Energy Price Forecasting with Uncertainty Estimation

Master Thesis Presentation by Sneha Senthil

Chair of Algorithms and Data Structures University of Freiburg

Albert-Ludwigs-University of Freiburg

22/09/2022

REIBURG

CONTENTS

1. Introduction

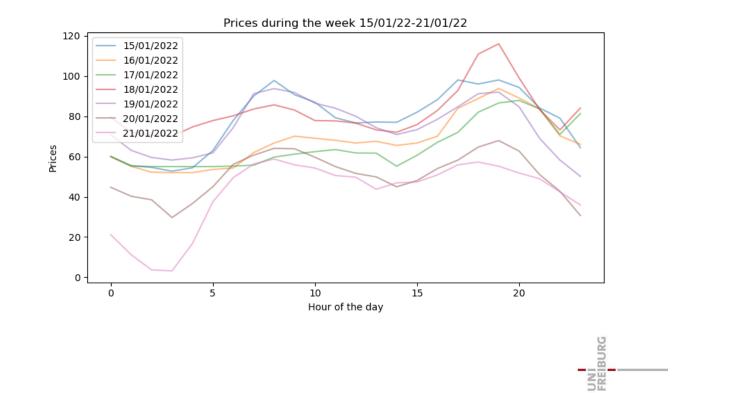
2. Solution

3. Evaluation

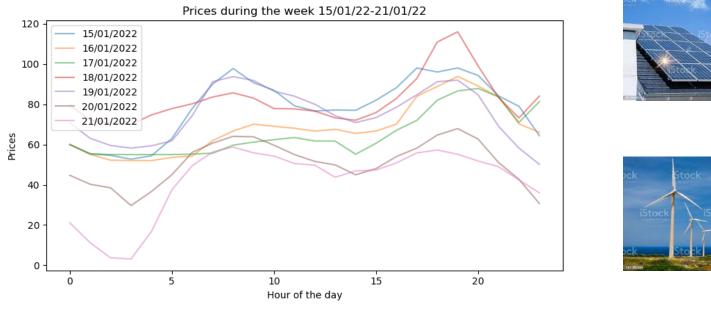
INTRODUCTION

- . Electricity is bought in the day-ahead market.
- Balancing supply versus demand leads to highly volatile market prices.
- Predicting the day-ahead price would help maximize profit.

MOTIVATION



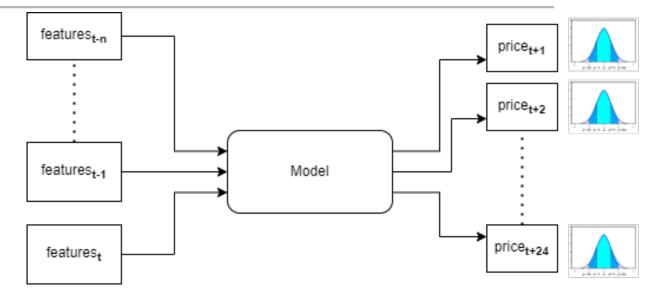
MOTIVATION



5

UNI FREIBURG

PROBLEM



features are load, prices, wind energy, solar energy and weather features

Image retrieved from http://www.stat.yale.edu/Courses/1997-98/101/normal.htm

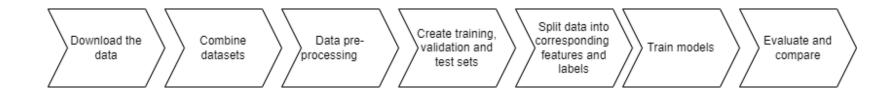
INTRODUCTION

Questions?

CONTENTS

- 1. Introduction
- 2. Methods
- 3. Evaluation

Approach



METHODS

- . Data
- . Models

DATA

Data for 2 countries is considered: **Spain** and **Switzerland**. Models are trained separately on each dataset.

