
Master Thesis

Dehyphenation of Words and
Guessing Ligatures

Sumitra Magdalin Corraya

March 12, 2018

Albert-Ludwigs-Universität Freiburg im Breisgau
Technische Fakultät

Institut für Informatik / Computer Science

Bearbeitungszeitraum
13. 09. 2017 - 13. 03. 2018

Gutachter
Prof. Dr. Hannah Bast
Prof. Dr. Peter Thiemann

Betreuer
Claudius Korzen

Contents
Zusammenfassung 1

Abstract 2

Declaration 3

Acknowledgments 4

1 Introduction 5
1.1 Motivation and Challenge . 6
1.2 Approach . 8

2 Related Work 10

3 Data Collection and Preparation 12
3.1 Count Frequency of the Words . 12
3.2 Gather Data . 13

4 Implementation 15
4.1 GNU Trove . 16
4.2 MapDB . 17
4.3 LMDB . 19
4.4 Dehyphenation of Words . 20
4.5 Guessing Ligatures . 21

5 Experiments 24

Summary & Future Work 29

List of Abbreviations 30

List of Figures 31

List of Algorithms 32

Bibliography 33

i

Zusammenfassung

Die genaue Extraktion von Text aus PDF (z.B. um darin suchen zu können) kann
sich als eine schwierige Aufgabe erweisen, da in einigen Fällen lange Wörter am
Zeilenende in zwei mit einem Bindestrich verbundene Wörter aufgetrennt sein können.
Darüberhinaus enthalten PDF-Dokumente Ligaturen (mehrere Zeichen, die in der
PDF-Datei in ein einzelnes Zeichen übersetzt werden), nach denen nur schwer
gesucht werden kann. In dieser Arbeit schlagen wir Lösungen für die oben genannten
Probleme vor, d.h.wir entscheiden, ob ein Bindestrich (-) zwischen zwei Wörtern
notwendig ist oder nicht, und schlagen eine Methode vor um Ligaturen zu erkennen
in einem großen Wörterbuch. Bei beiden Lösungen bemühen wir uns um eine hohe
Erkennungsgeschwindigkeit und Genauigkeit.
In PDF-Dateien können lange Wörter durch einen Bindestrich verbunden sein, wenn
sie nicht in eine Zeile passen und dadurch in verschiedenen Zeilen erscheinen. Der
Grund für diesen Bindestrich ist, dass die Wörter eine kombinierte Bedeutung
haben oder dass es eine Beziehung zwischen den Wörtern gibt (auch bekannt als
zusammengesetzte Wörter). Allerdings müssen nicht alle zusammengesetzten Wörter
getrennt werden, was sich als problematisch erweisen kann. Diese Arbeit schlägt ein
Verfahren vor, um zu entscheiden, wann ein Wort getrennt werden sollte. Dabei
entscheiden wir über die Notwendigkeit eines Bindestrichs, indem wir das Wörterbuch
verwenden. Unsere Experimente demonstrieren die hohe Effizienz und Genauigkeit
unseres Ansatzes.
Bei der Erstellung von PDF-Dateien werden einige Kombinationen von Buchstaben
(Ligaturen) zu einem einzelnen Zeichen übersetzt (z.B. werden die Ligaturen: ffi,ffl
zu Sonderzeichen übersetzt). Dies kann beim Extrahieren des Textes aus dem PDF
(z.B. für eine Suche) problematisch sein, da man dabei die einzelnen Zeichen einer
Ligatur extrahieren möchte und nicht das entstandene Sonderzeichen. Diese Prob-
lematik wird durch die Tatsache, dass PDF verschiedene Schriften und Kodierungen
unterstützt noch verschärft. Wir schlagen eine Methode vor, um Ligaturen aus einem
Sonderzeichen zu "erraten". Dazu probieren wir verschiedene Ligaturen aus und
suchen nach den entstehenden Wörtern in dem Wörterbuch. Schließlich diskutieren
wir, was im Falle einer Mehrdeutigkeit bei dem eben geschilderten Nachschlagen
einer Ligatur zu tun ist.

1

Abstract

The accurate extraction of text from PDF (e.g. in order to be able to search in
it) can prove to be a difficult task as on some occasions long words at the end of
the line are split into two words joined with a hyphen. Moreover, PDF contains
ligatures (multiple characters, which translate to one/single character in the PDF)
that can be hard to search for as well. In this thesis we propose solutions to the
aforementioned problems, i.e. deciding if the hyphen (-) in the words is necessary or
not, and proposing a method for guessing ligatures by looking up in a large dictionary.
In both cases, we try to provide a fast response of time and good accuracy.
In PDF, long words can be split into two parts with a hyphen between them, when
they do not fit in one line and as a result appear in different lines. The reason
for the hyphen is to show that the words had a combined meaning or that there
is a relationship between the words (also known as compound words). However,
not all compound words need to be hyphenated which can prove to be problematic.
This thesis proposes a procedure to decide when to dehyphenate the word. We
decide upon the necessity of the hyphen by using the dictionary of words. Our
approach provides efficiency and good accuracy, which we demonstrate with different
experimental results.
During the making of PDF files, some combination of character (ligature) translates
to a single character (for example the ligatures: "ffi","ffl" are translated to some
special characters). This can be problematic as when the text is extracted from the
PDF, e.g. for searching, one wants to extract the individual characters within the
word and not the special character. This issue is further aggravated by the fact that
PDF has different fonts and encoding. We propose a method for guessing ligatures
from such special characters. We do so, by trying different ligatures and searching
the formed words in the dictionary. Finally, we also discuss what to do in case of an
ambiguity when looking up the word.

2

Declaration

I hereby declare that this master thesis has been composed by me based on my
own work, that I have not used any sources other than those specified, and that all
passages which have been taken literally or meaningfully from published writings
have been specified as such. Furthermore, I declare that this thesis has not been
fully or partially presented for any other test.

Datum Signature

3

Acknowledgments

First and above of all, I praise to God, the Almighty, for the strengths and his blessing
in completing this thesis. Second, my special appreciation goes to Prof. Hannah Bast
for a great opportunity to work at her Chair. Not forgotten, my appreciation to my
co-supervisor, Claudius Korzen for his valuable time and knowledge regarding this
topic. And his invaluable help of constructive comments and suggestions throughout
the experiment and writing of this thesis.
I would like to thank Muneeb Shahid for proofreading this thesis, Moritz Freidank
for the translation.
Sincere thanks to my beloved friends in Freiburg, for their kindness, moral support
and refreshing time. My colleagues at Computer Science Department, for motivations
and many small discussions.
My deepest gratitude to all my family in Bangladesh, especially for my mother Mrs.
Gita Francisca Corraya and my father Provat Anthony Corraya, for their endless
love, prayers and encouragement.
Last but not least, I am grateful my boss, Mr. Bruno Welsch, head of the IMTEK
multimedia department, for his encouragement and patience when I had to take
time off to study.
To everyone else who has helped me in any shape or from even with a simple smile
on difficult days.
Thank you all for your encouragement and support!

