explain how the response

is produced. For each field in the query (for example “actor” or “name”), there has to be a

function in the schema, called a resolver (function). Most implementations provide simple

default resolvers; other (more complicated) resolvers have to be implemented by the user.

Each field produces either a scalar value (like String or Int) or an object value (like Movie

or Oscar). If it produces an object value, the query has to contain a sub-selection of fields

which apply to that object. This is indicated by a new set of curly brackets in the query, for

example after “oscars”. Each query starts with a Query type field or entry point (here: “actor”).

Usually, the corresponding resolver function accesses a database and constructs objects from

it. For example, the resolver function actor(id: ID!) finds the actor with the correct ID in the

database and returns an Actor object. This object is then passed to the resolver function(s) of

the next field(s) (here: “name” and “oscars”). This continues until scalar values are reached.

The answer is a JSON in the same format as the query with the values filled out with the scalar

values returned by the resolver functions.

Despite the name, GraphQL’s purpose and scope is quite different from query languages like

SPARQL or Cypher. First, due to the application-specific schema and the lack of global IRIs,

GraphQL is not intended to combine data from different sources. Second, typical GraphQL

queries are less expressive. In particular, only tree queries are possible and functions like

filtering, sorting and grouping are not supported by default. In principle, users can implement

any additional feature using a suitable resolver function.

1.5 Engines and indexing 25

query {

actor(id: ”873”) {

name

oscars {

category

year

}

}

}

{

”data”: {

”actor”: {

”name”: ”Meryl Streep”

”oscars”: [

{ ”category”: ”Best Supporting Actress”

”year”: 1980 }

{ ”category”: ”Best Actress”

”year”: 1983 }

{ ”category”: ”Best Actress”

”year”: 2012 }

]

}

}

}

Figure 1.3 An example of a GraphQL query (left) and the response (right). Note that the schema in Figure

1.2 knows what value type each field returns. For example, “name” returns a String, “year” an

Int, and “oscars” returns an array of Oscar objects.

1.5 Engines and indexing
Knowledge graphs contain up to tens of billions of triples (Section 1.3 gave several examples),

and they continue to grow. In this section, we explain how data of such scale can be processed

and queried efficiently. We focus on three techniques: representation via monotonic object

identifiers, indexing via triple permutations, and query planning via cost estimation. Several

SPARQL engines have been built based on these core ideas, in particular the QLever SPARQL

engine (https://qlever.cs.uni-freiburg.de), which provides the SPARQL endpoints for the

knowledge graphs discussed in Section 1.3. We also discuss three other popular SPARQL

engines (Virtuoso, Blazegraph, and Neo4j) and their respective strengths and weaknesses. Ali

et al. [2021] provide a much broader overview of techniques and list more than a hundred

SPARQL engines together with their feature sets. However, in that survey each particular

technique is described only briefly and rather formally, whereas our explanations here are more

elaborate and also suitable for newcomers to the field.

1.5.1 Object identifiers
Call the set of distinct IRIs and literals of a knowledge graph its vocabulary. Many query

engines work with object identifiers (OIDs), which map each IRI or literal from the vocabulary

to a unique integer ID. Each OID is stored in a fixed number of bytes, typically either 6 bytes

https://qlever.cs.uni-freiburg.de

26 Chapter 1 Knowledge Graphs

(enough for 281 trillion OIDs) or 8 bytes (corresponding to a word on a 64-bit machine). The

input data is then stored using OIDs, and for a given SPARQL query, the (relatively few) IRIs

and literals are also mapped to OIDs. Most of the query processing can then be carried out

efficiently with tables of fixed-size integers, instead of with tables of strings. To produce the

final result, the OIDs are mapped back to the corresponding strings.

To illustrate this, consider the following toy knowledge graph and the subsequent mapping of

its IRIs and literals to OIDs:

<Neil Armstrong> <Profession> <Astronaut>

<Neil Armstrong> <Nationality> <USA>

<Neil Armstrong> <Date of birth> “1930-08-05”

<Liu Yang> <Profession> <Astronaut>

<Liu Yang> <Nationality> <China>

<Astronaut> #0 <Liu Yang> #3 <Profession> #6

<China> #1 <Nationality> #4 <USA> #7

<Date of birth> #2 <Neil Armstrong> #5 “1930-08-05” #8

These OIDs have an additional important property, namely, that they are monotonic. Informally,

this means that the “natural” order of the IRIs and literals is preserved. Formally, there must be

a total and easy-to-compute order <OID on the OIDs, such that for arbitrary strings s1,s2 from
the vocabulary, it holds that oid(s1)<OID oid(s2) if and only if s1 < s2, where < is the order

of IRIs and literals as defined by the SPARQL standard. In the example above, <OID is simply

the natural integer order of the OIDs.22

Monotonic OIDs allow a particularly efficient implementation of operations that need to

consider the order of IRIs and literals according to the SPARQL standard. This includes:

ORDER BY (sorting the result using one or several variables as sort key), FILTER with

relational expressions like ≤ or ≥, and REGEX expressions that check whether a given entity

or literal starts with a given prefix. It should be noted that ORDER BY clauses are very

frequent in SPARQL queries, and as we will see in Section 1.6.1, an efficient processing of

prefix REGEX expressions is crucial for efficient autocompletion for SPARQL queries.

Using monotonic OIDs, these operations can be computed using only the OIDs, which is

much cheaper than working with the underlying IRIs or literals, provided that <OID is easy to

compute. This is trivial for the example above, where<OID is just the normal integer order, but

in practice, matters are a bit more complicated. For example, QLever encodes integers, floating

point numbers and dates directly in its 8-byte OIDs, using 4 bits to specify the datatype and 60

bits for the actual value. It then looks like already the trivial integer order on such OIDs fulfills

the monotonicity property, but that is not true. For example, when encoding (signed) integers

in the standard way using two’s complement, the negative numbers come after the positive

22 Section 15.1 of the SPARQL standard does not define a total order on all possible RDF terms. However, it does
specify that IRIs come before literals, hence “1930-08-05” correctly gets the largest OID in the example.

https://www.w3.org/TR/sparql11-query/#solutionModifiers

1.5 Engines and indexing 27

numbers in the trivial OID order. For floating point numbers and dates, the situation is even

more complicated. Still, with clever bit fiddling, it is possible to implement a <OID order that

can be computed very efficiently and has the monotonicity property.

When the knowledge graph is static and given in advance, monotonic OIDs are straightfor-

ward to compute. When the knowledge graph is updated, or when new entities or literals are

introduced as part of a query,23 maintaining monotonic IDs becomes more challenging. Of the

four SPARQL engines discussed in detail below, only QLever implements monotonic OIDs,

while Virtuoso, Blazegraph, and Neo4j do not.

1.5.2 Triple permutations
A key idea used in most high-performance SPARQL engines is to store the set of given triples

multiple times, but in different permutations. The six possible permutations are SPO, SOP,

PSO, OSP, POS, and OPS, where S stands for subject, P stands for predicate, and O stands

for object. For example, the SPO index and PSO index relating to the knowledge graph from

Section 1.5.1 stores the triples as follows:

SPO index

S=#3 P=#4 O=#1

S=#3 P=#6 O=#0

S=#5 P=#2 O=#8

S=#5 P=#4 O=#7

S=#5 P=#6 O=#0

PSO index

P=#2 S=#5 O=#8

P=#4 S=#3 O=#1

P=#4 S=#5 O=#7

P=#6 S=#3 O=#0

P=#6 S=#5 O=#0

In the SPO index, the triples are sorted by subject, then predicate, then object. In the PSO

index, the triples are sorted by predicate, then subject, then object. Note that in the examples

above (and also in the following examples), the IDs are prefixed by “#” and “S=”, “P=” or

“O=”, depending on their position in a triple. This is just for the sake of explanation; in reality,

only the integer IDs are stored. In fact, the first column is not stored explicitly, because it

consists of long sequences of the same ID. Instead, we store only the second and third column

(row-wise), and have a separate map that for each ID of the first column, stores the index of the

first row pertaining to that ID. For the SPO index above, the map for S would be {3 : 0; 5 : 2},
and the table would be [(4,1),(6,0),(2,8),(4,7),(6,0)].

To understand how these indexes can be used for efficient query processing, consider the

following SPARQL query:

SELECT ?person ?nationality WHERE {

?person <Nationality> ?nationality .

