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We present LOOM (Line-Ordering Optimized Maps), an automatic generator of geographically accurate tran-

sit maps. The input to LOOM is data about the lines of a transit network: for each line, its station sequence

and geographical course. LOOM proceeds in three stages: (1) construct a line graph, where edges correspond

to network segments with the same set of lines following the same course; (2) apply a set of local transfor-

mation rules that compute an optimal partial ordering of the lines and speed up the next stage; (3) construct

an Integer Linear Program (ILP) that yields a line ordering for each edge and minimizes the total number

of line crossings and line separations; and (4) based on the line graph and the computed line ordering, draw

the map. As our maps respect the geography of the transit network, they can be used as overlays in typical

map services. Previous research either did not take the network geography into account or was only con-

cerned with schematic metro map layouting. We evaluate LOOM on six real-world transit networks, with

line-ordering search-space sizes up to 2 × 10267. Using our transformation rules and an improved ILP formu-

lation, we compute optimal line orderings in a fraction of a second for all networks. This enables interactive

use of our method in map editors.
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1 INTRODUCTION

Cities with a public transit network usually have an iconic map that illustrates the network. There
is usually a picture of it at every larger station. Similarly, most map services nowadays feature a
transit layer that displays all lines and stations in the currently selected area. Both kinds of maps
have in common that they satisfy the following criteria:

(1) The map should depict the topology of the network: which transit lines are offered, which
stations do they serve in which order, and which transfers are possible.
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(2) The map should be neatly arranged and esthetically pleasing.
(3) The map should reflect the geographical course of the lines, at least to some extent.

So far, such maps have been designed and drawn by hand. Concerning (3), the designers usually
take some liberty to make the map fit into a certain format, to simplify the layout, or both.

The goal of this article is to produce transit maps fully automatically, adhering to (3) rather
strictly: within a given tolerance, the lines on the map should be drawn according to their geo-
graphical course. This gives rise to several algorithmic challenges; in particular, because the ge-
ographical course of some lines may overlap partially. These lines should then of course not be
rendered on top of each other, as this would obfuscate the visibility. Instead, they should be drawn
next to each other. This requires us to first identify overlapping parts and then to choose the line
ordering in the rendered map. A bad ordering can lead to many unnecessary line crossings. Hence
our goal is to find orderings that minimize these undesired crossings. As the number of possible
orderings exceeds an octillion even for the transit network of medium sized cities, we need to
develop efficient methods to find the best ordering in reasonable time.

1.1 Overview and Definitions

LOOM (Line-Ordering Optimized Maps) proceeds in four stages, which we briefly describe in the
following along with some notation and terminology that will be used throughout the article:
(1) construct a so-called line graph, where edges correspond to segments of the network with the
same set of lines following the same course; (2) apply a set of transformation rules to the line graph
that simplify the graph and compute an optimal partial ordering of the lines; (3) construct an ILP
that yields a line ordering for each edge that minimizes the total number of line crossings and line
separations; and (4) based on the line graph and the computed line ordering, draw the map. Each
stage is described in more detail in one of the following sections.
Input: The input to LOOM is a setS of stations and a setL of lines. Each station has a geographical
location. Each line has a unique ID (in our examples: numbers) and information about the sequence
of stations it serves and the geographical course between them. These data are usually provided
as part of a network’s GTFS feed.
Line graph construction (Section 2): In the first stage, LOOM computes a line graph. This is
an undirected labeled graph G = (V ,E,L), where V ⊇ S (each station is a node, but there may be
additional nodes), E is the set of edges, and each e ∈ E is labeled with a subset L(e ) ⊆ L of the lines.
Intuitively, each edge corresponds to a segment of the network, where the same set of lines takes
the same geographical course (within a certain tolerance), and there is a node wherever such a set
of lines splits up in different directions. Figure 1 (left) shows the line graph for an excerpt from
the light rail network of Stuttgart, Germany. We will see that the complexity of our algorithms in
Sections 3 and 4 depends on M = maxe ∈E |L(e ) |, the maximum number of lines per segment. The
line graph construction is described in Section 2.
Line graph simplification (Section 4): In the second stage, LOOM transforms the line graph
such that the optimization problem of the third stage becomes simpler. Two of these transfor-
mations are relatively simple: pruning of nodes of degree 2 (thus making the graph smaller) and
cutting the graph into independent components (which can then be solved independently). The
most powerful transformation is what we call graph untangling. It consists of a set of local trans-
formation rules that can be applied iteratively as long as the graph has local structures where
one of the rules apply. A detailed description of these rules (along with a figure for each rule) is
provided in Section 4.3. The ILP can be formulated on the original line graph, as well as on the
transformed line graph. It turns out that the ILP on the transformed line graph can be solved much
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Fig. 1. Left: Excerpt from a line graph that LOOM constructed from the GTFS data for the 2015 light rail

network of the city of Stuttgart, Germany. Each edge corresponds to a segment of the network where the

same set of lines takes the same geographical course. Segment boundaries are often station nodes (large) but

may also be intermediate nodes (small). The line ids for each segment are given in ascending order. LOOM’s

central optimization step computes a line ordering for each segment. This determines how the lines are

drawn in the map and where line crossings and separations occur. Right: The corresponding excerpt from

LOOM’s transit map.

more efficiently. The line ordering optimization problem on the transformed line graph may even
be solvable by a simple exhaustive search for some real-world instances.
Line ordering optimization (Section 3): In the third stage, LOOM computes an ordering of L(e )
for each e ∈ E. This ordering determines where line crossings and separations occur and is hence
critical for the final map appearance. Previous research referred to the problem of minimizing
crossings as the metro-line crossing minimization problem (MLCM), see Section 1.3. We formulate
two strongly related problems: the metro-line node crossing minimization problem (MLNCM) and
a variant with a line separation penalty (MLNCM-S) and give a concise Integer Linear Program
(ILP) to solve instances of these problems.

Note that we describe the line graph simplification stage (Section 4) after the line-ordering op-
timization (Section 3), although, technically, the simplification is done before the line-ordering
optimization in LOOM. We do this for didactic reasons: The line-ordering optimization can also
be solved without the simplification, just much less efficiently so, and the intuition behind the
simplification rules is much better understood after it is clear how the line-ordering optimization
works.
Rendering (Section 5): In the fourth stage, LOOM draws the transit map based on the line graph
from stage 1 and the ordering from stages 2 and 3. Each station nodev is drawn as a polygon, where
each side of the polygon corresponds to exactly one incident edge of v . We call this side the node

front of that edge at that node. The node front for an edge e has |L(e ) | so-called ports (Figure 3).
Drawing the map then amounts to connecting the ports (according to the ordering computed in
stages 2 and 3) and drawing the station polygons. Figure 1 (right) shows a rendered transit map
after layout optimization.

1.2 Contributions

We consider the following as the main contributions of our article.

• We present a new automatic map generator, called LOOM, for geographically accurate tran-
sit maps. The input is basic schedule data as provided in a GTFS feed. This is, as far as we
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know, the first research paper on this problem in its entirety. Previous research work con-
siders only parts of this problem (oblivious either to the geographical course or to the order
of the lines) and does not yield maps that can be used for tiles and overlays in typical map
services.

• We provide a new problem formulation that resolves several issues from previous formula-
tions. In particular, our approach is not restricted to planar graphs and it does not require
an artificial grouping of crossing (it happens naturally with our approach).

• We provide a sophisticated ILP formulation, which can be solved in practice even for our
largest network. As we show, the straightforward ILP formulation can only be solved for
small networks.

• We provide a set of graph transformation rules, in particular what we call graph untangling,
which speed up ILP solution times by up to an order of magnitude.

• We evaluate LOOM on the transit network of three cities in Europe and three cities in the
U.S., the largest being New York. Using our graph transformation rules and the sophisticated
ILP formulation, an optimal line ordering can be computed for each network in a fraction
of a second.

• For comparison, we also evaluate three standard heuristic optimization methods (exhaustive
search, steepest-ascent hill climbing, simulated annealing) for the line-ordering optimiza-
tion problem.

• Our maps are publicly available online.1

1.3 Related Work

Our work is related to previous work on map construction, edge bundling, crossing minimization
in metro maps, graph untangling of planar graphs, and drawing of schematic metro maps.

1.3.1 Map Construction and Edge Bundling. The first step in our pipeline—the line graph
construction—is closely related to map construction and edge bundling.

The goal of map construction algorithms is producing the graph of an underlying (street) net-
work from vehicle trajectory data. There is a variety of map construction algorithms described in
the literature; see Reference [1] for an overview. For example, in Reference [2], an incremental ap-
proach is used that starts with an empty map and incrementally updates the network graph with
new trajectories. New trajectories are partially map-matched to existing graph segments with a
global distance threshold and their geometries updated accordingly, while unmatched parts in-
troduce new edges (and thus intersection nodes). The main difference between existing work (on
street networks) and our approach is that our input data already represents a multigraph (with
stations as intersection nodes) and is usually quite sparse.

The goal of edge bundling in general networks is to group edges to save ink when drawing the
network. Usually, the embedding of the edges is not fixed a priori but can be chosen such that
many bundles occur (possibly respecting side constraints, like edges being short). For example, in
Reference [15] a force-directed heuristic was described where edges attract other edges to form
bundles automatically. For our problem, we are not allowed to embed edges arbitrarily, as we want
to maintain the geographical course of the vehicle trajectories. In Reference [19], edge bundling in
the context of metro line map layouts was discussed, also considering orderings within the bundles
to minimize crossings. But for their approach to work, the underlying graph has to fulfill a set of
restrictive properties. For example, the so-called path terminal property demands that a node in
the graph cannot be an endpoint of one line and an intermediate node of another line at the same

1http://loom.informatik.uni-freiburg.de.
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time. But this structure regularly appears in real-world datasets. For example, a local train might
end at the main station of a town, while a long-distance train might have this station only as
an intermediate stop. Also, self-intersections are forbidden, which excludes instances with cyclic
subway lines. With these additional properties required in Reference [19], the problem becomes
significantly easier but is no longer compatible with most real-world datasets. In contrast, our line
graph construction and subsequent crossing minimization algorithms are compatible with real-
world inputs of arbitrary structure.

1.3.2 Crossing Minimization. Previous research on the metro-line crossing minimization prob-
lem (MLCM), as briefly summarized in the following, typically comes without experimental evalu-
ations and without the production of actual maps. The problem of minimizing intra-edge crossings
in transit maps was introduced in Reference [7], with the premise of not hiding crossings under
station markers for aesthetic reasons. A polynomial time algorithm for the special case of optimiz-
ing the layout along a single edge was described. The term MLCM was coined in Reference [6].
In that paper, optimal layouts for path and tree networks were investigated, but arbitrary graphs
were left as an open problem. In References [3, 4, 17], several variants of MLCM were defined and
efficient algorithms were presented for some of these variants, often with a restriction to planar
graphs. In Reference [5], an ILP formulation for MLCM under the periphery condition (lines end-
ing in a station must be drawn at the left- or rightmost position in incident edges) was introduced.
The resulting ILP was shown to have a size of O ( |L|2 |E |) with L being the set of lines and E the set
of edges in the derived graph. In Reference [13], it was observed that crossings scattered along a
single edge are also not visually pleasing, and hence crossings were grouped into so-called block
crossings. The problem of minimizing the number of block crossings was shown to be NP-hard on
simple graphs just like the original MLCM problem [12]. Our adapted MLNCM problem has the
same complexity as MLCM and is hence also NP-hard.

1.3.3 Graph Untangling. In Section 4, we describe a set of so-called graph untangling rules that
may be applied to a MLNCM problem instance to reduce the overall search space size. To the best
of our knowledge, these graph untangling rules have not been described in the context of the
metro-line crossing minimization problem so far.

The term graph untangling has previously been used in the literature to denote the untangling
of planar graphs [8, 14], with the goal of producing straight-line drawings of those graphs with-
out any lines crossing each other by moving some (or the minimal subset of) nodes. While our
line graph model may indeed be understood as a multigraph, we are not allowed to move nodes
freely and generally look for a line drawing with a minimal number of crossings, which must not
necessarily be zero. Additionally, we do not require our line graphs to be planar.

1.3.4 Schematic Metro Maps. Another line of research focuses on drawing schematic metro
maps, for example, by restricting the representation of transit lines to octilinear polylines [16]
or Bézier curves [11]. See Reference [18] for a recent survey on automated metro map layout
methods. These approaches strongly abstract from the geographical course of the lines (and often
also from station positions), and the minimization of line crossings or separations is usually not
part of the problem. In particular, the resulting maps cannot be used for tiles or overlays in typical
map services.

1.3.5 Other Work. There is also some applied work on transit maps, but without publications
of the details. One approach that seems to use a model similar to ours was described by Anton
Dubreau in a blog post [10] although without a detailed discussion of their method. As far as we
are aware there are no papers on MLCM that deal with real public transit data.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 4, Article 25. Publication date: September 2019.



25:6 H. Bast et al.

Fig. 2. Left: Input multigraph G0 created from schedule data (GTFS). Nodes represent stations, and each

edge holds a single line that occurs between two stations. There may be many overlapping edge segments.

Right: Line graph G constructed from G0 by repeatedly combining shared edge segments into a single, new

edge. The overlapping segments have been collapsed, and a new node u ′ was introduced at the segment

boundaries.

