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Abstract

Named entity recognition and disambiguation (NERD) is the task of identifying
and determining the meaning of named entities in a given text, for example, to tell
whether the word "Amazon" is referred to the company or the river. This is done by
linking the text spans to their corresponding entities in a knowledge base. NERD is
an essential technique in many NLP applications including recommendation system
and question-answering system, as it helps to extract and understand information
from plain text. The task is however challenging, because the same piece of text can
refer to different entities and the same entity can be referred to in multiple ways.
In addition, the variety of texts — length, topic, style — also increases the difficulty
of recognition and disambiguation. In this thesis, we propose an algorithm with
configurable features for the task of NERD with Wikidata. In the recognition stage,
we examine all possible text spans in the pre-generated named entity index, while
reducing the complexity to linear scale by utilizing POS tags as a filter. In the
disambiguation stage, we consider the popularity of each candidate entity and its
similarity to the context. On top of the base model, we give the algorithm more
flexibility in recognition by expanding the synonyms of certain named entities, and
leverage Wikipedia abstracts to enrich the knowledge base. We further discard
unlikely named entities to decrease false positives. In evaluation, we analyze the
contribution of each component as well as the entire NERD system. Results show
that synonym expansion and false positive reduction are very effective. In addition,
our algorithm performs better and is capable of outputting more named entities on
one dataset with shorter documents. On the other dataset consisting of news articles
with rich context, our performance is also acceptable in comparison with the other

sophisticated system.

iii






Contents

1

Introduction

1.1
1.2

Motivation . .

Contribution

1.3 Structure of the Thesis . . . . . . . . . . . . ... ..

Related Work

Approach

3.1 Named Entity Recognition . . . . . . ... .. .. ... ... .....
3.1.1 POSTagPFilter . . . . ... .. ... ..
3.1.2 Named Entity Index . . . . . ... ... ... ... ...
3.1.3 The Recognition Flow . . . ... ... .. ... ... .....

3.2 Named Entity Disambiguation. . . . . . ... ... ... ... ....
3.2.1 Context-Aware Disambiguation . . . . . . . . ... ... ...
3.2.2 The Disambiguation Flow . . . . . ... ... ... ... ...

3.3 Configurable Features . . . . . ... .. ... ... ... .......
3.3.1 Family Name . . . . . ... ... ... oo
3.3.2 Demonym . . . .. .. ..
3.3.3 Large Database . . . . . . . ... .. ... .. ... ... ...
3.3.4 Wikipedia Abstract . . . . ... .. ... ... ... .....
3.3.5 NNP Reduction . . . . ... ... ... ... ...

Evaluation

4.1 Datasets . . . . . ..

4.2 Metrics . . . ..o

4.3 Results and Discussion . . . . . . ... ... oL
4.3.1 Single Feature . . . . . . . .. .. .
4.3.2 Multiple Features . . . . . .. .. ... 0oL
4.3.3 Comparison to AmbiversNLU . . . . .. ... ... ... ...

4.4 FError Analysis . . . . . ...

W DN =

10
11
13
14
16
17
17
17
18
18
19

21
21
22
23
23
25
25
26



5 Conclusion

5.1 Summary . .

5.2  Future Work
6 Acknowledgments

Bibliography

vi

29
29
29

31

32



List of Tables

[N

S Ot = W

10
11
12

A subset of the Penn Treebank tagset. . . . . . .. ... ... ....
An example knowledge base to demonstrate how to build the named
entity index. . . . . . . . ..
Context-aware disambiguation example: sentence context. . . . . . .
Context-aware disambiguation example: entity information. . . . . .
Context-aware disambiguation example: overlap words. . . . . . . . .

The information of the two "Armstrong" entities in Wikidata. . . . .

Benchmark Statistics. . . . . . . . ... ... ... L.
NERD results of single feature. . . . . . . ... ... ... ...

False positive and false negative counts of each feature . . . . . . ..

NERD results of multiple features and comparison to AmbiverseNLU.

True positives, false positives, and false negatives of different models.

Error analysis. . . . . .. ... .o

11
15
15
15
19

22
23
24
26
27

vil






List of Algorithms

1 POS Tag Filtering . . . . . . .. . ... . .. ...
2 Examine a word in Named Entity Index . . . . . ... ... .. ...

3 Named Entity Recognition . . . . . . . . . ... ... ... ... ...

X






1 Introduction

Named entity recognition and disambiguation (NERD), also referred to as entity
linking (EL), is the task of identifying named entities in plain text and determining
their meanings. Take the sentence "Amazon is founded by Jeff Bezos." for example.
First of all, the task of named entity recognition (NER) is to point out the text span
of named entities, which are "Amazon" and "Jeff Bezos". Then, the task of named
entity disambiguation (NED) is to link the text span of each named entity to the
correct entry in a knowledge base. It should have the ability to tell that "Amazon" is
referred to the company, not the river or the rain forest. If we choose Wikidata as
the target knowledge base, the output of NED would be:

e "Amazon": https://www.wikidata.org/wiki/Q3884

o "Jeff Bezos": https://www.wikidata.org/wiki/Q312556

1.1 Motivation

NERD is an essential technique for many applications in natural language processing,
including recommendation system and question-answering system. It provides the
ability to automatically extract information and understand the plain text. However,
the task is challenging due to the ambiguity in nature language.

First, the same piece of text can refer to different entities. For example, the word
"Amazon" could mean the company or the river depending on the context. On the
other hand, the same entity can be referred to in multiple ways. One category is
synonym, like the country “United States of America” can also be referred to as
"U.S." or "USA". The other category is partial mention, which is common in certain
content like news or sports. For example, use "Merkel" to refer to "Angela Merkel",
or "Freiburg" to refer to "F.C. Freiburg" in text, especially when the term appears
more than one time.

In addition, although we disambiguate by finding the corresponding entry in a

knowledge base, not every entry in the knowledge base is a named entity, and vice



versa. Consider the text "an American company". The word "company" does have
an entry in Wikidata, however it is only a simple noun. The word "American" does

not have an entry in Wikidata, but is highly related the the entity "America".

