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ABSTRACT
We show how to achieve fast autocompletion for SPARQL queries
on very large knowledge bases. At any position in the body of a
SPARQL query, the autocompletion suggests matching subjects,
predicates, or objects. The suggestions are context-sensitive and
ranked by their relevance to the part of the query already typed.
The suggestions can be narrowed down by prefix search on the
names and aliases of the desired subject, predicate, or object. All
suggestions are themselves obtained via SPARQL queries. For exist-
ing SPARQL engines, these queries are impractically slow on large
knowledge bases. We present various algorithmic and engineering
improvements of an open-source SPARQL engine such that these
queries are executed efficiently. We provide an extensive evalua-
tion of a variety of suggestion methods on three large knowledge
bases, including the complete Wikidata (9.9B triples). We compare
our results with two widely used SPARQL engines, Virtuoso and
Blazegraph.Materials for full reproducibility and an interactive eval-
uation web app are available on http://www2022-181.hopto.org.
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1 INTRODUCTION
Knowledge bases play an increasingly important role in modern
web search engines. The prevailing data model is the Resource
Description Framework (RDF), where the data is stored as subject-
predicate-object triples. Each subject, predicate, or object is either
an Internationalized Resource Identifier (IRI), enclosed in angle brack-
ets, or a so-called literal, enclosed in quotes. A toy example:
<Meryl_Streep> <is_a> <Person>
<Meryl_Streep> <gender> <Female>
<Meryl_Streep> <award_won> <Oscar_Best_Actress>
<Meryl_Streep> <birth_date> "1949-06-22"
<Oscar_Best_Actress> <is_a> <Oscar>

RDF data allow queries with precise semantics. For example, the
following query finds all women who won an Oscar. The query is
formulated in SPARQL, the standard query language for RDF data.
SELECT ?entity ?award WHERE {
?entity <is_a> <Person> .
?entity <gender> <Female> .
?entity <award_won> ?award .

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW’22, April 25–29, 2022, Lyon, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

?award <is_a> <Oscar> }
The result for this query is a table with two columns, where each
row contains the name of the person and the name of the award.
For the tiny example knowledge base above, the result is:
<Meryl_Streep> <Oscar_Best_Actress>

The five example triples above come from Fbeasy (362M triples)
[4], an easy-to-use subset of Freebase (1.9B triples) [8]. The largest
general-purpose knowledge base to date isWikidata (10B triples,
as of 10-06-2021) [21]. Fbeasy has (human-)understandable IRIs
for all entities. In Wikidata, almost all IRIs are abstract, whereas
understandable names can be obtained via dedicated predicates; see
the example query below. Freebase uses a mix of understandable
and abstract IRIs. We consider all three knowledge bases in this
paper; see Section 4.2 for details.

SPARQL is conceptually easy, but it is hard, even for experts, to
find or guess the right IRIs to express what you are looking for. It
becomes extremely hard when IRIs are abstract. For example, here
is the correct SPARQL query on Wikidata to obtain the list of all
Oscars of Meryl Streep and the movies she won them for:
SELECT ?award ?film WHERE {
wd:Q873 p:P166 ?m .
?m pq:P1686 ?film_id .
?m ps:P166 ?award_id .
?award_id wdt:P31 wd:Q19020 .
?award_id rdfs:label ?award .
?film_id rdfs:label ?film }

The wd:, wdt:, p:, pq:, ps:, and rdfs: are IRI prefixes.1 The IRI wd:Q873
stands forMeryl Streep andwd:Q19020 for the Academy Awards. The
p:P166 leads to a so-called statement node, representing a particular
award. The ps:P166 leads to the award entity and the pq:P1686 leads
to the awarded film. The wdt:P31 stands for instance of.

1.1 Problem Definition and Three Examples
The goal of this paper is to assist the user in typing the body of a
SPARQL query by providing suggestions for IRIs and literals at any
point in the query.2 The suggestions should be ranked by relevance
to the part of the query already typed. We first provide a formal
problem definition and then explain it at length via two examples
in the text and four examples depicted in Figure 1.

Definition. Let 𝑠 be the part of the body of a valid SPARQL query
typed until a certain point, called the cursor position. Let 𝑡 be the
complete token (subject, predicate, or object) that is intended at the
cursor position. Let 𝑝 be a prefix of a name or alias of 𝑡 , possibly
empty. The SPARQL Autocompletion via SPARQL problem is: Given
𝑠 and 𝑝 , construct and process a SPARQL query, called autocomple-
tion query or AC query, with the following properties:

1Definitions omitted to save space; see https://en.wikibooks.org/wiki/SPARQL/Prefixes
2A typical user interface for SPARQL autocompletion also involves suggestions for
variable names or SPARQL constructs like OPTIONAL, FILTER, UNION or GROUP BY
at appropriate positions in the query. We omit this aspect here, as such suggestions
are not particularly challenging with respect to relevance or efficiency.
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SELECT * WHERE {
  ?x <is_a> P|
} <Person>

<Politician>
<Plant>

s = ?x <is_a> t = <Person> p = "P"
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SELECT * WHERE {
  ?x <is_a> <Person> .
  ?x |
} <is_a>

<gender>
<birth_date>

s = ?x <is_a> <Person>. ?x t = <gender> p = ""
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SELECT * WHERE {
  wd:Q873[Meryl Streep] p:P166[award won] ?m .
  ?m |
} ps:P166

pq:P585
pq:P1686

"award won"@en
"point in time"@en

"for work"@en

s = wd:Q873 p:P166 ?m . ?m t = pq:P1686 p = ""
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4
5
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7

SELECT * WHERE {
  wd:Q873[Meryl Streep] p:P166[award won] ?m .
  ?m pq:P1686[for work] ?film .
  ?m ps:P166[award won] ?award .
  ?award wdt:P31[instance of] |
} wd:Q19020

wd:Q1011547
wd:Q268200

"Oscars"@en
"Golden Globes"@en

"SAG Award"@en

s = wd:Q873 p:P166 ?m … ?award wdt:P31   t = wd:Q19020   p = ""

Figure 1: Four screenshots of our autocompletion in action, with three suggestions each. Top-left and top-right: Examples 1 and
2 from Section 1.1. The assignments below each screenshot show the values of the variables from our problem definition.

The AC query returns a table with each row corresponding to a
suggestion and the following three columns:
?entity (an entity from the knowledge base),
?name (a name or alias of that entity, starting with 𝑝),
?score (an estimate of the relevance of this entity suggestion).
The rows are sorted in descending order of ?score. One of the rows
contains 𝑡 in the ?entity column. There are three objectives:
Relevance: The row with the desired 𝑡 should be as high up in the
table as possible.
Sensitivity: Each suggestion should be context-sensitive (or just sen-
sitive) in the sense that it continues the SPARQL query in a mean-
ingful way, that is, such that there exists a continuation with a
non-empty result.
Efficiency: The query should be processed as quickly as possible.

