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Abstract

We consider multicriteria shortest path problems and
show that contraction hierarchies – a very powerful
speed-up technique originally developed for standard
shortest path queries in [7] – can be constructed ef-
ficiently for the case of arbitrary conic combinations
of the edge costs. This extends previous results in
[5] which considered only the bicriteria case and dis-
crete weights for the objective functions. On the theory
side we prove a polynomial time bound for determining
whether a path π is part of the lower envelope of all
pareto-optimal paths via some polyhedral arguments.
Experiments complement these results by showing the
practicability of our approach.

1 Introduction

In many routing applications the objective cannot be
described sufficiently by only a single weight on the
edges. For example, a driver is certainly keen on
reaching his destination as quickly as possible, but
he might be also interested in keeping the fuel costs
low (see Figure 1 for an illustration). Similarly, when
planning a bicycle trip one is not only interested in the
length of the trip but also wants to avoid steep climbs.
Most of the time we have conflicting objectives, that is,
minimizing both values (e.g. travel time and fuel costs,
or distance and positive height difference) at the same
time is impossible. Therefore one either aims for a fair
trade-off of both values or searches for the path which
minimizes one of the values but does not exceed a given
bound on the other.

In the first case we typically ask for the minimum
cost path for a conic combination of the edge costs,
i.e. given a (di)graph G(V,E) and edge weights c1, c2 :
E → R+ the optimal path p = s, · · · , t for given
α, β ∈ R+ is the one minimizing

∑
e∈p(αc1(e)+βc2(e)).

We call this problem the conic combination shortest path
(CCSP) problem. If the coefficients α, β are known
beforehand, the problem reduces to the single edge
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Figure 1: Alternative paths in the Saarland graph: The
purple path is optimal in terms of travel time (37min),
but has the highest fuel costs (e 4.61). The black path
has minimal fuel costs (e 3.81), but needs time 44min.
The red path is a fair trade-off with costs e 3.87 and a
travel time of 40min.

weight case and all available algorithms and speed-
up techniques for this scenario apply as well. If the
conic combination is revealed at query time only, still
Dijkstra’s algorithm can be applied in a straightforward
manner. In larger (street) graphs plain Dijkstra is too
slow for most applications, though. Hence – like for
conventional shortest path computations – developing
preprocessing techniques to speed up query times seems
worthwhile. For conic combinations of edge costs this
was considered first in [5]. They present a variant of
the speed-up technique Contraction Hierarchies (CH)[7]
to accelerate query processing. Their approach has
some limitations, though: They can only compute paths
optimal for

∑
e∈p(c1(e) + γc2(e)) with integral γ in a

prespecified interval [L,U ]. Of course, choosing the
interval large enough the restriction to discrete values
appears neglectable. The interval size influences the
runtime of the preprocessing, though, hence especially
for large street networks U has to be small to allow for
reasonable preprocessing times. Moreover the authors
combine CH with other approaches like landmarks [9]



to achieve the reported overall speed-up. It is unclear
how the choice of L and U influences the performance
of their combined algorithm. So far, they only consider
the combination of two edge weights.

In the second case – minimizing one metric while
putting a limit on the other – we are faced with an in-
stance of the constrained shortest path (CSP) problem,
which is NP-hard in general. An adaption of CH for
this scenario was presented in [12]. It was shown that
both query time and space consumption can be signifi-
cantly reduced when employing a variant of CH. While
it turns out that even for street graphs with millions
of nodes and edges, the optimal solution can be com-
puted within reasonable time (a few seconds), the query
times are still far from the millisecond range that can be
achieved for ordinary shortest path queries. Hence it is
worthwhile to aim for an approximate solution, e.g. by
applying binary search [11]. There, a sequence of CCSP
queries with varying conic combinations quickly lead to
good approximate solutions for the CSP problem. So
speeding up CCSP queries provides us automatically
with faster algorithms for obtaining approximate CSP
solutions.

1.1 Related Work All of the above query variants
can be solved by constructing the set of pareto-optimal
paths (a path is pareto-optimal, if all other paths are
worse according to at least one of the objectives).
One approach to compute this set was presented in
[4]. The authors call their method Pareto-SHARC, as
it is a combination of shortcut insertion (one of the
crucial ingredients for CH construction) and arc-flags
[10]. Unfortunately, their approach is only practically
feasible for a moderate number of pareto-optimal paths
between source and target. In general, exploring the
complete set of pareto-optimal paths seems not really
practical.
Other notions of flexibility were considered e.g. in the
context of computing alternative routes [1] or taking
into account edge restrictions (like avoiding interstates),
[6]. They seem somewhat orthogonal to the view taken
in this paper. There exist various speed-up techniques
besides CH for the conventional shortest path problem
– like transit nodes [3] or reach [8] – that might be
useful to accelerate query processing. As shown in
[5] and [12], even when considering more than one
metric street networks maintain a certain hierarchical
structure. Hence there is good reason to hope for
improved query times when adapting one of these speed-
up approaches also in the multicriteria case.

1.2 Contribution The contributions of this paper
are the following: We refine and enhance the adapta-

tion of the CH preprocessing techniques such that not
only bicriteria objectives, but also multicriteria objec-
tives with arbitrary weight coefficients in R+ can be
considered. More on the theoretical side we prove via
some polyhedral considerations that deciding whether
a shortcut is necessary can be decided in polynomial
time; this is not obvious as the number of paths on
the boundary of the convex hull of the pareto-optimal
solutions might be exponential in general. Our results
are complemented with experimental results which show
that our approaches work well also on real-world data.

