Transformers and Graph Neural Networks for Spell Checking Master's thesis presentation

Sebastian Walter

June 27, 2022

Transformers and GNNs for Spell Checking

- Correct human written text
 - Documents
 - Email
- Preprocessing or postprocessing step for other NLP systems
 - Before using search engine
 - After using OCR system

- Spelling error detection
 - Assign to each word in a text either 0 or 1
 - This ahs an eror! \rightarrow (0, 1, 0, 1)

- Spelling error detection
 - Assign to each word in a text either 0 or 1
 - This ahs an eror! \rightarrow (0, 1, 0, 1)
- Spelling error correction
 - Given a misspelled text S predict the correct text S'
 - ► This ahs an eror! → This has an error!

- Spelling error detection
 - Assign to each word in a text either 0 or 1
 - This ahs an eror! \rightarrow (0, 1, 0, 1)
- Spelling error correction
 - Given a misspelled text S predict the correct text S'
 - This ahs an eror! \rightarrow This has an error!

No whitespace errors

For now we assume that the input text contains no whitespace errors.

Problem

Questions?

- Wikidump / Bookcorpus
 - Paragraphs
 - Based on Wikipedia dump and Bookcorpus
 - ► ~102M samples

- Wikidump / Bookcorpus
 - Paragraphs
 - Based on Wikipedia dump and Bookcorpus
 - ~102M samples
- Neuspell
 - Sentences
 - Based on One Billion Word dataset
 - ~4M samples
 - Finetuning

Main components

- Subword-level input tokenization
- Parallel encoder architectures for fast inference
- Word features
 - \rightarrow Strong signals for presence or absence of spelling errors
 - word in dictionary
 - word is punctuation
 - word is stop word

- 1 Transformer⁺
 - Backbone: Transformer encoder
 - Procedure:
 - 1 Encode subword sequence using transformer encoder
 - 2 Aggregate subword representations to word representations
 - 3 Add word features to word representations
 - 4 Aggregate and classify word representations

Approach: Spelling error detection

2 GNN^+

- Backbone: Attentional graph neural network
- Procedure:
 - 1 Build word graph from subword sequence
 - 2 Encode word graph using graph neural network
 - 3 Aggregate and classify word node representations
- + Learn word and subword representations simultaneously
- $+\,$ Add word features directly into the graph from the beginning

Approach: Spelling error detection

2 GNN^+

- Backbone: Attentional graph neural network
- Procedure:
 - 1 Build word graph from subword sequence
 - 2 Encode word graph using graph neural network
 - 3 Aggregate and classify word node representations
- + Learn word and subword representations simultaneously
- $+\,$ Add word features directly into the graph from the beginning

GNN and Transformer

Variants without word features for comparison

Main components

- Subword-level input tokenization
- Autoregressive decoder architectures for open vocabulary correction
 - \rightarrow Subword-level output tokenization

1 Transformer

- Backbone: Transformer encoder and decoder
- Procedure:
 - 1 Encode input subword sequence using Transformer encoder
 - 2 Autoregressively decode output subword sequence using Transformer decoder

2 Transformer Word

- Backbone: Transformer encoder and decoder
- Procedure:
 - 1 Encode input subword sequence using Transformer encoder
 - 2 Split subword representations into word groups
 - 3 Autoregressively decode each word group separately by sharing the Transformer decoder
- + Shared decoder allows decoding all words in parallel

Pipeline

- 1 Use detection models to identify spelling errors
- 2 Apply correction models only to detected spelling errors

Pipeline

- 1 Use detection models to identify spelling errors
- 2 Apply correction models only to detected spelling errors

Goal

- Improve runtime
- Reduce number of wrong corrections

Questions?

