
Algorithms for Matching and Predicting Trajectories

Jochen Eisner∗ Stefan Funke∗ Andre Herbst† Andreas Spillner† Sabine Storandt∗

Abstract

We consider the following two problems: Map Matching:
Given a sequence of (imprecise) location measurements
from a mobile user moving on a road network, determine
the most likely path in the network this user has
travelled along. Prediction of Trajectories: Given the
path of where a mobile user has moved along in a road
network up to now, predict where he will travel along
in the near future.

Our map matching algorithm is simple and efficient
even in case of very imprecise measurements like GSM-
localizations and allows for the real-time tracking of a
large number of mobile users on modest hardware. Our
proposed path prediction algorithm is equally simple
but yields extremely accurate predictions at a very low
computational cost.

1 Introduction

Nowadays, almost every cell phone is equipped with
GPS or at least allows for localization derived from
nearby cell phone base stations. This gives rise to
a plethora of exciting applications as well as research
questions.

From an application point of view, often we are
more interested in higher level location information like
Where has the mobile user moved along in the road
network? rather than a pair of coordinates specifying
its position in longitude and latitude. The generation
of such higher level location information becomes even
more challenging when the location measurements are
imprecise. GPS (in the non-military context) typically
incurs imprecisions in the range of several meters. If
GPS is not available, for example due to obstructions
by tall buildings in an urban environment or foliage,
localization derived from nearby cell phone base stations
allows for location measurements with an uncertainty of
several hundred meters to few kilometers.

In the first part of this paper we consider the

∗Universität Stuttgart, Institut für Formale Methoden

der Informatik, 70569 Stuttgart, Germany; jochen.eisner,
stefan.funke,sabine.storandt@fmi.uni-stuttgart.de
†Universität Greifswald, Institut für Mathe-

matik und Informatik, 17487 Greifswald, Germany;
andre.herbst,andreas.spillner@uni-greifswald.de

Map Matching Problem, that is, given a sequence of
(imprecise) location measurements of a mobile user and
an underlying road network, compute a reasonable route
where the user has traveled along – in other words we
aim at matching a discretized and fuzzy trajectory to a
route in a road network. We are particularly concerned
with the scenario where the location measurements are
very imprecise (imprecision up to few kilometers), since
there are still numerous situations where more precise
location information is not available or can only be
acquired at high cost.

In the second part of the paper we aim at even
higher level position information: given the path a
mobile user has moved along in a road network up to the
current moment, predict where the user will move along
in the near future. We call this the Path Prediction
Problem. In contrast to known solutions to this problem
we will compute our prediction not only based on the
geometry of the known path (using extrapolation) or
directional information implied by the underlying road
network but make explicit use of the structure of the
space of shortest paths in the network.

If we do not make any assumption about a ’typical’
behavior of a mobile user, there is little hope for effective
map matching or path prediction schemes. If, for
example, the mobile user at every crossing chooses an
arbitrary turning, a good guess of the actual route
the user took based on measurements with several
kilometers of imprecision seems difficult. It appears
even more challenging to make an educated guess about
where the user will be in 30 minutes if nothing is known
about his behavior. So all our proposed algorithms will
be based on the assumption that users travel on (at least
piecewise) shortest/quickest paths. This seems like a
natural assumption to make since most people tend to
travel with the aim of getting to a certain destination
as quickly as possible. We have little hope to be able
to track or predict people cruising around unless some
additional information is known.

Related Work In many applications, map matching
is an online problem, that is, location measurements
have to be aligned with the road map as soon as they
are taken (see e.g. [11] for more on this version of the
problem). In contrast, here we focus on offline map

matching, that is, from a sequence of location measure-
ments taken along a route we want to reconstruct this
route. While, at least in principle, any algorithm for
online map matching can also be used for offline map
matching, the low accuracy of the reconstructed route
can be a problem (see e.g. [10]). Existing approaches
for solving the offline problem directly involve a scoring
of routes in the road network reflecting how well the
sequence of measurements fits on a route. The scoring
can be based on e.g. the Fréchet distance (or variants
of it) [1, 4] or a weighting of road segments according to
their relative position with respect to the location mea-
surements [14]. To reconstruct a route often a heuristic
search for a route with optimal score is performed (but
see also [13] where an optimal route is found exactly by
integer programming). Recently, in [9] a novel scheme
for offline map matching is presented especially designed
for situations where the density of measurements along
the route is small and the level of imprecision in the
measurements is up to 100 meters. We will go into more
detail about this approach in Section 3.

The related work with respect to path prediction
that we are aware of can be found in the context
of dead-reckoning protocols. Here a mobile user is
to send periodically its position to a server. When
the required bandwidth for transmitting this position
information is an issue, predicting the motion of a
user both on the client/user side as well as on the
server side can result in considerable savings by only
transmitting deviations from the prediction. Different
kinds of prediction schemes have been examined in this
context. Linear prediction assumes that the mobile user
keeps on moving along a line given by the reported
position and direction. This already yields quite good
results. The more advanced higher-order prediction
uses higher-order functions (curves or splines) which,
for example, could capture the object’s movements in a
curved road segment. Different from these strategies
which essentially work in the open space, map-based
prediction strategies make use of the fact that mobile
users are often moving along a road network, as a person
walking along the streets of a city or a car travelling on a
freeway. A map-based prediction strategy tries to match
the user’s position to a road of an underlying map and
assumes that he keeps on moving along this street. At
an intersection the strategy tries to choose a direction
the mobile user is most likely to follow. [8] gives a
detailed survey and summary of the main advantages
and disadvantages of these approaches. The map-
based prediction strategy as up to now most efficient
prediction strategy will be used as a baseline against we
measure our new prediction algorithms in Section 4.