Furthermore, the variety of texts also increases the difficulty of recognition and
disambiguation. For example, news articles, Tweets and blog posts are all different in
lengths and writing styles. Algorithms often need to be adjusted or trained according

to different text characteristics.

1.2 Contribution

In this thesis, we propose an algorithm with configurable features for the task of
NERD with Wikidata. It consists of two stages: named entity recognition (NER)
and named entity disambiguation (NED).

In NER, we aim to identify as many named entities as possible. Ideally, this can be
done by comparing all possible text spans with the pre-generated named entity index.
Practically, we utilize POS-tag filter to reduce the examinations needed and achieve
a linear complexity. To handle the issue of partial mention, we enhance matching
flexibility by adopting the Wikidata property "family name". We also utilize the
property "Demonym" — the natives or inhabitants of a particular country, state, city,

etc — to recognize terms like American.

In NED, we consider the popularity of each candidate entity and its similarity to
the context. We measure the similarity by the overlaps between the context and
the description of the candidates. Also, we leverage the information from Wikipedia
abstracts to make better decisions in disambiguation. Finally, we discard unlikely
named entities to decrease false positives by conditionally removing consequent

single-word named entities.

We generate two benchmarks for evaluation. One dataset consists of shorter
documents with diverse topics. The other dataset consists of news articles. We conduct
experiments on various versions of our algorithm, using the designed configurable
framework. We also compare with one state-of-the-art system. Results show that the
use of the property "Demonym" and the false positive reduction are very effective.
In addition, on the dataset with shorter documents, our algorithm performs better

and is able to correctly recognize and disambiguate more named entities.



1.3 Structure of the Thesis

The thesis is structured in the following way. In Chapter 2 we review some related
works and summarize the lessons learned from them. In Chapter 3 we present the
base model of our NERD algorithm and introduce five features on top of it. In
Chapter 4 we describe the experiment setup and discuss the evaluation results on

each feature as well as the entire NERD system. We conclude in Chapter 5.






2 Related Work

Wikify! [1] is the first work that introduces the NERD system. Followed by Cucerzan’s
work [2] and Milne and Witten’s work [3], these earlier approaches aim to bridge
information from knowledge bases to ordinary web pages. They detect the most
popular or important entities and disambiguate them with Wikipedia. Since the
recognition process is rather conservative, many entities in the text are not detected.
Their decision of focusing on only certain entities results in higher precision rates but

lower recall rates.

Hoffart et al. [4] focus on NED and propose an integrated algorithm considering the
popularity of a candidate, the similarity between a candidate and the context, and
the coherence of all entities in the text. The similarity measure is based on a offline
data-mining step that determines the keyphrases for each entity in the knowledge
base. The consideration of coherence, inspired by Kulkarni et al. [5], is under the
assumption that the query text is not too short thus has sufficient number of named
entities and these named entities focus on the same topic. They model the NED
problem as a weighted graph of mentions and candidates, in which the similarity and
coherence are represented by the corresponding edge weights. It is solved globally by
computing a sub-graph that contains all mention nodes and one candidate-mention
edge for each mention. Together with Stanford NER tagger [6] to identify mentions
and YAGO?2 [7] knowledge base for candidate generation, they reach a good result in
the AIDA CoNLL-YAGO dataset, which is also generated by them.

Piccinno and Ferragina propose WAT (8], an enhanced version of their previous
work TagMe [9]. WAT consists of three stages: spotting, NED and pruning. This
provides the possibility to spot more mentions in the beginning and prune the
inconsistent ones in the last stage. The spotting stage detects possible mentions
and generates candidate lists based on an offline pre-processed entity index from
Wikipedia. The NED stage offers two types of algorithm. The vote-based algorithms
disambiguate locally considering the relevance between entities within a context
window and the popularity of each candidate. The graph-based algorithms are also

mention-candidate graph as Hoffart et al. [4], but with different kinds of relevance



measures and optimization algorithms. They reach good results in many evaluations
in other recent works. In their own evaluation on ERD dataset, they analyze the
contribution of each stage as well as the entire NERD system. Though the graph-
based algorithms perform better than vote-based ones in the NED-only test, the
performance have little difference in the NERD test, in which the noise introduced by
the spotting stage largely degrades the performance of NED. They therefore point out
the importance of the spotting and pruning stage as these two stages are responsible
for many false-positives.

Kolitsas et al. [10] propose a neural-network system to jointly solve the NER and
NED problem. They provide all possible spans with their candidate lists as input data.
The best candidate is chosen by the probability model, the context-aware similarity
and optionally the global coherence. The network is trained with the golden mention-
entity pairs as positive cases and the other mention-candidate pairs as well as the wrong
spans as negative cases, thus has the ability to jointly determine spans and choose
candidates. They generate candidate lists based on an offline-generated probabilistic
entity index built by Ganea and Hofmann [11], collecting information from Wikipedia
hyperlinks, Crosswikis and YAGO dictionaries. They compute similarity between
context-aware word embeddings of the span, obtained by bidirectional LSTM, and
the pre-trained entity embeddings by Ganea and Hofmann [11]. In evaluation, they
significantly outperform other NERD systems on AIDA CoNLL-YAGO dataset, which
is in the same domain of their training data. For datasets out of their training data,
their NED model with the Stanford NER tagger [6] performs better. The enforcement
of global coherent boosts up the performance of in-domain datasets while drops the
performance in out-of-domain ones.

We learn some lessons from these works. First, the components of NED algorithms
are basically "probability", "similarity", and "coherence". Among them, "coherence"
deserves careful handling. Since the errors may dominate the result when we force all
entities in the documents to be coherent, the rule should be applied only when we have
a high confidence on the algorithm. Second, offline data-mining on entities is essential.
It can be used to generate an entity index with popularity or probability information.
It can also provides keyphrases or embeddings of the entity for later comparison.
Finally, in the trade-off between precision and recall rate, more false-positives are
introduced if we want to recognize more entities. To prevent error propagation,
there should be a way to handle the false-positives generated by NER, e.g. by a
post-processing stage, or by jointly solving NER and NED.



