
Cruising with a Battery-Powered Vehicle
and not Getting Stranded

Sabine Storandt and Stefan Funke
Universität Stuttgart, Institut für Formale Methoden der Informatik, 70569 Stuttgart, Germany

storandt, funke@fmi.uni-stuttgart.de

Abstract
The main hindrance to a widespread market penetration of
battery-powered electric vehicles (BEVs) has been their lim-
ited energy reservoir resulting in cruising ranges of few hun-
dred kilometers unless one allows for recharging or switching
of depleted batteries during a trip. Unfortunately, recharging
typically takes several hours and battery switch stations pro-
viding fully recharged batteries are still quite rare – certainly
not as widespread as ordinary gas stations. For not getting
stranded with an empty battery, going on a BEV trip requires
some planning ahead taking into account energy characteris-
tics of the BEV as well as available battery switch stations. In
this paper we consider very basic, yet fundamental problems
for E-Mobility: Can I get from A to B and back with my BEV
without recharging in between? Can I get from A to B when
allowed to recharge? How can I minimize the number of bat-
tery switches when going from A to B? We provide efficient
and mathematically sound algorithms for these problems that
allow for the energy-aware planning of trips.

Introduction

Figure 1: Ev-reachable nodes (blue) and strongly ev-connected
nodes (red) for a given source node (green).

In recent years E-mobility has been identified as impor-
tant means to reduce the consumption of fossil fuels. Gov-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ernments offer reduced taxes for electric vehicles (EVs)
compared to fuel driven cars, and provide federal fund-
ing for the development of green technologies. Neverthe-
less EVs still wait for their great breakthrough. One rea-
son being that most EVs are battery powered, which lim-
its their cruising range. On the other hand, BEVs feature
advantages like the ability to recuperate energy during de-
celeration phases or when going downhill. Of course, this
does not suffice for long trips, hence a network of charg-
ing stations needs to be established. Denmark is a pioneer
in this field, not only providing power for free at several
parking lots but also charging stations, where the batteries
can be exchanged in order to make recharging not more
time-consuming than refueling – so called battery switch
stations (BSS). Until a dense network of charging stations
has been established, it is of utmost importance to take
energy constraints into account when planning routes with
a BEV. Algorithms for energy-efficient routing of BEVs
have only recently become the focus of active research
(Artmeier et al. 2010; Eisner, Funke, and Storandt 2011;
Sachenbacher et al. 2011), many important questions are
still to be settled. In this paper we consider very basic, yet
important problems in this context: Can I get from A to B
and back with my BEV without recharging in between? Can
I get from A to B when allowed to switch batteries on the
way? How can I minimize the number of battery switches
when going from A to B? Only if such fundamental ques-
tions are answered reliably and efficiently, we can hope for a
fast transition to E-mobility. For example, in the pilot project
E-Tour1 funded by the German Ministry of Economics and
Technology, tourists can use BEVs to explore the Bavarian
Alps. Tourists stranding during their trip with a BEV due to
a depleted battery is tantamount to a severe setback in the
acceptance of E-mobility technology. In the long run, in-
sights into the structure of the reachability regions of BEVs
will allow for a systematic and cost-efficient building of a
network of charging stations.

For the purpose of a clean exposition we consider the fol-
lowing simplified model: A BEV is equipped with a battery
of capacity M . Travelling along a road segment has one
of the following two effects on the battery charge status: a)
energy is consumed (typically the case when driving on a

1http://www.ee-tour.de

flat or uphill terrain) or b) energy is recuperated (when go-
ing downhill and/or braking). Two constraints have to be
obeyed: i) at no point in time, the battery runs out of en-
ergy and ii) with the battery already at its full capacity M no
energy recuperation takes place. For example, the e-Smart,
a small 2-seat car,is equipped with a Lithium-Ion battery of
capacity M = 15.8kWh, can recuperate energy during de-
celeration phases and has an average cruising range of about
110km. To derive energy consumption/recuperation on a
given road segment we combine the road network data from
the OpenStreetMap project2 with height information from
the Shuttle Radar Topography Mission 3. The result is a
graph consisting of vertices and edges with the edge costs
representing energy consumption (in case of positive edge
costs) or recuperation (in case of negative edge costs).