Our Contribution We provide simple and sound so-
lutions for both the map matching as well as the path
prediction problem. For the map matching problem our
proposed algorithm yields running times that are much
faster than previous approaches; only by this speed-up
these matching techniques become applicable for deal-
ing with large imprecisions and for tracking large num-
bers of mobile users. For a single mobile user a new
measurement can be processed in few milliseconds, so
if measurements are taken every few minutes, several
hundreds of thousands of mobile users can be tracked
on a single multi-core server. By making use of the
structure and the use patterns of the road networks, our
path prediction algorithm allows for faithful prediction
of trajectories up to several hundred kilometers outper-
forming known prediction strategies in terms of quality.
The computational effort is so little that a large scale
prediction of mobile users is also possible.

2 Preliminaries

2.1 Formal Problem Definitions A road network
is an edge-weighted directed graph G = (V,E, `) whose
vertices are mapped to pairs of coordinates (usually
longitude and latitude). The length `(e) of an edge e
in a road network is often simply the distance between
the end points of e but can also represent other ’costs’
such as travel time. A location measurement is a triple
(x, y, r) consisting of longitude and latitude coordinates
x and y, respectively, and a radius r. That is, we model
a measurement by a circle and the degree of uncertainty
about the true location at the time of measurement, also
referred to as imprecision, is captured by the radius of
this circle.

The input to the map matching problem consists
of a road network G = (V,E, `) and a sequence
M = m1,m2, . . . ,ms of location measurements that
have been taken while traveling along a path π =
v0, v1, . . . , vk in G, that is, a sequence of vertices such
that there is an edge directed from vi−1 to vi in G for
all i ∈ {1, . . . , k}. From M we want to reconstruct π,
that is, find a path π′ = u0, u1, . . . , uk′ in G that is close
to π, see Figure 1 for a simple problem instance.

The input to the problem of predicting trajectories
is a road network G = (V,E, `) and a prefix π =
v0, v1, . . . , vi in G of a path π∗ = v0, v1, v2, . . . , vl in G.
The goal is to predict π∗ if only π is known. That is, we
want to compute a path π′ = v0, v1, . . . , vi, vi+1, . . . , vk
in G, see Figure 2.

2.2 Quality Metrics For both problems we want to
quantify how close the reconstructed/predicted path π′

is to the ’true’ path π, π∗ respectively. We adopt the
two accuracy metrics also used in [9]: the ratio of the

total number AN (π, π′) and the total length AL(π, π′)
of edges of π that have not been recovered correctly in
π′ to the number of edges and the length, respectively,
of π.

2.3 Performance Metrics Our proposed algo-
rithms are all based on variants of Dijkstra-like graph
traversals. As with ordinary Dijkstra, the running time
is essentially determined by the number of Dijkstra op-
erations (polls from the priority queue). Furthermore,
the underlying graph representation, the implementa-
tion language and the hardware on which the algo-
rithms are run crucially influence the experienced run-
ning times. For example, a reasonable C++ implemen-
tation on a standard Desktop PC allows for about 1 Mil-
lion Dijkstra operations per second. For easier platform-
and implementation-independent comparison we mostly
state the running times of our algorithms in terms of Di-
jkstra operations.

2.4 Contraction Hierarchies (CH) One impor-
tant ingredient to ensure the efficiency of our map-
matching algorithm is a general technique to speed-up
shortest path computations. There are many speed-up
schemes like reach [7], highway hierarchies [12], or tran-
sit nodes [2]. We chose in our implementation contrac-
tion hierarchies [5] due to their simplicity and efficiency.
Such a contraction hierarchy augments the given road
network G = (V,E, `) to a road network G′ = (V,E′, `′)
by adding new directed edges to G based on an order-
ing ω = v1, v2, . . . , vn of the vertices of G. Essentially
the vertices are contracted in this order and edges are
added such that shortest-path distances in the remain-
ing network are preserved.

Shortest path queries in G can then be answered
more efficiently based on the fact that in G′ there exists
a shortest path for any pair of vertices (s, t) such that
the indices of the vertices on this shortest path are
monotonously increasing first and decreasing afterwards
with respect to the ordering ω. Therefore, to identify
a shortest path from s to t, a bidirectional Dijkstra
algorithm can be adopted. More precisely, one can use
one Dijkstra run (forward) starting in s and a second
Dijkstra run (backward) starting in t. The forward run
considers only outgoing edges which lead to a vertex
with a larger index while the backward run considers
only incoming edges which come from a vertex with
larger index. The two runs have to meet in at least one
vertex of the shortest path, thus computing a shortest
path from s to t with a drastically reduced search space.
Thus, one-to-one shortest path queries can be answered
at a fraction (about 1/1000th) of the time of a full
Dijkstra with the help of the augmented G′ = (V,E′, `′).

Figure 1: The Map Matching Problem: We are
given a sequence of (here: 6) imprecise location
measurements and want to reconstruct the origi-
nal (red) path

Figure 2: The Path Prediction Problem: We are
given the route a mobile user has travelled up
to now and want to predict its route in the near
future.