4

1 Introduction

PDF is a popular computerized document format. The accurate extraction of the
text from PDF document is an important, but difficult task, as sometimes long
words at the end of the line are hyphenated, (where a hyphenated word is a word
containing hyphen (-)). A hyphen is used when two or more words joined to form a
new word (for example: ex-president, which means a person was a president).
Another reason is that PDF also contains ligatures, where a ligature is a typographical
letter (see figure 1.1). A ligature occurs when two or more characters are joined into
a single glyph (a visual representation of a character in a specific font and style)
[Ber11]. For example, ligature "fi" in "Significant" is translated to a single glyph and
this cannot be separated as "f" and "i" when copying text out of the PDF file (See
figure 1.2).
The goals of this thesis are (1) decide, if a hyphen in a hyphenated word is mandatory
or not and (2) resolving the individual characters of ligatures. In both goals we try
to achieve high accuracy and fast response time.

Figure 1.1: Ligature with real meaning. Ligature "AE" or "ae": When "a" is followed
by "e" in one word, it shows "a" and "e" two alphabets are a single glyph. Also,
same for "f" and "i" or "f", "f" and "i". When "a" is followed by "e" and "o" is
followed by "e" they both look like same glyph: see in the figure second line.

5

Chapter 1 Introduction

Figure 1.2: Example for ligature: "Significant" an example with two alphabets "f"
and "i", which are joined into a single glyph "fi". "Difficult" is another example
with three alphabets "f", "f" and "i", which are joined into a single glyph "ffi".
"formulae" also have ligature "ae", which is joined into a single glyph.

1.1 Motivation and Challenge

In PDF text extraction, dehyphenating words and decomposing ligatures into indi-
vidual characters is mandatory as hyphenated words and/or words with ligatures
can’t be found using simple text search.

Consider the example that the word "digital" is hyphenated as "digi-tal," when we
extract the PDF file, the word is exported into two words "digi-" and "tal" or "digi-tal"
(which is with a hyphen), thus finding the original text "digital" is not easy. Other
difficulties are deciding if a hyphen is mandatory or not.

One of the reason is a hyphen in some words is correct (in terms of the English
language, which has so-called compound words containing mandatory a hyphen)
(See figure 1.3). A compound word is defined as a word consisting of more than
one word. When two or more words are attached to each other, and they make one
long word, it is then referred to as a closed compound word, for example footpath,
created from two nouns foot and path. Apart from closed compound words, there
are open compound words, which are created in cases when the modifying adjective
is used with its noun to create a new noun (e.g. dinner table), in this case space
comes in between the adjective and the noun, so sometimes it can be hard to identify
a compound word.

Hyphens are used in many compound words to show that the component words
have a combined meaning (e.g. sugar-free) or that there is a relationship between
the words that make up the compound: for example "rock-forming minerals", are
minerals that form rocks. However, a hyphen does not need to be used in every type
of the compound word, for example, phrasal verbs: when verbs are made up of a
main verb and an adverb or preposition. "You should continue to build up your
pension", here "build up" is a phrasal verb. On the other hand, if phrasal verb is
made into a noun, then a hyphen can be used in compound words. For example:
here was a build-up of traffic on the ring road. Also a hyphen is used in

6

1.1 Motivation and Challenge

Figure 1.3: Example for mandatory (or not) a hyphen in the words: In case a
compound word (e.g. high-quality) is hyphenated, we do not want to remove the
hyphen if the hyphen is mandatory, but on the other hand, for not a compound
word (e.g. bench-mark) we want to remove the hyphen and merge the syllables.

1. Compound adjectives: made up of a noun + an adjective (e.g. sugar-free), a noun
+ a participle (e.g. custom-built), or an adjective + a participle
(e.g. good-looking) [Oxf].
2. Compound verbs: two nouns are combined into a verb
(e.g. to ice-skate) [Oxf].
3. Compound nouns: such nouns can be written in one word (e.g. chatroom), two
words (e.g. chat room) or in a hyphenated form (e.g. chat-room) [Oxf].
4. Compounds in which the base word is capitalized: e.g. pro-Freudiana [Ass]
5. Compounds in which the base word is number: e.g. post-1970 [Ass]

A hyphen can also be used where a word is to be divided at the end of a line of
writing, but it should be split at a sensible position, so that the first part does not
mislead the reader e.g. "hel-met" should be preferred over "he-lmet". And also the
word should split before the noun, not after the noun. For example: "a long-term
solution." here "long-term" is a hyphenated compound word because it is used in
the sentence before a noun (e.g. solution). And in "This is not a good solution for
the long term.", "long term" is an open compound word without a hyphen because
it is in the sentence after the noun. Hyphenation rules allow to hyphenate 90% of
English words properly [Sho16].

Without those rules a hyphens can be used when in a sentence a subject has been
described. For example: "I saw a man-eating alligator" and "I saw a man eating
alligator". These two sentences mean two different things. "I saw a man-eating
alligator" is describing the alligator that eats men. On the other hand, "I saw a man
eating alligator" is describing a man who is eating an alligator.

Apart from those rules, some compound word can be both with or without a hyphen,
deciding which one is the right choice can be a challenging task (see figure 1.4(a)).
The aforementioned scenarios lead to complexities when extracting text from the
PDF.

Ligatures too, can be difficult to find, for example the word "define" from PDF might
be converted to "de$ne" (where we use the "$" symbol to illustrate the ligature), as

7

Chapter 1 Introduction

(a)
(b)

Figure 1.4: (a) Dehyphenating the word is challenging: for example, the word
"US-English" is a compound word and it is valid both with and without a hyphen
(as shown in figure (a)). Both types of compound word can be found in English.
(b) Ambiguities in word with ligature: "uy" is a word with ligatures. "$" is the
position for the ligature. A single word containing ligature can lead to multiple
combination of different ligature resulting in multiple valid words (as shown in
figure (b) as Output). In this case, defining a right word is challenging.

it contains the ligature "fi". Since there are 20 different ligatures in English, it can
be quite ambiguous for a human to decipher "$", as multiple ligature candidates
are possible. For example: "fluffy" after conversion will look like "uy". "uy" is
completely unrecognizable.
One reason for such cryptic outcomes is that when converting, it converts characters
to glyphs using "poppler" for rendering, now when characters like "tt", "tf", "ti", "ff",
"fi" are encountered, they are considered ligature. Thus, when one searches for "t t",
the actual look up is done for "tt" and not "t t", resulting in no results/finds. And
when it cannot find a glyph for "tt", it converts it as "$" (the "$" we have used as
an illustration for the ligature) or Unicode or any other special character. Handling
possible ambiguities is not an easy task either: two different ligatures can result in
valid words, one then needs to decide upon the best one (See figure 1.4(b)).