Example 1 Assume that we have typed the body of the first
SPARQL query from the introduction until before the first object;
see below. This is the 𝑠 from the definition. The symbol marks the
cursor position and the prefix 𝑝 is "P". The token 𝑡 we are looking
for at this position is <Person>. The knowledge base is Fbeasy.

?x <is_a> P

The following AC query computes a table containing each object
?entity and its name ?name, such that the name starts with P and
the triple ?x <is_a> ?entity exists. The table is sorted in descending
order of the number of such triples for each ?entity.

1. SELECT ?entity ?name ?score WHERE {
2. { SELECT ?entity (COUNT(?x) AS ?score) WHERE {
3. ?x <is_a> ?entity

4. } GROUP BY ?entity }
5. BIND(STR(?entity) AS ?name) . FILTER REGEX(?name, "^P")
6. } ORDER BY DESC (?score)

The first three result rows for that query look as follows. Note that
for this knowledge base, the name of an entity is simply the IRI,
interpreted as a string (that is what the STR function does).

<Person> "Person" 3970825
<Politician> "Politician" 127809
<Plant> "Plant" 60459

Relevance: The desired token 𝑡 is the first suggestion.
Sensitivity: By construction of the AC query, all suggested entities
lead to a non-empty result.
Efficiency: Our competitors Virtuoso and Blazegraph (introduced
later) require several seconds for this query. They materialize each
matching ?name string and check the regular expression for each
of these strings. Our engine addresses this problem and can process
the query above in 0.2s. This is explained in detail in Section 3.

Example 2 Now assume that we have typed the SPARQL query
until the following 𝑠 . The desired token 𝑡 at the cursor position is
<gender>. The prefix 𝑝 is empty.

?x <is_a> <Person> .
?x

The following AC query gives us a ranked list of predicates that lead
to a non-empty result. The score for each predicate is the number of
persons (that is, entities matching the first triple) that have a triple
with that predicate. If a person has several triples with the same
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predicate, we only count the predicate once, hence the DISTINCT;
this is explained more below and in Section B.

1. SELECT ?entity ?name ?score WHERE {
2. { SELECT ?entity (COUNT(DISTINCT ?x) AS ?score) WHERE {
3. ?x <is_a> <Person> . ?x ?entity ?object
4. } GROUP BY ?entity }
5. BIND(STR(?entity) AS ?name)
6. } ORDER BY DESC (?score)

The first three result rows for this AC query are as follows:

<is_a> "is_a" 3970825
<gender> "gender" 2276146
<birth_date> "birth_date" 1915167

Relevance and Sensitivity: The desired token 𝑡 is second in this table
and, again by construction, the AC query only returns predicates
that lead to a hit. The suggestions are ranked by how often each of
them occurs with the set of entities defined by the part of the query
already typed. Because of this, we did not have to type a single
letter here to get very good suggestions. It is important to note that
without the first triple in the AC query above, <gender> would not
be among the top suggestions. We call that approach Agnostic and
will evaluate it in Section 4.

Efficiency: Most query engines process the AC query above as
follows: The two triples from line 3 are joined into a large table
(one row for each triple of each person, 37M for the query above),
which is then grouped. This is expensive: Virtuoso and Blazgraph
both time out for the query above. When removing the DISTINCT,
they still require 2.4s and 35s, respectively.3 Our engine can solve
such queries very fast (0.1s for the query above), using a general
technique described in Section 3.1.
Figure 1 shows two more AC queries for the Wikidata knowledge
base, where IRIs are abstract and we need to filter on the names
of these IRIs, obtained via the rdfs:label predicate. For a detailed
explanation of the first of these (bottom left in the figure), see
Section A.

It is important to note that the construction of our AC queries is
generic and can be generalized to arbitrary knowledge bases. More
details are provided in our evaluation (Section 4) and Section B.

1.2 Our contributions
We consider the following as our main contributions:
• We develop the idea of providing SPARQL autocompletion via
SPARQL queries. TheseAC queries can be processed by any (standard-
conforming) SPARQL engine. The basic idea is already found in
previous work, but in less generality, without an efficient solution,
and without an extensive quality evaluation. See Section 2.
• We extend an existing SPARQL engine such that these AC
queries can be processed efficiently. Our extensions are technically
challenging, comprise algorithmic ideas and algorithm engineering,
and are valuable also beyond autocompletion. See Section 3.
• We show how to to realize AC queries with good (though not
optimal) quality also for two existing and widely used SPARQL

3We therefore evaluate Virtuoso and Blazgraph without the DISTINCT for these
queries; see Section 4.3. Suggestions are then still reasonable, though not quite as good.

engines (Virtuoso and Blazegraph), despite their less efficient query
processing. Again, see Section 3.
• We provide an extensive evaluation of all three SPARQL engines
on three large knowledge bases, including the complete Wikidata
(9.9B triples). In particular, we explore the trade-offs between sensi-
tivity, relevance and efficiency. See Section 4.
• We achieve strong results. For example, on Wikidata we can
realize sub-second response times with an average relevance (MRR)
of 43% per token without typing anything, and over 90% when
typing only three characters.
• We provide materials for full reproducibility at http://www2022-
181.hopto.org : code, queries, indexes, result files, and a web appli-
cation for an interactive exploration of our experimental results.

2 RELATEDWORK
Campinas et al. [11] present an autocompletion system that is able
to recommend predicates and types (i.e. objects of a type predicate).
This approach uses AC queries, but runs them on a smaller graph
summary that only captures the structure of the data, which helps
efficiency, but harms relevance. The idea behind the graph summary
is similar to our technique for predicate AC queries, but with the
important difference that our implementation does not affect rele-
vance; this will be explained in detail in Section 3.1. In a follow-up
paper, Campinas [10] presents a system called Gosparqled that uses
AC queries similar to ours. However, suggestions are again only
possible for predicates and types and the results are not ranked. We
next discuss the three objectives from our definition in Section 1.1
for these papers:
Relevance and Sensitivity: The AC queries of Gosparqled are fully
sensitive and similar to those from Section 1.1, but with a LIMIT (of
10, 100 or 500) on the matches for the triple(s) on line 4, to reduce
the cost of the GROUP BY. We call this mode Sensitive-Trunc in
our evaluation, and compare it to the mode, where AC queries are
not truncated. In [10], the two modes are compared via the Jaccard
similarity of the suggestions. We compare actual relevance.
Efficiency: Gosparqled achieves response time below 0.2s for 94%
of the AC queries. The main reason is the mentioned LIMIT, which
severely impacts relevance. The graph summary further reduces
the average run time by about 35%. The knowledge base used for
the evaluation consists of less than half the amount of triples than
our smallest dataset, Fbeasy. The evaluation setup is also different
in that for each suggestion, only the desired token is removed from
the query. That way, the AC queries have very restricting contexts,
which helps efficiency a lot. In contrast, we simulate typing the
query from beginning to end, which results in many very hard AC
queries that have to deal with huge intermediate results.