In our approach to the map matching problem,
however, one-to-many queries play an important role
(cf. Section 3.2). The major drawback of using CHs
directly is that for every target node a new Dijkstra
has to be started. Therefore, the total query time
might be even worse than just a simple Dijkstra in the
original graph which stops after all target nodes have
been settled. As a remedy, a technique suggested by
Batz et al. in [3] in the context of time-dependent CHs,
can be used. For time-dependent edge costs, a backward
Dijkstra seems difficult, as the exact arrival time is
unknown. So Batz et al. replace the backward Dijkstra
run by a breadth first search (BFS), marking at each
step all incoming edges that come from a vertex with
larger index. Then the forward Dijkstra run can be used
with the slight modification, that an edge is considered
if it leads to a vertex with larger index or is marked. So,
once edges have been marked by performing a BFS on
the set of target vertices, shortest paths from the source
to all target vertices can be found using one forward
Dijkstra run until all targets are settled. This creates a
fair compromise between thinning out the search space
and still being able to settle all target nodes at once.

2.5 Reach-type Edge Classification Some of our
path prediction strategies make use of the concept
of edge reach, which will be explained briefly in the
following.

The observation that when travelling long distance,
one typically uses small roads only in the vicinity of the
start and the destination of the trip and ’important’
roads in between, has long been used to heuristically
speed-up the Dijkstra search by not considering ’small’
roads in the search when being far from both start and
destination. Relying on the given road classification
(freeway, highway, local road, track, . . .) in the search
for a shortest path does not guarantee optimality of the
computed path, though. Gutman in [7] was the first
to formalize this idea (he did this on vertices instead
of edges, but the idea remains the same). One defines
an edge (or a vertex) to be important (”of high reach”)
if it lies in the middle of a long shortest path, or more
formally, for an edge e = (u, v):

reach((u, v)) = max
(u,v)∈π=s t

min (d(s, v), d(u, t))

that is, maximized over all shortest paths π which
contain (u, v) we essentially take the minimum distance
of this edge to either end of π as reach. It is not clear
whether this reach value can be computed efficiently
(without considering n2 shortest paths), but upper
bounds can computed very quickly.

The computation of Dijkstra can be accelerated
using this idea as follows: when Dijkstra considers
an outgoing edge e = (u, v) and some lower bound
φ(u) on the distance from u to the final target is
known, only edges with reach ≥ min(d(u), φ(u)) need
to be considered. This idea, together with further
ingredients like edge contractions has led to query times
which are about a factor of 1000 faster than ordinary
Dijkstra. Goldberg et al. [6] and Sanders/Schulte [12]
are incarnations for this idea, with the latter being
interesting as it uses a different metric (than the one
defined by the edge costs) to determine what ’in the
middle’ means.

We will make use of the edge reach concept in our
path prediction strategies.

3 The Map Matching Problem

As above, let m1, . . . ,ms be an (ordered) sequence of
location measurements. It will be convenient to view
each mi as a disk Di with center ci and radius ri and
it is reasonable to assume that the true location where
measurement mi was taken lies inside Di (an example of
a sequence of such disks is depicted in Figure 3). Thus,
without any additional assumptions all points/vertices
of the road network inside Di are candidate points, that
is, could be the location where measurement mi was
taken.

Figure 3: Shortest path (red) together with a sequence
of disks each representing an imprecise location mea-
surement taken along this path.

3.1 Previous approaches used for benchmark-
ing One of the conceptually simplest approaches to
map matching, also known as point-to-point matching
[11], selects for each measurement mi a vertex (or point
on an edge) in the road network G = (V,E) that
has minimum distance to the point ci and then con-

(a) (b)

mi

mi−2 mi−1 mi mi+1

Figure 4: (a) The disk associated to a location mea-
surement mi. The vertices drawn as black dots form
candidate points associated to mi. (b) Part of the lay-
ered graph formed by the candidate points. The red
directed edges correspond to part of the reconstructed
route.

nects consecutive vertices/points by shortest paths in
the road network. While it is not hard to find examples
where this approach will reconstruct the route only very
poorly, it is very fast and we will use it as a benchmark
for the run time of our new method.

To also provide a benchmark for the run time
of more sophisticated recent approaches we re-
implemented the one presented in [9] where the recon-
struction of the route is based on a layered graph. In this
graph each layer corresponds to the candidate points as-
sociated to a particular measurement. Directed edges
connect candidate points in consecutive layers. The
length of such an edge results from the length of a
shortest path between the candidate points in the road
network. Concatenating such shortest paths, selected
according to some scoring function, yields the recon-
structed route (cf. Figure 4).

As reported in [9], for this approach to be practi-
cally feasible the restriction to a small number of can-
didate points within each disk Di is crucial, since oth-
erwise the run time increases dramatically. To discard
vertices and edges inside Di as candidates, assumptions
about the distribution of the errors involved in each
measurement and on the time stamps attached to it
are used. In the following we present a simple observa-
tion that allows to avoid the discarding of vertices and
edges inside Di and the explicit construction of the lay-
ered graph altogether while, at the same time, speeding
up the computation by exploiting directly the fact that
travelers tend to use shortest paths.