- Neuspell
 - ► 4 benchmarks from literature (Jayanthi, Pruthi, and Neubig, 2020)
 - Spelling errors extracted from real-world GEC data

- Neuspell
 - 4 benchmarks from literature (Jayanthi, Pruthi, and Neubig, 2020)
 - Spelling errors extracted from real-world GEC data
- Our benchmarks
 - 4 benchmarks
 - Artificial and realistic misspellings into both Wikidump and Bookcorpus

Evaluation: Baselines

- Classical methods
 - Jamspell (n-gram language model)
 - <u>►</u> ...

Evaluation: Baselines

- Classical methods
 - Jamspell (n-gram language model)
 - **۱**...
- Deep learning methods
 - Neuspell Bert
 - Bert encoder with fixed output vocabulary classifier
 - GECToR

Bert/XLNet-based grammatical error correction model by Grammarly

NLMSpell

Language model to score candidate corrections

Google

Google Docs' integrated spell checker

► GPT-3

Large language model with input prompt Fix the spelling mistakes: <text> [<output>]

F_1 score

- Sets:
 - TP: Word with error predicted to be a spelling error
 - ▶ FP: Word without error predicted to be a spelling error
 - FN: Word with error predicted to not be a spelling error

• Precision
$$= \frac{TP}{TP + FP}$$

• Recall $= \frac{TP}{TP + FP}$

•
$$F_1 = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

	neuspell bea60k			neuspell jfleg		
	F ₁	Precision	Recall	F_1	Precision	Recall
out of dictionary	91.61	86.70	97.11	87.48	94.23	81.63
jamspell	90.68	91.73	89.65	88.36	96.85	81.23
gector	67.08	58.41	78.78	57.74	49.53	69.23
neuspell bert	88.65	84.23	93.56	88.37	86.88	89.91
ours	92.02	88.86	95.42	88.23	88.91	87.56

Neuspell benchmarks

	bookcorpus			bookcorpus	bookcorpus		wikidump			wikidump		
	artificial			realistic			artificial			realistic		
	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall
out of dictionary	82.03	92.04	73.99	79.88	89.32	72.24	80.93	84.56	77.61	76.64	79.54	73.95
jamspell	83.70	95.62	74.42	76.71	93.85	64.86	84.29	93.30	76.86	76.92	90.33	66.98
gector	58.01	76.73	46.63	63.38	77.17	53.77	50.18	79.34	36.70	59.78	80.85	47.42
neuspell bert	76.36	94.40	64.11	91.50	94.95	88.30	71.84	92.73	58.63	89.49	93.74	85.61
ours	96.62	97.41	95.84	95.36	96.56	94.20	95.52	97.20	93.90	95.61	96.81	94.45

Our benchmarks

• On 5 / 6 benchmarks our best model performs best overall

- $\bullet~$ On 5 / 6 benchmarks our best model performs best overall
- GNN outperforms Transformer on 6 / 6 benchmarks \rightarrow F₁ 0.53 p.p. higher on average

- On 5 / 6 benchmarks our best model performs best overall
- GNN outperforms Transformer on 6 / 6 benchmarks \rightarrow F₁ 0.53 p.p. higher on average
- GNN+ outperforms Transformer^+ on 3 / 6 benchmarks \rightarrow F1 0.14 p.p. higher on average

- On 5 / 6 benchmarks our best model performs best overall
- GNN outperforms Transformer on 6 / 6 benchmarks \rightarrow F₁ 0.53 p.p. higher on average
- GNN+ outperforms Transformer^+ on 3 / 6 benchmarks \rightarrow F1 0.14 p.p. higher on average
- On 6 / 6 benchmarks our best model was using word features

Evaluation: Spelling error correction metric

 F_1 score (following Hertel, 2019)

- Sets:
 - ► TP: Word with error properly corrected
 - FP: Word without error changed or word with error not properly corrected
 - FN: Word with error not corrected