Jarrar and Dikaiakos [14] present autocompletion for MashQL,
a variant of SPARQL with essentially the same functionality as
SPARQL. They also use AC queries to suggest entities to the user.
MashQL’s completions are only context-sensitive for linear-shaped
queries. For example, if the user has already typed ?x1 <place of
birth> ?x2 . ?x2 <country> ?x3 . ?x3 , MashQL will consider this
context. But if the user has typed ?x <place of birth> <Berlin> . ?x
<gender> <Female> . ?x , MashQL will suggest predicates without
taking the previous context into account. To be able to run the AC
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queries more efficiently, they use two graph summaries. In one
graph summary, entities with the same outgoing paths are grouped
together and in the other one, entities with the same incoming
paths are grouped together. These summaries only lead to context-
sensitive results for the above mentioned linear-shaped queries.

Bast et al. [3] present a system called Broccoli, which provides
context-sensitive suggestions for tree-shaped queries and depicts
the queries as trees. The underlying query language is equivalent
to SPARQL, restricted to trees and basic graph patterns. The focus
of the paper is on extending the query language by a text-search
component and on providing efficient autocompletion for this com-
ponent as well. The user interface and the evaluation work with a
knowledge base with human-readable IRIs (similar to Fbeasy, but
only 26M triples) and do not support synonyms or aliases.

Ferré [13] presents a system called SPARKLIS, which suggests
context-sensitive continuations for SPARQL queries. Queries are
formulated in natural language (for instance “Give me every person
whose gender is female and who won an award that is an Oscar”).
It supports most of the functionality of SPARQL. Suggestions are
obtained via AC queries similar to those from Section 1.1. In or-
der to address efficiency issues, there is a LIMIT as described for
Gosparqled above, and results are not ranked. As the user types,
results of the partially written query are computed and shown.
These intermediate results are used to compute the suggestions
faster (similar to our cache described in Section 3.3).

There is a wide literature on other approaches to assist the user
in creating SPARQL queries (or get results from a knowledge base)
by other means than token-based autocompletion. In particular:
SemFacet [1], BrowseRDF [18], SPARQLets-Finder [19], SnipSuggest
[15], Aqqu [6], Question AC [2], AutoSPARQL [17], SQLSUGG [12].
They are not directly relevant to our work in this paper, so we omit
a detailed discussion due to the space restrictions.

3 EFFICIENT AC QUERIES
This section describes our main techniques to make AC queries
efficient. In our evaluation in Section 4, we impose a timeout for
each AC query (a user is onlywilling towait so long for suggestions).
Efficiency is therefore a prerequisite for quality.

We implement the extensions described in the following subsec-
tions as extensions of the open-source SPARQL engine QLever [5].
In our evaluation, we compare this to Virtuoso [20] and Blazegraph
[7]. Virtuoso is one of the most widely used SPARQL engines and
Blazegraph is the SPARQL engine behind the Wikidata Query Ser-
vice at https://query.wikidata.org. The general architecture of all
three engines is similar, a quick overview over the main principles
is provided in Section D.

3.1 AC Queries for Predicates Using Patterns
Our predicate AC queries involve queries of the following kind,
where %context% are the completed triples from the part 𝑠 of the
SPARQL query that has already been typed; see our definition in
Section 1.1.

SELECT ?entity (COUNT(DISTINCT ?x) AS ?score) WHERE {
%context% . ?x ?entity ?object

} GROUP BY ?entity

As explained for Example 2 of Section 1.1, existing SPARQL engines
materialize all matches for %context% . ?x ?entity ?object before
computing the GROUP BY. If %context% constrains ?x little or not
at all, this is very expensive to compute.

We want to stress that these queries do not just occur in the con-
text of autocompletion. For example, users of the SPARQL endpoint
for the huge UniProt knowledge base (91B triples) formulate many
“discovery” or “statistics” queries that are of a similar form as our
AC queries [9]. The rule miner from [16] is based on queries like
the above, but has its own data structures to process them because
existing SPARQL are too slow or time out.

To answer this kind of query efficiently, we make the following
preprocessing:
1. Let S be the set of all distinct subjects in the knowledge base.
For each 𝑥 ∈ S, compute the set of the distinct predicates from
all triples that have 𝑥 as subject. This set is called the (predicate)
pattern of 𝑥 . From these sets, compute the set P of distinct patterns.
2. Give consecutive IDs to the patterns from P and store the map
from IDs to patterns in an array of size |P |.
3. Store the map from each subject to its pattern ID in an array of
size |S|.
The following table provides statistics of this pre-processing for our
three knowledge bases. The fourth column counts the total size of
the patterns, where the size of a pattern is the number of predicates
and each pattern is counted once. The fifth column specifies the
total memory consumption of the result of the pre-processing.

|S| |P | ∑
P∈P |P| Mem

Fbeasy 60M 0.3M 3M 0.3GB
Freebase 476M 3.1M 95M 2.5GB
Wikidata 2068M 4.4M 160M 9.0GB

To process the above query, we make use of these precomputed pat-
terns as follows, where steps 2 and 3 can be (and are) parallelized:
1. Let 𝑆 ⊆ S be the set of subjects ?x from %context% or 𝑆 = S if
%context% is empty.
2. Look up the pattern IDs from all 𝑥 ∈ 𝑆 in the precomputed array
and compute a map 𝑐 : P𝑆 → N that, for each pattern ID that
occurs at least once, counts how many 𝑥 ∈ 𝑆 have that pattern ID.
This can be done in time linear in the size of 𝑆 .
3. For each pattern 𝑃 ∈ P𝑆 , retrieve the corresponding set of predi-
cate IDs and for each 𝑝 in that set, increase a counter (initially 0)
by 𝑐 (𝑃). This takes time linear in

∑
𝑃 ∈P𝑆

|𝑃 |.
4. Sort the encountered 𝑝 by the final counter values. This yields
the result for the query above.
The worst case for this algorithm is that every subject has a dif-
ferent predicate pattern and exactly one triple for each predicate.
Then |P𝑆 | = |𝑆 |, each 𝑐 (𝑃) is 1, and Step 3 does exactly what the
naive algorithm described in Section 1.1 would do. However, in
realistic knowledge bases, many subjects share the exact same set
of predicates, so that |P𝑠 | < |𝑆 |, and ∑

𝑃 ∈P𝑆
|𝑃 | is much smaller

than the total number of triples of all 𝑥 ∈ 𝑆 .
For example, consider the AC query above for Fbeasy, with %con-

text% = ?x <is_a> <Person>. In Fbeasy, there are 4.0M persons
with a total of 37M triples. They have only |P𝑠 | = 115K distinct
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patterns with
∑
𝑃 ∈P𝑆

|𝑃 | = 1.4M predicates. With QLever extended
by the pattern trick, the query can be solved in under 0.1s. With
the standard query processing, QLever would take 6.6s, of which
1.6s are spent on sorting 37M elements.

