
Master’s Thesis

Evaluation of Non-Intrusive Load

Monitoring

Algorithms on Industrial Load Profiles

Sambhav Sandeep Shah

Examiners: Prof. Dr. Hannah Bast
Prof. Dr.-Ing. Christof Wittwer

Advisers: Matthias Hertel
Benedikt Köpfer

University of Freiburg Fraunhofer ISE
Faculty of Engineering Fraunhofer-Institut für Solare Energiesysteme
Department of Computer Science Freiburg
Chair for Algorithms and Data Structures

January 23rd, 2023

Writing period

21. 07. 2022 – 23. 01. 2023

Examiner

Prof. Dr. Hannah Bast

Second Examiner

Prof. Dr.-Ing. Christof Wittwer

Advisers

Matthias Hertel, Benedikt Köpfer

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare, that my Thesis has not been prepared for another examination
or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

Non-intrusive Load Monitoring (NILM) is a technique to estimate the energy con-
sumption of individual devices from their aggregated consumption. Using NILM can
help in making energy management more efficient, leading to energy savings and
thereby, saving costs associated with energy. Most of the research in NILM has been
done in residential settings. This thesis makes a contribution to address this shortage
in research of NILM in industrial settings. We have performed a comparative analysis
of different deep learning algorithms on datasets from two German factories. Our
investigation shows that the BERT algorithm performs the best on all the devices
used for the analysis. We also find out that using reactive power along with active
power as input features improves the results. We also make an extensive compari-
son of the performance of NILM algorithms using combinations of various sample
rates and sequence lengths. The results indicate that there is no universal optimal
sequence length and it varies according to the choice of sample rate. We also test
the transferability of the CNN-based Sequence-to-Point algorithm to verify if the
learnings from one device can be transferred to another device in the same factory.

ii

Contents

1 Introduction 1
1.1 NILM for industrial data . 2
1.2 Formal definition of the problem statement 4
1.3 Contributions . 5
1.4 Overview . 6

2 Related Work 7
2.1 Legacy Algorithms . 7
2.2 Deep Learning Algorithms . 8
2.3 HIPE . 10

3 Background 11
3.1 NILMTK . 11
3.2 Deep learning . 12

3.2.1 Artificial Neural Networks . 13
3.2.2 Training a Neural Network 14
3.2.3 Convolutional Neural Networks 16
3.2.4 Recurrent Neural Networks 18
3.2.5 Transformers . 20

3.3 Evaluation Metrics . 24

4 Datasets 25
4.1 Company A . 25
4.2 Company B . 29

5 Approach and Deep Learning Methods for NILM 34
5.1 Converting Dataset into NILMTK-DF 34
5.2 NILMTK Attributes . 35

iii

5.3 Deep Learning Methods . 35
5.3.1 CNN-based Sequence-to-Sequence (Seq2Seq) and Sequence-to-

Point (Seq2Point) . 35
5.3.2 Long short-term memory (LSTM) 39
5.3.3 Bidirectional Encoder Representations from Transformers (BERT) 40

6 Experiments 42
6.1 Experimental Setup . 42
6.2 Comparing the performance of NILM algorithms on different input

features . 43
6.3 NILM algorithms compared at different sample rates and sequence

lengths . 46
6.4 Comparison between different NILM algorithms on various machines 50
6.5 Comparison between Seq2Point and Seq2Seq algorithms 51
6.6 Hyperparameter Optimization . 53
6.7 Transfer Learning . 55

7 Conclusion and Future Work 57

8 Acknowledgments 59

Bibliography 60

iv

List of Figures

1 Energy savings due to real-time feedback 1
2 NILM problem statement . 5

3 Edge detection in hart algorithm . 7

4 NILMTK pipeline . 12
5 Architecture of an MLP network . 13
6 Architecture of 1-D CNN . 17
7 Architecture of RNN . 19
8 LSTM Architecture . 19
9 Architecture of the transformer model 21
10 Attention Mechanism . 22