2 Preliminaries

The Constrained Shortest Path problem (CSP) for two
dimensions/metrics is characterized as follows: We are
given a (di)graph G(V,E) (|V | = n, |E| = m), a cost
function c : E → R+ and a resource consumption
function r : E → R+ on the edges. A query is specified
by source and target nodes s, t ∈ V as well as a resource
bound R ∈ R+. The goal is to determine the minimum
cost path from s to t whose resource consumption does
not exceed R. Such a path is always pareto-optimal,
i.e., no other path p′ exists with lower costs and lower
resource consumption. The set of all pareto-optimal
paths between a source and a target node equals the
set of all optimal CSP solutions (for different resource
bounds).
Exact algorithms like label setting [2] explore the set
of pareto optimal paths in search for the best path
satisfying the resource constraint – a very time- and
space-intensive procedure. In an application context,
one is often satisfied with an approximate solution which
can be found more quickly. A common idea here is
to consider only a subset of all pareto-optimal paths,
namely the ones forming the so called lower envelope.
The lower envelope can be illustrated as follows: For
any path p let c(p) be the respective costs and r(p)
the resource value. Each tuple (c(p), r(p)) can be
represented as a line segment

λc(p) + (1− λ)r(p), λ ∈ [0, 1].

An s-t-path p lies on the lower envelope, if there exists a
λ ∈ [0, 1] for which λc(p)+(1−λ)r(p) is minimal among
all s-t-paths (see Figure 2). Paths on the lower envelope
have the advantage of being easily computable for fixed
λ with a simple Dijkstra run in G(V,E) with edge costs
λc(e) + (1 − λ)r(e) (we refer to the respective graph
also as Gλ). Note that for any conic combination with
parameters α, β ∈ R there exists a value for λ that leads
to the same minimum cost path, namely λ = α/(α+β).
So the paths on the lower envelope are exactly the
ones we are interested in when answering CCSP queries.
Another common view of the same problem is in the r-c
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Figure 2: The lower envelope (dashed red) is formed
by the three black line segments. The blue line also
represents a pareto-optimal path but is not part of the
hull. The path corresponding to the green line is not
pareto-optimal.

plane where each path is represented by a point in R2

(according to its resource and cost values) and the paths
on the lower envelope are exactly the ones that lie on
the lower left boundary of the convex hull of all paths.
The binary search algorithm provides approximate CSP
solutions by iterating over the slopes on paths on the
lower envelope. Here, all edge cost values must be
positive, discrete and bounded by some constant M .
As shown in [11] this provides a lower bound of 1/(n2M2)

on the difference of any two distinct slopes. Hence the
binary search algorithm (see Alg. 1) terminates after
O(log(nM)) rounds which is polynomial in the input.

Algorithm 1 Binary Search
s1 ← 0
s2 ← nM
while s2 − s1 > 1/n2M2 do
s← (s2−s1)/2
compute optimal path p for edge costs w1 + s · w2

if r(p) = R then
break

end if
if r(p) < R then
s2 ← s

else
s1 ← s

end if
end while

The CSP problem can be generalized to higher
dimensions by assigning multiple resource values to the
edges and revealing bounds for each of these on query
time. Details for this scenario will be given along with
the respective CH construction in Section 4.
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Figure 3: Node contraction step: When removing the
red node, all paths on the LE between the remaining
nodes have to be preserved. In the upper example the
reference path (black) is pareto-optimal, but not on the
LE as the blue and the green path form together a wit-
ness. Hence the respective shortcut can be omitted. In
the lower image the reference path must be shortcutted
(realized by the purple edge).



Contraction Hierarchies (CH) This speed-up tech-
nique for shortest path computations was introduced in
[7]. It is based on the augmentation of the graph with
shortcuts that allow to disregard a lot of edges at query
time.
To that end, in a preprocessing phase nodes are sorted
according to some notion of importance. Afterwards the
nodes are removed/contracted one by one in that order,
while preserving all shortest path distances in the re-
maining graph by inserting additional edges (so called
shortcuts). More precisely, when contracting a node v
for every path uvw the distance from u to w must re-
main the same even after contraction of v. Hence the
edge e = (u,w) has to be added if the only shortest path
from u to w is uvw. The cost of e equals the chained
costs of the edges (u, v) and (v, w). If there exists a path
with cost less than the cost of uvw – a so called witness
path – the shortcut can be omitted. Such a witness path
is typically found via a Dijkstra run from u to w. After
all nodes have been removed, a new graph G′ is created
consisting of all nodes and edges of the original graph
and all shortcuts. An edge e = (v, w) (original or short-
cut) is called upwards if the importance of v is smaller
than that of w and downwards otherwise. In G′ for ev-
ery pair of nodes s and t there exists a shortest path
from s to t that can be subdivided into an upward and
a downward path (in that order). Therefore s-t-queries
can be answered bidirectionally, with the forward run
(starting at s) considering only upward outgoing edges
and the backward run (starting at t) considering exclu-
sively downward incoming edges.

Note that the contraction process does not have to
be completed to the end to ensure correctness. Instead
we can abort the process at any point in time and
assign an importance value of ∞ to all uncontracted
nodes. Declaring all edges between such uncontracted
nodes both up- and downwards maintains the upwards-
downwards characteristic of optimal paths and allows
for the application of bidirectional Dijkstra in the CH-
graph. Incomplete contraction is often used to limit
the total number of inserted shortcuts and will come in
handy for our application on real-world data later on.

For our scenario with conic combinations of the
metrics, we have to make sure that during the contrac-
tion process all paths on the lower envelope are pre-
served (see Figure 3 for two small examples). In the
following we will provide efficient witness search proce-
dures for d ≥ 2 with d denoting the number of edge
weights to consider.

