
Placement of Loading Stations for Electric Vehicles: No Detours Necessary!

Stefan Funke and André Nusser
Universität Stuttgart

Institut für Formale Methoden der Informatik
70569 Stuttgart, Germany

{funke,nusser}@fmi.uni-stuttgart.de

Sabine Storandt
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
79110 Freiburg, Germany

storandt@cs.uni-freiburg.de

Abstract

Compared to conventional cars, electric vehicles still suffer
from a considerably shorter cruising range. Combined with
the sparsity of battery loading stations, the complete transi-
tion to E-mobility still seems a long way to go. In this paper,
we consider the problem of placing as few loading stations
as possible such that on any shortest path there are enough
to guarantee sufficient energy supply. This means, that EV
owners no longer have to plan their trips ahead incorporat-
ing loading station locations, and are no longer forced to ac-
cept long detours to reach their destinations. We show how
to model this problem and introduce heuristics which provide
close-to-optimal solutions even in large road networks.

Introduction
Battery-powered, electric vehicles (EVs) are an important
means towards a reduction of carbon dioxide emissions
when recharged using renewable energies, e.g. from solar
or wind power. Despite their environmental advantages EVs
still wait for their breakthrough with the main reason being
their limited cruising range (often less than 200km) together
with the sparsity of battery loading stations (BLS). Planning
a trip from A to B with an EV nowadays is a non-trivial
undertaking; the locations of BLS have to be taken into ac-
count, and many destinations are not even reachable.

Hence in this early phase of E-mobility an important goal
is to establish a network of BLS such that using an EV be-
comes a worry-free enterprise. As modern BLS require only
small space (see Figure 1 for an illustration), they can be
placed almost everywhere. But as this generates costs, a nat-
ural objective is to minimize the number of installed BLS.
In (Storandt and Funke 2013), the authors propose a heuris-
tic to determine BLS locations such that one can get from
anywhere to anywhere in the road network without running
out of energy (when choosing a suitable route). Unfortu-
nately, this approach only guarantees connectivity but not
reasonability of the routes. In fact, even rather close destina-
tions where routes with only one recharging stop are possi-
ble, might require long detours with several recharging stops
due to the placement of BLS. A related approach by (Lam,
Leung, and Chu 2013) suffers from similar drawbacks. In

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Inner-City
Battery Loading Sta-
tion

the long run, E-Mobility will only prevail if a road trip with
an EV can be undertaken without unreasonable detours be-
ing introduced. In this paper we ask for a placement of the
BLS such that on any shortest path there are enough BLS
not to get stranded when starting with a fully loaded battery
– just like it is typically the case with gas stations for con-
ventional cars. We call such a set of BLS locations an EV
Shortest Path Cover (ESC) and define the respective opti-
mization problem as follows:
Given a (di)graph G(V,E), edge costs c : E → R+ and a
function η which for a path π decides whether this path can
be traveled along without recharging the EV, the problem of
determining a minimum subset L ⊆ V of BLS such that ev-
ery shortest path wrt c can be traveled without running out
of energy is called the EV Shortest Path Cover Problem.

Note that for sake of simplicity we will assume unique
shortest paths – this can easily be enforced using standard
techniques like symbolic perturbation. The function η cap-
tures all the energy characteristics of the network and the
considered vehicle. Typically, in mountainous areas or on
roads with rough surfaces, the minimal paths where energy
runs out are considerably shorter than in flat terrain or down-
hill. For our experiments we determined the energy con-
sumption of a road segment (v, w) ∈ E with elevations
h(v), h(w) as |vw| + α · max(h(w) − h(v), 0) for some
weighting parameter α (dependent on the EV). That is, the
energy consumption is determined by the Euclidean distance
and the height differences, similar to the energy model in
(Artmeier et al. 2010) but disregarding energy recuperation
(negative edge costs). The function η compares for a path
π the accumulated energy consumption along its edges with

the EV’s battery capacity to determine if recharging is nec-
essary. Note that one could employ any kind of monotonous
function η here, the algorithms we will introduce in the fol-
lowing are not dependent on this particular choice.