11 Power distribution network in Company A 25
12 Trafo1 power distribution network in Company A 26
13 Energy mix of trafo1 in Company A 27
14 Time series plot of trafo1 in Company A 28
15 Time series plot of Starlinger . 28
16 Components of Extruder MAS combined 29
17 Power distribution network in Company B 30
18 Trafo1 power distribution network in Company B 30
19 Energy mix of trafo1 in Company B 31
20 Time series plot of trafo1 in Company B 32
21 Time series plot of Waschanlage . 32
22 Time series plot of MUT . 33

23 Sequence-to-Sequence concept . 36
24 Sequence-to-Point concept . 36
25 Seq2Seq model . 38
26 LSTM model . 39

v

27 BERT model . 41

28 Prediction result of Seq2point algorithm on Starlinger using active power 45
29 Prediction result of Seq2point algorithm on Starlinger using active and

reactive power . 46
30 Starlinger Peaks . 52
31 MUT Peaks . 53
32 Transfer Learning vs normal approach 56

vi

List of Tables

1 Training time of various NILM algorithms 43
2 Results of NILM algorithm on different input features for the Starlinger

device . 44
3 Results of NILM algorithm on different input features for the MUT

device . 44
4 Results of NILM algorithm on different input features for Waschanlage 45
5 Results of NILM algorithm at different sample rates and sequence

lengths for the Starlinger device . 47
6 Results of NILM algorithm at different sample rates and sequence

lengths for the MUT device . 48
7 Results of NILM algorithm at different sample rates and sequence

lengths for Waschanlage . 49
8 Results of NILM algorithms on various devices 50
9 Results of comparing Seq2Point and Seq2Seq algorithms 51
10 Hyperparameter Optimization . 53
11 Transfer-Learning Results . 56

vii

1 Introduction

With rising energy prices and the looming economic downturn in Europe catalyzed
due to the Russian invasion of Ukraine, saving costs wherever possible is extremely
vital. On top of that, savings in energy consumption portend positively with regard
to climate change and the emission targets set by the German Federal Government,
which intends to achieve the net zero target by 2045. With the increasing usage of
renewable sources of energy, the volatility in the grids also rises. Smart meters in-
stalled in the grids can help in creating efficient energy management systems. Energy
management systems can help in implementing energy-saving measures as well as
cost-saving measures. One aspect of energy management systems is load monitoring.
Load monitoring refers to the monitoring of various devices in a power network. Using
load monitoring has several benefits. It can help in providing real-time feedback
on energy consumption to the consumers. Figure 1 shows how providing real-time
appliance-specific feedback can affect the energy consumption of consumers, with up
to 12% savings for real-time feedback for individual appliances.

Figure 1: Energy savings due to advanced levels of feedback [1]

Another benefit of load monitoring involves anomaly detection in the working of the
devices [2]. A study [3] evaluated the potential use of Demand Response. Demand
Response is where a power supplier attempts to make the consumer shift their demand.

1

Consumers are discouraged from consuming electricity during peak hours and are
availed of electricity at a price based on their time of use. Load monitoring was
used to recommend discount offers to those customers who were willing to defer their
use beyond peak hours. Load monitoring has also found usage in Ambient Assisted
Living (AAL) as shown in [4]. The switching on and off of household appliances can
be used to infer the status of elderly people, such as the changes in their patterns of
activity, sleep disturbances, inactivity, etc. One more application of load monitor-
ing can be in Condition-based maintenance (CBM). Unlike traditional maintenance
which follows a particular schedule, CBM conducts maintenance based on data col-
lected from equipment condition monitoring. The aim of CBM is to detect minor
failures to avoid major failures. The data can warn of failure which can assist in decid-
ing when to conduct equipment repair. An overview of these benefits is provided in [5].

We will introduce two terms, main meter, and submeter. Taking the example
of a household, the main meter measures the aggregate consumption of the entire
household whereas the submeters measure the consumption of the individual devices
in the household. Load monitoring can be done ’intrusively’, by installing submeters
to the individual appliances to measure their consumption. Although, connecting
submeters to individual devices is a very costly operation to scale up and it also
brings with it the challenge of greater technical hardware expertise. In contrast to
this, Non-Intrusive Load Monitoring (NILM) technique estimates the power
patterns of individual appliances by disaggregating the main meter readings into
its individual components. Therefore, Non-Intrusive Load Monitoring is a low-cost
alternative solution compared to Intrusive Load monitoring. Various algorithms have
been developed for NILM and deep learning algorithms are currently state-of-the-art
algorithms.

