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Abstract

Public-transportation route-planning systems typically
work as follows. The user specifies a source and a
target location, as well as a departure time. The
system then returns one or more optimal trips at or
after that departure time. In this paper, we consider
guidebook routing, where the goal is to provide time-
independent answers that are valid over long periods
of time. An example answer could be: Take Bus 10
to the main station, from there take Tram 11 or 13
(whichever comes next) to your target station. Trip
duration: 30 minutes. Frequency: every 20 minutes.
Valid: weekdays from 6am - 8pm. We show how to
compute such guidebook routes efficiently and with
provably good quality. An evaluation on real-world data
shows that few guidebook routes usually suffice for good
coverage. We also show how guidebook routing can be
used to speed up transfer patterns, a state-of-the-art
method for public transportation routing.

1 Introduction

When planning a trip with a public-transport informa-
tion system, the standard setting is to specify a source
location and a target location, and a departure time and
date. The route planner then outputs one or more trips
departing at or after the specified time, and which are
in some way optimal. Typical optimization criteria are
total travel time and number of transfers, and a typical
scenario is to output all Pareto-optimal solutions with
respect to these criteria.

In this paper we consider guidebook routing, where
the user specifies only source and target location, but
neither day nor time of departure. A typical answer is
then of the kind:

From source station A, take bus number 19 or 52
(whichever comes first) to station X, and from there
take bus number 6 to the target station B, Weekdays
from 6am to 8pm, every 15 minutes.

There might also be alternatives, for example:

∗Institut für Informatik, Albert-Ludwigs-Universität Freiburg,

79110 Freiburg, Germany, {bast,storandt}@informatik.uni-
freiburg.de

248 257 772 6am - 8pm
L6

L19

L52

248 772 8am - 5pmS5

Figure 1: Exemplary guidebook routes.
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Figure 2: Variety of journeys in the transit network of
Austin from one station to another (inner nodes indicate
stations where a new vehicle is boarded or walking
starts) for a whole day. Edge values indicate the number
of departure times for which the trip was included in the
solution. Only bold edges occur in a large percentage
of queries; the remaining variations increase the graph
size remarkably, though.

Take the direct subway S5 from A to B, Weekdays 8am
to 5pm, every 20 minutes.

Figure 1 provides an illustration of these two answers.
For travel times outside the service intervals, the user
may ask for more alternatives. This approach has
several advantages.

The first advantage is that this is a simpler and
more intuitive user interface in several respects. There
is no need to specify the departure time, which simplifies
asking the query. In return, the answer is more
informative, because we get information not only for
a particular time but for a whole (and typically large)



time interval. Note that this is something which
users familiar with a particular transit (sub-)network
do in their head anyway. It is also a common way
to provide transit directions in travel guides, hence
the name ”guidebook routing”. Also note the built-in
robustness against delays or minor schedule changes. If
a connection has a sufficiently high frequency, say every
10 minutes, it does not really matter if a vehicle comes
a few minutes earlier or later. I simply take the next
one that comes.

A second, less obvious advantage is the following.
In complex transit1 networks, specification of the exact
departure time often gives a confusing variety of opti-
mal solutions. For example, it may happen that if you
increase the departure time by a single minute, a com-
pletely different connection (involving different lines and
different transfer stations) becomes optimal, but only
insignificantly so compared to the previous connection
(e.g. one minute faster). This solution is optimal in the
theoretical sense, but still more confusing than helpful
to a user; see Figure 2 for a more complex example from
a real dataset. This kind of artificial diversity becomes
a real problem in a fully multi-modal setting, that is,
when considering more than two criteria. Guidebook
routing could provide an elegant alternative to cut down
on the number of solutions suggested to the user.

A third, even less obvious advantage is that
guidebook-style queries have the potential to be pro-
cessed significantly more efficiently than traditional
queries, where the exact departure time is specified. In
Section 4, we will review transfer patterns, a state-of-
the-art method for route planning in large transit net-
works, which is also currently in use at Google Maps. In
a nutshell, transfer patterns precompute a compact rep-
resentation of the sequences of transfers of all optimal
paths between all pairs of stations. This is intimately
related to guidebook routing in the sense that it asks
only for the sequences of transfers of paths. We will see
that this intimate connection can be exploited to im-
prove precomputation space and query time of transfer
patterns routing.