} ORDER BY ?person

23 For example, this can happen when using VALUES or SERVICE; see Section 1.7.3.

28 Chapter 1 Knowledge Graphs

To get all matches for the triple in the WHERE clause, we could use either the PSO or the

POS index. In both of them, the matches for ?person ?nationality form a contiguous segment,

marked blue in the following example (recall from the OID table in Section 1.5.1 that #4 stands

for <Nationality>). Since the SPARQL query asks for the results ordered by ?person, we take

the PSO index, because in it the matching rows are already ordered by S, which stands for

?person in this case. Note that this only works when using monotonic OIDs, otherwise we

would still have to sort the result afterwards. Retrieving a segment from one of the precomputed

indexes is called a SCAN operation.

PSO index

P=#2 S=#5 O=#8

P=#4 S=#3 O=#1

P=#4 S=#5 O=#7

P=#6 S=#3 O=#0

P=#6 S=#5 O=#0

Result Table with OIDs

#3 #1

#5 #7

Result Table with IRIs

<Liu Yang> <China>

<Neil Armstrong> <USA>

Things get more interesting when SPARQL queries contain two or more triples. For an

illustration, consider the following SPARQL query:

SELECT ?person ?nationality ?profession WHERE {

?person <Nationality> ?nationality . T1

?person <Profession> ?profession . T2

}

For each individual triple, the result is a table with two columns: ?person ?nationality for T1
and ?person ?profession for T2. Just like for the previous query, each of these tables can be
obtained with a SCAN operation on either the PSO index or the POS index. Since the two triples

have the same subject variable ?person, we need to join these two tables on their respective

first columns. We therefore perform the SCAN on the PSO index, so that both columns are

already sorted by their respective join columns, and we can perform an efficient linear-time

merge JOIN. This works with any order of the OIDs, in particular also for non-monotonic OIDs.

Here is an illustration, where the triples in blue correspond to T1 and the triples in green to T2.

PSO index

P=#2 S=#5 O=#8

P=#4 S=#3 O=#1

P=#4 S=#5 O=#7

P=#6 S=#3 O=#0

P=#6 S=#5 O=#0

Result Table

#3 #1 #0

#5 #7 #0

Result Table with IRIs

<Liu Yang> <China> <Astronaut>

<Neil Armstrong><USA> <Astronaut>

1.5 Engines and indexing 29

1.5.3 Query planning
In the examples above, we picked the index such that the necessary JOIN operations could

be carried out as efficiently as possible. In complex SPARQL queries, there are many such

choices to be made, not only the choice of index for each SCAN operation, but also the order

of the JOIN operations. Consider the following SPARQL query, which asks for all married

couples in the knowledge graph who were born on the same date.

SELECT ?person 1 ?person 2 ?birth date WHERE {

?person 1 <Date of birth> ?birth date . T1

?person 2 <Date of birth> ?birth date . T2

?person 1 <Spouse> ?person 2 . T3

}

Let us look at two possible query plans to compute the result of this query. We assume that we

always materialize (fully compute) the intermediate result tables.24 The first query plan is as

follows.

(1) Scan the POS index for the sets of triples relating to T1 and T2 (in any order).
(2) Join both sets of triples on ?birth date.

(3) Sort the result from step 2 by ?person 1 and ?person 2.

(4) Scan the PSO index for the set of triples relating to T3.
(5) Join the results from steps 3 and 4 on two columns: ?person 1 and ?person 2.

This query plan is expensive, because the intermediate result from the JOIN operation in step 2

is huge and therefore expensive to compute (if we have n different days, and k people are born

on each of these, the result has n · k2 rows). Here is an alternative query plan:
(1) Scan the PSO index for the sets of triples relating to T1 and T3 (in any order).
(2) Join both sets of triples on ?person 1.

(3) Sort the result from step 2 by ?person 2 and ?birth date.

(4) Scan the PSO index for the set of triples relating to T2.
(5) Join the results from steps 3 and 4 on two columns: ?person 2 and ?birth date.

This query plan is cheaper because any fixed person has only a single date of birth and only few

spouses (if any), and thus the result from step 2 is much smaller than for the first query plan.

But how to determine the cheapest query plan, without executing all possible query plans

in advance? The typical approach is to estimate the cost of some or all query plans.25 In the

following, we describe an approach that estimates the following statistics for each intermediate

result table:

(1) The size s of the table, that is, the number of rows.

24This can be avoided in special cases, for example when a SPARQL query has a LIMIT k clause, and k rows of the
result can be obtained without exploring all matches for the various parts of the query.
25The standard approach is via dynamic programming, which we do not described in detail here. That way, we can
discard a subset of the query plans before we have fully estimated their cost, in case the estimate for a partial plan is
already more expensive than the estimate for a full plan we have already found.

30 Chapter 1 Knowledge Graphs

(2) For each column i, the number di of distinct elements in that column.

(3) For each column i, the average multiplicity mi of an element in that column.

Trivially, di ·mi = s for each column i, so that one of these three quantities is redundant. It’s still
good to have all three defined because it makes the following formulas easier to understand.

The basic operations of each query plan are the index SCANs. We assume that we have the

exact values of s, di, and mi for the results of these SCANs (they can be easily precomputed

during the indexing). We next describe how we estimate these values for the results of a JOIN

operation, given the estimates for the input tables. Note that for full SPARQL support, there

are also many other kinds of operations for which we would need such estimates, like sorting a

table by a particular column or filtering a table by a particular criterion. We omit them here for

brevity.

Without loss of generality, assume that the join column is the first column in both input

tables and in the result table. Let T ′ and T ′′ be the two input tables, and let s′ and s′′ be their
sizes, and let d′

1, d′′
1 , m′

1, and m′′
1 be the distinctness and multiplicity of their respective join

columns.

Then, we can estimate the distinctness and multiplicity of the join column of the result table

as follows, where α is a correction factor in the range [0,1] explained below

d1 = α ·min(d′
1, d′′

1) and m1 = m′
1 ·m′′

1 .

Using this, we get the following estimation for the size of the result table

s = d1 ·m1 = α ·min(d′
1, d′′

1) ·m′
1 ·m′′

1 .

Let us explain the intuition behind these formulas.

DistinctnessAssume that all values of the join column of one table (without loss of generality,

let us call it T ′′) occur in the join column of the other table (without loss of generality T ′).

Then, the distinctness d′′
1 of table T ′′ cannot be larger than the distinctness d′

1 of table T ′

and the distinctness of the result table T is equal to the distinctness of T ′′. In other words,

d = min(d′
1,d

′′
1), which matches the formula with α = 1. The result table might be smaller

when the join column of T ′′ contains values that do not occur in T ′. This is reflected by the

tuning constant α. The QLever SPARQL engine uses α = 0.7. The following tables show an

example where m′
1 = m′′

1 = 1.

T ′ s′ = 3

#14 #15

#38 #42

#57 #13

d′
1=3 d′

2=3

m′
1=1 m′

2=1

T ′′ s′′ = 2

#14 #97

#57 #55

d′′
1=2 d′′

2=2

m′′
1=1 m′′

2=1

T s = 2

#14 #15 #97

#57 #13 #55

d1=2 d2=2 d3=2

m1=1 m2=1 m3=1

1.5 Engines and indexing 31

MultiplicityAssume that each value in the join column of T ′ has multiplicity m′
1 and each

value in the join column of T ′′ has multiplicity m′′
1.
26 Then, the number of rows in T for each

value contained in the join columns of both input tables is m′
1 ·m′′

1. Since all values in the result

table occur m′
1 ·m′′

1, this is also true on average, i.e. m1 = m′
1 ·m′′

1. The following tables show

an example where d′
1 = d′′

1 = 1.

T ′ s′ = 3

#57 #15

#57 #42

#57 #13

d′
1=1 d′

2=3

m′
1=3 m′

2=1

T ′′ s′′ = 2

#57 #97

#57 #55

d′′
1=1 d′′

2=2

m′′
1=2 m′′

2=1

T s = 6

#57 #15 #97

#57 #15 #55

#57 #42 #97

#57 #42 #55

#57 #13 #97

#57 #13 #55

d1=1 d2=3 d3=2

m1=6 m2=2 m3=3

Other columns Since T itself can be the input to another JOIN operation on any column, we

also need an estimation of the distinctness d j and multiplicity m j for each column j (not just of
the join column). In the following, we will explain how to estimate d j, which also gives us an

estimation for m j since we already have an estimation for the total size s of T and m j = s/d j

for any column j. Again, without loss of generality, we can make the following assumptions
(just as illustrated in the examples above):

(1) The join column is the first column in both input tables and in the result table.

