
Albert Ludwig University of Freiburg

Master’s Thesis
Mathematics

Neural Word Embeddings as Matrix Factorization

Author:
Theresa Klumpp

Supervised by:
Prof. P. Pfaffelhuber

Prof. H. Bast

Submission by 17.12.2019

Contents

Abstract iii

Zusammenfassung v

1 Introduction 1
1.1 Notation and Background . 1
1.2 Contributions . 2

2 Related Work 5
2.1 Distributional hypothesis and count-based models 5
2.2 Neural-Network based Methods . 5

3 The neural networks 7
3.1 Skip-gram . 7
3.2 Skip-gram with negative sampling (SGNS) 9

4 The optimum assuming high embedding dimension 13
4.1 Objective function of the SGNS model . 13
4.2 Objective function of the skip-gram model 16
4.3 Non-negative matrices . 20

5 Singular Value Decomposition 23

6 Mathematical analysis of the results 25
6.1 Analyzing different distance measures . 25
6.2 Expectation of the Closest Vector . 28

7 Evaluation 35
7.1 Optimizing the objective function . 35

7.1.1 SGNS . 36
7.1.2 Skip-Gram . 39

7.2 Word similarity tasks . 40
7.3 Analogy tasks . 41

8 Conclusion and Future Work 43

9 Declaration 45

10 Acknowledgments 47

i

Abstract

The problem of finding continuous word vectors is central and well studied in natural
language processing (NLP). In this thesis, we consider two neural networks that yield low-
dimensional word embeddings: skip-gram and skip-gram with negative sampling (SGNS),
introduced by Mikolov et al. in [10] and [11]. Assuming the dimension of these word
embeddings was large (at least as large as the size of the vocabulary), we show that a
different method, namely the factorization of a word-context matrix using singular value
decomposition (SVD), also maximizes the objective function of the neural network. Even
though we cannot make this link for low-dimensional embeddings, we can still use SVD
and show that this method performs even better in some linguistic tasks than the neural
network that it stems from. This connection between the SGNS neural network and SVD
was presented by Levy and Goldberg in [8]. We analyze the cosine similarity, commonly
used in NLP to measure the similarity between word vectors, and we derive a formula
that gives us a heuristic understanding of what ‘close’ in Rd is. We compare the different
methods for finding low-dimensional word vectors and evaluate them on word similarity
and semantic and syntactic analogy tasks. Our data clearly shows that SVD prefers a
low number of ‘negative samples’, whereas the SGNS neural network generally performs
better for a higher number. Furthermore, the neural network is evidently superior in the
analogy tasks, while SVD gains the advantage on word similarity tasks, if the number of
negative samples is low.

iii

Zusammenfassung

Das Problem, stetige Wortvektoren zu finden, ist in der Computerlinguistik (CL) zentral
und gut erforscht. In dieser Arbeit betrachten wir zwei neuronale Netze, die niedrigdi-
mensionale Word-Embeddings liefern: Skip-Gram und Skip-Gram mit Negative-Sampling
(SGNS), vorgestellt von Mikolov et al. in [10] und [11]. Ausgehend von der Annahme,
dass die Dimension dieser Word-Embeddings groß wäre (mindestens so groß wie die Größe
des Vokabulars), zeigen wir, dass ein anderes Verfahren, nämlich das Faktorisieren einer
Wort-Kontext-Matrix mithilfe von Singulärwertzerlegung (SWZ), auch die Zielfunktion
des neuronalen Netzes maximiert. Obwohl wir diese Verknüpfung für niedrigdimension-
ale Embeddings nicht machen können, können wir dennoch SWZ anwenden und zeigen,
dass diese Methode in manchen Linguistik-Aufgabenstellungen sogar besser funktioniert
als das neuronale Netz, von dem sie abstammt. Dieser Zusammenhang zwischen dem
neuronalen SGNS-Netz und der SWZ wurde von Goldberg und Levy in [8] dargelegt.
Wir untersuchen die Kosinus-Ähnlichkeit, die üblicherweise in der CL verwendet wird,
um die Ähnlichkeit zwischen Wortvektoren zu messen, und wir leiten eine Formel her,
die uns ein heuristisches Verständnis dafür gibt, was ‘nah’ in Rd ist. Wir vergleichen die
verschiedenen Verfahren zur Findung von niedrigdimensionalen Wortvektoren und werten
sie anhand von Aufgabenstellungen zu Wortähnlichkeit und semantischen und syntaktis-
chen Analogien aus. Unsere Daten zeigen deutlich, dass SWZ wenige ‘Negative-Samples’
bevorzugt, wohingegen das neuronale SGNS-Netz allgemein für eine höhere Anzahl besser
funktioniert. Desweiteren ist das neuronale Netz in den Analogie-Aufgaben klar überlegen,
während SWZ in den Aufgaben zur Wortähnlichkeit besser abschneidet, wenn die Anzahl
an Negative-Samples klein ist.

v

1 Introduction

This thesis is concerned with word embeddings or word vectors. Since words themselves
are simply combinations of letters, the spelling usually does not correlate with the meaning
of the word. For example, the letters in ‘desert’ and ‘dessert’ are almost the same, but their
meanings are very different. On the contrary, ‘automobile’ and ‘car’ consist of very different
letters, even though they are synonyms. Particularly, words do not have a euclidean
structure, so we desire to represent words by vectors in Rd that reflect similarities and
dissimilarities. In our example, vec(‘automobile’) and vec(‘car’) should be closer together
than vec(‘desert’) and vec(‘dessert’). We will see that our word embeddings even represent
relationships between the words (see Figure 1.1).

man

woman

king

queen

father

mother

boy

girl

(a) man-woman

France

Paris

Germany

BerlinPeru

Lima

(b) capitals

good better

small smaller

England

English
China

Chinese

(c) syntactic relations

Figure 1.1: Examples of various relations between words

These word representations are important, for instance, for neural networks that use words
as input. In this thesis, we will compare and analyze different methods to compute such
word embeddings.

1.1 Notation and Background

Our models will make use of the distributional hypothesis that words in similar contexts
have similar meanings: “You shall know a word by the company it keeps!” (J.R. Firth,
British linguist in 1957). Before we go into more detail, we will give a definition of
“context” and introduce some notation.

The underlying data for the network comes from a large text w(1), w(2), . . . , w(t), usually
containing billions of words. The word vocabulary, denoted by VW , is the set of all distinct
words from this text. We number the words in the vocabulary and denote the i-th word
as wi. We then define the context for a specific occurrence of a word to be the terms
surrounding it in a window of size L.

1

Example. Consider the following example sentence.
Everybody wants to visit sunny Freiburg.

Using a window of size 2 to each side yields the following word-context pairs.

• (everybody, wants), (everybody, to)

• (wants, everybody), (wants, to), (wants, visit)

• (to, everybody), (to, wants), (to, visit), (to, sunny)

• (visit, wants), (visit, to), (visit, sunny), (visit, Freiburg)

• (sunny, to), (sunny, visit), (sunny, Freiburg)

• (Freiburg, visit), (Freiburg, sunny)

This way, we retrieve word-context pairs (wi, cj) from the text. Our data will be the
collection of these observed word-context pairs, which we denote by D.

It is important to mention that other definitions of ‘context’ are possible. We denote the
context vocabulary as VC . Our definition of context implies that VC = VW , but this might
not be true for a different definition of context. Nevertheless, we will keep the distinction
between the two vocabularies, since it is always important to know whether a term has
the role of a word or a context and we will obtain different embeddings for the words and
the contexts.

We denote the number of times a word-context pair (w, c) appears in D as # (w, c). Like-
wise, we denote the number of times w and c appear in D as # (w) and # (c) respectively,
i.e. # (w) =

∑
c′∈VC # (w, c′) and # (c) =

∑
w′∈VW # (w′, c).

Furthermore, we denote a word embedding for a word w as ~w and similarly, we write ~c for
a context embedding of c.

In 2013, Mikolov et al. introduced skip-gram [10], a neural network that computes low-
dimensional, dense word vectors. It is often easy to get quite a good understanding of the
meaning of a word by its context, even if one has never heard the word before. Mikolov
et al. employed this fact in their neural network. The input is a one-hot encoded word,
that is a |VW |-dimensional sparse vector with a single 1 at position i to represent the
i-th word in the vocabulary VW . Then, the skip-gram network makes a prediction about
the terms that appear in this word’s context. However, this method is greatly expensive
computationally. Therefore, Mikolov et al. presented negative sampling [11], an extension
to improve training speed and the quality of the vectors.

1.2 Contributions

The key contributions of this thesis are:

• Gaining an understanding of the objective functions of skip-gram and SGNS and the
statistical models behind them.

2

• Finding a maximum for skip-gram’s objective. Goldberg and Levy showed in [8]
that SGNS has a maximum for

~w · ~c = log

(
(w, c) · |D|

(w) ·# (c) · k

)
,

where k is the number of ‘negative samples’ we choose. The proof for skip-gram is
more difficult, because the objective cannot be written as a sum of one-dimensional
functions. We will show the negative definiteness of the Hessian matrix and we will
identify a local maximum for

~w · ~c = log # (w, c) .

• Showing the connection between the neural networks and SVD: both maximize the
same function if the dimension is large enough.

• Proving that the angle between two vectors provides a metric on the sphere. We
will use a different distance, the cosine distance, to compare word vectors. However,
we will show that in our case both lead to the same results, which justifies the use
of the cosine distance even though it is not a metric itself.

• We find a formula for the expectation of the distance of the closest vector as-
suming uniform distribution on the sphere. This gives us an understanding of
what ‘near’ for vectors in Rd means, or rather what ‘similar’ for our words means.

Figure 1.2: Expectation of the cosine distance to the nearest vector for 159, 862 vec-
tors depending on the embedding dimension.

The models we evaluate in Chapter 7 are based on a vocabulary of 159, 862 words
and we chose the embedding dimension 200 for most of our models. As we can see
in Figure 1.2, for any query, we expect a word to be as close as about 0.69. Any
words closer than this can be considered relevant to our query.

• An implementation of the SGNS neural network and the SVD variant for both skip-
gram and SGNS. The models are accessible as a web app1.