Contribution
In this paper we describe how to model the ESC problem as
an instance of the Hitting Set problem with the sets being
shortest paths which require at least one battery recharge.
This allows us to use algorithms developed for solving Hit-
ting Set problems, e.g. the standard greedy approach which
guarantees a solution within a factor of O(log n) of the opti-
mum (n being the number of nodes in the network). Unfor-
tunately, it turns out that the difficulty of computing an ESC
solution is already the instance construction. With Θ(n2)
shortest paths in the network, extracting and storing them
naively requires too much time and space to be practical.
We therefore develop new shortest path extraction and rep-
resentation techniques, which allow to tackle much larger
input networks. Moreover, we develop several refinements
and heuristics which provide feasible ESC solutions more
efficiently. While no a priori approximation guarantee can
be provided for them, we can prove a posteriori – using
instance-based lower bounds – that for real-world instances
the actual approximation ratio is only a small constant.

Preliminaries
To determine suitable BLS positions, we first have to con-
struct the set of shortest paths on which the EV would run
out of energy (according to η). Computing the shortest
path between two nodes or from one to all other nodes is
classically performed using Dijkstra’s algorithm. In large
street networks Dijkstra is too slow to process a large num-
ber of such queries (as it will be necessary for our applica-
tion), though. Therefore we will instrument speed-up tech-
niques developed for accelerating shortest path queries to
achieve better run times for our approaches. In particular,
we will employ Contraction Hierarchies (CH) (Geisberger
et al. 2008) for this purpose. The basic idea behind CH is to
augment the graph G(V,E) with a set E′ of so called short-
cuts, which span (large) sections of shortest paths. Using
these shortcuts instead of original edges where possible al-
lows for a dramatic reduction of operations in a Dijkstra run.
In the CH-preprocessing phase, each node gets assigned a la-
bel l : V → N. According to these labels, original or short-
cut edges (v, w) are referred to as upwards if l(v) < l(w)
and downwards otherwise; paths are called up/downwards if
they consist exclusively of edges of that type. Shortcuts are
inserted such that for each node pair s, t ∈ V a shortest path
exists in G′ = G(V,E ∪E′) which can be decomposed into
an upward path starting at s followed by a downward path
ending in t (the highest node of the path wrt l is called the
peak node in the following). This property allows to restrict
a Dijkstra run to G↑out(s) and G↓in(t) which refer to the sub-
graphs of G′ containing only all upwards paths starting in s
or all downwards paths ending in t respectively.

For the one-to-all shortest path problem, the PHAST al-
gorithm (Delling et al. 2011) takes advantage of the CH-

preprocessing. Here in a first phase all nodes in G↑out(s) for
a source s ∈ V are settled via a Dijkstra run. In the second
phase all edges (v, w) are relaxed in the order induced by
l(w), thereby computing distances to all nodes in V .

Modelling ESC as a Hitting Set Problem
The classical Hitting Set (HS) problem is defined as follows:
Given a set system (U,S) with U being a universe of ele-
ments and S a collection of subsets of U , the goal is to find a
minimum cardinality subsetL ⊆ U such that each set S ∈ S
is hit by at least one element in L, i.e. ∀S ∈ S : L∩S 6= ∅ .
In our case, U consists of all nodes of the road network (the
possible BLS locations), S is composed of the vertex sets
of all shortest s-t-paths (excluding s and t themselves) for
which a fully charged battery at s does not suffice to reach
t. Our function η characterizes these paths whose energy
consumption exceed the battery capacity B ∈ R+ – we call
them B-violating. Clearly, we only need to consider set-
minimal paths as supersets are hit automatically. At this
point, common Hitting Set solving techniques can be ap-
plied, e.g., the standard greedy algorithm for HS repeatedly
picks the node hitting most so far unhit sets in S and adds it
to the solution. It terminates as soon as all sets are hit. Its
running time depends crucially on fast access to the so far
unhit sets in S in each round.

In the remainder of the paper, we will investigate the effi-
cient construction of the set system using different path ex-
traction and representation schemes and study their influ-
ence on the greedy algorithm.