Features from Entsoe:

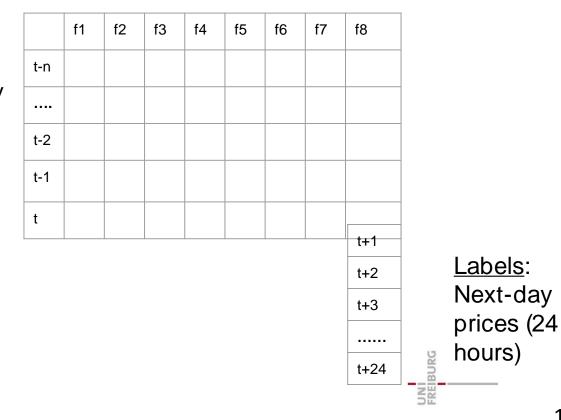
- Load
- Generation (Solar and Wind)
- Prices

Features from Copernicus:

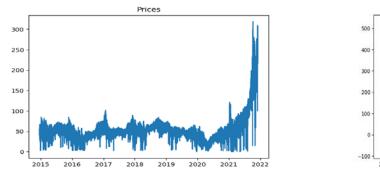
- Shortwave Radiation
- Wind Speed
- Air Temperature
- Total Precipitation

DATA- FEATURES AND LABELS

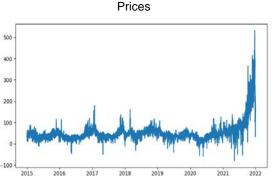
<u>Features</u>: Hourly historical features, going back n-hours



DATA AUGMENTATION



Electricity Prices in Spain



Electricity Prices in Switzerland

FREI

Data augmentation is done by multiplying the training data with 3.5. This is used as additional training data.

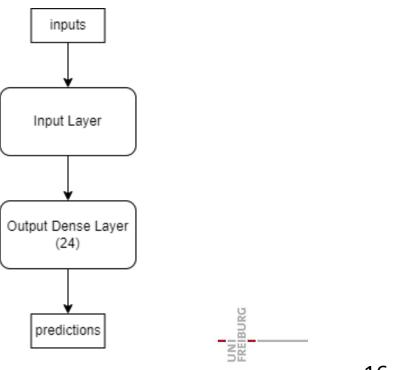
- . Deterministic Models
- . Probabilistic Models

DETERMINISTIC MODELS

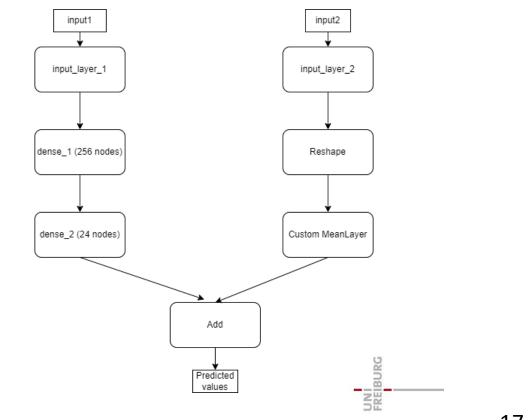
- . Linear model (Baseline)
- . Residual MLP
- . LSTM
- . Transformer

-The first 3 models were used during the master project. They are now being used to compare against the Transformer model.