3 The 2-dimensional Case

In this section we present a CH construction scheme
that allows for answering CCSP queries with two met-

rics on each edge. In particular this means that a ref-
erence path π = u, v, w with costs c(p) and resource
value r(p) has to be preserved (by a shortcut), if there
exists a λ-value in [0, 1] for which π has minimal costs
in Gλ. Therefore the only way to omit the shortcut is
identifying a set of alternative u − w-paths p1, · · · , pt
with their lower envelope being below π. A naive way
to search for such a family of witnesses is selecting a
set of λ-values (e.g. randomly or equally distributed
over [0, 1]) λ1, · · · , λt, compute the respective optimal
paths pλ in Gλ via a single Dijkstra run each and check
if the resulting collection of paths expells π from the
lower envelope. While being easy to implement, this ap-
proach suffers from several disadvantages: On one hand
many λ support values might lead to the same path,
hence spending time on redundant computations. On
the other hand – and much more severe – if the lower
envelope of p1, · · · , pt is not below π, we don’t know
whether the shortcut is necessary or can be omitted. To
guarantee exact query results no essential shortcut can
be left out, hence in that case the shortcut has to be in-
serted or additional λ-values have to be tested. Adding
too many (superfluous) shortcuts slows down both pre-
processing time and query processing later on, hence
should be avoided if possible. Requesting new λ-paths
as long as the result is inconclusive might become very
time intensive. We now describe an approach, that over-
comes both of these disadvantages. In fact our witness
search procedure also relies on choosing some suitable λ
values, but we will describe a way to select these values
carefully such that

• every new λ-value leads to the discovery of a new
path on the lower envelope,

• after termination we can certify whether the short-
cut is needed or not,

• the overall runtime is polynomial in the input size.

3.1 Witness Search The basic idea of our approach
is somewhat similar to the binary search algorithm, as
in every step we will at least halve the interval for the
relevant parameter. However in contrast to conventional
binary search, we don’t want to compute a certain path
on the lower envelope (LE) but want to check if our
reference path π = u, v, w is part of the LE or not.
To that end we start with λ = 0.5 and compute the
respective optimal path p0.5. If π = p0.5 we know that
π is contained in the LE and therefore the shortcut
is necessary. If instead p0.5 dominates π, we found a
witness consisting of a single path. Hence the shortcut
can be omitted for sure. In both of these cases the
witness search is already conclusive and we are done.
If neither of the cases applies, there must exist an



intersection point of the line segments representing π
and p0.5 for some λ ∈ [0, 1]. Accordingly we can split
the interval I = [0, 1] in two continuous subintervals
I1, I2 with I1 representing the λ-values for which the
segment of p0.5 lies below the one of π and vice versa
in I2. For any λ ∈ I1 we already know that π will not
be the minimum cost path, as p0.5 dominates π in this
interval. Hence it is sufficient to continue the witness
search in I2 only. Observe that I2 cannot cover more
than the half of I, because at λ = 0.5 the path p0.5 is
below π for sure. Now we can repeat this procedure
by selecting the new λ support point as the center of
the interval I2, see the pseudocode in Algorithm 2. So
the procedure always maintains an interval in which the
reference path is still ’alive’, i.e. is below all previously
identified paths. If this interval runs empty the shortcut
is not necessary because π is not part of the LE. If
π ∈LE, the search will go on until we find a λ value that
reveals this (see Figure 4 for an example). Therefore our
search procedure always provides a conclusive result.

Algorithm 2 Witness Search

input: π = u, v, w reference path
output: TRUE or FALSE
(insert shortcut (u,w) or not)

low ← 0
upp← 1
while TRUE do
λ← (upp+ low)/2

get optimal λ− path pλ = u, · · · , w
via a Dijkstra run in Gλ

if π = pλ then
return TRUE

end if
if π is dominated by pλ then

return FALSE
end if

λ′ ← r(pλ)− r(π)

c(π)− r(π)− c(pλ) + r(pλ)
if λ′ /∈ [low, upp] then

return FALSE
end if
if r(π) > r(pλ) then
low ← λ′

else
upp← λ′

end if
end while

It remains to show that our witness search algo-
rithm terminates in a polynomial number of iterations.
For that purpose we prove that two distinct corner
points of the LE (i.e. intersection points of paths on

Figure 4: Example for our witness search procedure.
The reference path π is given in blue. The green
box indicates the remaining interval in which the blue
segment might still be part of the lower envelope (LE).
The brown cross denotes which path on the LE is
optimal for the actual λ-value (red dashed line). The
purple cross represents the intersection point with π and
therefore the new interval boundary. In the last image
the blue path is identified as optimal and therefore
proven to be on the LE.



the LE) have a certain minimal distance. Therefore we
can abort the process (and insert the shortcut) as soon
as the interval covers a range smaller than twice this
distance. Like for the binary search algorithm, we as-
sume that all cost/ resource values are positive integers
and bounded by M = maxe∈E max(c(e), r(e)). Let p be
a path on the LE and p′, p′′ two other paths on the LE
which both form corner points with p. The line (seg-
ment) representing p (and analogue for p′, p′′) can be
described by

y(λ) = λ(c(p))− r(p)) + r(p).

Accordingly the λ-values for the intersection points are
given by

λ =
r(p′)− r(p)

c(p)− r(p)− c(p′) + r(p′)

(similar for p′′). As for p′′ the cost and the resource
value must differ by at least δ, ε ≥ 1 from the values
corresponding to p′ (as they are integers), the difference
of the two λ values can be expressed as

±εω + (±δ ± ε)(r(p′)− r(p))
ω2 + (±δ ± ε) · ω

with

ω = c(p)− r(p)− c(p′) + r(p′).

Clearly the numerator must be ≥ 1, while the denom-
inator is bounded in O(M2n2) as Mn represents the
maximal possible cost /resource consumption of a path.
Hence the difference between the λ-values of any two

corners is bounded in Ω

(
1

n2M2

)
. As the interval in

which the reference path π is ’alive’ gets at least halved
in every iteration, we will reach this lower bound in a
logarithmic number of rounds. As each round requires
the computational effort of a Dijkstra run, we end up
with a total runtime of O(log(nM)(n log n+m)).