(2) The column we are interested in, originates from the second column of table T ′.

(3) The column we are interested in, is the second column in the result table (that is j = 2).

Then we estimate the distinctness in column j = 2 of the result table as

d2 =min(d′
2, m′

1 ·α ·min(d′
1, d′′

1)) .

Let us also understand the intuition behind this formula.

Case 1: Assume d′
2 is small, in particular smaller than α ·m′

1 ·min(d′
1, d′′

1). Using the above

formula, our estimation will be d2 = d′
2. Note that d2 can never be larger than d′

2, because

only two things can happen when column 2 from T ′ gets copied to T : values get lost (because
not all values in the join column of T ′ may be contained in the join column of T ′′) and values

get duplicated (because of the “cross-product effect”, like in the first example above). Hence,

in this case our estimation is good, because d′
2 is small by our assumption and it is an upper

bound for d2.

26Note that, by definition, this is true on average. The closer all these multiplicities are to the average, the better our
estimation tends to be.

32 Chapter 1 Knowledge Graphs

Case 2: Now assume d′
2 is large. We can estimate the number of distinct elements in the join

column of T ′ that make it to T as α ·min(d′
1, d′′

1), just like for our distinctness formula above.

Each of these “bring” m′
1 values from column 2 on average. Since d′

2 is large, most of them

are distinct and d2 = m′
1 ·α ·min(d′

1, d′′
1) is a good estimation.

1.5.4 Further improvements
We have described three key techniques: object IDs, triple permutations, and cost estimation

for query planning. These three already form a solid basis for building a high-performance

SPARQL engine, but there are still a lot of challenges to address. Here is an incomplete list:

(1) Monotonic object identifiers for dynamic knowledge graphs, in particular, new values.

(2) SPARQL queries with a LIMIT that don’t require full materialization of the result.

(3) Compression of the indexes and of the vocabulary.

(4) Caching of intermediate results and making the query planner aware of cached results.

(5) Efficient support of other SPARQL features like OPTIONAL, UNION, MINUS, …

(6) Efficient support of predicate paths (explained in Example 3 of Section 1.4.1).

For an overview of techniques, we again refer the reader to the survey by Ali et al. [2021]. For an

open-source query engine implementing all of these, see https://github.com/ad-freiburg/qlever,

the basic architecture of which is described in Bast and Buchhold [2017] and [Bast et al. 2022b].

1.5.5 Virtuoso
Virtuoso [Erling and Mikhailov 2009], released by OpenLink Software in 1999, is the most

widely used SPARQL engine in research.27 It is written in C, and based on a database system

(SPARQL queries are translated to SQL), but provides full RDF and SPARQL support. In

particular, it provides the official SPARQL endpoint for knowledge graphs as large as UniProt

(80B triples); see Section 1.3. Virtuoso uses 8-byte OIDs for IRIs and long literals, while literals

with ≤ 12 characters are stored without indirection. The OIDs do not have the monotonicity

property described above. The following triple permutations are stored: PSOG, POGS, SP,

OP, and GS. Here, G denotes the knowledge graph (SPARQL has support for multiple graphs,

which can be addressed separately or altogether in a query). The index can be partitioned and

distributed over several machines. Query planning is limited to the determination of the join

order, where cost estimates are obtained via sampling the data. Query plans can be analyzed

only for the translated SQL query. Intermediate results are materialized only if necessary; see

the discussion above.

1.5.6 Blazegraph
Blazegraph (formerly known as Bigdata) [Systap 2013] is an open source database engine

released by Systap in 2006. It is the query engine behind the official Wikidata query service28;

27There is a commercial version and an open-source version; the latter is usually used in research.
28 https://query.wikidata.org/

https://github.com/ad-freiburg/qlever
https://query.wikidata.org/

1.6 How to search a knowledge graph: assisting the user 33

it was selected at the time due to Wikimedia’s open-source requirements. However, they are

currently looking for a replacement because of Blazegraph’s inactivity. Blazegraph also uses

object IDs with 8 bytes and indexes the triples in three permutations (SPO, POS, OSP), using a

B+ Tree for each. A fourth dimension (like the graph name G above) is supported optionally, in

which case there are six indices. Blazegraph also supports the full SPARQL standard and can

be distributed over multiple machines. Blazegraph is written in Java and clearly lags behind in

performance compared to Virtuoso for many typical queries. A recent performance comparison

against Virtuoso and QLever on a large set of queries can be found in [Bast et al. 2022b].

1.5.7 Neo4j
Neo4j was started by Neo4j, Inc. in 2007, and is the most widely used graph database for

labeled property graphs in industry. Neo4j is written in Java and supports Cypher, a variant

of SPARQL, described in Section 1.4.2. In principle, Neo4j can be used to index and query

knowledge graphs, but not generally efficiently so. In a nutshell, Neo4j has a record for each

node (entity), and for each record, stores pointers to the properties and relationships of that

node; see Figure 1.1. This design is efficient for retrieving information for a small set of entities

and their neighborhood, or for traversing the graph starting from such a set of entities. It is

extremely inefficient for queries that involve joins of large result sets. For example, consider a

query that asks for all persons of female gender. A typical SPARQL engine processes this query

by fetching precomputed lists for all entities of type Person and for all entities with gender

Female,29 and then joining these two lists. Neo4j processes this query by iterating over all

nodes with label Person30 and for each node follow pointers to the relationship gender and

check whether the adjacent node says Female.

1.6 How to search a knowledge graph: assisting the user
In Section 1.4.1 we have seen how to write formal SPARQL queries. SPARQL is conceptually

easy, because queries can be formulated as lists of triples, just like the data. However,

formulating the right query is often very hard in practice, because it requires knowing the

schema of the underlying knowledge graph as well as knowing the IRIs and literals relevant for

the query. There are literally hundreds of user interfaces to help users to explore RDF data or

formulate SPARQL queries. In this section, we focus on the two most natural and most widely

used forms of assistance: SPARQLAutocompletion (Section 1.6.1) and Question Answering,

that is, translating a natural language question into the corresponding SPARQL query (Section

1.6.2).

29These would both be segments of the POS or OPS index, assuming that the corresponding triples are stored via
predicates that stand for “type” and “gender”, and object that stands for “Person” and “Female”, respectively.
30Assuming that the types are represented via labels, which would be the natural thing to do in a property graph.

34 Chapter 1 Knowledge Graphs

1
2
3
4

SELECT * WHERE {
 ?x <is_a> P|
} <Person>

<Politician>
<Plant>

1
2
3
4
5

SELECT * WHERE {
 ?x <is_a> <Person> .
 ?x |
} <is_a>

<gender>
<birth_date>

1
2
3
4
5

SELECT * WHERE {
 wd:Q873[Meryl Streep] p:P166[award won] ?m .
 ?m |
} ps:P166

pq:P585
pq:P1686

"award won"@en
"point in time"@en

"for work"@en

1
2
3
4
5
6
7

SELECT * WHERE {
 wd:Q873[Meryl Streep] p:P166[award won] ?m .
 ?m pq:P1686[for work] ?film .
 ?m ps:P166[award won] ?award .
 ?award wdt:P31[instance of] |
} wd:Q19020

wd:Q1011547
wd:Q268200

"Oscars"@en
"Golden Globes"@en

"SAG Award"@en

Figure 1.4 Four screenshots of the SPARQL autocompletion in action, with three suggestions each.

Top-left and top-right: Examples 1 and 2 on a knowledge graph like that of Section 1.2.1, where

the IRIs are directly understandable for a human. Bottom-left and bottom-right: Example 3 and

a continuation not described in the text, for a query on Wikidata, where IRIs are alphanumeric

and names are obtained via dedicated predicates. Note that the grey names in square brackets

are not part of the formal SPARQL query, but just there to help the user understand the query

better.