1http://word2vec.cs.uni-freiburg.de/

3

http://word2vec.cs.uni-freiburg.de/

• Reproduction and understanding of the qualitative behavior of the objective func-
tions. We will look at the performance of different models as k changes (similar to
Table 1 in [8]). When it comes to maximizing the objective, the neural networks
benefit from a higher number of negative samples (k), while SVD suffers from it.
Furthermore, we study the column denoted by SPPMI in [8], since our values differ
from Levy and Goldberg’s values.

• Evaluation of our models on word similarity and analogy tasks. All our experiments
indicate that SVD behaves best for low values of k, the number of negative samples.
The neural network seems to perform better the more negative samples we have.
However, our data points to the fact that the quality of the vectors starts to decrease
if k gets too big, as we observe a decrease in performance for k = 15 in some
experiments. While neither the network nor the SVD model was clearly superior on
the word similarity tasks, the SGNS network gains the advantage on the analogy
experiments.

4

2 Related Work

In this chapter, we will give a brief overview of the history of word representations and of
important work that has been done in the field.

2.1 Distributional hypothesis and count-based models

“You shall know a word by the company it keeps.”

This famous quote by J.R Firth (1957) summarizes the distributional hypothesis, which
became the basis of many word representations methods. The distributional hypothesis
originated in linguistics in the 1950s [6] and the main idea is that words in similar contexts
have similar meanings. The more semantically similar two words are, the more similar
they will be distributed and thus the more they will tend to occur in similar linguistic
contexts.

There is a variety of count-based models which use this hypothesis to retrieve word rep-
resentations [9, 15, 7]. They mostly use a word-word co-occurrence matrix such that the
entry Mij gives some measure of association between the i-th and the j-the word, for
instance the number of times they appear in the context together. We then assign each
word the corresponding row, column or a combination of the two (for instance their sum
or concatenation) to get a set of word representations. The more similar the contexts of
two words are, the more similar the vectors will be and by the distributional hypothesis,
these words will be semantically similar. Since the resulting word representations are high-
dimensional and sparse, it is common to use methods like Singular Value Decomposition
(SVD) to reduce the rank of M , yielding low-dimensional, dense word representations.

2.2 Neural-Network based Methods

Since the early 2000s, different approaches for finding word representations using neural
networks have been developed [1, 13]. These representations are referred to as ‘word
embeddings’. In this section, we will look at two more recent models.

Word2Vec was invented by Mikolov and colleagues and presented in 2013 in [10]. They
introduce two similar model architectures: continuous bag-of-words (CBOW) and skip-
gram. Both are neural networks with a single hidden layer. While CBOW predicts the
current word from the words in its context, the skip-gram model predicts the context
words from the current word (see Figure 2.1). This way, both models learn similar vectors
for similar words. But more surprisingly, they even reflect linear relationships between
the word vectors and are therefore able to capture word analogies (see Figure 1.1). With
the extension ‘negative sampling’, which was presented in [11], the skip-gram network is
efficient to train and is among the state-of-the-art methods for word-embeddings.

5

Figure 2.1: The CBOW and skip-gram architecture (Figure from [10])

We will present a more detailed description of the skip-gram model and its extension
‘negative sampling’ in chapter 3 of this thesis.

Word2Vec is highly popular among NLP researchers. In this thesis, we will focus on one of
the follow-up papers written by Levy and Goldberg in 2014 [8]. They show that skip-gram
with negative sampling is implicitly factorizing a co-occurrence matrix.

The Global Vector model (GloVe) is another word embedding method, which was
introduced by Pennington et al. in 2014 [14], a year after Word2Vec was published. It tries
to combine the advantages of count-based models, which are efficient usage of statistics and
fast training, and the advantages of prediction-based models in capturing more complex
structures like word analogies. The GloVe model focuses on word-word co-occurrences
over the entire corpus (hence the name global vectors). This model turns out to be very
good with rare words and performs well on word similarity and analogy tasks.

6

3 The neural networks

We think of two words as being similar if they often appear in the same context. “If A
and B have almost identical environments [...], we say they are synonyms” (Zellig Harris,
1954 [6]). For example, the words ‘big’ and ‘large’ would probably have similar contexts.
Thus, our goal is to use this distributional hypothesis to find vectors such that two words
that often appear in similar contexts will be likely to have similar embeddings.

Assume we have word and context embeddings such that the dot products of frequent
word-context pairs (that is pairs with large # (w, c)) are high while the dot products of
infrequent pairs are small. This means that embeddings of words that appear in similar
contexts will have similar dot products with most context vectors. Since a d-dimensional
vector is uniquely determined by its dot product with d linearly independent vectors,
words that appear in similar contexts will be likely to have similar embeddings.

Therefore, we want to find a function that is maximized when the dot products for frequent
word-context pairs are large while the dot products for infrequent pairs are small. Even
though we might be able to think of such equations, it is not obvious which of them will
lead to good word embeddings.

In the following two sections, we will present two neural networks with objective functions
that have this desired property. We will see in chapter 7 that they do indeed lead to good
results.

3.1 Skip-gram

Skip-gram is a classification network whose input is a word wi and whose output is a
probability distribution over the context words. Assume we pick a term from the context of
wi at random. For each context in our vocabulary, the network will predict the probability
of it being the term we chose at random. We denote this probability by P (c | w) =
#(w,c)
#(w) .

In more detail, for a single word-context pair (wi, cj) ∈ D, the input wi is given using
one-hot representation. That is a |VW |-dimensional vector with a single one at the i-th
component and zeros otherwise to represent the i-th word in the vocabulary. In the same
way, the label for this specific pair is a |VC |-dimensional vector with a single one at the j-th
component. The network will learn the probabilities P (c | w) from the statistics of our
sample collection D. For example, for the input word ‘Freiburg’, the output probabilities
for ‘Breisgau’ or ‘university’ will be much higher than for terms like ‘elephant’ or ‘desert’
after training. This is because the word-context pairs (Freiburg, Breisgau) and (Freiburg,
university) are found more often in the collection D than the pairs (Freiburg, elephant)
or (Freiburg, desert). We are not primarily interested in achieving high accuracy on
predicting the context words, but rather in the weights learned by the network.

7

...

...

i

...

...

...

...

...

...

...

j

Input
Hidden
Layer

Dot
Products

Output
(Probabilities) Label

W CT

∈ R|VW | ∈ Rd ∈ R|VC |

softmax

Figure 3.1: Skip-gram neural network for a single word-context pair (wi, cj)

We use two matrices, W ∈ Mat|VW |×d and C ∈ Mat|VC |×d for the linear transformations
between the layers (see Figure 3.1). Here, d, the embedding dimension, is a parameter
we choose. Picking a smaller value for d will result in decreasing precision but improved
computation time and working memory. After training, we will use the i-th row of W to
represent wi, i.e.

~wi := Wi

and similarly

~cj := Cj .

Since the input of the network is a one-hot (row) vector, multiplication by W results in
the i-th row of W , that is the word representation for wi. Multiplying this by CT , the
transpose of C, yields a vector containing the dot products of wi with each of the ck. To
obtain a probability distribution, we then apply the softmax function σ : Rn → Rn, which
is given by

σ (x)j =
exp (xj)∑n
k=1 exp (xk)

.

Hence, the conditional probability P (c | w) resulting from this network is given by

PW,C (c | w) =
exp (~w · ~c)∑

c′∈VC exp
(
~w · ~c′

) . (3.1)

W and C are the word and context representation matrices as explained above.

Using gradient descent, skip-gram tries to minimize the log loss, or equivalently maxi-

8

mize

`SG (W,C) =
∑

(w,c)∈D

log PW,C (c | w)

=
∑

(w,c)∈D

~w · ~c− log

∑
c′∈VC

exp
(
~w · ~c′

) . (3.2)

Observe that for a single word-context pair (wi, cj), the network will maximize the dot
product of ~wi and ~cj while minimizing the dot products of ~wi with any other context vector
~cl, where l 6= j. The more frequent a pair (w, c) is, the more often it will do this. Hence,
this function satisfies the desired property that it is maximized when the dot products
for frequent word-context pairs are large while the dot products for infrequent pairs are
small.

3.2 Skip-gram with negative sampling (SGNS)

When training on a large dataset, there is a large number of entries in the matrices, i.e.
weights in the network, to be updated during backpropagation. The matrices W and C
have d · |VW | and d · |VC | entries, respectively. We are interested in making changes that
reduce the number of weights which determine an entry in the output layer. Negative
sampling is a modification in which the loss function only depends on (k + 2) · d weights
for each sample, where k can be chosen and is usually between 1 and 20, compared to
(|VC |+ 1) · d weights in the original skip-gram model.

The network is very similar to skip-gram. The main change in the architecture is that we
apply the sigmoid function σ (x) = 1

1+e−x pointwise as an activation function instead of
softmax (see Figure 3.2). Note that this means that the values in the output layer do not
form a probability distribution on the context vocabulary, meaning they do not sum up
to 1. In this case, a single value in the output layer is independent from all but one row of
C. In contrast, in the skip-gram model, a value depends on every entry of C. This gives
us the improvement that makes training feasible.

When training on a single word-context pair (wi, cj) ∈ D in the SGNS-model, we choose
k contexts cj1 , · · · , cjk at random, according to their occurrence in D, that is according

to the probability distribution PD (c) = #(c)
|D| . The assumption is that randomly picking

contexts will be likely to result in a ‘negative sample’, meaning that the pair will be an
unobserved pair, that is # (w, c) will be 0 or a small number. The labels are 1 at position
j and 0 at positions j1, . . . , jk (see Figure 3.2). Using log-loss again, the SGNS network is
optimized with respect to

log σ (~wi · ~cj) +

k∑
l=1

log (1− σ (~wi · ~cjl))

= log σ (~wi · ~cj) +

k∑
l=1

log σ (−~wi · ~cjl) . (3.3)

9

...

...

i

Input
Layer

...

Hidden
Layer

...

...

Dot
Products

...

...

j

j1

j2

j1

jk

Output
Layer

...

...

Label

σ

σ

σ

σ

σ
W CT

∈ R|VW | ∈ Rd ∈ R|VC | ∈ Rk+1

Figure 3.2: Skip-Gram with negative sampling

Since it is very difficult to work with equation (3.3) and to put the sampling in mathe-
matical terms, we approximate this function using the expectation. This yields the local
objective function for a specific word-context pair:

log σ (~wi · ~cj) + k · EcN∼PD
[log σ (−~wi · ~cN)] . (3.4)

Another way to view this is that we are trying to maximize (3.4) and we use the Monte
Carlo method to estimate the expectation.

