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ABSTRACT
We show how to achieve fast autocompletion for SPARQL queries
on very large knowledge bases. At any position in the body of a
SPARQL query, the autocompletion suggests matching subjects,
predicates, or objects. The suggestions are context-sensitive in the
sense that they lead to a non-empty result and are ranked by their
relevance to the part of the query already typed. The suggestions
can be narrowed down by prefix search on the names and aliases of
the desired subject, predicate, or object. All suggestions are them-
selves obtained via SPARQL queries, which we call autocompletion
queries. For existing SPARQL engines, these queries are impracti-
cally slow on large knowledge bases. We present various algorith-
mic and engineering improvements of an existing SPARQL engine
such that these autocompletion queries are executed efficiently. We
provide an extensive evaluation of a variety of suggestion methods
on three large knowledge bases, including Wikidata (6.9B triples).
We explore the trade-off between the relevance of the suggestions
and the processing time of the autocompletion queries. We compare
our results with two widely used SPARQL engines, Virtuoso and
Blazegraph. On Wikidata, we achieve fully sensitive suggestions
with sub-second response times for over 90% of a large and diverse
set of thousands of autocompletion queries. Materials for full re-
producibility, an interactive evaluation web app, and a demo are
available on: http://ad.informatik.uni-freiburg.de/publications.

1 INTRODUCTION
Knowledge bases play an increasingly important role in modern
retrieval systems. The prevailing data model is the Resource De-
scription Framework (RDF), where the data is stored as subject-
predicate-object triples. Each subject, predicate, or object is either
an Internationalized Resource Identifier (IRI), enclosed in angle brack-
ets, or a so-called literal, enclosed in quotes. For example:

<Meryl_Streep> <is_a> <Person>
<Meryl_Streep> <gender> <Female>
<Meryl_Streep> <award_won> <Oscar_Best_Actress>
<Meryl_Streep> <birth_date> "1949-06-22"
<Ang_Lee> <award_won> <Oscar_Best_Director>
<Oscar_Best_Actress> <is_a> <Oscar>
<Oscar_Best_Director> <is_a> <Oscar>

RDF data allow queries with precise semantics. For example, the
following query finds all women who won an Oscar. The query is
formulated in SPARQL, the standard query language for RDF data.

SELECT ?entity ?award WHERE {
?entity <is_a> <Person> .
?entity <gender> <Female> .
?entity <award_won> ?award .
?award <is_a> <Oscar> }

The result for this query is a table with two columns, where each
row contains the name of the person and the name of the award.
For the tiny example knowledge base above, the result is:

<Meryl_Streep> <Oscar_Best_Actress>

The seven example triples above come from Fbeasy (362M triples)
[4], an easy-to-use subset of Freebase (1.9B triples) [8]. The largest
general-purpose knowledge base to date is Wikidata (6.9B triples,
as of 07-01-2020) [19]. Fbeasy has human-readable IRIs for all en-
tities. In Wikidata, almost all IRIs are alpha-numeric and human-
readable names can be obtained via dedicated predicates; see the
example query below. Freebase uses a mix of human-readable and
alpha-numeric IRIs. We consider all three knowledge bases in this
paper; see Section 5.2 for details.

SPARQL is conceptually easy, because queries can be formulated
as lists of triples, just like the data. However, finding the IRIs rel-
evant for a query is often hard in practice. This is true even for
human-readable IRIs when there are very many of them. It becomes
extremely hard when IRIs are alpha-numeric. For example, consider
the seemingly simple request: the Oscars of Meryl Streep and the
movies she won them for. The correct SPARQL query on Wikidata
is quite complex (an explanation follows below the query).

SELECT ?award ?film WHERE {
wd:Q873 p:P166 ?m .
?m pq:P1686 ?film_id .
?m ps:P166 ?award_id .
?award_id wdt:P31 wd:Q19020 .
?award_id rdfs:label ?award .
?film_id rdfs:label ?film }

The wd:, wdt:, etc. are IRI prefixes. We have omitted their defini-
tion here to save space; see https://en.wikibooks.org/wiki/SPARQL/
Prefixes. The IRIs wd:Q873 and wd:Q19020 denote Meryl Streep and
the Academy Awards, respectively. The IRIs p:P166 and ps:P166 both
represent the predicate award received. In Wikidata, a predicate
with prefix p: connects a subject to a statement node, which can
then be connected to several objects, thus representing an 𝑛-ary
relation between the subject and the objects. The predicate with
prefix ps: connects the subject to the “main object” of the relation;
the IRI of the award in this case. Predicates with prefix pq: con-
nect the subject to so-called “qualifying” information; the IRI of the
film in this case (there is also a pq: predicate for the point in time).
The IRI wdt:P31 stands for the instance of relation. The rdfs:label
predicate connects entities to their human-readable names.

1.1 Problem Definition and Three Examples
The goal of this paper is to assist the user in typing the body of a
SPARQL query by providing suggestions at any point in the query.
The suggestions should be ranked by relevance to the part of the
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SELECT * WHERE {
  ?x <is_a> P|
} <Person>

<Politician>
<Plant>

s = ?x <is_a> t = <Person> p = "P"

  

1
2
3
4
5

SELECT * WHERE {
  ?x <is_a> <Person> .
  ?x |
} <is_a>

<gender>
<birth_date>

s = ?x <is_a> <Person>. ?x t = <gender> p = ""

  

1
2
3
4
5

SELECT * WHERE {
  wd:Q873[Meryl Streep] p:P166[award won] ?m .
  ?m |
} ps:P166

pq:P585
pq:P1686

"award won"@en
"point in time"@en

"for work"@en

s = wd:Q873 p:P166 ?m . ?m t = pq:P1686 p = ""

  

1
2
3
4
5
6
7

SELECT * WHERE {
  wd:Q873[Meryl Streep] p:P166[award won] ?m .
  ?m pq:P1686[for work] ?film .
  ?m ps:P166[award won] ?award .
  ?award wdt:P31[instance of] |
} wd:Q19020

wd:Q1011547
wd:Q268200

"Oscars"@en
"Golden Globes"@en

"SAG Award"@en

s = wd:Q873 p:P166 ?m … ?award wdt:P31   t = wd:Q19020   p = ""

Figure 1: Four screenshots of our autocompletion in action, with three suggestions each. Top-left and top-right: Examples
1 and 2 from Section 1.1, for a query on Fbeasy, where IRIs are understandable for a human. Bottom-left and bottom-right:
Example 3 from Section 1.1 and a continuation not described in the text, for a query on Wikidata, where IRIs are alpha-
numeric. The assignments below each screenshot show the values of the variables from our problem definition: 𝑠 (the part of
the SPARQL query already typed), 𝑡 (the desired token), and 𝑝 (a prefix of a name or alias of that token). For a live demo, see
https://qlever.cs.uni-freiburg.de.

query already typed. We first provide a formal problem definition
and then explain it at length via three examples.

Definition. Imagine a valid SPARQL query typed until a certain
point, called the cursor position. Let 𝑠 be the part of the body of the
SPARQL query until that point. Let 𝑡 be the complete token (subject,
predicate, or object) at the cursor position. Let 𝑝 be a prefix of a
name or alias of 𝑡 , possibly empty. The SPARQL Autocompletion via
SPARQL problem is: Given 𝑠 and 𝑝 , construct and process a SPARQL
query, called autocompletion query or AC query, with the following
properties:

1. The AC query returns a table with each row corresponding to a
suggestion and the following three columns:
?entity (an entity from the knowledge base),
?name (a name or alias of that entity, starting with 𝑝),
?score (an estimate of how likely that entity is at the cursor position).
2. The rows of the table are sorted in descending order of ?score.
3. One of the rows contains 𝑡 in the ?entity column.

There are two objectives:
Relevance: Each suggestion should be context-sensitive1 in the sense
that it continues the SPARQL query in a meaningful way, that is,
such that there exists a continuation with a non-empty result. The
row with the desired 𝑡 should be as high up in the table as possible.

1In the following, we often just call such suggestions sensitive.

Efficiency: The query should be processed as quickly as possible.

We next illustrate this definition by three examples, which are also
depicted in Figure 1. We also discuss running times for various
SPARQL engines. These engines are described in Section 4.1, and
our experimental setup is described in Section 5.1.