1.6.1 SPARQL Autocompletion
Autocompletion is a natural way to address the two problems mentioned above (having to

know the schema and the right IRIs and literals). In this subsection, we describe how to aid

a user in incrementally constructing a SPARQL query by providing suggestions after every

keystroke. The suggestions have the following two important properties:

(1) The suggestions are context-sensitive in the sense that they continue the part of the query

already typed in a meaningful way.

(2) The suggestions are ranked by some measure of relevance, so that the continuation sought

by the user is as high up in the list of suggestions as possible.

These properties will become very clear in the examples below. Bast et al. [2022b] provide a

formal definition, together with an extensive quality and performance evaluation and an account

of related work on the topic. A demo of an autocompletion system based on these ideas, for

many of the knowledge graphs from Section 1.3, is available at https://qlever.cs.uni-freiburg.de.

Figure 1.4 provides four screenshots.

Since the suggestions should come from the knowledge graph, for which the user is trying

to formulate their query, it turns out that the suggestions can themselves be formulated as

SPARQL queries, called autocompletion (AC) queries in the following. This is a very elegant

https://qlever.cs.uni-freiburg.de

1.6 How to search a knowledge graph: assisting the user 35

idea, because it allows the realization of autocompletion without additional software,31 using

only the SPARQL engine that is already there.

In the following we explain this via three examples. To understand these queries, you

should be familiar with the SPARQL concepts presented in Section 1.4.1. For an interactive

experience, it is crucial that the AC queries are processed fast, which is a major challenge when

the knowledge graph is large. We disregard the aspect of efficiency here and only mention that

a SPARQL engine along the lines of Section 1.5 can be extended to process AC queries fast.

Such an extension is described by Bast et al. [2022b].

Example 1. Assume that we have typed the body of the SPARQL query in Example 1 in

Section 1.4.1 until before the first object; see below. The symbol marks the cursor position

and the user has typed the prefix ”P”. The desired object at this position is <Person>.

?x <is a> P

The following AC query computes a table containing all objects ?entity (these are IRIs) and

their name ?name (these are literal strings), such that the name starts with P and the triple ?x

<is a> ?entity exists. The table is sorted in descending order of the number of such triples for

each ?entity.

SELECT ?entity ?name (COUNT(?x) AS ?score) WHERE {

?x <is a> ?entity .

BIND (STR(?entity) AS ?name) .

FILTER REGEX(?name, ”^P”)
} GROUP BY ?entity ?name ORDER BY DESC(?score)

� Click to run query on QLever

The keyword BIND assigns a value, in this case STR(?entity), to a new variable, in this case

?name. The first three result rows for that query look as follows. The numbers are from a

simplified version of Freebase, called Freebase Easy [Bast et al. 2014].32

<Person> ”Person” 3970825

<Politician> ”Politician” 127809

<Plant> ”Plant” 60459

Note that for this knowledge graph, each name is simply the corresponding IRI converted to a

string. This is not generally the case, as we can see in Figure 1.4 and Example 3 below. Also

note that the desired entity appears in the first row of the table, and that, by construction, all

suggested entities lead to a non-empty result.

31 Except of course the code for the actual user interface. But there is no need for a separate program that reads or
preprocesses the knowledge graph in any way.
32A SPARQL endpoint for Freebase Easy, with which the results for our examples here can be reproduced, can also be
found under the aforementioned https://qlever.cs.uni-freiburg.de.

https://qlever.cs.uni-freiburg.de/ir-book/autocompletion-example-1
https://qlever.cs.uni-freiburg.de

36 Chapter 1 Knowledge Graphs

Example 2. Now assume that we have typed the SPARQL query a little bit further. The desired

predicate at the cursor position is <gender> and the user has typed no prefix yet to narrow

down the search.

?x <is a> <Person> .

?x

The following AC query gives us a ranked list of predicates that lead to a non-empty result.

The score for each predicate is the number of persons (that is, entities matching the first triple)

that have a triple with that predicate. If a person has several triples with the same predicate, we

only count the predicate once, hence the DISTINCT.

SELECT ?entity ?name (COUNT(DISTINCT ?x) AS ?score) WHERE {

?x <is a> <Person> .

?x ?entity [] .

BIND (STR(?entity) AS ?name) .

} GROUP BY ?entity ?name ORDER BY DESC(?score)

� Click to run query on QLever

The square brackets “[]” are used instead of introducing a new variable that remains unused in

the rest of the query. The first three result rows for this AC query are as follows:

<is a> ”is a” 3970825

<gender> ”gender” 2276146

<birth date> ”birth date” 1915167

The desired predicate comes second in this table and, again by construction, the AC query only

returns predicates that lead to a hit. The suggestions are ranked by how often each of them

occurs with the set of entities defined by the part of the query already typed. Because of this,

we did not have to type a single letter here to get very good suggestions.

Example 3. Our last example is based on Wikidata, where entities have alphanumerical IRIs,

and the name is obtained via a dedicated predicate rdfs:label. Assume that we have typed the

body of the SPARQL query in Example 2 in Section 1.4.1 this far:

wd:Q873 p:P166 ?m .

?m

Again, the cursor is at the position of the predicate and the user has not yet typed a prefix at

this position. Recall that wd:Q873 stands for Meryl Streep and p:P166 connects this entity to

all statement nodes ?m pertaining to one of her awards. The desired token is pq:P1686, which

leads us to the awarded films.

The following AC query gives us a list of predicates, along with their English33 names, that

lead to results at this point. The score is analogous to that of the previous example.

33Note that we could easily have names in another language here.

https://qlever.cs.uni-freiburg.de/ir-book/autocompletion-example-2

1.6 How to search a knowledge graph: assisting the user 37

SELECT ?entity ?name (COUNT(DISTINCT ?m) AS ?score) WHERE {

wd:Q873 p:P166 ?m .

?m ?entity [] .

?entity normalized ?tmp ?entity .

?entity normalized rdfs:label ?name FILTER (LANG(?name) = ”en”)

}

GROUP BY ?entity ?name

ORDER BY DESC(?score)

� Click to run query on QLever

The third and fourth triple connect a predicate to its label on Wikidata, see Section 1.2.4 for

details. The first three result rows for this AC query look as follows:

ps:P166 ”award received”@en 33

pq:P585 ”point in time”@en 23

pq:P1686 ”for work”@en 10

These rows tell us that Wikidata knows about 33 awards of Meryl Streep, 23 points in time

for these awards, and 10 works awarded. Our desired predicate comes third, and again all

suggestions are context-sensitive by construction. Without these suggestions it would require

extremely intimate knowledge of Wikidata to know that we need the predicate suffixes P166

and P1686 and the prefixes ps: (which stands for the main entity of a statement node) and pq:

(which stands for additional properties of a statement node).

1.6.2 Question Answering
Context-sensitive autocompletion is great, but it still requires basic knowledge of the SPARQL

syntax. Ideally, the user can ask questions in natural language (just as they would ask a human,

without any constraints on the formulation), which is then either translated automatically to a

SPARQL query with the corresponding semantics, or it is decided that no such SPARQL query

exists (because the data is not in the knowledge graph).

Our running example in this section is the following question and corresponding SPARQL

query (referring to a simplified knowledge graph like the one from Sections 1.2.1 and 1.4.1,

not Wikidata):

What role does Meryl Streep play in The Iron Lady?

SELECT ?target WHERE {

<Meryl Streep> <film performance> ?m .

?m <film> <The Iron Lady> .

<character> ?target

}

https://qlever.cs.uni-freiburg.de/ir-book/autocompletion-example-3

38 Chapter 1 Knowledge Graphs

In this subsection, we explain the basic principles behind a typical system that solves this

problem. The system is called Aqqu [Bast and Haussmann 2015], and a demo is available

at https://aqqu.cs.uni-freiburg.de. Diefenbach et al. [2018] provide a broader overview of

techniques and systems for question answering on knowledge graphs. We divide this task into

the following four steps, which we will explain in detail below:

(1) Find entities from the knowledge graph that are mentioned in the question.

(2) Generate candidate SPARQL queries that contain these entities.

(3) Compute a feature vector for each candidate.

(4) Find the best candidate(s) by ranking the feature vectors.

Step 1: Find entities from the knowledge graph mentioned in the question

The input question typically refers to one or several entities from the knowledge graph (assuming

that it can be answered from the knowledge graph at all). Since we don’t have an interpretation

of the question at this point, we identify all possible entity mentions (or at least so many, that

we can be reasonably sure that the desired entities are among them) and the respective entity in

the knowledge graph. This task is known as entity linking; more about this in Section 1.7.2.