We sum over all observed samples in the corpus to get the global objective function

`SGNS (W,C) =
∑

(w,c)∈D

(
log σ (~w · ~c) + k · EcN∼PD

[log σ (−~w · ~cN)]
)

=
∑
w∈VW

∑
c∈VC

(w, c) ·
(

log σ (~w · ~c) + k · EcN∼PD
[log σ (−~w · ~cN)]

)
, (3.5)

where W and C are the word and context representation matrices containing the vectors
~w and ~c.

It is now easy to see that for each training sample (w, c), the objective function only
depends on k + 1 rows of C as opposed to all rows in skip-gram’s objective function
(3.2).

We have seen that the skip-gram model learns the probabilities P (c | w) from the statistics
of the data. In the following paragraph, we want to explore what this corresponds to in
the SGNS model.

Consider the following probability experiment. A box contains a red ball labeled (w, c) for
each word-context pair (w, c) in D. Then, for each of these pairs, we draw k contexts cj

10

according to the probability distribution PD (c) and add a blue ball labeled (w, cj). The
box now contains |D| red balls and k · |D| blue balls, the negative samples. We now draw
a ball from the box labeled (w, c) and ask the question whether this ball is red or blue,
that is: Did the pair (w, c) come from the data D or was it put together at random? The
probability that the pair came from the data is denoted by P (D = 1 | w, c). For example,
for the pair (Freiburg, Breisgau), this probability should be high. In contrast, for the pair
(Freiburg, desert), the probability that the context ‘desert’ was a negative sample, that is
1− P (D = 1 | w, c), should be high.

There is a total of k ·# (w) negative samples to choose for w during one run over all
samples. Hence, the expectation for the number of occurrences of c as a negative sample
for w is k ·# (w) · PD (c) and thus, we have

P (D = 1 | w, c) =
(w, c)

(w, c) + k ·# (w) · PD (c)
(3.6)

=
(w, c)

(w, c) + k ·# (w) · #(c)
|D|

.

Again, the network will learn the probabilities P (D = 1 | w, c) from the statistics of our
sample collection D and the randomly chosen contexts. Looking at the architecture, we
see that the probabilities resulting from the SGNS network are given by

PW,C (D = 1 | w, c) = σ (~w · ~c) , (3.7)

where W and C are the word and context representation matrices, respectively.

11

4 The optimum assuming high embedding
dimension

We have seen how skip-gram and SGNS learn low-dimensional word and context vectors.
We called the matrices containing these vectors W and C, respectively. In this chapter,
we will analyze the matrix M := W · CT in more depth.

M is a |VW | × |VC |-dimensional matrix, where the entry at row i and column j is the dot
product ~wi · ~cj . Looking at the objective functions `SG (W,C) and `SGNS (W,C) (equa-
tions 3.2 and 3.5), we observe that they only depend on the pairwise dot products of the
embeddings and not on the entries of the vectors themselves. In other words, the network
only depends on the matrix M rather than on the matrices W and C. This can also be
verified looking at the architecture of the networks (Figure 3.1 and 3.2). Our matrix M
has rank at most d, where d is the embedding dimension. This means for small d, the rows
and columns of M are linearly dependent. In this chapter, we will assume the embedding
dimension is high enough (that is at least the size of the vocabulary) to choose each dot
product independently from the other ones. Under this assumption, we can compute the
maximum of the objective function with respect to the dot products.

In the following sections, we will need to make the assumption that # (w, c) is strictly
greater than 0 for all word-context pairs (w, c), as we will need to compute its logarithm,
among other things. This is, of course, not a realistic assumption and we will address this
problem in section 4.3.

4.1 Objective function of the SGNS model

Lemma 4.1. For the function in (3.5), we have

`SGNS (W,C) =
∑
w∈VW

∑
c∈VC

`w,c (~w,~c) ,

where

`w,c (~w,~c) = # (w, c) · log σ (~w · ~c) + k ·# (w) · # (c)

|D|
log σ (−~w · ~c) . (4.1)

13

Proof. It is

`SGNS (W,C) =
∑
w∈VW

∑
c∈VC

(w, c) · (log σ (~w · ~c) + k · EcN∼PD
[log σ (−~w · ~cN)])

=
∑
w∈VW

∑
c∈VC

(w, c) · log σ (~w · ~c)

+
∑
w∈VW

∑
c∈VC

(w, c) · k · EcN∼PD
[log σ (−~w · ~cN)]

=
∑
w∈VW

∑
c∈VC

(w, c) log σ (~w · ~c) +
∑
w∈VW

(w) · k · EcN∼PD
[log σ (−~w · ~cN)]

(4.2)

and we will now look at the second sum and use the definition of the expectation to see
that ∑

w∈VW

(w) · k · EcN∼PD
[log σ (−~w · ~cN)]

=
∑
w∈VW

(w) · k ·

 ∑
cN∈VC

PD (cN) log σ (−~w · ~cN)

=
∑
w∈VW

∑
cN∈VC

(w) · k · PD (cN) log σ (−~w · ~cN)

=
∑
w∈VW

∑
c∈VC

k ·# (w) · # (c)

|D|
log σ (−~w · ~c) .

Plugging this result into equation 4.2 yields

`SGNS (W,C) =
∑
w∈VW

∑
c∈VC

(w, c) log σ (~w · ~c) +
∑
w∈VW

∑
c∈VC

k ·# (w) · # (c)

|D|
log σ (−~w · ~c)

=
∑
w∈VW

∑
c∈VC

(
(w, c) · log σ (~w · ~c) + k ·# (w) · # (c)

|D|
log σ (−~w · ~c)

)
,

which is what we wanted to show.

Now, we define

`w,c (x) = # (w, c) · log σ (x) + k ·# (w) · # (c)

|D|
log σ (−x) (4.3)

and for X = (xij) let

`SGNS (X) =

|VW |∑
i=1

|VC |∑
j=1

`wi,cj (xij) . (4.4)

Then, it is `w,c (~w,~c) = `w,c (~w · ~c) and `SGNS (W,C) = `SGNS

(
W · CT

)
and we can find

the maximum of `w,c (~w,~c) by considering `w,c (x).

Theorem 4.1. The function `w,c (x) takes its maximum for

x∗w,c = log

(
(w, c) · |D|
(w) ·# (c)

)
− log k.

14

Proof. Since σ (x) = 1
1+e−x , we can compute ∂σ

∂x (x) using the quotient rule:

∂σ

∂x
(x) =

e−x

(1 + e−x)2

=
1

1 + e−x
· e−x

1 + e−x

=
1

1 + e−x
· 1

1 + ex

= σ (x) · σ (−x) .

Using this, we can derive `w,c (x) and it is

∂`w,c
∂x

(x) = # (w, c) · 1

σ (x)
· ∂σ
∂x

(x) + k ·# (w) · # (c)

|D|
· 1

σ (−x)
· (−1) · ∂σ

∂x
(−x)

= # (w, c) · σ (−x)− k ·# (w) · # (c)

|D|
· σ (x)

= # (w, c) · 1

1 + ex
− k ·# (w) · # (c)

|D|
· 1

1 + e−x
.

To compute the extrema, we now let
∂`w,c

∂x (x) = 0 or equivalently

0 =
∂`w,c
∂x

(x) · (1 + ex) ·
(
1 + e−x

)
· ex

=# (w, c) (ex + 1)− k ·# (w) · # (c)

|D|
·
(
ex + e2x

)
=− k ·# (w) · # (c)

|D|
· e2x +

(
(w, c)− k ·# (w) · # (c)

|D|

)
ex + # (w, c) .

Substituting y = ex and dividing by −k ·# (w) · #(c)
|D| , we arrive at

0 =y2 +

1− # (w, c)

k ·# (w) · #(c)
|D|

 · y − # (w, c)

k ·# (w) · #(c)
|D|

= (y + 1)

y − # (w, c)

k ·# (w) · #(c)
|D|

 .

Since −1 = ex does not have a solution in R, the derivative
∂`w,c

∂x (x) only has one zero,
namely

x = log

 # (w, c)

k ·# (w) · #(c)
|D|

 = log

(
(w, c) · |D|
(w) ·# (c)

)
− log k.

This is, in fact, a local and global maximum because

∂2

(∂x)2
`w,c (x) = σ (x) · σ (−x) ·

(
−# (w, c)− k ·# (w) · # (c)

|D|

)
< 0

for all x ∈ R.

15

The preceding theorem tells us the optimal value of ~w ·~c for each word-context pair (w, c).
This means that the SGNS model reaches its optimum if W ·CT equals the matrix MSGNS

with

MSGNS
ij = log

(
(wi, cj) · |D|

(wi) ·# (cj) · k

)
.

Note that

log

(
(w, c) · |D|
(w) ·# (c)

)
= log

 #(w,c)
|D|

#(w)
|D| ·

#(c)
|D|

= log

(
p (w, c)

p (w) · p (c)

)
= PMI (w; c) ,

the Pointwise Mutual Information of w and c and hence

MSGNS
ij = PMI (wi; cj)− log k.

We can now compute the probability PW,C (D = 1 | w, c) assuming that W ·CT = MSGNS.
It is

PW,C (D = 1 | w, c) = σ (~w · ~c)

=
1

1 + exp
(
− log

(
#(w,c)·|D|
#(w)·#(c)·k

))
=

1

1 + #(w)·#(c)·k
#(w,c)·|D|

=
(w, c)

(w, c) + # (w) · #(c)
|D| · k

= P (D = 1 | w, c) .

Thus, for the optimal values for the dot products, the modeled probabilities are equal to
the actual probabilities we computed in equation 3.6.

4.2 Objective function of the skip-gram model

For the skip-gram model, the task of finding the optimum value for the dot products is
much harder, due to the previously discussed fact that each output neuron depends on a
large number of weights.

Let X = (xij) and let

`SG (X) =

|VW |∑
i=1

|VC |∑
j=1

(wi, cj) ·

xij − log

|VC |∑
k=1

exp (xik)

 . (4.5)

Then, `SG (W,C) in equation 3.2 is equal to `SG(W · CT).