Example 1 Assume we have typed the body of the first SPARQL
query from the introduction until before the first object; see below.
This is the 𝑠 from the definition. The symbol marks the cursor
position and the prefix 𝑝 is "P". The token 𝑡 we are looking for at
this position is <Person>. The knowledge base is Fbeasy.
?x <is_a> P

The following AC query computes a table containing each object
?entity and its name ?name, such that the name starts with P and
the triple ?x <is_a> ?entity exists. The table is sorted in descending
order of the number of such triples for each ?entity.
SELECT ?entity ?name (COUNT(?x) AS ?score) WHERE {
?x <is_a> ?entity .
BIND (STR(?entity) AS ?name) .
FILTER REGEX(?name, "^P")

} GROUP BY ?entity ?name ORDER BY DESC(?score)
The first three result rows for that query look as follows. Note that
for this knowledge base, the name of an entity is simply the IRI,
interpreted as a string (that is what the STR function does).
<Person> "Person" "3970825"
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<Politician> "Politician" "127809"
<Plant> "Plant" "60459"

Let us discuss the objectives from our definition for this AC query.
Relevance: Perfect, because the desired token 𝑡 appears in the first
row of the table, and, by construction, all suggested entities lead to
a non-empty result.
Efficiency: Most query engines, including our competitors Virtuoso
and Blazegraph, process this query as follows: First materialize a
table ?x ?entity ?name with all subjects and objects of the <is_a>
predicate and the name of these objects. On Fbeasy, this table has
130M rows. Then check for each row whether the name matches
the regular expression. This is slow: it takes 20s on Virtuoso and
48s on Blazegraph. Our engine works with internal IDs for the
strings, which are pre-ordered in lexicographical order of the strings.
That way, we can maximally delay a materialization of the strings
and perform prefix matches via binary search. This is a major
performance factor, not only for AC queries. In particular, the AC
query above takes only 0.3s. More details in Section 4.

Example 2 Now assume that we have typed the SPARQL query a
little bit further. The following is now our 𝑠 and the desired token 𝑡
at the cursor position is <gender>. The prefix 𝑝 is empty.
?x <is_a> <Person> .
?x

The following AC query gives us a ranked list of predicates that lead
to a non-empty result. The score for each predicate is the number
of persons (that is, entities matching the first triple) that have a
triple with that predicate.2

SELECT ?entity ?name (COUNT(DISTINCT ?x) AS ?score) WHERE {
?x <is_a> <Person> .
?x ?entity [] .
BIND (STR(?entity) AS ?name) .

} GROUP BY ?entity ?name ORDER BY DESC(?score)
The first three result rows for this AC query are as follows:
<is_a> "is_a" "3970825"
<gender> "gender" "2276146"
<birth_date> "birth_date" "1915167"

Relevance: The desired token 𝑡 is second in this table and, again
by construction, the AC query only returns predicates that lead
to a hit. The suggestions are ranked by how often each of them
occurs with the set of entities defined by the part of the query
already typed. Because of this, we did not have to type a single
letter here to get very good suggestions. In Section 5, we will also
evaluate so-called agnostic AC queries. An agnostic AC query com-
putes a list of all predicates, ordered by frequency, but independent
of the rest of the query. Such a query would have bad relevance
here: <gender> would not be among the top suggestions, and there
would be many suggestions that are not meaningful for a person,
for example <release> (of a musical recording).
Efficiency: Most query engines, including our competitors Virtu-
oso and Blazegraph, process this AC query as follows. The two
triples from the query body are joined into a large table, with one
row for each triple of each person. In Fbeasy this table has 37M
2If a person has several triples with the same predicate, we only count the predicate
once, hence the DISTINCT. This is explained in more detail in Section 3.

rows. Producing a table of that size is slow and so is determining
the predicate counts from that table. Without the BIND and the
DISTINCT, Virtuoso takes 2.4s and Blazegraph takes 35s.3 For the
corresponding AC query on Wikidata, the table has 196M rows.
Virtuoso can process it in 5.8s, while Blazegraph aborts with an
out-of-memory error after 85s. Our query engine avoids iterating
over all the triples for each person. Instead, our engine makes use
of a query-independent pre-processing that identifies groups of
entities with the exact same set of predicates (called a pattern). This
trick is described in Section 4.2. It enables a query time of below
0.1s for the AC query above on Fbeasy, and 0.6s for its counterpart
on Wikidata.

Example 3 Our last example is based on Wikidata, where enti-
ties have alpha-numeric IRIs, and names and aliases are obtained
via dedicated predicates rdfs:name and skos:altLabel. Assume that
we have typed the body of our second SPARQL query from the
introduction this far:
wd:Q873 p:P166 ?m .
?m

This is our 𝑠 and the prefix 𝑝 is again empty. Recall that wd:Q873
stands for Meryl Streep and p:P166 connects this entity to all state-
ment nodes ?m pertaining to one of her awards. The desired token
𝑡 is pq:P1686, which leads us to the awarded films. The following
AC query gives us a list of predicates (and their names) that lead to
results at this point. The score is analogous to that of the previous
example. The predicate path ^(<>|!<>)/rdfs:label gives us the label
of a predicate in Wikidata; see Section 3.1.
SELECT ?entity ?name (COUNT(DISTINCT ?m) AS ?score) WHERE {
wd:Q873 p:P166 ?m .
?m ?entity [] .
?entity ˆ(<>|!<>)/rdfs:label ?name

} GROUP BY ?entity ?name ORDER BY DESC(?score)
The first three result rows for this AC query look as follows:
ps:P166 "award received" "33"
pq:P585 "point in time" "23"
pq:P1686 "for work" "10"
These rows tell us that Wikidata knows about 33 awards of Meryl
Streep, the point in time for 23 of them, and for which work the
award was given for 10 of them.

Relevance: Again perfect for this AC query. And note how helpful
the suggestions are! Without these suggestions it would require
extremely intimate knowledge of Wikidata to know that we need
the predicate suffixes P166 and P1686 and the prefixes ps: (which
stands for themain entity of a statement node) and pq: (which stands
for additional properties of a statement node). Agnostic suggestions,
as briefly mentioned in Example 2 and defined in Section 3.3, would
not be of much help here.

Efficiency: The query is easy because there are only few bind-
ings for ?m, namely one for each of Meryl Streep’s awards. With
optimal query planning4 and the rdfs:label triples in main memory,
3Neither Virtuoso nor Blazegraph can handle the query with the DISTINCT, apparently
because that would require a full sort of the table. However, suggestions are also
reasonable (though not quite as good) without the DISTINCT.
4When equivalently rewriting the query, such that the result from the first two triples
are aggregated in a subquery (which corresponds to the best query plan), Blazegraph
inexplicably takes forever.
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Blazegraph processes the query in around 100ms, Virtuoso takes
10ms, and our engine takes 1ms.

1.2 Scope and limits of our definition
Our AC queries provide suggestions for the IRIs and literals in
a SPARQL query. A typical user interface for SPARQL autocom-
pletion also involves suggestions for variable names or SPARQL
constructs like OPTIONAL, FILTER, UNION or GROUP BY at appro-
priate positions in the query. These suggestions are not particularly
challenging with respect to relevance or efficiency. However, our
AC queries do have to deal properly with these constructs, when
they occur in the query; see Section 3.5.

Our definition assumes that queries are typed from top to bottom
and that each triple is entered from left to right (subject, predicate,
object). It would be straightforward to drop those constraints using
variants of our AC queries. However, it’s not strictly necessary
for the incremental construction of a SPARQL query and it would
significantly complicate our definition and explanations in this
paper. We therefore omitted this use case from our definition.

1.3 Our contributions
We consider the following as our main contributions:
• We develop the idea of providing SPARQL autocompletion via
SPARQL queries. TheseAC queries can be processed by any (standard-
conforming) SPARQL engine. The basic idea is already found in
previous work, but in less generality. See Sections 2 and 3.
• We extend an existing query engine, called QLever, such that
these AC queries can be processed efficiently. The extension is
technically challenging and comprises both algorithmic ideas and
algorithm engineering. See Section 4.
• We provide an extensive evaluation on three large knowledge
bases, including Wikidata (6.9B triples). We explore a variety of AC
queries in depth, in particular, their relevance and efficiency and
the trade-off between these two objectives. We compare our results
with two widely used SPARQL engines, Virtuoso and Blazegraph,
which we outperform by a large margin. On Wikidata, we achieve
fully sensitive suggestions with sub-second response times for over
90% of a large and diverse set of thousands of autocompletion
queries. See Section 5.
• We provide materials for full reproducibility: code, queries, in-
dexes, result files, and a web application that allows an interac-
tive exploration of all the details of our experimental results. In
particular, the web application provides the LATEX code for Table
1 with a single click. These materials are available under https:
//ad.informatik.uni-freiburg.de/publications.