3 Approach

In this chapter, we present the proposed NERD algorithm. The basic flow of named
entity recognition and disambiguation are shown in Section 3.1 and Section 3.2. In

Section 3.3, five configurable features are introduced.

3.1 Named Entity Recognition

The task of named entity recognition (NER) is to locate the text span of named
entities in given text. A basic approach is to use the part-of-speech (POS) tagging,
which is the process of determining the grammatical category of each word in the
sentence. The Penn Treebank tagsets [12] is a widely used tagset when it comes to
POS tagging. You can find the description of some common tags mentioned in this
thesis in Table 1.

Tag Description

NNP | Proper noun, singular

NNPS | Proper noun, plural

NN Noun, singular or mass

NNS Noun, plural

VBD | Verb, past tense

VBN | Verb, past participle

IN Preposition or subordinating conjunction
JJ Adjective

Table 1: A subset of the Penn Treebank tagset.

Let’s take the following sentence as an example to see how POS tagging looks like
and how it relates to NER. The POS tag of each word is shown in grey background

right after the word. The named entities are in bold.

Amazon NNP was VBD founded VBN by IN Jeff NNP Bezos NNP . .

n n

In the sentence, "Amazon" is a proper name, with the tag NNP ; "was" and

"founded" are some type of verbs; "by" is a preposition; "Jeff" and "Bezos" are again



proper names with the tag NNP . It’s obvious that "Amazon" and "Jeff Bezos" are
named entities, and they all have the POS tag NNP . That is, we can easily marking
all words that has the NNP tag as named entities. However, there are two problems
if we do NER by POS-tagging. First, we don’t know whether adjacent words belong
to the same named entity. Second, words in a named entity do not always have the
tag NNP . In the phrase shown below, if we mark all NNP words, we will get two
named entities: “United States" and "America”. We miss the entire "United States

of America".
United NNP States NNP of IN America NNP

In order to recognize more named entities, especially those cannot be fully detected
by POS-tagging, the ultimate way is to compare all of the possible text spans in the
given text with a named entity index generated from knowledge bases. Take "United
States of America" for example, we need to compare each of the following text spans

with the named entity index:
e United
e United States
e United States of
e United States of America
e States
e States of
e States of America
e of
e of America
e America

In this way, we do not miss any possibility and can recognize the entire "United States
of America". However, this process could be very time-consuming when the input
text goes longer. Because it has an order O(k?) given a text of length k. Fortunately,
the number of comparison can be largely reduced. In Section 3.1.1 and Section 3.1.2,
we propose two improvements to reduce the number of comparison, namely POS tag

filter and named entity index.



3.1.1 POS Tag Filter

The first improvement to speed up the recognition process is to use the POS tag as
a filter to reduce the number of comparison needed. The function of the POS tag
filter is to do a quick scan to the given text to spot the position of possible named
entities. Since most of the words in the given text are not named entities, e.g. "was",
"founded", there is no need to further check the text spans starting with these words.
Due to the fact that whether a word is (part of) a possible named entity could be
roughly indicated by its POS tag, the idea is to only check the words that have
possible POS tags, and skip the words that have other POS tags.

We prefer a loose filter than a strict filter. With strict filter policies, we may miss
out some possible named entities. This kind of false-filtering is not what we want
as our goal is to recognize more named entities. To this end, we consider not only
NNP but also NN as our candidate tags. Particularly, a word having tag NNP ,
NNPS , NN or NNS is possible to be in a part of a named entity and requires further
examination. Meanwhile, when filtering a word, not only the tag of the current
word but also the tag of the next word are taken into consideration. For example,
consider named entities like “My Chemical Romance” (an American punk band) or
“My Neighbor Totoro” (a Japanese anime film), both of them have POS tags of the
form PRPS$, NNP, NNP . If we only check the POS tag of the current word, we will
skip the word "My" and then fail to detect the entire name entity.

Algorithm 1 POS Tag Filtering
valid_tags < { "NNP", "NNPS", "NN", "NNS" }
wp < the word at position p in the query
function ISPOSSIBLENE (w))
tagy < PosTag(wp)
tagp+1 < PosTag(wpi1)
if tag, € valid_tags or tag,+1 € valid_tags then
return true
else
return false
end if
end function

Algorithm 1 states the proposed POS tag filtering. Given a word in the query, we
determine if it is possible to be (part of) a named entity by the POS tag of the word
itself and the word after it. For the function PosTag, we use spaCy [13] as the POS

tagger, because it is one of the stat-of-the-art tagger and performs fast. In summary,



by utilizing the POS tag as a filter, the amount of words needing further examination
can be largely reduced. Thus, the comparison needed becomes to a linear scale O(k),

given a text of length k.

3.1.2 Named Entity Index

The second improvement to speed up the recognition process is to create a named
entity index in advance. The index stores all the named entities from the knowledge
base according to the beginning word and the length of named entities. While the
POS tag filter reduces the number of words needing examination, the aim of the
named entity index is to reduce the examination time of each word.

Consider the first word “Amazon” in the example “Amazon was founded by Jeff
Bezos”. Since "Amazon" has the tag NNP , we need to check itself as well as all the

phrases starting with it until the end of the sentence, i.e.
e “Amazon”
e “Amazon was”

e “Amazon was founded”

e “Amazon was founded by Jeff Bezos”

together 6 comparisons needed to be made. However, the entities starting with
the keyword “Amazon” in the named entity index, like “Amazon”, “Amazon Kindle”,
“Amazon rainforest” and so on, are finite. Let’s say the named entities starting with
"Amazon" are of length 1, 2, and 3. Then, we don’t need to compare a six-word
phrase “Amazon was founded by Jeff Bezos” or other lengths that are not exist in the
named entity index. By knowing this fact, only 3 comparisons are needed. Therefore,
if we build a named entity index in advance, such that we can easily know the possible
lengths of named entities given a starting word, we can further reduce the number of
following phrases a word needs to be checked.