16

We would expect `SG (W,C) to take a maximum for the word and context matrices W
and C being such that PW,C (c | w) in 3.1 equals P (c | w), the actual probability that
a randomly chosen context of w is c. For the representation matrices being such that
~w · ~c = log # (w, c), we get

PW,C (c | w) =
exp (log # (w, c))∑

c′∈VC exp (log # (w, c′))

=
(w, c)∑

c′∈VC # (w, c′)

=
(w, c)

(w)

= P (c | w) ,

which motivates the following

Theorem 4.2. The function `SG (X) has a local maximum at X∗ =
(
x∗ij

)
with

x∗ij = log # (wi, cj) .

Proof. We compute the partial derivatives and show that they are 0 at our point. It is

∂`SG
∂xi0j0

(X) = # (wi0 , cj0)− ∂

∂xi0j0

∑
i

∑
j

(wi, cj) · log

(∑
k

exp (xik)

)
= # (wi0 , cj0)− ∂

∂xi0j0

∑
j

(wi0 , cj) · log

(∑
k

exp (xi0k)

)
= # (wi0 , cj0)−

∑
j

(wi0 , cj) ·
1∑

k exp (xi0k)
· exp (xi0j0)

= # (wi0 , cj0)−# (wi0) · exp (xi0,j0)∑
k exp (xi0k)

and

∂`SG
∂xi0j0

(X∗) = # (wi0 , cj0)−# (wi0) · # (wi0 , cj0)∑
k # (wi0 , ck)

= # (wi0 , cj0)−# (wi0) · # (wi0 , cj0)

(wi0)

= 0.

17

We will now compute all second order partial derivatives. It is

∂2`SG

(∂xi0j0)2
(X) =

∂

∂xi0j0

(
(wi0 , cj0)−# (wi0) · exp (xi0j0)∑

k exp (xi0k)

)
= −# (wi0) · ∂

∂xi0j0

(
exp (xi0j0)∑
k exp (xi0k)

)
= −# (wi0) ·

exp (xi0j0)
∑

k exp (xi0k)− exp (xi0,j0) exp (xi0j0)

(
∑

k exp (xi0k))
2

= −# (wi0) · exp (xi0j0) ·
∑

k 6=j0 exp (xi0k)

(
∑

k exp (xi0k))
2 .

Evaluated at x∗ij = log # (wi, cj), we get

∂2`SG

(∂xi0j0)2
(X∗) = −# (wi0) ·# (wi0 , cj0) ·

∑
k 6=j0 # (wi0 , ck)

(
∑

k # (wi0 , ck))
2

= −# (wi0 , cj0) ·
∑

k 6=j0 # (wi0 , ck)

(wi0)

= −# (wi0 , cj0) · # (wi0)−# (wi0 , cj0)

(wi0)

= # (wi0 , cj0) ·
(

(wi0 , cj0)

(wi0)
− 1

)
.

For i0 6= i1, we have

∂2`SG
∂xi0j0∂xi1j1

(X) =
∂

∂xi1j1

(
(wi0 , cj0)−# (wi0) · exp (xi0j0)∑

k exp (xi0k)

)
= 0

for all X, since there is no i1 in the function. Lastly, for j0 6= j1, it is

∂2`SG
∂xi0j0∂xi0j1

(X) =
∂

∂xi0j1

(
(wi0 , cj0)−# (wi0) · exp (xi0j0)∑

k exp (xi0k)

)
= −# (wi0) · exp (xi0j0)

∂

∂xi0j1

(
1∑

k exp (xi0k)

)
= −# (wi0) · exp (xi0j0)

exp (xi0j1)

(
∑

k exp (xi0k))
2

and for x∗ij = log # (wi, cj) we have

∂2`SG
∂xi0j0∂xi0j1

(X∗) = −# (wi0) ·# (wi0 , cj0)
(wi0 , cj1)

(
∑

k # (wi0 , ck))
2

= −# (wi0 , cj0) # (wi0 , cj1)

(wi0)
.

Let H be the Hessian matrix of `SG at X∗. Summarizing the above, we have

H(ij)(kl) =

(wi, cj) ·

(
#(wi,cj)
#(wi)

− 1
)

if i = k and j = l

−#(wi,cj)#(wi,cl)
#(wi)

if i = k and j 6= l

0 if i 6= k.

(4.6)

18

As the last step of this proof, we need to show that H is negative definite. We will show
that our Hessian H has the property that

H(ij)(ij) =
∑
l 6=j

H(ij)(il). (4.7)

This is because ∑
l 6=j

H(ij)(il) =
∑
l 6=j
−# (wi, cj) # (wi, cl)

(wi)

=
(wi, cj)

(wi)
·

(
(wi, cj)−

∑
l

(wi, cl)

)

= # (wi, cj) ·
(

(wi, cj)

(wi)
− 1

)
= H(ij)(ij).

We will show the negative definiteness of H using the definition, that is by showing that
vT ·H · v < 0 for all v 6= 0. In our case, this translates to∑

i,j,k,l

vijH(ij)(kl)vkl < 0.

Using 4.6 and 4.7 and the fact that H is symmetric, we have

vT ·H · v =
∑
i,j,k,l

vijH(ij)(kl)vkl

=
∑
i,j,l

vijH(ij)(il)vil

=
∑
i

∑
j

∑
l<j

vijvilH(ij)(il) +
∑
j

∑
l>j

vijvilH(ij)(il) +
∑
j

v2ijH(ij)(ij)

=
∑
i

2 ·
∑
j

∑
l<j

vijvilH(ij)(il) +
∑
j

v2ijH(ij)(ij)

=
∑
i

2 ·
∑
j

∑
l<j

vijvilH(ij)(il) +
∑
j

∑
l 6=j

v2ijH(ij)(il)

=
∑
i

2 ·
∑
j

∑
l<j

vijvilH(ij)(il) +
∑
j

∑
l<j

(
v2ij + v2il

)
H(ij)(il)

=
∑
i

∑
j

∑
l<j

(
2 · vijvil + v2ij + v2il

)
H(ij)(il)

=
∑
i

∑
j

∑
l<j

(vij + vil)
2H(ij)(il)

= −
∑
i

∑
j

∑
l<j

(vij + vil)
2 # (wi, cj) # (wi, cl)

(wi)
.

19

In order for the matrix to be (strictly) negative definite, it remains to show that there
are indices i0, j0 and l0 with j0 6= l0 such that vi0j0 + vi0l0 6= 0. Assume no such indices
existed. Then, let i and j be arbitrary indices. Let k and l be indices such that j, k and l
are pairwise different. Then, vij+vik = vij+vil = vik+vil = 0 and vij = −vik = vil = −vij
and thus vij = 0. However, this cannot be true for all i and j since v 6= 0. Therefore,
there must be indices as claimed.

This shows that H is negative definite and therefore proves that there is a maximum for
x∗ij = log # (wi, cj).

In conclusion, the skip-gram model reaches a local maximum if W ·CT equals the matrix
MSG with

MSG
ij = log # (wi, cj) .

4.3 Non-negative matrices

We have found the optimal values for the pairwise dot products of the word and context
embeddings:

MSGNS
ij = log

(
(wi, cj) · |D|

(wi) ·# (cj) · k

)
= PMI (wi; cj)− log k

and
MSG
ij = log # (wi, cj) .

In order for these expressions to be well-defined, we made the assumption that # (w, c)
is greater than 0 for all words w and contexts c. However, most word-context pairs will
never appear in a text. One approach to address this problem is to pretend that each pair
has been seen by adding a ‘fake’ sample to the data for every pair. There is, however, a
different approach to solving this problem.

We replace all ill-defined entries of MSG and MSGNS by 0. Another neat advantage of
this is that the resulting matrices are sparse, since most word-context pairs are never
observed. This works great for the skip-gram model. However, it leads to a new problem
in the SGNS model. There are word-context pairs (w, c) with small # (w, c), but large
(w) and # (c), that is frequent words that only appear together a few times. These
word-context pairs are uncorrelated and it is

(w, c) · |D|
(w) ·# (c) · k

< 1

and their entry in MSGNS is therefore negative. This means that there is an inconsistency,
since pairs that never appear together will be assigned a higher value (namely 0) than
pairs of frequent words that only appear together in the corpus a few times. Thus, we will
use the matrices

MSG+
ij = max (log # (wi, cj) , 0) (4.8)

and
MSGNS+
ij = max (PMI (wi; cj)− log k, 0) , (4.9)

using the convenient definition of log (0) = −∞. In their paper [8], Levy and Goldberg
explain that there is also human intuition behind this:

20

“[...] humans can easily think of positive associations (e.g. ‘Canada’ and
‘snow’) but find it much harder to invent negative ones (‘Canada’ and ‘desert’).
This suggests that the perceived similarity of two words is more influenced
by the positive context they share than by the negative context they share.
It therefore makes some intuitive sense to discard the negatively associated
contexts and mark them as ‘uninformative’ (0) instead.”

21

5 Singular Value Decomposition

In the previous chapter, we found values for the dot products of each word-context pair
that maximize the objective function for each model, skip-gram and SGNS. In this chapter,
we denote the matrix containing the optimal dot products as MOPT. If it is possible to
find matrices W ∈ Mat|VW |×d and C ∈ Mat|VC |×d such that MOPT = W · CT , then using
W as C as word and context representations will maximize the objective function.

Clearly, for a small embedding dimension d, it is not possible to find these matrices, since
the rank of the product cannot be greater than d. However, we can try to find a low-rank
approximation Md of MOPT and then factorize Md into W · CT .

Singular Value Decomposition (SVD) provides a factorization

MOPT = U · Σ · V T ,

where U ∈ Mat|VW |×|VW | and V ∈ Mat|VC |×|VC | are orthogonal and Σ ∈ Mat|VW |×|VC | is
diagonal with the non-negative singular values on the diagonal. We assume the singular
values on the diagonal are in decreasing order. In that case, Σ is uniquely determined.
Let Σd be the d× d-dimensional diagonal matrix with the d largest singular values on its
diagonal. Due to our assumption, these are the first d entries of Σ. Moreover, let Ud and
Vd be the matrices containing the first d columns of U and V (see Figure 5.1). Then,
the Eckart-Young-Mirsky theorem [4] states that Md = Ud · Σd · V T

d is the best rank d
approximation of MOPT with respect to the Frobenius norm and the spectral norm (for a
formal proof, see [2]). That is

Md = arg min
M |rk(M)=d

||M −MOPT||F (5.1)

= arg min
M |rk(M)=d

||M −MOPT||2,

where ||A||F =
√∑

i

∑
j ai,j

2 and ||A||2 = max||x||=1||Ax||2, where ||v||2 is the Euclidean

norm for vectors. This process is called truncated SVD. We can now use the matrices Ud,
Σd and Vd to define the word and context matrices W and C as follows.