1.2 Approach

In the first part of the thesis, we tackle the problem of dehyphenation: we first decide
if the hyphenated word is mandatory or not. Our approach to solve this problem is
to look up the given hyphenated word in a huge dictionary of words. While looking
up the given hyphenated word in the dictionary it is possible that the word is found
both with and without the hyphen (for example: sub-tube or subtube), in this case
we look up the frequency (refers to the number of times that a word appears in the
given text) of the words.
In the second part of the thesis, we discuss guessing ligatures (mean to determine the
individual characters in ligatures), we do this in a "trial and error" style. In principle,
there is only a finite number of possible ligatures. We could try one after the other,
and check, if the resulting word is valid by looking it up in the dictionary. However,
ambiguities can be found in a word with ligature. In this case, to decide the right

8

1.2 Approach

word with ligature, our idea is to look for the frequency of the words, we choose
the word with the highest frequency. For example: for the word "uy" ambiguities
mean: different ligature can be placed into the position "$" and word with ligature
could be "stuffy" and "fluffy". If the word "fluffy" has higher frequency than the word
"stuffy", then "fluffy" is the output.
In both part of our thesis we also want to provide efficiency and good accuracy by
using our approaches, which we demonstrate with different experiment results.

9

2 Related Work

Text Extraction is a process for generating meaningful text (do not contain special
character for example: se$-$at) from electronic documents such as PDF. For more
clarification the aim of text extraction is to be able to characterize and explain the text
how human understand language. The complexity of the human/natural language
(for example: English) can make it very difficult to access the information in that
text. One of the reason is English has few grammatical rules (for example compound
words with a hyphen or without a hyphen) and the amount of text that is available
in electronic form is truly staggering, and is increasing every day. Considering those
reasons working with human/natural language data is not solved; natural/human
language is primarily hard because it is messy [Bro17]. However, there are some
areas (e.g., Machine learning) interested in working with text extraction. Machine
Learning is an area of Artificial Intelligence that is a set of statistical techniques for
problem solving. Based on state of the art machine learning techniques there are
some tools and open-source systems, such as GROBID, CERMINE[TSF+15].

GROBID performs reliable bibliographic data extractions from scholar articles
combined with multi-level term extractions [Lop09]. It is a tool for analyzing technical
and scientific documents, focusing on automatic bibliographical data extraction and
structure recognition [PL10]. It is able to handle ligatures and hyphenated words.

CERMINE is a comprehensive open-source system for extracting structured meta-
data from scientific articles. It is well known for good performance of the key process
steps and the entire meta-data extraction process, with the overall average score of
77.5 % [TSF+15]. CERMINE can extract meta-data, full text and parsed references
from a PDF file. It is also able to handle hyphenated words.

Machine learning-based approaches are far more popular. However, machine learning
approaches are usually expensive in terms of run-time of the extraction processes
[Fri10].

There are some papers published based on Text Extraction. In those paper’s
publishers proposes a different kind of method or system: PDFtotext [dav11], LA-
PDFText [CRB], PDFExtract [ORBR], Icecite [BK17], OCR++ [Muk16].

PDFtotext is a generally used approach to extract text from PDF files. It reads
the PDF file, and writes a text file. It treats the entire document as one string,
outputs Unicode(UTF-8) data [dav11]. So ligatures represented as a single character
in Unicode which will appear strangely in output.

10

Related Work

Afterward LA-PDFText (system to facilitate accurate extraction of text from PDF
files of research articles for use in text mining applications [CRB]) introduced and
compared with PDF2Text system (in 91% of the cases LA-PDFText outperforms
PDF2Text (p<0.001)). In the experiment by using Needleman-Wunsch algorithm
found that the text extracted via LA-PDFText have higher accuracy, but still contain
classification errors.
PDFExtract is a tool and library that can extract various areas of text from a PDF.
It handles ligature’s and hyphenated words. However, only makes available a limited
range of logical layout analysis functionality because of its very comprehensive
geometric layout analysis.
Icecite automatically extracts, with accuracy over 95%, bibliographic meta-data
[BK]. It handles all the hyphenated words as normal hyphenated words, but remove
them mistakenly, if also it is important for compound words.
OCR++ is an open-source framework designed for a variety of information extraction
tasks with accuracy (around 50% improvement) and processing time (around 52%
improvement) from scholarly articles [Muk16], completely written in python. The
framework takes a PDF article as input, first convert the PDF to an XML format
then processes the XML file to extract useful information. Even though the XML
file consists of rich meta-data, OCR++ suffers from common error: end-of-line
hyphenation problem.

11

3 Data Collection and Preparation

Data collection is an extremely important part of this thesis. Without the right data
collection (data which are meaningful in terms of Oxford dictionary (is the accepted
authority on the English language, providing an unsurpassed guide to the meaning
from across the English-speaking world [Oxf18].)) it is difficult to take decisions that
our approach is right or wrong. Inaccurate data (e.g. "aaaabro", "10pc") collection
may lead to the wrong result, or which is invalid and affect the expectation of the
result, in the other word it will be impossible to work on the approach of the thesis.
In this chapter, we are going to discuss the techniques or process of data collection
for our thesis.
There are different kinds of techniques for data collection. We are going to collect
data from diverse sources of documents. One diverse source we used where has around
40,515,568 words (without special character, i.e. "-" and numbers, i.e. 1,2). These
words are extracted from PDF files of the digital library https://arXiv.org/ (arXiv
is a repository of electronics pre-prints approved for publication after moderation
that consists of scientific papers in the fields of computer science, which can be
accessed online). Another source we used is ClueWeb (The ClueWeb is a data-set,
was created to support research on information retrieval and related human language
technologies. It consists of billions of web pages in different languages), that contain
around 34,702,294 words (without special character, i.e. "-" and numbers, i.e. 1,2).