We assume that our entity linker does not only provide us with a single entity for each mention,

but with a probability distribution over several entities; this will be used in Step 3.

Entity linking is hard because the same entity can be referred to by many different names, and

the same piece of text can mean many different entities, depending on the context. For example,

there are many persons calledMeryl, and depending on the context, Iron Lady could refer to

the movie or to Margaret Thatcher personally. If we assume that the question is well-formed,

we can use a part-of-speech (POS) tagger to identify those parts of the question that could be

entity mentions. For our example, a perfect POS tagger would identify “role”, “Meryl Streep”

and “Iron Lady”. Without a POS tagger, any subsequence of words could be a potential entity

match.

Unfortunately, this method does not work well enough with predicates. There is just much

more variation in language in expressing predicates than in referring to entities, and the match

between the verb(s) in the question and the predicate in the query can be extremely fuzzy. In

our example, the words “role does ... play” (not even consecutive in the question) correspond to

the predicates <film performance> and <character> in the SPARQL query. But the question

could also be formulated differently, for example, “Who is Meryl Streep in The Iron Lady?”.

We deal with the quality of the predicate matches in Step 3.

Step 2: Generating candidates

We generate SPARQL queries, in which at least one entity from Step 1 appears as a subject or

object. Since there is a huge number of such queries, we only consider SPARQL queries of a

particular form, called template. Aqqu uses three templates, which are shown in Figure 1.5.

They correspond to relatively simple SPARQL queries and they are sufficient to answer most

https://aqqu.cs.uni-freiburg.de

1.6 How to search a knowledge graph: assisting the user 39

simple questions. Let us explain how to generate query candidates from the third template.

First, take any pair of entities e1 and e2 that were found in step (1) and whose mention text
in the question does not overlap. For each pair, find all predicates r1, r2, r3 and mediator

entities m such that the triples (e1 r1 m), (m r2 e2) and (m r3 x) exist in the knowledge graph,
where x represents an arbitrary entity. Each assignment to e1, e2, r1, r2 and r3 yields a query
candidate. For example, in the third row in Figure 1.5, <Meryl Streep> was assigned to

e1, <Margaret Thatcher> to e2 and <film performance>, <character> and <film> were

assigned to r1, r2 and r3, respectively. This step generates many bad query candidates, in

the sense that their result is not the correct answer to the question (the first three examples in

Figure 1.5). However, the correct query should be among the candidates as well (last example

in Figure 1.5). The next two steps address the problem of finding the correct query among the

candidates.

Step 3: Computing feature vectors

For each of the query candidates from the last step, we generate a feature vector. Each of these

features gives some indication about how likely this query candidate is to correctly answer

the question. As an example, we will discuss three different features. A real system has more

features; Aqqu for example has 23.

Entities (Ent): How well do the entities match the question? We make use of the probabilities

that the named-entity linker from Step 1 provides. For each entity e that matched a part of the
question s, compute the probability p(e|s) that s actually referred to the entity e, for example:

Prob(<The Iron Lady (film)> | “The Iron Lady”)= 0.74

Prob(<Margaret Thatcher> | “The Iron Lady”)= 0.17

Prob(<Meryl Streep> | “Meryl Streep”) = 0.98

For the final score, aggregate these probabilities for all entities that appear in a query. For our

example in Figure 1.5 we added them up.

Predicates (Pred): How well do the predicates match? In a first approach, we would like to

measure how similar the words in the question are to the words of the predicates in the query.

We can do this by either considering literal matches or derivations, for example lemmatization

(e.g., “played” → “play”) or synonyms (e.g., “role” and “character”). We compute a score,

for example, by counting the number of matches or determining the percentage of predicate

words covered in the query. However, as discussed in Step 1, this often does not work with

predicates. We will now explain a more elaborate strategy for fuzzy predicate matching in

more detail. Assume we want to find words that describe the relationship <Meryl Streep>

has to ?target in the second example in Figure 1.5. In order to find such indicator words, we

replace <Meryl Streep> with a variable and run the following query

40 Chapter 1 Knowledge Graphs

Example Candidate Template Features

<Meryl Streep> <won award> ?target e1 t
r1 Ent: 0.98

Pred: 0

Cov: 0.2

<Meryl Streep> <film performance> ?m .

?m <character> ?target

e1 m t
r1 r2 Ent: 0.98

Pred: 1.3

Cov: 0.4

<Meryl Streep> <film performance> ?m .

?m <character> <Margaret Thatcher> .

?m <film> ?target

e1 m e2

t

r1 r2

r3

Ent: 1.15

Pred: 1.3

Cov: 0.7

<Meryl Streep> <film performance> ?m .

?m <film> <The Iron Lady (film)> .

?m <character> ?target

e1 m e2

t

r1 r2

r3

Ent: 1.72

Pred: 1.3

Cov: 0.7

Figure 1.5 Four examples of query candidates generated for the question in Figure ??. The last row

contains the query that correctly answers the question. Each template represents queries with a

particular kind of structure. The nodes ei represent entities found in Step 1 and ri represent

predicates that are connected with the entities as illustrated. The nodes m are intermediate

nodes, representing a variable in the query candidates. The nodes t represent the ?target
variable, which contains the answer that this candidate gives to the question. The last column

shows the feature vectors, which give some indication for how good the match between the

candidate and the question is; see Step 3 for more information.

SELECT ?x ?target WHERE {

?x <film performance> ?m .

?m <character> ?target

}

Among others, we get a result row where ?x is <Leonardo DiCaprio> and ?target is

<Billy Costigan>. For each row in the result, look for all sentences (e.g., on Wikipedia)

that contain both entities:

In Scorsese’s The Departed, DiCaprio played the role of Billy Costigan.

Now, consider each verb or noun between the entity occurrences as an indicator word. In

other words, we have learned that “play” or “role” are indicator words for the relationship

1.6 How to search a knowledge graph: assisting the user 41

<film performance> plus <character>. This is an instance of distant supervision, i.e. using

external data to learn something useful for our task. Compute a score for how good an indicator

word describes the relation, depending on how often it was found. Then, for each query

candidate sum up the scores for all words from the question that match a relation. As a result,

the last three examples in Figure 1.5 get a higher score for this feature than the first one (since

no indicator words of <won award> appear in the question).

Coverage (Cov): How much of the question is covered by the query? Generally, the more

parts of the question are matched to entities or predicates in a query candidate, the better the

candidate is. Hence, we compute the percentage of words covered by dividing the number of

words that are matched by the total number of words in the question. For example, the third

candidate in Figure 1.5 covers 7 out of 10 words:

What role does Meryl Streep play in The Iron Lady?

Note that we could also give weights to different words, if we are able to identify important

parts of a question. In our example, the words not covered (“what”, “does” and “in”) are not

very important since they do not carry a lot of meaning. It is therefore not important to cover

them and we could assign lower weights to them.

The scores in the feature vectors can be misleading in the sense that the correct query does

not get the best score. For example, questions can contain additional information that should

not be matched in the query. Consider the question “What role does Meryl Streep play in the

British drama film The Iron Lady?”. The part “British drama film” is irrelevant and queries

that match this part are probably wrong.

Step 4: Ranking

There is usually no candidate with a feature vector that is better than all other feature vectors in

all components. Therefore, we need an algorithm to determine the “best” feature vector.

A simple approach would be to turn each feature vector into a real-values score by taking a

linear combination of its components. For example:

s(c) = 5 · cEnt+3 · cPred+4.5 · cCov,

where c is a query candidate and cx is the score that c got for feature x. With good weights,

this approach can work reasonably well, but finding good weights manually is hard, especially

when there are many features.

More sophisticated approaches try to learn to determine the best feature vector among a given

set. To learn scores, we need training samples of the kind feature vector→ score. Note that we

can generate them from training samples of the kind question→ answer in the following way.

Using the previous steps, for each question in the ground truth, we generate query candidates

and the feature vector for each candidate. Mark a feature vector as positive sample, if the

42 Chapter 1 Knowledge Graphs

corresponding query candidate returns the correct answer according to the ground truth and

mark all other feature vectors as negative samples. The problem with this approach is that the

same feature vector can be good for one (hard) question and bad for another (easy) question.