1.1 NILM for industrial data

Most of the experiments in literature that use NILM techniques and the benefits
described above are for the residential use case. This is because a multitude of
datasets of residential consumption signals is publicly available from different regions
of the world. A plethora of research work has been conducted keeping in mind
this residential setup. Compared to this, the research regarding industrial settings
has not reached the same level. In Germany, for instance, only 26% of electric

2

consumption takes place in residential buildings.1 Whereas with a share of 44% of
electric energy consumption, the industrial sector has a large potential for energy
savings. Despite this, very few industrial datasets are publicly available to perform
NILM tasks. An important work is presented in [6]. In this paper, they performed
an evaluation of various NILM algorithms including non-deep learning algorithms
on their dataset HIPE, High-resolution Industrial Production Energy data set [7].
Here, they showed that the deep learning algorithms easily outperformed the legacy
algorithms used for industrial NILM tasks. These algorithms are described in the
Related Works chapter. Their results also showed that the deep learning algorithms
perform worse on their dataset as compared to other well-known benchmark residen-
tial datasets. This HIPE paper is the starting point for the research work in this thesis.

In this thesis, we have performed several disaggregation tasks on datasets from
two German companies. One company is a plastic recycling company while the other
one produces micromechanical parts. While the HIPE dataset only includes 2 months
of data, our datasets have up to 2 years of data. We have also evaluated various NILM
algorithms on our datasets, but our work also includes the state-of-the-art BERT
algorithm [8] not used in HIPE. In our thesis, we have also made use of more features
compared to the HIPE paper, which has only used active or real power measurements.
Further differences to the HIPE dataset are described in the Related Works chapter.
Thus, using our dataset we have performed a more comprehensive analysis, which
can provide more concrete inferences. The investigation of NILM techniques on
industrial data beyond the scope of literature is another step towards improvements
of applications of NILM techniques in an industrial setting. These applications, as
discussed previously, include but are not restricted to energy management, appliance
anomaly detection and, maintenance. Our study brings us closer to realizing these
benefits for the companies selected in this thesis. Even small savings in energy
consumption can help these companies to a large extent. Also, these companies have
to pay for the monitoring of their devices. With successful NILM strategies, even
such costs can be averted. In the scope of the DABESI project,2 NILM techniques
are planned to be tested in an energy system that contains a battery storage system.
So, a potential application that could arise is that of peak shaving. The companies
must pay additionally for the peaks in their energy consumption. The higher the
peak, the more they have to pay. This means identifying devices that cause these

1https://de.statista.com/statistik/daten/studie/236757/umfrage/stromverbrauch-nach-sektoren-
in-deutschland/

2https://www.ise.fraunhofer.de/en/research-projects/dabesi.html

3

peaks becomes an important task. Although beyond the scope of this work, NILM
techniques can help an energy management system by providing this information.
This can lead to economical improvements in battery usage. The research presented
in this thesis contributes to progress towards this task.

1.2 Formal definition of the problem statement

Let the observed aggregate time series be represented by X = (X1,X2, ... ,XT) where
Xt ∈ R is the aggregate power measured at time t. It is assumed that the aggregated
time series X is a composition of the appliances contained in the building. Let there
be m number of appliances in the building. Each appliance time series can then be
represented by Yi = (Yi1,Yi2, ... ,YiT) where Yit ∈ R. and 1 < = i < = m. Now, the
aggregated signal Xt at time t can be represented as the summation of the power
measured of the constituent appliances at time t.

Xt =
m∑
i=1

Yit + ϵt ,

where ϵt is the error at time t.

The goal of NILM is to predict the unknown signals Yi given only the aggregate
signal X . Figure 2 shows how disaggregation is performed in a simplified manner.
The time-series plot on the left of the figure (main meter) shows the aggregated signal
which is input X for a NILM algorithm. The NILM algorithm, using X , then predicts
the two target appliance signals Yi , denoted by Starlinger and Schredder.

4

Figure 2: The input aggregated signal (main meter) is used to predict the two target appliance
signals (starlinger and schredder).

1.3 Contributions

• Created the converter to convert data files of the two companies into NILMTK-
DF.