3.1 Count Frequency of the Words

Our approach is based on the frequency of the words for solving the complicate
situation and ambiguities of our thesis. Our data collection has to account for that
and will contain words with their frequency.
As we are collecting our words with their frequency from the sources of documents
which contains lots of text files. We take a bunch of text files as input. After getting
the files we read every file once. While reading every single file we read line by line
and convert every single line into array of words and counts the words occurrences
(how many times they occur in the file). This counting is the frequency of the
words. However, because of all the text files were extracted by using PDFtotext, it
is possible that the text files are full of special characters and symbols, in particular
formulas and mathematical symbols. So the words can read with a special character
or digit (0-9). In example, words can be found like "1480e-02". And also as this

12

3.2 Gather Data

file have hyphenated words, one reason is PDF files break one single word into two
words and put a hyphens in the first part of the word and then, put the second part
of the word in another line. So inappropriate words can be found, which is not a
proper compound or a hyphenated word because we are counting the words line by
line. For example, the proper word is "q-maps" but while reading files, it can be
found "q-" or "-maps". In those cases, we are not accepting this kind of words, before
counting the frequency of that specific word we are checking is it a correct format of
a word or a proper word without digit and a special character (See Algorithm 1).

Algorithm 1: The procedure for counting frequency of the words.
Input: A list of files
Output: Words and frequency of the words

1 for read every single files in folder do
2 while read every single lines in file do
3 words[] = split the line;
4 for count in words[] do
5 key = words[counter];
6 if key contain only alphabets or only alphabets with a hyphen)

hashMap.get(key) == null then
7 hashMap.put(key, 1)
8 else
9 value = hashMap.get(key)

10 value++;
11 hashMap.put(key,value)
12 end
13 end
14 end
15 end

3.2 Gather Data

After reading a number of text files, all the data we gathered into one file (final
combined text file), which will make the files easier to handle, the data faster to
read through and more efficient to search. While combining all the data files we
also concentrate that in the final combined text file, we do not have the same words
several times. For this reason, we first put the words with the frequency of our final
combined text file in the database, words as key and frequency as value. Before
putting the data into the database, we also checked whether the final text file has
data or not. And then we continue reading the other text files while comparing the
words to see if they already in the database or not. If the words already exist in the
database, then we do not put it into the database and in our main text file (where

13

Chapter 3 Data Collection and Preparation

we are gathering all the words with frequency). And if the word does not exist in the
database, then we do on the other way around, meaning we put the word and the
frequency in the database and also in the final combined text file (See Algorithm 2).
We collected 220,870 KB text file, which contains 16,820,541 words with frequency.
Out of 16,820,541 words 11,795,033 words do not consist a hyphen and 4,987,677
words consist with hyphen. In the text file also have 4,546,311 words with ligatures.

Algorithm 2: The procedure for combining all the text files.
Input: A list of text files and final combined text file
Output: A text file

1 while read final combined text file do
2 If the file has data put them in the database.
3 end
4 for read list of text files do
5 Do the procedure for counting frequency of the words;
6 if if the database do not have word then
7 Put the word and frequency of the word in the database;
8 Put the word and frequency of the word in final combined text file;
9 end

10 end

14

4 Implementation

In this chapter, we are going to discuss how we implemented our solutions for the
two different problems (dehyphenation of words and guessing ligatures) from pdf
extraction in our thesis.
After making the collection of words in the text file, the first task for our thesis
experiment is making an efficient database. The database is an organized collection
of data, which means database store information in such a way that information can
be retrieved from it. In simplest terms, a relational database is one that presents
information in tables with rows and columns. A table is referred to as a relation in
the sense that it is a collection of objects of the same type (rows). For this thesis, we
want to treat the data in our databases as objects. An object is a software bundle of
related state and behavior. Software objects are often used to model the real-world
objects that you find in everyday life. For example, in our daily lives we use human
languages to communicate with others. One example of a human language is English.
The English language contains words. Every single word has different meanings.
Each word is a small object that fits together with other small objects in predefined
ways to create other larger objects. Objects are key to understanding object-oriented
technology. An object-oriented database is organized around objects rather than
actions, and data rather than logic. That’s why we are using an object-oriented
programming language: Java. Java Database Connectivity can access any kind
of tabular data, especially data stored in a Relational Database. Java Database
Connectivity helps manage these three programming activities: connect to a database,
send queries and update statements to the database, retrieve and process the results
received from the database in answer to your query. Java Database Connectivity
API is a Java API. An API is a set of functions and procedures that allow the
creation of applications which access the features or data of an operating system,
application, or other service. An API may be for a web-based system, operating
system, database system, computer hardware or software library.
So the first question comes to our mind why not to keep using well-known JDK col-
lections? The answer is performance and memory consumption (See the comparison
between Java and GNU Trove library in chapter5: experiments results). We decide
to use a third-party library to increase our performance.
In computer science, a library is a collection of non-volatile resources used by
computer programs, often to develop software. These may include configuration
data, documentation, help data, message templates, pre-written code, classes, values
or type specifications. For our thesis, we are trying three different third-party

15

Chapter 4 Implementation

libraries (GNU Trove, LMDB, MapDB) which support Java. A third-party software
(which is using a third-party library) component is a reusable software component
developed to be either freely distributed or sold by an entity other than the original
vendor of the development platform. The reason behind using third-party libraries
was to accelerate the development process.

4.1 GNU Trove

GNU Trove is a third-party library that contains a set of primitive collection and
supports the use of custom hashing strategies. One of the reasons for choosing GNU
Trove is better performance and memory consumption than JDK collection [Vor14].
GNU Trove does not use any Java.lang.Number sub-classes internally, so you do not
have to pay for boxing/unboxing each time you want to pass/query a primitive value
to/from the collection. Besides, you do not have to waste memory on the boxed
numbers and reference to them. For example, if you want to store an Integer in
JDK map, you need 4 bytes for a reference (or 8 bytes on huge heaps) and 16 bytes
for an Integer instance. GNU Trove, on the other hand, uses just 4 bytes to store an
int [Vor14]. For each key-value pair GNU Trove does not create Map.Entry unlike
Java.util.HashMap. The GNU Trove maps/sets use open addressing instead of the
chaining approach taken by the JDK hash tables. This eliminates the need to create
Map.Entry wrapper objects for every item in a table and so reduces the O (big-oh)
in the performance of the hash table algorithm. The size of the tables used in GNU
Trove’s maps/sets is always a prime number, improving the probability of an optimal
distribution of entries across the table, and so reducing the likelihood of performance-
degrading collisions[jim17]. GNU Trove’s maps and sets support the use of custom
hashing strategies, which allow to tuning collections based on characteristics of the
input data. This feature also allows you to define hash functions when it is not
feasible to override Object.hashCode(). For example, the java.lang.String class is
final, and its implementation of hashCode() takes O(n) time to complete. GNU
Trove does not have any dependencies, so for using this third-party library we need
to import only one package for Java.
GNU Trove provides "free" (as in "free speech" and "free beer"), fast, lightweight
implementations of the Java.util Collections API; also provide the same collections
support for primitive types, whenever possible [jim17]. If there is a large array
list/set/map with keys or values that could be a primitive type, it is worth replacing
it with GNU Trove collection. If there are some maps from a primitive type of a
primitive type, it is especially worth to replace them. Unfortunately from inspection,
it looks like GNU Trove has been just a library of collections for primitive types-it’s
not like it is meant to be adding a lot of functionality over the normal collections in
the JDK [Ske09]. On each startup GNU Trove load data into memory, performs
calculations and exits. For loading data into memory, GNU Trove is taking extra
runtime, which is making difficulties to get fast response time. Our approach is to

16

4.2 MapDB

solve the two problems (as explained in the introduction) with fast response time.
So, we want to save our time by not loading data into memory every startup. If we
save our data as a dictionary in the database on the first startup, then afterward
for next start-ups we do not need to load all the data for making database. And
MapDB and LMDB allow doing that.