In graph theory, a node v is reachable from a node u in
a given (directed) graph G(V,E), if there exists a (directed)
path from u to v. The vertices u and v are called connected
if either u is reachable from v or vice versa and strongly
connected if both holds. In context of route-planning for
BEVs we have to redefine the terms reachability and con-
nectivity to account for the additional constraints i) and ii)
on the battery charge mentioned above. A path from u to
v in our graph does not imply that we can travel from u to
v, as the battery charge status in node u might not allow for
travelling along the path without running out of energy in
between. Therefore in our context of BEV route planning
we call v ev-reachable from u if there exists a path from u
to v, that obeys the battery constraints. Similarly, we call v
strongly ev-connected to u if there exists a round tour vis-
iting v, that starts and ends in u and obeys the battery con-
straints. In Figure 1 gives an impression, how the sets of
ev-reachable and strongly ev-connected nodes look like in
practice. They are influenced by the height profile of the un-
derlying terrain. As driving downhill can recuperate some
energy, the BEV is able to get further in the middle of the
map, where the streets follow a small valley. Note that for
visualization purposes we have chosen an artificially small
battery capacity in this and the other figures.

Related work
The problem of energy-optimal routing of BEVs in street
networks was introduced in (Artmeier et al. 2010). There are
two main differences to the conventional shortest path prob-
lem: On the one hand the edge costs might be partly nega-
tive, as BEVs are able to recuperate energy. On the other
hand the battery constraints have to be fulfilled, namely
a feasible path cannot contain a node with a battery load
smaller than zero (running out of energy) or a battery load
greater than the battery capacity M (overcharging). In (Eis-
ner, Funke, and Storandt 2011) it was shown, that one-to-
one-queries can be solved in time O(n log n+m), by mod-
elling the battery constraints as edge cost functions and us-
ing Johnson’s shifting technique (Johnson 1977) to obtain
non-negative edge costs. This approach is the basis for com-
puting ev-reachable and ev-connected node sets efficiently.

2http://www.openstreetmap.org
3http://www2.jpl.nasa.gov/srtm/

Our Contribution
We extend the techniques developed in (Artmeier et al.
2010) and (Eisner, Funke, and Storandt 2011) to answer the
above mentioned fundamental questions of BEV route plan-
ning. To that end, we show how to compute the set of ev-
reachable nodes and how to determine the minimal battery
load necessary to reach a given target. This requires delib-
erate modelling as edge cost functions to obtain efficient
running times. Moreover we take battery switch stations
into account and propose graph preprocessing techniques
that allow the efficient computation of ev-reachable and ev-
connected sets at query time even in the presence of BSSs.
Furthermore we present an algorithm for energy-aware route
planning minimizing the number of visited BSSs during a
trip from A to B. Our algorithms are exact and efficient
which is also reflected in our experimental evaluation.

EV-Reachable and EV-Connected Node Sets
We are given a street network G(V,E) and a cost function
cost : E → R representing the energy consumption of the
edges. We assume G to be free of any negative cycles as
well as knowledge of the battery capacity M of the BEV. A
path from s to t is called energy-optimal, if the final battery
load in t is maximized by this path compared to all other
paths. We can compute energy-optimal paths using a single
run of Dijksta’s algorithm (Dijkstra 1959), after an O(mn)
preprocessing phase (as described in (Eisner, Funke, and
Storandt 2011)). During this Dijkstra run we assign labels
to the nodes representing the battery charge status. Initially
these labels are b(v) = −∞ ∀v ∈ V \ s and b(s) = I with
0 ≤ I ≤ M . Using a max-priority-queue (PQ) for the tem-
porary labels, Dijkstra’s algorithm then settles the nodes in
decreasing order of battery charge status. The label of a set-
tled node equals the maximal possible battery charge status
we can reach this node with when starting in s.

EV-Reachable Node Sets
Computing the set of ev-reachable nodes requires to check
for all nodes, if there exists a feasible path from the source
node. Hence we can compute the set of ev-reachable nodes
as R(s) := {v ∈ V | bs(v) ≥ 0} with bs(v) being the final
battery label, that was assigned to v by a Dijkstra computa-
tion starting in s with a fully charged battery (b(s) = M) and
running until the PQ becomes empty. Note, that any node
that gets pushed into the PQ during the Dijkstra run already
has a feasible battery label at this point in time. Therefore
the set of pushed nodes equals the set of ev-reachable nodes
R and hence our algorithm has an output-sensitive runtime
of O(|R| log |R|+ |ER|) with ER being the set of outgoing
edges of the nodes in R. Clearly, this is O(n log n+m) but
much smaller if the reachable nodes are only a small portion
of the whole network (as usually the case).