3.2 Our new approach Let Vj , 1 ≤ j ≤ s, denote
the vertices contained in Dj . Introduce a new vertex
w1 and directed edges, each of length 0, from w1 to
each vertex in V1. Assume we have already constructed
shortest paths πv from w1 to each vertex v ∈ Vi for some
1 ≤ i < s and each of these shortest paths visits the
disksD1, D2, . . . , Di−1 in that order. Note that for i = 1

Di

Di+1

u

v

wi π∗u

Figure 5: For each vertex u ∈ Vi+1 we compute a
shortest path from wi to u. This yields the path π∗u
(red).

such paths are available immediately by construction.
Now, to compute shortest paths from w1 to each

vertex in Vi+1 that visit the disks D1, D2, . . . , Di in
that order, it is not hard to see that this amounts to
extending the shortest paths we already have from w1

to the vertices in Vi. More specifically (cf. Figure 5), if
i ≥ 2 we introduce a new vertex wi and directed edges
from wi to each vertex in Vi. In addition, the length
of the edge from wi to v is the length of πv for every
v ∈ Vi. Then we compute shortest paths from wi to
each vertex u ∈ Vi+1, denoting by π∗u this path with
vertex wi removed. For each u ∈ Vi+1 consider the first
node v ∈ Vi on the shortest path π∗u. Then we obtain
a suitable shortest path πu from w1 to u that visits
the disks D1, D2, . . . , Di in that order by concatenating
the paths πv and π∗u. So, as mentioned in Section 2.4,
the reconstruction of the path along which the location
measurements were taken can be reduced to a sequence
of one-to-many shortest path queries.

3.3 Computational experiments It is not hard to
see that the approach outlined in Section 3.2 will yield
the same reconstructed path (up to the breaking of
ties in the computation) as the approach presented
in [9] when no vertices or edges contained in any
of the Di are discarded. To demonstrate that the
run time is still feasible, we performed a range of
experiments on simulated input data. The underlying
road network we used was a map of Germany obtained
from OpenStreetMap1 containing 18 million vertices
and 35 million edges. The diameter of this network
was 886 km. In this network we took a shortest
path of length 400km between two fixed vertices as
a base path, generated measurement disks of random
but bounded radius and distance (between consecutive
disks). In particular, we investigated the impact of
different average sizes of disks (corresponding to GPS

1http://download.geofabrik.de/osm/

Precision GPS GPS
Sampling Rate (50m-100m) (1km-5km)

Point-2-Point 3800585 173920
New 12335325 426544
New(CH) 170816 27546

Precision GSM GSM
Sampling Rate (3km-5km) (10km-50km)

Point-2-Point 3967486 4821118
New 1008816266 72291484
New(CH) 3309238 388590

Table 1: Comparison of the total number of Dijkstra
operations of three map matching methods: point-to-
point matching, our new approach without using CHs,
our new approach using CHs. The table entries are
averaged over 1000 simulated location measurement se-
quences along a path of length 400km. The columns
correspond to different levels of imprecision (GPS and
GSM) and different average distances between consecu-
tive measurements.

(3m - 5m) and GSM (2km - 5km) measurements)
and of different average distances between consecutive
disks (varying between 50 meters and 50 kilometers).
The results of these experiments are summarized in
Table 1. As can be seen from this table, the use of
contraction hierarchies drastically reduces the number
of Dijkstra operations and, for GPS-sized measurement
imprecisions even outperforms the simple point-to-point
matching approach. Unfortunately, we were not able
to finish the same set of experiments also with our re-
implementation of the approach presented in [9] due to
excessive run times. To give an impression: the average
number of Dijkstra operations was 978926 even for GPS-
sized measurement imprecision and 1km-5km distance
between consecutive measurements.

With our approach, the total effort one needs to
spend for matching a 400km long route is only a few mil-
lion (GSM localization) /hundred thousand (GPS local-
ization) Dijkstra operations (≈ few seconds/fraction of
a second actual running time on a state-of-the-art CPU
core). If cars move at about 100km/h, we can match
several thousand (GSM) or several tens of thousands
(GPS) cars on a single CPU core. A sub-10k-USD com-
pute server with 48 cores can hence easily match and
track hundreds of thousands (GSM) or even millions
(GPS) of vehicles in real-time.

In a second set of experiments we investigated the
the impact of several parameters on the reconstruction
accuracy of our approach. We used 6 different base
paths (respectively two of short (125 km), middle (250
km) and long (400 km) length). First we investigated
the impact of different average sizes of disks (corre-

sponding to GPS (3m - 5m) and GSM (2km - 5km)
measurements) and of different average distances be-
tween consecutive disks (varying between 50 meters and
50 kilometers). For each base path and each combina-
tion of parameters (i.e. average size of disk and average
distance between consecutive disks) we generated 1000
random sequences of measurements. As an example, we
display in Figure 6 a histogram of distances AL between
the base path and the reconstructed path for a long base
path, GPS-sized measurement imprecisions and average
distance between consecutive disks of 75 meters. The re-
sults obtained for other combinations of parameters or
using the metric AN instead of AL were similar. Even
for GSM-sized measurements imprecisions we can re-
construct between 90 and 95% of the base path, see
Figure 7.

Figure 6: This histogram approximates the distribu-
tion of the distance between a base path and the re-
constructed path for sequences of measurements gener-
ated randomly along the base path. To generate the
histogram 1000 simulated sequences of measurements
were used and the range [0, 1] of the metric AL was di-
vided in sub-intervals of length 0.005. We used a path
of length 400km, GPS-sized measurement imprecisions
and an average distance between consecutive measure-
ments of 75m.