Construction of the Set System
The first step towards an ESC solution is to extract the set
system S, i.e. computing all minimal shortest paths which
are B-violating.
Naive. The simplest approach that comes to mind is com-
puting the shortest path tree (via Dijkstra) for every s ∈ V
and identifying all nodes in the tree with accumulated en-
ergy cost values above B. Once all nodes in the priority
queue of Dijkstra have settled predecessors that already be-
long toB-violating paths, we can abort the exploration from
that source. The respective paths in the search tree can then
be backtracked and stored as vertex sets. For small explo-
ration radii (small bounds B) this might be a practical ap-
proach, but for larger exploration radii the time complexity
ofO(n2 log n+nm) (with n being the number of nodes and
m the number of edges in the network), and the space con-
sumption of O(n2

√
n) (assuming an average path length of√

n) limit usability for real-world instances.
In fact, this is also the main difficulty for other Hitting-

Set-type problems on street networks. For example, speed-
up techniques for shortest path queries like Transit Nodes
(TN) (Bast, Funke, and Matijevic 2009) or Hub Labeling
(HL) (Abraham et al. 2012) are based on hitting a cer-
tain set of shortest paths as well. Methods for complete in-
stance construction are impractical there. Therefore several
custom-tailored heuristics were developed that allow for ef-
ficient computation without explicitly constructing S, as e.g.
described in (Arz, Luxen, and Sanders 2013) for TN. But

their setting differs significantly from ours, as only a sin-
gle metric is involved (not c and η as in our case). Hence
the distance bound employed there leads to a set of equal
length paths, while in our scenario due to different energy
consumption when driving uphill or downhill the lengths of
minimal B-violating paths differ vastly. So unfortunately
these TN and HL (and other related) heuristics do not carry
over to our setting. Therefore we need to explore new ways
of extracting and storing shortest path sets.
PHAST-based Extraction. For large bounds B finding all
B-violating paths from a source node resembles the one-to-
all shortest path problem. PHAST was explicitly designed
to solve this task efficiently. The paths we can backtrack
in the respective search tree are in CH-representation, i.e.
they consist partly of shortcuts. This is a huge advantage
compared to conventional paths in terms of storage, because
with shortcuts spanning large portions of the shortest path
the number of nodes in the CH-path is significantly smaller
(about two orders of magnitude for the street network of
Germany). There are some downsides, though: Nodes are
processed in the second phase of PHAST in l-order and not
increasingly by distance; hence incorporating B as stopping
criterion seems difficult. Moreover if B is not that large
or leads to paths with vastly differing lengths, the n2 lower
bound for PHAST from every source might already result in
a large overhead. Hence we now propose a different strategy
which has the potential of being significantly faster.
Peak Node Mapping (PNM). A large number of B-
violating paths can originate from a source s ∈ V , and
exploring all these paths with Dijkstra or PHAST is very
time-consuming. The core idea of PNM is to enumerate
B-violating paths completely different by considering the
CH-representation of paths. As explained above, shortest
CH-paths are unimodal wrt the labeling l and the node with
maximal label is called the peak. Intuitively, nodes with a
high label appear in more shortest paths as peaks. In fact, in
real-world graphs, the 5% highest level nodes constitute the
peaks of all reasonably long shortest paths. This gives rise
to a path enumeration algorithm, which explores paths not
from the source but from the peak, resulting in dramatically
reduced search spaces for the majority of nodes.

Our PNM algorithm runs as follows: We consider one
by one every node p ∈ V as potential peak. As all short-
est paths with peak p can only contain further nodes with a
smaller label, we only need to search upwards paths ending
in p and downwards paths starting in p for prefix and suf-
fix candidates. The respective subgraphs of the CH-graph
G′ containing these paths are called G1 := G↑in(p) and
G2 := G↓out(p). A conventional Dijkstra run in each of
G1 and G2 (which are typically very sparse) reveals the dis-
tances between the contained nodes and p. Now we are
interested in combinations of shortest upward paths in G1

and a shortest downward paths in G2 leading to minimal B-
violating paths. Testing them all naively is too expensive.
Therefore we construct for each p an interval tree on the
nodes in G2. The interval [a, b] which we associate with
such a node t denotes the range of possible energy con-
sumption values of a path prefix π(s, p) in G1 such that

π(s, p) ∪ π(p, t) is a B-violating path (and no subpath is).
These intervals can easily be computed by a single parse
over the Dijkstra search tree in G2. So for every possible
source s ∈ G1, we query the interval tree for the set of tar-
gets T in timeO(log(|G2|)+ |T |) storing the resulting paths
as quadruples (s, p, t, c(s, p) + c(p, t)), t ∈ T .