To address this issue, we transform the problem into a binary classification problem and learn

to compare two feature vectors. We generate pairs of one “positive” and one “negative” feature

vector and we mark which one is better. In the QA system, for all pairs of feature vectors, we

let our trained classifier decide, which one is better and pick the candidate that wins most of

these comparisons. There are two variants of Aqqu with respect to this classifier: one uses

random forests and one uses a neural network. For details, see Bast and Haussmann [2015].

1.7 Combination with text search and federated search
There are several scenarios, where we want to extend a SPARQL query by a text-search

component. We briefly explore these in Sections 1.7.1 (text search in literals) and 1.7.2 (text

search in an an external text corpus). Another frequent scenario is that we want to query

multiple RDF datasets simultaneously with a single query. We briefly explore this in Section

1.7.3.

1.7.1 Keyword search in literals
As we have seen in Section 1.2, the object of a triple can also be a string containing arbitrary

text. A typical use is for the name, alias or description of an entity; see Section 1.2.3. The

SPARQL query language supports a function REGEX that determines whether a given string

matches a given regular expression. For example, the following query finds all people on

Wikidata, whose name ends with Einstein:

SELECT ?person name WHERE {

?person wdt:P31 wd:Q5 . # instance of human

?person rdfs:label ?person name . # name

FILTER (LANG(?person name) = ”en”) # English

FILTER REGEX(?person name, ” Einstein$”) # ends with ” Einstein”

}

� Click to run query on QLever

Literals can contain arbitrarily long text. For example, Wikidata contains an entity for each

Wikipedia article, and we might use the predicate schema:description to associate each article

with its abstract.34 For a text search in such literals, keyword search is often the method of

choice. That is, we specify a number of keywords, and we expect the engine to match all literals

containing these keywords (in any order). In principle, keyword search can be simulated in

SPARQL by introducing one FILTER REGEX clause per keyword. For example, the following

34The abstract of a Wikipedia article is the part before the table of contents. We might also take the whole text, but
schema:description is commonly used for short descriptions.

https://qlever.cs.uni-freiburg.de/ir-book/persons-name-einstein

1.7 Combination with text search and federated search 43

query finds all astronauts, where the Wikipedia abstract mentions the word moon and a word

starting with walk.35

SELECT ?astronaut label ?abstract WHERE {

?astronaut wdt:P106 wd:Q11631 . # occupation astronaut

?astronaut rdfs:label ?astronaut label . # name

?wikipedia schema:about ?astronaut . # Wikipedia article

?wikipedia schema:description ?abstract . # Wikipedia abstract

FILTER (LANG(?astronaut label) = ”en”) # English name

FILTER REGEX(?abstract, ”\\bmoon\\b”, ”i”) # contains word ”moon”

FILTER REGEX(?abstract, ”\\bwalk”, ”i”) # contains word starting with ”walk”

}

� Click to run query on QLever

The query above is not only cumbersome to write down, but also not processed efficiently

in most SPARQL engines. The reason is that the two REGEXes will be checked for every

?abstract that matches the rest of the query. In particular, this requires the materialization of

the respective strings. Amore efficient approach would be to build a dedicated data structure

that supports keyword search in literals, like an inverted index. Engines like QLever and

Virtuoso indeed provide this functionality. For example, to process the query above more

efficiently (with exactly the same result) in QLever, one can replace the last two FILTER lines

as follows.36

SELECT ?astronaut label ?abstract WHERE {

. . . # first five lines like above

?abstract ql:match-keywords ”moon walk*” # match given keywords

}

� Click to run query on QLever

1.7.2 Search in an external text corpus linked to a knowledge graph
The example query above constrained a certain set of entities (astronauts) by information

contained in text (the Wikipedia abstracts). This worked because the relevant texts were

connected to the relevant entities via a predicate (schema:description).

But this is the exception: entity descriptions are typically very short and contain only the

most notable information. In a more general scenario, we are given an abitrary text corpus

that mentions entities from the knowledge graph. To identify these entity mentions, we need

35The \b in a regular expression matches a word boundary. For example, \bmoon\b matches a string that contains
the word moon, but does not match a string that contains the words honeymoon or moons, but not moon. We would
therefore expect the query to match all astronauts who actually walked on the moon. Backslashes have to be escaped
in SPARQL, so we need to use \\b in the query. The argument ”i” stands for case-insensitive search.
36Virtuoso achieves the same functionality using the special bif:contains predicate.

https://qlever.cs.uni-freiburg.de/ir-book/astronauts-walk-moon-with-regex-filter
https://qlever.cs.uni-freiburg.de/ir-book/astronauts-walk-moon-with-keyword-matching

44 Chapter 1 Knowledge Graphs

to perform a task called entity linking (which we have already used for question answering in

Section 1.6.2).37 For example, assume that our text corpus contains the following sentence

from Section 1.2.5.

As Armstrong [Q1615], whose great-grandfather Friedrich Wilhelm Kötter emigrated from

Ladbergen [Q181877] to the United States [Q30] in 1864, was the first man to walk on

the moon [Q405] in 1969, many citizens of Ladbergen [Q181877] became interested in their

American [Q846570] relatives.

In such a scenario, we want to formulate queries that specify the co-occurrence of a certain kind

of entity with certain words. For example, the following query asks the same questions as in

the previous subsection (astronauts who walked on the moon), but this time without assuming

that the information is contained in the description of the respective entities. As an additional

asset, the astronauts can now be ranked by how often they occur with the specified words.38

SELECT ?astronaut name (COUNT(?text) AS ?count) WHERE {

?astronaut wdt:P106 wd:Q11631 . # occupation astronaut

?astronaut rdfs:label ?astronaut name . # name

FILTER (LANG(?astronaut name) = ”en”) # English name

?astronaut ql:mentioned-in ?text . # entity mention in text ...

?text ql:match-keywords ”moon walk*” . # ... that matches keywords

}

GROUP BY ?astronaut name ORDER BY DESC(?count)

� Click to run query on QLever

The predicate ql:mentioned-in is a so-called magic predicate. It links each entity to all texts

mentioning that entity. Note that this predicate represents a many-to-many relation: a single

entity may be (any typically is) mentioned in multiple texts and a single text may contain

multiple entities. A simple realization of a magic predicate is to explictly add it to the RDF

dataset. The performance of this approach depends on the ability of the query engine to perform

join operations with this (typically huge) predicate. For example, the EnglishWikipedia (which

is a text corpus of moderate size compared to, say, a web corpus), contains around one billion

mentions of entities fromWikidata. QLever provides a more efficient realization that avoids

this explicit materialization but requires that the usage of ql:mentioned-in is always combined

with a keyword filter.39 For more information on this, see Bast and Buchhold [2017].

Note that in the query above, as well as in the query from the previous subsection, it is

implicitly assumed that entities or words that occur together in a text, also “belong together

semantically”. But that is not necessarily the case, especially for longer texts or complex

37 For a recent overview paper with a list of the top-performing tools, see [Bast et al. 2022a].
38We could also specify a more complex ranking function if we wanted to.
39 Especially when the texts are sentences, a single text typically mentions only few (often only one) entity. This
information can then be stored in the inverted index lists.

https://www.wikidata.org/wiki/Q1615
https://www.wikidata.org/wiki/Q181877
https://www.wikidata.org/wiki/Q30
https://www.wikidata.org/wiki/Q405
https://www.wikidata.org/wiki/Q181877
https://www.wikidata.org/wiki/Q846570
https://qlever.cs.uni-freiburg.de/ir-book/astronauts-walk-moon-with-entity-linking

1.7 Combination with text search and federated search 45

sentences. For example, in the sentence above, it is Neil Armstrong who walked on the moon

and his great-grandfather who emigrated from Germany, and not vice versa. This problem

can be addressed by splitting the text into its semantic constituents; see [Bast and Haussmann

2013].

1.7.3 Federated search
Interoperability is at the heart of the RDF framework. Because each dataset is simply a set of

triples and entities have globally unique identifiers, we can simply combine two datasets by

combining the sets of triples. Alternatively, SPARQL allows the querying of multiple datasets

via the SERVICE keyword (for a discussion of scenarios where this approach is useful see

the following section). For example, the following query asks for all movies directed by the

Coen brothers (information contained in Wikidata), ranked by the number of votes in IMDb

(information contained in the IMDb dataset).