4.2 MapDB

MapDB is specifically designed for the Java developer. MapDB provides a reliable,
full-featured and "tune-able" database engine using the Java Collections API. In
MapDB there is no change in syntax from typical Java coding, other than a brief
initialization syntax and transaction management. A developer can literally transform
memory-limited maps into a high-speed persistent store in seconds [Isaun]. It allows
developers to control exactly what type of internal structure is needed for a given
database, and what the actual data structure looks like from the top-level Collections
API. There are three tiers in MapDB: Collections API, Engine (where the records in a
database (including internal structure, concurrency control, transaction’s semantics)
are controlled), Volume (is the physical storage layer (e.g. on-disk or in-memory))
[Isaay].
The brief history of MapDB is: Prior to MapDB, Jan Kotek (the primary MapDB
developer) supported various versions of the JDBM projects. JDBM itself was a
Java port of UNIX DBM and GDBM, C-language databases that support hash-based
key-value stores on disk. Through this experience, Jan Kotek saw how he could
greatly improve and expand the architecture, and created MapDB as a totally new
implementation. His experience paid off, with MapDB offering ease-of-use, an agile
approach to the database structure, transaction support, concurrency, and very
impressive performance [Isaay]. MapDB is an open-source (Apache 2.0 licensed),
embedded Java database engine and collection framework, it provides Maps, Sets,
Lists, Queues, Bitmaps with range queries, expiration, compression, off-heap storage
and streaming [Map]. It has 7 compile dependencies such as Eclipse Collections,
Guava, Kotlin library and some other libraries (See Figure 4.1 for a full list of
dependencies) and 4 test dependencies (See Figure 4.2).
MapDB is flexible and simple. To get better performance, it is better to use MapDB
in 64-bit operating system. Collection from MapDB (for example HashMap) can be
stored in memory or in a file.

DB db = DBMaker.memoryDB().make();
ConcurrentMap map = db.hashMap("map").make();
or
DB db = DBMaker.fileDB("file.db").make();
ConcurrentMap map = db.hashMap("map").make();

17

Chapter 4 Implementation

Figure 4.1: MAPDB compile dependencies [MDB]

To make it faster we can also use serializer, which indicates the type of key and
value. Without serializer definition MapDB will use slower generic serialization.

DB db = DBMaker.fileDB("file.db").make();
HTreeMap<String, Long> map = db.hashMap("name_of_map")

.keySerializer(Serializer.STRING)

.valueSerializer(Serializer.LONG)

.create();

MapDB utilizes some of the advanced Java Collections variants, such as Concur-
rentNavigableMap. With this type of Map, you can go beyond simple key-value
semantics, as it is also a sorted Map allows you to access data in order, and find values
near a key. MapDB have different Maps system to store data, for example HTreeMap,
BTreeMap and Sorted Table Map. For MapDB: HTreeMap provide HashMap and
HashSet collections, BTreeMap provides TreeMap and TreeSet, SortedTableMap
provides Sorted String Tables. However, SortedTableMap is read-only and does not
support updates. So the solution to update is creating a new Map with Data Pump.
If we compare HTreeMap with BTreeMap, then BTreeMap is better for smaller
keys, such as numbers and short strings. BTreeMap also provides a solution for a
multiple or composite key. We can use Tuple2Serializer(), SerializerArrayTuple() or

18

4.3 LMDB

Figure 4.2: MAPDB test dependencies [MDB]

SerializerArrayDelta() methods. However multiple values with a single key (which
called Multimap) does not work in MapDB. For example, Map<Key,List<Value> >
can be found in Guava or in Eclipse Collections. Closing the DB: DB.close() is one
of the important tasks for MapDB. Because of file corruption MapDB offers WAL.
And if WAL is disabled, then MapDB detects an unclean shutdown and will refuse
to open such corrupted storage. Because of this reason there is strong chance to lose
all of the data. So we decide, to go on with LMDB.

4.3 LMDB

LMDB library is designed around virtual memory, MVCC and SLS concepts. It
is implemented in modern Linux, UNIX, and Windows operating systems. LMDB
makes the entire database file appear in memory. The entire database is exposed in
a memory map, and all data fetches return data directly from the mapped memory.
It gives a Java interface, which is a fast key-value storage library. When an LMDB
database is initially created, it occupies space in virtual memory as is needed to
accommodate the data structure [Mat16]. As more entries are starting to add then
more memory is needed, so the mapped file also becomes bigger. However, when
entries deleted from the database, the space it used is not returned to the operating
system. Which makes the library expensive and also make the systems overall
performance slowdown. The good thing is the memory it is not returned to the
operating system, afterward it is used for storing new entries. LMDB create/open
database as followed

19

Chapter 4 Implementation

Env env = new Env();
env.setMapSize(5 * 1024 * 1024 * 1024);
env.open(System.getProperty("user.dir"));
Database db = env.openDatabase();

LMDB also have dependencies, such as HawtJNI. HawtJNI produces the JNI code,
which needed to implement Java native methods LMDBJNI. For LMDBJNI two pack-
ages are recommended to import: org.fusesource.lmdbjni and org.fusesource.lmdbjni-
.Constants. LMDB is a Btree-based database management library, modeled loosely
on the BerkeleyDB API. The library is extremely simple because it requires no page
caching layer of its own, and it is an extremely high performance and memory-
efficient [HC15]. LMDB offers Transactions (full ACID semantics), Ordered keys
(enabling very fast cursor-based iteration), Memory-mapped files (enabling optimal
OS-level memory management), Zero-copy design (no serialization or memory copy
overhead), Configuration-free (no need to "tune" it to your storage), Instant crash
recovery (no logs, journals or other complexity), Minimal file handle consumption
(just one data file; not 100,000’s like some stores), Freedom from application-side
data caching (memory-mapped files are more efficient) [LMD].
After making dictionaries using both LMDB and MAPDB, we concentrated on how
to find a hyphen in a word is necessary or not and how to guess ligature.