• Analyzed and visualized the datasets.

• Converted LSTM, BERT and CNN-based Seq2Point models into multi-input
models and assessed the effects of using multiple combinations of input features.

• Improved the performance of the BERT algorithm as implemented in NILMTK-
Contrib,3 both in terms of speed and prediction acccuracy.

• Performed hyperparameter optimization on the BERT algorithm using the
Optuna Library to find the configuration which gives the best results.

• Analyzed the influence of sample rate and sequence length on the results of
various NILM algorithms.

3https://github.com/nilmtk/nilmtk-contrib

5

• Compared the performance of various NILM algorithms between the individual
devices.

• Performed transfer learning to verify how well the CNN-based Seq2Point algo-
rithm can generalize to other devices.

• Adapted the NILMTK API to run the multi-input variant of the deep learning
models and to run the algorithms in inference only mode.

1.4 Overview

The rest of the thesis is structured as follows:

• In Chapter 2, we describe different works covered in the literature related to
the thesis.

• Chapter 3 gives background information on NILMTK and various deep learning
architectures used in the thesis.

• In Chapter 4, we describe the datasets used in the thesis.

• We provide specifications about the deep learning algorithms used in the thesis
in Chapter 5.

• The results of the experiments and their analysis are described in Chapter 6.

• Chapter 7 contains the conclusion and the future works.

6

2 Related Work

Non-Intrusive Load Monitoring, henceforth referred to as NILM in this chapter, has a
long history. Section 2.1 gives a brief overview of the legacy algorithms used before the
deep learning algorithms became state-of-the-art methods. We also explain the usage
of various deep learning methods in NILM tasks in Section 2.2. Finally, we mention
the HIPE paper [6], already introduced in Chapter 1, which provides inspiration and
forms the starting point of our thesis work in Section 2.3.

2.1 Legacy Algorithms

The idea of NILM was proposed by George Hart [9]. The rationale was to predict the
energy consumption of individual devices in a circuit, without the need to ’intrusively’
capture their consumption information by placing submeters on each of these devices.
The idea is very simple. The ’signatures’ of each device are noted. A simple edge
detection technique is then used to predict the energy consumption of the devices.
Figure 3 gives an idea of this technique.

Figure 3: Plot of total electric power consumption vs time in a two-hour period [9]. The spikes
indicate the switching on/off of devices.

The figure shows a plot between total power consumption and time. The spikes in
the plot indicate that a new device is switched ON/OFF. Since the signatures of
each device are already known, these spikes help in understanding which devices have

7

changed their state (ON/OFF) and calculating their power consumption. Although,
this approach has some practical limitations. An appliance having multiple states
(operating at various power levels) must be treated as separate devices. Also the
appliances that run continuously with variable power cannot be detected correctly
using this method.

Another approach to have been commonly used for energy disaggregation tasks
involves Hidden Markov Models (HMM). The Factorial Hidden Markov Model
(FHMM) that was used by Kim et al. [10] was able to deal better with devices
with multiple states. But the major disadvantage of using such a model is that its
complexity rises exponentially with each increase in the number of devices to be used.
Additive Factorial HMM (AFHMM) is used in [11] such that each device has an
independent HMM. This resulted in vastly reducing the complexity, with the model
scaling linearly with the number of HMMs.

Mean algorithm is a simple baseline algorithm. The mean value from the training
data of the appliance is the predicted value of that device at all times. This mean al-
gorithm is especially useful to compare the performances against the above mentioned
models. These models in some cases perform even worse than the mean algorithm
when evaluated using root mean square error (RMSE).

2.2 Deep Learning Algorithms

The advent of algorithms using neural networks changed the landscape of research in
NILM. The performance improved drastically. This solved the issue of the need to
additionally provide the ’signatures’ of the appliances. So, to say, the user did not
have to worry about the feature extraction step. With the increase in the processing
capabilities of GPUs and large amounts of data, it has become possible to train very
complex neural networks with high representational power. This has made deep
learning methods a very popular choice to solve NILM tasks. Several deep learn-
ing architectures have been implemented to perform this task of energy disaggregation.