We build up the named entity index based on the information in Wikidata. Partic-
ularly, we use the "name" and "synonyms" property of an entity as the key, and the
"QID" property as the value in the index. Each key is stored under a hierarchical
structure: the first layer is according to its starting word, while the second layer is
according to its length. The value is an array of QIDs, served as a list of candidate

entities that could refer to the key.
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QID Name Synonyms

Q30 United States of America | USA; United States
Q145 | United Kingdom
Q9212 | United States Army USA

Table 2: An example knowledge base to demonstrate how to build the
named entity index.

Given a toy knowledge base with only three items in Table 2, the pre-established
named entity index is shown in List 3.1. First, we have "United States of America".
We store it under "United" and then "4" to indicate its beginning word and length.
Its value is its QID, which is Q30. The synonyms, "USA" and "United States" are
stored as the same manner. "USA" is under "USA" and then "1"; "United States"
is under "United" and then "2". Both of them have the value Q30. Then, we have
"United Kingdom". We store it under "United" and then "2" and with value Q145.
Now there are two named entities under "United" and "2". Finally, we have "United
States Army" and its synonym "USA". Since there is already an "USA" in the index,
we add the QID Q9212 into the value array of the exist key to indicate that all these
QIDs could point to the same key.

3.1.3 The Recognition Flow

We have introduced the POS tag filter to spot the possible named entity words, and
the named entity index to speed up the examination of the words. Now let’s look at
the recognition flow in details. Given a query sentence, we check it word by word
with the POS tag filter, from the beginning to the end. If we find a possible word,
we compare the word and its following text spans with the named entity index to
see if there is a match. Particularly, we only examine the spans of possible lengths,
and choose the longest one if there are more than one match. The text span that is
recognized as a named entity will not be examined again. Finally, we discard the text
spans that do not include any NNP tag to avoid recognizing simple nouns. Algorithm
2 describes the process of examining a possible word in the named entity index. The
formal description of the NER flow is in Algorithm 3.

Let’s use the toy index in 3.1 as the named entity index and run the NER process
on the text "the United States of America (USA)". The POS tag of each word is
listed below.

11



Listing 3.1 An Example Named Entity Index

1 {

2 "United": {

3 o {

4 "United States": [Q30],

5 "United Kingdom": [Q145]

6 },

7 n3n: {

8 "United States Army": [Q9212]
9 },

10 nan. {

11 "United States of America": [Q30]
12 }

13 },

14 "UsSA": {

15 e {

16 "USA": [Q30, Q9212]

17 }

18 }

19 }

Algorithm 2 Examine a word in Named Entity Index

NE _index < BuildIndex()
function EXAMINE(w))
pos_lens < possible lengths of named entities starting with w,
[+ 0, keep track of the longest length
foreach [ in pos lens do
if chunk,; € NE_index andl > [ then
update the longest match Z, QIDs
end if
end for
return f, QIDs
end function

12



Algorithm 3 Named Entity Recognition

p < 0, start from the beginning word of the query
while w, is not NULL do
if ISPOSSIBLENE(w,) then
I, QIDs + EXAMINE(w,)
if [ #£0 then
if span,, ; contains "NNP" then
Output.insert(spanp’[, QIDs)
end if
p&Dp —|—Z
continue
end if
end if
p—p+1
end while

the DT United NNP States NNP of IN America NNP ( -LRB— USA NNP ) -RRB-

The first word "the" does not have a possible tag, so we skip it. The second word
"United" has the tag NNP , so we look up the index and find out that the possible
lengths starting with "United" are 2, 3 and 4. Therefore, we extract the two-word
phrase "United States", the three-word phrase "United States of" and the four-word
phrase "United States of America" from the query and look up the index to see
if any of them exists thus is a named entity. Since "United States" and "United
States of America" exist in the index, we choose the longer one, "United States of
America". Now we successfully recognize a named entity, with its QID array in hand
for later usage in the NED stage. The next word to check is "(", which does not have
a possible tag. Then is the word "USA", which has the tag NNP . So we look up
the index again and the possible length is 1. The single word "USA" exist in the
index, with the QID array consisting of two QIDs. Now we have recognized another
named entity. We continue to the next word, which is the last word ")" and does not
have a possible tag. The process is done. The recognized named entities as well as
their candidate lists, namely "United States of America"(|Q30]) and "USA"(]Q30,
Q9212]), are passed to the next stage.

3.2 Named Entity Disambiguation

The task of named entity disambiguation(NED) is to link the recognized named entity

to the respective item in a knowledge base, which is Wikidata in this thesis. Therefore,
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the task of NED is to determine the URL or the QID of each recognized named
entity. Here, the recognized named entities come from the output of the previous
stage, NER. Since a text span could refer to different items in a knowledge base,
the NED algorithm needs to choose the most suitable item among the candidates.
For example, there are at least two "Obama" in Wikidata. One is the former U.S.
president; the other is a city in Japan. When "Obama" is recognized in a given text,
NED needs to determine which "Obama" does it mean. A straight forward approach
is to choose the most popular candidate. However, the drawback is easy to see. Since
the most popular item with the name “Obama’” is the president Obama, the approach
always links “Obama” to the president, and fails in the case of “Obama is a city in

Japan.” Therefore, more clues should be taken into consideration.

3.2.1 Context-Aware Disambiguation

When determining the meaning of a text span, the context of the query usually
provides great hints. A candidate entity that is more related to the context is more
possible to be the correct answer. This is also how human understands the meaning
of texts. To measure which candidate is more related, we need to compare the context
with each candidate. To do so, we have to define the following three concepts above
all: 1) What is the "context" of a given text. 2) What can represent a "named entity".
3) How to measure the "similarity" between a "context" and a "named entity".

First, the context of a given text can be roughly represented by all the nouns in
the text. Since our goal is to use the context to distinguish between different named
entities, not to understand the actions or emotions in the text, we neglect verbs,
adjectives or combinations between nouns and them. Particularly, we collects all the
words in the query having POS tag NNP , NNPS, NN and NNS to represent the
context of the query.