4.4 Dehyphenation of Words

First, for every single input, we check that the word contains a hyphen (-). If the
word contains hyphens, then we follow two steps. In the first step, we check if
the word with a hyphen (-) is available in the dictionary (contain words and their
frequency) or not. If the word is available in the dictionary, we get the frequency of
these word from the dictionary. Then we save the word and the frequency of these
word in a result array. And on the second step, we reduce the hyphen (-) from the
input word to find the input word as a compound word without space and hyphen
in the dictionary and then we search the word without a hyphen is available in the
dictionary or not. If the word available, we get the frequency of these word from
the dictionary. We save the word and the frequency of these word in the result
array. Then, we check the frequency of the word to take our decision that if this
hyphen is necessary or not. If the frequency of a hyphenated word is higher than
without hyphen word, then we give output "true", which means hyphen is necessary
for the input word. And if the frequency without a hyphenated word (which we
say a compound word) is higher than a hyphenated word, we give output "false",
which means hyphen is not mandatory for the input word. From searching if we
only found a hyphenated word or compound word we do not check frequency. If
only a hyphenated word is found, then an output is set to "true", otherwise "false"
if found as a compound word (see Algorithm 3). The important part is if both of

20

4.5 Guessing Ligatures

them (with a hyphen and without a hyphen) are not found in the database, then we
give output "false" because in this case the input word is not a compound word (for
example struc-ture).

Algorithm 3: The procedure for making the decision of hyphenated words.
Input: A list of words
Output: Hyphen is necessary for word or not

1 for read every single inputWord in list do
2 input word contain hyphen (-)
3 if Input word found in DB then
4 frequency = Get the frequency of the input word from DB;
5 result[] = input word, frequency;
6 newInput = reduce hyphen(-) from input word;
7 if newInput found in DB then
8 frequency = Get the frequency of the newInput word from DB;

result[] = newInput, frequency;
9 Check the higher frequency in result[];

10 output: hyphen necessary if input word (with hyphen) have higher
frequency or

11 output: hyphen not necessary if input word (without hyphen) have
higher frequency;

12 else
13 output: hyphen necessary;
14 end
15 else
16 newInput = reduce hyphen(-) from input word;
17 if newInput found in DB then
18 output: hyphen not necessary;
19 else
20 output: hyphen not necessary;
21 end
22 end
23 end

4.5 Guessing Ligatures

Ligatures are letters that have been mashed together as one character. We are going
to discuss how we decided the correct ligatures for a word. The ligatures used most
often are fi and fl, accompanied by their friends ff, ffi, and ffl. However, there is also
some other ligature often used, so we are using 20 kinds of different ligatures for our
implementation. They are aa, ae, ao, au, av, ay, et, ff, ffi, ffl, fi, fl, oe, oo, fs, st,

21

Chapter 4 Implementation

ft, tz, ue, vy. As for the ligatures, pdf shows a special character, hence we use the
English dollar sign ($) for the ligatures. At the first step we try to find out in the
input, there is any dollar available or not. If the input contains a dollar sign, then we
put every single ligature combination one by one instead of dollars and make a word
and try to find out that data is available in the database or not. If it is available, we
keep the word, but a complicated case occurs when there are multiple dollar signs.
For two dollars (when one word contains two dollars) this induces 2n combinations.
So for 20 ligatures, we are using 220 combinations for one word (See Algorithm 4).

Algorithm 4: The procedure for taking the decision of ligatures for the words.
Input: Word with "$"
Output: correct meaningful word

1 for read inputWord do
2 if input word contain special character. e.g. $ then
3 for read one by one ligatures in list do
4 updatedInput = inputWord.replacefirst(, ligaturefromlist)
5 if updatedInput have more then
6 for read one by one ligatures in list do
7 updateInput = updateInput.replace(, ligaturefromlist)
8 search updateInput in DB.
9 If found, output: updateInput

10 end
11 else
12 search updateInput in DB.
13 If found, output: updateInput
14 end
15 end
16 end
17 end

Sometimes for one word can have different kinds of ligature with a different meaning.
For more clarification: uy is a word with special a character ($), trying to find
out the meaning of $ can result to different types of ligatures, e.g. stuffy, fluffly,
flusty, fliffy. Now a problem arises in that, all these words are valid or known to
the English language. However, we expect only one word. For this we approach
to check the frequency of the word. As a result, we take the word which has the
highest frequency (See Algorithm 5).

22

4.5 Guessing Ligatures

Algorithm 5: The procedure for taking the decision of ligatures for the words.
Input: list of Words
Output: Word

1 for read list of Words in entry[] do
2 key1 = entry.getkey();
3 value1 = entry.getvalue();
4 for read list of Words in newEntry[] do
5 key2 = newEntry.getkey();
6 value2 = newEntry.getvalue();
7 if value1 > value2 then
8 value1 = value2;
9 key1 = key2;

10 end
11 end
12 break;
13 Output: key1;
14 end

23

5 Experiments

In this chapter, we show the experimental results for finding fast response time and
good accuracy by using GNU Trove, Java, MapDB and LMDB.
We created three different text files (Text file1, Text file2 and Text file3) the
experiments.
Text file1: contain words and the frequencies of the words (See Chapter: Data
collection and preparation for more detail).
Text file2: contain input words with hyphen and the expected output word per line.
Text file3: contain input words with "$" (the "$" we have used as an illustration for
the ligature) and the expected output word per line.
Text file2 is structured for the experiments of hyphenated words. It contains per
line input words with a hyphen (for example "after-effect") and the expected word
is either "true" or "false". "True" means a hyphen is necessary for the input word
and "false" means a hyphen is not necessary for the input word. For the input word,
we try to find out, compound word that can be hyphenated from a website. We
also try to find from different websites [[Ass],[Oxf]] which have explanation what
kind of compound words cannot be hyphenated. For example, "after-effect" cannot
have hyphen, so we save this word in our input text file and also the expectation of
output "false"(See figure 5.1(b) for more examples). We also collect our data from
arXiv’s (contain 1106572 text files), where we try to find out words with hyphen.
We collected in total 4,987,829 words as an input.
Text file3 is structured for the experiments of guessing ligature. It contains input
words and the expected outputs per line. Each input word contains one or more
ligatures, represented by a "$". The expected output word denotes the same word,
with the correct individual characters that are encoded by the ligature(s). For
example, if we found "against" which have ligatures "st". for those word combinations
we put $, so the word become "again$". In the text file, we save our input word as
"again$" and expectation of output "against" (See figure 5.1(a)). We tried to find our
input word which contains at least one ligature or more from the text file1, which
we gather from different sources (see section: Data collection and preparation). We
collect in total 4,546,311 words as an input.
We performed six experiments for searching words to check if a hyphen is necessary
or not and five experiments for searching words to find ligature. For all experiments
we went through the text files (text file2 and text file3) accordingly. For each (input