1.1 Related Work We are not aware of any previous
work in the computer science literature on the particular
problem of guidebook routing, as we described it in
our introduction. Recently, the feature has started to
appear in a few web-based route planners, including:
Rome2rio 2, GoEuro3, and Google Transit 4. None of

1We will use the terms “transit” and “public transportation”

synonymously in this paper
2http://www.rome2rio.com
3http://www.goeuro.de
4http://transit.google.com

these have published the algorithm behind that feature.
No statements on the quality or coverage of the result
is made (see our Section 6.2 for an explicit definition of
coverage and a respective evaluation).

A prerequisite to our computation of guidebook
routes is the set of all Pareto-optimal solutions be-
tween two given stations at all times; so-called profile
queries. In the introduction, we already described trans-
fer patterns [2], which, conceptually, pre-computes the
sequences of transfers of all optimal paths between all
pairs of stations at all times. An alternative approach is
RAPTOR [4], which computes these solution sets in or-
der of increasing number of transfers. Transfer patterns
are pre-computation heavy (about 800h for the complete
transit network of the New York metropolitan area),
but provide fast query times also for very large net-
works (about 8ms for New York, 12ms for North Amer-
ica). RAPTOR uses no pre-processing and achieves
good query times on metropolitan-size networks (100ms
on London). In this paper, we concentrate on the trans-
fer pattern approach, not only because it allows for bet-
ter query times, but also because of the close relation
between transfer patterns and guidebook routes, as we
will explore in Section 4.

One pleasant side effect of guidebook routing, ex-
plained in the introduction, is that it reduces unwanted
diversity in the result sets. There have been other ap-
proaches with that goal or side effect. In [8], multi-
ple criteria are linearly combined to a single objective
value. In [3], a notion of fuzzy domination of multi-
criteria labels is introduced, and labels are ranked by
their aggregated dominance of other labels in the result
set. In [1], explicit types of desired and undesired con-
nection types are introduced, which are then used to
reduce result sets to reasonable sizes. In [11], routes are
preferred that are robust against delays or other small
schedule changes. As explained in our introduction, we
also get a certain amount of robustness as a side effect.
However, the primary goal of guidebook routing is to
provide the user with information that is as compact
and time-independent as possible.

1.2 Contribution In this paper we describe algo-
rithms to extract guidebook routes efficiently and in a
reasonable manner. For that purpose, we first introduce
naive approaches and show their limitations for real-
world instances. We then present a more sophisticated
approach, which is based on constructing a flow network
on the solution set. We then evaluate our method (and
compare it to the naive approaches) on real-world data.
It turns out that our guidebooks route sets are indeed
small, stable and cover the optimal solutions for a large
percentage of queries.



2 Preliminaries

In public transit route planning we distinguish between
station-to-station (s-to-s) and location-to-location (L-
to-L) queries. For s-to-s queries, the source and target
location is a transit station. For L-to-L queries these
can be arbitrary locations, and solutions involve walking
or driving from the source location to the first transit
station on the trip and then getting from the last transit
station on the trip to the target location. Of course,
our ultimate goal is to answer L-to-L queries. But as
a first step we will investigate s-to-s queries. We then
come back to L-to-L queries at the end of the paper.
Therefore, without further specification, queries always
mean s-to-s queries in the following.

The first step towards guidebook routing is to iden-
tify the set of all (Pareto-)optimal solutions for a cer-
tain period of time. A straightforward approach is to
first compute the set of all departure events at a station
and then start a Pareto-Dijkstra for every departure.
A more sophisticated approach is to compute all these
results at once with a single Dijkstra computation, re-
ferred to in the following as profile Pareto-Dijkstra. In
this computation, labels are extended by information on
the departure time, and during the Dijkstra computa-
tion labels are pruned if they do not improve solution
with a later departure time.

Such profile Pareto-Dijkstras play a central role
in the pre-computation of transfer patterns [2]. We
briefly recapitulate this pre-computation and how the
results are used at query time. Conceptually, one pro-
file Pareto-Dijkstra is executed for each transit station,
and for each the computation is run until all nodes in
the graph are settled. Then the optimal paths are back-
tracked and the sequence of transfer stations, called
transfer pattern (TP), is extracted from each optimal
path. All these transfer patterns are stored in a directed
acyclic graph (DAG), one per station. At query time,
all transfer patterns between the source and target sta-
tions (there may be several source stations and several
target stations) are extracted from these pre-computed
graphs, and then overlaid to form the so-called query
graph. Arcs in this query graph correspond to direct
connections (trips involving only a single vehicle = no
transfers). Direct-connection queries can be evaluated
very efficiently (on the order of a few microseconds per
query) using an adequate data structure; see [2] for de-
tails.