Strongly EV-Connected Node Sets
The set of strongly ev-connected nodes is a subset of the
ev-reachable node set, containing only the nodes, that also
allow for returning to s without running out of energy. Note,

u v

20

10

-5
M=25

Figure 2: Strong ev-connectivity is not an equivalence relation:
The roundtour is feasible when starting fully charged in u, but not
feasible when starting in v (with a full battery charge of M = 25).

that in contrast to the conventional definition of strong con-
nectivity, strong ev-connectivity is not an equivalence rela-
tion anymore as the reflexivity might be compromised due
to the existence of edges with negative costs, see the ex-
ample in Figure 2. To compute the strongly ev-connected
nodes C(s) for a source s, we could check for each node
v ∈ R(s) if a Dijkstra run from v with initial battery load
I = b(v) yields a feasible path back to s. The running time
O(n2 log n+ nm) of this approach is prohibitive, though.

To improve runtime, we do not want to decide individu-
ally for a given battery charge status on a node v if there
exists a feasible path back to s, but instead compute for
all nodes the minimal charge status bmin(v), that is suffi-
cient to complete the round tour. This leads to the follow-
ing formal definition of the strongly ev-connected node set:
C(s) := {v ∈ V | bs(v) ≥ bmin(v)}. Based on that we
define a new edge cost function on the reverse graph, that
allows for computing bmin for all nodes by starting a sin-
gle computation in s. If the original edge e = (v, w) has
non-negative costs we have to add the costs of the edge to
bmin(w) to obtain the minimal necessary battery load in v.
If the resulting value bmin(v) = bmin(w)+ cost(e) exceeds
M , we cannot use this edge. Therefore we define the cost
function c+e as follows:

c+e (bw) =

{
cost(e) bw ≤M − cost(e)

∞ otherwise

Considering an edge e = (v, w) with negative costs we sub-
tract the absolute value of the costs from bmin(w) to obtain
bmin(v), therefore bmin(v) = bmin(w)+cost(e). This edge
can always be traversed, but as bmin(v) better not be nega-
tive, we have to set it to 0 if bmin(w) + cost(e) < 0. This
can be modeled with the following definition of c−e :

c−e (bw) =

{
−bw bw < −cost(e)
cost(e) otherwise

So different from the definition of c+e we have to deal here
with a partly negative edge cost function, prohibiting the ap-
plication of Dijkstra’s algorithm at this point. It is easy to
see that the two cost functions can be expressed uniformly
as follows with apropriate choice of l and u:

ce(bw) =


−bw + l + cost(e) bw < l

cost(e) bw ∈ [l, u]

∞ bw > u

To apply Dijkstra or the Bellman-Ford algorithm (Bellman
1958), (Ford 1962) on a graph with edge cost functions in
general, these functions have to fulfill the FIFO-property:

Definition 1 A function f : R→ R satisfies the FIFO (first-
in-first-out) property, if ∀x ≤ y we have x + f(x) ≤ y +
f(y).

Lemma 1 The cost function ce() fulfills the FIFO-property.

Proof. Let f(x) = ce(x). If x < l we have x + f(x) = 0,
which is the smallest possible battery charge status and
threfore the inequality is fulfilled. Otherwise, let y be larger
than u. Then we get y + f(y) = ∞, which of course
is greater or equal to any possible term on the left side.
Otherwise x, y ∈ [l, u], but then f(x) = f(y) = cost(e)
and hence the inequality is also fulfilled.