2 RELATEDWORK
Wefirst discuss relatedwork on SPARQL autocompletion via queries
in (variants of) SPARQL. We then provide a brief overview of other
approaches assisting users to formulate their query.

2.1 SPARQL autocompletion via SPARQL
Campinas et al. [10] present an autocompletion system that is able
to recommend predicates and types (i.e. objects of a type predicate).
This approach uses AC queries, but runs them on a smaller graph

summary that only captures the structure of the data, which helps
efficiency, but harms relevance. The idea behind the graph summary
is similar to our pattern trick in Section 4.2 but with the important
difference, that our implementation does not affect relevance; we
come back to this in Section 4.2. In a follow-up paper, Campinas [9]
presents a system called Gosparqled that uses AC queries similar to
ours. However, suggestions are again only possible for predicates
and types and the results are not ranked. We briefly discuss the two
objectives from our definition in Section 1.1 for these papers.
Relevance: The AC queries of Gosparqled are similar to those from
Section 1.1, but with a LIMIT (of 10, 100 or 500). Hence all sugges-
tions are meaningful continuations of the part of the query already
typed. In the evaluation, the suggestions are compared to sugges-
tions without this LIMIT. The average Jaccard similarity varies
between 11% and 62%, depending on the complexity of the query
and the LIMIT. With the graph summary, the Jaccard similarity
does not decrease significantly. Our sensitive AC queries impose
no LIMIT and, by definition, achieve a similarity of 100%.

Efficiency: Gosparqled achieves response time below 0.2s for 94%
of the AC queries. The main reason is the mentioned LIMIT, which
severely impacts relevance. The graph summary reduces the aver-
age run time further by about 35%. The knowledge base used for
the evaluation consists of less than half the amount of triples than
our smallest dataset, Fbeasy. The evaluation setup is also different
in that for each suggestion, only the desired token is removed from
the query. That way, the AC queries have very restricting contexts,
which helps efficiency a lot. In contrast, we simulate typing the
query from beginning to end, which results in many very hard AC
queries that have to deal with huge intermediate results.

Jarrar and Dikaiakos [13] present autocompletion for MashQL,
a variant of SPARQL with essentially the same functionality as
SPARQL. They also use AC queries to suggest entities to the user.
MashQL’s completions are only context-sensitive for linear-shaped
queries. For example, if the user has already typed ?x1 <place of
birth> ?x2 . ?x2 <country> ?x3 . ?x3 , MashQL will consider this
context. But if the user has typed ?x <place of birth> <Berlin> . ?x
<gender> <Female> . ?x , MashQL will make the same suggestion
for each predicate, without taking the previous context into account.
To be able to run the AC queries more efficiently, they use two graph
summaries. In one graph summary, entities with the same outgoing
paths are grouped together and in the other one, entities with
the same incoming paths are grouped together. These summaries
only lead to correct results for the above mentioned linear-shaped
queries.

Bast et al. [3] present a system called Broccoli, which provides
context-sensitive suggestions for tree-shaped queries and depicts
the queries as trees. The underlying query language is equivalent
to SPARQL, restricted to trees and basic graph patterns. The focus
of the paper is on extending the query language by a text-search
component and on providing efficient autocompletion for this com-
ponent as well. The user interface and the evaluation work with a
knowledge base with human-readable IRIs (similar to Fbeasy, but
only 26M triples) and do not support synonyms or aliases.

Ferré [12] presents a system called SPARKLIS, which suggests
context-sensitive continuations for SPARQL queries. Queries are
formulated in natural language (for instance “Give me every person

4

https://ad.informatik.uni-freiburg.de/publications
https://ad.informatik.uni-freiburg.de/publications


Efficient SPARQL Autocompletion via SPARQL

whose gender is female and who won an award that is an Oscar”).
It supports most of the functionality of SPARQL. Suggestions are
obtained via AC queries similar to those from Section 1.1. In order
to address efficiency issues, there is a LIMIT on the results and
results are not ranked. As the user types, results of the partially
written query are computed and shown. These intermediate results
are used to compute the suggestions faster (similar to our cache
described in Section 4.4).

2.2 Other assisted formulation systems
There is a wide literature on other approaches to assist the user in
creating SPARQL queries or get results from a knowledge base. We
provide an overview by briefly describing a representative system
for each approach.

Arenas et al. [1] present SemFacet, a faceted search system for
RDF data. The user starts with a keyword query (e.g. “person”),
from which the system computes a list of matching entities, For
each predicate, users can narrow down the results by choosing
specific objects (e.g. <Actor>). The suggested predicates and objects
are not ranked, for efficiency reasons. The underlying queries are
SPARQL queries, restricted to trees. One of the first systems of this
kind is BrowseRDF by Oren et al. [16]. BrowseRDF shows entities
for the root variable, while in SemFacet any variable can be selected.
BrowseRDF also suggests inverse predicates and negation.

Rafes et al. [17] introduce a log-based system called SPARQLets-
Finder, which takes a basic graph pattern (essentially: a part of a
SPARQL query) and suggests a ranked lists of graph patterns to
extend the query. The suggestions are based on a hierarchical clus-
tering of the graph patterns in the given query log, using a metric
introduced in the paper. The evaluation compares the recommen-
dations with those made by a related tool.

Khoussainova et al. [14] present SnipSuggest, a log-based auto-
completion tool for SQL. The user starts with a simple query. The
system then suggests additional features to the user, for example, a
table in the FROM clause or a condition in the WHERE clause. Snip-
Suggest achieves this by transforming the partially written query
into a set of such features, and then computing the most popular
additional features according to the query log. Alternatively, the
suggestions are optimized for diversity. The evaluation shows that
the suggestions are useful and better than from naive approaches,
which recommend the overall most popular features.

Bast et al. [6] presentAqqu, a state-of-the-art system for semantic
parsing. The task is to translate a given question in natural language
into an equivalent SPARQL query. The translation is learned only
from question-answer pairs (no ground truth SPARQL queries are
needed). There is a wide literature on this setting.

Arkoudas and Yahya [2] also present a system that translates
questions in natural language to structured queries (SPARQL or
SQL). The system is interactive: as the user types the question, the
system suggests possible continuations. Three different suggestion
algorithms are combined: Two of these algorithms are log-based
(one returns suggestions when everything typed so far matches, the
other also supports partial matches). The third is based on templates.
That way, the system makes effective use of a query log but also
covers queries unseen so far.

Lehmann and Bühmann [15] present AutoSPARQL, which sug-
gests whole SPARQL queries (restricted to trees) in a back-and-forth
with the user. The user starts by formulating a simple query that
contains at least one result of the target query. AutoSPARQL then
asks whether certain results should be contained in the target query
or not. Based on the user feedback, new SPARQL queries are sug-
gested and new feedback is asked. This is repeated until the desired
query is found or no tree query exists. In the evaluation, on average
5 iterations were needed to find the target query or conclude that
no matching query exists.

Fan et al. [11] present SQLSUGG, which uses keyword search to
suggest entire queries to the user. Keywordsmay refer to either table
values, the meta-data (e.g. names of relation tables or attributes), or
aggregate functions (e.g. the function COUNT). To get suggestions,
they use templates and rank them based on the keywords typed.

3 AC QUERY TEMPLATES
In this section, we describe the templates of the various AC queries
mentioned in Section 1 and used in our evaluation in Section 5. In
Section 5.3, we will derive actual AC queries from these templates.

In Section 3.1, we first specify two easy-to-understand queries
%entities% and %predicates%. In Sections 3.2 - 3.4, we will use
them as building blocks to construct our actual AC query templates.
For the sake of explanation, we first assume SPARQL queries, where
the body consists only of triples. In Section 3.5, we then explain
how to extend this to more complex SPARQL queries.