4 From Bicriteria to Multicriteria Shortest
Paths

In the general, multicriteria constrained shortest path
(CSP) problem each edge e bears a cost ce and re-
source consumptions r1e , r

2
e , . . . , r

d−1
e ; the CSP prob-

lem is to find for given source and target s, t a path
π = v0v1 . . . vk with v0 = s to vk = t and edges
ei = (vi, vi+1) which minimizes the cost

∑k−1
i=0 cei of

the path while satisfying d− 1 resource constraints:

k−1∑
i=0

rjei ≤ Rj

that is, the added resource consumptions of the jth
resource along the path should not exceed Rj .

The CSP problem is known to be NP-hard in
general, and known exact solutions (like the standard
dynamic programming approach) essentially optimize
over all pareto-optimal paths. Not surprisingly, only
pseudo-polynomial bounds are known for the number
of pareto-optimal paths that need to be examined.

For that reason we drop the hard resource con-
straints and instead optimize a conic combination of
cost and resource consumptions. This boils down to
optimizing over a subset of all pareto-optimal solutions
– namely the solutions on the boundary of the convex
hull of all solutions (in Rd where each path is repre-
sented by its cost and resource consumptions). A path
π = e1, e2, . . . ek is on the boundary of the convex hull
of all pareto-optimal solutions if there exist λ1, . . . λd−1
with

∑
λi ≤ 1 such that∑

e∈π
cost(e) ≤

∑
e∈π′

cost(e)

for all other paths π′. Here

cost(e) = (1−
∑
i

λi)ce +
∑
i

λir
i
e

represents the aggregated weight of the edge costs and
resource consumptions for a conic combination given
by the λi’s. Intuitively speaking, a path π is on
the boundary of the convex hull of all pareto-optimal
paths if there exist λi’s such that it is optimal under
this aggregated weighting of edge cost and resource
consumption.

In the respective dual view, each path π with cost cπ
and respective resource consumptions riπ, i = 1, . . . , (d−
1) corresponds to a hyperplane

hπ : y = (1−
∑

λi)cπ +
∑

(λir
i
π)

in Rd. For example for d = 3 a path π with cost cπ and
resource consumptions r1π, r

2
π determines a plane

hπ : y = (1− λ1 − λ2)cπ + λ1r
1
π + λr2π

in R3. When does a path π lie on the boundary
of the convex hull of the pareto-optimal solutions?
Consider all possible paths from s to t and their
respective hyperplanes. A path π lies on the boundary
of the convex hull of the pareto-optimal solutions iff
its respective plane bounds the lower envelope of the
hyperplanes (in fact the two view considered here are
dual to each other).

In the following we will device a method to decide in
polynomial time whether the hyperplane corresponding



to a given path π bounds the lower envelope of the
hyperplanes of all paths. Note that this seems non-
trivial as in general superpolynomially many paths
might appear on the boundary of the lower envelope.

The high-level idea of our proof is as follows: we first
show that vertices in this arrangement of hyperplanes
have a certain minimum pairwise distance. This can
be used to derive a lower bound on the hypervolume of
facets of the lower envelope. As our algorithm decreases
the hypervolume of the facet corresponding to the path
π on the lower convex hull by a constant factor in
each round, polynomially many rounds suffice to decide
whether π bounds the lower envelope.

4.1 Bounding facet hypervolumes in the ar-
rangement of hyperplanes Let us assume that both
cost ce as well as resource consumptions rje of an edge
are integers in the range [0, . . . ,M ].

We first want to show that vertices (i.e. points of
intersection of ≥ d hyperplanes) in this arrangement
of hyperplanes have a certain minimum distance. A
vertex is the solution of a system Ax = b of d linear
equations corresponding to the respective hyperplanes.
The i-th coordinate of such a vertex can be computed

according to Cramer’s rule as xi = det(Ai)
det(A) where Ai

is formed by replacing the i-th column vector of A
by b. Under the assumption that costs and resource
consumptions are bounded by M for each edge, the
respective costs/consumptions for a given path are
bounded by nM . Hence, if two vertices differ in the

i-th coordinate, they differ by at least Ω
(

1
(nM)d

)
.

A non-degenerate, d − 1 dimensional facet of
the lower envelope hence has a hypervolume of

Ω
(

1
(nM)(d−1)2 ·(d−1)!

)
. Our goal is to check whether a

d − 1-dimensional hyperplane corresponding to a path
π supports a facet of the lower envelope. The facet
hπ corresponding to π can have hypervolume at most
O(nM) (ignoring all other paths/hyperplanes) as the
λi are restricted to [0, 1]. So if we can guarantee
that the hypervolume of the facet hπ decreases by a
constant factor 1/α in each round of our algorithm,

O(logα(nM)d
2

(d− 1)!) = O(d2 logα(nMd)) rounds suf-
fice. We will exhibit how to decrease the hypervolume
of the respective facet by this constant factor in the fol-
lowing.

4.2 Cutting facets into not too large pieces
Given the facet fπ corresponding to path π in the lower
envelope of a subset of all paths, we want to certify
that either (a) fπ appears on the lower envelope even
when all other paths are considered or (b) find a path
π′ whose corresponding hyperplane cuts off at least a

constant fraction of fπ’s hypervolume. Certifying (a) is
naturally achieved by exhibiting λi’s which make π an
optimal path under the respective aggregated weight.
Certifying (b) could for example achieved by choosing
appropriate λi’s such that the hyperplane of the path
corresponding to that choice of the λi’s cuts fπ into two
pieces of comparable size.

In the following we will work towards this goal in
several steps; first we show that any d − 1 dimensional
facet contains a simplex of comparable hypervolume.
Then we choose λ′i’s such that the hyperplane of the
optimum path for these λ′i divides the inscribed simplex
into two pieces, none of which is too small.

h

P

pj

pi

pk

T

R

Figure 5: Illustration of Theorem 4.1 for d = 3. In
this image pi, pj are the corner points of the convex
polygon P with maximum pairwise distance. The point
pk is the corner point of P1 which has a maximum
orthogonal distance towards pipj . The gray rectangle
R contains P , the triangle T has area exactly 1/4 of R
and hence also at least 1/4 of the area of P . Combined
with Theorem 4.2 we can guarantee that any half-plane
with the centroid of the triangle (orange dot) on the
boundary contains at least a third of the triangle’s area
and 1/12 of the area of P .