Running a profile Pareto-Dijkstra for every station
costs time at least quadratic in the number of stations.
Similarly, the size of all the corresponding transfer
patterns would be quadratic in the number of stations.
This is infeasible already for moderately-sized transit
networks. To remedy this, a fraction of all stations

(typically around 1%) is selected as hubs. Intuitively,
these are stations, where many optimal trips transfer.
Now profile Pareto-Dijkstras are run only from these
hub stations. For a constant fraction f of stations
selected as hubs the complexity is still quadratic, but
now multiplied with f . For a value of f = 0.01, this
is feasible (though still costly) also for continent-sized
transit networks. For all non-hub stations, the profile
Pareto-Dijkstras are run only until all paths are covered
by a hub station. Further , the search is pruned when
a path has not yet reached a hub station after three
transfers. This simple heuristic very effectively prunes
the search space, yet misses only very few optimal
queries. Using hub stations, the query graph also
contains all transfer patterns from the source stations
to the next hub stations, as well as from all these hub
stations to the target stations.

In this paper, we investigate constructing guidebook
routes both from the result of a profile Pareto-Dijkstra,
as well as from pre-computed transfer patterns (without
and with hub stations).

For computing actual guidebook routes from the set
of all possible solutions, we construct a flow network
from this set. A flow network is a graph with a
distinguished source and sink vertex and capacities
assigned to the edges. A classical problem on such a flow
network is to compute the maximum flow from source
to sink, that does not exceed any capacity and fulfils the
flow conservation constraint. This constraint demands
that for every node, except for the source and the sink,
the sum of the amount of flow coming in is equal to the
sum of the amount of flow going out. The now famous
Edmonds-Karp algorithm [6] solved the maximum-flow
problem in time O(nm2), where n is the number of
nodes, and m is the number of edges in the network.
The recent approach of [9], solves the problem in time
O(mn). For our guidebook routes, we solve a variant
of this problem, asking for a single path with maximum
flow; see Section 3.2.

3 Computing Guidebook Routes

A guidebook route (GBR) is a time-independent descrip-
tion of a number of journeys in the given transit net-
work. See Figure 1, where each GBR is described as
a sequence of transfer stations with line numbers. The
goal is to approximate the set of all optimal journeys
over the day (or some other time period) by a small
number of GBRs. Intuitively, therefore, a good GBR
should cover a large number of optimal journeys (at
different departure times). We refer to the number of
optimal journeys covered by a GBR as its frequency. It
appears reasonable to look for the GBRs with the largest
frequency. We refer to this approach as pattern count-



ing. In the following we discuss side effects and variants
of this approach. We then describe a more sophisticated
approach based on extracting-maximum flow paths in a
suitable network.

3.1 Pattern Counting If only the selection of a
single GBR is allowed, a natural criterion is to pick
the one with the largest frequency. Analogously, if only
the selection of k GBRs is allowed, a natural criterion
is to pick those with the k largest frequencies. This
is both simple and efficient. However, in real-world
transit network, we often have groups of very similar
patterns, each of which individually have a relatively
low frequency, yet the sum of these frequencies is large.
An example is given in Figure 3 (left side). In such
cases, no single pattern from the group is a good
representative. Rather, all the patterns in the group
can be considered variations of a single base pattern,
which would make for a good representative. One
possible approach here would be to allow something that
could be called “fuzzy” counting. Namely, we could
define a similarity measure between patterns and then
count similar patterns as one. But this introduces new
problems. Most notably, a pair-wise similarity measure
is typically not transitive (if route A is similar to route
B, and route B is similar to route C, that does not
necessarily mean that A is similar to C). Also it seems
hard to come up with a similarity measure that is not
based on some (somewhat arbitrarily chosen) threshold.

3.2 Flow-Based Guidebook Routes We have seen
that the simple pattern-counting approach has problems
with groups of similar patterns, where each individual
pattern has relatively low frequency, yet the sum of
these frequencies is large. Instead of counting individual
patterns, it therefore seems more reasonable to attempt
to extract frequent underlying base patterns. Note that,
in an extreme case, such an approach might find a
base pattern with a large number of journeys with a
very similar pattern, yet there is not a single journey
with exactly that pattern. An example for such a base
pattern is given in Figure 3 (right side).