3.1 Building blocks for Wikidata
The building block %entities% computes for each entity its name
and aliases and a score. Here is the query for Wikidata:

1. SELECT ?entity ?name (COUNT(?x) AS ?score) WHERE {
2. ?entity rdfs:label|skos:altLabel ?name .
3. ?entity ^schema:about ?x .
4. } GROUP BY ?entity ?name

For the score, we use the number of Wikipedia articles about an en-
tity (line 3). For Freebase, the predicates in lines 2 and 3 are replaced
by fb:type.object.name|fb:common.topic.alias and fb:type.object.type,
respectively. For Fbeasy, line 2 is replaced by BIND(STR(?entity) AS
?name) and the predicate in line 3 is replaced by <is_a>. That is,
for Fbeasy and Freebase we use the number of types as score. These
scores are only needed for subject AC queries (see Section 3.2) and
agnostic AC queries (see Section 3.3).

The building block %predicates% computes a name and a score
for each predicate. Here is the query for Wikidata:

1. SELECT ?entity ?name ?score WHERE {
2. { SELECT ?entity (COUNT(DISTINCT ?x) AS ?score) WHERE {
3. ?x ?entity []
4. } GROUP BY ?entity }
5. ?entity (^(<>|!<>)/(rdfs:label|skos:altLabel))? ?name
6. }

As score for each predicate, we take the number of distinct subjects
of that predicate. The name of a predicate is obtained via a special
(predicate-dependent) property. From the subject of that property,
we then obtain the name via the usual predicates. The ^(<>|!<>) in
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line 5 is just a SPARQL shorthand of saying: follow any predicate
in reverse direction. Some predicates, like rdf:type have no explicit
name at all, in which case we take the IRI as the name, hence the
(...)? around the predicate path. For Freebase, we replace line 5 by
?entity fb:type.object.name ?name. For Fbeasy, all IRIs are human-
readable and we replace line 5 by BIND(STR(?entity) AS ?name).

3.2 Sensitive AC queries
To construct an AC query, we can make use of the part 𝑠 of the
SPARQL query body already typed (see our definition in Section
1.1). It is important that we only use the part of 𝑠 that is actually
“connected” to the triple at the current cursor position.5 We call this
part the %context% and next explain how it is computed.

Let 𝑇 be the partial triple that is currently being typed. Let S
be the set of all finished triples and FILTER clauses inside 𝑠 . Note
that S also includes triples and filters that appear inside SPARQL
constructs like OPTIONAL, UNION, MINUS, and sub-queries. Con-
struct an undirected graph with node set S ∪ {𝑇 } and an edge
between two nodes if they share a variable.6 Then %context% is 𝑠
without𝑇 and without all nodes in S that are not reachable from𝑇 .
It can be easily computed with, for example, a breadth-first search
starting from 𝑇 .

Here is the AC query template for a subject with a non-empty
%prefix% (the 𝑝 from our definition). This template is used rarely
because in typical SPARQL queries, most triples have a variable as
subject.

1. SELECT ?entity (SAMPLE(?name) AS ?name)
2. (SAMPLE(?score) AS ?score) WHERE {
3. { %entities% } FILTER REGEX(?name, "^%prefix%")
4. } GROUP BY ?entity ORDER BY DESC (?score)

Here is the AC query template for a predicate for given %prefix%,
%context%, and %subject% (the subject of the triple at the current
cursor position). If %context% is empty and %subject% is a vari-
able, lines 3-5 are (redundant and) omitted and ?score_2 in line 2
is replaced by ?score. If %subject% is a variable, %x% is DISTINCT
%subject%, otherwise ?object. This template generalizes Examples
2 and 3 from Section 1.1, which also provide an intuition for the
score.

1. SELECT ?entity (SAMPLE(?name) AS ?name)
2. (SAMPLE(?score_2) AS ?score) WHERE {
3. { SELECT ?entity (COUNT(%x%) AS ?score_2) WHERE {
4. %context% %subject% ?entity ?object
5. } GROUP BY ?entity }
6. { %predicates% } FILTER REGEX(?name, "^%prefix%")
7. } GROUP BY ?entity ORDER BY DESC (?score)

Here is the AC query template for an object for given %prefix%,
%context%, %subject%, and %predicate% (the predicate of the
triple at the current cursor position). This template generalizes

5In SPARQL, the result of two disconnected graph patterns is the cross product, which
can be become huge very easily and is usually not what one wants.
6We also take care of scoping and variable renaming introduced by subqueries.

Example 1 from Section 1.1, which also provides an intuition for
the score.

1. SELECT ?entity (SAMPLE(?name) AS ?name)
2. (SAMPLE(?score_2) AS ?score) WHERE {
3. { SELECT ?entity (COUNT(?entity) AS ?score_2) WHERE {
4. %context% %subject% %predicate% ?entity
5. } GROUP BY ?entity }
6. { %entities% } FILTER REGEX(?name, "^%prefix%")
7. } GROUP BY ?entity ORDER BY DESC (?score)

3.3 Agnostic and Unranked AC queries
Wefirst define the agnostic AC queries. For a subject and a predicate,
the agnostic AC query is like the respective sensitive queries, but
with empty %context%. The agnostic AC query for an object is
identical to the agnostic AC query for a subject.

The result for an agnostic AC query is then exactly the result of
the precomputed %entities% or %predicates%, filtered by %pre-
fix%. In Section 5, we will see that QLever can always process these
queries in time below one second. Note that some work is required
at query time if %prefix% is non-empty: we then need to filter out
the results matching the prefix (from a table sorted by entity name),
which can be many if the prefix is short or common. Also note that,
in principle, we could compute the results for these queries with
a special-purpose data structure, outside of the SPARQL engine.7
However, it is convenient if we don’t need such a data structure
and can just use the engine that we have in place anyway.

The unranked AC queries are just like the agnostic AC queries,
but without the final ORDER BY. They have no practical relevance,
but we include them in our evaluation in Section 5 as a baseline, to
show how important ranking of suggestions (neglected in several
previous works for efficiency reasons, see Section 2) is.

3.4 Mixed AC queries
The suggestions of sensitive AC queries are clearly preferable, but
as we will see in our evaluation in Section 5, some of them are
very hard to compute, especially on a large knowledge base like
Wikidata. In contrast, agnostic AC queries are always fast, at the
price of a much lower relevance.

We therefore also consider a mixed mode, where we simultane-
ously issue an agnostic and a sensitive query. If the sensitive query
finishes within a given timeout, we take that result. Otherwise,
we take the result from the agnostic query. We pick a timeout of
1s, since users are rarely willing to wait longer for an interactive
suggestion. Since we can answer all agnostic queries in time 1s, we
then always get suggestions within 1s, though not always sensitive.
Mixed AC queries are thus a compromise between relevance and
efficiency. The faster the engine, the better the compromise. More
about this in Section 5.

3.5 AC queries for complex SPARQL constructs
In our definition of %context% in Section 3.2, we have assumed
that the triple 𝑇 at the current cursor position is not inside of an
OPTIONAL, UNION, MINUS, or a sub-query and does not contain
7In fact, Blazegraph uses such a special-purpose data structure to compute names for
entities to avoid the expensive join with the huge rdfs:label predicate.
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a property path. We handle these cases as follows.
1. If 𝑇 is inside of an OPTIONAL clause, we treat it as if it were
outside of the OPTIONAL clause. This means that we only get sug-
gestions that lead to at least one result (without NULL values).
2. If𝑇 is inside a UNION clause, we also treat it as if it were outside
of the clause. Additionally, triples from the other “branch” of the
same UNION are excluded from the context. That way we ensure
that each branch contributes at least one result to the query.
3. If 𝑇 is inside a MINUS clause, we ignore the MINUS and give
suggestions as if the triple was added and not subtracted. As a con-
sequence, we rank those suggestions highest, that would remove the
highest number of results when added to the query using MINUS.
4. If𝑇 is inside a sub-query (SPARQL queries nested inside the body
of another SPARQL query), the surrounding query is ignored. We
could also incorporate the surrounding query into the %context%,
but found this to have negligible benefit in our evaluation.
5. A triple with a property path like wdt:P31/wdt:P279* (instance of,
followed by any number of subclass of ) is equivalently transformed
into two triples with a single predicate each. We then launch an
AC query for each of these predicates (one after the other).
Note that by handling OPTIONAL, UNION and MINUS this way,
we achieve more than the relevance objective from our definition
in Section 1.1 requires. Namely, we achieve that all our suggestions
actually make a difference for the SPARQL query.