After all nodes are processed, we have a set ofB-violating
paths from which unfortunately not all are shortest paths.
Obviously, the concatenation of two shortest paths (π(s, p)
and π(p, t)) does not need to be a shortest path itself. So it
remains to filter this set appropriately. This can be achieved
by using distance oracles with quasi constant look-up time
as e.g. provided by HL or by another pass over all nodes
in the role of the peak, always pruning a quadruple if for
s, t a shorter path was found for p′ 6= p. Note, that pruning
can already be employed during the construction phase if the
intermediate path set sizes become too large.

The final set of paths is then stored as list of triples
(s, p, t) – an even more compact representation than CH-
representation. Accessing all nodes in the respective short-
est s-t-path in G as required for the greedy Hitting Set algo-
rithm is no longer trivial, though. Therefore, we will provide
suitable adaptions of the greedy algorithm to work on the
CH-representations and on PNM triples in the next section.
Transformability. Note, that the extraction scheme does not
tie us to a certain path representation. In fact, all mentioned
representations (vertex sets, CH-paths, triples) can be con-
verted into each other with little effort. Especially the trans-
formation from the naive representation to CH-paths will
turn out to be favorable, as CH-paths yield a fair trade-off
between space consumption and applicability of the greedy
algorithm as explained in more detail in the next section.

Greedy Hitting Set Computation
As explained above, the greedy approach is a natural strat-
egy to solve the Hitting Set problem approximately. Theo-
retically it yields solutions within a factor ofO(log n) of the
optimum but typically performs much better in practice.

Adaptation to Set System Representation
For all but the simplest set system representation the appli-
cation of the greedy Hitting Set algorithm is not straight-
forward and requires some deliberate operations on the set
system/path representations as we will see in the following.
Complete Vertex Sets. If the paths are simply given as the
set of contained vertices, a single scan over all these sets can
determine the ’best’ node hitting most paths. Another scan
can remove the paths that have been hit by the selected node.
Unfortunately, the space consumption of this approach is
enormous, also making a single scan quite expensive.
CH-paths. When representing the minimal B-violating
paths as CH-paths, we could convert them into original paths
by unpacking the shortcuts. For this purpose, we store with
each shortcut the original edges it spans during the CH-
construction. But there is a much better strategy than just
uncompressing every single CH-path to get to the original
node sets: maintaining a usage counter for each edge, we
first scan over all edges of all CH-paths in the set system

to be hit, incrementing the respective counters. Then we
traverse all shortcut edges of the graph in decreasing order
of their construction in the CH-preprocessing, incrementing
the counters of the spanned edges. The node counters, main-
tained to identify the maximum node, can then be derived
by a final scan over all original (non-shortcut) edges. Keep-
ing reverse information about which edges are spanned by
which shortcut also allows the identification of all sets that
have been hit by a node. If we update the edge counters
when removing CH-paths from the set, picking a node re-
quires only one scan over the edges to push the counts down
on the non-shortcut edges, one scan over the usage counters
and one scan over the set of CH-paths.
Peak Node Triples. When paths are described as triples
of source, target, and peak node, the extraction of the CH-
path representation for each path takes some more effort,
though. For every peak node p we have to perform a Di-
jkstra run in G↓out(p) and a second one in reversed G↑in(p).
For all source-target pairs associated with this peak, the CH-
path can then be generated as the respective concatenation
of subpaths. Then we proceed as described above for the
CH-path representation. Note, that this CH-path represen-
tation is computed on demand for each peak in every round
in order to not end up with the total space consumption of
storing all paths in CH-representation.

Multi-Stage Construction
For country-sized graphs, even the improved set system ex-
traction methods and representations do not reduce the space
and time consumption enough to be practical. In particular
for larger battery capacities, the exploration time and space
from a single node increase dramatically.