The graph summaries from [11] (see Section 2) realize the special
case when the %context% is one triple that specifies the type.

3.2 Prefix filtering
Here is a variant of the AC query from Example 1 in Section 1.1,
translated to Wikidata (wdt:P50 relates written works to authors):

1. SELECT ?entity (SAMPLE(?name) AS ?name)
2. (SAMPLE(?score) AS ?score) WHERE {
3. { SELECT ?entity (COUNT(?entity) AS ?score) WHERE {
4. ?x wdt:P50 ?entity
5. } GROUP BY ?entity }
6. ?entity rdfs:label|skos:altLabel ?name
7. FILTER REGEX(STR(?name), "^P")
8. } GROUP BY ?entity ORDER BY DESC(?score)

Blazegraph and Virtuoso both time out on this query, for the fol-
lowing reason. They materialize all ?name strings (2.3M in the
example query, this depends on the query context in line 4) and
then check the regular expression for each of them. Our extension
of QLever makes use of the fact that in QLever, each IRI and literal
has a unique internal ID (more about the internals of QLever in
Section D). For the literals, we order the IDs such that the order by
ID is exactly the same as the lexicographical order. A FILTER with
a prefix regex can then be realized with two binary searches. The
query above can then be processed in ≤ 0.4s.

This trick also permits the following optimization for longer
prefixes.4 For object AC queries, which all have the form above
(what differs is the %context% of line 4 and the prefix in line 7
by which we filter), we simply swap line 5 with lines 6 and 7. The
effect is that when the triples of line 4 yield a large intermediate
result, this is now significantly reduced before the GROUP BY.

3.3 Caching and pinned results
We have extended QLever by a thread-safe least-recently-used
(LRU) query cache with the following features, important for our
AC queries. The cache stores not only final results of a query, but
also results from the intermediate operations. The query planner is
aware of results in the cache: the cost estimate for computing the
result of a cached query is zero. This is crucial for the processing
of sequences of similar SPARQL queries, as it naturally happens in
our setting.

Our cache also allows pinning results. These results will not be
removed by an LRU eviction (but there is a special command to
clear the cache completely). In our evaluation, we pin the results
of two queries: the query that provides the canonical name, score5,
and aliases for each entity that can occur as subject or object, and
the query that provides the same information for each entity that
can occur as predicate. We pin the first result in two orders: by
entity (for efficient joins with the %context%.) and by alias (for
4In our evaluation, we apply this when the prefix length is ≥ 3.
5The score only matters for subject AC queries, which are rare, and for agnostic queries,
which we use in our evaluation as a baseline (see Section 4.4).

efficient filtering by prefix). Even for the large Wikdiata, the size of
these pinned results is just 6.7GB.

4 EVALUATION
In this section, we describe how we evaluated our approach, and
then present and discuss the results of this evaluation. Reproducibil-
ity materials are available on http://www2022-181.hopto.org. In
particular, a web app is provided that permits an interactive explo-
ration of the details and performance of all our AC queries.

4.1 SPARQL Engines and Hardware
We evaluate our own extension of QLever, described in Section 3,
against Virtuoso and Blazegraph; see Section D for a description
of their basic architecture. All experiments were performed on a
standard PC with an AMD Ryzen 7 3700X CPU (8 cores + SMT),
128 GB of DDR-4 RAM and 4 TB SSD storage (NVME, Raid 0).6

QLever was configured with a memory limit of 70GB for query
processing, of which 30GB were available to the query cache; see
Section 3.3. Before each experiment, the query cache was cleared
and the results of the queries without context were pinned, as ex-
plained in Section 3.3. For Virtuoso, we use the latest release candi-
date of the open-source edition (7.2.6), configured using the largest
memory preset for 64GB of RAM.7 For Blazegraph, we used the lat-
est stable release (2.1.5), configured according to Blazegraph’s own
recommendations for running Wikidata [7]. In particular, Blaze-
graph gets 16GB for the JVM heap, while the rest of the RAM is
used for disk caching by the operating system.

4.2 Knowledge Bases
We evaluate on the following three knowledge bases, already intro-
duced in Section 1. We deliberately chose three knowledge bases
with related content (general knowledge in this case), but different
sizes and combinations of human-understandable vs. abstract IRIs.
Fbeasy [4]: 362M triples, 50M subjects, 2K predicates. All IRIs are
simple and understandable (e.g. <Meryl_Streep> or <gender>).
Freebase [8]: 1.9B triples, 125M subjects, 785K predicates. Entity
IRIs are abstract (e.g. fb:m.05dfkg3 for Meryl Streep), but most pred-
icate IRIs are understandable (e.g. fb:people.person.gender).
Wikidata [21]: 9.9B triples, 1.8B subjects, 41K predicates (dump
from 10.06.2021). Almost all IDs are abstract (e.g. wd:Q873 for Meryl
Streep and wdt:P21 for gender). We removed all non-English literals
to help Virtuoso and Blazegraph, because these engines do not
support efficient language filters.

4.3 Autocompletion (AC) queries
The basis for our evaluation are the 334 example queries from the
Wikidata Query Service [22]. These queries cover a wide spec-
trum of SPARQL queries: they range from simple to complex, use
SPARQL features like UNION, OPTIONAL, MINUS, predicate paths,
subqueries, and cover the whole breadth of the content in the knowl-
edge base. We had to exclude some queries for technical reasons:

6We also ran our experiments on HDD storage (Raid 5), and found little difference.
However, indexing on HDD is much slower for Virtuoso and Blazegraph.
7When scaling this preset up to 128GB we found no significantly different results, but
frequently ran into problems with the out-of-memory killer.
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Fbeasy (315 tokens) ≤ 0.2s ≤ 1.0s Max Sensitivity MRR7 KS7
Unranked Qlever 100% 100% 281ms 0: 3% 3: 24% 7: 61% 0: 0% 3: 39% 7: 69% 7.21
Agnostic Qlever 100% 100% 362ms 0: 48% 3: 44% 7: 56% 0: 25% 3: 85% 7: 97% 3.58
Sensitive-Trunc Blazegraph 24% 95% 3% > 5s 0: 100% 3: 100% 7: 100% 0: 50% 3: 69% 7: 82% 4.26
Sensitive-Trunc Virtuoso 15% 38% 2% > 5s 0: 100% 3: 100% 7: 100% 0: 56% 3: 79% 7: 87% 3.14
Sensitive Qlever 93% 99% 2605ms 0: 100% 3: 100% 7: 100% 0: 68% 3: 96% 7: 98% 1.69
Mixed-Trunc Blazegraph 25% 98% 1000ms 0: 95% 3: 72% 7: 73% 0: 50% 3: 93% 7: 95% 2.49
Mixed-Trunc Virtuoso 14% 100% 1000ms 0: 92% 3: 72% 7: 79% 0: 52% 3: 93% 7: 97% 2.35
Mixed Qlever 93% 100% 1000ms 0: 99% 3: 100% 7: 100% 0: 67% 3: 96% 7: 98% 1.70