• Precision =
$$\frac{TP}{TP + FP}$$

• Recall =
$$\frac{TP}{TP + FP}$$

•
$$F_1 = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

	neuspell			neuspell			neuspell			neuspell		
	bea322			bea4660			bea60k			jfleg		
	F_1	Precision	Recall	F_1	Precision	Recall	F_1	Precision	Recall	F ₁	Precision	Recall
jamspell	53.74	55.23	52.32	71.70	70.53	72.91	69.87	70.67	69.08	81.54	89.32	75.01
gector	55.49	49.88	62.54	70.34	58.78	87.54	60.31	53.33	69.39	48.29	42.97	55.12
neuspell bert	65.36	59.54	72.45	85.14	78.77	92.61	74.73	71.00	78.87	83.03	81.60	84.52
ours	68.48	66.76	70.28	85.75	82.27	89.55	77.43	78.74	76.16	85.92	86.80	85.06

Neuspell benchmarks

	bookcorpus		bookcorpus				wikidump			wikidump		
	artificial			realistic			artificial			realistic		
	F1	Precision	Recall	F1	Precision	Recall	F_1	Precision	Recall	F_1	Precision	Recall
jamspell	47.70	54.48	42.41	48.03	58.76	40.61	49.52	54.81	45.16	46.57	54.69	40.55
gector	34.65	49.46	26.67	33.71	44.60	27.10	35.12	59.03	25.00	35.97	52.52	27.35
neuspell bert	56.79	70.21	47.69	61.82	64.15	59.66	56.01	72.29	45.71	57.67	60.41	55.17
ours	87.64	89.50	85.86	72.69	75.45	70.13	88.26	89.26	87.29	75.10	77.89	72.51

Our benchmarks

	combined neuspell			combined wikibook		
	F1	Precision	Recall	F_1	Precision	Recall
gpt3	89.50	89.40	89.60	74.13	88.87	63.59
nlmspell	72.68	68.39	77.54	78.86	80.38	77.39
google	71.61	64.05	81.19	58.74	72.78	49.24
ours	81.10	80.35	81.86	80.28	81.21	79.37

Combined benchmarks

	combined neuspell			combined wikibook		
	F_1	Precision	Recall	F_1	Precision	Recall
gpt3	89.50	89.40	89.60	74.13	88.87	63.59
nlmspell	72.68	68.39	77.54	78.86	80.38	77.39
google	71.61	64.05	81.19	58.74	72.78	49.24
ours	81.10	80.35	81.86	80.28	81.21	79.37

Combined benchmarks

 $\bullet~$ On 9 / 10 benchmarks our best model performs best overall

 $\bullet\,$ On 7 / 10 benchmarks our best model is a pipeline

Task	Model	Runtime in s	kB/s
SED	gnn ⁺	6.8	25.8
SED	gnn	6.6	26.4
SED	transformer ⁺	3.7	47.6
SED	transformer	3.5	50.6
SEC	transformer	65.1	2.7
$SED\toSEC$	$gnn^+ o transformer$	47.9	3.7
$SED\toSEC$	${\sf transformer}^+ o {\sf transformer}$	45.9	3.8
SEC	transformer word	28.0	6.3
SEC	neuspell bert	18.1	9.6
$SED\toSEC$	$gnn^+ o transformer$ word	16.4	10.7
$SED\toSEC$	$transformer^+ o transformer$ word	13.3	13.3

Runtimes on runtime benchmark with 1600 samples or 231kB of text

June 27, 2022

Task	Model	Runtime in s	kB/s
SED	gnn ⁺	6.8	25.8
SED	gnn	6.6	26.4
SED	transformer ⁺	3.7	47.6
SED	transformer	3.5	50.6
SEC	transformer	65.1	2.7
$SED\toSEC$	$gnn^+ o transformer$	47.9	3.7
$SED\toSEC$	${\sf transformer}^+ o {\sf transformer}$	45.9	3.8
SEC	transformer word	28.0	6.3
SEC	neuspell bert	18.1	9.6
$SED\toSEC$	$gnn^+ o transformer$ word	16.4	10.7
$SED\toSEC$	$transformer^+ o transformer$ word	13.3	13.3