For an instance of our ESC problem determined by the
battery capacity B, we make the following important obser-
vation: For every capacity B′ ≤ B a Hitting Set L′ for the
instance corresponding to B′ is also feasible for the original
instance (having enough BLS for a smaller battery capacity
obviously also suffices for a larger battery capacity). While
the construction of L′ for some B′ � B might be consid-
erably faster due to smaller exploration radii, L′ is typically
also much larger than necessary for the instance defined by
B. But there is another advantage of first quickly computing
a Hitting Set for small value B′: it allows us to construct a
new small problem instance for which any feasible Hitting
Set L′′ is also feasible for our original problem (defined by
B) with assumable better quality than L′. This idea can be
used to design a multi-stage heuristic to retrieve a good solu-
tion for the original problem as we will see in the following.
Nested Hitting Sets. Let us assume we already computed a
solution L′ for B′ < B. Now consider the set of shortest,
minimal (B − B′)-violating paths starting with a node in
L′. A Hitting Set for those paths is also a feasible ESC so-
lution L for B, as every B-violating s-t-path in the original
instance must be hit by a node v ∈ L′ at most B′ away from
s, and the subpath v, · · · , t (or a subpath thereof) has to be
in the new constructed path set, so this subpath is hit by L.

For very small values of B, we can even compute Hitting
Sets without any exploration and evaluation of the η function

purely based on the connectivity structure of the graph us-
ing a so-called k-Hop Path Cover (similar to (Funke, Nusser,
and Storandt 2014)) which is a generalization of a Vertex
Cover. We construct a set of vertices C ⊆ V such that any
directed (not necessarily shortest) k-hop path in G contains
at least one vertex from C (for k = 1 this is simply a Vertex
Cover). Obviously, C is an ESC solution for B∗ where B∗
is the maximal energy cost of a k-hop path, which can easily
be upper bounded by k times the maximal energy cost of an
edge. For values k ≤ 48 this takes only few minutes even
on large graphs using a variant of depth first search, making
this step negligible for the overall running time.
In our implementation we combined nested Hitting Sets and
k-Hop Path Covers to a multi-stage procedure, constructing
a sequence of Hitting Sets Lr, Lr−1, · · · , L1 = L for a se-
quence of values Br < Br−1 < · · · < B1 = B, finally
returning L as the Hitting Set for the given instance.

The first Br results from a k-Hop Cover with small value
of k, for all subsequent solutions we apply the nested Hit-
ting Set approach (and choose Bi manually). There might
be some loss in terms of quality compared to the greedy al-
gorithm on the full set system due to the nested construction.
Our experimental evaluation will show, though, that the loss
in terms of quality is not that pronounced, but the running
times are drastically improved, and the graph sizes which
we can handle with this approach are much larger.

Refinements and Lower Bounds
Multiple Hitters Heuristic. Even with the non-naive repre-
sentations, there is considerable work involved when pick-
ing the next ’best’ node in the greedy algorithm. So it might
be worthwhile to add several nodes to the Hitting Set in each
round. Normally, we would pick only the node which hits
most so far unhit sets, and refrain from picking other nodes
in the same round as picking the first node influences the
hit counters of the others. On the other hand, if we pick
nodes that do not interfere with each other, we should do
fine. One way to achieve this, is to generate the list of nodes
sorted in ascending order of their hit counters, always pick-
ing the first one and then going down the list selecting the
next nodes which have shortest path distances of at least D
to all nodes already picked. Here D is appropriately chosen,
e.g. an upper bound on the longest shortest path that is not
B-violating. Thereby we make sure no path in our set in-
creased the hit counter of two or more picked nodes.
Simple Instance-based Lower Bounds. To evaluate the
quality of our heuristics, we would like to compare the out-
come to the optimal solution. But as the optimal value is
typically unknown, we instead compare to a good, but eas-
ily computable lower bound. In (Eisner and Funke 2012) a
rather involved lower bound was constructed, which takes
comparable effort as solving the Hitting Set problem itself.
We propose a much simpler alternative which suffices for
our purposes: As a by-product of the generation of the set
system itself we can obtain a set of node-disjointB-violating
paths. Clearly, any feasible solution must contain an extra
node per path in this set. Hence the size of a set of node-
disjoint paths yields a valid lower bound.