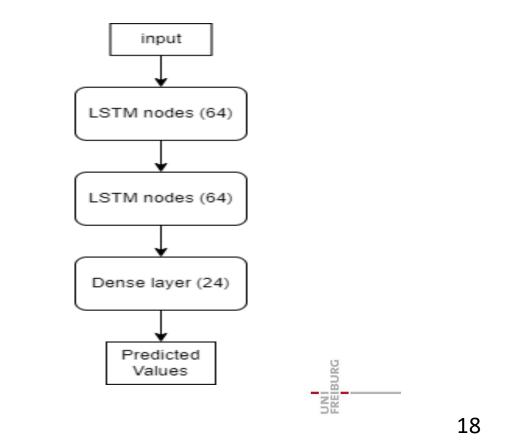
DETERMINISTIC MODELS- LINEAR



DETERMINISTIC MODELS- RESIDUAL MLP



DETERMINISTIC MODELS- LSTM



DETERMINISTIC MODELS- Transformer

. State of the art model for many NLP tasks

• We use a transformer encoder-only model for forecasting energy prices

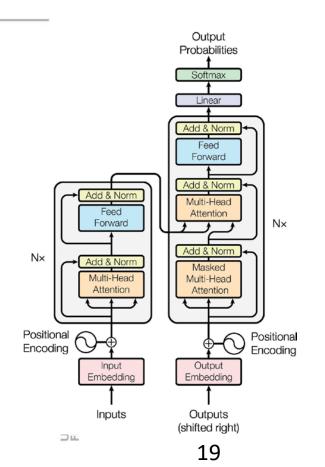
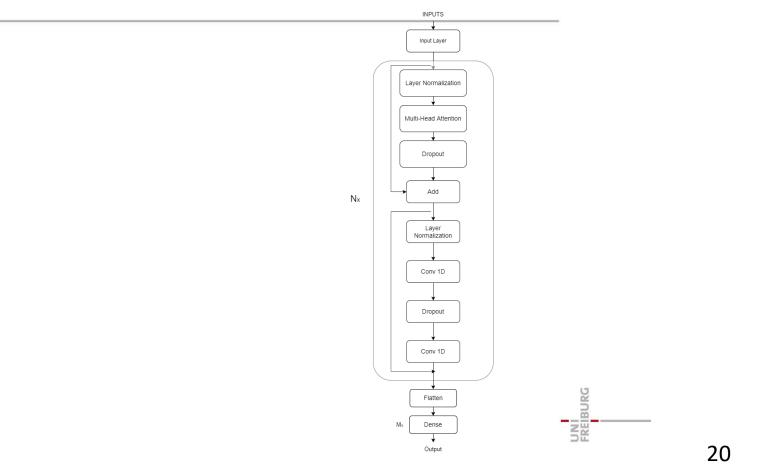


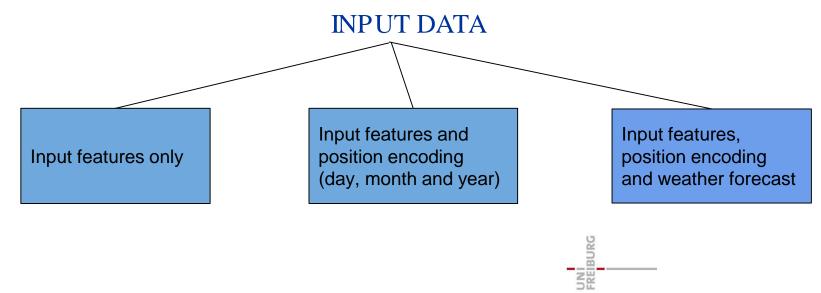
Image retrieved from Vaswani et al. (2017)

DETERMINISTIC MODELS- Transformer



DETERMINISTIC MODELS- Transformer

Based on the input features to the model, there are 3 types of Transformer models that were trained.



Hyperparameters

HYPERPARAMETER	VALUE
number of hours back	72
number of hours back (Transformer)	168
Initial learning rate	10-4
Optimizer	Adam

Regularisation: Early Stopping, Reduce Learning Rate on Plateau, Learning Rate Scheduler

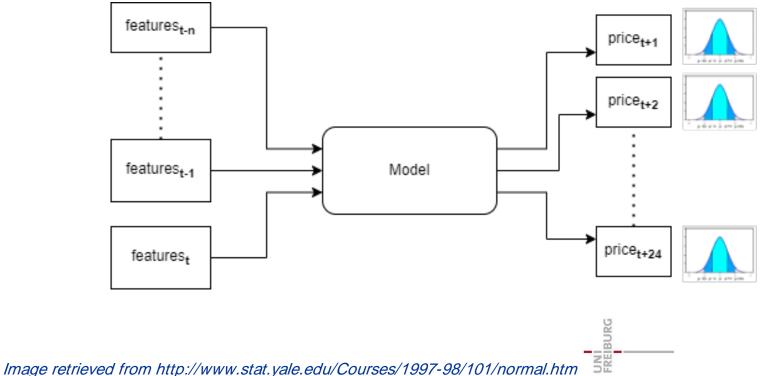
DETERMINISTIC MODELS- RECAP

There are 4 deterministic models used for energy price prediction:

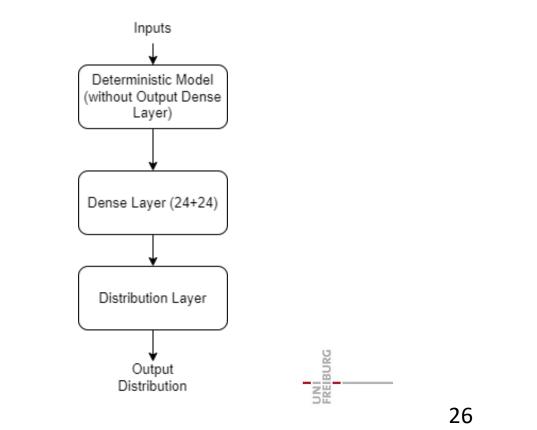
- 1. Linear Model
- 2. Residual MLP
- 3. LSTM
- 4. Transformer (3 different models based on the input data)

- . Deterministic Models
- . Probabilistic Models

PROBABILISTIC MODEL

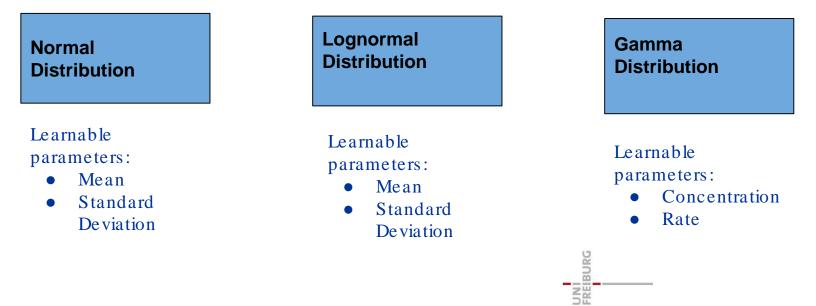


PROBABILISTIC MODEL



PROBABILISTIC MODEL

3 distributions were considered while training the probabilistic models:



METHODS

Questions?

CONTENTS

- 1. Introduction
- 2. Solution
- 3. Evaluation

EVALUATION

- . Deterministic Models
- . Probabilistic Models

EVALUATION- DETERMINISTIC

MODELS Evaluation Metrics:

. Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

. Root Mean Squared Error

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

EVALUATION- DETERMINISTIC

MODELS RESULTS - Spain Dataset

MODEL	MAE (∉ MWh)	RMSE (∉ MWh)
Linear (Baseline)	47.98	59.63
Residual MLP	13.42	19.17
LSTM	13.18	19.22
Transformer	9.75	15.09

Mean price in test data: 135.3 €/MWh

RESULTS - Switzerland Dataset

MODEL	MAE (∉ MWh)	RMSE (∉ MWh)	
Linear (Baseline)	85.9	106.92	
Residual MLP	22.64	32.18	
LSTM	21.71	31.4	
Transformer	17.29	26.05	

Mean price in test data: 164.5 €/MWh

EVALUATION- TRANSFORMER

RESULTS - Input Features Dependency (Spain Dataset)

INPUT DATA	MAE (∉ MWh)	RMSE (€ MWh)
Only Features	9.75	15.09
Features+Position Encoding	11.6	16.75
Features+Position Encoding+Weather Forecast	11.64	17.02

RESULTS - Input Features Dependency (Switzerland Dataset)

INPUT DATA	MAE (∉ MWh)	RMSE (€ MWh)
Only Features	17.29	26.05
Features+Position Encoding	17.91	27.07
Features+Position Encoding+Weather Forecast	19.1	28.45