In an additional experiment we investigated the
impact of the deviation of the base path from being
a shortest path between two vertices in the network
on the reconstruction accuracy. To this end, the base

Figure 7: A histogram approximating the distribution of
the distance between a base path and the reconstructed
path for GSM-sized measurement imprecisions. Length
of the base path and distance between consecutive
measurements is the same as in Figure 6. Note that in
this histogram the range of the metric AL was divided
in sub-intervals of length 0.01.

path was chosen to be a concatenation of five shortest
paths. Along this path we simulated 100 sequences of
measurements. As shown in Figure 8, the reconstruction
accuracy slightly decreases compared to Figure 6, which
was for a single shortest path, but stays above 90%.

4 Prediction of Trajectories

Recall the problem definition for the problem of predict-
ing trajectories on a road network G = (V,E). For a
given path π = v0, v1, . . . , vi in G we want to predict
how π continues through G, that is, we want to com-
pute a path π′ = v0, v1, . . . , vi, vi+1, . . . , vk in G. Why is
there any hope that good predictions can be computed?
Typically, people try not to waste time and move at
least partially on shortest or quickest paths. It is only
this observation that allows us to come up with any pre-
diction at all. We start with the assumption that people
are moving on a path π which is a shortest path from
some s to some t and later also consider paths that are
not overall shortest but piecewise shortest-paths, as this
more realistically models the case that on the way back
home from work one drops by the butcher, the bank and
the bakery.

Figure 8: A histogram approximating the distribution
of the distance between a base path formed by concate-
nating five shortest paths and the reconstructed path
for GPS-sized measurement imprecisions. Here we used
100 randomly generated measurement sequences along
the base path. Note that in this histogram the range
of the metric AL was divided in sub-intervals of length
0.002.

4.1 Quality Metrics For measuring the perfor-
mance of our proposed prediction strategies we gener-
ate random (partially) shortest paths π = v0, v1, . . . , vk
and provide the partial path π′ = v0, v1, . . . , vi for all
0 ≤ i < k as input for the respective prediction of vi+1.
A prediction error will result in a mismatch of the node
vi+1 in π and the proposed v′i+1 by the predictor.

As it turns out, the error rate not only depends
on the choice of the prediction strategy but also on
the relative position on π i.e. the ratio from i to k.
This is natural, since near the end of a path, the final
destination could be essentially around ’any’ corner. All
measurements do have in common that a large number
of random paths π, which may obey further limitations,
are drawn with the intention of evaluating each strategy
on an “average“ path in G.
The expected distance between failure metric uses paths
of the same length and maps the quantized relative
position on a path in percent (ik · 100) to the expected
distance of the next prediction error along with its
standard deviation. So if you know your relative
position on a concrete path and use a specific prediction

strategy, this metric will tell you how long a correctly
predicted path fragment you can expect at that position.
A superior strategy naturally exhibits larger distances,
in fact the optimum value is the remaining path length.
Therefore this value converges to zero at the end of a
path.
The absolute number of errors metric uses the same
quantized relative path position and maps the absolute
number of prediction errors which occurred at this
relative path point. A superior strategy will not only
exhibit a smaller overall sum of this values but different
strategies also result in different profiles along the path.

Note that all strategies implicitly assume the
ground truth to be a path of infinite length, so the
error rate in the second half is likely to be higher.
As mentioned before, though, it is natural that it is
hard/impossible to make any educated guess about the
future path when being close to the final destination as
this could be around any corner.

4.2 Strategies We categorize our proposed strate-
gies into two main classes, according to the limitations
they have to obey at query time.
Offline strategies may employ extensive precomputa-
tion but the stored precomputation data is restricted
by a linear space bound with regard to the size of the
graph. At query time, an offline strategy is allowed to
spend time proportional to the maximum degree of the
graph. In particular, offline strategies are not allowed
to start complex graph explorations.

Online strategies on the other hand have to obey
the same precomputation and storage limitations as
offline strategies but are allowed to perform extensive
computations at query time, in particular (partial)
Dijkstra computations are allowed.

We make this distinction to differentiate between
algorithms that can potentially be employed on the
simplest mobile devices and such that require at least
some computing power at query time.

For the description of the employed strate-
gies assume that we choose a path π =
v0, . . . , vi−1, vi, vi+1, . . . , vk with the intention of
predicting v′i+1, so a prediction strategy is given
π′ = v0, . . . , vi−1, vi as input (an offline strategy is
given a constant-sized suffix thereof). Observe that the
prediction of degree 2 nodes is trivial in this context.
Nodes of degree 2 are therefore ignored.
At this point the task of predicting a path trajectory
breaks down to the question of estimating the one
outgoing edge of vi we think of being the most likely
one to continue the path.

4.2.1 Offline strategies In [8], a very straightfor-
ward strategy – which we refer to as baseline strategy
(OF b) – was proposed. When coming from vertex vi−1

and being at vi we pick as next edge/vertex the outgoing
edge from vi,

−−−→
viv
′
i+1 with minimal change of direction

compared to −−−→vi−1vi. Clearly, this is an offline strategy
according to our categorization. The intuition behind
this strategy is that shortest/quickest paths tend to be
rather straight.

A slightly more involved strategy which we refer
to as simple Dijkstra (OF sD) works as follows: In a
precomputation step we compute a full Dijkstra from
each vertex v in the network and remember for each
outgoing edge of v how large a subtree (in terms of # of
nodes) is hanging below this edge. Clearly this is very
time consuming but requires only linear space. At query
time, when being at node vi we choose the outgoing edge
not leading to vi−1 which bears the largest subtree in
the shortest path tree from v. Conceptually this is close
to choosing the edge where most likely a target chosen
uniformly at random in its shortest path subtree resides.