Our basic approach to compute such GBRs consists
of constructing a single condensed graph from the
Pareto-optimal patterns. The nodes of this graph are
all the (transfer) stations from the patterns. For each
pattern s1. . .sk, there is an arc from station si to si+1 in
the graph, for i = 1, ..., k − 1. Note that this way many
patterns can (and in practice often will) contribute the
same arc. We interpret these arc multiplicities as edge
capacities cap : E → N. We then ask for a maximum
flow path from the source station to the target station in
this graph. This problem is also known as the bottleneck

Algorithm 1 Pseudo-code for retrieving the maximum
flow path P in a graph G(V,E) from a source node
s ∈ V to a sink node t ∈ V .

flow(v)← 0 ∀v ∈ V
flow(s)←∞
pred(v)← NULL ∀v ∈ V
PQ.push(flow(s), s)
while !PQ.empty do
v ← PQ.top
if v == t then

break
end if
PQ.pop
for e = (v, w) ∈ E do

if flow(w) < min{flow(v), cap(e)} then
flow(w)← min{flow(v), cap(e)}
pred(w)← e
PQ.push(flow(w), w)

end if
end for

end while

P ← ∅
node← w
while pred(node)! = NULL do
P.push(pred(node))
node← pred(node).source

end while
return P
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Figure 4: Top-3 max-flow paths (red 52, blue 13, green
12) in a condensed graph. The upper image shows edge
multiplicities by labels, the lower one is an expanded
version to better illustrate the flow rates.



Figure 3: Pattern counting versus flow-based guidebook route extraction: In the left image, four different routes
from source to target are depicted (only transfer stations are depicted). Choosing any of them as GBR, the other
routes differ at least by two stations from the GBR. In the right the condensed graphs that the straight line route
might be a better GBR.

shortest path problem [7].
Note the difference to the classical maximum-flow

problem, as described in Section 1.1. We here want to
retrieve a single path with large flow, which should then
serve as a GBR. In the classical maximum-flow problem,
the optimal flow can be (and typically is) distributed
over many paths from the source to the sink. Also note
that computing the path with maximum flow is much
easier than computing the (distributed) maximum flow.
Namely, it can be computed using a variant of Dijkstra’s
algorithm, where the cost of the path is the minimum of
the costs of the edges on the path, and the objective is to
maximize path cost. The running time of this algorithm
is O(n log n+m), where n is the number of nodes and m
is the number of arcs in the flow graph. See Algorithm
1 for the details.

In practice, these pattern graphs rarely have cycles.
In that case, we can sort the nodes of the graph
topologically. Dijkstra can then process the nodes in
that order, and does not need a priority queue. The
running time then becomes linear.

We already mentioned above that, theoretically, it
can occur that the GBR corresponding to the max-flow
path might not correspond to a single valid journey in
the original transit network. However, in practice this is
very unlikely to happen. If one is unable to use a direct
connection which is part of the suggested GBR, it means
the last service of this connection lies already in the
past. As GBRs preferably include trips which are served
with high frequency, this seems to be an improbable
scenario – especially for early departure times.

On the other hand, using max-flow paths mitigates
the effect of small pattern distortions over the day in
a clean way without the necessity to introduce any
parameters. It can also be computed very efficiently
(especially if the graph is a DAG) and allows for
selecting the top-k routes by subtracting the flow value
of the max-flow path from the capacities of all contained
edges, and repeating the algorithm in this modified
network (see Figure 4 for an illustration of the result
for k = 3). Also it allows for a more compact

storage of the pattern information, as we are only
interested in local information and therefore can get rid
of any overhead induced by remembering which direct
connection belongs to which global pattern (e.g. in
Figure 3 the condensed network only requires a third
of the nodes needed to describe all global patterns
on the left). Moreover this representation makes the
flow graph very similar to the query graph used in the
transfer pattern approach, which will come in handy for
interactive use as we explore in the next section.

4 From Transfer Patterns to Guidebook
Routes and Back

The guidebook route principle and the transfer pattern
approach exhibit several common characteristics: Both
use a time-independent representation of possible jour-
neys in a graph, while ignoring connection information
on a global level. Using transfer patterns, the time-
independence is paid with maintaining all routes that
are optimal at some point in time, while for guidebook
routing we aim for keeping only a subset of the journeys
or edges in the query graph respectively. Hence on the
one hand transfer pattern graphs might be a good start-
ing point to compute GBRs, and on the other hand if
we are convinced that the selected GBRs are sufficient
for all departure times, we might want to reduce the
transfer pattern query graph to contain only them –
hopefully decreasing the space consumption and query
time later on. In the following we will describe these
two ways of interaction between transfer patterns and
guidebook routes in more detail.