Kelly and Knottenbelt [12] were the first ones to propose using neural networks
for NILM. They compared different methods which were evaluated on a popular resi-
dential dataset called UK-DALE [13]. In the first method, they made use of Recurrent

8

Neural Networks (RNN). These kinds of neural networks are well suited in handling
sequential data. Since RNNs suffer from the problem of vanishing gradients, they
modified their RNN model to use a bi-directional LSTM in the second method, which
improved the prediction performance. They also used a denoising autoencoder
(dAE). Basically, it is used to reconstruct a noisy signal [14]. In this case, the noisy
signal is the aggregate power signal which includes the ’noise’ from other appliances
and the ’clean’ signal is that of the target appliance. A separate neural network
exists for each device. The usage of Gated recurrent units (GRU) is proposed in [15].
Using GRUs resulted in a model that was more computationally efficient without a
degradation in performance.

Sequence-to-Sequence (Seq2Seq) and Sequence-to-Point (Seq2Point) learning were
implemented using convolutional neural networks (CNNs) in [16]. This produced
state-of-the-art results when it was published. Using a sequence of CNN layers made
the training process much quicker compared to LSTMs. It also alleviated the problem
of vanishing gradients in RNNs. Both Seq2Seq and Seq2Point make use of sliding
windows. In Seq2Seq, each sliding window predicts an output of the same size as the
input whereas Seq2Point makes a prediction for the midpoint of the window. The
Seq2Point model using CNN layers produced better results than the Seq2Seq model
in [16] and plays an important part in this thesis.

While transformers [17] were developed for Natural Language Processing tasks,
they have also found applications in time series analysis tasks. Lin et al. [18] were the
first ones to use an attention-based neural network for NILM. They implemented both,
an encoder only and an encoder-decoder based model. BERT4NILM [19] proposed a
model based on Bidirectional Encoder Representations from Transformers (BERT) [8].
In the deep learning models described before, the loss function used is mean squared
error (MSE). The authors of BERT4NILM also adapted the loss function. They
included KL Divergence loss along with mean squared error. The authors reported
better performance than CNN-based models.

An interesting adaptation of the CNN-based Seq2Point model is used for trans-
fer learning in [20]. Here, the authors provided a comparative analysis of using
transfer learning between different devices of the same dataset and also across the
datasets. In [21], the authors proposed using an ensemble of pre-trained CNN-based
Seq2Point models for transfer learning.

9

2.3 HIPE

Most of the research work described above was applied on housing/residential datasets.
Our focus in this thesis is on industrial data. HIPE - High-resolution Industrial
Production Energy [7] attempted to address this shortage of industrial energy con-
sumption data for NILM. They provided high-resolution measurements of 10 machines
over a time period of 3 months. These machines operate at the Institute of Data
Processing and Electronics (IPE) of Karlsruhe Institute of Technology (KIT) in
Germany. In another paper [6], they described the conversion of their dataset to a
format compatible with NILMTK [22]. NILMTK, which will be discussed in greater
detail in the coming chapters, provides a common framework for comparative analysis
of various NILM algorithms on various datasets. They followed up by comparing
various algorithms mentioned above on their HIPE dataset. This paper lends us
inspiration to perform a similar comparative analysis. In the remainder of the section,
the differences with their approach are discussed. While their data has a very high
resolution (in seconds), we possess data at a lower resolution (in minutes). Our
thesis also constitutes multiple input features whereas they have only used ’active’ or
’real’ power measurements. Our dataset also includes solar PV systems that generate
power, thus adding negative values to our signals. In the HIPE dataset, all the signals
only have positive values. We also make use of various machines from 2 different
types of factories. It should also be noted that the consumption of their machines
only adds up to 10% of the total consumption of their main meter. Therefore, they
have to ’artificially’ aggregate their appliance readings for reasonable predictions.
Artificial aggregation, in this case, is nothing but adding the measurements of each
device which forms the new main meter readings. While this approach makes sense
for theoretical experiments, it is not useful in practical implementations. We do not
have to artificially aggregate our data because the proportion of sub-metered data
compared to the main meter data is much higher than the HIPE dataset. In our
experiments, we also involved the transformer-based models, which were not provided
in the HIPE paper. They tabulated the results using NDE as an evaluation metric.
NDE will be described in more detail in the next chapter. Their results show that
the CNN-based Sequence-to-Sequence and Sequence-to-Point algorithms were the
best performing algorithms and obtained an NDE of 0.72 and 0.73 respectively. Since
NDE is a normalized metric it can be compared across datasets as well.