To reduce the enormous computational cost (even
though this can be easily parallelized and computed in
a few days on a small cluster also for large networks like
the US or the whole of Europe), we can slightly modify
the precomputation step and start an unidirectional
reach-[7]-based Dijkstra at every v ∈ V and order
the outgoing edges of v according to the longest path
discovered during these searches. This reduces the
precomputation time by orders of magnitudes without
really affecting the quality of the prediction as we will
see. As we employed a reach-based search, we refer to
this strategy as simple reach based Dijkstra (OF rbD).
As this strategy turned out to be essentially equal to
OF sD, we have omitted the latter in our experiments.
For the precomputation time, we are in the range of
a few milliseconds per vertex (on a standard PC, not
including the precomputation time for the reach or
HH information itself), so even large networks can be
preprocessed in a few hours.

Having introduced the reach concept, another ob-
vious strategy is to simply return the edge with high-
est reach (see Section 2.5) which does not lead back to
vi−1. This we call the reach based strategy (OF rb). In-
tuitively, high reach means important edge whereas low
reach means unimportant edge.

4.2.2 Online strategies Under the assumption that
the ground truth path π is a shortest path from s
to some random t, the arguably optimal strategy con-
structs a shortest path tree (by Dijkstra) starting in s.
At any point in time, the known path segment v0, . . . , vi
is part of this shortest path tree, and as t is randomly

chosen, picking the outgoing edge of vi which contains
the most nodes in its subtree is the optimal prediction
strategy. We call this the full Dijkstra (ON fD) strategy.
Apart from being quite demanding computationally at
query time (a full Dijkstra computation), this strategy
breaks down if the path π is not a shortest path but con-
sists of piecewise shortest paths only – think of stopping
by the bakery, the grocery, and the butcher on your way
home from work.

To cope with this problem, we need to detect when
the path v0, . . . , vi leaves the shortest path tree rooted
at s = v0. If this happens at vi, we start a Dijkstra2 at
vi exhibiting the longest suffix of v0, . . . , vi that is (in
reverse order) a subpath in the shortest path tree rooted
at vi. Let vk, vk+1, . . . , vi be this suffix (note that we
can abort Dijkstra if we have settled vk−1 in a different
subtree of the shortest path tree). We then start a
(full) Dijkstra in vk and use this for prediction. We call
this strategy lazy full Dijkstra (ON lfD). Due to space
restrictions and the still somewhat high computational
demand at query time, we will not report results on that
but on the following variant thereof.

Similar to our heuristic offline strategy we simply
replace the full Dijkstra computation by a reach-based
Dijkstra computation which prunes out the edges with
increasing distance from the source. So as long as
we move on a path of the shortest-path tree of the
reach-based Dijkstra started in v0, we always pick the
edge leading to the ’furthest’ node. If we leave the
shortest path-tree at vi we start a backward reach-based
Dijkstra starting in vi to exhibit a suffix vk, . . . , vi as
before and use a reach-based Dijkstra rooted at vk for
the further prediction. The next time we leave this
shortest path tree, we again start a search for such a
suffix. This strategy – which we call lazy reach-based
Dijkstra (ON lrbD) – allows both for adaptivity in case
of piecewise shortest paths as well as good running
times due to the heavy pruning of edges in the Dijkstra
computation.

4.3 Results

Quality Our two test graphs are based on Open-
StreetMap3 data which was stripped of all features im-
passable by car. For the two resulting graphs with 321k
and 18.57M vertices respectively, we computed the reach
of all edges based on a travel time metric as proposed in
[7]. From the extensive meta data of the OSM dataset
we picked the street type to derive a speeds for individ-
ual edges. The larger graph [GER] represents a street

2If the graph has asymmetric edge costs, we run this Dijkstra

on the reversed graph.
3http://download.geofabrik.de/osm/

map of Germany, the smaller one [MV] of its federal
state Mecklenburg-Vorpommern. Due to the fact that
part of the OSM data is generated by GPS plots, each
road segment is composed of a larger amount of degree
two nodes. The average chain length is ≈10.7 segments
on [MV] and ≈10.2 on [GER] which corresponds to an
average length of less than one kilometer. As direct
result ≈80% of both graphs nodes are of degree 2.

For the expected distance between failure metric the
random shortest paths π were sampled with their length
being limited to the interval of 100 km ± 2.5% in the
case of [MV] and 500km± 2.5% in the case [GER]. For
the other metric a lower bound of 150 nodes resulted
in minimal path lengths of ≈15 km, being only limited
upwards by the respective graphs diameter of ≈331km
for [MV] and ≈1044 km for [GER].

In Figure 9 the absolute number of errors metric
was employed for 25k random shortest paths on [MV]
and 10k random shortest paths on [GER]. Common to
all strategies – be it on- or offline – is the fact that
close to the start and the end, the prediction quality is
pretty bad, which was to be expected. Furthermore –
no surprise! – online strategies are far more accurate
than offline strategies. Amongst the offline strategies,
the baseline predictor (OF b)fares worst on the first half,
leading to a total prediction failure rate of 6.25% on
[GER], that is, on 6.25% of all nodes on the path with
degree larger than 3 a prediction error has occurred.
Employing the reach-based Dijkstra strategy (OF rbD)
we obtain much better results at the beginning of the
paths but getting worse towards the end, resulting in
a 5.98% failure rate overall. The purely reach based
strategy OF rb uniformly exhibits better performance
than the baseline strategy and except for the beginning
also than OF rbD, its total failure rate is 4.03%. It is
natural to combine the purely reach-based strategy with
the reach-based Dijkstra strategy for the best offline
prediction rate. Unfortunately, it is not so clear a priori
when one gets better than the other; in case of [MV] this
point was at around 22% of the path length, in [GER]
it was around 15%. With some tuning we were able to
find mixing parameters such that the prediction failure
rate of such a mixed offline strategy became 3.21%.