4 EFFICIENT AC QUERIES
This section describes our main techniques to make AC queries
efficient. In our evaluation in Section 5, we impose a timeout for
each AC query (a user is onlywilling towait so long for suggestions).
Efficiency is therefore a prerequisite for quality.

4.1 Basic architecture of QLever, Virtuoso, and
Blazegraph

We implement the extensions described in the following subsections
as extensions to QLever. In our evaluation in Section 5, we compare
this to Virtuoso and Blazegraph.

QLever [5] is an open-source query engine, which stores the
knowledge base triples in up to six permutations: POS, PSO, SPO,
SOP, OPS, OSP (where S = subject, P = predicate, O = object). The
last four are optional and not needed for our evaluation. Virtuoso
[18] is a widely used SPARQL engine in research. Virtuoso trans-
lates SPARQL queries to SQL queries, which are then executed by
Virtuoso’s own DB engine. Triples are stored in one large table with
three columns8 (subject, predicate, object) in column-layout with
indexes PSO, POS, SP, and OP. Blazegraph [7] is the query engine
behind the official SPARQL endpoint of the Wikidata Query Service
[20]. Triples are stored in a B+ tree in three permutations: POS,
SPO, and OSP. There is little difference between the three engines
in this respect.

In QLever, each token (subject, predicate, object) is assigned
a unique integer ID, stored as an 8-byte integer. There are three
types of tokens: IRIs, numerical literals, other literals. For each type,
the order of the IDs corresponds to the canonical (lexicographical

8There is another column for the “graph name”, but in our evaluation, we only use
one “graph” (knowledge base) per Virtuoso instance

or numerical) order of the tokens of that type. The IDs form a
contiguous interval starting from 0 and the map from each ID to
its token is stored in one large array. Each permutation is stored
on disk in a large array using 24𝑛 bytes, where 𝑛 is the number of
triples; metadata is stored in memory. SPARQL update operations
are not supported, but building the index from scratch is very fast
(30 minutes for Fbeasy, 2.5 hours for Freebase, less than 24 hours
for Wikidata, on a single machine, as described in Section 5.1). At
query time, each token from the query is translated to its ID using
binary search on the above-mentioned map. The query execution
then takes place entirely in the ID space. All intermediate results
are fully materialized, as tables with fixed-size columns of size 8
bytes each. Only for the final result are the IDs converted to IRIs or
literals again. For the AC queries, there is always a LIMIT 𝑘 for a
small value of 𝑘 , so that the last step takes negligible time.

In contrast, Virtuoso and Blazegraph are able to produce results
“one row at a time”, without always having to fully materialize all
intermediate results. This can be an advantage for certain queries
with a LIMIT, but is a disadvantage for queries, where full materi-
alization is required. Most notably, this is typically required, when
results are needed in a particular order.

4.2 AC Queries for Predicates Using Patterns
Our predicate AC queries use subqueries of the following kind.
SELECT ?entity (COUNT(DISTINCT ?x) AS ?score) WHERE {
%context% ?x ?entity [] .

} GROUP BY ?entity ORDER BY DESC(?score)

As explained in Section 1.1, existing SPARQL engines materialize
a table with one row for each triple of every ?x. For a %context%
that constrains ?x little or not at all, this takes a (very) long time
to compute. To answer this kind of query efficiently, we make the
following preprocessing:
1. Let S be the set of all distinct subjects in the knowledge base.
For each 𝑥 ∈ S, compute the set of the distinct predicates from
all triples that have 𝑥 as subject. This set is called the (predicate)
pattern of 𝑥 . From these sets, compute the set P of distinct patterns.
This is easily done by a pass over the above-mentioned SPO index.
2. Give consecutive IDs to the patterns from P and store the map
from IDs to patterns in an array of size |P |.
3. Store the map from each subject to its pattern ID in an array of
size |S|.
The following table provides statistics of this pre-processing for our
three knowledge bases. The fourth column counts the total size of
the patterns, where the size of a pattern is the number of predicates
and each pattern is counted once. The fifth column specifies the
total memory consumption of the result of the pre-processing.

|S| |P | ∑
P∈P |P| Mem

Fbeasy 60M 0.3M 3M 0.3GB

Freebase 476M 3.1M 95M 2.5GB

Wikidata 2068M 4.4M 160M 9.0GB

To process the above query, we make use of these precomputed pat-
terns as follows, where steps 2 and 3 can be (and are) parallelized:
1. Let 𝑆 ⊆ S be the set of subjects ?x from %context% or 𝑆 = S if
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%context% is empty.
2. Look up the pattern IDs from all 𝑥 ∈ 𝑆 in the precomputed array
and compute a map 𝑐 : P𝑆 → N that, for each pattern ID that
occurs at least once, counts how many 𝑥 ∈ 𝑆 have that pattern ID.
This can be done in time linear in the size of 𝑆 .
3. For each pattern 𝑃 ∈ P𝑆 , retrieve the corresponding set of predi-
cate IDs and for each 𝑝 in that set, increase a counter (initially 0)
by 𝑐 (𝑃). This takes time linear in

∑
𝑃 ∈P𝑆

|𝑃 |.
4. Sort the encountered 𝑝 by the final counter values. This yields
the result for the query above.

The worst case for this algorithm is that every subject has a dif-
ferent predicate pattern and exactly one triple for each predicate.
Then |P𝑆 | = |𝑆 |, each 𝑐 (𝑃) is 1, and Step 3 does exactly what the
naive algorithm described in Section 1.1 would do. However, in
realistic knowledge bases, many subjects share the exact same set
of predicates, so that |P𝑠 | < |𝑆 |, and ∑

𝑃 ∈P𝑆
|𝑃 | is much smaller

than the total number of triples of all 𝑥 ∈ 𝑆 .
For example, consider the AC query above for Fbeasy, with%con-

text% = ?x <is_a> <Person>. In Fbeasy, there are 4.0M persons
with a total of 37M triples. They have only |P𝑠 | = 115K distinct
patterns with

∑
𝑃 ∈P𝑆

|𝑃 | = 1.4M predicates.With QLever extended
by the pattern trick, the query can be solved in under 0.1s. With
the standard query processing, QLever takes 6.6s, comprising 1.6s
for sorting 37M elements.

We remark that Virtuoso has a dedicated SP index, which maps
each subject to its distinct predicates. In theory, this index could
be used to optimize the execution of the predicate AC queries.
However, despite our best efforts, we could not find a way to make
Virtuoso use this index for queries like the above.

We briefly comment on how our patterns compare to the graph
summary of Campinas et al. [10] mentioned in Section 2.1. For
the graph summary, entities that have the same set of types are
grouped together. For each group and each predicate, it is then
precomputed how many entities of that group have that predicate.
For example, on Fbeasy, out of 3 970 825 entities of type <Person>,
103 488 have the predicate <award_won>. This can be used for
sensitive AC queries for predicates when the %context% is exactly
one triple that specifies the type. Our preprocessing is more general
and works for an arbitrary %context%.

4.3 Efficient names + prefix filtering
Here is a variant of Example 1 from Section 1.1 on Wikidata:

SELECT ?entity ?name (COUNT(?x) AS ?score) WHERE {
?x wdt:P31 ?entity .
?entity rdfs:label ?name .
FILTER (LANG(?name) = "en")
FILTER REGEX(?name, "^P")

} GROUP BY ?entity ?name ORDER BY DESC(?score)

A straightforward processing of this query has two problems.
1. The rdfs:label predicate has 359M triples on Wikidata. Material-
izing this table and then joining and filtering it is very slow.
2. The result of the first three rows of the WHERE clause is a table
with 3 columns and 72M rows. Materializing all ?name strings and
applying a regex to each of them would be very slow.

@1: Blazegraph’s Wikidata setup circumvents this problem by pro-
viding a so-called label service via the SPARQL SERVICE keyword.
This label service provides labels in the desired languages via a
separate process dedicated to only this task. Our QLever extension
deals with this problem as follows: duplicate all predicates with
language literals during index building, and split the duplicate into
one predicate per language. For the query above, then the predicate
@en@rdfs:label is used, which has 60M rows. The join with the
first triple is then indeed materialized, but in ID space.
@2: Virtuoso and Blazegraph do exactly this and are correspond-
ingly slow. Our QLever extension makes use of the fact that literals
also have IDs, where the order of the IDs is the lexicographical
order of the literals. A FILTER with a prefix regex like in the query
above can then be realized with two binary searches.