10

3 Background

This chapter presents an overview of Non-intrusive Load Monitoring Toolkit (NILMTK),
and introduces various neural network architectures, along with relevant notations,
and definitions for the reader to understand the following chapters. The Sections 3.1
and 3.2 follow the structure and draw inspiration from [23]. Additional references for
the individual subsections are the following: For Section 3.2.1, the references include
[24] and [25]. For Section 3.2.2, the references include [26], [27], [28], [29], and [30].
For Section 3.2.3, the references include [31] and [32]. For Section 3.2.4, the references
include [33] and [34]. For Section 3.2.5, we have referred to [35].

3.1 NILMTK

NILMTK forms an essential part of the thesis. NILMTK is an open-source toolkit
that enables comparative analysis of various energy disaggregation algorithms in a
reproducible way [22]. NILMTK provides an end-to-end pipeline right from dataset
preprocessing to the analysis of the datasets using various algorithms. The motivation
of the authors of NILMTK to implement this toolkit was to facilitate the users in
performing analysis on already existing datasets. The second purpose was to enable
the smooth integration of new datasets and algorithms. NILMTK is implemented
in Python. Figure 4 shows the catalog of features available in NILMTK. NILMTK
supports various existing datasets by converting them into NILMTK-DF. NILMTK-
DF is a data format based on the REDD format [10]. There are several scripts
available in NILMTK accounting for converting various publicly available datasets
in this standard format. With slight modifications, one can easily use this for their
own dataset. Once this conversion is performed, one can calculate several relevant
statistics like the proportion of electrical energy consumed by individual appliances,
the proportion of energy sub-metered, etc. The proportion of energy sub-metered
indicates the ratio of the sum of the measured energy of individual appliances to the

11

measured energy of the main meter. This statistic can be important in the way that
it can affect the predictive performance of the disaggregating algorithms. Several
preprocessing functions are available like downsampling, dropping NaN values, etc.
Downsampling here simply means sampling down to a user-specified frequency of
the time-series data. As already mentioned, the toolkit also provides disaggregation
algorithms (both neural network-based and non-neural network-based). The neural
network-based algorithms are written using Keras. Keras is a library that provides a
Python interface for artificial neural networks. Our focus in this thesis is entirely on
deep learning algorithms. An overview of the deep learning algorithms will follow this
section. Several evaluation metrics, as proposed in the literature, are also available to
compare the performance of these algorithms. An API is also provided by NILMTK
which makes it very easy and efficient to conduct various experiments. This API
allows the users to focus on which experiments to run rather than on the code required
to run such experiments, making it very simple to provide reproducible experiments.

Figure 4: NILMTK pipeline [22]

3.2 Deep learning

Deep learning is a machine learning technique that uses layers of Artificial Neural
Networks (ANN) for the learning process. Deep learning algorithms differ from
traditional machine learning algorithms in that they largely eliminate the requirement
for manually selecting and extracting data features. In this section, we discuss various
neural network architectures that are relevant to the thesis.

12

3.2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are named somewhat inspired by the biological
neural networks that develop the structure of a human brain. The human brain
has an interconnected network of neurons and similarly, ANNs consist of neurons or
nodes interconnected to each other in various layers of the network. There are several
different architectures of neural networks and we start by describing the multi-layer
perceptron (MLP).

The multi-layer perceptron is one of the most basic neural network architectures. It
consists of interconnected nodes divided into three types of layers: input layer, hidden
layer, and output layer. Each neuron in one layer has connections to all the neurons
of the subsequent layer. This way, the numerical input data undergoes a series of
non-linear transformations using activation functions to produce the output at the
output layer. An MLP can consist of more than one hidden layer which is where it
gets its name from. Figure 5 shows an example of an MLP model which contains N
hidden layers. The connections between each node have a certain weight.