Experimental Evaluation
Our proposed techniques for computing ESC solutions were
evaluated in a multi-threaded implementation written in C++
and executed on 2nd generation intel core desktop hard-
ware, an i7-3930 (6 cores 64GB of RAM) for complete set
generations and an i7-2700 (4 cores, 32GB RAM) for the
multi-stage construction with nested Hitting Sets. We use
the following abbreviations to state results: K=103, M=106,
s=seconds, m=minutes, h=hours, d=days, GB=109Bytes.
Several road networks of Germany derived from Open-

region abb. |V | |E|
Pforzheim (PF) 0.2M 0.4M
Tübingen (TU) 0.5M 1.0M

Baden-Württemberg South (BW) 2.2M 4.6M
Southern Germany (SG) 4.2M 8.6M

Germany (GE) 17.7M 36.0M

Table 1: Test graph characteristics.

StreetMap data (OSM) were used for evaluation, see Ta-
ble 1 for an overview. Our used edge cost function c ex-
presses travel time along an edge, so the paths to hit are in-
deed quickest paths (the term shortest paths is convention-
ally used for subsuming all kinds of metrics). Energy con-
sumption of an EV was modeled as explained in the intro-
duction using distance data from OSM and elevations pro-
vided by the Shuttle Radar Topography Mission (SRT). B
corresponds to a battery capacity which translates to a cer-
tain cruising range (terrain dependent); our α equals 4.

Dealing with Complete Set Systems
Construction and Representation. Let us first examine
the time and space complexity of extracting the complete
set of minimal B-violating paths. We constructed set sys-
tems using the naive strategy (NAIVE – representing each
path as the complete sequence of its vertices), the PHAST-
based exploration (PHAST – with paths in CH representa-
tion), and peak node mapping (PNM – representing each
path as source,peak,target triple). The respective results can
be found in Table 2. Unfortunately, only the two smallest
instances were feasible to process using all strategies; al-
ready for the BW graph, the time and space consumption of
NAIVE exploded (extrapolated more than 500GB and more
than 23 CPU days). In comparison, PHAST is about a fac-
tor of 3 faster than NAIVE, and the space consumption of
CH-paths is an improvement by at least an order of magni-
tude. PNM can construct the BW instance in 4.4 CPU hours,
compared to the week needed by PHAST, and the space con-
sumption using triples decreases by another factor of 2. But
for SG and GE, also PHAST and PNM took too much time
and space (e.g. extrapolated 557GB/112days for PHAST).
So for larger networks, constructing complete set systems
seems to be infeasible.
Hitting Set Computation. We evaluated both the standard
greedy algorithm as well as the multiple hitters (MH) vari-
ation on the set systems for PF, TU, and BW with varying
choices for B. Figure 2 shows their performance in terms
of quality (standard greedy vs. MH) as well as running time
(how much faster MH is compared to standard greedy). The

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60
 1

 2

 3

 4

 5

 6

ru
n
ti
m

e
 r

a
ti
o

a
p
p
ro

x
im

a
ti
o
n
 f
a
c
to

r

percentage of max B

quality greedy
quality MH

runtime greedy/runtime MH

Figure 2: Performance of the greedy algorithm and the mul-
tiple hitters variant (MH) averaged over PF, TU and BW.

Graph |C| B′ CPU real # paths
BW 146,494 8832 2.2h 35.5m 24M
SG 180,455 10048 6.0h 2.8h 75M
GE 769,760 15808 64.8h 27.6h 1085M

Table 3: Instance creation (B = 40K) via PNM with initial
k-hop solution C for k = 32.
ratios are averaged over all test graphs; the bound B is cho-
sen between almost zero and 60 percent of the maximum
energy consumption of some shortest path in the respective
network. In all cases, greedy produces results much closer
to the optimum as the theoretical O(log n) guarantee, the
maximum deviation from the lower bound was indeed less
than 4.5. Employing the MH strategy increases the HS size
slightly, but yields significantly decreased running times es-
pecially for smaller bounds B (where the optimum is also
larger). Still, compared to the construction time of the set
systems, the Hitting Set computation times were negligible,
so we do not state them explicitly here. This will change
when we employ the multi-stage construction, though.