Runtimes on runtime benchmark with 1600 samples or 231kB of text

• Models with word features are marginally slower than those without

Task	Model	Runtime in s	kB/s
SED	gnn ⁺	6.8	25.8
SED	gnn	6.6	26.4
SED	transformer ⁺	3.7	47.6
SED	transformer	3.5	50.6
SEC	transformer	65.1	2.7
$SED\toSEC$	$gnn^+ o transformer$	47.9	3.7
$SED\toSEC$	${\sf transformer}^+ o {\sf transformer}$	45.9	3.8
SEC	transformer word	28.0	6.3
SEC	neuspell bert	18.1	9.6
$SED\toSEC$	$gnn^+ o transformer$ word	16.4	10.7
$SED\toSEC$	$transformer^+ o transformer$ word	13.3	13.3

Runtimes on runtime benchmark with 1600 samples or 231kB of text

- Models with word features are marginally slower than those without
- Transformer Word is faster than regular Transformer

Task	Model	Runtime in s	kB/s
SED	gnn ⁺	6.8	25.8
SED	gnn	6.6	26.4
SED	transformer ⁺	3.7	47.6
SED	transformer	3.5	50.6
SEC	transformer	65.1	2.7
$SED\toSEC$	$gnn^+ o transformer$	47.9	3.7
$SED\toSEC$	${\sf transformer}^+ o {\sf transformer}$	45.9	3.8
SEC	transformer word	28.0	6.3
SEC	neuspell bert	18.1	9.6
$SED\toSEC$	$gnn^+ o transformer$ word	16.4	10.7
$SED\toSEC$	$transformer^+ o transformer$ word	13.3	13.3

Runtimes on runtime benchmark with 1600 samples or 231kB of text

- Models with word features are marginally slower than those without
- Transformer Word is faster than regular Transformer
- Pipelines result in overall faster inference

Key takeaways

- Deep learning methods > Classical methods
- GNNs are competitive to Transformers for spelling error detection
- Adding word features improves spelling error detection
- Spelling error detection can improve spelling error correction in runtime and performance

Evaluation

Questions?

- Hertel, Matthias (Dec. 6, 2019). Neural Language Models for Spelling Correction.
- Jayanthi, Sai Muralidhar, Danish Pruthi, and Graham Neubig (Oct. 2020). "NeuSpell: A Neural Spelling Correction Toolkit". In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Online: Association for Computational Linguistics, pp. 158–164. DOI: 10.18653/v1/2020.emnlp-demos.21.

Appendix: Misspellings

Artificial

- Randomly apply character transformations to word
- Transformations:
 - ★ Insertion (word \rightarrow wordi)
 - ★ Deletion (word \rightarrow wrd)
 - ★ Transposition (word \rightarrow wrod)
 - ★ Replacement (word \rightarrow worx)
- Realistic:
 - Randomly replace a words with misspellings from a confusion set
 - Build word confusion sets from a variety of different sources (e.g. Internet, spell checker suggestions, ...): 2,303,867 misspellings for 119,725 words

Appendix: Token graph

Input: Corect this sentesne!

Appendix: Token graph neighborhood

Input: Corect this sentesne!

Transformers and GNNs for Spell Checking

Appendix: Word graph

Appendix: Word graph neighborhood

Appendix: Transformer⁺

Transformers and GNNs for Spell Checking

Appendix: GNN⁺

Transformers and GNNs for Spell Checking

- Improved detection rates (recall)
- Largest improvement for realistic nonword errors
 - And it's creating a lot of adict people, called "shopalcoholics".
 - So in the last century our daily life has changed dramandesly and we have become lazy and our life unpersonal, fast and unromantic.
 - The job was hard, but, from my point of view, it was worthful.