4.1 Transfer Patterns as Basis for Guidebook
Route Extraction Of course, GBRs can be computed
on the fly by running a profile Pareto-Dijkstra for the
desired time interval, backtracking all optimal paths,
constructing the condensed flow graph and then search-
ing for maximum-flow paths until the set of original
solutions is sufficiently covered. But this approach is
much too slow for interactive use (as already a single
Pareto-Dijkstra might be). Hence applying some sort
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target station S′, departing at 8:00, via a hub station.
Blue journeys would be valid GBRs if up to 5 minutes
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compared to the optimal route, i.e. the concatenation
is not a valid GBR. However, considering only GBRs
from the hub to S′ would be feasible, because this would
increase the arrival time only by 2 minutes when using
option 2) instead of 1) for this part.

of preprocessing seems worthwhile. The auxiliary data
created for the transfer pattern approach almost con-
tains everything we need for our flow-based GBR ex-
traction – only the multiplicities of direct connection
aka the edge capacities are missing. But naturally this
information is computed anyway in the transfer pattern
creation process, so we can just store these numbers
along. This also does not interfere with the fact, that
the query graphs are not stored explicitly, but are com-
posed from subgraphs on query times. Here, multiple
occurring edges are simply joined and their capacities
get summed up. In the resulting graph, we can com-
pute max-flow paths just as described before and eval-
uate only them for a certain departure time instead of
the whole query graph.

4.2 Guidebook Routes and Reduced Transfer
Patterns On TP construction time automatically all
information necessary for our GBR extraction algorithm
are available, as they both rely on the output of a
profile Pareto-Dijkstra run. Hence GBR computation
could be used as an additional preprocessing step for
TP. So we build the condensed graph and extract max-
flow paths repeatedly until all original solution of the
Pareto-Dijkstra are covered by the respective GBRs (for
some predefined cover criterion). Then we only consider
the set of GBRs as basis for the TP graph (see Figure
5 for a real-world example). Note, that this process
does not work automatically as soon as hub stations are
selected. Even if the GBRs cover all solutions from the
source node to the hub, and also from the hub to the

target, their concatenation might not cover all original
solutions. For example, lets say a solution is covered if
by going by guidebook it exists an alternative solution
which takes not more than 5 minutes of additional travel
time. Now, going from the source to the hub using a
GBR which lets you arrive 5 minutes later at the hub,
you might miss the connection to the target which you
would have get if travelling optimally. So you eventually
have to wait 20 minutes for the next departure, clearly
exceeding your covering budget (see Figure 6 for an
illustration). This problem is not new, though. Even in
the original TP paper, it was observed that you actually
need two runs from the hub stations – one assuming
you are already inside a vehicle, one for transferring at
the hub – to not miss any solutions. But to reduce
preprocessing time, a restriction to only the latter run
was tested, and evaluation showed that in practice only
a very small percentage of queries was affected by this
heuristic approach [2]. In our case, there are also some
remedies allowing us to guarantee coverage in total, e.g.
the TP to the hubs could be maintained unaffected
and then the GBR selection process can be applied
only for the runs with a hub as source station; but of
course this would limit the power of GBRs. Luckily, our
experiments will reveal that ’trusting’ our conventional
approach also when using hubs works well in practice.

5 Refinements

The flow-based guidebook route extraction is a rather
general approach, which can be seen as a basic frame-
work that is customizable in different ways. At first, we
discuss options of modifying the flow graph such that
certain requirements (as fulfilling certain cover criteria
with a small number of max-flow paths/GBRs) are met
even better. Then we extend our station-to-station al-
gorithm to more complex location-to-location queries,
focusing on constructing the flow graph when several
source and target stations are of interest.