2 LINE GRAPH CONSTRUCTION

This section describes stage 1 of LOOM: Given line data, construct the line graph. We assume that
the data are given in the GTFS format [9]. In GTFS, each trip (that is, a concrete tour of a vehicle of
a line) is given explicitly and the graphG0 formed by all station coordinates and the trips between
them has many overlapping edges that may (partially) share the same path (Figure 2 (left)).

Let e1, e2 be two edges in G0 with geometrical paths τ1 and τ2. For each τ , we define a
parametrization pτ (t ) : [0, 1] �→ R2, which maps the progress t to a point on τ (e.g., if the length
of τ is 10 meters, then pτ ( 1

2 ) returns the point we would reach after traveling on τ for 5m). We
call (t , t ′), t ′ ≥ t a segment of e . To decide whether a segment (t1, t1

′) of e1 is similar to a seg-

ment (t2, t2
′) of e2, we use a simple approximation. For a distance threshold d̂ (e1, e2), we say

((t1, t2) , (t1
′, t2

′)) is a shared segment of e1 and e2 if

∀u ∈ [t1, t1
′] : ∃u ′ ∈ [t2, t2

′] : �
�pτ1 (u) − pτ2 (u ′)�

� ≤ d̂ (e1, e2), (1)

that is, if for every point pτ1 (u) on τ1, there exists a corresponding point pτ2 (u ′) on τ2 within the

threshold distance d̂ (e1, e2).
As we want to avoid overlapping lines during rendering, we have to chose d̂ (e1, e2) in such a

way that there will be enough space between the edges in the final line graph. Letw be the desired
width of a single line in the rendered map. The definition

d̂ (e1, e2) =
w |L(e1) | +w |L(e2) |

2
(2)

satisfies this, as we needw |L(e ) |/2 map units of space on either side of e to render all l ∈ L(e ) with
width w (see Section 5).

We transform G0 into a line graph G by repeatedly combining a shared segment between two
edges e1 = {u1,v1} and e2 = {u2,v2} into a single new edge e12 until no more shared segments
can be found. The path τ12 of e12 is averaged from the shared segments on e1 and e2, and we
set L(e12) = L(e1) ∪ L(e2) (Figure 2 (right)). Two new non-station nodes u ′ and v ′ that mark the
beginning and end of the shared segment are introduced and split e1 and e2 such that e1 = {u1,u

′},
e2 = {u2,u

′}, e ′1 = {v ′,v1}, e ′2 = {v ′,v2}, and e12 = {u ′,v ′}. Note that the new non-station nodes v ′

and u ′ will always have a degree of 3. After each iteration, we obtain fromGi a new graphGi+1. If

the distance between a nodev ′ added toGi+1 and an existing nodev inGi is smaller than d̂ (e1, e2)
after collapsing an e1 and e2, then we mergev andv ′ to avoid cluttering the graph with many start
and end nodes of shared segments.

To find the shared segments between e1 and e2, we sweep overτ1 inn steps of some Δt , measuring

the distance d between pτ1 (i × Δt ) and τ2 at each i < n along the way. If d ≤ d̂ (e1, e2), then we start
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a new shared segment. If d > d̂ (e1, e2) and a shared segment is open, then we close it. For our test
datasets, we found that a Δt of 10m is usually small enough to achieve satisfying results.

The algorithm can be made more robust against outliers by allowing d to exceed d̂ (e1, e2) for a
number of k steps. It can be sped up by indexing every linear segment of every path in a geometric
index. Just like in previous work on incremental map construction, the results of our algorithm
depend on the order in which the segments are combined. For our evaluation in Section 6, we used
a random order.

3 LINE ORDERING OPTIMIZATION

This section describes stage 2 of LOOM, namely how to solve the metro-line node crossing mini-
mization problem (MLNCM): Given a line graph, compute an ordering of the lines for each edge
such that the total number of crossings in the final map is minimized. Contrary to the classic
MLCM problem, which imposes a right and left ordering for the L(e ) on each edge e = {u,v} (one
ordering for u, one ordering for v) and allows crossings to occur anywhere on an edge if the two
orderings do not match, MLNCM imposes exactly one ordering for each edge and restricts cross-
ings to nodes. This will prove advantageous during rendering, see Section 5. As the set of stations
S is only a subset of V in our model (Section 1.1), we can still avoid line crossings in them.

3.1 Baseline ILP

For each edge e , there are |L(e ) |! many orderings, and therefore the total number of combinations
for the whole graph is immense. We formulate an ILP to find an optimal solution. We first define
a baseline ILP, which explicitly considers line crossings and has O ( |E |M2) variables and O ( |E |M6)
constraints. We then define an improved ILP with only O ( |E |M2) constraints and which also con-
siders line separations (MLNCM-S).

For every edge e ∈ E, we define |L (e ) |2 decision variables xelp ∈ {0, 1}, where e indicates the
edge, l ∈ L(e ) indicates the line, and p = 1, . . . , |L (e ) | indicates the position of the line in the edge.
We want to enforce xelp = 1 when line l is assigned to position p, and 0 otherwise. This can be
realized with the following constraints:

∀l ∈ L(e ) :

|L(e ) |∑
p=1

xelp = 1. (3)

To ensure that exactly one line is assigned to each position, we need the following additional
constraints:

∀p ∈ {1, . . . , |L (e ) |} :
∑

l ∈L(e )

xelp = 1. (4)

Let A,B be two lines belonging to an edge e = {v,w } and both extend over w . We distinguish two
cases: Either A and B continue along the same adjacent edge e ′ (Figure 3 (left)), or they continue
along different edges e ′ and e ′′ (Figure 3 (right)).

In the first case, A and B induce a crossing if the position of A is smaller than the position of B
in L(e ), so pe (A) < pe (B) (where pe (l ) denotes the position of a line l ∈ L(e ) in e) but vice versa
in L(e ′). We introduce the decision variable xee ′AB ∈ {0, 1}, which should be 1 in case a crossing
is induced and 0 otherwise. To enforce this, we create one constraint per possible crossing. For
example, a crossing would occur if we have pe (A) = 1 and pe (B) = 2 as well as pe ′ (A) = 2 and
pe ′ (B) = 1. We encode this as follows:

xeA1 + xeB2 + xe ′A2 + xe ′B1 − xee ′AB ≤ 3. (5)

In case the crossing occurs, the first four variables are all set to 1. Hence their sum is 4 and the
only way to fulfill the ≤ 3 constraint is to set xee ′AB to 1. In the example given in Figure 3, six such
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Fig. 3. Example instances. Both station polygons have four node fronts, each corresponding to an incident

edge. Each node front has exactly one port (1, 2, . . .) for each line traversing through its edge. Gray lines

depict possible inner node connections. Left: A,B extend from e to e ′ overw and may introduce a crossing, if

the position of A is smaller than the position of B in e , but not in e ′ (or vice versa). Right: A crossing between

A and B only depends on the line ordering in e , but not on the orderings in e ′ and e ′′.

constraints are necessary to account for all possible crossings of the lines A and B at node w . The
objective function of the ILP then minimizes the sum over all variables xee ′AB .

In the second case, the actual positions of A and B in e ′ and e ′′ do not matter, but just the order
of e ′ and e ′′. We introduce a split crossing decision variable xee ′e ′′AB ∈ {0, 1} and constraints of the
form xeAi + xeBj − xee ′e ′′AB ≤ 1 for all orders of A and B at e with i < j as in that case a crossing
would occur. We add xee ′e ′′AB to the objective function.

For mapping lines to positions at each edge, we need at most |E |M2 variables and 2|E |M con-
straints, where M = maxe ∈E |L(e ) | (the maximum number of lines per segment). To minimize
crossings, we have to consider at most M2 pairs of lines per edge and introduce a decision variable
for each such pair. That makes at most |E |M2 additional variables, which all appear in the objec-
tive function. Most constraints are introduced when two lines continue over a node in the same

direction. In that case, we create no more than
(

M
2

)2
< M4 constraints per line pair per edge, so at

most |E |M6 in total. In summary, we have O ( |E |M2) variables and O ( |E |M6) constraints.

3.2 Improved ILP Formulation

The O ( |E |M2) variables in the baseline ILP seem to be reasonable, as indeed Ω( |E |M2) crossings
could occur. But the O ( |E |M6) constraints are due to enumerating all possible position inversions
explicitly. If we could check the statement position of A on e is smaller than the position of B effi-
ciently, then the number of constraints could be reduced. To have such an oracle, we first modify
the line-position assignment constraints.

3.2.1 Alternative Line-Position Assignment. Instead of a decision variable encoding the exact
position of a line, we now usexel ≤p ∈ {0, 1}, which is 1 if the position of l in e is ≤ p and 0 otherwise.
To enforce a unique position, we use the constraints:

∀l ∈ L(e ) ∀p ∈ {1, . . . , |L (e ) | − 1} : xel ≤p ≤ xel ≤p+1. (6)

This ensures that the sequence can only switch from 0 to 1, exactly once. To make sure that at some
point a 1 appears and that each position is occupied by exactly one line, we additionally introduce
the following constraints:

∀p ∈ {1, . . . , |L (e ) |} :
∑

l ∈L(e )

xel ≤p = p. (7)

So for exactly one line l , xel ≤1 = 1, for exactly two lines l ′ and l ′′, xel ′ ≤2 = xel ′′ ≤2 = 1 (where for
one l ∈ {l ′, l ′′}, xel ≤1 = 1) and so on.

3.2.2 Crossing Oracle. We reconsider the example in Figure 3 (left). Before, we enumerated all
possible positions that induce a crossing for A,B at the transition from e to e ′. But it would be
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Fig. 4. Minimized crossings in the left example, but

the right example better indicates line pairings.

Fig. 5. Both orderings have two crossings, but in

the right example they are done in one pass.

sufficient to have variables that tell us whether the position of A is smaller than the position of B
in e , and the same for e ′, and then compare those variables. For a line pair (A,B) on edge e we call
the respective variables xeB<A,xeA<B ∈ {0, 1}. To get the desired value assignments, we add the
following constraints:

|L(e ) |∑
p=1

xeA≤p −
∑

p

xeB≤p + xeB<AM ≥ 0, (8)

xeB<A + xeA<B = 1. (9)

The equality constraints make sure that not both xeA<B and xeB<A can be 1. If the position of A is
smaller than the position of B, then more of the variables corresponding to A are 1, and hence the
sum for A is higher. So if we subtract the sum for B from the sum for A and the result is ≥0, then
we know the position ofA is smaller and xeB<A can be 0. Otherwise, the difference is negative, and
we need to set xeB<A to 1 to fulfill the inequality. It is then indeed fulfilled for sure as the position
gap can never exceed the number of lines per edge.

To decide if there is a crossing, we would again like to have a decision variable xee ′AB ∈ {0, 1},
which is 1 in case of a crossing and 0 otherwise. The constraint

|xeA<B − xe ′A<B | − xee ′AB ≤ 0 (10)

realizes this, as either xeA<B = xe ′A<B (both 0 or both 1) and then xee ′AB can be 0, or they are not
equal and hence the absolute value of their difference is 1, enforcing xee ′AB = 1. As absolute value
computation cannot be part of an ILP we use the following equivalent standard replacement:

xeA<B − xe ′A<B − xee ′AB ≤ 0, (11)

−xeA<B + xe ′A<B − xee ′AB ≤ 0. (12)

If the values are equal, then nothing changes in the argumentation. If the values are unequal, then
either Equation (11) or Equation (12) will produce a 1 as the sum of the first two terms, enforcing
xee ′AB = 1 as desired.

3.2.3 Complexity of the Improved ILP. For the line-position assignment, we need at most |E |M2

variables and constraints just like before. For counting the crossings, we need a constant number
of new variables and constraints per pair of lines per edge. Hence the total number of variables
and constraints in the improved ILP is O ( |E |M2).

3.3 Preventing Line Partner Separation

So far, we have only considered the number of crossings. Another relevant criterion for esthetic
appeal is that “partnering” lines are drawn side by side. Figure 4 and Figure 5 provide two examples.
We address this by punishing line separations and call this extension to our original MLNCM
problem MLNCM-S. For two adjacent edges e and e ′ and a line pair (A,B) that continues from e
to e ′, if A and B are placed alongside in e but not in e ′, we want to add a penalty to the objective
function. For this, we add a variable xeA ‖B ∈ {0, 1}, which should be 0 if �

�pe (A) − pe (B)�
� = 1 (if they
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Fig. 6. Left: Periphery condition enforced by separation penalty. Right: Periphery condition not enforced by

separation penalty.

are partners in e) and 1 otherwise. As xeA ‖B = xeB ‖A, we define a setU (e ) of unique line pairs such
that (l , l ′) ∈ U (e ) ⇒ (l ′, l ) � U (e ). We add the following constraints per line pair (A,B) in U (e ):

|L(e ) |∑
p=1

xeA≤p −
∑

p

xeB≤p − xeA‖BM ≤ 1 (13)

|L(e ) |∑
p=1

xeB≤p −
∑

p

xeA≤p − xeA‖BM ≤ 1. (14)

If |pe (A) − pe (B) | = 1, then the sum difference is ≤1 and xeA‖B can be 0. If |pe (A) − pe (B) | > 1,
then either Equation (13) or Equation (14) enforce xeA‖B = 1. To prevent the trivial solution where
xeA ‖B is always 1, we add the following constraint per edge e:∑

(l,l ′)∈U (e )

xel ‖l ′ ≤
(
|L (e ) |

2

)
− |L (e ) | − 1, (15)

as there are
( |L(e ) |

2

)
line pairs (l , l ′) ∈ U (e ) of which |L (e ) | − 1 are next to each other.