4.4 Caching and pinned results
We have extended QLever by a thread-safe least-recently-used
(LRU) query cache with the following features, important for our
AC queries. The cache stores not only final results of a query, but
also results from the intermediate operations (which in SPARQL
are always tables, too). The query planner is aware of results in the
cache: the cost estimate for computing the result of a cached query
is zero. This is crucial for the processing of sequences of similar
SPARQL queries, as it naturally happens in our setting.

For example, assume we have typed the body of the first query
from the introduction (female oscar winners) until this point:
?subject <is_a> <Person> .
?subject <gender> <Female> .
?subject

After the AC query for this predicate, the result for the first two
triples (all female persons) are in the cache. Now assume that we
have typed one triple further:
?subject <is_a> <Person> .
?subject <gender> <Female> .
?subject <won award> ?award .
?award

To compute the result from the first three triples, the best query
plan is then to take the result from the first two triples from the
cache and join it with the result for the third triple.

Our cache also allows pinning results. These results will not be
removed by an LRU eviction (but there is a special command to
clear the cache completely). In our evaluation, we pin the results of
the two building blocks %entities% and %predicates%, described
in Section 3.1, from which all our AC queries are built. We store
the results in two orders: ORDER BY ?entity (for fast GROUP BY on
?entity) and ORDER BY ?name (for fast prefix search). The memory
consumption of these results is a small fraction of the index size
(for Wikidata: 6.7GB for all pinned results).

5 EVALUATION
In this section, we describe how we evaluated our approach, and
then present and discuss the results of this evaluation. Materi-
als for full reproducibility are available on our website: http://ad.
informatik.uni-freiburg.de/publications. In particular, the materials
provide a web app that permit an interactive exploration of the

8

http://ad.informatik.uni-freiburg.de/publications
http://ad.informatik.uni-freiburg.de/publications


Efficient SPARQL Autocompletion via SPARQL

performance of the individual queries that are the basis of our main
results (Table 1).

5.1 SPARQL Engines and Hardware
We evaluate our own extension of QLever, described in Section 4,
against Virtuoso and Blazegraph, the basic architecture of which is
described in Section 4.1.

All experiments were performed on a standard PC with an AMD
Ryzen 7 3700X CPU (8 cores + SMT), 128 GB of DDR-4 RAM and 4
TB SSD storage (NVME, Raid 0). We also ran our experiments on
HDD storage (Raid 5), and found little difference.9

QLever was configured with a memory limit of 70GB for query
processing, of which 30GB were available to the query cache; see
Section 4.4. Before each experiment, the query cache was cleared
and the results of the queries %entities% and %predicates% were
pinned, as explained in Section 4.4. For Virtuoso, we use the latest
release candidate of the open-source edition (7.2.6), configured us-
ing the largest memory preset for 64GB of RAM.10 For Blazegraph,
we used the latest stable release (2.1.5), configured according to
Blazegraph’s own recommendations for running Wikidata [7]. In
particular, Blazegraph gets 16GB for the JVM heap, while the rest
of the RAM is used for disk caching by the operating system.

We took great care to configure and use each engine optimally for
the evaluation. This comprises slight (equivalent) reformulations of
the AC queries, in order to avoid bad query plans; this is described
in Section 5.3.

5.2 Knowledge Bases
We evaluate on the following three knowledge bases, already intro-
duced in Section 1. We deliberately chose three knowledge bases
with related content (general knowledge in this case), but different
sizes and combinations of human-readable vs. alpha-numeric IRIs.
Fbeasy [4]: 362M triples, 50M subjects, 2K predicates. All IRIs
are simple and human-readable (e.g. <Meryl_Streep> or <gender>).
Freebase [8]: 1.9B triples, 125M subjects, 785K predicates. En-
tity IRIs are alpha-numeric (e.g. fb:m.05dfkg3 for Meryl Streep), but
most predicate IRIs are human-readable (e.g. fb:people.person.gender).
Wikidata [19]: 6.9B triples, 1.2B subjects, 32K predicates (com-
plete dump from 01/2020). Almost all IDs are alpha-numeric (e.g.
wd:Q873 for Meryl Streep and wdt:P21 for gender). To help Virtuoso
and Blazegraph, we removed all non-English literals and all triples
involving Wikimedia sitelinks. The latter are only needed for the
agnostic AC queries, which are executed solely by QLever; see Sec-
tion 5.3. In QLever, we load the complete data (11.3B triples). By
the design of QLever, this does not slow down queries (and doesn’t
make them faster either); see Section 4.3.

5.3 Autocompletion (AC) queries
The basis for our evaluation are the 334 example queries from the
Wikidata Query Service [20]. These queries cover a wide spec-
trum of SPARQL queries: they range from simple to complex, use
SPARQL features like UNION, OPTIONAL, MINUS, predicate paths,
9However, indexing on HDD is much slower for Virtuoso and Blazegraph, but that is
not the focus of this paper.
10When scaling this preset up to 128GB we found no significantly different results,
but frequently ran into problems with the out-of-memory killer.

subqueries, and cover the whole breadth of the content in the knowl-
edge base. We had to exclude some queries for technical reasons:
Wikidata (301 queries):We excluded all 9 “Lexeme” queries be-
cause the respective triples are not part of the core Wikidata. We
excluded another 14 queries because they involve the SERVICE
keyword as a crucial part of the query and we did not want to
make querying a remote SPARQL endpoint part of our evaluation.
We further excluded 10 queries involving distance computations
or other mathematical expressions because those features are not
implemented in QLever and the queries became meaningless or
impossible to compute without these computations. In several other
queries we removed these expressions but were able to keep the
queries. For 3 queries, the first triple of the SPARQL query was of
the form ?x ?y ?z, which is not a meaningful start in iterative query
construction. We moved it to the end of those queries.
Freebase (115 queries):We manually translated those Wikidata
queries, for which the contents are also contained in Freebase. The
translation is as close to the original Wikidata query as possible.
Note that Freebase became read-only in 2015 and Wikidata has
much more contents by now (6.9B triples vs. 1.9B triples, not
counting literals in languages other than English).
Fbeasy (99 queries): We manually translated all Freebase queries
for which the contents are also contained in Fbeasy. Again, the trans-
lation is as close to the original query as possible. Note that Fbeasy
contains no 𝑛-ary information (for example: an award, the awardee,
the work awarded, and the date). Instead, it retains only the binary
“core” of each such tuple (for example: award and awardee).
We consider all four modes of AC queries presented in Section 3:
unranked, agnostic, sensitive, and mixed. For a given mode and a
given SPARQL query, we generate AC queries as follows:
1. Consider each token (subject, predicate, or object) in the query
that is either an IRI or a literal. We exclude the special name pred-
icates (fb:type.object.name for Freebase, rdfs:label for Wikidata)
because they occur in almost every query and are trivial to suggest
and would only distort our results.11

For each such token do the following:
2. Compute %context% as described in Section 3 (only needed for
the sensitive AC queries), and depending on the position of the
token, also determine %subject% and %predicate%.
3. Choose a name from the result of the %entities% query (canoni-
cal name and aliases) for that token uniformly at random.
4. From that name, compute three prefixes for %prefix%: of length
0 (the empty word), 3, and 7. For prefix lengths 3 and 7, if the name
has less characters, take %prefix% as the complete name with $
appended, indicating a full-word match.
5. For each prefix length, pick the AC query template from Sec-
tion 3 according to the position of the token (subject, predicate,
object) and the mode (unranked, agnostic, sensitive, mixed). Plug
in %context% and %prefix%, and depending on the position also