Multi-Stage Construction
As the construction of the complete set system has proven to
be infeasible for larger road networks, we will make use of
the idea of a multi-stage construction.
k-Hop Cover+PNM. Let us first examine how a compact
set system can be constructed using the PNM approach after
an initial k-Hop Path Cover. For the BW network we com-
puted a k = 32-Hop Cover C (146, 494 nodes) which cor-
responds to an ESC solution with B′ = 8832 (and cruising
range of about 9km in flat terrain). Then PNM is used to cre-
ate a final compact set system by only considering (B−B′)-
violating paths that start at nodes in C. Not surprisingly, the
number of paths to be hit reduces drastically from 2715M in
Table 2 to 24M in Table 3. The running times are still quite
high, though, as this approach does not save the exploration
from each peak (therefore more stages will not help much
here). Since further improvements in terms of running time
using PNM in a multi-stage approach cannot be expected, let
us now concentrate on the naive approach with the extracted
paths being converted into their CH-representation.
Multi-Stage Hitting Sets. We employ the following stra-
tegy: first, construct a k-Hop Cover C with e.g. k = 32

paths computation time space consumption
NAIVE PHAST PNM NAIVE PHAST PNM

CPU real CPU real CPU real vertex sets CH-paths triples
PF 38M 1.5h 0.3h 26.7m 5.0m 1.8m 25.1m 5.2GB 0.2GB 0.1GB
TU 168M 24.6h 4.1h 7.5h 1.4h 27.3m 5.4m 24.0GB 2.1GB 0.9GB
BW 2715M [23.1d] [3.9d] 7.5d 33.1h 4.4h 47.0m [526.3GB] 34.6GB 14.3GB

Table 2: Comparison of path extraction/representation schemes. B corresponds to about 40km (for PF and TU) or 125km (for
BW) cruising range on flat terrain. Timings include the CH-construction for PHAST/PNM. Values in brackets are extrapolated.

Graph Br Bi’s of nested HS |L| LB APX CPU real
TU – 1k,5k,40k 120 33 3.64 9m 3m
SG – 2k,10k,125k 106 33 3.21 404m 106m
TU 1.8k 4.8k,40k 116 33 3.52 8m 2m
SG 4.2k 12.2k,125k 110 33 3.33 242m 63m
GE 15.8k 17.8k,33.8k,125k 868 190 4.57 908m 265m
GE 6.2k 8.2k,24.2k,125k 728 190 3.83 1156m 322m
GE 15.8k 17.8k,25.8k,49.8k,125k 1212 190 6.38 645m 209m

Table 4: Multi-stage Hitting Set computa-
tion (LB = lower bound, APX = approxi-
mation factor).
The last two experiments can be seen in
detail in Table 5.

i Bi tSS #paths tHS |Li| CPU
4 6.2k – – 14s 1388k 14s
3 8.2k 363m 34.6M 25m 223k 388m
2 24.2k 249m 36.8M 21m 16k 270m
1 125k 467m 13.5M 31m 728 498m∑

1079m – 77m – 1156m
i Bi tSS #paths tHS |Li| CPU
5 15.8k – – 36s 770k 36s
4 17.8k 203m 19.7M 25m 208k 228m
3 25.8k 101m 17.1M 21m 38.6k 122m
2 49.8k 81m 9.2M 17m 8445 98m
1 125k 146m 5.6M 50m 1212 196m∑

531m – 113m – 645m

Table 5: Statistics for a 4-stage run starting with a k = 16-
Hop Cover (above), and a 5-stage construction initialized
with a k = 32-Hop Cover on GE. #paths is number of sets
to hit in the respective stage. tSS /tHS denote CPU time for
set system construction/Hitting Set computation.

which yields an initial Hitting Set Lr for some bound Br.
Then we construct a reduced set system consisting of all
(Br−1 −Br)-violating paths starting at nodes from Lr only
and compute a Hitting Set Lr−1 for that set system. We
proceed iteratively until reaching B and the final Hitting Set
Li = L. It is intuitive to demand that the gap between B2

and the original B1 = B should be large to make sure that
the last Hitting Set instance still faithfully characterizes the
original Hitting Set instance. Table 4 shows the results for
various choices of multi-stage parameters. In Table 5 we
give a more detailed account about the intermediate calcu-
lations for the large GE graph. The experiments confirm
that the larger the gap between B2 and B1 is, the better the
quality of the final Hitting Set. This comes at the cost of
an expensive last stage, though. In contrast to the other ex-
periments, the first two calculations in Table 4 have been
conducted without an initial k-Hop Cover. The results ob-
tained on TU and SG suggest that an initial k-Hop Cover
accelerates the calculation while maintaining a similar Hit-
ting Set size. Furthermore, all the APX values remain low
even though the lower bounds were obtained in a naive way.
This proves the excellent quality of the Hitting Sets for the

particular instances. Table 5 shows that introducing multiple
stages keeps the intermediate set systems rather compact, so
efficient computation is actually possible.