Like in Section 3.2, we add a decision variable xee ′A‖B to the objective function that should be 1
if A and B are separated between e and e ′ and 0 otherwise:

xeA ‖B − xe ′A‖B − xee ′A‖B ≤ 0 (16)

−xeA ‖B + xe ′A‖B − xee ′A‖B ≤ 0. (17)

As we only add 1 constraint per edge and a constant number of constraints and variables per
line pair in each edge, the total number of variables and constraints remains O ( |E |M2).

3.3.1 Periphery Condition. Interestingly, punishing line separations also addresses a special
case of the periphery condition introduced in Reference [5]. In general, this condition holds if
lines ending in a station are always drawn at the left- or rightmost position in each incident edge.
For nodes with degree ≤2, the periphery condition is enforced in MLNCM-S (Figure 6 (left)). For
other nodes, however, it is not guaranteed (Figure 6 (right)).

3.4 Placement of Crossings or Separations

The placement of crossings or separations may be fine-tuned by adding node-based weighting
factors w× (v ) (for crossings) and w ‖ (v ) (for separations) to the objective function to prefer nodes
or to break ties. For example, w× (v ) may depend on the node degree.

As described above, we especially want to prevent crossings or separations in station nodes.
This can be achieved by adding constant global weighting factors wS× and wS‖ to each xee ′l l ′

and xee ′l ‖l ′ in the objective function if l and l ′ continue over a node vs ∈ S. These factors have
to be chosen high enough so that a crossing or separation in any other node v � S is never more
expensive than in vs . As all w× (v ) and w ‖ (v ) appear as coefficients in the objective function, they
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have to be invariant to the actual line orderings. We can thus determine the maximum possible
costs ŵ× and ŵ ‖ prior to optimization and choose wS× = ŵ× and wS‖ = ŵ ‖ .

4 LINE GRAPH SIMPLIFICATION

It is possible to further simplify the optimization problem. In this section, we describe a set of
transformations that may be applied to the line graph without affecting the global optimality of
the line ordering. We call this simplified version of the line graph the optimization graph. In our
experiments, these transformations reduced the number of constraints in the resulting ILPs by
a factor between 2 and 6, and also enabled us to cut the optimization problem into smaller sub-
problems, resulting in even smaller individual ILPs. Line graph simplification led to significantly
lower solution times (see Section 6). We first prove Lemmas 4.1—4.4 and use them to derive a set
of pruning (Section 4.1), cutting (Section 4.2), and untangling rules (Section 4.3).

Lemma 4.1. If for some set B = {A,B,C, . . .} ⊆ L it holds for all l ∈ B, e ∈ E : l ∈ L(e ) ⇒ B ⊆
L(e ) (that is, all l ∈ B always appear together), then for each order l1, l2, . . . , l |B | on the l ∈ B a

globally optimal line ordering solution exists in which for any e ∈ E with B ⊆ L(e ) and i > 1 it holds

that pe (li ) = pe (li−1) + 1 (in each edge in which they appear, all l ∈ B are positioned next to each

other with a fixed global ordering).

Proof. Let L ∈ B be the line inB that induces the minimal number of crossings and separations
for some solution σ . We can move any line L′ ∈ B,L′ � L to the right of L (such that pe (L′) =
pe (L) + 1 for all e with B ⊆ L(e )) without negatively affecting global optimality: Because pe (L′) −
pe (L) = 1 for each e on which they appear, and because all l ∈ B take the exact same path through
the network, this placement will not induce any additional crossings or separations between L and
L′. For the same reason, the number of crossings L′ induces at the new position will be equivalent
the to number of crossings L induces. The number of separations L′ induces at the new position
will be 0, as all separations that may be induced by L′ at the new position were already induced by
L. This new solutionσ ′will therefore always be better than or equal toσ . The same argument holds
for moving any L′ ∈ B,L′ � L to the left of L. Since we can thus place any l ∈ B, l � L either to the
left or to the right of L, and as we can freely choose the order in which we move them, a globally
optimal solution like described in Lemma 4.1 can be constructed for each order on the l ∈ B. �

Lemma 4.2. Given a solution σ with an optimal ordering for each L(e ). We say a node v belongs

toW if deg(v ) = 2 and for its adjacent edges e and e ′ the set of lines L(e ) is equal to L(e ′). A crossing

or a separation in some v ∈W can always be moved from v to a node v ′ �W without negatively

affecting optimality.

Proof. We set L∗ = L(e ) = L(e ′) and first consider crossings. There are two possible cases:
(1) All l ∈ L∗ always occur together in each edge. Then Lemma 4.1 holds, and there is an opti-
mal solution in which the ordering of L(e ) is the same as of L(e ′), inhibiting any crossings inv . We
can thus ignore this case. (2) The lines in L∗ separate in some nodev ′ � v . Then they either diverge
into separate edges at v ′, or a subset of them ends in v ′. If they diverge, then the degree of v ′ has
to be at least 3, implicatingv ′ �W . If some (not all) of them end inv ′, thenv ′ has to be adjacent to
at least 2 edges e, e ′ with L(e ) � L(e ′), again implicating v ′ �W . Therefore, such a v ′ will indeed
always exist. Under a uniform crossing penalty, we can trivially move the crossing from v to v ′

without affecting optimality. Under the penalty described in Section 3.4, optimality will also not be
affected negatively, because deg(v ) is always 2, implying that v is a station (Section 2). The same
argument holds for line separations. �

Lemma 4.3. If for some edge e all l ∈ L(e ) end (or start) in a node v ∈ e or |L(e ) | = 1, then the

ordering of L(e ) will not affect the number of crossings or separations inv . Figure 7 gives an example.
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Fig. 7. Illustration of Lemma 4.3.

The ordering of the lines on e or

e ′ will have no impact on the

number of crossings or sepa-

rations in v , as v is a terminus

node for all lines L(e ) = {A,B,C}
and the number of lines on e ′

is 1.

Fig. 8. Illustration of Lemma 4.4.

The clockwise edge positions

(starting at e) πv
e ( f0) = 0 and

πv
e ( f1) = 1 induce a partial or-

dering on L(e ), which will not

cause any crossing or separation

between A,B orC,B inv , namely

that pe (A) < pe (B) and pe (C ) <
pe (B).

Proof. In the first case, no l ∈ L(e ) extends over v , so they cannot induce any crossing or sep-
aration. In the second case, all orderings of L(e ) are equivalent (there is only one). �

Lemma 4.4. For some edge e = {u,v} with lines L(e ), if v has n additional adjacent edges fi � e
with lines L( fi ) such that L(e ) ⊆ ⋃n−1

i=0 L( fi ) and ∀i < n : L(e ) ∩ L( fi ) � ∅ (the lines on e branch into

n edges), and ∀l ∈ L(e ), l ∈ L( fi ) : �fj � fi : l ∈ L( fj ) (each line on e only extends overv into a single

edge), then a partial ordering on L(e ) based on the clockwise enumeration of the fi will not induce any

crossing or separation at v between two lines l , l ′ ∈ L(e ), which continue over v along two different

edges. Figure 8 gives an example.

Proof. We say that πv
e ( f ) is the clockwise position of edge f at node v , beginning at edge e .

As previously defined, the position of some line l ∈ L(e ) on e is denoted by pe (l ).
Without loss of generality, we consider lines A and B in the example given in Figure 8. A and B

induce a crossing at v if pe (A) < pe (B) and πv
e ( f0) > πv

e ( f1) or vice versa. As A and B extend over
v into different edges, no separation between them may ever occur in v . The πv

e therefore induce
a partial ordering of L(e ), which does not cause any crossings or separations between any such
line pair l , l ′ ∈ L(e ) in v . �

4.1 Pruning Rules

Using Lemmas 4.1–4.3, we may simplify the input line graph with a set of pruning rules described
in this section. Each pruning rule is followed by a correctness proof showing that its application
does not negatively affect the optimality of the line ordering.

As later rules will split line graph nodes, we first define v∗ to be the original line graph node
we constructedv from. (Note that for most nodes that were not eligible for any such rule,v∗ = v).
Crossing and separation penalties that are computed after the graph has been simplified are always
based on v∗.

Pruning rule 1 (Node Contraction): Delete each nodev with degree 2 and adjacent edges e = {u,v},
e ′ = {v,w }, where L(e ) = L(e ′) (the lines in both edges are the same). If deg(v∗) � 2 and |L(e ) | =
|L(e ′) | > 1, then additionally check ifw× (v∗) ≥ w× (u∗) andw ‖ (v

∗) ≥ w ‖ (u
∗) (crossings and separa-

tions inv can be moved tou at equal or lower cost) orw× (v∗) ≥ w× (w∗) andw ‖ (v
∗) ≥ w ‖ (w

∗) (cross-

ings and separations inv can be moved tow at equal or lower cost). If that is the case, then combine the

adjacent edges e = {u,v}, e ′ = {v,w } into a single new edge ee ′ = {u,w } with L(ee ′) = L(e ) = L(e ′)
(Figure 9).
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Fig. 9. Illustration of Pruning Rule 1 (Node Contraction). Left: e and e ′ share the same set of lines and are

connected by degree 2 nodev . Right: Nodev has been contracted without affecting line ordering optimality.

Fig. 10. Illustration of Pruning Rule 2 (Line Partner Collapsing). Left:A and B always occur together on edges

e , f , and д. Right: A and B have been collapsed into K .

Correctness Proof. If deg(v∗) = 2, then Lemma 4.2 holds for v , and we can be sure that a
nodev ′ exists were any crossing or separation that could have occurred inv can occur at lower or
equal cost. If deg(v∗) > 2, then we are only contractingv if we can find an adjacent node in which
any crossing or separation that may have occurred in v can occur at equal or lower cost. �

Pruning rule 2 (Line Partner Collapsing): Collapse each set of lines l ∈ B, where all l always

appear together in each edge through which they traverse into a single new line K (Figure 10). Weight

crossings with K by the number of lines |B| it combines to avoid distorting penalties. Assign the l ∈ B
a random relative ordering.

Correctness Proof. Lemma 4.1 states that a globally optimal line ordering exists where all l ∈
B are positioned next to each other in each edge in which they appear. In this case, each l ∈ B will
have the same number of crossings as any other l ′ ∈ B, l ′ � l . The number of crossings all l ∈ B
induce is thus the number of crossings any single line L ∈ B induces times |B|. Additionally, per
Lemma 4.1 a globally optimal solution exists for any relative ordering of B, so a random ordering
may be assigned to them. �

Pruning rule 3 (Double Termini Pruning): Remove each edge e = {u,v} where u and v are ter-
mini for all l ∈ L(e ) (Figure 11).

Correctness Proof. According to Lemma 4.3, the ordering of L(e ) will not have any effect on
the number of crossings in both u and v . We can thus ignore e during the optimization and give
L(e ) a random ordering. �

We call the resulting graph the pruned graph of G. Figure 14 (top right) gives an example of a
pruned graph after pruning rules 1–3 were applied.

4.2 Cutting Rules

The pruned graph may then be further broken down into ordering-relevant connected components
using the cutting rules below. The components can then be optimized separately and in parallel
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Fig. 11. Illustration of Pruning Rule 3 (Double Termini Pruning). Left: v and w are termini for all lines on

д = {v,w }, their ordering is irrelevant for the number of crossings or separations inv orw . Right: д has been

removed prior to optimization.

Fig. 12. Illustration of Cutting Rule 1 (single line cut). Left: Only line C continues over e , and therefore the

ordering of L(e ) is irrelevant to the number of crossings in u and v . Right: e has been split into e ′ and e ′′,
and the resulting graph components can be optimized separately.

(Figure 14 (bottom)). Just like for the pruning rules described in Section 4.1, each cutting rule is
followed by a correctness proof showing that its application will not negatively affect optimality.

Cutting rule 1 (Single Line Cut): Cut each edge e = {u,v} with |L (e ) | = 1 into two edges e ′ =
{u,v ′} and e ′′ = {v ′′,v} with L(e ′) = L(e ′′) = L(e ), where v ′ and v ′′ are new nodes (Figure 12).

Correctness Proof. As |L (e ) | = 1, Lemma 4.3 holds and the ordering of L(e ) does not affect
the number of crossings or separations in u and v . As |L(e ′) | = |L(e ′′) | = 1, the orderings of the
new split edges are still irrelevant for the number of crossings or separations in u and v . The
degree of the newly inserted nodes v ′ and v ′′ is 1, so no crossing or separation can occur in them.
Therefore, the overall number of crossings and separations will indeed stay the same. �

Cutting rule 2 (Terminus Detachment): Replace each edge e = {u,v} where v has a degree >1
and is the first or last stop (the terminus) for each l ∈ L(e ) with an edge e ′ = {u,v ′}, where v ′ is a

newly inserted node that is only connected to e ′. The original node v is replaced by a new node v ′′

connected to the remaining adjacent edges of v (Figure 13).