11In the 301 Wikidata queries, there are 408 triples of the form ?x rdfs:label ?label
(similarly for Freebase). For entities with an rdfs:label, that predicate is always among
the most frequent suggestions. There is only one rdfs:label triple with a literal, namely
?author rdfs:label "Ernest Hemingway"@en. The reason is that in SPARQL, one would
directly use the entity (wd:Q23434) rather than specifying it indirectly via its name.
With autocompletion, we easily find such an entity via (a prefix of) its name.
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Fbeasy (314 tokens) ≤ 0.2s ≤ 1.0s Max Sens MRR7 KS7
Unranked Qlever 100% 100% 444ms 0% 0: 0% 3: 33% 7: 72% 8.04
Agnostic Qlever 100% 100% 470ms 0% 0: 25% 3: 86% 7: 96% 3.75
Sensitive Blazegraph 26% 42% 45% > 5s 55% 0: 38% 3: 53% 7: 53% 5.74
Sensitive Virtuoso 37% 61% 25% > 5s 75% 0: 58% 3: 65% 7: 65% 3.79
Sensitive Qlever 91% 97% 1% > 5s 99% 0: 67% 3: 96% 7: 97% 1.77
Mixed Blazegraph 26% 97% 1234ms 45% 0: 50% 3: 94% 7: 97% 2.52
Mixed Virtuoso 47% 100% 1000ms 72% 0: 57% 3: 96% 7: 91% 2.07
Mixed Qlever 90% 100% 1000ms 98% 0: 66% 3: 96% 7: 98% 1.75

Freebase (478 tokens) ≤ 0.2s ≤ 1.0s Max Sens MRR7 KS7
Unranked Qlever 100% 100% 645ms 0% 0: 0% 3: 24% 7: 55% 9.05
Agnostic Qlever 100% 100% 621ms 0% 0: 12% 3: 83% 7: 94% 4.52
Sensitive Blazegraph 29% 46% 41% > 5s 59% 0: 39% 3: 57% 7: 58% 5.32
Sensitive Virtuoso 41% 59% 19% > 5s 81% 0: 43% 3: 79% 7: 80% 3.79
Sensitive Qlever 87% 97% 0.5% > 5s 100% 0: 60% 3: 97% 7: 99% 2.06
Mixed Blazegraph 28% 100% 1041ms 49% 0: 42% 3: 93% 7: 98% 2.68
Mixed Virtuoso 42% 100% 1000ms 62% 0: 43% 3: 97% 7: 99% 2.42
Mixed Qlever 73% 100% 1000ms 82% 0: 59% 3: 96% 7: 99% 2.15

Wikidata (1258 tokens) ≤ 0.2s ≤ 1.0s Max Sens MRR7 KS7
Unranked Qlever 100% 100% 635ms 0% 0: 0% 3: 8% 7: 53% 10.87
Agnostic Qlever 100% 100% 696ms 0% 0: 6% 3: 64% 7: 92% 5.88
Sensitive Blazegraph 3% 27% 59% > 5s 41% 0: 26% 3: 36% 7: 37% 7.93
Sensitive Virtuoso 35% 53% 24% > 5s 76% 0: 38% 3: 67% 7: 67% 5.26
Sensitive Qlever 71% 90% 6% > 5s 94% 0: 50% 3: 92% 7: 95% 2.91
Mixed Blazegraph 0% 98% 1066ms 25% 0: 22% 3: 71% 7: 94% 4.71
Mixed Virtuoso 35% 100% 1002ms 59% 0: 36% 3: 76% 7: 91% 4.22
Mixed Qlever 68% 100% 1000ms 88% 0: 47% 3: 93% 7: 98% 2.76

Table 1: Query processing times and suggestion relevance for our three knowledge bases, four completion modes, and three
SPARQL engines. For each to-be-completed token, three AC queries were issued, for prefix lengths 0, 3, and 7. The column for
the MRR7 shows average results per AC query, and hence per prefix length. The percentages in the “Max” column indicate
the fraction of AC queries that timed out after 5s. For the MRR7 and KS7 those queries are treated as if the desired token
appeared at position ∞ and the number of keystrokes required is the length of the token name plus 1. Column “Sens” shows
the percentage of sensitive AC queries that did not time out. See Sections 5.2 - 5.4 for more details, and Section 5.5 for a
discussion. For an interactive exploration of the raw data behind this table, see the web app from the supplemental materials
available for this paper on http://ad.informatik.uni-freiburg.de/publications.

%subject% and %predicate%.
For our first example query from the introduction (female Oscar
winners), this yields 7 ·3 = 21 AC queries per mode. For our second
example query (Oscars of Meryl Streep and corresponding films),
this yields 6 · 3 = 18 AC queries per mode.

The agnostic and the unranked AC queries only filter precom-
puted ranked lists of entities and their names by the typed %pre-
fix%. As explained in Section 3.3, this could be done with a special-
purpose data structure. In our evaluation, we evaluate them with
QLever, which turns out to be sufficiently fast; see Table 1.

We set the timeout for all AC queries (for all knowledge bases
and all engines) to 5s. In mixed mode, we launch a sensitive query

and an agnostic query in parallel. If the sensitive query does not
finish within 1s, we take the result from the agnostic query. That
way, in mixed mode, we always obtain a result fast, it might just
not be sensitive.

In our evaluation, we took great care to get the best query times
for each engine, given its capabilities. We found that for some of
the AC queries, some engines produced suboptimal query plans,
leading to overly large processing times. To remedy this, we used
slightly different (but all equivalent) formulations of the AC queries
for each engine. The only exception: in the predicate AC queries,
we dropped the DISTINCT for Virtuoso and Blazegraph because
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almost all of their queries failed otherwise; see the running times
and explanations for Example 2 in Section 1.1.

The reader may wonder, why we did not evaluate AC queries
after each keystroke. We did this on purpose, for the following
reason: Ideally, a user does not have to type anything, and the
desired token is suggested highly ranked already for prefix length
0. But if the suggestions for prefix length 0 are not good, the user
needs an idea of what to type anyway and she might as well type a
few letters instead of just one. We chose 7 as a representative for
a prefix length that is not too long, yet should sufficiently narrow
down the search for most tokens.

5.4 Evaluation metrics
We evaluate both objectives from our definition in Section 1.1.

Efficiency: We report the percentage of AC queries that can be
processed faster than 0.2s (this feels close to instantaneous) and
faster than 1.0s (noticeable delay, but still acceptable). If no query
times out, we also report the maximum query time; otherwise, we
report the percentage of AC queries that timed out.

Relevance: We report the percentage of sensitive queries that did
not time out. For these queries, all suggestions are sensitive in
the sense of our definition from Section 1.1. Note that also an
agnostic or unranked query can contain some sensitive suggestions.
However, this is of limited value to a user if they don’t know which
suggestions are sensitive and which are not. What is important is
the rank of the desired token, which we evaluate as follows.

We assume that suggestions are shown on “pages” of 𝑘 sugges-
tions each. Ideally, the desired token is on the first page (which is
displayed after each keystroke). In our evaluation, we take 𝑘 = 7.
We use the following two metrics:

MRR𝒌 (mean reciprocal rank): For each AC query, the recipro-
cal rank is 1/𝑟 , when 𝑟 is the index of the suggestion page on which
the desired token occurs, that is, at a position in (𝑟 −1) ·𝑘 .. 𝑟 ·𝑘 −1,
with the first position being 0. We report the mean reciprocal rank
of all AC queries with a particular prefix length (0, 3, and 7). The
maximum value ofMRR7 is 100%; it is achieved when each token
appears on the first page.

Note that the reciprocal rank is a very natural measure in our
setting: we only have one relevant item and the “gain” for the user
indeed decreases sharply with the index of the page where the item
occurs. A user would rather continue typing instead of scrolling
down much further in the list of suggestions.

KS𝒌 (number of keystrokes): For each token, the number of
keystrokes is the minimal prefix length (out of 0, 3, and 7), for
which the token appears on the first page of suggestions. If it is not
on the first page even for prefix length 7, we take the number of
keystrokes for that token as the length of the name of the token
plus 1. This corresponds to typing the full name and indicating that
it is not a prefix, but the full name.

5.5 Main results and discussion
Table 1 summarizes our main results. It contains a lot of information,
whichwe tried to arrange as clearly as possible. Themain takeaways
are as follows. The table shows only results for those AC queries

for which the result is not already fully precomputed; these are
discussed separately at the end of this section.
Sensitive AC queries help relevance a lot. Compare theMRR7

of Agnostic and Sensitive using QLever on Wikidata. The values
at prefix length 0 are 6% vs. 50%. This shows that without typing
anything, the desired token is hardly ever on the first pages of
suggestions with Agnostic, but frequently on the first or second
page for Sensitive. This case is particularly important because if you
have to type something, then you already need an idea what you
are looking for. In Section 1.1, Example 3 showed a typical situation,
where it is very hard to guess even the first few letters of the desired
token. After typing three letters, the result is almost always on the
first page for Sensitive, and Agnostic is also becoming better.

