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INTRODUCTION

■ Electricity is bought in the day-ahead market.

■ Balancing supply versus demand leads to highly 

volatile market prices.

■ Predicting the day-ahead price would help 

maximize profit.
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MOTIVATION
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MOTIVATION
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PROBLEM

features are load, prices, wind energy, solar energy 
and weather features  
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Image retrieved from http://www.stat.yale.edu/Courses/1997-98/101/normal.htm



INTRODUCTION
Questions?
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METHODS

■ Data

■ Models
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DATA
- Data for 2 countries is considered: Spain and Switzerland. 

Models are trained separately on each dataset.
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Features  from Entsoe: Features  from Copernicus :

● Load ● Shortwave Radiation

● Generation (Solar and Wind) ● Wind Speed

● Prices ● Air Temperature

● Total Precipitation



DATA- FEATURES AND LABELS
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DATA AUGMENTATION

Data augmentation is done by multiplying the training 
data with 3.5. This  is  used as  additional training data.
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Electricity Prices  in Spain Electricity Prices  in Switzerland

Prices



MODELS

■ Deterministic Models

■ Probabilistic Models
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DETERMINISTIC MODELS

■ Linear model (Baseline)

■ Residual MLP

■ LSTM

■ Transformer
-The first 3 models were used during the master project. 
They are now being used to compare against the 
Transformer model.
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DETERMINISTIC MODELS- LINEAR

■ Used as a baseline
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DETERMINISTIC MODELS- RESIDUAL MLP
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DETERMINISTIC MODELS- LSTM
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DETERMINISTIC MODELS- Transformer

■ State of the art model for many 
NLP tasks

■ We use a transformer encoder-only 
model for forecasting energy prices
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Image retrieved from Vaswani et al. (2017)



DETERMINISTIC MODELS- Transformer
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DETERMINISTIC MODELS- Transformer

Based on the input features to the model, there are 3 
types  of Transformer models  that were trained.

INPUT DATA
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Input features only
Input features and 
position encoding 
(day, month and year)

Input features, 
position encoding 
and weather forecast



Hyperparameters

Regularisation: Early Stopping, Reduce Learning Rate on 
Plateau, Learning Rate Scheduler
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HYPERPARAMETER VALUE

number of hours back 72

number of hours back 
(Transformer) 

168

Initial learning rate 10-4

Optimizer Adam



DETERMINISTIC MODELS- RECAP

There are 4 deterministic models used for energy 
price prediction:

1. Linear Model
2. Res idual MLP
3. LSTM
4. Transformer (3 different models  based on the 

input data)
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MODELS

■ Deterministic Models

■ Probabilistic Models
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PROBABILISTIC MODEL
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Image retrieved from http://www.stat.yale.edu/Courses/1997-98/101/normal.htm



PROBABILISTIC MODEL
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PROBABILISTIC MODEL
3 distributions were considered while training the 
probabilis tic models :

27

Normal 
Distribution

Lognormal 
Distribution

Gamma
Distribution

Learnable 
parameters :
● Mean
● Standard 

Deviation

Learnable 
parameters :
● Mean
● Standard 

Deviation

Learnable 
parameters :
● Concentration
● Rate



METHODS
Questions?
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EVALUATION

■ Deterministic Models

■ Probabilistic Models
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EVALUATION- DETERMINISTIC 
MODELS
Evaluation Metrics:

■ Mean Absolute Error

■ Root Mean Squared Error
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EVALUATION- DETERMINISTIC 
MODELSRESULTS - Spain Dataset

RESULTS - Switzerland Dataset
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MODEL MAE (€/MWh) RMSE (€/MWh)

Linear (Baseline) 47.98 59.63

Residual MLP 13.42 19.17

LSTM 13.18 19.22

Transformer 9.75 15.09

MODEL MAE (€/MWh) RMSE (€/MWh)

Linear (Baseline) 85.9 106.92

Residual MLP 22.64 32.18

LSTM 21.71 31.4

Transformer 17.29 26.05

Mean price in tes t 
data: 135.3 €/MWh

Mean price in tes t 
data: 164.5 €/MWh



EVALUATION- TRANSFORMER

RESULTS - Input Features  Dependency (Spain Dataset)

RESULTS - Input Features  Dependency (Switzerland Dataset)
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INPUT DATA MAE (€/MWh) RMSE (€/MWh)

Only Features 9.75 15.09

Features+Position Encoding 11.6 16.75

Features+Position Encoding+Weather 
Forecast

11.64 17.02

INPUT DATA MAE (€/MWh) RMSE (€/MWh)

Only Features 17.29 26.05

Features+Position Encoding 17.91 27.07

Features+Position Encoding+Weather 
Forecast

19.1 28.45



EVALUATION- TRAINING TIMES
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MODEL TRAINING TIME

Linear 4 minutes and 20 seconds

Residual MLP 27 minutes and 5 seconds

LSTM 150 minutes and 25 seconds

Transformer 12 minutes and 30 seconds



TRANSFORMER- PREDICTION GRAPHS
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EVALUATION

■ Deterministic Models

■ Probabilistic Models
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EVALUATION- PROBABILISTIC MODELS

Evaluation Metrics: 
1) Quantile Difference
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EVALUATION- PROBABILISTIC MODELS
Evaluation Metrics: 
2) CRPS Score

■ Continuous  Ranked Probability Score

■ It measures  the squared dis tance between the predicted 
dis tribution and the target.
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Image retrieved from https://www.mathworks.com/matlabcentral/fileexchange/47807-continuous-
rank-probability-score



EVALUATION- PROBABILISTIC MODELS

Evaluation Metrics:

3) Log Likelihood
■ Logarithm of the probability dens ity function of the 

observed data
■ The higher log likelihood value, the better the 

model is  at fitting the data
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EVALUATION- PROBABILISTIC MODELS

Results- Res idual MLP (Spain)

Determinis tic  Res idual MLP: MAE = 13.42
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DISTRIBUTION Quantile 
Difference 
(80%)

CRPS Log Likelihood MAE

Normal 50.49 8.44 0.67 8.76

Log-normal 48.81 10.92 -0.67 10.17

Gamma 63.96 12.46 0.68 9.55



EVALUATION- PROBABILISTIC MODELS

Results- Res idual MLP (Spain)

Determinis tic  Trans former: MAE = 9.75
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DISTRIBUTION Quantile 
Difference 
(80%)

CRPS Log Likelihood MAE

Normal 50.49 8.44 0.67 10.85

Log-normal 48.81 10.92 -0.67 12.44

Gamma 63.96 12.46 0.68 12.47

Normal 
(Transformer)

48.81 12.39 0.27 15.96



RESIDUAL MLP (NORMAL DISTRIBUTION)- PREDICTION 
GRAPHS
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CONCLUSION
■ Transformer is successful in time series forecasting.

■ Converting a Residual MLP to a probabilistic model 
helped improve prediction accuracy, but this was 
not the case for the Transformer.

■ Probabilistic predictions help in understanding 
uncertainty of the model.
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Thank You!
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