W = Ud ·
√

Σd

and
C = Vd ·

√
Σd,

where
√

Σd is the diagonal matrix containing the square roots of the non-negative entries
of Σd. Then,

W · CT = Ud ·
√

Σd ·
√

Σd
T
· V T

d

= Ud · Σd · V T
d

= Md

23

M U Σ V T

= × ×

= × ×

Md Ud Σd V T
d

Figure 5.1: Truncated Singular Value Decomposition

and W · CT is the best possible rank d approximation of MOPT.

In conclusion, SVD maximizes a function that is different from the objective function
of our neural networks. However, we have seen that for large d, the SVD embeddings
maximize the objective functions of our neural networks.

24

6 Mathematical analysis of the results

In order to evaluate results, we need to have a measure of distance between two word
vectors. Using this measure, we are able to speak of the similarity between words. We
also want to be able to do simple computations using the word vectors. For instance, we
wish to answer analogy questions of the form “a is to a∗ as b is to ?”. Later on, we will
see that this translates to finding the closest word vector to the vector a∗ − a+ b.

6.1 Analyzing different distance measures

In natural language processing, it is common to use the cosine distance, even though it
is not a metric. In this section, we will find a distance measure that outputs the same
ordering of our results as the cosine distance, but is an actual metric.

Definition 6.1. Let v, w ∈ Rn be two vectors. The cosine similarity SC (v, w) of v and
w is defined as

SC (v, w) =
v · w

||v|| · ||w||
= cos (θ) ,

where v · w is the dot product and θ is the angle between the vectors v and w.

Definition 6.2. Let v, w ∈ Rn be two vectors. The cosine distance DC (v, w) of v and w
is defined as

DC (v, w) = 1− v · w
||v|| · ||w||

= 1− SC (v, w) ,

where v · w is the scalar product.

Lemma 6.1. On the (n− 1)-sphere, the cosine distance is a positive-definite, symmetric
function, but it is not a metric, since it does not satisfy the triangle inequality.

Proof. For two vectors v, w ∈ Sn−1 on the (n− 1)-sphere, the cosine distance is

DC (v, w) = 1− v · w,

since their norm is 1. It is easy to see that DC is a positive-definite, symmetric function
on Sn−1. To show that DC does not satisfy the triangle inequality, consider the following

counterexample. Let x =
(
1
2 ,
√
3
2

)
, y = (1, 0) and z =

(
1
2 ,−

√
3
2

)
. Then, x, y, z ∈ S1 and

DC (x, y) +DC (y, z) =

(
1− 1

2

)
+

(
1− 1

2

)
= 1 <

3

2

= 1−
(

1

4
− 3

4

)
= DC (x, z) .

25

Note: This works for any dimension, as we can add zeros, which does not change the
scalar product.

We can slightly change the distance by taking the angle between two vectors (rather than
the cosine of the angle) and we will see that this is, in fact, a metric on the sphere.

Definition 6.3. Let v, w ∈ Sn−1 be two vectors of length 1. Then, we define the angular
distance DA (v, w) of v and w to be

DA (v, w) = cos−1 (SC (v, w)) = cos−1 (v · w) .

Remark. The angular distance is simply the angle between the two vectors.

Theorem 6.1. The angular distance defines a metric on the (n− 1)-sphere.

Proof. It is DA (v, w) ∈ [0, π] for all v, w ∈ Sn−1. Moreover, DA (v, w) is 0 if and only if
v ·w is 1, which is equivalent to v = w. This means that DA is a positive-definite function.
DA is clearly symmetric, so we only need to show the triangle inequality. This can easily
be verified geometrically. The sum of the angle between vectors u and v and the angle
between v and w cannot be less than the angle between u and w, since we can rotate u to
v first and then to w. We will still give a formal proof.

Let u, v, w ∈ Sn−1 be elements on the (n− 1)-sphere. We need to show that

DA (u, v) +DA (v, w) ≥ DA (u,w) .

We can assume without loss of generality that v = (1, 0, . . . , 0)T is the north pole, because
the dot product of two vectors is invariant under rotation or more specifically under
multiplication by orthogonal matrices. Let u1 and v1 be the first coordinate of u and v
respectively. We need to show that

cos−1 (u1) + cos−1 (w1) ≥ cos−1 (u · w) .

If the left hand side is greater than π, there is nothing to show. If it is less than π, we can
apply the cosine to both sides and we need to show that

cos
(
cos−1 (u1) + cos−1 (w1)

)
≤ u · w,

as the cosine is strictly monotonically decreasing on the interval [0, π]. Let u′ and w′ be
the vectors containing the last n− 1 entries of u and v respectively. Using the angle sum
identity and later the Cauchy-Schwarz inequality, we get

cos
(
cos−1 (u1) + cos−1 (w1)

)
= u1w1 − sin

(
cos−1 (u1)

)
sin
(
cos−1 (w1)

)
= u1w1 −

√
1− cos (cos−1 (u1))

2
√

1− cos (cos−1 (w1))
2

= u1w1 −
√

1− u21
√

1− w2
1

= u1w1 −

√√√√ n∑
i=2

u2i

√√√√ n∑
i=2

w2
i

= u1w1 − ||−u′|| · ||w′||
≤ u1w1 + u′ · w′

= u · w.

26

We are interested in sorting our words by their proximity to a certain vector or point on
the sphere. The next theorem states that, in this case, the choice of the distance (cosine
or angular) does not change the order of the word vectors.

Theorem 6.2. For the cosine distance DC and the angular distance DA, we have

(i) DC (v, w) < DC (x, y) ⇐⇒ DA (v, w) < DA (x, y) and

(ii) DC (v, w) = DC (x, y) ⇐⇒ DA (v, w) = DA (x, y)

for all v, w, x, y ∈ Sn−1.

Proof. Consider the following diagram.

[0, π]

Sn−1 × Sn−1

[0, 2]

DA

DC

f

For f (a) = cos−1 (1− a), we have

f (DC (x, y)) = f (1− x · y)

= cos−1 (1− (1− x · y))

= cos−1 (x · y)

= DA (x, y) .

Hence, the diagram is commutative. Deriving f shows that it is a strictly monotonically
increasing function:

∂f

∂a
(a) =

1√
2a− a2

> 0 for a ∈ (0, 2) .

Since f is strictly increasing, DC (v, w) < DC (x, y) is equivalent to

DA (v, w) = f (DC (v, w)) < f (DC (x, y)) = DA (x, y)

and the same is true for equality.

Corollary 6.1. Let x ∈ Sn−1 be arbitrary and let F ⊂ Sn−1 be a finite subset. Then, the
ordering of the elements of F by their distance to x does not depend on which distance,
cosine distance or angular distance, we use.

For the evaluation of our results, we will still use the cosine distance, since it is easier to
compute and it is the common measure to use for word embedding tasks. This section
serves as a justification to use the cosine distance, even though it is not a metric itself.

27

6.2 Expectation of the Closest Vector

In the preceding section, we have discussed different options for a distance to compare
our word vectors. We will now look at the cosine distance in more depth. It is important
to know which results are meaningful. Therefore, we will now analyze how close (with
respect to the cosine distance) our vectors have to be to be able to call them ‘related’ or
‘similar’.

Assume we have a set F ⊂ Sd−1 of n points that are randomly distributed on the
(d− 1)-sphere according to the uniform distribution. This set corresponds to our word
vectors. Since we are interested in the cosine distance, which only depends on the direc-
tion and not the length of a vector, we can normalize our word vectors. In the following
section, we will compute the distribution and then the expectation of the minimum of the
distances between a fixed point p on the sphere and the n random points on the sphere,
that is

E

[
min
x∈F

(DC (p, x))

]
.

This value depends on the number of points n and the dimension d. The goal of this section
is to find a manageable formula for the expectation. Using this formula for n = |VW |, the
number of words, and the embedding dimension d, we have a rule of thumb for which
results are ‘meaningful’: words with a distance less than this value are probably good
results, words with a distance larger than this value are likely to have nothing in common
with the query input.

The next lemma gives us the uniform distribution on the (d− 1)-sphere.

Lemma 6.2. Let X1, . . . , Xd be independent, standard normally distributed random vari-
ables and let X = (X1, . . . , Xd). Then, Y := ||X||−1 · X is uniformly distributed on the
(d− 1)-sphere.

Proof. X is a standard normally distributed random vector, that is a multivariate normal
random variable with mean µ = (0, . . . , 0)T and variance Σ = Id, the identity matrix.
Hence, X has the density function

fX (x) =
1√

(2π)d
exp

(
−1

2
xTx

)
.

For any orthogonal matrix O ∈ O (d), we have:

fX (Ox) =
1√

(2π)d
exp

(
−1

2
(Ox)T (Ox)

)

=
1√

(2π)d
exp

(
−1

2
xTOTOx

)

=
1√

(2π)d
exp

(
−1

2
xTx

)
= fX (x) .

In particular, fX is invariant under rotations. Hence, the distribution of Y is invariant un-
der rotations as well. But this means that Y is uniformly distributed on the (d− 1)-sphere,
because for each pair of points p1, p2 ∈ Sd−1, there is a rotation that maps p1 onto p2.

28

Without loss of generality, we can assume that p, our fixed point on the sphere, is the
north pole. In this case, we have

DC (p, x) = 1− p · x
= 1− x1,

where x1 is the first coordinate of x. Thus, our next step is to compute the distribution
function for the first coordinate of a randomly chosen point on the sphere.

Theorem 6.3. Let Y be a uniformly distributed random variable on the (d− 1)-sphere.
Then, the first entry of Y , Y1, has the distribution function

FY1(y) = 1− 1

2
·
∫ 1
y

(
1− s2

) d−3
2 ds∫ 1

0 (1− s2)
d−3
2 ds

(6.1)

for y ∈ (−1, 1).