5.1 Modifying the Flow Graph Often at daytime
connections are more frequent and better clocked than
at night. Hence the number of necessary GBRs to cover
all optimal solutions should shrink when restricting the
time interval to e.g. 8:00-18:00 and handle requests for
departure times outside the interval separately. This
can be easily implemented by starting the profile Pareto-
Dijkstra only for the desired time slot. Besides, we could
also tag single GBRs with their valid time interval to
pass this information on to the user. This interval can
be computed as the period in which optimal solutions
are best covered (among all GBRs) when choosing
this GBR. Of course, this should be also included in
the preprocessing as on the fly computation is too
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Figure 5: Transfer pattern graph between two stations (in Austin) for a whole week on the left, and the respective
guidebook transfer pattern graph on the right.
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expensive.
Further we could interleave the GBR extraction and

the coverage evaluation by removing edges from the flow
graph which belong to already covered solutions. This
also decreases the number of necessary GBRs, see Figure
7 for an example. Moreover we could decide to extract
the top-k GBRs and then go through the list of Pareto-
optimal solutions and simply add everything that is not
covered as additional GBR. This can be very helpful in
case there are only a few outlier routes with a very high
number of transfers and very small travel time, which
can not be covered by routes with a smaller transfer
value. Also the selection of GBRs with a certain transfer
number can be forced artificially by enumerating all
candidate paths with the respective hop distance and
selecting the one with the maximal flow among them.

5.2 Location-to-Location Queries Answering L-
to-L queries changes the guidebook setting, as now sev-
eral so called access station of the source and the target
location become relevant. Access stations are typically
defined as the set of stations inside a certain walking
or driving radius around the location. We propose two

ways to incorporate flow-based GBR extraction in this
scenario: In the one-step approach we build a joint flow
graph for all optimal routes from a source access sta-
tion to some target access station. If we connect the
source node to all its access stations via an edge with
a capacity of ∞ and the same vice versa with the ac-
cess stations of the target and the target node, we can
apply the same max-flow path algorithm as before (see
Figure 8 for a small example). While this seems to be
the easiest way to extract GBRs for L-to-L queries, it
might lead to all GBRs originating in the same source
access stations which might be undesirable for getting a
diverse output set. Therefore we might switch to a two-
step-approach, where we build a different flow graph for
each source access station, and get individual max-flow
path(s) to target access station(s).
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Figure 8: Example of a combined flow graph for source
location s and target location t. The dashed grey lines
indicate the feasible walking radius, the stations marked
with circles are the respective access stations. The max-
flow path is printed bold.

6 Evaluation

In this section, we want to measure how useful guide-
book routes are for real-world instances. We first give
some details on the used graph model and data sets,



then motivate the aspects under which we evaluate
GBRs and finally present results on runtime and quality
of our proposed algorithms.

feed # stations # routes # trips time (s)

Austin 2.719 84 21.757 0.12
Texas 11.654 152 21.616 1.08

Toronto 10.891 181 96.384 1.85
Madrid 4.635 219 221.507 3.95

Table 1: Test graphs for our evaluation along with the
important features. time denotes the runtime of a single
Pareto-Dijkstra run in the respective time-dependent
graph (averaged over 100 random queries).

6.1 Settings and Data Sets The concept of guide-
book routes is independent of the used graph model,
of course, but the chosen model affects the runtime of
(profile) Pareto-Dijkstra computations. We used the
conventional time-dependent model [10] for our exper-
iments, with walking allowed between the stations for
an arbitrarily long time (assuming a speed of 5km/h),
and a uniform transfer buffer of five minutes. The used
Pareto-criteria are travel time and number of transfers,
as in the original transfer pattern paper. The real-world
data got extracted from GTFS feeds 5, an overview of
the characteristics of our test transit networks can be
found in Table 1.
All algorithms were implemented in C++ and runtimes
got measured on a single core of an Intel i5-3360M CPU
with 2.80GHz and 16GB RAM.

6.2 Performance Metrics The desired characteris-
tics of a set of guidebook routes are to be optimal so-
lution covering, with the single GBRs being stable over
long periods of time resulting in a preferably small GBR
set. To evaluate coverage, we first have to introduce
practical cover criteria.

Definition 1. (Coverage) Given a set of journeys
A and another set B for a departure time, specified
each by arrival time (AT) at the target and number of
transfers (NT), we say a journey a ∈ A is covered if
it exists a journey b ∈ B with NT (b) ≤ NT (a), and
AT (b) ≤ 1.1 · AT (a) and AT (b) ≤ AT (a) + 5min.
Moreover we call A covered by B if every element in
A is covered.