The FIFO property allows employment of the Bellman-
Ford algorithm, but in order to use Dijkstra we have to as-
sure that the cost functions are non-negative. For constant
edge costs and graphs without negative cycles, this can be
achieved by Johnson’s shifting technique (Johnson 1977).
To that end a potential is assigned to every node and the
new edge cost of e = (v, w) equals the old edge cost plus
the potential of v minus the potential of w. For appropri-
ate choice of the potentials we can assure that all the trans-
formed edge costs are non-negative and moreover the struc-
ture of the shortest path does not change. In (Eisner, Funke,
and Storandt 2011) it was shown, that Johnson’s shifting
technique applies for FIFO edge cost functions, if the graph
with modified edge costs c′e = minx ce(x) does not con-
tain negative cycles. This condition is fulfilled in our case,
as minx ce(x) = cost(e) and the original graph with these
constant edge costs was assumed to be free of negative cy-
cles. The appropriate node potentials can then be derived by
adding a dummy node to the original graph which is con-
nected to all nodes of the graph. Using Bellman-Ford we
compute in time O(mn) from the dummy node to all nodes
in the graph shortest path distances which then also serve
as node potentials. Note, that this is a preprocessing step,
that only has to be performed once. Each subsequent query
can then be answered in the already transformed graph, with
non-negative edge cost functions.

At this point we can compute the minimal necessary bat-
tery charge status for every node v by running a single Di-
jkstra on the reverse graph starting in s with bmin(s) = 0
and bmin(v) = ∞ ∀v ∈ V \ s using a min-priority-queue.
It remains then to check ∀v ∈ R(s) if b(v) ≥ bmin(v), be-
cause the FIFO property assures that in this case a feasible
path exists from v to s. So all in all we need for each query
two Dijkstra computations with a runtime ofO(n log n+m)
respectively and the verification procedure, which is linear
in the number of nodes. Therefore the resulting runtime is
O(n log n + m). Looking more closely it turns out that in
the second Dijkstra run on the reverse graph it makes no
sense to push any node v with b(v) = −∞, because they
neither can be part of the strongly ev-connected nodes on
their own nor influence bmin(v) of any v that is element
of C(s). Hence our runtime depends again on the size of
the set of ev-reachable nodes R and can be expressed as
O(|R| log |R| + |ER|) with this time ER being the whole
set of adjacent edges to nodes in R.

Considering Battery Switch Stations
With an increasing number of BEVs on the streets the den-
sity of battery switch stations will grow as well. A battery
switch station is a node l ∈ V , that leads to a battery load
b(l) = M , whenever it is visited. The presence of BSSs
can augment the set of reachable and connected nodes and
might affect the most energy-efficient path. In this section
we develop algorithms which take into account BSSs. We
assume that the number of BSSs is not too large (O(

√
n)),

which seems a realistic assumption to make (for Germany
which has about 14k gas stations this corresponds to several
thousand BSSs).

Augmented Reachable Node Sets
We are given a source node s ∈ V and additionally a set of
BSSs L ⊆ V . We want to compute the sets of nodes, which
are ev-reachable from s directly or over a feasible path, that
visits one or more BSSs. The following approaches will
work for any initial battery load in s, but as we want to com-
pute the maximal ev-reachable set, we assume a fully loaded
battery at the start and hence set again b(s) = M . We refer
to the resulting set of nodes as RL(s).

Naively we can compute this augmented ev-reachable
node set incrementally: At first we set R0 = ∅ and
R1 = R(s) and then incrementally Ri = Ri−1 ∪⋃

l∈L∩Ri−1\Ri−2
R(l). We can stop as soon as |Ri| =

|Ri−1|, which is then the desired result. If we have to
compute R(l) ∀l ∈ R. on demand we end up with a
runtime of O(|L|n log n + |L|m) for this naive approach.
Of course the set R(l) is invariant under the choice of s
and therefore we could precompute it for all BSSs, taking
time O(|L|n log n+ |L|m) and space O(|L|n). Subsequent
queries need then a runtime of O(n log n +m + |L|n), be-
cause computing R(s) requires time O(n log n+m) and as
each node in the graph might be contained in O(|L|) reach-
able sets, we still need timeO(|L|n) to compute their union.

The following method will also take O(|L|n log n +
|L|m) preprocessing time, but allows for a query time of
O(n log n+m), using only linear additional space.

We make use of an auxiliar graph Q(L,F) which is con-
structed as follows: For every l ∈ L we compute R(l); there
is an edge (l, l′) ∈ F if l′ ∈ R(l). Q obviously has space
consumption O(|L|+ |F |) = O(n) under the assumption of
a not too dense set of BSSs.