Then, to represent a named entity, we use the information in Wikidata. A straight-
forward idea is the information in its description. Particularly, we use all the words
in the Wikidata property "name", "description" and "synonyms" of a named entity
without further processing. Theoretically, we could remove the stop words or also do
the POS-tagging and only consider the nouns. However, our final goal is to compare
each named entity with the "context", which already contains only the nouns and
proper nouns. Therefore, we choose to save the time and effort of further processing
each named entity, as there might be a lot of them.

Finally, to measure the similarity between context and a named entity, the idea is

to see if they have any keywords in common. Particularly, we count the number of
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overlap words between the context and each named entity. The one with the most
overlaps is the most related named entity.

Let’s take the two sentences in Table 3 as example: we want to determine the
meaning of the word "Obama" in both sentences. Assume that there are only two
candidate "Obama" in Wikidata, as shown in Table 4. First, we need to extract the
sentence contexts. In the first sentence, "Obama" and "US" have the tag NNP , and
"president" has the tag NN . The three words are the context of the sentence. The
context of the second sentence is of the same manner: "Obama" and "Japan" are
NNP , and "city" is NN .

Sentence Context
Obama was the president in US. | Obama, president, US
Obama is a city in Japan. Obama, city, Japan

Table 3: An example to illustrate context-aware disambiguation. The con-
text of the two example sentences.

QID Name Synonyms | Description
Q76 Barack Obama | Obama 44th president of the United States
Q41773 | Obama city in Fukui prefecture, Japan

Table 4: An example to illustrate context-aware disambiguation. The in-
formation of the two "Obama" entities in Wikidata

Sentence 1 Sentence 2
Q76 Obama, president | Obama
Q41773 | Obama Obama, city, Japan

Table 5: An example to illustrate context-aware disambiguation. The over-
lap words between the context of the two sentences and the two candidate
named entities.

Now we have the context and the information of the candidate named entities
in hand. Let’s disambiguate the "Obama'" in both sentences by measuring which

candidate named entity has more overlaps to the context. The overlaps between each

15



candidate and each sentence are shown in Table 5. For the first sentence, since there
are more overlaps with the candidate Q76, we disambiguate the "Obama" to Q76,
the president. Meanwhile, we disambiguate the "Obama" in the second sentence to

Q41773, the city, as it has more overlaps with the context.

3.2.2 The Disambiguation Flow

The example above is well designed to demonstrate the concept of disambiguation by
comparing overlaps. In real cases, there could be no overlaps at all, or the amount of
overlaps may not be positively correlated. Therefore, we make the disambiguation
considering not only the relevance of the candidate, but also its popularity. For a
recognized named entity, given all its possible candidates, disambiguate by choosing

the candidate with the highest score, where
score = popularity _score + similarity score

The popularity score comes from the entity’s property sitelinks in Wikidata. Popularity
score is an integer. In the Wikidata we use, it is in the range from 0 to 367. A higher

number of sitelinks indicates a more popular entity.
stmilarity score = n_ overlaps x weight

The similarity score is proportional to the number of overlaps between the context and
the entity. The weight controls how significant an overlap is. We design the weight
from two aspects. First, the weight should have the ability to beat the popularity
score. Denote the maximum popularity score as P,q.. We choose the weight to be
near the half of P,,,,. This means, assume there are two entities, one is the most
popular, the other is the least popular, then our algorithm should choose the least
popular one, if it has two more overlaps with the context. Second, the weight should
be a function to the length of the context. In a longer query, the context may contain
more words but be less representative. In this case, we should lower the significance
of every overlap, i.e. lower the weight. In our implementation, the weight goes down

to around one third of P,,,; when there are more than 10 words in the context.

b Praz/3 , more than 10 words in the context
weight =
Praz/2 , otherwise

Theoretically, there is one more aspect we should take into consideration to design

the weight. The weight should also be a function of the description length of each
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named entity, as more words in the description provides a higher chance of overlaps.
However, the description in Wikidata tend to be short: 96% of the description are
less than 10 words. In this case, a fixed weight is sufficient. Note that the behavior

changes when we later introduce the Wikipedia abstract in Section 3.3.4.

3.3 Configurable Features

We have introduced the base model of our named entity recognition and disambigua-
tion algorithm. In this section, we try to further improve the correctness of recognition
and disambiguation in the following aspects. In Section 3.3.1 and Section 3.3.2, we
give the algorithm more flexibility in recognition by expanding the synonyms of
certain named entities. In Section 3.3.3 and Section 3.3.4, we enrich the knowledge
base so that more information can be accessed. In Section 3.3.5, we reduce the
false-detected named entities. Each improvement is implemented as a configurable
feature such that it could be turn on or off in the algorithm. Their effectiveness will

be discussed in the evaluation section in Chapter 4.

3.3.1 Family Name

One common sort of error is related to the name of a person. Sometimes the query
sentence does not state the complete name when mentioning a person, but only its
last name. This may induce a recognition problem. For example, in the sentence
"Armstrong was stripped of all seven Tour de France titles.", though we know it
means "Lance Armstrong", the entity "Lance Armstrong" in Wikidata does not have
its last name "Armstrong" as its synonym. That means, the key "Armstrong" in our
named entity index does not have a value that links to "Lance Armstrong". This
makes it impossible to disambiguate "Armstrong" correctly as the answer is not
included in the candidate list. To solve this kind of error, we can simply add the last
name “Armstrong” to the synonym list of "Lance Armstrong". In general, we can
add all people’s last name to its synonym. Particularly, we use the property "type"
and "family name" in Wikidata to implement this feature. If an entity is of type

“person” and has the property “family name”, add its family name to its synonym.

3.3.2 Demonym

Consider the following sentence "Amazon is an American company.", the POS tags

are shown below.
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Amazon NNP is VBZ an DT American JJ company NN . .

"Amazon" is a named entity for sure, but what about "American"? By definition,
it is an adjective thus not a named entity. However, it is strongly related to the
named entity "America". If we can link "American" to "America", the computer can
understand more about the text. This is where "demonym" plays a role. Demonym
is a noun denoting the natives or inhabitants of a particular country, state, city, etc.
It is an property in Wikidata. Therefore, we can utilize the information by adding all
the words in demonym to the synonym of certain entities. In particular, if the entity
is a country and has the property “demonym”, add its demonym to its synonym. This
is practical as the demonym itself may not be an entity in the knowledge base. Even
the demonym is an entity, it is still good to link the demonym to its country for better
understanding. Also note that if this feature is on, the valid _tags in Algorithm 1
should also include the tag JJ, such that the denonyms can pass our POS tag filter

to do recognition and disambiguation.