SELECT ?movie ?imdb votes WHERE {

?movie wdt:P31 wd:Q11424 . # instance of film

?movie wdt:P345 ?imdb id . # IMDb ID

?movie wdt:P57 wd:Q13595311 . # directed by Joel Coen

SERVICE <https://qlever.cs.uni-freiburg.de/api/imdb> {

?movie imdb imdb:id ?imdb id . # IMDb entity with ?imdb id

?movie imdb imdb:numVotes ?imdb votes . # number of votes

}

}

ORDER BY DESC(?imdb votes)

� Click to run query on QLever

The semantics of the SERVICE clause is easy to understand and fits very naturally into the

RDF framework. In the query above, the body of the SERVICE clause is turned to a SPARQL

query by adding a SELECT * WHERE { . . . } around it. That query is then sent to the SPARQL

endpoint defined right after the SERVICE keyword. The result from that query is a table (or

binding), just like the result of any graph pattern in a SPARQL query is a table (or binding).

A conceptually trivial implementation of SERVICE is to send the query to the remote

endpoint, receive the fully materialized result (in a typical serialization format like JSON), and

let the issuing SPARQL engine parse that result for further processing. This is correct, but can

be inefficient when that materialized result is moderately large and becomes infeasible when

the result is huge.

We briefly describe two possible optimizations. One optimization40 is to send the remote

endpoint additional information that helps it to reduce the results size. For example, in the

40This optimization is so obvious that it is already mentioned in the standard: https://www.w3.org/TR/
sparql11-federated-query#values.

https://qlever.cs.uni-freiburg.de/ir-book/movies-joel-coen
https://www.w3.org/TR/sparql11-federated-query#values
https://www.w3.org/TR/sparql11-federated-query#values

46 Chapter 1 Knowledge Graphs

query above, the set of movies is restricted to those by a particular director. The SPARQL

engine could therefore send the remote endpoint the respective bindings for ?imdb id (19

movies by Joel Coen), which would result in a much smaller result of the SERVICE query.

Another optimization is to both send and receive bindings not in materialized form, but in

binary form, for example, using the internal IDs mentioned in Section 1.5. This is challenging

to implement, however, because internal IDs from different SPARQL engines are not naturally

compatible so that we need an efficient translation scheme.

1.7.4 Use cases of federated search
We briefly discuss three use cases of federated search, which demonstrate the power of this

paradigm.

The first and most typical use case is to query multiple RDF datasets in a single query.

The query above gives an example for that. Note that a SPARQL query may issue SERVICE

queries to an arbitrary number of remote endpoints, and these queries may even be nested (that

is, a SERVICE query may itself contain another SERVICE query). Also note that the remote

endpoint may be a variable. That way, we can select the appropriate endpoint via a SPARQL

query or part of SPARQL query.

A second use case is to split a large datasets into multiple datasets. One reason for this could

be that smaller datasets can be queried more efficiently. Another reason could be that we may

have one large part of the dataset that is static (building an index for a large RDF dataset is

expensive, see Section 1.5), and one or several smaller parts that are dynamic (so that new

indexes can be built for them fast).

A third use case is that a remote endpoint must obey the SPARQLAPI, but depending on

the service provided it must not necessarily be a full-featured SPARQL engine, but may use a

special-purpose implementation. For example, theWikidata Query Service (WDQS)41 has a

SERVICE that provides labels for entities from a SPARQL query. Using this SERVICE is more

efficient than explicitly using the rdfs:label predicate on the Blazegraph query engine (which

was the WDQS backend at the time of this writing), especially when many labels have to be

retrieved.42 It is, however, relatively straightforward using a special-purpose data structure.

1.8 The future of knowledge graphs
In this chapter, we have gently introduced the basics of RDF and SPARQL, we got acquainted

with some of the most important publicly available knowledge graphs and their characteristics,

we have learned how to index and search a knowledge graph efficiently, and we have seen

some basic techniques for how to assist users in formulating their SPARQL queries.

41 https://query.wikidata.org/
42At the time of this writing, the rdfs:label predicate contained 810M triples in Wikidata.

https://query.wikidata.org/

1.8 The future of knowledge graphs 47

There are many other important questions around knowledge graphs that we haven’t even

touched upon: How to construct a knowledge graph automatically or semi-automatically? How

to fill gaps in an existing knowledge graph or fix mistakes or resolve inconsistencies? How to

resolve conflicts and fuse results when querying multiple knowledge graphs? How to reason

on knowledge graphs? These aspects are discussed in the recent and very extensive survey by

Hogan et al. [2021]. That survey also lists (in its Table 1) many surveys on more specialized

subtopics.

Before we close, let us dare take a short glimpse into the future. The last decade has seen

tremendous advances in the field of deep learning, with revolutionary results across a wide

variety of application domains. Notably, large language models (LLMs) have recently achieved

state-of-the-art results and better on a wide variety of tasks with little (few-shot) or no (zero-shot)

task-specific learning [OpenAI 2023]. In particular, such LLMs can automatically translate

natural language questions to SPARQL queries, as explained in Section 1.6.2 using an explicit

approach. A central question in this context is how classical frameworks like knowledge graphs

(or, more generally, databases) will co-exist with such universal models in the future. We see

three possible scenarios.

1. Knowledge graphs and universal models will co-evolve, but remain separate “species”. The

models will learn better and better how to formulate even complex queries, but they will resort

to an external query engine (like the ones described in Section 1.5) for executing these queries.

The result can then be fed back into the “thinking process” of the model and this interaction

may already be part of the training. As this mode of operation becomes more prevalent, query

engines will adapt to suit the needs of these models better.43 We consider this the most likely

scenario in the near and mid future.

2. In a more dim scenario, knowledge graphs will become mere food (training data) for

universal models. Given enough data, the models might learn by themselves how to answer

even complex queries without having to resort to an external query engine. We consider this

scenario unlikely for two reasons. First, it looks hard for a learned model to answer complex

queries involving large datasets with 100% accuracy (a task that for a classical query engine

is merely a matter of a correct implementation). Second, resourcefulness is a major factor

for large datasets. For example, consider a business application that needs to store billions or

trillions of data records. Why let a model figure out how to store and query this data precisely

and compactly instead of using standard compression and indexing techniques directly? We

therefore don’t consider this scenario very likely.

3. The third scenario is that of hybrid systems that somehow combine universal models and

classical storage and indexing techniques. At the time of this writing, there is no noteworthy

development in this direction. We consider such development unlikely because of the following

43 For example, embeddings of entities and predicates might become first-class citizens in the query engine.

48 Chapter 1 Knowledge Graphs

high-level argument: The evolution of all complex organizations we know of (including

nature and human societies) has brought forth different kind of subsystems with specialized

capabilities. Interaction between these subsystems is extremely important (and may range from

slim interfaces to symbiotic relationships), but the subsystems remain separately identifiable

species. The universe we live in does not seem to favor hybrid monsters. Then again, there is

the Borg44 and we are still at a very early stage in our evolution.

Whatever will happen, we will soon be able to discuss these fascinating topics in depth and in

person with a universal model of our choice . . . if they are still talking to us then.

44 ”Your biological and technological distinctiveness will be added to our own. Resistance is futile. You will be
assimilated.”

Bibliography
I. Abdelaziz, R. Harbi, Z. Khayyat, and P. Kalnis. 2017. A survey and experimental comparison of

distributed SPARQL engines for very large RDF data. Proc. VLDB Endow., 10(13): 2049–2060.

K. Alaoui. 2019. A categorization of RDF triplestores. In SCA, pp. 66:1–66:7. ACM.

W. Ali, M. Saleem, B. Yao, A. Hogan, and A.-C. N. Ngomo. 2021. A survey of RDF stores & SPARQL

engines for querying knowledge graphs. Computing Research Repository, abs/2102.13027.

R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vrgoc. 2017. Foundations of modern

query languages for graph databases. ACM Comput. Surv., 50(5): 68:1–68:40.

H. Bast and B. Buchhold. 2017. QLever: a query engine for efficient SPARQL+Text search. In Proc.

26th ACM Int. Conf. on Information and Knowledge Management, pp. 647–656. ACM.

H. Bast and E. Haussmann. 2013. Open information extraction via contextual sentence decomposition.

In ICSC, pp. 154–159. IEEE Computer Society.