Our online prediction strategies perform much bet-
ter. Given that we are working with single shortest
paths only, the full Dijkstra strategy (ON fD) yields an
almost perfect result with a total failure rate of 0.95%
only. The more practical lazy reach-based Dijkstra strat-
egy is not much worse with a total failure rate of 1.59%.
In general, the results for [MV] and [GER] are compa-
rable.

Finally we consider the expected distance between
failure metric, which is arguably the most intuitive one,

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

OF_b
ON_fD

ON_lrbD
OF_rb
OF_rbD

(a) Absolute amount of prediction errors by the respective relative
position on the path for MV, sampled on 25K paths

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

OF_b
ON_fD

ON_lrbD
OF_rb
OF_rbD

(b) Absolute amount of prediction errors by the respective relative

position on the path for GER, sampled on 10K paths

Figure 9: Absolute number of errors metric. For fig.
(a) 25k random paths on [MV] graph were sampled.
Accordingly 10k paths on the [GER] graph for fig. (b).

in Figure 10. For each strategy we have depicted the
expected length of a correctly predicted path chunk
when being at a certain relative position, comparing our
two online strategies with the baseline strategy and the
simple reach-based Dijkstra offline strategy. It is clear
that our online strategies are far superior to the baseline
strategy. In this metric the choice of the underlying
road network makes a bigger difference. Both online
strategies are gaining a significant amount of accuracy
on the [GER] graph, to the point that the average
distance to the next prediction error is always more than
≈80% of the remaining path length, compared to ≈60%
on the [MV] graph. In contrast to that, the baseline
strategy’s average prediction distance is always below
50 km or 10% on the [GER] graph compared to 20 km

or 20% on the [MV] graph. The other reach-based offline
strategy performs slightly better but is still way below
our online strategies.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

OF_b
ON_lrbD
ON_fD
OF_rb

(a) 25k sampled paths of 100km length on [MV]

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

OF_b
ON_lrbD
ON_fD
OF_rb

(b) 10k sampled paths of 500km length on [GER]

Figure 10: The expected distance between failure metric
is limited by the remaining path length. The full
Dijkstra strategy shows nearly optimal results.

In real-world scenarios, the trajectories of mobile
users are often not exact shortest s-t-paths but they
tend to be composed of several shortest-path segments
(from work to the bakery, then to the butcher, then
to the florist before driving home). In Figure 11 we
present results for such problem instances constructing
a series of 50+90+30+100+70 km shortest path pieces
resulting in an overall length of 340 km. Both lazy reach-
based Dijkstra approaches and the baseline approach
are producing characteristic profiles along each shortest
path piece being limited by the distance of the actual
piece ending, while again the latter approach is far
inferior in absolute performance. The full Dijkstra

approach on the contrary completely fails to produce
reliable predictions behind the first shortest path piece
as the available shortest path information at v0 is
meaningless from there on.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350

OF_b
ON_lrbD
ON_fD

limit

Figure 11: Expected distance between failure metric
for series of piecewise shortest paths with a length of
50+90+30+100+70 = 340 km. The “limit” line plots
the remaining length of the actual shortest path.

Cost Let us briefly review the cost for predicting
trajectories at runtime; we focus on the number of
Dijkstra operations as this is determining the real-time
applicability of our algorithms. We count the total
number of Dijkstra operations that were performed
while running our prediction strategies on a shortest
path of 500km length.

strategy # Dijkstra polls
all Offline strategies 0

ON fD ≈ 18.5× 106

ON lrbD ≈ 6.32× 105

Table 2: Computational cost per path for different
strategies in terms of Dijkstra polls on the [GER]
graph at prediction time. Offline strategies only spend
constant time and no Dijkstra poll at runtime, our most
competitive online strategy is ON lrbD. Average over
10k random shortest paths of length ≈ 500km.

The good performance of ON lrbD in Table 2 is
due to two reasons: first, a single reach-based Dijkstra
visits only a small fraction of the nodes compared
to a full Dijkstra, furthermore, only few prediction
requests trigger a reach-based Dijkstra computation.
More concretely, 99.25% of all prediction requests in our
experiment can be answered using the already existent
shortest path tree. Only for the remaining 0.75%, a

reach-based Dijkstra has to be started, resulting in the
total number of polls as shown in Table 2.

Strategy ON lrbD in total for the whole path uses
less than one tenth of the Dijkstra polls that are
necessary for a full Dijkstra on the network (which
equals the strategy ON fD which is much worse for only
piecewise-shortest paths, though). Again, if we assume
the car to drive at about 100 km/h (so the trip takes ≈
5 hours), a single core can perform predictions for more
than ten thousand vehicles at the same time. Hence
with a not too expensive compute server with let’s say
100 cores, we can easily predict trajectories for one
Million vehicles in real-time.