4.2.1 Inscribing a Simplex in a Polytope Given
a d−1-dimensional polytope P = p1, · · · , pk, we aim for
inscribing a simplex S with a hypervolume of at least
a constant fraction of the hypervolume of P . To that
end we construct not only a simplex S ⊆ P but also a
(d−1)-orthotope (a higher dimensional rectangular box)
R such that P ⊆ R and HV (S) = Ω(HV (R)) which
implies that HV (S) = Ω(HV (P )) by the following



greedy approach:
Let q1, q2 be the two vertices of P of maximum pair-

wise distance. They define a 2-dimensional simplex S(2)

and two walls of R namely the hyperplanes orthogonal
to −−→q1q2. Clearly, P is contained between these two hy-
perplanes. In the next step we construct S(3) by select-
ing q3 as the corner of P with maximum distance to the
affine hull of S(2). Let m(3) be the point in the affine
hull of S(2) such that −−→mq3 is orthogonal to the affine hull
of S(2). The next two walls of R are on one side the hy-
perplane through q3 orthogonal to −−→mq3 and on the other
side the same hyperplane mirrored at the affine hull of
S(2). Again, P is clearly contained between these two
walls . We continue this process and finally construct
S = S(d−1) and having collected all 2(d−1) walls of the
d− 1-orthotope R (see Figure 5 for an example in three
dimensions).
Obviously, it holds that

S(d−1) ⊆ P ⊆ R

and furthermore

HV (S) =
HV (R′)

(d− 1!)

where R′ is the d − 1-orthotope R with each of its
dimensions halved. We also have

HV (R′) =
1

2d−1
HV (R).

Theorem 4.1 follows immediately:

Theorem 4.1. Let P be a (d-1)-dimensional polytope
and S = q1, · · · , qd−1 the inscribed d − 1-simplex de-
rived by the algorithm described above; then we have

HV (S) ≥ HV (P )

(d− 1)!2d−1
.

4.2.2 Cutting a Simplex In R2, a median of a tri-
angle is a segment connecting a corner to the midpoint
of its opposing side. The three medians of a triangle
intersect in a common point, its centroid. In Rd the
centroid of a d-simplex is the intersection point of the
segments connecting a corner with the the centroid of its
opposite, d − 1-dimensional face. The following simple
theorem will prove useful for us later on:

Theorem 4.2. Let S be a d-simplex, C its centroid and
H an arbitrary d−1 dimensional hyperplane containing
C. Then H subdivides S into two d-dimensional poly-
topes with each of them having a hypervolume of at least
HV (S)

d2
.

Proof. Let us look at the 2-dimensional case first. Here,
the medians Aa, Bb, Cc intersect in the centroid M ,

CA

B

M

c a

b

Figure 6: Medians and centroid of a triangle in R2.
a, b, c are the midpoints of the respective edges, the
medians Aa,Bb,Cc intersect in the centroid. Aa,Bb,Cc
are all divided by the centroid into two pieces of ratio
1 : 2.

furthermore each of the medians is split by M with ratio
1 : 2. Hence, the areas of the triangles ∆ABM and
∆ABC also behave like 1 : 2; so each triangle formed
by an edge of the triangle and the centroid has exactly
1/3 of the area of the whole triangle. See Figure 6 for
an illustration. Note that the medians also partition
the triangle into 6 triangles of equal size. Now consider
any hyperplane l (line) in R2 passing through M ; l must
have at least 2 of the 6 triangles on either side, hence
l subdivdes the triangle into two pieces, each of which
have area at least 1/3 of the whole triangle.

In d dimensions, the centroid M of a d-simplex
Σ divides its medians in a ratio 1 : d. So each d-
dimensional simplex which is formed by a face of Σ and
M has a hypervolume of 1/d of the total hypervolume
of the original d-simplex. Consider the opposing
(d− 1)-dimensional face of a corner P of the d-simplex.
Its centroid partitions it into d many (d − 1)-simplices
of equal hypervolume. Each of them together with
the centroid M of the original d-simplex forms a small
d-simplex of hypervolume exactly 1

d(d+1) of the original

d-simplex. Any hyperplane through M must have at
least one corner of Σ on either side. We claim that any
hyperplane through M cannot intersect the interior
of all the small d-simplices (of hypervolume 1

d(d+1) )

adjacent to a corner P . Assume the opposite, then
this hyperplane must properly intersect the interior
of segment MP which contradicts that fact that this
hyperplane passes through M . The theorem follows.

How could this theorem help in decreasing the
hypervolume of a facet fπ corresponding to a path π?
We choose the λi’s such that the hyperplane of the
optimal path π′ for this choice of the λi intersects the
centroid of the inscribed simplex in fπ or lies below.
The shortest path computation for these weights either
certifies that π appears as a facet on the lower envelope
or another path π′ is exhibited which cuts off at least
1/d2 of the simplex S inscribed in fπ and hence at least
1/(dd!2d) of the facet fpi.