Correctness Proof. As per Lemma 4.3, the ordering of L(e ) does not affect the number of
crossings or separations inv . We can thus detach e fromv without affecting optimality. The degree
of the newly inserted node v ′ is 1, so no crossing or separation can occur in it. �

Figure 14 (bottom) gives an example of a line graph after Cutting Rules 1 and 2 were applied.

4.3 Graph Untangling

While the pruning rules described so far are able to significantly reduce the complexity of the
line-ordering optimization problem, they still miss some situations in which further simplification
is possible. Likewise, the cutting rules described so far may miss some situations in which the
problem may be further broken down into subproblems.
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Fig. 13. Illustration of Cutting Rule 2 (terminus detachment). Left:v is a terminus node for both A,B ∈ L(e ),
and therefore the ordering of L(e ) is irrelevant to the number of crossings in v . Right: e has been detached

from v , and the resulting graph components can be optimized separately.

Fig. 14. Top left: Line graph with seven linesA,B,C,D,E, F ,G. Top right: Line graph after pruning rules were

applied. Note that b and f have been contracted by Pruning Rule 1 and lines A,B were collapsed into X .

Bottom: Ordering-relevant connected components ofG after applying cutting rules. In particular, edge {e,a}
has been detached from a by Cutting Rule 1, edges {e,h}, {d,h}, {i,h} have been detached from h by Cutting

Rule 1 and edges {i,d }, {h,d }, {a,d }, {c,d } have been detached from d by Cutting Rule 1. The edge resulting

from detaching {h,d } from both h and d has been removed by Cutting Rule 2. The graph now consists of two

components that can be optimized separately.

This section describes six line graph untangling rules addressing such situations. We do not
claim that the list of possible untangling rules given in this section is complete. Again, like for the
pruning rules described in Section 4.1 and the cutting rules described in Section 4.2, each untan-
gling rule is followed by a correctness proof showing that its application will not negatively affect
optimality. As we will see in Section 4.5, these rules (combined with the pruning and cutting rules
from the previous sections) are able to completely solve the line ordering optimization problem
for specific line graph instances. In some cases, they are able to reduce the search space to a size
that can be explored by a simple exhaustive search.

4.3.1 Full X Structure. We now consider the situation in Figure 15 (left). It is easy to see that if
in some nodev we can identify a pair {e, f } of adjacent edges with L(e ) = L( f ), and if neither e nor
f have a line that continues into another adjacent edge д � e,д � f , then the orderings in e and f
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Fig. 15. Illustration of Untangling Rule 1 (Full X). Left: Full X structure in a line graph. {A,B} continue from e
to f through nodev without interfering with {C,D} on h and f . Right: Nodev has been split into two nodes

v ′ and v ′′, without affecting line ordering optimality.

cannot affect the number of crossing between any l ∈ L(e ) and any l ′ � L(e ), only the number of
crossings between themselves. Using this, we can state the following untangling rule:

Untangling rule 1 (Full X): For some node v with deg(v ) > 2 in the line graph and its adjacent

edges e0, e1, . . . , edeg(v )−1, if we can identify two edges ea = {v,u} and eb = {v,w } with L(ea ) = L(eb )
and from both ea and eb the L(ea ) do not (partially) continue into any other edge ei � {ea , eb }, then

split v into two newly inserted nodes v ′ and v ′′. Node v ′ gets connected to u with an edge e ′a and to

w via e ′
b
. We set L(e ′a ) = L(ea ) = L(e ′

b
) = L(eb ). Node v ′′ gets connected to the remaining nodes ui v

was originally connected to via e ′i = {v ′′,ui }. We set L(e ′i ) = L(ei ). Figure 15 (right) gives an example.

Correctness Proof. Any crossing or separation between lines on ea and lines on eb that may
have occurred in v can still occur in v ′, as ea and eb are still adjacent in v ′. Any crossing or
separation between lines on any edge ei � {ea , eb } that may have occurred in v can still occur
in v ′′, as all ei � {ea , eb } are still adjacent in v ′′. Any crossing or separation between a line on
some edge ei � {ea , eb } and a line on either ea or eb is prohibited. However, such a crossing or
separation was already not possible before, as (by prerequisite of Untangling Rule 1)∀ei � {ea , eb } :
L(ei ) ∩ L(ea ) = ∅. �

Note that this rule alone will not have any effect on ILP sizes, as we would, for example, not add
any constraints or variables for crossings between a line on edge h a line on edge e in Figure 15
(left), as described in Sections 3.1 and 3.2. However,v ′ andv ′′ may now be eligible for contraction
according to Pruning Rule 1. Additionally, this rule may cause the optimization graph to break
down into two connected components. An example of such a structure in the real-world map of
the New York subway network is shown in Figure 22.

4.3.2 Y Structures. Figure 16 (left) gives an example of what we call a Y structure in the line
graph. An edge e = {u,v} branches atv into two edges f andд. Asu is a terminus, the line ordering
in e can always be adjusted to match the line orderings of the minor legs f and д with zero cross-
ings. More specifically, the relative ordering of f and д at v already induces a partial optimal
ordering of the lines on e , namely that pe (A) < pe (C ) and pe (B) < pe (C ), where pe (l ) is the posi-
tion of line l ∈ L(e ) on edge e like defined in Section 3.1. Any ordering violating these constraints
would induce an unnecessary crossing (or separation) in v .

We again say that πv
e ( f ) is the clockwise position of edge f at node v , beginning at edge e . For

example, in Figure 16 (left), πv
e ( f ) = 0 and πv

e (д) = 1.
Untangling rule 2 (Full Y Structure): If for some nodev we can identify an edge e = {v,u} where

u is a terminus and that completely branches at v into deg(v ) − 1 edges e0, e1, . . . , edeg(v )−2 such that

L(e0) ∪ L(e1) · · · ∪ L(edeg(v )−2) = L(e ) and all L(ei ) are pairwise disjoint, then splitv andu into nodes

v ′, v ′′ and u ′, u ′′ like shown in Figure 16 (right). We call e the major leg and e0, e1, . . . , edeg(v )−2 the
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Fig. 16. Illustration of Untangling Rule 2 (Full Y). Left: Y structure in the line graph. The relative ordering of

{A,B} and {C} in e is determined by the ordering of f and д at v . Right: v and u have been split to settle the

relative ordering of {A,B} and {C}. Note that if д was the segment with the largest number of lines in the

graph, then we now have reduced M , the maximum number of lines per edge, from 3 to 2.

minor legs. For simplicity, we assume that the minor leg edges are already sorted in ascending order

by their πv
e values. Nodesv ′ andu ′ are connected with an edge e ′, where L(e ′) = L(e0) (the lines of the

leftmost minor leg). Nodes v ′′ and u ′′ are connected with an edge e ′′, where L(e ′′) =
⋃deg(v )−2

i=1 L(ei )
(the lines of the remaining minor legs to the right). Additionally, v ′ gets connected to the node that

v was originally connected to via the first minor leg e0 with a new edge e ′0, where L(e0) = L(e ′0).
Similarly, all remaining branches are re-connected to v ′′ via edges e ′i , i > 0.

Correctness Proof. As per Lemma 4.4, the implicit partitioning of L(e ) into L(e ′) and L(e ′′)
will not induce any crossings or separations inv between two lines from different minor legs. Asu
is a terminus, Lemma 4.3 holds and the ordering of L(e ) is irrelevant to the number of crossings or
separations in u. It remains to show that the splitting of u and v does not prohibit any previously
possible crossings between lines l � L(e ): As all L(ei ) are pairwise disjoint, no crossing or separa-
tion between them was previously possible atv . Asu is a terminus node, no crossing or separation
was previously possible at u. �

To be able to later deduce the ordering of the original major leg e , we additionally store an or-
dering of the new major leg edges e ′ and e ′′, which is just the original clockwise ordering between
e0 and the remainder of the minor legs. The ordering of the lines in the original edge e can then be
constructed as follows: Take the ordered lines (after optimization) in e ′, and then take the ordered
lines (after optimization) in e ′′.

Note that this rule only untangles the leftmost minor branch and that a repeated application is
necessary to completely untangle more than two branches.

4.3.3 Partial Y Structures. A special case of Y structure can be seen in Figure 17 (left). The major
leg e completely branches into two minor legs f and д at v . However, the lines of the minor legs
are not completely contained in the major leg: Line D continues through node v from f to д but
not to e . But the ordering of f and д still induces a partial ordering of e . We call this situation a
Partial Y.

Untangling rule 3 (Partial Y Structure): For some nodev , if we can identify a major leg edge e =
{v,u} where u is a terminus and that completely branches at v into n minor leg edges e0, e1, . . . , en−1

(note that this implicates n > 1 and ∀i < n : L(e ) ∩ L(ei ) � ∅) such that L(e ) � L(e0) ∪ L(e1) · · · ∪
L(en−1), and if no line in L(e ) continues overv into two minor leg edges, then splitu into nodes u ′, u ′′.
For simplicity, we again assume that the minor leg edges are already sorted in ascending order by their

πv
e values. Similarly as in Untangling Rule 2 (Full Y), v and u ′ are connected with an edge e ′, where

L(e ′) = L(e0), and v and u ′′ are connected with an edge e ′′, where L(e ′′) =
⋃n−1

i=1 L(ei ) (Figure 17

(right)).
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Fig. 17. Illustration of Untangling Rule 3 (Partial Y). Left: Partial Y structure. The relative ordering of {A,B}
and {C} in e is again determined by the ordering of f and д at v , just like in a Full Y structure. However,

we cannot split v , because an additional line D passes through it. Right: Only u has been split to settle the

relative ordering of {A,B} and {C}.

Fig. 18. Illustration of Untangling Rule 4 (Full Double Y). Left: Full Double Y structure. {A,B} and {C} join

at node u, follow e together, and depart again at v in inverted directions. Crossings in either u or v between

{A,B} and {C} are unavoidable. Right: u and v have been split up to settle the relative ordering of {A,B} and

{C} in e .

Correctness Proof. The correctness proof is analogous to that of Untangling Rule 2, but as v
is not split, we do not have to show that no crossings or separations at v between any two lines
on two different minor legs are prohibited. �

Just like with Full Y structures, we store the order of e ′ and e ′′ to be able to later deduce the line
ordering in the original major leg e .

Note that Untangling Rule 2 (Full Y) is equivalent to an application of Untangling Rule 3 (Partial
Y), followed by Untangling Rule 1 (Full X).

4.3.4 Double Y Structures. A more complex structure that is commonly found in real-world
input data is depicted in Figure 18 (left). Two line threads (in the example, {C} and {A,B}) on two
edges h and i join at some node u, continue together for a single segment e , and branch again at
some node v into д and f . We call situations like these Double Y structures.

In Figure 18, it is easy to see that there is no reason for {C} and {A,B} to be intertwined in e , for
example by setting the ordering on e to (A,C,B): This would only induce an unnecessary splitting
between A and B and would not be optimal, regardless of how the rest of the line graph looks like.
Additionally, it is also easy to see that the ordering of the two line threads at u and v imposes
a lower bound on the sum of crossings in u and v : In Figure 18 (left), because πu

e (i ) < πu
e (h) and

πv
e (д) < πv

e ( f ), two crossings betweenC andA, as well asC and B in eitheru orv are unavoidable,
regardless of the actual orderings in h, i , д, and f . In Figure 19 (left), no crossing is necessary at
all—the two line threads can always continue through u and v next to each other, regardless of
their internal ordering.
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Fig. 19. Left: Full Double Y structure like in Figure 18, but a crossing between {A,B} and {C} is not necessary.

Right: u and v have been split up to settle the relative ordering of {A,B} and {C} in e .

We transform structures like this with the following rule:
Untangling rule 4 (Double Y Structure): If some major leg edge e = {u,v}, with deg(u) =

deg(v ) ≥ 3 branches at u into n = deg(u) − 1 left minor leg edges eu
0 , e

u
1 , . . . , e

u
n−1 and at v into n

right minor leg edges ev
0 , e

v
1 , . . . , e

v
n−1 and if there is a bijection a(i ) �→ j with i, j ∈ [0,n − 1] such

that L(eu
i ) = L(ev

a (i )
) (e branches into the exact same left and right branches), then we say e is a Full

Double Y structure. We additionally require that
⋃n−1

i=0 L(eu
i ) =

⋃n−1
j=0 L(ev

j ) = L(e ) (the combined lines

of all left and of all right minor legs are equal to the lines contained in the major leg) and that for

both the right and left minor legs, L(eu
i ) and L(ev

j ) are pairwise disjoint (there are no lines continuing

through u and v to any other edge than e). We untangle both u and v like in Untangling Rule 2 (but

u ′ and u ′′ are now also connected to the original left minor leg edges adjacent to u) and split e into

two edges e ′ and e ′′, where e ′ now holds the lines of the first left minor leg and e ′′ the lines of the

remaining minor legs. Figure 18 (right) gives an example.