Freebase (479 tokens) ≤ 0.2s ≤ 1.0s Max Sensitivity MRR7 KS7
Unranked Qlever 100% 100% 355ms 0: 3% 3: 8% 7: 16% 0: 0% 3: 24% 7: 55% 8.93
Agnostic Qlever 100% 100% 367ms 0: 42% 3: 25% 7: 25% 0: 12% 3: 83% 7: 94% 4.41
Sensitive-Trunc Blazegraph 25% 92% 5% > 5s 0: 100% 3: 100% 7: 100% 0: 43% 3: 76% 7: 76% 3.73
Sensitive-Trunc Virtuoso 35% 50% 13% > 5s 0: 100% 3: 100% 7: 100% 0: 44% 3: 76% 7: 77% 3.98
Sensitive Qlever 91% 98% 3074ms 0: 100% 3: 100% 7: 100% 0: 60% 3: 98% 7: 99% 1.99
Mixed-Trunc Blazegraph 23% 99% 1000ms 0: 78% 3: 69% 7: 65% 0: 43% 3: 94% 7: 97% 2.55
Mixed-Trunc Virtuoso 29% 100% 1000ms 0: 87% 3: 73% 7: 73% 0: 47% 3: 96% 7: 98% 2.40
Mixed Qlever 90% 100% 1000ms 0: 99% 3: 99% 7: 100% 0: 60% 3: 98% 7: 99% 2.00

Wikidata (1244 tokens) ≤ 0.2s ≤ 1.0s Max Sensitivity MRR7 KS7
Unranked Qlever 99% 100% 445ms 0: 0% 3: 3% 7: 23% 0: 0% 3: 9% 7: 52% 10.89
Agnostic Qlever 99% 100% 476ms 0: 27% 3: 28% 7: 34% 0: 6% 3: 62% 7: 91% 6.02
Sensitive-Trunc Blazegraph 18% 82% 13% > 5s 0: 100% 3: 100% 7: 100% 0: 44% 3: 71% 7: 67% 4.80
Sensitive-Trunc Virtuoso 34% 52% 10% > 5s 0: 100% 3: 100% 7: 100% 0: 44% 3: 80% 7: 84% 3.92
Sensitive Qlever 57% 85% 4% > 5s 0: 100% 3: 100% 7: 100% 0: 44% 3: 93% 7: 97% 2.93
Mixed-Trunc Blazegraph 3% 98% 1000ms 0: 89% 3: 36% 7: 46% 0: 42% 3: 74% 7: 92% 3.94
Mixed-Trunc Virtuoso 30% 100% 1000ms 0: 84% 3: 70% 7: 72% 0: 36% 3: 81% 7: 96% 3.63
Mixed Qlever 55% 100% 1000ms 0: 90% 3: 94% 7: 96% 0: 43% 3: 93% 7: 98% 2.86

Table 1: Query times, sensitivity, and relevance for three knowledge bases, six completion modes, and three SPARQL engines.
Section 4.4 explains the choice of combinations evaluated. For each token, three AC queries were issued, for prefix lengths 0, 3,
and 7. The columns for Sensitivity and MRR7 show average results per prefix length. The “Max” column shows the fraction of
AC queries that timed out after 5s. ForMRR7 and KS7 those queries are treated as if the desired token appeared at position∞
and the number of keystrokes required is the length of the token name plus 1.

Wikidata (301 queries): We excluded the following queries: 9
“Lexeme” queries because the respective triples are not part of the
core Wikidata, 14 queries involving the SERVICE keyword as a cru-
cial part of the query, 10 queries involving distance computations
or other mathematical expressions not implemented in QLever. For
3 queries, the first triple of the SPARQL query was of the form ?x ?y
?z, which is not a meaningful start in iterative query construction.
We moved it to the end of those queries.
Freebase (115 queries):We manually translated those Wikidata
queries, for which the contents are also contained in Freebase.
The translation is as close to the original Wikidata query as pos-
sible. Note that Freebase became read-only in 2015 and Wikidata
has much more contents by now (9.9B triples vs. 1.9B triples, not
counting literals in languages other than English).
Fbeasy (99 queries): We manually translated all Freebase queries
for which the contents are also contained in Fbeasy. Again, the

translation is as close to the original query as possible.

From these full SPARQL queries, we generate AC queries by con-
ceptually “typing” the queries from left to right, top to bottom. For
each token that is an IRI, we pick a random alias (the same for all
methods we compare) and generate three AC queries: for the empty
prefix, for prefix length 3, and for prefix length 7. If the name has
less characters, we change the AC query such that it requires a
full-word match. There is one template for subject AC queries, one
for predicate AC queries, and one for object AC queries. See the
example AC queries in Sections 1.1, 3.1, and 3.2. More details about
these AC queries are provided in Section C.

We took great care to get the best query times for each engine,
given its capabilities. To avoid bad query plans, we used slightly
different formulations of the AC queries for each engine. As already
discussed for Example 2 in Section 1.1, in the predicate AC queries,
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we dropped the DISTINCT for Virtuoso and Blazegraph because
almost all of their queries fail otherwise.

We deliberately did not evaluate AC queries after each keystroke,
for the following reason: Ideally, a user does not have to type any-
thing, and the desired token is suggested highly ranked already
for prefix length 0. But if the suggestions for prefix length 0 are
not good, the user needs an idea of what to type anyway and she
might as well type a few letters instead of just one. We chose 7 as a
representative for a prefix length that is not too long, yet should
sufficiently narrow down the search for most tokens.

4.4 Modes
We evaluate the following modes. The exact AC queries for all these
modes are available on http://www2022-181.hopto.org.
Sensitive: These are the AC queries explained in Section 1.1. They
are ideal regarding sensitivity, but a challenge regarding efficiency.
While our extension of QLever can handle these queries, Blazegraph
and Virtuoso often time out. We therefore evaluate these engines
on modified AC queries explained next.
Sensitive-Trunc: All our AC queries have the same structure: an
“inner” part, enclosed by a SELECT . . . WHERE with a GROUP
BY, followed by a prefix filter; see Sections 1.1, 3.1, 3.2, and B. For
Blazegraph, we truncate this inner part (before the GROUP BY is
computed) by LIMIT 10.000 on Fbeasy and by LIMIT 100.000 on
Freebase and Wikidata. The same approach was used in [10] for a
less general class of AC queries; see Section 2. For Virtuoso, we use
Virtuoso’s “Anytime” feature with a timeout of 5 seconds: It will
then produce a subset of the full result approximately within that
time frame. This feature, which is unique to Virtuoso, gives slightly
better results than mere truncation.
Agnostic: Agnostic AC queries completely ignore the context of the
token. They return all entities where a name matches the prefix,
ordered by a precomputed score.8 These queries are always fast
(see Section 3), but at the expense of sensitivity and relevance.
Unranked: Like Agnostic, but rank the suggestions alphabetically.
Mixed: Simultaneously issue an agnostic and a sensitive query. If
the sensitive query finishes within 1s, take that result, otherwise
take the result of the agnostic query.
Mixed-Trunc: Like mixed, but using Sensitive-Trunc instead of Sen-
sitive for prefix length 0 (for reasons that will become clear in
Section 4.6). We use this for Blazegraph and Virtuoso, for exactly
the reasons explained for Sensitive-Trunc above.
We set the timeout for all sensitive AC queries (for all knowledge
bases and all engines) to 5s. Note that the timeout for mixed mode
is just 1s. We deliberately set this lower to also explore the effects
of different timeouts on relevance. Also, 1s is more what a user
would expect from an interactive experience.