Appendix: Transformer

Appendix: Transformer Word

Benchmark	#Sequences	#Words	Sequence length	Word errors	Real-word errors	Nonword errors
bookcorpus artificial	10,000	407,347	193.8	83,124 (20.4%)	19,346 (23.3%)	63,778 (76.7%)
bookcorpus realistic	10,000	407,074	194.3	82,855 (20.4%)	22,868 (27.6%)	59,987 (72.4%)
neuspell bea322	322	5,275	75.9	323 (6.1%)	13 (4.0%)	310 (96.0%)
neuspell bea4660	4,660	136,475	143.4	5,714 (4.2%)	547 (9.6%)	5,167 (90.4%)
neuspell bea60k	63,044	997,600	75.5	70,064 (7.0%)	1,970 (2.8%)	68,094 (97.2%)
neuspell jfleg	1,601	33,414	105.6	2,041 (6.1%)	374 (18.3%)	1,667 (81.7%)
wikidump artificial	10,000	365,829	196.0	73,925 (20.2%)	14,783 (20.0%)	59,142 (80.0%)
wikidump realistic	10,000	365,753	196.2	73,390 (20.1%)	18,760 (25.6%)	54,630 (74.4%)

Word-level spelling error detection and spelling error correction

Input: This sentesne has an eror.

Tokenization: (*This*, *#sent*, *es*, *ne*, *#has*, *#an*, *#er*, *or*, .) Detections: (0, 1, 0, 0, 1)

- Transformer
 - Assume parts of input with no error are correct
 - Decode input prefix in order until next whitespace
 - 1 (This) \rightarrow (This, #sentence)
 - 2 (This, #sentence, #has, #an)
 - \rightarrow (This, #sentence, #has, #an, #error, .)
- Transformer Word
 - Correct word groups with spelling errors in parallel

 $(\#sent, es, ne) \rightarrow (\#sentence)$ $(\#er, or, .) \rightarrow (\#error, .)$

Tokenization repair

Task of correcting all whitespace errors in text with or without spelling errors. Can be efficiently handled using character-level Transformer encoder models.

- 1 Tokenization repair as separate preprocessing step
- 2 Tokenization repair as feature extraction backbone
- 3 Sequence-to-sequence transformer to correct whitespace and spelling errors

Appendix: Tokenization repair⁺

Appendix: Tokenization repair⁺⁺

Transformers and GNNs for Spell Checking

Appendix: Whitespace benchmarks

	whitespace high-high			whitespace high-low			whitespace low-high			whitespace low-low		
	F ₁	Precision	Recall	F1	Precision	Recall	F ₁	Precision	Recall	F_1	Precision	Recall
transformer with tokenization repair	88.95	87.17	90.81	85.38	84.25	86.55	94.30	93.09	95.55	91.53	89.35	93.82
transformer with tokenization repairbeam	89.28	87.54	91.10	85.93	84.85	87.04	94.44	93.27	95.63	91.77	89.64	94.00
tokenization repair++	85.90	84.14	87.73	83.64	83.34	83.95	94.08	93.10	95.09	92.81	91.92	93.71
tokenization repair hear	86.02	84.29	87.83	83.85	83.56	84.14	94.08	93.09	95.09	92.88	91.99	93.80
eo medium \rightarrow transformer ⁺ \rightarrow transformer	85.71	83.84	87.66	83.98	83.88	84.09	94.03	93.05	95.02	92.67	91.72	93.63
eo medium $\rightarrow {\rm transformer}^+ \rightarrow {\rm transformer}$ word	85.70	83.89	87.58	83.84	83.62	84.06	93.96	92.95	95.00	92.63	91.69	93.59
tokenization repair $^+ \rightarrow$ transformer	85.89	84.09	87.77	84.22	84.21	84.23	94.06	93.10	95.05	92.74	91.94	93.55
tokenization repair \rightarrow transformer word	85.85	84.09	87.69	84.05	83.90	84.19	94.02	93.04	95.03	92.73	91.95	93.53