Just like with Untangling Rules 2 (Full Y) and 3 (Partial Y), we have to store an ordering of e ′

and e ′′ to later deduce the line ordering in the original line graph edge e . However, there are now
2 possible orderings we could store: We can either base the ordering of e ′ and e ′′ on the ordering
position of the left minor leg eu

0 atu or on the ordering position of the right minor leg ev
0 atv . If the

two orderings are inverse, that is, if for all 1 ≤ i < n it holds that πu
e (e0) < πu

e (ei ) ⇒ πv
e (em (0) ) >

πv
e (em (i ) ), then it does not matter, because there are no unavoidable crossings we have to consider

(Figure 19 (right)). If that is not the case, and an unavoidable crossing occurs (Figure 18 (right)),
then we have to base the ordering on the node with smaller crossing penalty to not compromise
optimality. For example, in Figure 18 (right) πu

e (h) > πu
e (i ). Assume that w× (u) > w× (v ). Then

we set the ordering of e ′ and e ′′ in the original line graph edge e to (e ′′, e ′), making sure that that
after optimization, the ordering in e is either (C,A,B) or (C,B,A), depending on the final ordering
of A and B. The unavoidable crossings between threads {A,B} and {C} would then occur in v . If
w× (u) < w× (v ), then the ordering would be set to (e ′, e ′′), and the crossings would appear in u.

Correctness Proof. We again prove that the implicit partitioning of the major leg lines L(e )
does not affect optimality. We assume without loss of generality that nodeu has an equal or higher
crossing penalty than v and base the partial ordering of L(e ) on the left minor leg positions. We
consider two cases: (1) the ordering of the left minor legs is exactly inverse to the ordering of their
right minor leg counterparts specified bym (Figure 19 (left)) and (2) the ordering of the left minor
legs is not inverse to their right leg counterparts (Figure 18 (left)). Per Lemma 4.4, the partitioning
will not induce any crossings or separations between two lines from different left minor legs inu. In
case (1), because of the symmetry, it will also not induce any crossing or separations between two
lines from different right minor legs inv . For case (2), the partial ordering of L(e ) will induce inter-
partition crossings atv , but these crossings are caused by the inversions of the left minor and right
minor edges and are unavoidable. Moving them tov is optimal, as we assumed thatw× (u) ≥ w× (v ).
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Fig. 20. Illustration of Untangling Rule 5 (Partial Double Y). Left: Partial Double Y structure. The relative

ordering of {A,B} and {C} in e can be determined from the ordering of h, i , д, and f atu andv , but we cannot

split u, because D passes through it. Right: Only v has been split up, settling the relative ordering of {A,B}
and {C} in e .

Fig. 21. Illustration of Untangling Rule 6 (Stump). Left: Stump structure.C ends inv and its optimal position

in e is determined by the position of д atu. Right: Stump structure transformed into a full double Y structure,

which can then be untangled by applying Untangling Rule 4 (Double Y structure).

As all L(eu
i ) (and all L(ev

j )) are pairwise disjoint, no crossing or separation between any minor legs

was possible before at u or v , and thus no optimal crossing or separation is prohibited by splitting
them. �

4.3.5 Partial Double Y Structures. Just as with Y structures, there may also be partial Double Y
structures (Figure 20 (left)). These are Double Y structures where one of the nodesu andv fulfills the
criteria described in Section 4.3.4, and the other node fulfills the criteria described for v in Partial
Y structures (Section 4.3.3, that is, the major leg branches atv into the same minor legs as at u, but
v may have additional edges or lines on the minor legs that are not contained in the major leg).

Untangling rule 5 (Partial Double Y Structure): In cases like the one described above, we only split

the node fulfilling the criteria described in Section 4.3.4, just like we broke up only u in Section 4.3.3

(Figure 20 (right)).

Correctness Proof. The correctness proof is analogous to that of Untangling Rule 4, but as v
is not split, we do not have to show that no crossing or separation at v between any two lines on
two different right minor legs is prohibited. �

4.3.6 Stump Structures. An additional class of structures, which we call stumps, can be trans-
formed into a Double Y structure without affecting optimality and with minimal changes to the
graph. Figure 21 (left) gives an example. LineC on minor leg д attaches itself to the major leg e in
node u but already terminates in node v . Regardless of the ordering of A and B in h, e , and f , the
obvious optimal ordering in e is either (A,B,C ) or (B,A,C ), because we can always put C at the
“bottom” of e without introducing a line crossing or a line separation.

Formally, if some major leg edge e = {u,v} with deg(u) ≥ 3 branches at u into n = deg(u) −
1 left minor leg edges eu

0 , e
u
1 , . . . , e

u
n−1 and at v into m = deg(v ) − 1 < n right minor edges
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Fig. 22. Left: Excerpt from the New York subway system map. Middle: Line graph corresponding to the

highlighted area of the map. Right: Optimization graph (exact edge geometries have been omitted) after

applying Untangling Rule 1 (Full X) to v . Note that v was split into two nodes v ′ and v ′′.

Fig. 23. Left: Excerpt from the Stuttgart light rail system map. Middle: Line graph corresponding to the

highlighted area of the map. Right: Optimization graph (exact edge geometries have been omitted) after

applying Pruning Rule 1 (Node Contraction) tov and Untangling Rule 3 (Full Double Y) to the resulting new

edge. Note that e and e ′ were first merged into a new edge f by Pruning Rule 1, which was then split into

f ′ and f ′′ by Untangling Rule 3. The number of possible line ordering solutions for the central segment

consisting of e and e ′ was reduced from |L(e ) |! × |L(e ′) |! = 8! × 8! = 1.63 × 109 to |L( f ′) |! × |L( f ′′) |! = 5! ×
3! = 720.

ev
0 , e

v
1 , . . . , e

v
m−1, if all L(eu

i ) are pairwise disjoint and if there is an injection a′(j ) �→ i with
j, i ∈ [0,m − 1] such that L(ev

j ) = L(eu
a′ (j )

) (for each right minor leg, there is an equivalent left

minor leg at u, but there may be left minor legs continuing over u that end in v), and if for all
j, j ′ < m it holds that πv

e (ej ) < πv
e (ej′ ) ⇒ πu

e (ea′ (j ) ) > πu
e (ea′ (j′) ) (the relative ordering of the left

minor legs is inverse to the relative ordering of the right minor legs), then we say the left minor
legs without a corresponding right minor leg are stumps in e .

Untangling rule 6 (Stump Structure): We transform a situation like described above into a Full

Double Y structure by introducing n −m dummy edges д′ for each stump д with with L(д′) = L(д)
from v to an additional dummy node w in such a way that for each stump д, its dummy counterpart

д′ will be at a position in v that is inverse to the position of д in u. Figure 21 (right) gives an example.

By applying Untangling Rule 4 (Double Y) afterward, we detach the stump line from the major leg.

Correctness Proof. If the right minor legs are extended in such a way that they exactly mirror
the left minor legs, then both sides induce an equivalent partial ordering of L(e ) without any
crossings or separations between two lines a,b from different left minor legs, as per Lemma 4.4.
Any crossing or separation between two lines a,b on the same minor leg (including the original
stump edges) can still occur. Optimality is thus not negatively affected. �

Figure 22 and Figure 23 give two examples in real-word transit networks where graph untan-
gling can be applied.
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4.4 Complexity of Line Graph Simplification

The real power of the untangling rules described in the previous section lies in their repeated
application, together with the pruning and cutting rules described in Sections 4.1 and 4.2. But
how long does it take until an input line graph is fully untangled, pruned, and cut into connected
components?

We first examine the complexity of applying a single pruning, cutting, or untangling rule. After-
ward, we analyze the complexity of iteratively applying each of those rules until none of them may
be applied anymore. We assume that the lines in each L(e ) are ordered (for example, by some inter-
nal line id) and that the adjacency list of each node is ordered in clockwise fashion by the outgoing
edge angle. The maximum node degree of our input line graphG is denoted asD = maxv ∈V deg(v ).
By M = maxe ∈E |L(e ) |, we denote the maximum number of lines per segment. We can safely re-
move nodes with degree 0 from the line graph prior to optimization and thus assume that 2|E | is
an upper bound for |V |.

We call the application of a single rule on all edges of a graph a round of this rule.

4.4.1 Complexity of Pruning Rules. We first consider the complexity of the pruning rules. For
each node contraction according to Pruning Rule 1, we have to check whether L(e ) = L(e ′), which
can be done in O (M ). A single round of Pruning Rule 1 can therefore be applied in O ( |E |M ), as
we have to contract at most 2|E | nodes.

For Pruning Rule 2 (Line Partner Collapsing), we have to do at most ( M
2 ) < M2 depth-first

searches in the line graph. A single round of Pruning Rule 2 can therefore be applied in O ( |E |M2).
Pruning Rule 3 (Double Termini Pruning) is a matter of checking for each edge e = (u,v ) if all

L(e ) end in either u or v , which means that for both u and v , we have to check if the pairwise
intersection between L(e ) and the lines on at most D − 1 other adjacent edges is empty. This can
be done in O (MD), as we assumed the sets of lines to be sorted. A single round of Pruning Rule 3
can therefore be applied in O ( |E |MD).

4.4.2 Complexity of Cutting Rules. The complexity of a single round of Cutting Rule 1 (single
line cut) is trivially O ( |E |). For Cutting Rule 2 (terminus detachment) we again have to check for
each edge e = (u,v ) if all L(e ) end in either u or v . The complexity is thus the same as for Pruning
Rule 3, and a single round of Cutting Rule 2 can be applied in O ( |E |MD).

4.4.3 Complexity of Line Untangling Rules. In Untangling Rule 1 (Full X), for a single edge, we

have to check ( D
2 ) < D2 partners of adjacent edges for line equivalency in the worst case, which

can be done inO (MD2) A single round of Untangling Rule 1 can therefore be applied inO ( |E |MD2).
In Untangling Rule 2 (Full Y), we have to check for the non-terminus node if the L(e ) of all minor

leg edges are completely contained in the major leg. This can be done in O (MD), as the number
of minor legs is always smaller than D, and we can check whether the L(e ) of a single edge is
contained in the major leg in time linear in M . We also have to check whether the minor leg edges
are pairwise disjoint, which takes O (MD2). A single round of Untangling Rule 2 can therefore be
applied in O ( |E |MD2)

In Untangling Rule 4 (Double Y) and 5 (Partial Double Y), we have to apply the same checks as
for rules 2 and 3 twice, but we also have to establish the bijectionm between the left and the right
legs. This can be done in O (MD) as we assumed the adjacency lists to be sorted. A single round
of Untangling Rules 4 and 5 can therefore be applied in O ( |E |MD2).

Untangling Rule 6 (Stumps) has the same complexity as Untangling Rule 4 (Double Y) and Un-
tangling Rule 5 (Partial Double Y). Finding such structures has the same complexity, and dummy
edge extension can be done in constant time. A single round of each untangling rule can therefore
be applied in O ( |E |MD2).
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ALGORITHM 1: Full pruning, cutting, and untangling of a line graph G. MaxDeд(G ) returns the current

maximum node degree of G.

G ←− PruninдRule2(G );

n ←− M ;

while n ≥ 0 do

G ←− UntanдlinдRule[1 − 6](G );

m ←− MaxDeд(G );

whilem ≥ 0 do

G ←− PruninдRule[1, 3](G );

G ←− CuttinдRule[1 − 2](G );

m ←−m − 1;

end

n ←− n − 1;

end

4.4.4 Algorithm for Full Untangling, Pruning and Cutting. Next, we determine upper bounds for
the number of rounds we may apply all the pruning, cutting, and untangling rules together until
none of the rules may be applied anymore. We then use these bounds to describe an algorithm for
full untangling, pruning, and cutting.

All pruning rules and all cutting rules are idempotent. Therefore, the maximum number of
rounds for each of these rules—when applied alone—is trivially 1. When combined, the application
of Cutting Rule 2 or Pruning Rule 3 may lead to additional node contraction possibilities (see for
example Figure 11 (right), where v may now be eligible for pruning). The application of Pruning
Rule 1 may then again lead to additional situations where Cutting Rules 1 and 2 or Pruning Rule 3
may be applied.

However, the number of rounds we can apply Pruning Rule 3 or Cutting Rule 2 together is
trivially upper bound by D − 1 (where D is again the maximum node degree of G), as no pruning
rule and no cutting rule increase D and as we only detach terminus nodes with deg(v ) > 1. For
any graphG, the maximum number of rounds we can apply all pruning and cutting rules together
is thus upper bound by D.

We now consider the untangling rules. Each untangling rule either splits an edge e into two
edges e ′ and e ′′ (Untangling Rules 2–6), or detaches an edge pair from a node (untangling rule 1).

As L(e ′) and L(e ′′) are always disjoint and contain both at least one line, the maximum number
of rounds we can apply Untangling Rules 2–6 in a standalone fashion is M − 1. The number of
rounds we can apply Untangling Rule 1 (Full X) in a standalone fashion is 1. However, as Untan-
gling Rule 3 (Partial Y) and Untangling Rule 5 (Partial Double Y) may increase node degrees, they
may also make nodes eligible for Untangling Rule 1 again—but this can again only happen M − 1
times.

As no untangling rule, no cutting rule and no pruning rule increases M , the maximum number
of rounds we can apply all untangling rules together is always upper bound by M , even when
combined with pruning or cutting rules.