Answering a query starts again with computing R(s) for
the given source s conventionally, storing all contained BSSs
along the way in a list. Afterwards we start a BFS in Q on
the set of these BSSs in order to extract all indirectly ev-
reachable BSSs. Having the complete set of ev-reachable
BSSs L′ ⊆ L, we can start a single Djkstra run on this set
by setting the battery labels b(l) = M ∀l ∈ L′ and b(v) =
−∞ ∀v ∈ V \ L′ and pushing all elements of L′ into the
PQ. The result of this Dijkstra computation is the assignment
of a battery label to each node v, that denotes the highest
possible charge status that we can get in v, starting at any
BSS l ∈ L′. Therefore it only remains to build the union
of the nodes, that were visited during this Dijkstra run, and
R(s) to receive the final set RL(s).

l

s

l′

MM

M
2

M
2

v

Figure 3: Node v is neither in C(l) nor in C(l′) (gray areas), but
belongs to CL(s) as the round tour s, l, v, l′, s is feasible.

The runtime for a single query consists of two Dijk-
stra runs for computing R(s) and R(L′), requiring time
O(n log n + m), a BFS computation with a runtime of
O(m+n) and taking the union of two sets, requiring at most
timeO(n). Therefore the overall runtime isO(n log n+m)
and hence – different from the naive approaches – indepen-
dent of the number of BSSs in the street network.

Augmented Connected Node Sets
Again we are given a source node s with b(s) = M and a
set of BSSs L ⊆ V . Now we want to determine all nodes
v ∈ V , for which exists a feasible round tour from s to v and
back with an arbitrary number of BSSs on the way.

Note, that different from computing RL(s) the augmented
strongly ev-connected node set CL(s) is not equal to the
union of the strongly ev-connected node sets of s and all
directly or indirectly connected BSSs, but a superset as il-
lustrated in Figure 3. Because of that the naive incremental
approach now has to maintain two sets R and R′ with R
containing the ev-reachable nodes and R′ the ones, that s
can be reached from. So we have R0 = ∅, R1 = R(s). The
initialization of R′ is R′0 = ∅ and R′1 = R−1(s) := {v ∈
V |bs min(v) < ∞}. The augmentation of the sets consists
again of checking if in the last round new BSSs were added
and if so take the union with R(l) or R−1(l) for all such
BSSs l. Moreover we have to remember for every node in
R the maximal possible battery label and for R′ the minimal
necessary battery label. If both sets have their final size, we
can check for all nodes in their intersection if the maximal
battery label exceeds the minimal necessary battery charge.
The set of nodes, for which this condition is fulfilled equals
CL(s). Again the runtime and/or the space consumption
scales badly with the number of BSSs in the network as the
theoretical runtime is similar to the one of computing RL(s).

Fortunately our auxiliary graph Q(L,F) can again help
speed up the computation for this scenario as follows: For
a given source s we compute R(s) and R−1(s) convention-
ally, constructing L1 = L ∩ R(s) and L2 = L ∩ R−1(s)
along the way. Then we mark all BSS nodes in Q green,
that are visited by a BFS run starting on L1. Furthermore
we mark all nodes red, that are visited in the reverse of Q
starting on L2. The set of nodes marked green and red
Lgr equals then the set of strongly ev-connected BSSs for
s. Knowing this total set, we can compute R(Lgr ∪ s)
and R−1(Lgr ∪ s) each with a single Dijkstra run in the
graph with the respective edge cost functions, taking time

O(n log n+m) as described in the previous subsection. Af-
terwards we also have to check for the nodes in R(Lgr ∪
s) ∩ R−1(Lgr ∪ s), if the battery label b() assigned during
the computation of R(Lgr ∪ s) exceeds bmin(), that is de-
termined by the Dijkstra run for R−1(Lgr ∪ s). This needs
only time linear in the size of the intersection, hence the to-
tal runtime remains O(n log n +m). As a result we obtain
the desired set of strongly ev-connected nodes CL(s).

One-to-one Queries
If we want to compute the optimal path from s to t with
s, t ∈ V in the presence of BSSs, the notion of ’optimal’
has to be defined first. The path maximizing the final bat-
tery charge in t could be declared optimal. But this might
lead to long detours over many BSSs and a high total energy
consumption, though. So instead we aim for a feasible path
requiring the minimal number of BSSs on the way.