Whitespace benchmarks: F1

	whitespace		whitespace		whitespace		whitespace	
	high-high		high-low		low-high		low-low	
	Improvement	MNED	Improvement	MNED	Improvement	MNED	Improvement	MNED
do nothing	-	0.1885	-	0.0900	-	0.1496	-	0.0464
transformer with tokenization repair	-84.0%	0.0301	-69.2%	0.0277	-91.8%	0.0123	-77.8%	0.0103
transformer with tokenization repairbeam	-84.7%	0.0288	-70.9%	0.0262	-92.2%	0.0116	-79.0%	0.0098
tokenization repair++	-78.9%	0.0399	-66.9%	0.0297	-91.1%	0.0133	-78.2%	0.0101
tokenization repair ++	-79.1%	0.0395	-67.4%	0.0293	-91.1%	0.0133	-78.5%	0.0100
eo medium \rightarrow transformer ⁺ \rightarrow transformer	-77.9%	0.0416	-65.7%	0.0309	-90.8%	0.0137	-76.7%	0.0108
eo medium $\rightarrow {\rm transformer}^+ \rightarrow {\rm transformer}$ word	-78.1%	0.0412	-65.7%	0.0308	-91.3%	0.0130	-77.9%	0.0103
tokenization repair $^+ \rightarrow$ transformer	-77.5%	0.0424	-64.4%	0.0320	-89.8%	0.0153	-73.7%	0.0122
tokenization repair $^+ \rightarrow$ transformer word	-77.6%	0.0422	-64.3%	0.0321	-90.4%	0.0143	-75.2%	0.0115

Whitespace benchmarks: Mean normalized edit distance

Appendix: Runtimes

Task	Model	Runtime in s	kB/s
TR*	eo large	3.5	50.0
TR*	eo medium	4.2	41.7
TR	tokenization repair ⁺ /tokenization repair ⁺⁺	4.2	41.7
TR*	eo small	5.8	30.2
SEDS/SEDW [†]	tokenization repair ⁺ /tokenization repair ⁺⁺	8.7	20.1
SEDS/SEDW [†]	gnn ⁺	6.8	25.8
SEDS/SEDW [†]	gnn	6.6	26.4
SEDS/SEDW [†]	transformer ⁺	3.7	47.6
SEDS/SEDW [†]	transformer	3.5	50.6
SEC	transformer	65.1	2.7
$SEDW \to SEC$	$gnn^+ o transformer$	47.9	3.7
$SEDW \to SEC$	$transformer^+ ightarrow transformer$	45.9	3.8
SEC	transformer word	28.0	6.3
SEC	neuspell bert	18.1	9.6
$SEDW \to SEC$	$gnn^+ o transformer$ word	16.4	10.7
$SEDW \to SEC$	$transformer^+ ightarrow transformer$ word	13.3	13.3
TR & SEC	transformer with tokenization repair	71.1	2.5
$TR \to SEDW \to SEC$	eo medium $ ightarrow$ gnn $^+$ $ ightarrow$ transformer	52.3	3.3
$TR \to SEDW \to SEC$	eo medium \rightarrow transformer ⁺ \rightarrow transformer	52.3	3.3
$TR \to SEC$	tokenization repair ⁺⁺	40.6	4.3
$TR \to SEDW \to SEC$	eo medium \rightarrow gnn ⁺ \rightarrow transformer word	21.4	8.2
$TR \to SEDW \to SEC$	eo medium $\rightarrow {\rm transformer}^+ \rightarrow {\rm transformer}$ word	21.4	8.2
$TR \to SEDW \to SEC$	tokenization repair ⁺⁺	19.0	9.2

* Ported models from https://github.com/ad-freiburg/trt, shown here for reference

[†] The overhead of converting word level detections into sequence level detections is negligible

Model runtimes