Algorithm 1 thus completely prunes, cuts, and untangles an input line graph. The outer loop
applies untangling rules 1–6 exactly M times, while the inner loop applies the cutting and pruning
rules MaxDeд(G ) times, which is the maximum node degree of G at this moment. At the end of
the inner loop, we can therefore be sure that no pruning or cutting rule may be applied anymore,
and at the end of the outer loop, we we can be sure no untangling rule may be applied anymore.
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Table 1. Line Graph Dimensions and Line Ordering Search Space Size |Ω | for

Our Test Datasets

|S| |V | |E | |L| M D |Ω |
Freiburg 74 80 81 5 4 4 6 × 1013

Dallas 108 117 118 7 4 4 1 × 1020

Chicago 143 153 154 8 6 4 4 × 1033

Stuttgart 192 219 229 15 8 4 3 × 10103

Turin 339 398 435 14 5 5 1 × 1085

New York 456 517 548 26 9 5 2 × 10267

S are the stations, V the graph nodes, E the graph edges, and L the transit lines. M is

the maximum number of lines per edge. D is the maximum node degree in the graph.

We additionally make use of the fact that no cutting, no pruning and no untangling rules increase
the number of lines in any edge, so Pruning Rule 2 has to be applied only once at the beginning.

4.4.5 Complexity of Full Untangling, Pruning and Cutting. In the worst case, the cutting rules
may double the number of edges, and the untangling rules may increase the number of edges by
a factor of M . So, if |E | is the number of edges in the original input line graph, then the maximum

number of edges |Ê | in any intermediate line graph will be O ( |E |M ). Similarly, ifD is the maximum

node degree in the original input line graph, then the maximum node degree D̂ in any intermediate
line graph will be O (DM ). The outer loop of our algorithm will hence run at most M times, while

the inner loop will run at most D̂ ∈ O (DM ) times. The worst case complexity is therefore

O
( prun. 2︷︸︸︷
|E |M2 + M ×

( untang. 1-6︷��︸︸��︷
|Ê |MD̂2 + D̂ × (

prun. 1︷︸︸︷
|Ê |M +

prun. 3︷�︸︸�︷
|Ê |MD +

cut. 1︷︸︸︷
|Ê | +

cut. 2︷�︸︸�︷
|Ê |MD̂)

))
(18)

= O ( |Ê |M2D̂2) = O ( |E |M4D2). (19)

For completeness, we recall that we assumed each edge L(e ) and each adjacency list to be sorted.
The former can be sorted in O ( |E |M logM ), the latter in O ( |E |D logD), so the asymptotic worst
case running time is not affected by this assumption.

We note that in practice, bothM andD are usually very small. For our test datasets, the maximum
M was 9, and the maximum D was 5 (Table 1). For all practical purposes, we are confident that
both D and M can be considered a constant factor.

4.5 Full Solve through Untangling

For special classes of input line graphs, applying graph untangling and pruning rules is enough
to solve the line ordering optimization problem. We consider Figure 24 (left). The input line graph
is a tree, where the children of each node v are connected to v by edges ei in such a way that
the L(ei ) are pairwise disjoint and their union is exactly the set of lines on the edge connecting
v to its parent. A repeated application of our pruning and cutting rules will then lead to a graph
consisting of components of two nodes u,v , an edge {u,v} and |L({u,v}) | = 1. In the example
shown in Figure 24 (left), Untangling Rule 1 (Full X) breaks up b and a into b ′, b ′′, a′, and a′′ and
adds two edges with L({a′,b ′}) = {A,B} and L({a′′,b ′′}) = {C}, then Pruning Rule 2 (Line Partner
Collapsing) contracts a′′ and b ′′. The same happens at c , resulting in the three edges depicted in
Figure 24 (middle).

Another class of line graph that is more likely to occur in real-world transit networks is depicted
in Figure 25 (left). Lines progressively join a main branch (e2 in the example) and then leave the
branch again in the exact same order. For example, in Figure 25 (left), the main branch with lines
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Fig. 24. Left: A tree line graph, the search space size for the line ordering optimization is 3! × 2! = 12. Middle:

Optimization graph after full untangling (in this case: repeated application of Pruning Rule 2 (Node Con-

traction) and Untangling Rule 2 (Full Y)), the search space size is now 1. Right: Graph rendered with the

ordering obtained from untangling.

Fig. 25. Left: Special class of line graph in which lines join and leave a main branch in the same order, the

search space size for the line ordering optimization is 3! × 2! × 2! = 24. Middle: Optimization graph after full

untangling (in this case: repeated application of Pruning Rule 1 (Node Contraction) and Untangling Rule 4

(Double Y structure)), the search space size is now 1. Right: Graph rendered with the ordering stored for e1,

e2, and e3 from untangling.

A,B,C is first left by C at node b and then by B at node c (upward direction). Equally, C leaves at
a, and B at h (downward direction). A repeated application of Pruning Rule 1 (Node Contraction)
and Untangling Rule 4 (Full Double Y) will lead to the optimization graph depicted in Figure 25
(middle).

In both cases, the input line graph is untangled until we only have single threads left that do
not require further optimization, because their search space size is 1.

5 RENDERING

This section describes stage 3 of LOOM: Given the line graph as computed in stage 1, and a line
ordering for each edge as computed in stage 2, render the actual map. We split this into four basic
steps, as illustrated in Figure 26.

In the first step (1), a basic skeleton of the map is rendered. We make use of the fact that only
a single ordering is imposed on each L(e ) and draw each l ∈ L(e ) by perpendicular offsetting the
segment’s geometry τe by −w |L(e ) | /2 +w (pe (l ) − 1), where w is the desired line width. As τe is
just a piecewise linear curve, any method for offsetting (open) polygons may be used. Each drawn
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Fig. 26. The four steps of rendering a given line graph: (1) render ordered lines as edges, (2) free node area,

(3) render inner connections, and (4) render station overlays.

node v now has deg(v ) node fronts; see Figure 26 (2). The width of each node front depends on
the number of lines on the incident edge and on the the line width w .

In the next step (2), we make room for the line connections between these node fronts by ex-
panding them. As a stopping criteria for this expansion, we simply use a maximum distance from
the node front to its original position.

In a third step (3), the line connections in the node are then rendered by connecting all port pairs
(3). In our experiments, we used cubic Bézier curves for this, but for schematic maps a circular arc
or even a straight line might be preferable.

In the last step (4), we render the stations. This is trivial for nodes of degree 1 and 2, but more
complicated in larger stations with multiple lines. We found that the buffered node polygon al-
ready yields reasonable results here, although with much potential for improvement. We also ex-
perimented with rotating rectangles until the total sum of the deviations between each node front
orientation and the orientation of the rectangle was minimized. Both approaches can be seen in
Figure 1.

In Figure 26 (2), it may happen that during expansion of some node u, we may reach the node
front of a neighboring node v . In such a case, the current node front expansion of u has to stop on
edge {u,v}. This incomplete node front expansion may lead to rendering artifacts if not enough
space was freed to actually render smooth Bézier curves. A solution to this problem is to merge
neighboring nodes if their node fronts collide during expansion. To avoid overlapping station
markers on maps with small resolutions, merged station nodes could only be rendered as a simple
station marker. The selection of this master station marker is a matter of station ranking and can
be based, for example, on the number of lines serving a station.

6 EVALUATION

We tested LOOM on the public transit schedules of three cities in Europe and three cities in the
U.S.: Freiburg, Dallas, Chicago, Stuttgart, Turin, and New York. Table 1 provides the dimensions
of each dataset and the time needed to extract the line graph.

For each dataset, we considered three versions of the line graph: the baseline graph (con-
structed from the GTFS data), the pruned graph, and the pruned and fully untangled graph.
For each graph, we considered three ILP variants: the baseline ILP (b-ILP), the improved ILP
(i-ILP), and the improved ILP with added separation penalty (i-ILP∗). For each ILP, we evaluated
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Table 2. Main Results for a Selection of Our Methods (Those with Marked Differences between Them)

on All Six Datasets

extraction ordering quality × ‖

method b-ILP b-ILP i-ILP∗ i-ILP∗ Hill∗ Hill∗ Hill∗ i-ILP∗ ILP∗

graph baseline pruned pruned untang baseline pruned untang untang untang

Freiburg 0.7s 1s 41ms 13ms 13ms 188.4 70.6 70.1 48 6 0

Dallas 3s 1.4s 0.2s 10ms 10ms 170.3 37.7 25.3 9 3 0

Chicago 13.5s — 2m 0.3s 0.2s 463.3 131.3 123.5 80 27 0

Stuttgart 7.7s — 10h 2.1s 0.3s 1317.7 434.3 325.7 156 64 2

Turin 4.9s 14m 2m 0.4s 0.4s 1083.9 474.7 430.2 184 45 2

New York 3.7s — — 1.5s 0.5s 4487.4 1103.3 511.7 215 59 2

Column 2: the method-independent time to extract the graph from the GTFS data. Columns 3–6: the time needed for

the line ordering for four different combinations of ILP and graph (best times in bold). Columns 7–10: the objective

value for the best local-search method and our best ILP-based method (best values in bold). Columns 11 and 12: the

number of crossings and line separations, respectively, of our best ILP-based method. b-ILP stands for our basic ILP,

i-ILP for our improved ILP, Hill∗ for steepest-ascent hill climbing, and the ∗ indicates an optimization with separation

penalty.

three solvers: the GNU Linear Programming Kit (GLPK), the COIN-OR CBC solver, and Gurobi
(GU). We additionally considered six heuristic optimization methods: exhaustive search (Exh),
steepest ascent hill climbing (Hill), and simulated annealing (Ann), and their variants with added
separation penalty (Exh∗, Hill∗, Ann∗). Since the cutting rules described in Section 4.2 have only
little effect on the baseline and pruned graphs, we only applied them to the untangled graphs.

For each node v , the penalty for a crossing between edge pairs ({A,B} in Figure 3 (left)) was 4 ×
deg(v ), for other crossings ({A,B} in Figure 3 (right)) it was deg(v ). The line separation penalty was
3 × deg(v ). We found that these penalties produced nicer maps than a uniform penalty. This would
imply wS× = 4 ×maxv ∈V deg(v ) and wS‖ = 3 ×maxv ∈V deg(v ). However, we found that moving
some crossings or separations to stations with a degree greater than 2 yielded better looking re-
sults. Hence, crossings in v ∈ S were punished with wS× if deg(v ) = 2 and otherwise with 3 ×
deg(v ) (normal crossing) or 12 × deg(v ) (edge-pair crossing). Similarly, in-station line separations
where punished withwS‖ if deg(v ) = 2 and 9 × deg(v ) otherwise. Note that Lemma 4.2 still holds,
because we did not change the punishment for degree 2 stations. Also note that separations were
only considered in i-ILP∗ and thus depended on the solver and the input order in b-ILP and i-ILP.

We will first give an overview of our main results in Section 6.1. Afterward, we compare our
different ILP variants (Section 6.2) and optimization heuristics (Section 6.3) on the baseline graph
and after pruning rules were applied. We then evaluate the effects of line graph untangling on
both the ILPs and the optimization heuristics in Section 6.4. Finally, a comparison of our maps to
manually designed maps published by transportation agencies is done in Section 6.5.

6.1 Results Overview

Our main results can be found in Table 2. The line graph extraction from the input GTFS data took
less than 15s for each tested dataset and 5.6s on average. With i-ILP∗ on the untangled graph we
were able to find an optimal line ordering in less than half a second for each dataset and in 0.2s on
average.

The results of the heuristic optimization techniques were generally unsatisfactory. However,
prior application of both the pruning and untangling rules described Section 4 had significant
impact on the final optima found by the heuristics. Without prior graph untangling or pruning, the
final objective function values were 2 to 9 times higher than after graph untangling. On average,
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Table 3. Dimensions and Solution Times on All Six Datasets for Our Three ILP Variants, Three Solvers,

with and Without Graph Pruning

On baseline graph On pruned graph

rows×cols GLPK CBC GU rows×cols GLPK CBC GU × | |
Freiburg b-ILP 4k×346 12m 0.5m 1s 376×122 0.3ms 0.7s 41ms 4 2

i-ILP 537×390 0.2s 47ms 15ms 173×131 8ms 0.1s 10ms 4 2

i-ILP∗ 667×451 2.6s 0.2s 0.1s 202×144 50ms 0.1s 13ms 6 0

Dallas b-ILP 5.4k×487 3m 41s 1.4s 1.5k×153 4s 4s 0.2s 3 3

i-ILP 778×557 0.5s 80ms 16ms 236×171 30ms 39ms 7ms 3 3

i-ILP∗ 974×649 1.5s 134ms 35ms 305×203 38ms 125ms 10ms 3 0

Chicago b-ILP 41k×861 — — — 8.2k×266 — 47m 2m 22 4-7

i-ILP 1.4k×982 9s 1s 41ms 394×285 0.8s 0.1s 10ms 22 4-7

i-ILP∗ 1.9k×1.2k 47m 19s 1.8s 505×338 23s 3.8s 0.3s 27 0

Stuttgart b-ILP 224k×2.4k — — — 44k×950 — — 10h 60 11

i-ILP 4.1k×2.8k — 3.5s 0.1s 1.5k×1k 8s 0.2s 36ms 60 7-15

i-ILP∗ 5.6k×3.5k — 2m 47s 2.1k×1.3k — 36s 2.1s 64 2

Turin b-ILP 24k×2.1k — — 14m 13k×1k — — 2m 42 6

i-ILP 3.3k×2.4k 2m 0.6s 0.1s 1.6k×1.1k 16s 0.3s 71ms 42 6-10

i-ILP∗ 4.3k×2.9k — 14s 1s 2k×1.4k — 5.2s 0.4s 45 2

New York b-ILP 229k×5.2k — — — 96k×2.3k — — — — —

i-ILP 8.6k×6k — 1.8s 0.2s 3.7k×2.5k — 0.7s 0.1s 55 6-16

i-ILP∗ 12k×7.4k — 2.5m 12s 4.9k×3.2k — 50s 1.5s 59 2

The number of constraints (rows) and the number of variables (columns) is given as rows× cols. A time of — means we

aborted after 12 hours. The last two columns show the number of crossings (×) and separations ( | |) after optimization.

the objective function value obtained with the best performing technique (steepest ascent hill
climbing with prior line graph untangling) was still over 2 times higher than the optimal value.