3.3.3 Large Database

In the early stage of development, we use a condensed version of Wikidata, which
excludes less popular entities. The advantage of the condensed version is that it is
lighter thus it can save time and space when running the algorithm. The disadvantage
is easy to see. The condensed version leads to recognition limits as not all entities
are included. Therefore, it is reasonable to try the full version of Wikidata and to

compare the performance difference.

3.3.4 Wikipedia Abstract

In NED stage, we compute the similarity score of a candidate using its description in
Wikidata. But sometimes the description in Wikidata contains too little information
and the disambiguation algorithm falls back to only depends on the popularity score.
One possible improvement is to include more information to represent each named
entity. We choose the abstract paragraph of the corresponding Wikipedia page to
provide more informative details.

Consider the sentence “Armstrong was stripped of all seven Tour de France titles.”
Its context is ["Armstrong", "Tour", "France", "titles"]. Now we want to disambiguate
the word "Armstrong". Assume there are only two candidate named entities listed in
Table 6. Since both of the candidates have no overlaps with the context, the NED

algorithm can only depend on their popularity scores and choose Neil Armstrong as
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QID Name Description

American astronaut and the first human
to walk on the moon
Q2172 | Lance Armstrong | American cyclist

Q1615 | Neil Armstrong

Table 6: The information of the two "Armstrong" entities in Wikidata.

it has higher popularity score. However, if we also check their Wikipedia abstract, we
will find out that the term “Tour de France” appears in Lance Armstrong’s Wikipedia
abstract. The overlaps contribute to his similarity score and leads to the correct
disambiguation result.

Note that the length of Wikipedia abstract differs in a large range. The longer the
abstract, the higher chance there is an overlap with the context. Thus, we need to
further adjust the weight to compensate the effect of different lengths. The weight is
inversely proportional to the logarithm of the length such that longer abstract gets
lower weight. Particularly, we put all the words of the property "name", "synonyms",
"description" and "Wikipedia abstract" into an unordered set. Denote the length of
the set as len, the adjusted weight would be
xw ,len > 16

_ 4
adjusted _weight = loga(len)

w , otherwise

3.3.5 NNP Reduction

One sort of error comes from the false-recognized named entities. That is, the NER
stage recognizes certain text span as a named entity, but it is actually not. Specifically,
we are looking at the pattern where the entire entity does not exist in Wikidata
but each word of the entity exists. For example, “Bank Duta” is an Indonesia bank,
which is a named entity but has no entry in Wikidata. Meanwhile, “Bank” (a film by
Charlie Chaplin) and “Duta” (a family name) are both entities in Wikidata. Thus,
the text "Bank Duta" results in two false-recognized named entities. In fact, it is
less possible to have single-word named entities in sequence, especially when they
are not so popular or related. Therefore, we prevent this kind of false-recognition by
removing the recognition of consequent single-word named entities, except any of the
named entity has a score larger than P,,;. Because the score is the summation of
popularity score and similarity score, we can use the score as a comprehensive index

to indicate if an entity is very popular or related to the context.
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4 Evaluation

In this chapter, we evaluate the proposed NERD algorithm on two datasets. We
compare the performance of different configurations of our algorithm, as well as with
one state-of-the-art system. Section 4.1 introduces the two datasets. Section 4.2
describes the metrics we evaluated on. In Section 4.3, we discuss the experimental

results. Finally, we conduct an error analysis in Section 4.4.

4.1 Datasets

We use Wikidata as our knowledge base and conduct experiments in English. Since
there are no established dataset with Wikidata annotations, we modify two exist
datasets, ClueWeb12 FACCI1 [14] and AIDA CoNLL-YAGO [4], by mapping their
annotations to Wikidata QIDs.

ClueWeb12 FACCI is introduced by Google. It consists of text from 456,498,584
English web pages with Freebase annotations. Due to the extremely large size of the
data, the annotation process was automatic. In our benchmark, we randomly choose
50,000 texts from the dataset and use the Wikidata property "Freebase ID" to map
the Freebase annotations to Wikidata annotations.

AIDA CoNLL-YAGO is introduced by Hoffart et al [4]. It is based on the CoNLL-
2003 data set, which consists of 1,393 English and 909 German news articles with
named entities annotated by categories (LOC, ORG, PER, or MISC). These named
entities are further manually annotated by Hoffart et al. with YAGO2 entity name,
Freebase ID, and Wikipedia URL annotations. In our benchmark, we use the 1,393
English news articles and map the annotations from either Freebase ID or Wikipedia
URL to Wikidata annotations.

The statistics of the two benchmarks are shown in Table 7. ClueWeb contains
text from a large size of webpages thus covers a wide range of topics. The automatic
annotations are usually of high quality, but they may still contain errors. The
average length of each document is 26 words with 1.55 named entities. On the other

hand, AIDA focuses on news topics and has a smaller size of corpus. The manual

21



Dataset Clueweb AIDA
Topic mixed news
Annotation Type automatic | manual
Num. Doc. 50000 1393
Num. N.E. 77412 34856
Num. InKB N.E. 77412 27507
Avg. Word/Doc. 26.16 217.48
Avg. InKB N.E./Doc. 1.55 19.79

Table 7: Benchmark Statistics. Doc. stands for document. N.E. stands for
named entities.

annotations provide better quality. The document length is longer, averagely 217

words per document with 20 named entities.

4.2 Metrics

We report Micro F1 and Macro F1 scores of NERD, where

Flo 2 X precision X recall

precision + recall

Precision is the ratio of correctly reported named entities among the algorithm
outputs. Recall is the ratio of correctly reported named entities among the ground
truth. By considering both precision and recall, we can avoid the situation of only
reporting few named entities with high confidence to aim a high precision, or reporting
every possibility of named entities to aim a high recall.