4.5 Evaluation metrics
We evaluate both objectives from our definition in Section 1.1.
Efficiency: We report the percentage of AC queries that can be
processed faster than 0.2s (this feels close to instantaneous) and
faster than 1.0s (noticeable delay, but still acceptable). If no query
8The details of this scoring are provided in Section B. For example, we use the number
of Wikimedia sitelinks as a score for subjects and objects on Wikidata.

times out, we also report the maximum query time; otherwise, we
report the percentage of AC queries that timed out.
Sensitivity: For each AC query, we compute the percentage of sug-
gestions that lead to a non-empty result; see Section 1.1. By defini-
tion, this is 100% for the sensitive and sensitive-trunc AC queries.
But also agnostic or unranked AC queries can contain sensitive
suggestions.
Relevance: Of utmost importance to a user is the rank of the desired
token in the list of suggestions We evaluate this as follows. We
assume that suggestions are shown on “pages” of𝑘 suggestions each.
Ideally, the desired token is on the first page (which is displayed
after each keystroke). In our evaluation, we take 𝑘 = 7. We use the
following two metrics:
MRR𝒌 (mean reciprocal rank): For each AC query, the reciprocal
rank is 1/𝑟 , when 𝑟 is the index of the suggestion page on which
the desired token occurs, that is, at a position in (𝑟 − 1) ·𝑘 .. 𝑟 ·𝑘 − 1,
with the first position being 0. We report the mean reciprocal rank
of all AC queries with a particular prefix length (0, 3, and 7). The
maximum value ofMRR7 is 100%; it is achieved when each token
appears on the first page of suggestions.

Note that the reciprocal rank is a very natural measure in our
setting: we only have one relevant item and the “gain” for the user
indeed decreases sharply with the index of the page where the item
occurs. A user would rather continue typing instead of scrolling
down much further in the list of suggestions.
KS𝒌 (number of keystrokes): For each token, the number of
keystrokes is the minimal prefix length (out of 0, 3, and 7), for
which the token appears on the first page of suggestions. If it is not
on the first page even for prefix length 7, we take the number of
keystrokes for that token as the length of the name of the token
plus 1. This corresponds to typing the full name and indicating that
it is not a prefix, but the full name.

4.6 Main results and discussion
Table 1 summarizes our main results on all AC queries with con-
text.9 The main takeaways are as follows.
Sensitive AC queries help relevance a lot. Compare the MRR7
of Agnostic and Sensitive using QLever on Wikidata. The values
at prefix length 0 are 6% vs. 44%. This shows that without typing
anything, the desired token is hardly ever on the first pages of
suggestions with Agnostic, but frequently on the first or second
page for Sensitive. This case is particularly important because if
you have to type something, then you already need an idea what
you are looking for; see Figure 1 on Page 2 (examples at the bottom).
After typing three letters, the result is almost always on the first
page for Sensitive, and Agnostic is also becoming better.

We also see a clear difference in the KS7, that is, with Sensitive
a user has to type considerably less to get the desired token on the
first page of suggestions. However, we consider theMRR7 broken
down by prefix length to be the more important and insightful
measure. The results on the smaller knowledge bases are similar,
though the difference is less dramatic.

9Namely, not included are subject AC queries or predicate AC queries with variable
subject and empty %context% because context-sensitivity plays no role for those
queries and our methods (Agnostic, Sensitive, Mixed) all give the same results.
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Sensitive AC queries are feasible with QLever, but require
truncation for Virtuoso and Blazegraph. Even on the very
largeWikidata, our extension of QLever can compute fully sensitive
suggestions in ≤ 1s for 85% of all AC queries. Only 4% of these
AC queries time out after 5s on Wikidata, and none at all on the
smaller knowledge bases.

Without truncation, many AC queries time out for Blazegraph
and Virtuoso (47% and 25%, respectively, on Wikidata). These num-
ber are not reported in Table 1, but can be found on http://www2022-
181.hopto.org.

With truncation, the results for Blazegraph and Virtuoso are on
par with those of QLever for prefix length 0. The reason is that
when relevance is high for an empty prefix, this usually means that
there are few suggestions. If there are a lot of possible suggestions,
the truncation regularly eliminates the desired token, which then
is not suggested even when a longer prefix is typed. Also, unlike
Blazegraph and Virtuoso, we can make use of longer prefixes for
more efficient query processing, leading to less timeouts, see Section
3.2. The result is that the MRR on longer prefixes for Blazegraph
and Virtuoso is significantly lower than for QLever.
Agnostic AC queries are always fast; relevance is bad for
prefix length 0 but quite good for longer prefix lengths. All
agnostic AC queries can be processed in well under one second
because a large part of the results are pre-computed; see Section
3.3. The only non-trivial work to do at query time is to filter the
precomputed results by the typed prefix.

For an agnostic AC query with prefix length 0, the desired token
will be rarely among the top suggestions because of the complete
lack of contextual information. But a prefix length of 3 or even 7 is
often enough to restrict the suggestions sufficiently, even without
%context%. This is important in order to understand the results for
the mixed AC queries, discussed below.

Virtuoso and Blazegraph both perform very poorly for agnostic
AC queries, which is why we do not report them in Table 1. The
reason is that both engines handle prefix searches on large lists of
strings very inefficiently. See the discussions in Section 1.1 (after
Example 1) and in Section 3.2.
With agnostic suggestions, typing helps relevance more than
sensitivity. When typing more letters, the sensitivity increases
much less than the relevance. For example, when typing seven
letters with Agnostic on Wikidata, the MRR7 is 91% and almost
as high as with Sensitive. But sensitivity is only 27%. That is, the
desired token will often be on the first page of suggestions, but
mixed with suggestions which do not lead to a non-empty result.
In a best case, the non-sensitive suggestions are merely confusing
because they have nothing to do with the part of the query already
typed. In a worst case, there are multiple suggestions with the same
name, and the user has no way to figure out which is the desired
one. The latter is not unusual for very large knowledge bases.10

Mixed AC queries are a good compromise between sensitivity
and performance. Mixed always produces a result within 1s and
so never times out. The reason is that agnostic AC queries can
always be processed in under 1s. The price is that some of the
suggestions may not be context-sensitive. But note that a user
10For example, Wikidata knows six entities with name female, but only one of them is
used for wdt:P21 (gender).

interface could indicate whether the suggestion came from the
agnostic or from the sensitive AC query.