Proof. Let X1, . . . , Xd be independent, standard normally distributed random variables
and let X = (X1, . . . , Xd). According to lemma 6.2, Y and ||X||−1X are identically
distributed and we have

P (Y1 > y) = P
(
||X||−1X1 > y

)
.

First, we assume y ∈ [0, 1) is non-negative. We have

P
(
||X||−1X1 > y

)
=P (X1 > ||X|| · y | X1 > 0) P (X1 > 0) +

P (X1 > ||X|| · y | X1 ≤ 0) P (X1 ≤ 0)

=
1

2
· P (X1 > ||X|| · y | X1 > 0)

=
1

2
· P
(
X2

1 >
(
X2

1 + · · ·+X2
d

)
· y2 | X1 > 0

)
=

1

2
· P
(
X2

1

(
1− y2

)
>
(
X2

2 + · · ·+X2
d

)
· y2
)
,

where the last equation holds because X1 is symmetric around 0, so X2
1 is independent

from X1 > 0.

Now, X2
1 ∼ χ2 (1) and Z := X2

2 + · · · + X2
d ∼ χ2 (d− 1) are independent, chi-square

distributed random variables and it is

P (Y1 > y) =
1

2
· P
(
X2

1

(
1− y2

)
> Z · y2

)
=

1

2
· P
(
X2

1

Z
>

y2

1− y2

)
=

1

2
· P
(

X2
1/1

Z/ (d− 1)
>

(d− 1) y2

1− y2

)
.

29

Since
X2

1/1
Z/(d−1) is F-distributed with parameters 1 and d− 1, we have

1− FY1 (y) = P (Y1 > y) =
1

2
· P
(

X2
1/1

Z/ (d− 1)
>

(d− 1) y2

1− y2

)
=

1

2
·
(

1− FF
(

(d− 1) y2

1− y2
; 1, d− 1

))
=

1

2
− 1

2
· FF

(
(d− 1) y2

1− y2
; 1, d− 1

)
,

or equivalently

FY1 (y) =
1

2
+

1

2
· FF

(
(d− 1) y2

1− y2
; 1, d− 1

)
.

Here FF (x; k, l) = I kx
kx+l

(
k
2 ,

l
2

)
is the cumulative distribution function (CDF) of an F-

distributed random variable with parameters k and l. Moreover, Iz (a, b) is the regularized
incomplete beta function, that is

Iz (a, b) =
1

B (a, b)

∫ z

0
ta−1 (1− t)b−1 dt,

where B (a, b) =
∫ 1
0 t

a−1 (1− t)b−1 dt is the beta function. For more information on the
F-distribution and the derivation of the formulas used, see chapter 16 in [16].

For negative y ∈ (−1, 0), we can compute

FY1 (y) = 1− F−Y1 (−y)

= 1− FY1 (−y)

=
1

2
− 1

2
· FF

(
(d− 1) y2

1− y2
; 1, d− 1

)
,

using the above result for −y > 0.

For x = (d−1)y2
1−y2 , k = 1 and l = d− 1, we have

kx

kx+ l
=

(d−1)y2
1−y2

(d−1)y2
1−y2 + (d− 1)

=
y2

y2 + (1− y2)
= y2.

Using the above results, we obtain for all y ∈ (−1, 1)

FF

(
(d− 1) y2

1− y2
; 1, d− 1

)
= Iy2

(
1

2
,
d− 1

2

)
=

(∫ 1

0
t−

1
2 (1− t)

d−3
2 dt

)−1 ∫ y2

0
t−

1
2 (1− t)

d−3
2 dt

=

(∫ 1

0
s−1

(
1− s2

) d−3
2 · 2s ds

)−1 ∫ |y|
0

s−1
(
1− s2

) d−3
2 · 2s ds

=

(∫ 1

0

(
1− s2

) d−3
2 ds

)−1 ∫ |y|
0

(
1− s2

) d−3
2 ds

30

by the substitution t = φ (s) = s2. Since the integrand t−
1
2 (1− t)

d−3
2 is not continuous

at 0, we are not allowed to extend φ to negative number or 0 and therefore we get the
absolute value of y. Hence, for negative y, we have

FY1 (y) =
1

2
− 1

2
· FF

(
(d− 1) y2

1− y2
; 1, d− 1

)
=

1

2
− 1

2
·
(∫ 1

0

(
1− s2

) d−3
2 ds

)−1 ∫ −y
0

(
1− s2

) d−3
2 ds

=
1

2
+

1

2
·
(∫ 1

0

(
1− s2

) d−3
2 ds

)−1 ∫ y

0

(
1− s2

) d−3
2 ds,

which is the same result we obtain for positive y. Lastly, it is

1

2
+

1

2
·
(∫ 1

0

(
1− s2

) d−3
2 ds

)−1 ∫ y

0

(
1− s2

) d−3
2 ds

=
1

2
+

1

2
·
∫ y
0

(
1− s2

) d−3
2 ds∫ 1

0 (1− s2)
d−3
2 ds

=
1

2
+

1

2
·

1−
∫ 1
y

(
1− s2

) d−3
2 ds∫ 1

0 (1− s2)
d−3
2 ds

=1− 1

2
·
∫ 1
y

(
1− s2

) d−3
2 ds∫ 1

0 (1− s2)
d−3
2 ds

Theorem 6.4. Let Y 1, . . . , Y n be independent, uniformly distributed random variables on
the (d− 1)-sphere. Let p be a fixed point on the (d− 1)-sphere and let

M = min
1≤i≤n

(
DC

(
p, Y i

))
.

Then, the distribution function of M is

FM (y) = 1− FY1 (1− y)n (6.2)

= 1−

1− 1

2
·
∫ 1
1−y

(
1− s2

) d−3
2 ds∫ 1

0 (1− s2)
d−3
2 ds

n

(6.3)

for y ∈ (0, 2).

Proof. Without loss of generality, we can assume that p is the north pole. Thus, we have

DC

(
p, Y i

)
= 1− Y i

1 ,

where Y i
1 denotes the first coordinate of Y i and it is

M = min
1≤i≤n

(
1− Y i

1

)
= 1− max

1≤i≤n

(
Y i
1

)
∈ [0, 2] .

31

Figure 6.1: The expectation of the distance to the closest word depending on the embed-
ding dimension and the number of words

Using Theorem 6.3 for the distribution of Y i
1 , we can compute the distribution function

of M as follows.

FM (y) = P

(
1−max

i

(
Y i
1

)
≤ y
)

= P

(
max
i

(
Y i
1

)
≥ 1− y

)
= 1− P

(
max
i

(
Y i
1

)
≤ 1− y

)
= 1− P

(
Y 1
1 ≤ 1− y

)
· . . . · P (Y n

1 ≤ 1− y)

= 1− FY1 (1− y)n

= 1−

1− 1

2
·
∫ 1
1−y

(
1− s2

) d−3
2 ds∫ 1

0 (1− s2)
d−3
2 ds

n

Corollary 6.2. Let Y 1, . . . , Y n be independent, uniformly distributed random variables
on the (d− 1)-sphere. Let p be a fixed point on the (d− 1)-sphere and let

M = min
1≤i≤n

(
DC

(
p, Y i

))
.

Then, we have

E [M] =

∫ 1

−1

1− 1

2
·
∫ 1
y

(
1− s2

) d−3
2 ds∫ 1

0 (1− s2)
d−3
2 ds

n dy.

32

Proof. We use the derivative of the distribution function, integration by parts and inte-
gration by substitution to compute the expectation of M . We have

E [M] =

∫ 2

0
y · ∂

∂y
(1− FY1 (1− y)n) dy

= [y · (1− FY1 (1− y)n)]20 −
∫ 2

0
1− FY1 (1− y)n dy

= 2 · (1− FY1 (−1)n)−
∫ 1

−1
1− FY1 (y)n dy

= 2−
∫ 1

−1
1− FY1 (y)n dy

=

∫ 1

−1
1 dy −

∫ 1

−1
1− FY1 (y)n dy

=

∫ 1

−1
FY1 (y)n dy

=

∫ 1

−1

1− 1

2
·
∫ 1
y

(
1− s2

) d−3
2 ds∫ 1

0 (1− s2)
d−3
2 ds

n dy.

33

7 Evaluation

In this thesis, we have learned four different methods for finding word embeddings: two
neural networks (SG and SGNS) and SVD based on the objective functions of each of the
neural networks. However, the SG neural network was not feasible and we were not able
to train it due to the large number of weights that the objective function depends on (for
more details see the beginning of section 3.2).

Using the SGNS neural network and SVD on the matrices MSG+ and MSGNS+, we obtain
three sets of word vectors. In this chapter, we will evaluate them and explore which of
the methods worked best and why.

The underlying dataset for the program is Wikimedia dump1, which currently contains
about 4.6 million English Wikipedia articles. After ignoring words that appeared less than
300 times in the corpus, we obtain a word and context vocabulary of 159,862 different
words. Using window size 2 to each side results in about 9.7 billion word-context samples.
For the embedding dimension we choose d = 200. For the negative sampling probability
PD (c), we actually used the probability that raises the word counts to the power of 3

4 ,
that is

PD (c) =
(c)

3
4∑

c′∈VC # (c′)
3
4

,

instead of the unigram distribution. In [11], Mikolov et al. explain about this probability
that they “investigated a number of choices [...] and found that the unigram distribution
[...] raised to the 3/4rd power [...] outperformed significantly the unigram and the uniform
distributions.”

Our models are available online2. For an input word or equation, the web application will
output the closest words and their distances to the input. The expectation of the distance
to the closest word we discussed in section 6.2 for dimension d = 200 and our vocabulary
size is about 0.69. This means that words with distance less than 0.69 can be considered
relevant to the query.

7.1 Optimizing the objective function

First, we want to evaluate how good each model is at maximizing the objective function.
We will analyze the models that are based on the negative sampling method first and then
consider the skip-gram models (no negative sampling).