4.3 Algorithm Let us summarize the algorithm for
larger, but fixed dimension d in the following. We are
given a path π of cost cπ and resource consumptions rjπ
and are interested whether for some choice of the λi’s
the hyperplane corresponding to π is on the boundary of
the lower envelope of all paths. We consider the path π
in the d-dimensional space spanned by λ1, . . . , λd−1 and
the aggregated weight. Since the λi are non-negative
and restricted to sum up to 1 at most, the relevant facet
fπ of the lower envelope can be explicitly computed. We
then proceed as follows:

1. construct the inscribed simplex Sfπ for fπ

2. construct the centroid of Sfπ

3. use the first d − 1 coordinates of the centroid to
determine λi values

4. compute the optimal s− t-path π′ under edge costs
weighted according to the λi

5. if π′ = π report π to be part of the lower en-
velope/boundary of the convex hull of all pareto-
optimal solutions and exit

6. otherwise intersect the facet fπ with the halfspace
below the hyperplane hπ′ corresponding to π′ to
obtain the new facet fπ

7. if fπ disappears, report π not to be part of the
convex hull of all pareto-optimal solutions and exit,
otherwise go to step 1.

In Figure 7 the initial steps for d = 2 and d = 3 are
illustrated for comparison.

According to our discussion, the hypervolume of
the initial facet is bounded and decreased by a con-
stant factor in each round, hence the total number of
iterations is O(d2 logα(nMd)) for α = 1 − (1/(dd!2d))
and therefore polynomially bounded (for constant d).
The runtime of a single iteration step is determined
by a Dijkstra run to compute the optimal plane for a
given λ (vector) and the computation of the corners
of the new facet in which the reference plane is still
’alive’. With k being the number of hyperplanes iden-
tified so far (including the one corresponding to π) a
naive way to perform this computation is to construct
all
(
k
d

)
corners in the arrangement of these hyperplanes.

The hyperplane hπ corresponding to π ist still part of
the lower envelope iff a corner involving hπ lies below
or on all other hyperplanes. The corners of facet fπ
are exactly the corners involving hπ which are below
or on all other hyperplanes. Each corner can be com-
puted via Gaussian elimination in O(d3) on a RealRAM.
Hence a rough bound for the overall runtime is given by
O(d2 log(nMd)(n log(n) +m+ d5+d−1 logd−1(nMd)).

5 Robustness

In a concrete implementation, we cannot assume exact
arithmetic on real numbers hence one has to be care-
ful not to compromise correctness in an implementa-
tion based on floating point arithmetic. In our case,
though, we can easily ensure correctness by employ-
ing an interval version of Gauss elimination; the cor-
ners then have coordinate intervals and the above/below
test has to take the interval boundaries into account,
that is, we only claim a facet fπ not to be part of the
lower envelope, if all corners involving hπ are above all
other constraints even in terms of their interval rep-
resentation. For moderate dimensions, the coordinate
intervals are typically still of acceptable size. If af-
ter O(d2 logα(nMd)) iterations the facet has not dis-
appeared, we simply construct the shortcut and hence
never compromise correctness of our procedure.

6 A Generalizable Binary Search Approach

So far, we developed a construction scheme for CH
which allows to answer CCSP queries in the resulting
graph. But as outlined before, we would also like to an-
swer CSP queries at least in an approximative manner
for d ≥ 3.
Note, that obtaining such a solution via a binary search
like algorithm is not as simple as for d = 2. If there
exists a feasible solution for the bicriteria problem (i.e.
a path not exceeding the resource bound), there is al-
ways also at least one path on the LE fulfilling the cri-
terion, namely the one with minimal resource consump-
tion. This path can be easily identified via a single Di-
jkstra run considering resource values only. For d ≥ 3
this observation is no longer true. A feasible solution
might be above the LE of all other s− t-paths without
any of them being feasible as well. So nothing can be
guaranteed when restricting the path search to the ones
on the LE. Nevertheless we will propose an algorithm
that searches systematically for a feasible path on the
LE. For this procedure we adapt the idea of our witness
search algorithm. In fact we will use ’imaginary’ refer-
ence paths and check if they are part of the LE.
We start with the plane π described by Mn +
1, R1, R2, · · · , Rd−1. Clearly, any feasible solution must
dominate this plane. So we run our witness search rou-
tine with π as reference. Three possible outcomes must
be considered: First, the reference plane is part of the
LE. This means that there exists no feasible solution on
the LE and we can abort the search. Secondly, the refer-
ence plane might be dominated by a single other plane.
In that case we found an initial feasible solution. Third,
the explored part of the LE might dominate π but none
of the single planes. So the result is inconclusive up to
now. We proceed in the second and third case by reset-
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Figure 7: Binary search over the lower convex hull for 2d (left) and 3d (right). The reference path p is represented
by the blue line/triangle. The gray dot indicates the initial λ(-vector) which leads to the detection of the new
path q (represented by the green line/triangle). The intersection point/line of p and q determines the new facet
that has to be considered. Its projection (brown) implies the new reduced search space, where the next λ support
point (red) is chosen.

ting the costs of our imaginary plane by halving them.
Now we apply again the witness search procedure. If
the imaginary plane is matched exactly by a real one,
we can abort the search. If we identify the new reference
plane as part of the LE, we know that for any smaller
cost value the plane will also be on the LE. Hence we
only have to consider larger cost values in the remaining
search. If on the other hand the plane is dominated by
the LE, the same must be true for all larger cost val-
ues. Choosing the next cost value always as the mean
of the remaining interval boundaries, we can halve this
interval in every step. Because the possible cost values
are integers, this provides us with a maximal number of
log(Mn) iterations and therefore an overall polynomial
runtime (as we proved before that the witness check runs
in polynomial time). The output of the algorithm is the
feasible plane with minimal costs that was found during
the witness search – if such a plane was identified at all.
An illustration of this algorithm for two dimensions can
be found in Figure 8.

7 Experimental Results

We implemented our CH construction scheme for two
and three edge weights (i.e. d = 2 and d = 3) and evalu-
ated them on real-world data. The used test graphs (SL
- Saarland, HE - Hessen, BW - Baden-Württembeg and
CAL - California) are based on OpenStreetMap data.
The implementation was written in C++, timings were
taken on a single core of an Intel Core i5-3360M CPU
with 2.80GHz and 16 GB RAM.