Our extension of QLever achieves essentially the same MRR7
scores as in Sensitive mode, but faster (always within 1s) and with
only a small sacrifice in sensitivity. The reason is that most of the
suggestions actually come from sensitive AC queries, even with the
1s time limit.

Blazegraph and Virtuoso show an improved MRR7 for long pre-
fixes, but at the price of a sigificantly reduced sensitivity. Also note
that since Blazegraph and Virtuoso cannot efficiently process ag-
nostic queries by themselves (for our evaluation, these queries were
computed via Qlever), they cannot support mixed mode out of the
box. Indeed, the Wikidata Query Service, which is realized using
Blazegraph, uses a separate service (implemented via dedicated
data structures) for its agnostic autocompletion.
Unranked AC queries perform very poorly on large knowl-
edge bases. Recall that the suggestions of Unranked are the same
as those of Agnostic, but without ranking them by score. We include
this mode in our evaluation to show how important ranking is. On
Wikidata, even for a prefix length of 3, the relevance of Unranked
is very poor (MRR7 = 9%). For a prefix length of 7, theMRR7 rises
to 52%, but it’s still much worse than the 91% of Agnostic. Note
that ranking for autocompletion is mainly an efficiency problem:
often a very large number of suggestions has to be computed and
sorted. In some of the previous work we discussed, ranking was
omitted due to this reason; see Section 2.

5 CONCLUSIONS
We showed how to perform context-sensitive SPARQL autocomple-
tion with very good relevance and efficiency, for a large variety of
queries on three different knowledge bases. All suggestions were
themselves provided via SPARQL queries, on the same knowledge
base on which we want to construct SPARQL queries with the aid
of autocompletion. That way, our scheme can be used with any
(standard-conforming) SPARQL engine.

We showed that on very large knowledge bases (like Wikidata),
many autocompletion queries are hard for existing SPARQL engines.
We showed three ways out. First, we showed how to extend an
existing open-source SPARQL engine to deal with most of these
hard queries efficiently. Our extensions are useful also beyond
autocompletion, since they speed up classes of SPARQL queries
that occur frequently. Second, we introduced a mixed mode that
sacrifices context-sensitivity for efficiency. Third, we showed how
truncation helps slower engines.

Interesting directions for future work are: implement a fully-
functional user interface based on the ideas presented in this paper,
improve the pattern processing in Section 3.1 to also profit from
patterns that are similar but not necessarily identical (this would
further improve query times on Wikidata significantly), improve
the running time of the sensitive AC queries that still time out (see
Section 4.6), compute approximate scores via sampling in order to
be able to handle queries with a very large context, and extend the
autocompletion mechanism to suggest more than just individual
tokens (for example, predicate paths or predicate and object at the
same time).
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SUPPLEMENTARY MATERIAL
The following sections contain supplementary material for our
submission. They explain the gory details for how exactly our AC
queries are constructed from generic templates. The contributions
and results from our paper can be understood without these details.
But to appreciate some finer points and to understand how exactly
we have done it, these details are interesting.

The first section provides a third example for an AC query. The
second section described our generic templates. The third section
explains how exactly the AC queries for our evaluation are derived
from these templates. The fourth section describes the general archi-
tecture of the SPARQL engines QLever, Virtuoso, and Blazegraph.

A A THIRD EXAMPLE AC QUERY
Our last example is based on Wikidata, where entities have alpha-
numeric IRIs, and names and aliases are obtained via dedicated
predicates rdfs:name and skos:altLabel. Assume that we have typed
the body of our second SPARQL query from the introduction this
far:
wd:Q873 p:P166 ?m .
?m

This is our 𝑠 and the prefix 𝑝 is again empty. Recall that wd:Q873
stands for Meryl Streep and p:P166 connects this entity to all state-
ment nodes ?m pertaining to one of her awards. The desired token
𝑡 is pq:P1686, which leads us to the awarded films. The following
AC query gives us a list of predicates (and their names) that lead to
results at this point. The score is analogous to that of the previous
example. The predicate path ^(<>|!<>)/rdfs:label gives us the label
of a predicate in Wikidata; see Section B.
SELECT ?entity ?name (COUNT(DISTINCT ?m) AS ?score) WHERE {
wd:Q873 p:P166 ?m .
?m ?entity [] .
?entity ˆ(<>|!<>)/rdfs:label ?name

} GROUP BY ?entity ?name ORDER BY DESC(?score)
The first three result rows for this AC query look as follows:
ps:P166 "award received" "33"
pq:P585 "point in time" "23"
pq:P1686 "for work" "10"
These rows tell us that Wikidata knows about 33 awards of Meryl
Streep, the point in time for 23 of them, and for which work the
award was given for 10 of them.

Relevance: Again perfect for this AC query. And note how helpful
the suggestions are! Without these suggestions it would require
extremely intimate knowledge of Wikidata to know that we need
the predicate suffixes P166 and P1686 and the prefixes ps: (which
stands for themain entity of a statement node) and pq: (which stands
for additional properties of a statement node). Agnostic suggestions,
as briefly mentioned in Example 2 and defined in Section 4.4, would
not be of much help here.

Efficiency: The query is easy because there are only few bindings
for ?m, namely one for each of Meryl Streep’s awards. With opti-
mal query planning11 and the rdfs:label triples in main memory,
11When equivalently rewriting the query, such that the result from the first two triples
are aggregated in a subquery (which corresponds to the best query plan), Blazegraph
inexplicably takes forever.

Blazegraph processes the query in around 100ms, Virtuoso takes
10ms, and our engine takes 1ms.

B AC QUERY TEMPLATES
In Section 1.1, we have already seen AC queries for two concrete
examples. In this section, we show how these can be generalized to
arbitrary knowledge bases. All AC queries explained in this section
are provided in full on http://www2022-181.hopto.org .

Our approach is completely generic. All we need for a given
knowledge base is a predicate path %name-path%, used to obtain
names and aliases from IRIs12 and a predicate path %ranking-
path%, used to obtain counts for ranking IRIs if no context is
given13. The next subsection shows how these are used in con-
crete AC queries. Technically, there is no need to restrict them to
predicate paths; this only serves to make our AC queries easier to
display.