EVALUATION- TRAINING TIMES

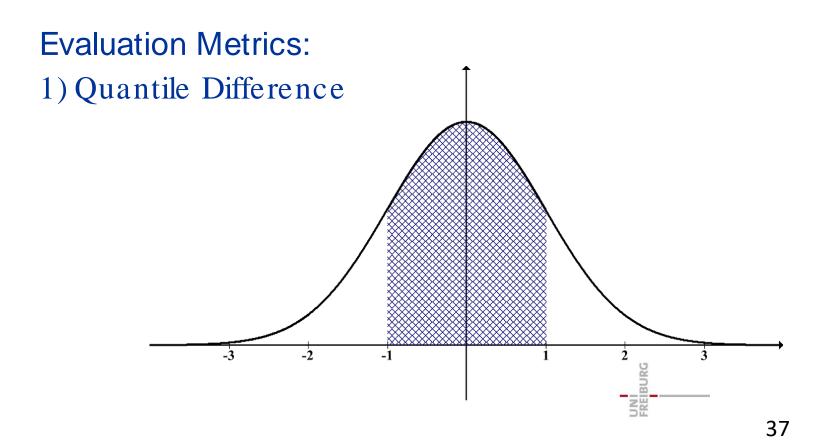
MODEL	TRAINING TIME
Linear	4 minutes and 20 seconds
Residual MLP	27 minutes and 5 seconds
LSTM	150 minutes and 25 seconds
Transformer	12 minutes and 30 seconds

TRANSFORMER- PREDICTION GRAPHS



EVALUATION

- . Deterministic Models
- . Probabilistic Models



Evaluation Metrics: 2) CRPS Score

- . Continuous Ranked Probability Score
- . It measures the squared distance between the predicted distribution and the target.

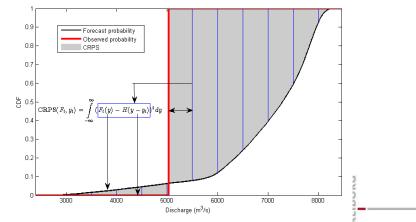


Image retrieved from https://www.mathworks.com/matlabcentral/fileexchange/47807-continuous- - rank-probability-score

Evaluation Metrics:

3) Log Likelihood

- Logarithm of the probability density function of the observed data
- The higher log likelihood value, the better the model is at fitting the data

Results- Residual MLP (Spain)

DISTRIBUTION	Quantile Difference (80%)	CRPS	Log Likelihood	MAE
Normal	50.49	8.44	0.67	8.76
Log-normal	48.81	10.92	-0.67	10.17
Gamma	63.96	12.46	0.68	9.55

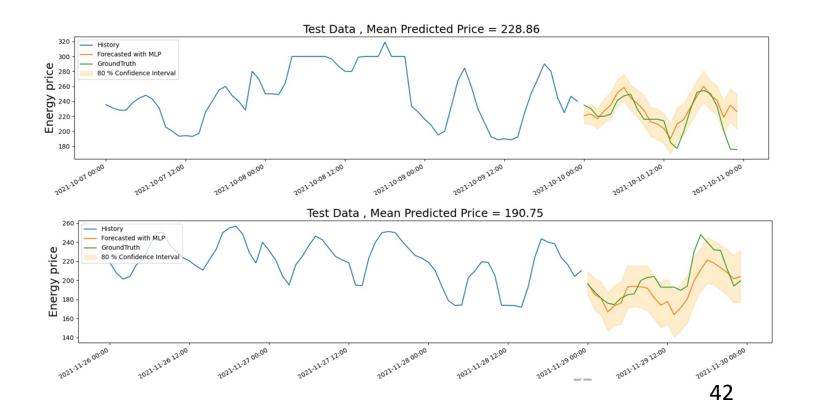
Deterministic Residual MLP: MAE = 13.42

Results- Residual MLP (Spain)

DISTRIBUTION	Quantile Difference (80%)	CRPS	Log Likelihood	MAE
Normal	50.49	8.44	0.67	10.85
Log-normal	48.81	10.92	-0.67	12.44
Gamma	63.96	12.46	0.68	12.47
Normal (Transformer)	48.81	12.39	0.27	15.96

Deterministic Transformer: MAE = 9.75

RESIDUAL MLP (NORMAL DISTRIBUTION)- PREDICTION GRAPHS



CONCLUSION

Transformer is successful in time series forecasting.

 Converting a Residual MLP to a probabilistic model helped improve prediction accuracy, but this was not the case for the Transformer.

 Probabilistic predictions help in understanding uncertainty of the model.

Thank You!