4.4 Extensions So far we have only considered the
problem of predicting the path. A natural extension is
to compute a mapping Time→ R2, that is, predict at
what time one expects the mobile user to be at what
position. This has to take into account both existing
speed-limits on the road segments of the predicted route
as well as the observed driving speed within the known
trajectory.

5 Applications, Combinations and more

While the community driven OpenStreetMap project
has become a serious contender as provider of accu-
rate road map data, commercial vendors like Navtec
or TeleAtlas still have an edge when it comes to higher
level data like traffic flow and traffic density. Acquisi-
tion of such data is difficult, though, and requires either
access to roadside equipment for traffic census or co-
operations with mobile phone network providers. Our
proposed map matching algorithm is simple enough that
widespread employment on cell phones of community
members seems feasible (even on devices without GPS)
allowing for large scale acquisition of such traffic data.

One immediate application for path prediction
methods is in the context of dead-reckoning protocols.
Here a mobile user is to periodically send its position to
a server. When the required bandwidth for transmis-
sion is an issue, predicting the motion of a user both
on the client/user side as well as the server side can
result in considerable savings by only transmitting de-
viations from the prediction as was shown in [8]. With
our improved prediction method, these savings can be
even further increased. Navigation systems, in particu-
lar the ones built-in by car manufacturers, have become
’always-on’ devices, so even if no target has been given
by the user and no route planning takes place, they ac-
quire the current position. Accurate path prediction
routines allow the device to call attention to points of
interest that lie on the predicted route. Examples are
gas stations, restaurants, shopping malls, parking lots

but also areas of difficult road conditions or traffic jams.
The combination of Map Matching and Path Pre-

diction also makes a lot of sense, in particular when the
mobile device is not equipped with GPS: for a given
sequence of location measurements our map matching
routine identifies an initial path, which is then continued
via path prediction routines. As map matching under
very imprecise location information tends to be inac-
curate for the first few and the last few measurements,
one would discard those parts and employ our path pre-
diction routines on the remaining path fragment. This
could be the basis for a rudimentary navigation system
that works only based on GSM location data.

One apparent danger is the fact that cell phone
providers with the help of map matching and path pre-
diction techniques have access to massive amounts of
quite precise real-time trajectory data which – even
worse – is linked to individual persons. With a medium-
sized cluster, millions of users could be traced in real-
time. While the generated data is certainly valuable
e.g. for detection or prediction of traffic conditions, it
is also highly sensitive with respect to the privacy and
anonymity of the individual. An interesting open ques-
tion is how the raw cell phone data can be obfuscated
early on in the process such that purposive surveillance
gets impossible.

In a broader context, path prediction might not
only be used on street data, but for example to trace
IPs. So a possible alternative input would be the
sequence of the last tunneled proxy-servers. For that
it remains to see how well concepts like reach apply to
such communication networks (at first sight they do).

References

[1] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching
planar maps. J. Algorithms, 49:262–283, 2003.

[2] H. Bast, S. Funke, and D. Matijevic. Ultrafast shortest-
path queries via transit nodes, volume 74 of DIMACS
Series on Disrecte Mathematics and Theoretical Com-
puter Science, pages 175–192. AMS, Providence, RI,
2009.

[3] V. Batz, D. Delling, P. Sanders, and C. Vetter.
Time-dependent contraction hierarchies. In Proc. 11th
Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 97–105. SIAM, 2009.

[4] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
map-matching vehicle tracking data. In Proceedings
31st International Conference on Very Large Data
Bases (VLDB), pages 853–864. ACM, 2005.

[5] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: faster and simpler hierarchical
routing in road networks. In Proceedings of the 7th
international conference on Experimental algorithms,

WEA’08, pages 319–333, Berlin, Heidelberg, 2008.
Springer-Verlag.

[6] A. V. Goldberg, H. Kaplan, and R. F. Werneck.
Reach for a âˆ— : Efficient point-to-point shortest
path algorithms. In In: Workshop on Algorithm
Engineering and Experiments, pages 129–143, 2006.

[7] R. Gutman. Reach-based routing: A new approach to
shortest path algorithms optimized for road networks.
In Proc. 6th Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 100–111. SIAM, 2004.

[8] A. Leonhardi, C. Nicu, and K. Rothermel. A map-
based dead-reckoning protocol for updating location
information. In IPDPS, 2002.

[9] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and
Y. Huang. Map-matching for low-sampling-rate GPS
trajectories. In Proc. ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Informa-
tion Systems (ACM SIGSPATIAL GIS), pages 544–
545. ACM, 2009.

[10] F. Pereira, H. Costa, and N. Pereira. An off-line map-
matching algorithm for incomplete map databases.
European Transport Research Review, 1:107–124, 2009.

[11] M. Quddus, W. Ochieng, and R. Noland. Current map-
matching algorithms for transport applications: state-
of-the art and future research directions. Transporta-
tion Research Part C: Emerging Technologies, 15:312 –
328, 2007.

[12] P. Sanders and D. Schultes. Highway hierarchies
hasten exact shortest path queries. In 13th European
Symposium on Algorithms (ESA’05), pages 568–579,
2005.

[13] H. Yanagisawa. An offline map matching via inte-
ger programming. In Proc. 20th International Confer-
ence on Pattern Recognition (ICPR), pages 4206–4209.
IEEE, 2010.

[14] H. Yin and O. Wolfson. A weight-based map match-
ing method in moving objects databases. In Proc.
16th International Conference on Scientific and Statis-
tical Database Management (SSDBM), pages 437–438.
IEEE, 2004.