Micro F1 aggregates data from all documents to compute one score. On the
other hand, Macro F1 computes one score per document and takes average over
all documents to get the final score. When the characteristics of each document —
number of named entities, topic and so on — are diverse, Macro F1 score is preferable.

We compute in the strong matching setting, where a "match" requires the algorithm
output to have the exactly same boundary and annotation with the ground truth. In
addition, since the annotations are originally in other knowledge bases, some entities
in the ground truth do not have corresponding entities in Wikidata. We therefore
focus on named entities in Wikidata and report the so-called InKB scores. For entities
in the ground truth that do not have valid annotations in Wikidata, the metrics

ignore the algorithm’s output on such entities in score computation.
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Clueweb | AIDA memory
configuration Micro F1 | Micro F1 (GB)

Macro F1 | Macro F1
base 33233 5509392 3.80
base + family name 2(9)1612 ggg; 3.89
base + demonym i;;i gggi 3.80
base + large database igi? 2(1)22 5.19
base + Wikipedia abstract ggg; 2(1)(1)2 5.86
base + NNP reduction i;gg g;l% 3.80

Table 8: NERD results of single feature. Micro, Macro F1 scores and the
memory usage are shown. We highlight the best result in bold and the
second best with underline.

4.3 Results and Discussion

We test on our base NERD algorithm, as well as different combinations of the five
features — family name, demonym, large database, Wikipedia abstract, NNP reduction
— on top of the base model. Also, we compare to one of the state-of-the-art NERD
system — AmbiverseNLU!. AmbiverseNLU uses KnowNER, [15] for NER, and an
enhanced version of AIDA [4] for NED. We use their Docker to conduct experiments.

4.3.1 Single Feature

First, we apply only one feature each time on the base model to see the effectiveness of
each feature. The F1 scores on two benchamrks and the memory usage are shown in
Table 8. The percentage change of false positive and false negative counts aggregated
from two benchmarks are shown in Table 9. NNP reduction and demonym provide
great improvements without extra memory usage. On the other hand, large database
and Wikipedia abstract provide little improvements while consuming much more

memory. Following are detailed discussion on each feature.

'https://github.com /ambiverse-nlu/ambiverse-nlu
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configuration false positive false negative
counts \ % change | counts \ % change

base 89,305 - 53,194 -
base + family name 90,711 1.57% 51,745 -2.72%
base + demonym 89,066 -0.27% 48,696 -8.46%
base + large database 91,659 2.64% 52,056 -2.14%
base + Wikipedia abstract | 89,943 0.71% 53,659 0.87%
base + NNP reduction 52,771 -40.91% 53,972 1.46%

Table 9: False positive and false negative counts of each feature

. Family name uses little extra memory and have a good F1 score gain on AIDA.

The gain on Clueweb dataset is not so significant. Since AIDA consists of news
articles, it may contain more family names as well as related context thus benefit
from this feature. Though family name helps to detect more named entities, it
also brings new ambiguity by providing more candidates when disambiguating
a name. Together, it reduces 2.72% of false negatives but also increases 1.57%

of false positives.

. Demonym is very effective on both datasets. It uses nearly no extra memory

and provides a significant gain on AIDA and a good gain on Clueweb. Linking a
country’s demonym as its synonym makes sense and generates no new ambiguity
as each country is distinct. This coincide with the result of reducing 8.46% of

false negatives and introducing no new false positives.

. Large database uses 1.4GB extra memory compared to the condense version of

database. Surprisingly, it brings only minor improvements on both datasets.
The full version of database do contain more information, but the benefit of
recognizing more named entities is cancelled out by introducing more ambiguity.
It results in a 2.14% reduction on false negatives and a 2.64% increment on false
positives. We can think of the condensed version as a pre-prossessed version
to remove noise. To make the best out of the full version of database, further

consideration and disposal are required.

. Wikipedia abstract uses about 2GB extra memory but actually degrades the

performance a bit. Though the idea makes sense in our example sentence, it
slightly increases both false positives and false negatives overall. The subtle
changes means that this feature has almost no impact. It could due to the

mechanism of our similarity measure — counting overlaps between query context



and candidate’s description — is not suitable for a longer and less focused

description.

5. NNP reduction is a very effective feature. It contributes large improvements
on both datasets without extra memory usage. The improvement comes from
the 40.9% reduction of false positives. Though it also brings 1.46% more false
negatives, the benefits outweigh the disadvantages. The result supports our

hypothesis that consequent single-word named entities are relatively rare.

4.3.2 Multiple Features

Then, we look at the performances of different combination of features. From the
discussion above, we can enable family name, demonym and NNP reduction by default
as they all provide positive effects and require no much extra memory. We denote
enhanced as the version of base algorithm plus the three features. We further want
to know the effects of large database and Wikipedia abstract on top of the enhanced
version, as well as the performance of the full version, where all features are enabled.
The results are shown in the upper part of Table 10.

As expected, the enhanced version performs basically well on both datasets. On
top of it, large database improves a little bit on Macro F1 but also worsen a little bit
on Micro F1. The changes are however very subtle. Compared to enhanced verson,
Wikipedia abstract has negative impacts on both datasets, but performs better on
AIDA with combination to large database. This shows that under certain conditions,
Wikipedia abstract and large database can indeed improve performance. This may due
to the rich context in AIDA. The analysis here is hard as many factors interact with
each other. Both features bring more entities and information, which results in more
entities being recognized, some are correct, some are wrong. However, they require
more memory and processing time. In summary, when the resources are limited or

the query tend to be short, the enhanced version is preferred.