Conclusions and Future Work
We showed how to model and solve a natural and important
facility location problem in the E-mobility context, taking
a radically different approach than previous ones avoiding
detours to loading stations for EVs.

While a naive strategy only allows for the solution of
small instances of few hundred thousand nodes, our com-
pact representation schemes for the underlying set systems
and heuristic modifications of the standard greedy approach
make the computation of a solution even for country-sized
networks like that of Germany possible. Instance-based
lower bounds certify that the solution quality is pretty close
to optimal and far from the pessimistic theoretically achiev-
able approximation bound. In fact it is remarkable that af-
ter all, it was possible to compute a 4-approximate solution
to a seemingly intractable Hitting Set problem within few
hours on a standard quadcore desktop PC. Our computation
determined around 800 locations where placing BLS would
establish complete coverage for Germany.

Our framework does not require the metric that decides
which shortest paths have to be hit to be identical with the
metric that determines which paths are shortest. In fact this
was factored out using our η function, which – depending
on the application scenario – can also be used to implement
other hitting criteria (e.g. hop distances or risk values).

In future work we intend to examine how the ’exact hit-
ting’ requirement can be relaxed. Naturally, it is not nec-
essary that there is always a BLS right on the respective
shortest path, but a nearby one suffices. This could be mod-
eled by enlarging the vertex sets of the respective shortest
paths by surrounding vertices. Hitting Set sizes for this vari-
ant are expected to be considerably smaller than for hitting
all shortest paths directly. Another direction of research is
to take into account capacity constraints of the BLS (like
(Lam, Leung, and Chu 2013)); in particular in urban areas
it is certainly necessary to provide recharging stations for a
very large number of vehicles.

References
Abraham, I.; Delling, D.; Goldberg, A. V.; and Wer-
neck, R. F. 2012. Hierarchical hub labelings for shortest
paths. In European Symposium on Algorithms (ESA), 24–
35. Springer.
Artmeier, A.; Haselmayr, J.; Leucker, M.; and Sachen-
bacher, M. 2010. The shortest path problem revisited: Opti-
mal routing for electric vehicles. In German Conference on
Artificial Intelligence (KI), 309–316.
Arz, J.; Luxen, D.; and Sanders, P. 2013. Transit node
routing reconsidered. In International Symposium on Ex-
perimental algorithms (SEA), 55–66. Springer.
Bast, H.; Funke, S.; and Matijevic, D. 2009. Ultra-
fast shortest-path queries via transit nodes, volume 74 of
DIMACS Series on Discrete Mathematics and Theoretical
Computer Science. Providence, RI: AMS. 175–192.
Delling, D.; Goldberg, A. V.; Nowatzyk, A.; and Werneck,
R. F. F. 2011. Phast: Hardware-accelerated shortest path
trees. In International Parallel and Distributed Processing
Symposium (IPDPS), 921–931.
Eisner, J., and Funke, S. 2012. Transit nodes - lower bounds
and refined construction. In Algorithm Engineering and Ex-
periments (ALENEX).
Funke, S.; Nusser, A.; and Storandt, S. 2014. On k-path
covers and their applications. In International Conference
on Very Large Databases (VLDB).
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: faster and simpler hierarchi-
cal routing in road networks. In International Workshop on
Experimental Algorithms (WEA), 319–333. Springer.
Lam, A.; Leung, Y.-W.; and Chu, X. 2013. Electric vehicle
charging station placement. In International Conference on
Smart Grid Communications (SmartGridComm), 510–515.
The OpenStreetMap Project
http://www.openstreetmap.org.
Shuttle Radar Topography Mission
http://www2.jpl.nasa.gov/srtm.
Storandt, S., and Funke, S. 2013. Enabling E-Mobility:
Facility location for battery loading stations. In Conference
on Artificial Intelligence (AAAI).