24

Experiments

(a) (b)

Figure 5.1: (a) Screenshot from an input text file3 for the experiment of ligature. In
the screenshot first column is input data (the data with special character "$"). We
want to find out in our thesis what is the meaning of "$". The second column is the
data of our expectation (b) Screenshot from an input text2 file for experiment of
the hyphenated word. The first column is the query word, for that word we want
to find out is hyphen necessary or not. The second column is our expectation which
only contains either "true" (Hyphen necessary) or "false" (Hyphen not necessary)

word and expected output word) pair in this file we put the input word into our
algorithms (see section: Dehyphenation of words and section: guessing ligatures into
chapter implementation). While getting the output from algorithms we also tried
to find out the runtime (how much time every single experiment takes to give an
output). And we also compare the output from algorithms with the expected output
to find accuracy (is the number of correct results while comparing the result with
expected output). We decide the accuracy value as follows: For every single output
we got from the algorithm, we compare the result with similarity to our expectation
of output. We count the number of the same result and then we divide the in-total
number of the same result by the total number of searching value (see Algorithm 6).
For every single experiment Java and GNU Trove took times to load data into
memory. GNU Trove took in average (out of six experiments): 42356.268 millisec-
onds to load data into memory from text file1 and 0.037866 milliseconds to check
hyphenated data (data from text file2) into memory and it took in average (out
of five experiments): 42984.998 milliseconds to load data into memory from text
file1 and to find ligature (input data from text file3) 0.08082 milliseconds. On the
other hand, for the same procedure Java took in average (out of six experiments):
39768.402 milliseconds to load data into memory and 0.06821 milliseconds to check
hyphenated data (See table 5.1 for more detail of all experiments result). And it
took in average (out of six experiments): 35257.436 milliseconds to load data into
memory and to find ligature 0.07202 milliseconds (See table 5.2 for more detail of all
experiments result).
However, data cannot be stored permanently in-memory. In this situation primitive
collections (GNU Trove) are failing because every time we have to wait extra time to

25

Chapter 5 Experiments

Algorithm 6: The procedure for finding out the accuracy of the results
Input: Words (want to find out in database) and the expectation of result for

the input
Output: Accuracy

1 while read the input words do
2 if input words found in the database then
3 result = get the word from the database.
4 if (Objects.equal(result, expectation of result) then
5 dataMatch++;
6 end
7 end
8 end
9 accuracy = dataMatch / total no of the input

load data into memory. So, we need something which will store data permanently in
the database and we found MapDB and LMDB from GitHub. GitHub is a website
which brings together the largest community of developers to share and build better
software.
MapDB needs 1,481,728 KB space for making the database (data from text file1).
On the other hand, LMDB needs 531,688 KB space. To check hyphen is necessary
or not MapDB has taken in average (out of six experiments) 1.39908 milliseconds
and LMDB has taken in average 0.2521 milliseconds (See table 5.1 for more detail of
all experiments result). For searching ligature MapDB has taken in average (out
of five experiments) 0.12704 milliseconds and LMDB has taken in average 0.0187
milliseconds (See table 5.2 for more detail of all experiments result). From the
experiments, we figure out LMDB gives faster runtime (only for searching word)
then GNU Trove, Java and MapDB in the case for guessing ligature, but for deciding
hyphenation, Java is faster (only for searching words) than others. We found 86%
accuracy of the result for Java, GNU Trove, MapDB and LMDB with our approach
for deciding whether a hyphen was necessary or not for the words. And 93% accuracy
of the result for Java, GNU Trove, MapDB and LMDB with our approach for
guessing ligature.

26

Experiments

Experiments no runtime for
load data in
memory

runtime for
searching
word

accuracy

GNU
Trove

experiment1 41772.59 0.0162 86%
experiment2 42789.57 0.0396 86%
experiment3 42417.46 0.0386 86%
experiment4 42339.63 0.0476 86%
experiment5 42145.56 0.0403 86%
experiment6 42672.80 0.0449 86%

Java

experiment1 43349.937 0.0917 86%
experiment2 46713.474 0.0864 86%
experiment3 37957.726 0.0597 86%
experiment4 38166.135 0.0661 86%
experiment5 38149.48 0.0627 86%
experiment6 34273.66 0.0427 86%

LMDB

Experiment1 0.2440 86%
experiment2 0.2487 86%
experiment3 0.2523 86%
experiment4 0.2550 86%
experiment5 0.2634 86%
experiment6 0.2492 86%

MapDB

Experiment1 1.8935 86%
experiment2 1.4244 86%
experiment3 1.2437 86%
experiment4 1.2502 86%
experiment5 1.2708 86%
experiment6 1.3119 86%

Table 5.1: Experimental results for dehyphenation of the words. The table shows
six experimental results (for GNU Trove, Java, MapDB and LMDB) of the runtime
(to load data in memory and for searching the words in memory) in millisecond
and accuracy in percentage for deciding hyphenation in word. MapDB and LMDB
save data into database and do not load data into memory every start of the
program, that is why runtime to load data temporary in is empty.

27

Chapter 5 Experiments

Experiments no runtime for
load data in
memory

runtime for
searching
word

accuracy

GNU
Trove

experiment1 41978.30 0.0773 93%
experiment2 41929.21 0.0806 93%
experiment3 44424.39 0.0841 93%
experiment4 44349.46 0.0842 93%
experiment5 42243.63 0.0779 93%

Java

experiment1 34477.15 0.0699 93%
experiment2 34732.23 0.0696 93%
experiment3 34600.07 0.0710 93%
experiment4 34264.89 0.0748 93%
experiment5 38212.84 0.0748 93%

MapDB

experiment1 0.1510 93%
experiment2 0.1516 93%
experiment3 0.1412 93%
experiment4 0.0919 93%
experiment5 0.0995 93%

LMDB

experiment1 0.0225 93%
experiment2 0.0200 93%
experiment3 0.0166 93%
experiment4 0.0170 93%
experiment5 0.0174 93%

Table 5.2: Experimental results for guessing ligature. The table shows five ex-
perimental (for GNU Trove, MapDB, LmDB and Java) results of the runtime
(to load data in memory and for searching the words in memory) in milliseconds
and accuracy in percentage for searching words in the database to find ligature.
MapDB and LMDB do not load data into memory every start of the program,
that is why runtime to load data in memory is empty.