1https://dumps.wikimedia.org/enwiki/latest/
2http://word2vec.cs.uni-freiburg.de

35

https://dumps.wikimedia.org/enwiki/latest/
http://word2vec.cs.uni-freiburg.de

7.1.1 SGNS

In chapter 4, we discussed the optimum and found that SGNS’s objective function has a
maximum for

~w · ~c = x∗w,c = log

(
(w, c) · |D|
(w) ·# (c)

)
− log k

= PMI (w, c)− log k

and we named the matrix containing these values MSGNS. Now, we consider the value of
the objective function at these points to get the optimum value `OPT, that is

`OPT := `SGNS

(
MSGNS

)
.

We evaluate the objective function at the non-negative values, that is

`+ := `SGNS

(
MSGNS+

)
as discussed in section 4.3 and at the actual dot products computed by our models, that
is

`SGNS (W,C) = `SGNS

(
W · CT

)
,

where W and C are the representation matrices computed by the models (SVD and the

neural network). Table 7.1 shows the percentage of deviation from `OPT, that is `−`OPT

`OPT ,
where ` is the objective value for a given model.

k `OPT `+ SVD SGNS

1 0% 29.3% 38.8% 22.7%
5 0% 120.9% 124.7% 9.5%
15 0% 309.0% 310.4% 8.9%

Table 7.1: Percentage of deviation from the optimal objective value (lower values
are better). We evaluated the objective function 3.5 with four different values
for ~w ·~c. SVD and SGNS use the computed word and context embeddings. See
the beginning of section 7.1.1 for details.

The neural network is trained to maximize the objective function, while SVD is actually
optimizing a different function (see equation 5.1). However, we still only evaluated the
neural network’s objective in table 7.1, since we derived all our models from this function.

The table shows that setting all negative values to 0 has a great influence on the objective
function. This stems from the fact that a lot of information is discarded by doing so.
Moreover, the values in this column increase quickly as k increases, which can be under-
stood when looking at the optimal dot product values x∗w,c = PMI (w; c) − log k. As k
increases, more and more of these values will become negative and therefore will be set
to 0 in the matrix MSGNS+, which leads to higher deviation from the optimal objective
value.

SVD also performs rather poorly. However, we propose this deviation from the optimum
does not stem from the SVD itself, but from the fact that this model is based on the matrix
MSGNS+, which deviated from the optimum a lot already. Clearly, there is no reason why
SVD should be better at optimizing the objective than the MSGNS+ values.

36

The neural network is by far the best model. This is because it is the only model whose
main goal is to optimize the objective function. Be reminded, however, that the optimum
cannot be achieved in general, since there are no matrices W and C such that W · CT =
MSGNS. The neural network seems to profit from increasing k, while SVD suffers from
it.

The objective values for the non-negative model (that is `+) differ significantly
from the values that Levy and Goldberg obtain (Table 1 in [8]), which they call SPPMI
(“Shifted Positive Pointwise Mutual Information”). While we already start with almost
30% for k = 1 and observe a considerable increase for increasing k in our values, they
obtain 0.00009% for k = 1 and their values decrease even more as k increases. The
following lemma identifies the deviation of the objective value when using max

(
x∗w,c, 0

)
instead of x∗w,c.

Lemma 7.1. It is `+ = `OPT +R, where R = R1 +R2 with

R1 = −
∑

(w,c) with
#(w,c)=0

bw,c · log 2,

R2 = −
∑

(w,c) with
0<#(w,c)<bw,c

(
bw,c · log

(
2 · bw,c

bw,c + # (w, c)

)
+ # (w, c) · log

(
2 ·# (w, c)

bw,c + # (w, c)

))
,

where bw,c = k ·# (w) · #(c)
|D| .

k `OPT R1 R2 `+

1 −8.708 −1.436 −1.117 −11.260
100% 16.49% 12.83% 129.31%

5 −17.927 −7.208 −14.486 −39.592
100% 40.21% 80.81% 220.85%

15 −26.198 −22.398 −59, 406 −107.141
100% 85.50% 226.76% 408.97%

Table 7.2: R1 and R2, the two parts that make up the difference between `OPT and `+.
`OPT +R1 +R2 should equal `+. R2 is an approximation. The absolute values
are in billions. Percentage shows percentage of the optimum.

Proof. Recall from equation (4.3) that

`w,c (x) = # (w, c) · log σ (x) + bw,c · log σ (−x)

and from Theorem 4.1 that x∗w,c = arg maxx (`w,c (x)) = log #(w,c)
bw,c

. Let

`OPT
w,c = `w,c

(
x∗w,c

)
,

which means that `OPT =
∑

w,c `
OPT
w,c . Similarly, we define

`+w,c = `w,c
(
max

(
x∗w,c, 0

))

37

so that `+ =
∑

w,c `
+
w,c. Using this notation, it is

R = `+ − `OPT

=
∑
w,c

`+w,c −
∑
w,c

`OPT
w,c

=
∑
w,c

(
`+w,c − `OPT

w,c

)
and we have to compute the difference `+w,c − `OPT

w,c for each word-context pair (w, c). We
distinguish three cases.

• If # (w, c) ≥ bw,c, then x∗w,c ≥ 0, so `+w,c = `w,c
(
x∗w,c

)
= `OPT

w,c .

• Now, assume that # (w, c) = 0. This means that x∗w,c = −∞ and it is

`OPT
w,c = lim

x→−∞

(
0 · log σ (x) + bw,c · log σ (−x)

)
= bw,c · lim

x→−∞
log σ (−x)

= 0.

Furthermore, it is

`+w,c = `w,c (0)

= bw,c · log (σ (0))

= −bw,c · log 2

= `OPT
w,c − bw,c · log 2.

• For the last case, we consider word-context pairs (w, c) with 0 < # (w, c) < bw,c.
This means that x∗w,c is negative again and we have

`+w,c = `w,c (0)

= −# (w, c) · log 2− bw,c · log 2

= −# (w, c) · log 2− bw,c · log 2 + `OPT
w,c

−# (w, c) · log σ

(
log

(
(w, c)

bw,c

))
− bw,c · log σ

(
− log

(
(w, c)

bw,c

))
= `OPT

w,c − bw,c · log 2−# (w, c) · log 2

−# (w, c) · log
1

1 +
bw,c

#(w,c)

− bw,c · log
1

1 + #(w,c)
bw,c

= `OPT
w,c − bw,c ·

(
log 2 + log

(
bw,c

bw,c + # (w, c)

))
−# (w, c) ·

(
log 2 + log

(
(w, c)

(w, c) + bw,c

))
= `OPT

w,c − bw,c · log

(
2 · bw,c

bw,c + # (w, c)

)
−# (w, c) · log

(
2 ·# (w, c)

bw,c + # (w, c)

)
.

Combining the three cases yields the desired result.

38

Now, the `+ value in Table 7.1 is equal to R2

`OPT + R1

`OPT . Table 7.2 presents these values (in
percent). The table shows that for increasing k, R1 and R2 do not only decrease, but they
do so faster than `OPT, i.e. the fractions R1

`OPT and R2

`OPT decrease as well. The formula
for R1 shows that the decrease of R1 with respect to k is linear. Observe that Table 7.2
agrees with this fact. Moreover, we can observe that R2 decreases even faster than R1. We
suppose that this is due to the fact that an increase in k affects R2 in two ways: Firstly,
as k increases, we have more word-context pairs with 0 < # (w, c) < bw,c (see Table 7.3).
This means that more items are added to the sum R2. Secondly, a simple derivative shows
that each addend of R2 is decreasing for 0 < # (w, c) < bw,c, which we will show in the
following lemma.

k # (w, c) = 0 0 < # (w, c) < bw,c # (w, c) < bw,c

1 98.2471 0.7052 1.0477
5 98.2471 1.2547 0.4982
15 98.2471 1.4854 0.2675

Table 7.3: Proportion of word-context-pairs with different values of # (w, c) in percent.

Lemma 7.2. Each addend of R2 is strictly decreasing for increasing k.

Proof. Let

f(b) = −b · log

(
2b

b+ # (w, c)

)
−# (w, c) · log

(
2 ·# (w, c)

b+ # (w, c)

)
.

We prove the lemma by deriving f with respect to b. This is sufficient since ∂
∂k bw,c = 1.

It is

f ′ (b) = − log

(
2b

b+ # (w, c)

)
− b · b+ # (w, c)

2b
· 2 (b+ # (w, c))− 2b

(b+ # (w, c))2

−# (w, c) · b+ # (w, c)

2 ·# (w, c)
· −2 ·# (w, c)

(b+ # (w, c))2

= − log

(
2b

b+ # (w, c)

)
− # (w, c)

b+ # (w, c)
+ # (w, c) · 1

b+ # (w, c)

= − log

(
2b

b+ # (w, c)

)
< 0

for b > # (w, c) and therefore, f is decreasing for the corresponding values of b.

7.1.2 Skip-Gram

We evaluated the objective function of the SG model similar to the SGNS model. Since
the SG neural network is not feasible, we only evaluated the SVD model. Let `OPT =
`SG

(
MSG

)
be the optimal value of the objective function and let `+ = `SG

(
MSG+

)
be

the value for the non-negative dot products as explained in section 4.3.

Table 7.4 shows that the error that arises from setting negative values to 0 is considerably
smaller than in the SGNS model. One reason for this is that we only change dot products

39

`OPT `+ SVD

0% 5.7% 25.1%

Table 7.4: Percentage of deviation from the optimal objective value (that is `OPT).
We evaluated the objective function 4.5 with three different values for the matrix
X. SVD uses the computed word and context embeddings (W · CT).

of word-context pairs that never appeared in the text (i.e. with # (w, c) = 0). While the
SVD values for the SGNS model were fairly close to `+ (see Table 7.1), the deviation from
the optimum of the SVD here does not stem from the loss of information by setting too
many values to 0. It is possible that there are no representation matrices W and C for
dimension 200 that perform as well as `+, which would explain the deviation in the SVD
model.

7.2 Word similarity tasks

Experiment. We use two datasets to evaluate the models on word similarity tasks.
Both datasets contain word pairs and a human-assigned similarity score for each pair. For
instance, the pair ‘sun’ and ‘sunlight’ got a very high score, while the pair ‘bakery’ and
‘zebra’ got a very low score. We then measure the strength of association between the
human-assigned scores and the cosine similarity of our vectors using the Spearman’s rank
correlation coefficient (or Spearman’s rho). Let Xi and Yi be the human and computer
assigned scores respectively. Then, the Spearman correlation is defined as

ρS =
cov (rg (X) , rg (Y))

σ (rg (X))σ (rg (Y))
,

where rg (X) and rg (Y) are the rank variables, cov denotes the covariance and σ is the
standard deviation. The Spearman’s rho takes values between −1 and +1, which only
depend on the rank (i.e. the order) of the scores rather than the values of the scores
themselves. A positive value indicates that as values of one variable increase, the other
value tends to increase as well, while a negative value indicates that as values of one
variable increase, the other variable tends to decrease. Values around 0 indicate that
there is no such correlation.