Again our auxiliary graph Q(V, F) (augmented with uni-
form edge costs) can be used to answer such a s-t-query.
We first compute all the BSSs s can reach directly – let’s
call this set Ls – and all the BSSs t can be reached from
– Lt – as before in time O(n log n + m). Then we aug-
ment Q by a dummy source ls and a dummy target lt as well
as zero-weight edges (ls, l)∀l ∈ Ls and (l, lt)∀l ∈ Lt. In
the augmented graph we start a Dijkstra from ls to lt. Let
ls, l1, v2, . . . vk−1lk, lt be the resulting shortest path in the
augmented graph. We output a feasible path from s to l1
concatenated by the path from l1 to lk concatenated by a
feasible path from lk to t as final result. The two feasible
paths from s to l1 and lk to t have been computed implicitly
during the construction of Ls and Lt, respectively. It should
be obvious that the approach returns the path with the min-
imal necessary number of recharging events and the overall
running time is O(n log n+m).

Experimental Results
Our algorithms were evaluated on two benchmark graphs:
The German Taunus with 11220 nodes and 24119 edges,
and a map of Southern Germany with 5588146 nodes and
11711088 edges. We included the Taunus – a rather hilly re-
gion within Germany – as it contains relatively many edges
of negative cost, one of the main challenges for an efficient
algorithmic solution (Johnson’s shifting technique has to be
employed because of that). Our implementation were in
C++, timings taken on a single core of an Intel i3-2310M
processor with 2.1 GHz and 8 GB RAM.

In Table 1 we show our query times for computing reach-
able and connected node sets without considering BSSs. The
maximal battery charge status M was chosen, such that the
cruising range was about 125 km, matching the real cruis-
ing range of current BEVs. We can reach about 1/5 of the
nodes in Southern Germany on average, when starting fully
charged at a randomly chosen source. Our approach yields
query times below a second for computing connected node
sets. This is about factor 105 better than the naive way of
checking for each node in R(s) if there exists a feasible path
back to s, although we sped them up using Contraction Hier-
archies as described in (Eisner, Funke, and Storandt 2011).

Taunus Southern Germany
time(sec) % nodes time(sec) % nodes

R(s) 0.00431 98.3 0.41872 19.0
C(s) naive 4.64245 98.3 96279.3 13.9
C(s) 0.00924 98.3 0.92853 13.9

Table 1: Query times for computing ev-reachable and strongly ev-
connected node sets; percentage of covered nodes; averaged over
1000 random queries.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600 700 800 900 1000

q
u
e
ry

 t
im

e
 i
n
 s

e
c
o
n
d
s

number of loading stations

200km (new)
100km (naive)
150km (naive)
200km (naive)

Figure 5: Query times for computing strongly ev-connected node
sets in the presence of BSSs. Each plot line corresponds to a spe-
cific battery capacity, allowing to travel the given range on average.

Next we implemented the naive approaches as well as our
new strategy for computing augmented sets of ev-reachable
and strongly ev-connected nodes in the presence of battery
switch stations. In Figure 4 all directly and indirectly ev-
reachable nodes for a random selected source and twenty
randomly placed BSSs are depicted. We can see in the lower
part of the picture, that the ev-reachable BSSs enlarge the
number of ev-reachable nodes only slightly, while in the
upper part the number increases significantly, resulting in
a third of all ev-reachable nodes being only reachable via
BSSs. This is again due to the structure of the underlying
terrain. If a BSS is close to the given source and the path
from the source to the BSS has no uphill character, we arrive
at the BSS almost fully charged anyway. The same yields for
BSSs that are further away, but the path allows to recuperate
most of the used energy. On the other hand, if a BSS can
only be reached on a very energy-consuming path, we ex-
pect its ev-reachable nodes to be really different to the ones
of the source, especially if the BSS allows to cross a peak.

The query times for the two approaches evaluated on the
map of Southern Germany are shown in Figure 5. The tim-
ings are averaged over 10 rounds of randomly placing the
given number of BSS in the map and 100 subsequent queries
for each. The query times for the naive strategy – comput-
ing C(l)∀l ∈ L on demand – grows dramatically with the
number of BSS as well as the maximal battery charge sta-
tus and hence is only practicable for a very small number of
BSSs and small cruising ranges. In contrast to that the run-
time for the BFS based approach only grows slightly with

Figure 4: Augmented reachable
node set for a source node (green).
BBSs are marked blue. Red: nodes
directly ev-reachabe; Orange: nodes
indirectly ev-reachable.

the increasing battery capacity, namely from 1.14-4.06 for
100 km up to 4.46-6.21 seconds for 200 km.