28

Summary & Future Work

In this thesis, we solved two different problems. One of the simulation to decide
hyphenation of the word and another simulation to guess the ligature. In both
simulations, we focused on getting good response time and better quality.
In our experiments, we run the algorithms with fixed number of words. For the
both simulations, we did experiments by different libraries (LmDB and MapDB).
And we found from both cases (dehyphenation of words and guessing ligatures) that
LmDB is faster (in response time) than MapDB. In the algorithms we used our
approach (using frequency) for the words when ambiguity in our results occurred.
With the first ambiguity to decide hyphen ("-") in the word we manage to reach
86% accuracy of the first simulation and the second ambiguity to find out expected
ligature of a word, we were able to get 93% accuracy for the second simulation with
our approach. Considering all these accuracy percentage, we can conclude that our
approach provides an accurate solution to decide hyphenation of the words and
guessing the ligature for words.
In our thesis for the first simulation deciding the hyphen in the words, we took two
words as an input. For example: "go-to", two words is "go" and "to". However,
there are some hyphenated word which contains more than two words. For example:
"Pick-me-up", here we have three words: "pick", "me" and "up". In the future,
dehyphenation of the words can be done for more than two words.

29

List of Abbreviations

1. The Portable Document Format (PDF)
2. Layout-Aware PDF Text Extraction (LA-PDFText)
3. The Lightning Memory-mapped Database (LMDB)
4. Multi-version Concurrency Control (MVCC)
5. Single-Level Store (SLS)
6. Write Ahead Log (WAL)
7. Generation of Bibliographic Data (GROBID)
8. application programming interface (API)
9. Java Development Kit (JDK)
10. Portable Document Format to text converter (PDFtotext)

30

List of Figures

Figure 1.1: Ligature with real meaning 5
Figure 1.2: Example for ligature 6
Figure 1.3: Example for mandatory (or not) hyphen in the words 7
Figure 1.4(a): Dehyphenating the word is challenging 8
Figure 1.4(b): Ambiguities in word with ligature 8
Figure 4.1: MAPDB compile dependencies 18
Figure 4.2: MAPDB test dependencies 19
Figure 5.1(a): Screen shot from an input text file3 for experiment of
ligature

25

Figure 5.1(b): Screen shot from an input text file2 for experiment of the
hyphenated word

25

31

List of Algorithms

Algorithm 1: The procedure for counting frequency of the words. 13
Algorithm 2: The procedure for combining all the text files. 14
Algorithm 3: The procedure for making the decision of hyphenated words. 21
Algorithm 4: The procedure for taking the decision of ligatures for the
words.

22

Algorithm 5: The procedure for taking the decision of ligatures for the
words.

23

Algorithm 6: The procedure for finding out the accuracy of the results. 26

32

Bibliography

[Ass] Association, American P.: when do you need to use a hyphen for
compound words.

[Ber11] Berg, Oyvind R. High precision text extraction from PDF documents.
2011

[BK] Bast, Hannah ; Korzen, Claudius. The Icecite Research Paper Manage-
ment System

[BK17] Bast, Hannah ; Korzen, Claudius. A Benchmark and Evaluation for Text
Extraction from PDF. 2017

[Bro17] Brownlee, Jason: What Is Natural Language Processing? (September
22, 2017)

[CRB] Cartic Ramakrishnan, Eduard H. ; Burns, Gully A. Layout-aware text
extraction from full-text PDF of scientific articles

[dav11] davidg: Cleaning up pdftotext font issues. (2011)
[Fri10] Friedrich, Jöran BeelBela GippAmmar S. SciPlore Xtract: Extracting

Titles from Scientific PDF Documents by Analyzing Style Information (Font
Size). 2010

[HC15] Howard Chu, Symas C. Lightning Memory-Mapped Database Manager
(LMDB). 2015

[Isaun] Isaacson, Cory. MapDB: The Agile Java Data Engine. 2015-Jun
[Isaay] Isaacson, Cory. Introducing MapDB: The agile Java data engine. 2014-

May
[jim17] jimdavies. GNU Trove: High performance collections for Java. 2017
[LMD] Lightning Memory Database (LMDB) for Java: a low latency, transactional,

sorted, embedded, key-value store https://github.com/lmdbjava/lmdbjava.
[Lop09] Lopez, Patrice: GROBID: combining automatic bibliographic data recog-

nition and term extraction for scholarship publications. (2009)
[Map] MAPDB. https://jankotek.gitbooks.io/mapdb/.
[Mat16] Matthew Hardin. Understanding LMDB Database File Sizes and Mem-

ory Utilization. 2016
[MDB] MAPDB. https://mvnrepository.com/artifact/org.mapdb/mapdb/3.0.5.

33

Bibliography

[Muk16] Mukherjee, Mayank Singh; Barnopriyo Barua; Priyank Palod; Manvi
Garg; Sidhartha Satapathy; Samuel Bushi; Kumar Ayush; Krishna Sai
Rohith; Tulasi Gamidi; Pawan Goyal; A. OCR++: A Robust Framework
For Information Extraction from Scholarly Articles. 2016

[ORBR] Oyvind Raddum Berg, Stephan O. ; Read, Jonathon. Towards High-
Quality Text Stream Extraction from PDF

[Oxf] Hyphen (-) https://en.oxforddictionaries.com/punctuation/hyphen.
[Oxf18] Oxford. Oxford Dictionaries. 2018
[PL10] Patrice Lopez, Laurent R.: HUMB: Automatic Key Term Extraction

from Scientific Articlesin GROBID. (2010)
[Sho16] Shor, Peter: English language and usage. (2016)
[Ske09] Skeet, Jon: What is the most efficient Java Collections library? (2009)
[TSF+15] Tkaczyk, Dominika ; Szostek, Pawel ; Fedoryszak, Mateusz ; Den-

dek, Piotr J. ; Bolikowski, Lukasz: CERMINE: automatic extraction of
structured metadata from scientific literature. In: IJDAR 18 (2015), Nr. 4,
S. 317--335

[Vor14] Vorontsov, Mikhail. Trove library: using primitive collections for perfor-
mance. 2014

34

	Contents
	Zusammenfassung
	Abstract
	Declaration
	Acknowledgments
	1 Introduction
	1.1 Motivation and Challenge
	1.2 Approach

	2 Related Work
	3 Data Collection and Preparation
	3.1 Count Frequency of the Words
	3.2 Gather Data

	4 Implementation
	4.1 GNU Trove
	4.2 MapDB
	4.3 LMDB
	4.4 Dehyphenation of Words
	4.5 Guessing Ligatures

	5 Experiments
	Summary & Future Work
	List of Abbreviations
	List of Figures
	List of Algorithms
	Bibliography