Results. Table 7.5 shows the performance of our models for the WordSim353 dataset
[5], which contains 353 word pairs, and the MEN dataset [3], which contains 3000 word
pairs.

WordSim353 MEN

k Neural Network SVD Neural Network SVD

0 - 0.601 - 0.655

1 0.524 0.613 0.588 0.700
5 0.658 0.536 0.712 0.669
15 0.644 0.400 0.681 0.606

Table 7.5: Spearman’s coefficient of different word representations on two datasets.
The row for k = 0 represents skip-gram (without negative sampling).

40

Interpretation. This experiment provides more evidence that SVD suffers from increas-
ing k, a result we also discovered in the last section when it comes to optimizing the
objective function. While the neural network outperforms the SVD model for k = 5 and
k = 15, SVD performs better for k = 1. The table suggests that as k gets too large, the
quality of the vectors will start declining, even for the neural model. Choosing too many
negative samples results in less emphasis on the positive samples, which might affect the
quality of the vectors in a negative way after a certain point.

7.3 Analogy tasks

Experiment. We evaluate our models on two datasets containing analogy tasks of the
form “a is to a∗ as b is to b∗”. This means that in our model, the vector between a and a∗

should be the same as the vector between b and b∗, in other words: a∗ − a = b∗ − b. The
word b∗ is hidden and the models try to find the correct answer by computing the vector
addition b̃ = a∗ − a + b. We measure the percentage of questions for which the closest
word to b̃ is b∗. In the course of this, we ignore the three words a, a∗ and b.

The Syntactic dataset [12] contains 8000 syntactic analogy questions, such as “good is to
best as smart is to smartest”. The second dataset, the Mixed dataset [10], contains about
19500 analogy questions of both semantic and syntactic kind. An example for a semantic
analogy is “Paris is to France as Berlin is to Germany”. After ignoring instances with
out-of-vocabulary words, our models were tested on the remaining 5732 questions3 in the
Syntactic dataset and 19308 questions in the Mixed dataset.

Results. Table 7.6 shows precision at 1, which is the percentage of questions for which
the model gave the correct answer (b∗).

Mixed Syntactic

k Neural Network SVD Neural Network SVD

0 - 26.84 - 28.70

1 27.28 30.55 32.29 19.59
5 50.95 12.03 51.03 5.67
15 53.20 5.86 47.89 1.36

Table 7.6: Percentage of correct answers on two word analogy tasks. The row for k = 0
represents skip-gram (without negative sampling).

Interpretation. The neural networks outperform the SVD models by a lot for all but
one category. For the Mixed dataset, SVD performs slightly better for k = 1. Again,
there is an evident decrease in precision for the SVD model for increasing k. Moreover,
we can observe a difference in performance between the two datasets. While the neural
networks achieve similar results for both datasets, the SVD model performs a lot better on
the Mixed dataset than on the Syntactic dataset, with an exception for the model without

3The large amount of out-of-vocabulary words mainly comes from the category Possessive/Non-possessive
nouns. Because of the apostrophes, none of the possessive nouns is in the vocabulary. Thus, all 1000
questions in this category are being ignored. In addition, many of the comparative and superlative
verbs are ouf-of-vocabulary.

41

negative sampling (k = 0). This could mean that SVD is better at semantic tasks than
syntactic ones.

Figure 7.1 shows the performance of each model for the different categories of the Mixed
dataset. There are vast discrepancies between the different categories. A possible expla-
nation for the low values in the categories currency (C03), opposite (C07) and superlative
(C09) is that they contain many rare words. In fact, these are the only categories with
out-of-vocabulary words, which points to the fact that many of the words that were found
in the vocabulary are rare words as well. This clearly affects the quality of the vectors.
The figure shows that the neural networks for k = 5 and k = 15 perform similarly well
and they are superior to the other models in almost all categories. The opposite is true
for the corresponding SVD models. They perform more poorly than the other models in
most categories.

Figure 7.1: Percentage of correct answers that different models gave; question categories
on the x-axis. For more information about the dataset see [10]. The categories
are: C01: Common capital city, C02: All capital cities, C03: Currency,
C04: City-in-state, C05: Man-Woman, C06: Adjective to adverb, C07: Op-
posite, C08: Comparative, C09: Superlative, C10: Present Participle, C11:
Nationality adjective, C12: Past tense, C13: Plural nouns, C14: Plural verbs

42

8 Conclusion and Future Work

We analyzed and evaluated two approaches to retrieve word vectors, neural networks and
SVD. We showed that, if the embedding dimension is high enough, both models maximize
the same objective function. However, we ran into a problem with word-context pairs
which never appear in the same context together (this was the case for more than 98%
of our word-context pairs). In order to meet this problem, we adjusted some values by
setting them to 0. Our data shows that these changes caused a downward change in the
quality of the vectors. This loss of information, which stems from setting values to 0,
increases as k, the number of negative samples, increases.

Motivated by these findings, we suggest applying SVD on a different matrix. Let s be the
smallest value in MSGNS (apart from those that are −∞), that is

s = min
(w,c)∈D

(
log

(
(w, c) · |D|

(w) ·# (c) · k

))
.

Then, shifting the matrix by −s and setting the −∞-values to 0 results in a sparse, non-
negative matrix, which we will denote by S. This way, we do not lose information for
increasing k. Table 8.1 shows that factorizing S produces quite good results, especially
compared to the the old SVD model for k = 15. As future work, we suggest further
investigation of the characteristics, the advantages and disadvantages of this matrix.

factorizing k WordSim353 MEN Mixed Syntactic

MSGNS+ 1 0.613 0.700 30.55% 19.59%
MSGNS+ 15 0.400 0.606 5.86% 1.36%

S 15 0.566 0.654 32.83% 26.08%

Table 8.1: Results of the newly proposed SVD method (factorizing S) set against the SVD
method described in this thesis (factorizing MSGNS+).

Another path to explore further is the skip-gram neural network. It would be interesting
to see if negative sampling improves not just the running time, but also the quality of the
vectors and how well SVD is doing compared to the network without negative sampling.

Lastly, we suggest exploring hyperparameter optimization more. We suppose that this
has a great effect on the quality of the vectors and more investigation might lead to much
better results. For instance, we did not discuss the window size in this thesis. Likewise,
we would like to know the qualitative behavior of our models for different embedding
dimensions.

43

9 Declaration

I hereby declare that I am the sole author and composer of my thesis and that no other
sources or learning aids, other than those listed, have been used. Furthermore, I declare
that I have acknowledged the work of others by providing detailed references of said work.
I hereby also declare that my thesis has not been prepared for another examination or
assignment, either wholly or excerpts thereof.

Place, Date Theresa Klumpp

45

10 Acknowledgments

First and foremost, I give praise to god. I thank him for providing the following people
who where crucial to finishing this thesis.

I would like to thank Prof. Dr. Hannah Bast for supervising this thesis – even though I
am a student of mathematics – and providing a delightful topic. She had a lot of patience
when there was a lack of computer skills on my side. Thank you for the fantastic guidance
and taking a lot of time to work through the main challenges with me.

Further, I am grateful to Prof. Dr. Peter Pfaffelhuber, who willingly agreed to examine
this thesis and who supervised the mathematical parts with excellent insight.

I also want to express my sincere gratitude to Johannes Müller for proof-reading and giving
me deeply insightful advice and to Lukas Weith for his amazingly thorough proof-reading
on language. I know this has not been the most interesting piece of literature for you...

Last, but certainly not least, my gratitude goes to my parents, whose moral and financial
support and continuous encouragement and trust have enabled me to pursue my studies
and finish this thesis.

47

Bibliography

[1] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of machine learning research, 3(Feb):1137–
1155, 2003.

[2] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of data science.
Vorabversion eines Lehrbuchs, 2016.

[3] Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. Distributional
semantics in technicolor. In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers-Volume 1, pages 136–145. Association
for Computational Linguistics, 2012.

[4] Carl Eckart and Gale Young. The approximation of one matrix by another of lower
rank. Psychometrika, 1(3):211–218, 1936.

[5] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. Placing search in context: The concept revisited. ACM
Transactions on information systems, 20(1):116–131, 2002.

[6] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[7] Rémi Lebret and Ronan Collobert. Word emdeddings through hellinger pca. arXiv
preprint arXiv:1312.5542, 2013.

[8] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factoriza-
tion. In Advances in neural information processing systems, pages 2177–2185, 2014.

[9] Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces from lex-
ical co-occurrence. Behavior research methods, instruments, & computers, 28(2):203–
208, 1996.

[10] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[12] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in con-
tinuous space word representations. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 746–751, 2013.

[13] Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed language
model. In Advances in neural information processing systems, pages 1081–1088, 2009.

49

[14] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532–1543, 2014.

[15] Douglas LT Rohde, Laura M Gonnerman, and David C Plaut. An improved model
of semantic similarity based on lexical co-occurrence. Communications of the ACM,
8(627-633):116, 2006.

[16] Christian Walck. Statistical distributions for experimentalists. Particle Physics
Group, 2007.

50

	Abstract
	Zusammenfassung
	Introduction
	Notation and Background
	Contributions

	Related Work
	Distributional hypothesis and count-based models
	Neural-Network based Methods

	The neural networks
	Skip-gram
	Skip-gram with negative sampling (SGNS)

	The optimum assuming high embedding dimension
	Objective function of the SGNS model
	Objective function of the skip-gram model
	Non-negative matrices

	Singular Value Decomposition
	Mathematical analysis of the results
	Analyzing different distance measures
	Expectation of the Closest Vector

	Evaluation
	Optimizing the objective function
	SGNS
	Skip-Gram

	Word similarity tasks
	Analogy tasks

	Conclusion and Future Work
	Declaration
	Acknowledgments