With b-ILP on the baseline graph, three of six datasets could not be solved in under 12 hours
with the fastest solver (Gurobi). With b-ILP on the pruned graph, one of these three datasets could
still not be solved in under 12 hours. Compared to i-ILP∗ on the pruned graph, graph untangling
improved the solution times by a factor of up to 7 for some datasets but had little effect on the
solution time for other datasets, despite the fact that it both reduced the search space and the sizes
of the resulting ILP quite significantly. This indicates that the impact of graph untangling largely
depends on the structure of the underlying network but also that very good solvers may already
apply heuristics that implicitly perform something similar to our graph untangling. However, for
less sophisticated solvers, the performance impact was more significant (see Section 6.4.2), and the
line orderings for some of the smaller datasets could even be optimized with a simple exhaustive
search after untangling was applied (see Section 6.4.3).

6.2 Comparison of ILP Variants

Table 3 shows the detailed results of the ordering optimizations with ILPs for our six datasets
on the baseline optimization graph and the optimization graph after pruning rules were applied.
Tests were run on an Intel Core i5-6300U machine with four cores à 2.4GHz and 12GB RAM.
The CBC solver was compiled with multithreading support and used with the default parameters
and threads=4. The GLPK solver was used with the feasibility pump heuristic (fp_heur=ON),
the proximity search heuristic (ps_heur=ON), and the presolver enabled (presolve=ON). We used
Gurobi with the default parameters.
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6.2.1 ILP Sizes and Solution Times. As expected in Section 3.2, the sizes of i-ILP are significantly
smaller than those of b-ILP. On average, the number of rows was reduced by 92%. With added
separation penalty (i-ILP∗), the number of rows was still reduced by 89%. For i-ILP, the optimal
orderings on the pruned graph could be found in under 100ms with Gurobi and in under 1s with
CBC, on any dataset. For i-ILP∗, the ILP could be solved on the pruned graph in under 2.5s with
Gurobi for any dataset and in under 1 minute with CBC. Although the ILPs for i-ILP∗ were only
slightly larger than for i-ILP, optimization on the pruned graph took 19 times longer on average
with the fastest solver.

6.2.2 Effects of Line Graph Pruning. On the baseline graph, b-ILP could not be solved for
larger datasets except Turin with Gurobi. After graph pruning, a solution was found for Stuttgart,
Chicago, and New York in under 12 hours. As expected in Section 4, graph pruning made the ILPs
significantly smaller. With i-ILP, both the number of rows and the number of columns decreased
by 64% on average. With i-ILP∗, the decrease was 64% and 63%, respectively. With the fastest solver
and i-ILP, graph pruning lead to speedups by a factor between 4 for Chicago and 2 for New York.
With i-ILP∗, this speedup factor was between 22.4 for Stuttgart and 2.5 for Turin.

6.3 Performance of Optimization Heuristics

In this section, we evaluate the results of six heuristics for the line ordering optimization: an ex-
haustive search (Exh), steepest-ascent hill climbing (Hill), and simulated annealing (Ann), as well
as the same techniques with added separation penalty (Exh∗, Hill∗, Ann∗).

Exhaustive search simply explores the entire search space Ω to find the optimal line ordering
o ∈ Ω. Even for small input graphs, the size of Ω is immense. For the Freiburg dataset, the size of
Ω is ∼6 × 1013 and for Stuttgart it is ∼3 × 10103 (Table 1).

Steepest-ascent hill climbing and simulated annealing are local-search heuristics. In each step,
they explore the neighborhood of the current ordering. Steepest-ascent hill climbing simply
chooses the neighbor closest to the solution. Simulated annealing selects a neighbor at random
and stops if the value of the objective function has not changed for the past k = 5,000 iterations. At
state o, we choose the randomly selected neighbor as the next state o′ if it improves the overall ob-

jective function value θ (that is, if θ (o′) < θ (o)) or else with probability P (o,o′,T ) = e−(θ (o′)−θ (o))/T ,
where T is the current annealing temperature. At iteration i , we set T = 1000/n.

Each method was evaluated 50 times and the results were averaged. For each evaluation, the
initial line orderings of the graph were randomized.

6.3.1 Solution Times. Table 4 shows the results of the heuristic ordering optimization for three
of our six datasets: Freiburg, Chicago, and Stuttgart. For brevity, we only chose a representative
subset of our testing dataset, consisting of a small network, a medium network, and a large net-
work. On the baseline graph (without any simplification), Exh was infeasible even for the small
dataset of Freiburg. If we assume that we can check 10,000 ordering configurations per second,
then an exhaustive search for Freiburg would still take about 70,000 days on the baseline graph.

Final ordering configurations and graph scores of both Hill and Ann were comparable, but Hill
produced slightly better orderings on average. However, the cost of exploring the entire local
neighborhood at each iteration may get very high. The effect of this can be seen in the evaluation
for Stuttgart, where Hill took 8 minutes on average. We also experimented with probabilistic hill
climbing, which is equivalent to our simulated annealing approach withT = 0 but found the results
to be generally inferior to both Hill and Ann. With added line separation penalty (Exh∗, Hill∗,
Ann∗), solution times where generally slightly larger, even when the number of iterations was
smaller. This was because of the additional overhead of checking each ordering configuration for
line separations.
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Table 4. Dimensions, Solution Times, and Final Graph Scores for Freiburg, Chicago, and Stuttgart

and Six Baseline Heuristics for the Line Ordering Problem: Exhaustive Search with (Exh),

Steepest-Ascent Hill Climbing (Hill), Simulated Annealing (Ann), and Their Counterparts with

Separation Penalty (Exh∗, Hill∗, Ann∗)

On baseline graph On pruned graph

|Ω | t iters × | | θ |Ω | t iters × | | θ

Freiburg Exh — — — — — 2s 55k 5 2 30.0

Hill 22ms 9.4 13.8 10.1 163.8 5m 2.0 5.6 1.8 44.8

Ann 45ms 7.2k 13.8 10.9 168.7 80ms 5.9k 5.8 2.0 43.9

Exh∗ 6×1013 — — — — — 6×104 2.5s 55k 6.0 0.0 48.0

Hill∗ 30ms 9.5 12.7 4.1 188.4 4ms 4.1 7.1 1.1 70.6

Ann∗ 0.5s 7.6k 12.1 4.7 195.6 0.1s 5.8k 6.9 1.2 70.9

Chicago Exh — — — — — — — — — —

Hill 1.3s 17.4 41.7 37.6 481.4 0.5s 6.8 20.4 7.4 125.6

Ann 0.1s 12k 45.0 39.0 512.6 0.4s 8.7k 20.1 7.1 120.6

Exh∗ 4×1033 — — — — — 5×109 — — — — —

Hill∗ 2.1s 16.6 38.5 13.3 463.3 0.5s 6.0 21.6 3.2 131.3

Ann∗ 0.2s 15.1k 40.7 15.0 556.2 0.4s 7.9k 21.3 3.1 133.6

Stuttgart Exh — — — — — — — — — —

Hill 5.7m 52.4 127.0 114.6 1648.7 1.8m 20.3 65.4 36.8 485.8

Ann 0.5s 20k 139.5 128.6 1749.8 0.4s 10.1k 67.2 43.4 548.9

Exh∗ 3×10103 — — — — — 2×1038 — — — — —

Hill∗ 7.4m 50.2 105.5 43.4 1317.7 2m 21.5 64.0 12.9 434.3

Ann∗ 0.8s 25.6k 123.3 55.7 1819.3 0.7s 12.5k 65.0 17.1 519.3

Results are given for the baseline graph and the pruned graph. |Ω | is the search space size, t the solution time. A

time of — means we aborted after 12 hours. The number of iterations is shown in column iters, × is the number

of crossings in the optimized graph, ‖ the number of separations, and θ is the final graph score. For optimization

without separation penalty, the final graph scores only include crossing penalties. Optimal graph scores can be

found in Table 2.

6.3.2 Effects of Line Graph Pruning. If the input line graph was first simplified with pruning
rules 1–3 (Section 4.1), then an optimal solution could be found with an exhaustive search for
Freiburg in 4.2s. For Ann, Ann∗, Hill, and Hill∗, graph pruning enhanced the final graph scores by
a factor of 3.5 on average. This was to be expected, as pruning lead to a significant reduction of
the search space size (for example, pruning reduced the search space size of Freiburg by 9 orders
of magnitude). For Hill and Hill∗, solution times were on average 10 times faster on the pruned
optimization graph than on the baseline graph (with a large improvement for Hill on the Freiburg
dataset). Interestingly, solution times for simulated annealing did not improve much or got worse
after pruning, despite a lower number of iterations. This is because before pruning, the probability
of choosing an edge with only a single line on it (or where both nodes have a degree of 2) as the
random candidate for the next state is greater than after pruning, as pruning only leaves intersec-
tion nodes in the graph. Checking the scores of these larger nodes takes more time, which leads
to larger average iteration times.

6.3.3 Optimality of Results. With prior pruning and added separation penalty, the local optima
found by our simulated annealing approach where on average a factor of 3.3 higher than the
optimal solutions. With steepest ascent hill climbing, they were on average a factor of 2.1 higher.
The average Freiburg score for Ann∗ on the pruned graph (70.6) was closest to the optimal score
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Table 5. Dimensions of Line Graphs with Only Pruning Rules Applied (Pruned Graph) and after Full

Untangling Was Applied (Untangled Graph), as well as Time Needed for Untangling

Pruned graph Untangled graph Largest component

|Vp | |Ep | Mp |Ωp | t |V | |E | M |Ω | C C1 |V̂ | |Ê | M̂ |Ω̂ |
Freiburg 20 21 4 6×104 3ms 22 19 4 9×103 3 2 18 17 4 9×103

Dallas 24 24 4 2×106 11ms 36 27 4 2×103 9 8 12 11 4 2×103

Chicago 23 24 6 5×109 5.8ms 24 22 6 1×109 3 2 18 18 6 1×109

Stuttgart 50 58 6 2×1038 15ms 58 52 6 7×1022 7 5 24 24 6 1×1012

Turin 91 124 5 5×1040 15ms 157 134 5 2×1031 26 23 70 71 5 3×1029

New York 110 138 9 6×1092 20ms 107 93 6 3×1036 17 13 62 64 6 5×1034

|Ωp |, |Ω |, and |Ω̂ | are the search space sizes. t is the time needed to produce the untangled graph from the original

input line graph. For each untangled graph, C is the number of its components, and C1 the number of compo-

nents with M = 1 (which can be solved trivially). Under largest component, we give the dimensions of the largest

component in the untangled graph.

(48), but for Stuttgart, the average Ann∗ score on the pruned graph (519.3) was 3.33 times higher
than the optimal score (156).

6.4 Effects of Line Graph Untangling

To measure the effects of our graph untangling rules described in Section 4.3, we re-ran all of our
six heuristic optimizations and our 3 ILPs on the untangled optimization graph of our datasets. We
followed the algorithm described in Section 4.4 and thus also applied cutting rules.

6.4.1 Effect on Optimization Graph Size. Table 5 shows the optimization graph dimensions after
full untangling for all of our input datasets, compared to the sizes of the optimization graph with
only pruning rules applied. For each dataset, we measured the time t needed for full untangling,
the overall number of nodes after untangling, the overall number of edges after untangling, the
maximum number of lines per edge M and the search space size |Ω |. Additionally, we counted
the number of connected components C , the number C1 of connected components with |Ω | = 1
(which do not need optimization), and the dimensions of the largest connected component.

Compared to just applying pruning rules, graph untangling further reduced the size of the search
space Ω, sometimes dramatically. For New York, the search size space was reduced by 56 orders
of magnitude compared to the pruned graph. Compared to the original line graph, the search size
space was reduced by 212 orders of magnitude with graph untangling. For Freiburg, untangling
further reduced the search space size to 9,200, which can be explored with an exhaustive search
in minimal time (see Section 6.4.3).

The number of connected components retrieved from graph untangling was always larger than
2. For three of our datasets (Freiburg, Dallas, and Chicago), all but one connected component had
a solution size of exactly 1 and did not need any further ordering optimization. For the remaining
networks, the search space of the largest connected component was 2–10 orders of magnitude
smaller than the combined search space of the untangled graph.