So we claim that the number of transfers should not
grow at all when going by guidebook, and the arrival

5http://code.google.com/p/googletransitdatafeed/wiki/

PublicFeeds

time should increase only slightly. Of course, the param-
eters chosen here are somewhat arbitrary, but we think
being suboptimal by at most five minutes reflects the
tolerance range of a user. Hence for station-to-station
queries, we will evaluate with how many GBRs this cri-
terion can be fulfilled. Moreover, given a fixed number
of GBRs, we ask for the already covered intervals (with
a time interval [t, t′] being covered if no uncovered de-
parture is contained), as well as the number of infeasible
departures, where going by guidebook does not allow for
reaching the target.

6.3 Experimental Results Firstly, we computed
the number of necessary GBRs to cover all solutions
(with the above given definition of coverage) between
two stations over a day (Wednesday). The respective
results can be found along with some features of the
test graphs (average number of departures from a sta-
tion over a day, as well as average number of (distinct)
patterns) in Table 2. Obviously, the number of GBRs
is much smaller than the number of different patterns,
indicating that many routes can be covered by a sin-
gle GBR. When applying flow graph modifications –
namely deleting edges of already covered paths – the
number of GBRs dropped on average by 1-2. Iterating
over the whole week we got an increase of about 50%
in the numbers of GBRs as connections typically differ
on weekends (also increasing the Pareto-set of course);
using Monday to Friday the increase was smaller and
mainly derived from the fact that now long overnight
connections were possible.
Note, that computing solutions based on the TP graph
reduced to GBRs typically leads to a superset of so-
lutions compared to evaluating the GBRs individually,
as also combinations of two or more routes that share
a transfer station are possible (just like for normal TP
graphs). This effect is not included in the evaluation
here, hence maybe an even smaller set of GBRs would
suffice when extraction is already performed in the pre-
processing step.
For comparison with the Pattern Counting (PC) base-
line, we analysed the coverage behaviour in dependency
of the number of GBRs as well as the percentage of in-
feasible departure times. The results for Toronto are
summarized in Table 3 (for the other test graphs we
observed very similar outcomes). We see that FLOW
outperforms PC especially for a small number of GBRs
significantly in terms of coverage, while exhibiting a
slightly higher number of infeasible departure times –
but the latter is remarkably low for both approaches.
For a higher number of GBRs the two approaches are
comparable in both criteria, as then typically not only
many paths with the same frequency but also several



average #
departures patterns distinct patterns GBRs (8-18)

Austin 59 79 26 11 (6)
Texas 40 104 27 14 (10)

Toronto 164 328 84 24 (18)
Madrid 1104 1034 163 37 (12)

Table 2: Station-to-station queries for 1000 randomly chosen source/target pairs, evaluated over a day. The
number of GBRs indicates how many GBRs were necessary for full coverage, the number in brackets to cover the
interval between 8:00 and 18:00.

# GBRs 1 2 3 4 5 6 7

covered 11.76 24.67 40.08 45.08 59.56 70.88 72.03
PC infeasible 0.23 0.05 0.01 0.00 0.00 0.00 0.00

covered 37.00 38.13 40.34 53.66 65.80 71.16 75.44
FLOW infeasible 0.45 0.18 0.03 0.01 0.00 0.00 0.00

Table 3: Comparison of pattern counting (PC) and flow-based (FLOW) GBR extraction. covered and infeasible
are given in percent.

extraction time coverage

Austin 3µs 85
Texas 2µs 76

Toronto 5µs 74
Madrid 4µs 81

Table 4: Experimental results for location-to-
location queries averaged over 100 randomly chosen
source/target location pairs along with departure times.
extraction time indicates the time to extract the top-8
guidebook routes from a single flow graph between all
source/target access stations. coverage is the percent-
age of solutions covered by these guidebook routes.

max-flow paths with the same value are present in the
remaining graph and tie breaking sometimes works in
favour of the one or the other method. Incorporating
the described flow graph modifications in Section 5.1,
the superiority of FLOW becomes more noticeable as
the coverage value increases by about 5% for the first
GBR and over 10% for the remaining ones.