Finally we measured the runtime of one-to-one queries
making use of BSSs in the map of Southern Germany. The
results can be found in Table 2. Again the BSSs were placed
randomly in the street network. We computed the path,
that required the minimal number of stops at battery switch
stations. As expected the total query times are very similar
to that for computing the set of reachable nodes, therefore
we also achieve practicable runtimes below one second for
answering one-to-one queries. In Figure 6 one can see two

cruising # BSS no path direct indirect query time
range (%) (%) (%) (sec)
80km 200 60.2 8.4 31.4 0.17
100km 100 38.0 19.4 42.6 0.32
100km 200 20.9 19.3 59.8 0.32
125km 50 10.8 35.6 53.6 0.47
125km 100 8,8 37.6 53.6 0.45
150km 50 8.0 52.8 39.2 0.53
150km 100 5.9 51.7 42.4 0.51

Table 2: Query times for one-to-one queries dependent on the
number of BSSs and the possible cruising range. Moreover we
recorded the percentages of paths, where the target is not ev-
reachable from the source (no path), where the target is ev-
reachable from the source without having to visit a BSS (direct)
and where BSSs are necessary to receive a feasible path (indirect).
All values are averaged over 1000 random queries.

examples of such paths. In both cases the target would not

have been ev-reachable from the source without BSSs. In
the upper image, only one visit of a BSS is necessary, in
the lower one two recharging events occur. The paths are
piecewise energy-optimal, hence avoiding going uphill as
far as possible, following the valleys in the area. In both
examples the paths reveal only small detours to visit the
BSSs and hence these routes seem to be useful in practice.

Conclusions
In this paper we have extended the graph theoretic concepts
of reachability and (strong) connectivity to the context of
route planning for BEVs. The questions considered are of a
very fundamental kind, still it seems as if we were the first
to investigate them. In future work, we aim at incorporat-
ing advanced SpeedUp-techniques like (Bast et al. 2007) or
(Geisberger et al. 2008) to improve the responsiveness of
our query data structures. A more challenging question –
maybe more relevant for the proliferation of E-mobility – is
the development of optimization techniques for deployment
of BSSs. If a budget for let’s say 100 BSSs is available, how
to determine the best locations for the new BSSs? Another
direction of research is the development of more advanced
objective functions for route planning. We have shown how
to plan a route from A to B minimizing the stops at BSSs on
the way. Such a route might take a long time, though, and
there might be a much faster route which requires just one
or two additional BSSs stops. A natural question could be:
What is the most energy efficient feasible route that does not

Figure 6: Example paths (red), where recharging is necessary to reach the target(black) from the source(green). BSSs are indicated by blue
marks. All BSSs, that are ev-reachable from the source are marked pink and those actually selected for recharging are also coloured yellow.
The desaturated node colours indicate elevation, ranging from 99 meters (deep blue) up to 412 meters (red).

take more than 10% longer than the fastest route? Unfor-
tunately this turns out to be in instance of the NP-hard con-
strained shortest path problem, still, efficient approximation
algorithms could be within reach.

References

Artmeier, A.; Haselmayr, J.; Leucker, M.; and Sachen-
bacher, M. 2010. The shortest path problem revisited: Op-
timal routing for electric vehicles. In 33rd Annual German
Conference on Artificial Intelligence (KI).

Bast, H.; Funke, S.; Sanders, P.; and Schultes, D. 2007.
Fast Routing in Road Networks with Transit Nodes. Science
316(5824):566.

Bellman, R. 1958. On a routing problem. Quart. Appl.
Math. 16:87–90.

Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Eisner, J.; Funke, S.; and Storandt, S. 2011. Optimal route
planning for electric vehicles in large networks. In 25th Con-
ference on Artificial Intelligence (AAAI).
Ford, L. 1962. Flows in networks. Princeton Univ. Press.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: faster and simpler hierarchi-
cal routing in road networks. In Proc. of the 7th international
conference on Experimental algorithms, WEA’08, 319–333.
Johnson, D. B. 1977. Efficient algorithms for shortest paths
in sparse networks. J. ACM 24:1–13.
Sachenbacher, M.; Leucker, M.; Artmeier, A.; and Hasel-
mayr, J. 2011. Efficient energy-optimal routing for electric
vehicles. In Burgard, W., and Roth, D., eds., AAAI. AAAI
Press.