7.1 Metrics We considered the metrics euclidean
distance (e), travel time (t), fuel costs (f) and ’quietness’
(q). The euclidean distance was obtained by considering
the latitude and longitude of the nodes, which are con-
nected via a road segment. For estimating travel times
we used the street tags provided in the OpenStreetMap
data and assigned a typical speed for each road type.
The explicit speed profile along with the distribution of
the road types in our test graphs can be found in Table
1. Fuel costs were calculated as suggested in [5] using a
gas price of e 1.60 per liter. For measuring ’quietness’
we assigned penalties to streets with a high maximum
speed, in particular roads with an estimated speed up
to 50 km/h received a penalty of 0, with 70 and 100
km/h a penalty of 1 and above (motorways) a penalty
of 2 per metre. In the following we will present results
on the features of the created CH-graphs and compare
query times with and without applying CH for several
metric combinations.

7.2 Bicriteria Paths (d = 2) For the bicriteria
case, we first used the metric combination travel time
(t) and fuel costs (h) for all test graphs. The respec-
tive experimental results for computing the CH under
these metrics can be found in Table 2. Note that we
only contracted about 99.95% of the nodes during the
shortcut creation as amongst the remaining nodes there
was a large number of pareto-optimal paths, so a com-
plete contraction would have added a too large num-
ber of shortcuts – slowing down both preprocessing and
query processing. The first two columns show the num-
ber of nodes and edges of the used test graphs before



road type speed edge ratio
(km/h) SL HE BW CAL

motorway 130 1.29 0.60 0.39 0.48
motorway-link, primary(-link) 100 1.49 5.27 3.64 1.02
secondary(-link), tertiary(-link), trunk(-link) 70 23.47 25.40 22.63 8.45
unclassified, residential, road 50 56.26 53.80 57.63 86.96
living street, service, path 30 17.49 14.93 15.71 3.09

Table 1: Considered road types (extracted from OpenStreetMap) along with the estimated speed and the
distribution of the types in the test graphs.

t+f nodes edges Dijkstra CH Preprocessing CH Query
polls time(ms) time(s) edges polls time(ms) speed-up

SL 203731 404521 1.2 ·105 23.72 4 715571 152 0.05 460
HE 1121082 2269020 6.1 ·105 176.67 65 4089958 506 0.29 611
BW 2459354 4993582 1.3 ·106 409.77 121 9186484 599 0.42 965
CAL 11283833 22918849 7.2 ·106 2097.42 1078 44806866 2434 1.98 1059

Table 2: Characteristics of the used test graphs along with experimental results for speeding up queries with CH.
Query times and the poll numbers are averaged over 1000 random queries with the weight parameter λ being
chosen u.a.r in [0, 1] for each query.

applying CH. The next two columns show how plain Di-
jkstra performs in these graphs, exhibiting query times
above two seconds for California. For the CH construc-
tion we provide the preprocessing time, which naturally
increases with the graph size and the resulting num-
ber of pareto-optimal paths. Note that the maximal
number of iterations in a single search step was only 8
for California. The number of shortcuts added is be-
low the number of original edges, hence the resulting
CH-graph has only about twice the size of the original
one. In the last columns we present the number of poll
operations and query times using bidirectional Dijkstra
in the augmented CH-graph. Both of these values de-
crease dramatically compared to plain Dijkstra, leading
to query times of a few milliseconds and a speed-up of
two orders of magnitude. The speed-up for bicriteria
paths reported in [5] is comparable or even better than
this, but there not only pure CH was applied but also
an adaption of landmarks on top. Moreover their used
weight parameters are integer values only (chosen from
the predefined interval) and the preprocessing times are
longer.

In Figure 9 the differences between several metric
combinations are noticeable. Metrics that are some-
what similar – like euclidean distance and travel time –
produce less shortcuts and therefore better query times.
In contrast to that, the ’quiet’ metric considered on its
own would lead to very different paths in comparison
to the shortest or quickest one, because here edges
with low speed limit are preferred. As a result the
number of CH-edges is about 1 million (11 %) higher
and query times in the CH-graph increase by a factor

t+e bin. search CH bin. search
time(ms) time(ms) speed-up

SL 286.52 0.88 322
HE 2139.73 3.64 586
BW 7223.38 7.48 965
CAL 20827.41 18.29 1138

Table 3: Experimental results for running binary search
on the original and the preprocessed graph for mini-
mizing travel time limiting the distance. The resource
bound R was chosen as 1.1 times the minimum possi-
ble distance (computed by a conventional Dijkstra run).
Query times are averaged over 500 random queries.

of 6.4 from 0.31ms to 1.98ms, while the run times
for the conventional Dijkstra algorithm are relatively
unaffected by the choice of the metrics. Still this yields
a speed-up of factor 230 for the combination of travel
time and quiet metric in the CH-graph (over 1000 for
e+f).
Table 3 shows the query times and the respective
speed-ups in the CH-graph for the classical binary
search algorithm to obtain an approximation to CSP
under travel time and distance metrics. Not surpris-
ingly, the speed-ups are similar to the ones reported in
table 2, as the number of issued CCSP queries within
the binary search procedure remains unaffected by the
application of CH. Again, the difference in terms of
the query times is quite considerable: Without making
use of bicriteria CH, several seconds are required for
computing the approximate CSP solution even in the
small test graphs, while in the CH-graph this can be
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Figure 8: Illustration of the generalizable binary search
procedure for d = 2. The (temporary) imaginary
reference path is indicated by the dashed line. The
other line segments correspond to ’real’ paths. If the
reference is not part of the LE the respective witness
path(s) is/are coloured blue. The green box shows the
remaining cost interval, which is halved in each step
until it covers only one unit (bottom image). The
solution returned by the algorithm is indicated by the
red line.

achieved in the order of centiseconds even for California.