For some datasets, the number of nodes and edges in the untangled graph was higher than in the
pruned graph. This was to be expected, as we are splitting both nodes and edges in our untangling
rules. However, even for those datasets, the search space sizes still went down significantly, as
breaking up edges in our untangling rules always reduces the number of lines per edge.

6.4.2 Effect on ILP Sizes and Solution Times. Table 6 shows the solution times and dimensions
of the line ordering optimization ILPs for our test datasets after applying our untangling rules,

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 4, Article 25. Publication date: September 2019.



25:32 H. Bast et al.

Table 6. Impact of Graph Untangling on ILP Sizes and Solution Times

Pruned graph Untangled graph

rows×cols GLPK CBC GU rows×colsmax GLPK CBC GU
Freiburg i-ILP 173×131 8ms 35ms 10ms 145×109 5ms 25ms 10ms

i-ILP∗ 202×144 50ms 0.1s 13ms 165×118 7ms 0.1s 13ms
Dallas i-ILP 236×171 30ms 39ms 7ms 123×90 5ms 22ms 8ms

i-ILP∗ 305×203 38ms 125ms 10ms 149×102 17ms 33ms 10ms
Chicago i-ILP 394×285 0.8s 0.1s 10ms 371×267 0.1s 0.1s 11ms

i-ILP∗ 505×338 23s 3.8s 0.3s 482×320 18s 3s 0.2s
Stuttgart i-ILP 1.5k×1k 8s 0.2s 36ms 470×331 0.2s 0.2s 30ms

i-ILP∗ 2.1k×1.3k — 36s 2.1s 638×411 21.5s 7.3s 0.3s
Turin i-ILP 1.6k×1.1k 16s 0.3s 71ms 1.2k×864 4.3s 0.3s 73ms

i-ILP∗ 2k×1.4k — 5.2s 0.4s 1.6k×1k — 8s 0.4s
New York i-ILP 3.7k×2.5k — 0.7s 0.1s 1.3k×943 2m 0.3s 80ms

i-ILP∗ 4.9k×3.2k — 50s 1.5s 1.8k×1.1k — 5.9s 0.5s

For the pruned graph, solution times and graph dimensions are are taken from Table 3. The number of constraints

(rows) and the number of variables (columns) is again given as rows × cols. If the untangled graph had multiple

components, then rows× colsmax gives the dimensions of their largest ILP. For multiple components, the respective

ILPs were solved iteratively and solution times summed.

compared to our initial approach of just applying pruning rules. If multiple components had to be
optimized after untangling, then optimization was done iteratively. For datasets where this was
the case, solution times in Table 6 are the summed solution times of all ILP solves.

Compared to only applying pruning rules, untangling further reduced the number of constraints
for each of our test datasets. For the datasets where only a single ILP was left to solve after un-
tangling (Freiburg, Dallas, Chicago), the number of constraints was reduced by 23% for i-ILP and
by 25% i-ILP∗. For the datasets where multiple ILPs where left to solve after untangling (Stuttgart,
Turin, New York), the number of constraints of the dominating ILP compared to the number of con-
straints of the original ILP on the pruned graph was reduced by 53% for i-ILP and by 50% for i-ILP∗.

For Stuttgart, of the 2 ILPs to solve after untangling, the largest ILP dominated the second largest
ILP by a factor of 1.1 in the number of constraints for both i-ILP and i-ILP∗ (both ILPs were nearly
equal in size). For New York, of the three ILPs to solve after untangling, the largest ILP clearly
dominated the second largest ILP by a factor of 67 in the number of constraints for i-ILP and by a
factor of 80 for i-ILP∗.

The total average reduction of the number of constraints between the dominating ILP of the
untangled graph compared to the ILP of the pruned graph was 38% for both i-ILP and i-ILP∗.

For Freiburg and Chicago, a solution time improvement was only noticeable with GLPK. With
Gurobi, none of the solution times for i-ILP and i-ILP∗ were better on the untangled graph than on
the pruned graph for Freiburg, Chicago, and Turin. For Chicago, the solution time for i-ILP even
went slightly up and quite significantly for Turin with i-ILP∗ on CBC. One explanation for this is
the additional overhead of solving multiple ILPs, one for each connected component with |Ω | > 1.
For Turin, however, the dominating ILP of the untangled line graph took 1.5 times longer to solve
with CBC than the pruned ILP, despite its search space being 2 orders of magnitude smaller.

Graph untangling gave significant performance gains for larger networks, especially with added
separation penalty. The solution time of i-ILP∗ on Stuttgart was greater than 12 hours with GLPK
on the pruned graph, but after graph untangling, the ILPs could be solved in 21.5s for Stuttgart. For
New York, neither i-ILP nor i-ILP∗ could be solved in under 12 hours with GLPK on the pruned
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Table 7. Impact of Graph Untangling on Selected Baseline Heuristic Solution Times and

Objective Function Values, Compared to the Impact of Only Applying Pruning Rules

Pruned graph Untangled graph

t × || θ t × || θ
Freiburg Exh∗ 2.5s 6.0 0.0 48.0 0.2s 6.0 0.0 48.0

Hill∗ 4ms 7.1 1.1 70.6 3ms 6.4 0.9 70.1
Ann∗ 0.1s 6.9 1.2 70.9 80ms 5.9 0.8 68.7

Chicago Exh∗ — — — — — — — —
Hill∗ 0.5s 21.6 3.2 131.3 0.4s 20.8 3.1 123.5

Ann∗ 0.4s 21.3 3.1 133.6 0.4s 20.9 3.1 126.7
Stuttgart Exh∗ — — — — — — — —

Hill∗ 2m 64.0 12.9 434.3 0.4s 56.3 8.7 325.7
Ann∗ 0.7s 65.0 17.1 519.3 0.6s 54.9 9.2 328.0

t is time needed for optimization, × is the number of crossings after optimization, ‖ the number of

separations after optimization. The final objective function value is given as θ .

graph, but after untangling, a solution for i-ILP was found in 2 minutes. For Stuttgart, solving
i-ILP∗ with Gurobi was 7 times faster with graph untangling, and for New York, it was 3 times
faster. With CBC, solution times for i-ILP∗ on our datasets Stuttgart and New York also went
down significantly. For Stuttgart i-ILP∗ could be solved 5 times faster and for New York 8.5 times
faster using graph untangling. With graph untangling, we were able to compute the optimal line
ordering for all test datasets in under 10s with CBC and in under 500ms with Gurobi.

On average, solution times without graph untangling were 1.4 times higher for i-ILP on CBC
and 3.4 times higher for i-ILP∗. For i-ILP, average solution times with Gurobi did not change with
graph untangling, but for i-ILP∗, they were 2.4 times faster on average with graph untangling.
These results give a hint that more sophisticated ILP solvers may already use generic heuristics
that implicitly perform a graph untangling.

Recall that for better reproducibility and comparability between different solvers, we solved
the ILPs iteratively if the untangled graph had multiple connected components. Solving them in
parallel would further bring down the solution times for the untangled graph and may be able to
amortize the overhead costs on smaller datasets.

6.4.3 Effect on Baseline Heuristics. We also evaluated the effect of graph untangling on our
six baseline heuristics from Section 6.3. In addition to the time needed for the optimization, we
measured the effect of untangling on the final objective function values. Table 7 gives an overview
of the effects of graph untangling for Exh∗, Hill∗, and Ann∗ on our datasets Freiburg, Chicago, and
Stuttgart.

For Freiburg, graph untangling brought down the solution time of a simple exhaustive search to
200ms. This provides evidence that for modestly complex real-world line graphs, an ILP is not nec-
essary to find a solution in acceptable time, even when graph untangling does not completely solve
the line-ordering optimization problem. However, for all our other datasets, exhaustive search was
not able to find a solution in under 12 hours, even after graph untangling.

In general, our optimization heuristics performed better after graph untangling, both in terms
of running time and in terms of the final graph score. For Stuttgart, for example, the final graph
score for Ann∗ averaged from 50 runs went down from 519.3 on the pruned graph to 328.0 on the
untangled graph, for Hill∗ it went down from 434.4 go 325.7. However, both scores were still over
2 times larger than the optimal score (which was 156). For Stuttgart, the running time of Hill∗ was
reduced from 2 minutes to 0.4s.
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Fig. 27. Left: Google transit map cutout for Chicago. Center: Same area in our automatically generated map.

Right: Official CTA map for the same area. Note the near-perfect match of the line-orderings in the official

map and our map.

6.5 Comparison to Manually Designed Maps

We did a manual analysis to evaluate the esthetic quality of our work. For our datasets Freiburg,
Dallas, Chicago, and Stuttgart, we compared our automatically generated maps to the official maps
published by the respective transit agencies.2 These maps are usually highly simplified and only
respect the geographical course of a line to a limited extent. However, they still provide valuable
ground truth for the line orderings computed by our ILP (Section 3).

For each official map, we hand-counted the number of line crossings as well as the number
of line separations and calculated the overall objective function value in our penalty system. In
addition, we counted the number of line swaps T necessary to transform the line ordering of our
map into the line ordering of the official map. Line swaps on multiple consecutive edges were only
counted once. Figure 27 gives an example of that: Although we have to swap the brown and the
purple line on multiple edges between stations to match the official CTA map, we only count a
single, consecutive swap.

For our four manually evaluated datasets, we found that a surprisingly low number of line swaps
was necessary to transform the line orderings found by our ILP to the line orderings of the official
map. Even for the highly complex 2015 Stuttgart map, only four line swaps were required. This
is strong evidence that our combination of penalizing line crossings and line separations closely
models the esthetics of professional, hand-drawn transit maps.

We also found that our maps always scored better or equal in our penalty system than the
official maps, and that only minimal changes to the official map (missed by the designers) would
be required to improve the readability. The results can be seen in Table 8. For Dallas, our ILP found
a single (trivial) line swap that prevented a line separation at no cost and lowered the objective
function value by 66%. For Chicago, our orderings nearly match the ones in the official map, but
our ILP found a solution with one additional crossing, but equivalent score. For Stuttgart, four line

2http://loom.informatik.uni-freiburg.de/officialmaps/vag.pdf.

http://loom.informatik.uni-freiburg.de/officialmaps/dart.pdf.

http://loom.informatik.uni-freiburg.de/officialmaps/cta.pdf.

http://loom.informatik.uni-freiburg.de/officialmaps/vvs.pdf.
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Table 8. Comparison of the Line Orderings in Our Maps and in

Manually Designed Official Maps Published by Transportation

Authorities

Official map Our map

× || θ × || θ T
Freiburg 7 1 132 6 0 48 2
Dallas 3 1 27 3 0 9 1
Chicago 26 0 80 27 0 80 1
Stuttgart 65 5 264 64 2 156 4

For the official maps, we hand-counted the number of crossings (×) and sepa-

rations ( | |) and calculated the value θ of the objective function in our penalty

system. T is the number of line swaps necessary to transform the line order-

ings in our map into those of the official map. Swaps between the same two

lines on consecutive edges were only counted once.

swaps in the official map could reduce both the number of crossings and the number of separations
and lower the objective function value by nearly 59%.

7 CONCLUSIONS AND FUTURE WORK

This work presented a complete end-to-end method for producing geographically accurate transit
maps from raw schedule data. We evaluated LOOM, a full implementation of this method, and
showed that it produces geographically accurate transit maps fast. We demonstrated that our in-
tuition of punishing both line crossings and line separations leads to results that closely resemble
the esthetics of manually designed maps.

The biggest challenge was getting the optimal line orderings in acceptable time. We have shown
that with an improved formulation of our ILP and several pruning, cutting, and untangling rules
we could reduce the solve time by several orders of magnitude for some datasets, compared to our
initial approach. With prior graph untangling, an optimal line ordering (with separation penalty)
could be found in under 500ms for all our test datasets. This enables our line-ordering optimization
techniques to be used in situations where a real-time computation of line orderings is necessary,
for example, in a map editor. The whole pipeline (including line graph construction from GTFS
schedule data, line-graph minimization, line-ordering optimization and rendering) took less than
15s for all considered inputs.

Compared to the optimal objective function value, the local optima found by two baseline op-
timization heuristics (steepest ascent hill climbing and simulated annealing) were over 2 times as
high, even with prior line graph simplification. However, we showed that even for modestly com-
plex real-world public transit networks, a simple exhaustive search may be enough to optimize
both the number of crossings and the number of separations in less than 1s if graph untangling is
applied first.

Since the line graph construction required more time than the subsequent line-ordering opti-
mization for some datasets, faster algorithms for extracting the line graph would help to further
decrease the running time. It would be interesting to evaluate the adaptability of other map con-
struction algorithms to this problem, both in terms of running time and quality.

As mentioned in Section 5, we see room for improvement in the rendering of station polygons.
It may be necessary to enforce a local octilinearity on edges leaving stations for a cleaner look.

Both our line-ordering and rendering steps may be used with any multigraph as input and are
not restricted to a geographically accurate network. It may be interesting to evaluate LOOM on
schematic transit networks as well.
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Last, the ideas behind LOOM may be useful also in a non-transit scenario. For example, one
closely related problem is that of wire routing in integrated-circuit design. There, stations corre-
spond to chips and other elements (which in wire routing are indeed of polygonal form), lines cor-
respond to wires, and the geographical course of the lines may correspond to a pre-existing wiring.
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