It is also important to note that the ranking with %ranking-
path% is only needed for AC queries without context, in particular,
for our agnostic baseline (see Section 4.4). There is a meaningful
default setting for any knowledge base.6

Sensitive AC queries: We use the part 𝑠 of the SPARQL query
body already typed; see our definition in Section 1.1. We first need
to compute the %context%, which is the part of 𝑠 that is actually
“connected” to the triple at the current cursor position.

Let 𝑇 be the partial triple that is currently being typed. Let S
be the set of all finished triples and FILTER clauses inside 𝑠 . Note
that S also includes triples and filters that appear inside SPARQL
constructs like OPTIONAL, UNION, MINUS, and sub-queries. Con-
struct an undirected graph with node set S ∪ {𝑇 } and an edge
between two nodes if they share a variable.14 Then %context%
is 𝑠 without 𝑇 and without all nodes in S that are not reachable
from 𝑇 . It can be computed with a breadth-first search starting
from𝑇 . Further, let %subject% and %predicate% be the subject and
predicate of the triple at the current cursor position (if they already
exist) and let %prefix% be the prefix (possible empty) typed by the
user.

All our AC queries follow the same template: a subquery com-
puting the suggested entities and their scores and a surrounding
part adding the names and filtering by the given %prefix%. An
entity can have multiple matching names, hence the outer GROUP
BY.

1. SELECT ?entity (SAMPLE(STR(?name)) AS ?name)
2. (SAMPLE(?score) AS ?score) WHERE {

%entity-score-subquery%
6. ?entity %name-path% ?name .
7. FILTER REGEX(STR(?name), "^%prefix%")
8. } GROUP BY ?entity ORDER BY DESC (?score)

12Wikidata: rdfs:label|skos:altLabel to obtain names for subjects and objects, and
^(<>|!<>)/(rdfs:label|skos:altLabel) for predicates: the ^(<>|!<>) follows an arbi-
trary predicate in reverse direction; Freebase: fb:type.object.name|fb:common.topic.alias
for all; Fbeasy: the identity predicate (!(<>|!<>))? for all, which plays the role of the
BIND(STR ...) in the examples from Section 1.1.
13Wikidata: ^schema:about (all Wikimedia links of an entity); Freebase:
fb:type.object.type (all types of an entity); Fbeasy: <is-a> (dito). A meaningful
default setting would be <>|!<>, which matches any predicate.
14We also take care of scoping and variable renaming introduced by subqueries.
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Here is %entity-score-subquery% for subject suggestions; for
these, %context% is always empty; see its definition above.

3. { SELECT ?entity (COUNT(?r) AS ?score) WHERE {
4. ?entity %ranking-path% ?r
5. } GROUP BY ?entity }

Here is %entity-score-subquery% for predicate suggestions. If
%subject% is a variable, %x% is DISTINCT %subject%, otherwise
?object. Together with the template above, this and the following
subquery generalize Examples 1 and 2 from Section 1.1, which also
provide an intuition for the score.

3. { SELECT ?entity (COUNT(%x%) AS ?score) WHERE {
4. %context% . %subject% ?entity ?object
5. } GROUP BY ?entity }

Here is %entity-score-subquery% for object suggestions.

3. { SELECT ?entity (COUNT(?entity) AS ?score) WHERE {
4. %context% . %subject% %predicate% ?entity
5. } GROUP BY ?entity }

Agnostic and Unranked AC queries: Agnostic queries trade
off relevance for efficiency. For subject and object suggestions,
the agnostic AC query is identical to the sensitive AC query for
subject suggestions above (which never has context). For predicate
suggestions, the agnostic AC query is like the respective sensitive
query, but with empty %context%. In Section 4, we have seen that
our engine can always process these queries in time below one
second.

The unranked AC queries are just like the agnostic AC queries,
but without the final ORDER BY.

C DETAILS OF AC QUERY CONSTRUCTION
For a given mode and a given SPARQL query, we generate AC
queries from the templates described in Section B as follows:
1. Consider each token (subject, predicate, or object) in the query
that is either an IRI or a literal.15 For each such token do the fol-
lowing:
2. Compute %context% as described in Section B (only needed for
the sensitive AC queries), and depending on the position of the
token, also determine %subject% and %predicate%.
3. Choose a name from the %name-path% predicate path (canoni-
cal name and aliases) for that token uniformly at random.
4. From that name, compute three prefixes for %prefix%, of lengths
0 (the empty word), 3, and 7. For prefix lengths 3 and 7, if the name
has less characters, take %prefix% as the complete name with $
appended, indicating a full-word match.
5. For each prefix length, pick the AC query template from Sec-
tion B according to the position of the token (subject, predicate,
object) and the mode (unranked, agnostic, sensitive, mixed). Plug
in %context% and %prefix%, and depending on the position also

15We exclude the special name predicates (fb:type.object.name for Freebase, rdfs:label
for Wikidata) because they occur in almost every query and are trivial to suggest and
would only distort our results. In the 301 Wikidata queries, there are 408 triples of
the form ?x rdfs:label ?label (similarly for Freebase). After having typed the subect
variable, rdfs:label is then always among the most frequent suggestions.

%subject% and %predicate%.

For our first example query from the introduction (female Oscar
winners), this yields 7 · 3 = 21 AC queries per mode. For our second
example query (Oscars of Meryl Streep and corresponding films),
this yields 6 · 3 = 18 AC queries per mode.

D QLEVER, VIRTUOSO, AND BLAZEGRAPH
QLever [5] is an open-source SPARQL engine, which stores the
knowledge base triples in up to six permutations: POS, PSO, SPO,
SOP, OPS, OSP (where S = subject, P = predicate, O = object). The
last four are optional and not needed for our evaluation. Virtuoso
[20] is a widely used SPARQL engine in research. Virtuoso trans-
lates SPARQL queries to SQL queries, which are then executed by
Virtuoso’s own DB engine. Triples are stored in one large table
with three columns16 (subject, predicate, object) in column-layout
with indexes PSO, POS, SP, and OP. Blazegraph [7] is the query
engine behind the Wikidata Query Service [22]. Triples are stored
in a B+ tree in three permutations: POS, SPO, and OSP. There is
little difference between the three engines in this respect.

In QLever, each token is assigned a unique integer ID, stored as
an 8-byte integer. Each permutation is stored on disk in an array
using 24𝑛 bytes, where 𝑛 is the number of triples; metadata is
stored in memory. At query time, each token from the query is
translated to its ID using binary search; the query execution then
takes place entirely in the ID space. All intermediate results are fully
materialized, as tables with fixed-size columns of size 8 bytes each.
Only for the final result, the IDs are converted to IRIs or literals
again.

In contrast, Virtuoso and Blazegraph produce results “one row
at a time”. This can be an advantage for certain queries with a
LIMIT, but is a disadvantage for queries, where full materialization
is required. Most notably, this is typically required, when results
are needed in a particular order.

16There is another column for the “graph name”, but in our evaluation, we only use
one “graph” (knowledge base) per Virtuoso instance.
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