We also see a clear difference in the KS7, that is, with Sensitive
a user has to type considerably less to get the desired token on the
first page of suggestions. However, we consider theMRR7 broken
down by prefix length to be the more important and insightful
measure. The results on the smaller knowledge bases are similar,
though the difference is less dramatic.
Sensitive AC queries are feasible with QLever, but often fail
with Virtuoso and Blazegraph. Even on the very large Wikidata,
QLever can provide 90% of the sensitive suggestions in under a
second, and 71% under 200ms. Only few AC queries time out after
5s onWikidata, and hardly any on the smaller knowledge bases. On
Wikidata, two thirds of the timed out AC queries are object queries
involving predicate paths with huge intermediate results. The most
frequently occurring iswdt:P31/wdt:P279* (“instance of” followed by
one or more “subclass of”), which matches 1.5B triples. In Section
6, we discuss an ad-hoc fix for this problem. For our evaluation, we
explicitly wanted an approach with minimal configuration and no
ad-hoc adjustments.

For Virtuoso, a quarter of the AC queries time out. For Blaze-
graph, over half of the AC queries time out and hardly any are
fast. For the smaller knowledge bases, QLever has practically no
timeouts, but Virtuoso and Blazegraph still have many. Note that
5s is a rather generous timeout: users hardly want to wait that long
for a suggestion in an interactive scenario. In our own experience,
usage becomes annoying if you have to wait beyond 1s.
Agnostic AC queries are always fast; relevance is bad for pre-
fix length 0 but quite good for longer prefix lengths. All ag-
nostic AC queries can be processed in well under one second. This
is not surprising, since the results are essentially precomputed. The
only non-trivial work to do at query time is to filter the precom-
puted results by the prefix typed. As explained in Section 3.3, this
could also be achieved with a special-purpose data structure. But it
is nice that we don’t need such a data structure, but can just use
our SPARQL engine for it.

For an agnostic AC query with prefix length 0, the desired token
will be rarely among the top suggestions because of the complete
lack of contextual information. But a prefix length of 3 or even 7 is
often enough to restrict the suggestions sufficiently, even without
%context%. This is important in order to understand the results
for the mixed AC queries, discussed below.

Virtuoso and Blazegraph both perform very poorly for agnostic
AC queries, which is why we do not report them in Table 1. The
reason is that both engines handle prefix searches on large lists of
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strings very inefficiently. See the discussion and running time in
Example 1 in Section 1.1 and in Section 4.3.
Mixed AC queries are a good compromise between sensitiv-
ity and performanceMixed always produces a result within 1s
and so never times out. The reasons is that agnostic AC queries
can always be processed in under 1s. Mixed is therefore a perfect
solution with respect to efficiency.

The MRR7 of Mixed for the important prefix-length-0 case
comes very close to theMRR7 for Sensitive. For prefix lengths 3
and 7, Mixed is even better, the difference being larger for Virtuoso
and Blazegraph. The reason is that when the sensitive AC query
times out, the reciprocal rank (RR) for Sensitive is 0 because we
don’t have any suggestions. With Agnostic, we get at least some
suggestions. As discussed for Agnostic above, these suggestions are
not very good for prefix length 0, but quite good for prefix lengths
3 and 7. For prefix length 0, theMRR7 of Mixed is worse than that
of Sensitive because of the smaller timeout (1s instead of 5s).

A downside of Mixed is that for the agnostic suggestions, even
when they are good, the user does not know if they are good. A
user interface could indicate this fact by showing suggestions from
agnostic queries in a different color or with some other visual
marker. On Wikidata using QLever, 88% of the mixed AC queries
are sensitive. Note that the number is smaller than in the Sensitive
row because of the smaller timeout.
Unranked AC queries perform very poorly on large knowl-
edge bases. Recall that the suggestions of Unranked are the same
as those of Agnostic, but without ranking them by score. We include
this mode in our evaluation to show how important ranking is. On
Wikidata, even for a prefix length of 3, the relevance of Unranked
is very poor (MRR7 = 8%). For a prefix length of 7, the MRR7

rises to 53%, but it’s still much worse than the 92% of Agnostic.
Note that ranking for sensitive autocompletion is mainly an effi-
ciency problem: often very large amounts of suggestions have to be
computed and sorted. In some of the previous work we discussed,
ranking was omitted due to this reason; see Section 2.
Results for AC queries without context. Table 1 does not in-
clude predicate AC queries with a variable %subject% and empty
%context% or for subject AC queries. The reason is that the sug-
gestions for these queries are exactly the results of our building
blocks %predicates% and %entities%, which we precompute once
and then pin to the cache. These queries can hence be processed
just as fast as the agnostic AC queries.

There are 112 such tokens for Fbeasy, 132 for Freebase, and
363 for Wikidata; so about one fourth of all tokens for Fbeasy and
Freebase, and one fifth for Wikidata (each token corresponds to
three AC queries, one for each prefix length). The averageMRR7

per prefix length (0-3-7) for these AC queries are: 59%-95%-99%
for Fbeasy, 52%-97%-99% for Freebase, and 21%-78%-95% for
Wikidata. The KS7 results are: 1.94 for Fbeasy, 1.90 for Freebase,
5.00 for Wikidata.

TheseMRR7 andKS7 results (without context) are significantly
better than for the agnostic queries in Table 1 (with context). There
are two reasons for this. First, most of the AC queries without con-
text are predicate suggestions, and there are much fewer predicates
than entities, so that it is easier to have a desired predicate highly
ranked. Second, the predicates in a SPARQL query that have no

context are often frequent predicates, like <is_a> on Fbeasy or
wdt:P31 (instance of) on Wikidata.

6 CONCLUSIONS
We showed how to perform context-sensitive SPARQL autocomple-
tion with very good relevance and efficiency, for a large variety of
queries on three different knowledge bases. All suggestions were
themselves provided via SPARQL queries, on the same knowledge
base on which we want to construct SPARQL queries with the aid
of autocompletion. That way, our scheme can be used with any
(standard-conforming) SPARQL engine.

We showed that on very large knowledge bases (like Wikidata),
many autocompletion queries are hard for existing SPARQL en-
gines. We showed two ways out. First, we showed how to extend
an existing open-source SPARQL engine to deal with most of these
hard queries efficiently. Second, we introduced a mixed mode that
sacrifices context-sensitivity for efficiency. Here are some interest-
ing directions for future work:
1. An obvious next step is to implement a user interface based on
the autocompletion mechanism described in this paper. Such a user
interface would also have to implement various syntactic sugges-
tions; see Section 1.2. While this is straightforward algorithmically,
it poses various challenge from a UX perspective.
2. Our pattern preprocessing, described in Section 4.2, goes a long
way towards providing predicate suggestions in interactive time.
There is still room for improvement, however. Especially on Wiki-
data, there are large groups of entities, which have very similar but
not exactly equal patterns. If we could identify these groups, we
would have even fewer patterns and could store for each entity the
common pattern and its small difference to that pattern. This has
the potential to speed up predicate suggestions further.
3. Our autocompletion is a fantastic help for finding the individual
IRIs in a SPARQL query. However, for some SPARQL queries, it can
be hard to know in advance which information is represented as a
predicate and which information is represented as an object in the
knowledge base. For example, when looking for US presidents in
Wikidata, the right predicate is wd:P39 (position held) and the right
object is wd:Q11696 (President of the US). But the predicate might
as well have been wdt:P31 (instance of) or the information about
the job title could have been split over two triples (being president
and of which country). A more intelligent autocompletion might
provide suggestions for both predicates and objects and figure out
automatically where to place them in the query.
4. Among the remaining very hard AC queries in our evaluation
are queries involving predicate paths like wdt:P31/wdt:P279* (in-
stance of, subclass of). A simple ad-hoc fix for this problem is as
follows: Identify all predicates in the knowledge base, which can
meaningfully form such chains. Wikidata even provides a dedi-
cated predicate (wdt:P6609, named “value hierarchy property”) for
this (for example, it connects wdt:P31 with wdt:P279, and wdt:P279
with itself). For each of these paths, precompute the objects or-
dered by frequency. These queries are hard to compute, but the
result size is on the same order as for our %entities% query. For
the corresponding AC query, then show the precomputed result.
This is not fully sensitive, but close to it: for example, in the case of
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wdt:P31/wdt:P279*, only “types” are suggested, instead of entities
that obviously make no sense as objects of this predicate path.
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