In Figure 9 an example shows the typical develop-
ment of covered departure intervals (here each 15 min-
utes) when selecting more and more GBRs on the one
side with PC and on the other side with FLOW. We ob-
serve that typically journeys in the early morning and
late evening are only sparsely covered, but the number
of ’good’ intervals increases significantly with each ad-
ditional GBR for both approaches – but faster for the
FLOW approach. To measure the impact of hub sta-
tions on the quality of our GBRs, we performed the fol-
lowing experiment: We selected a source s and a target

station t and a departure time randomly and computed
the optimal Pareto-set. Then we selected one station
H that was contained in some optimal path (not neces-
sarily a transfer station) and simulated it being a hub.
To that end we computed all optimal paths and sub-
sequently GBRs for going from s to H and from H to
t. Afterwards we evaluated for all departure times at
s if there exists an optimal solution containing H. If
this is the case we looked if the concatenation of the
GBRs from s to H to t induces a journey that covers
this optimal solution. In less than one percent of 100
queries in the public transit network of Toronto (even
less for the other test graphs) a solution could not be
covered, implying that the presence of hub stations does
not compromise the applicability of GBRs in practice.
For location-to-location queries, we measured the so-
lution coverage for random departure times. So we
let a Pareto-Dijkstra reveal the optimal set of journeys
between two locations (with access stations being se-
lected in a 400m radius around the locations), and used
the one-step or the two-step approach to compute 8
GBRs in the constructed flow graph(s) for the respective
source and target stations. We observed that the results
of the two methods differ only slightly: For graphs with
a sparse set of stations, most journeys started with the
same source station anyway, hence forcing the selection
of different ones with the two-step approach is unneces-
sary. If the stations were rather dense (as in Madrid),
the result set contained journeys with varying source
stations, nevertheless there were a lot of different solu-
tions with very similar Pareto-costs, hence they could
be easily covered. So only in 6% of the queries in Madrid
we observed a slightly better coverage with the two-step



Figure 9: Covered intervals (green) and uncovered intervals (white) with incremental guidebook route extraction
for a manually chosen example query. On the left when applying pattern counting, on the right with flow-based
computation.

TP → GBR (top-5) → TP
graph size extraction time check time graph size

Austin 42 + 64 2µs 1.8s 11 + 16
Texas 62 + 97 2µs 1.5s 13 + 19

Toronto 71 + 105 4µs 4.0s 21 + 26
Madrid 85 + 142 3µs 27.6s 17 + 21

Table 5: Experimental results for interleaved transfer pattern and guidebook route computation. All values are
averaged over 100 randomly chosen source-target station pairs. graph size describes the number of nodes + edges
of the (reduced) transfer pattern graph (TP).

approach. Hence the computational overhead induced
by the two-step approach might not be justifiable. For
the one-step method, extraction time and coverage for
all our test graphs can be found in Table 4. It shows
that the selection of GBRs for station pairs already suf-
fices to answer more complex L-to-L queries in a sound
manner.

To enable real-time GBR presentation, TP-based
preprocessing is necessary. In Table 5 we first give the
original TP query graph sizes (number of nodes plus
edges) and subsequently the runtime to extract GBRs,
which is in the order of microseconds and clearly allows
for extraction on query time. Also we present the time
to check if the GBRs already fulfil the cover criterion.
Note, that the latter is only performed when the GBR
extraction is included in the preprocessing, for direct
queries we would just choose the top-k flow-paths
(choosing k e.g. as the respective average GBR value
in Table 2). Finally, we show the size of the TP query
graph when reduced to the set of covering GBRs.
Obviously, the number of nodes and edges decreases
drastically as a lot of variations are pruned. For Madrid
this results in a TP graph with the size about a sixth
of the original one. Because the number of edges is
proportional to the runtime for evaluating the query
graph, this also translates into speed-up.

So all in all, GBRs were shown to be a useful and
– with appropriate preprocessing – efficient tool for
reducing all optimal journeys over a period of time to a
small set of stable routes.

7 Concluding Remarks and Future Work

In this paper, we motivated and evaluated algorithms
for computing guidebook routes on the fly and inter-
leaved with transfer patterns. Our experiments show
that normally a very small set of guidebook routes suf-
fices to cover all optimal solutions, which is beneficial for
memory consumption, query times and producing rea-
sonable output size sets for the users. As a next step,
the applicability of guidebook routes for more complex
Pareto-criteria (e.g. including ticket prices, taxi dura-
tion) should be explored, which requires an extended
definition of coverage. Also robustness and other jour-
ney characteristics could be considered to decide which
guidebook routes to choose.
Another aspect is the representation of guidebook
routes: At the moment we store them as sequence of
transfer stations in congruency with the transfer pat-
tern approach. But also a very specific representation
as sequence of line numbers (Bus No.12, Subway S4)
could be useful – or a description by the sequence of
transportation modi (walk, bus, walk, train, walk), as
it was shown in previous work that such modi restric-
tions already decrease query times significantly [5].
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