7.3 Tricriteria Paths (d = 3) For the three-
dimensional case we considered the metric combination
euclidean distance, travel time and fuel costs (e+t+f).
Again we decided for an incomplete contraction in
order to keep the total number of edges (original +
shortcut) small. We used a contraction bound of
99.75% of the nodes, so slightly below the one for the
two dimensional case, because the number of paths
on the lower envelope and therefore the number of
necessary shortcuts is expected to increase significantly
with every additional metric considered. Like for the
two-dimensional scenario we present query times for
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Figure 9: CH features for the BW graph for a variety of
metric combinations. Runtime is presented in logscale.

plain Dijkstra and the CH-Dijkstra in the constructed
graph, which correspond to answering single CCSP
queries. Moreover we will evaluate our proposed binary
search variant for retrieving approximate CSP solutions
in higher dimensions for d = 3, measuring query times
and quality of the found solutions.
The experimental results for CCSP queries in three
dimensions are collected in Table 4. We observe that
the query time for plain Dijkstra does not increase
significantly compared to the two dimensional case.
Applying CH, we see that the number of edges in
the resulting graph is similar to or slightly above the
one for the 2d CH-graph, although we stopped the
contraction process earlier. The resulting speed-up
is not as large as for d = 2 because every additional
metric considered weakens the hierarchical structure of
the graph. Nevertheless query times decrease by two
orders of magnitudes and are again in the range of only
a few milliseconds and hence allow for the answering of
CCSP queries in real-time.

In Table 5 the query times for the generalized
binary search procedure can be found, which allows us
to compute approximate solutions for the NP-hard CSP
problem. The used CSP queries ask for a path with
minimal length that takes at most 25% longer than the
fastest path and bears at most 25% increased fuel costs
compared to the respective minimum (both bounds
were computed by Dijkstra runs). Also computing an
approximate CSP solution can be performed about
two orders of magnitudes faster, reducing the runtime
in California from several minutes to about a second.
Moreover, we observe that the obtained approximate
solutions have to be very close to the optimal ones,



e+t+f Dijkstra CH CH-Dijkstra
time(ms) time(s) edges time(ms) speed-up

SL 29.45 4 714159 0.17 167
HE 226.92 29 4144965 1.18 191
BW 742.022 68 9152973 3.16 234
CAL 3299.07 561 44704479 15.62 211

Table 4: Speeding up flexible queries in three dimensions. Query times are averaged over 1000 random queries,
with the three customizable weights being chosen u.a.r. in [0, 1] for each query.

e+t+f APX-CSP APX-CSP + CH
time(ms) time(ms) speed-up quality fail

SL 1641.36 5.63 291 1.0079 (1.1197) 0.02
HE 15259.61 62.70 243 1.0014 (1.0291) 0.03
BW 29036.13 117.18 247 1.0018 (1.0266) 0.07
CAL 342795.45 1374.99 254 1.0010 (1.0358) 0.05

Table 5: Computing approximate CSP solutions in three dimensions with and without acceleration by CH. Query
times are averaged over 500 random queries. Here, ’quality’ denotes the averaged ratio of the cost returned by our
algorithm (with the path respecting the resource bounds) and the cost of the shortest path (without considering
resource bounds). Hence this provides an upper bound for the approximation quality of our solutions. The value
in brackets is the maximum ratio that occurred. ’fail’ reports the percentage of queries for which under the given
constraints no feasible path was found (either because no such path exists or because our algorithm could not
find such a solution).

because on average their distance is close to the respec-
tive shortest path distance(which is a lower bound for
the optimal solution as resource bounds are neglected
here). The number of queries for which no feasible path
was found (see the last column) is pretty small, hence
we can assume that our procedure finds in most cases
a good approximation on the lower envelope (if such a
solution exists at all).

f1/f2 1.01 1.05 1.25 1.50

1.01 815.98 1385.91 1061.01 1491.42
3.67 6.10 5.58 8.13

1.05 1365.89 1308.32 2634.04 1802.80
6.30 7.25 11.95 8.75

1.25 15590.40 15827.02 15259.61 9361.09
83.71 67.78 62.70 46.57

1.50 19077.87 14329.43 33148.12 20229.78
94.16 70.48 172.06 110.08

Table 6: Run times for approximate CSP solutions
under varying constraints in the HE graph: Queries
demand the shortest path which has a travel time no
longer than f1 times the fastest respective path and fuel
costs not exceeding f2 times the minimal possible costs.
In each cell the lower number denotes the query time (in
ms) for the 3d search sped up by CH, the upper number
gives the runtime without acceleration (also in ms). All
timings are averaged over 500 random queries.

The running times for a variety of different con-
straint combinations are presented in Table 6. While the
speed-up by CH naturally remains almost unchanged
(about 200), the query times increase significantly with
larger resource bounds. Nevertheless for even larger
bounds the queries become ’trivial’, because the short-
est path already fulfilled these constraints in over 98%
of the cases right away. Therefore the query times de-
crease then significantly as we can find the optimal so-
lution with a plain (accelerated) Dijkstra run.
So all in all our witness search procedure cannot only be
used to construct the CH-graph efficiently but also to
enable approximate CSP query answering for the three
dimensional case.

8 Conclusions

In this paper we considered the multicriteria shortest
path problem and presented a polynomial-time proce-
dure to decide whether a given path π appears as a
facet on the lower envelope of all pareto-optimal solu-
tions. This procedure can be instrumented to build con-
traction hierarchies for the multicriteria shortest path
problem such that paths optimizing a conic combina-
tion of the edge weights can be found orders of mag-
nitudes faster than using ordinary Dijkstra. While op-
timizing over conic combinations in the bicriteria case
is an established and powerful tool to obtain approx-
imate solutions for the bicriteria constrained shortest



path problem, our procedure also proved useful for ob-
taining good heuristic solutions in the tri- and multi-
criteria case. Our polynomial time bound was obtained
via polyhedral arguments about the hypervolume of the
facet of the lower envelope corresponding to π.
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