4.3.3 Comparison to AmbiversNLU

Finally, the comparison to AmbiverseNLU is shown in the lower part of Table 10.
The results on the two benchmarks are quite different. On Clueweb, our algorithm
outperforms AmbiverseNLU by over 12 points of Macro F1 score and 4 points of
Micro F1 score. As described earlier, Macro F1 score is preferable in Clueweb as its
documents tend to have diverse characteristics. On the other hand, AmbiverseNLU

performs better than our algorithm on AIDA, where texts are news articles with rich
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. , Clueweb | AIDA
configuration Micro F1 | Micro F1
Macro F1 | Macro F1

N . 49.82 61.47

enhance 46.21 60.98

49.61 61.39

enhanced + large database 16.59 61.26

e 48.78 60.53

enhanced + Wikipedia abstract 45.18 60.17

. 48.55 62.31

u 45.56 61.50

. 44.75 68.57

AmbiverseNLU 33.58 67.78

Table 10: NERD results of multiple features and comparison to Am-
biverseNLU. Micro and Macro F1 scores are shown. enhanced denotes
our base model plus family name, demonym and NNP reduction. full
denotes our base model plus all five features enabled. We highlight the
best result in bold and the second best with underline.

context. It is worth mentioning that named entities in AIDA tend to repeat more
than one time as it is the characteristic of news. Therefore, the difference in scores
can easily be enlarged because the same error will be calculated multiple times.

To further explore the reasons, we look at the statistics of true positive, false
positive, and false negative of each model on both benchmarks in Table 11. On
Clueweb, our algorithm is able to report more true positives but also produces much
more false positives than AmbiverseNLU. This explains the reason for the difference
in scores. AmbiverseNLU tends to be conservative on reporting named entities, hence
may suffer more on short texts. On AIDA, our algorithm performs generally the same
with AmbiverseNLU on true positives and false negatives, but has twice more false
positives, thus results in lower F1 scores. The statistics coincides with our design to

recognize as many named entities as possible.

4.4 Error Analysis

We conduct an error analysis by random sampling about 50 errors on both datasets

on the full version of our algorithm. Errors from both datasets are then aggregated

26



model Clueweb AIDA

tp \ fp \ fn tp \ fp \ fn
enhanced 40,176 | 43,721 | 37,213 | 16,340 | 9,316 | 11,167
full 40,146 | 47,833 | 37,243 | 17,208 | 10,522 | 10,299
AmbiverseNLU | 26,083 | 16,119 | 48,299 | 17,136 | 5,319 | 10,393

Table 11: True positives, false positives, and false negatives of different

models.

Type Percentage
unrelated entities 29.13%
wrongly disambiguated entities 19.42%
unrecognized entities 17.48%
wrongly discarded entities 11.65%
doubtful ground truth 8.74%
answers not in ground truth 6.8%
others 6.8%

Table 12: Error analysis.

and categorized into 7 groups, shown in Table 12. The errors mainly come from
unrelated entities (29%), wrongly disambiguated entities (19%), unrecognized entities
(17%) and wrongly discarded entities (12%). Wrongly disambiguated entities is easy
to understand, others are described in the following paragraphs. Note that two
categories are not actual errors: 9% of the errors are from doubtful ground truth,
some are wrong answers, and some are too short in context to identify whether the
answer is correct; another 7% of the errors are due to that the algorithm output is
indeed a correct named entity but not included in the ground truth. Note also that
all the errors of doubtful ground truth come from Clueweb, which is not surprising as
it is automatically annotated.

Unrelated entities are the main source of the errors. It is due to a non-entity word
tagged as NNP and then disambiguated to a unrelated entities. An example is "From
the day you buy your Saturn , we provide 24-Hour Roadside Assistance ...". In the
sentence, "Roadside" is wrongly reported as NNP by spaCy and then disambiguated
to a film, which is unrelated to the context. Capitalized nouns have chances to be
tagged as NNP and suffered from this sort of error.

Unrecognized entities come from the limitation of the matching mechanism in our
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entity index. In this category of error, the entities are correctly pointed out by spaCy
but failed to find a matched entity in the entity index. One type is due to unknown
synonyms. For example, "Playstation" can not be matched to "PlayStation"; "U.N."
can not be matched to "UN". Another type is because of partial mention. For
example, "Security Concil" can not be matched to "UN Security Concil"; "Korean"
can not be matched to "South Korean".

Wrongly discarded entities are text spans that are indeed a named entity but
with a tag of NN or JJ thus discarded in the final step of the NER algorithm.
The errors come from wrong postags by spaCy. For example, "their iOS JJ app
is no exception", or "Wordpress JJ do have default video embedding and image

embedding".
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5 Conclusion

5.1 Summary

In this thesis, we propose an algorithm with configurable features for named en-
tity recognition and disambiguation with Wikidata in arbitrary English text. In
recognition, we utilize the POS tags generated by spaCy as a filter to speed up
the matching process with the pre-generated entity index. We expend synonyms
with the Wikidata property "family name" and "demonym" to enhance recognition
flexibility. In disambiguation, we consider both popularity and similarity of the
candidate entities and leverage the information from Wikipedia abstracts. We further
discard unlikely named entities to decrease false positives. In evaluation, we analyze
the contribution of each component as well as the entire NERD system. Results show
the effectiveness of synonym expansion and false positive reduction. In addition, our
algorithm performs better and is capable of outputting more named entities on one
dataset with shorter documents. On the other dataset consisting of news articles
with rich context, our performance is also acceptable in comparison with the other

sophisticated system.

5.2 Future Work

Here are some ideas and directions that can be further studied to improve this work.

e Although spaCy is a good POS-tagger, we do find many errors induced by
wrong POS tags in the error analysis. Some of those sentences are however
correctly tagged by Standford POS-Tagger. Since our algorithm relays on POS
tags to do NER, it’s worth evaluating other POS-taggers.

e More preparation on the database is a possible way to recognize more entities.
For example, to integrate named entities from multiple knowledge bases, or to
include the information from alias tables into current database. Also, simple

nouns can be excluded from the database to avoid some false positives.
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e How to make the best use of Wikipedia abstract or other resource to measure
similarity between candidates and context is also a meaningful direction to
improve. One possible approach is to represent each candidate entity by its

word embeddings.

e The number of false positives needs to be further reduced to provide a more
reliable system. This is a complicated issue. Though adopting a confidence
threshold or force the coherence of named entities could help, how to avoid
removing the true entities still deserves careful concerns, especially when the

text is short and not much information can be used.
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