H. Bast and E. Haussmann. 2015. More accurate question answering on Freebase. In Proc. 24th ACM

Int. Conf. on Information and Knowledge Management, pp. 1431–1440. ACM.

H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann. 2014. Easy access to the freebase dataset. In Proc.

26th Int. World Wide Web Conf. (Companion Volume), pp. 95–98. ACM.

H. Bast, M. Hertel, and N. Prange. 2022a. ELEVANT: A fully automatic fine-grained entity linking

evaluation and analysis tool. In EMNLP (Demos), pp. 72–79.Association for Computational Linguistics.

H. Bast, J. Kalmbach, T. Klumpp, F. Kramer, and N. Schnelle. 2022b. Efficient and effective SPARQL

autocompletion on very large knowledge graphs. In CIKM, pp. 2893–2902. ACM.

K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. 2008. Freebase: a collaboratively created

graph database for structuring human knowledge. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, pp. 1247–1250. ACM. https://doi.org/10.1145/1376616.1376746.

T. Chawla, G. Singh, E. S. Pilli, and M. C. Govil. 2020. Storage, partitioning, indexing and retrieval in

big RDF frameworks: A survey. Comput. Sci. Rev., 38: 100309.

A. Chebotko, S. Lu, and F. Fotouhi. 2009. Semantics preserving sparql-to-sql translation. Data & Knowl.

Eng., 68(10): 973–1000.

D. Diefenbach, V. López, K. D. Singh, and P. Maret. 2018. Core techniques of question answering

systems over knowledge bases: a survey. Knowl. and Information Syst., 55(3): 529–569.

O. Erling and I. Mikhailov. 2009. Virtuoso: RDF support in a native RDBMS. In Semantic Web

Information Management, pp. 501–519. Springer. https://doi.org/10.1007/978-3-642-04329-1_21.

D. C. Faye, O. Curé, and G. Blin. 2012. A survey of RDF storage approaches. ARIMA J., 15: 2.

G. Fu, C. Batchelor, M. Dumontier, J. Hastings, E. Willighagen, and E. Bolton. 2015. PubChemRDF:

towards the semantic annotation of PubChem compound and substance databases. J. Cheminformatics,

7: 34. https://dx.doi.org/10.1186/s13321-015-0084-4.

49

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1007/978-3-642-04329-1_21
https://dx.doi.org/10.1186/s13321-015-0084-4

50 BIBLIOGRAPHY

A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E. L. Gayo, S. Kirrane,

S. Neumaier, A. Polleres, R. Navigli, A.-C. N. Ngomo, S. M. Rashid, A. Rula, L. Schmelzeisen,

J. Sequeda, S. Staab, andA. Zimmermann. 2021. Knowledge graphs. Computing Research Repository,

abs/2003.02320.

A. Ismayilov, D. Kontokostas, S. Auer, J. Lehmann, and S. Hellmann. 2018. Wikidata through the eyes

of DBpedia. Semantic Web, 9(4): 493–503.

D. Janke and S. Staab. 2018. Storing and querying semantic data in the cloud. In Reasoning Web, volume

11078 of Lecture Notes in Computer Science, pp. 173–222. Springer.

Z. Kaoudi and I. Manolescu. 2015. RDF in the clouds: a survey. VLDB J., 24(1): 67–91.

J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey,

P. van Kleef, S. Auer, and C. Bizer. 2015. DBpedia - a large-scale, multilingual knowledge base

extracted fromWikipedia. Semantic Web, 6(2): 167–195. https://doi.org/10.3233/SW-140134.

D. B. Lenat. 1995. CYC: A large-scale investment in knowledge infrastructure. Commun. ACM, 38(11):

32–38.

M. Ley. 2009. DBLP - some lessons learned. Proc. VLDB Endowment, 2(2): 1493–1500.

Y. Luo, F. Picalausa, G. H. L. Fletcher, J. Hidders, and S. Vansummeren. 2012. Storing and indexing

massive RDF datasets. In Semantic Search over the Web, Data-Centric Systems and Applications, pp.

31–60. Springer.

Z. Ma, M. A. M. Capretz, and L. Yan. 2016. Storing massive resource description framework (RDF)

data: a survey. Knowl. Eng. Rev., 31(4): 391–413.

OpenAI. 2023. GPT-4 technical report. CoRR, abs/2303.08774.

OpenStreetMap contributors, 2021. OpenStreetMap. https://www.openstreetmap.org.

M. T. Özsu. 2016. A survey of RDF data management systems. Frontiers Comput. Sci., 10(3): 418–432.

Z. Pan, T. Zhu, H. Liu, and H. Ning. 2018. A survey of RDF management technologies and benchmark

datasets. J. Ambient Intell. Humaniz. Comput., 9(5): 1693–1704.

S. Sakr and G. Al-Naymat. 2009. Relational processing of RDF queries: a survey. SIGMOD Rec., 38(4):

23–28.

L. H. Z. Santana and R. dos Santos Mello. 2020. An analysis of mapping strategies for storing RDF data

into nosql databases. In SAC, pp. 386–392. ACM.

A. Singhal, 2012. Introducing the knowledge graph: things, not strings. https://www.blog.google/

products/search/introducing-knowledge-graph-things-not/. Accessed: 2021-02-15.

F. M. Suchanek, G. Kasneci, and G. Weikum. 2008. YAGO: a large ontology from Wikipedia and

WordNet. J. Web Semantics, 6(3): 203–217.

M. Svoboda and I. Mlýnková. 2011. Linked data indexing methods: A survey. In OTM Workshops,

volume 7046 of Lecture Notes in Computer Science, pp. 474–483. Springer.

Systap, 2013. The bigdata RDF database. https://blazegraph.com/docs/bigdata_architecture_whitepaper.

pdf, retrieved 27.02.2021.

T. P. Tanon, D. Vrandecic, S. Schaffert, T. Steiner, and L. Pintscher. 2016. From Freebase to

Wikidata: the great migration. In Proc. 25th Int. World Wide Web Conf., pp. 1419–1428. ACM.

https://doi.org/10.1145/2872427.2874809.

https://doi.org/10.3233/SW-140134
 https://www.openstreetmap.org
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://doi.org/10.1145/2872427.2874809

BIBLIOGRAPHY 51

T. P. Tanon, G.Weikum, and F. M. Suchanek. 2020. YAGO 4: a reason-able knowledge base. In Proc. 17th

Extended Semantic Web Conf., pp. 583–596. Springer. https://doi.org/10.1007/978-3-030-49461-2_34.

The UniProt Consortium. 2017. UniProt: the universal protein knowledgebase. Nucleic Acids Res.,

45(Database-Issue): D158–D169. https://doi.org/10.1093/nar/gkw1099.

D. Vrandecic and M. Krötzsch. 2014. Wikidata: a free collaborative knowledgebase. Commun. ACM,

57(10): 78–85.

M. Wylot, M. Hauswirth, P. Cudré-Mauroux, and S. Sakr. 2018. RDF data storage and query processing

schemes: A survey. ACM Comput. Surv., 51(4): 84:1–84:36.

M. Q. Yasin, X. Zhang, R. Haq, Z. Feng, and S. Yitagesu. 2018. A comprehensive study for essentiality of

graph based distributed SPARQL query processing. In DASFAA Workshops, volume 10829 of Lecture

Notes in Computer Science, pp. 156–170. Springer.

https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.1093/nar/gkw1099

	Knowledge Graphs
	Introduction
	What is a knowledge graph
	Our toy knowledge graph, first version
	RDF
	Our toy knowledge graph, second version
	Reification
	Other kinds of information

	What knowledge graphs are out there
	Wikidata
	Freebase
	DBpedia
	YAGO
	UniProt
	PubChem
	DBLP
	OpenStreetMap (OSM)

	How to search a knowledge graph: structured query languages
	SPARQL
	Cypher (Neo4j)
	GraphQL (Facebook)

	Engines and indexing
	Object identifiers
	Triple permutations
	Query planning
	Further improvements
	Virtuoso
	Blazegraph
	Neo4j

	How to search a knowledge graph: assisting the user
	SPARQL Autocompletion
	Question Answering

	Combination with text search and federated search
	Keyword search in literals
	Search in an external text corpus linked to a knowledge graph
	Federated search
	Use cases of federated search

	The future of knowledge graphs