Figure 5: MLP deep learning architecture [36]

13

Consider the input vector to be x. The pre-activation for the input vector x is given
by:

z(1) = W (1)T x + b(1) (1)

where W is the weight matrix and b is the bias. Then we apply a non-linear activation
function f(z). This computation is given by:

h(1) = f (1)(z(1)) (2)

So for a layer n, the pre-activatons and activation are calculated in the following
way:

z(n) = W (n)Th(n−1) + b(n) (3)

h(n) = f (n)(z(n)) (4)

The final output ŷ of the output layer if we have one hidden layer is given by :

ŷ = f (2)(W (2)T f (1)(W (1)T x + b(1)) + b(2)) (5)

The value ŷ is the predicted output of the model, which is evaluated against the
actual output y. We can choose the number of hidden layers in the network, the size
of each layer (the number of neurons) and the non-linear activation that we would
like to apply in each layer. The representational power of the model increases as we
increase both the number of layers and the size of each layer. Thus, we can basically
approximate any function by making an MLP arbitrarily large.

3.2.2 Training a Neural Network

Since we are provided with target values in our energy disaggregation task, this
method of learning is known as supervised learning. In this method, the predicted
output ŷ from the model is compared to the true value y or the ground truth over
various iterations or epochs to predict a value as close as possible to the ground

14

truth. For this to be possible the weights W and the bias b are updated after each
epoch and are called as the trainable parameters. To start the first round of the
forward propagation in the neural network, the weights and the biases are initialized.
A common practice is to randomly initialise these parameters. The computations
take place at each layer as shown in Equations 3 and 4. Finally, the error between ŷ

and y is calculated using a loss function. This marks the end of one round of forward
propagation in the neural network.

Loss Function helps in evaluating how well our algorithm is performing. The
task of a neural network model is to optimize on this loss function, either minimize
or maximise it, depending on the type of the task one has to perform. In a regression
task, a common loss function used is the mean squared error (MSE) given by:

L(y , ŷ) = 1

M

M∑
i=1

(yi − ŷi)
2 (6)

where yi is the i th ground truth and ŷi is the i th predicted value and M is the total
number of predicted outputs.

As mentioned before, the weights and biases need to be updated. This takes place
using Backpropagation. Basically, we calculate the gradient of the loss function
with respect to the model parameters. The weights and biases are then updated by
adding the negative gradient of the loss function to them.

wupdated = wold − λ
∂L(y , ŷ)
∂wold

(7)

wold is the old weight, ∂L(y ,ŷ)
∂wold

is the gradient of the loss function to the weight,
wupdated is the updated weight and λ is the learning rate which governs the effect of
the gradient of the loss function on the weights. The biases are also updated similarly.
The weights and biases are updated in the reverse order as that of the forward pass.
After a round of backpropagation is completed, another forward pass takes place
and the loss is calculated and again backward propagation takes place to update the
model parameters to reduce the loss in the next forward pass. This continues until
we achieve as low error as possible.

Adam [37] is a popular optimization technique to dynamically change the learning rate.

15

The name Adam is derived from adaptive moment estimation. An exponential moving
average of the gradient and the squared gradient of each parameter is accumulated.
This is used to adapt the learning rate for each parameter. This results in the model
being able to learn faster for parameters that require large value changes, and slower
for parameters that need small value changes.

Once this training of the neural network is done, the most optimal model is saved
which is then used on the previously unseen ’test’ dataset to make the predictions.
As already mentioned, one can make a neural network as large as possible to model
complex functions. It may happen that these models even learn the noise in the
’Training’ data. This could result in the model not performing accurately for the
unseen Test data, which defeats the purpose of using this model. This effect is known
as overfitting. Since neural networks have very high representational power, it is
very important to avoid overfitting. Therefore, several regularization techniques
can be used to generalize the model making it less complex and less prone to overfitting.

Dropout is a simple way to prevent neural networks from overfitting [38]. Us-
ing dropout, some of the nodes in the model are randomly ’dropped out’. Basically,
we multiply the outputs of these units by zero. The user can decide how many nodes
must be dropped out. This parameter is called the dropout rate. This technique
makes the model more robust to noise and leads to better generalization.

Another important aspect in the training of a neural network is hyperparameters.
The weights and the biases are the trainable parameters of the model. Hyperparame-
ters are those parameters that are set before running the neural network model. These
values are chosen by the user, but unlike the weights and biases, these values are not
updated by the model. Choosing optimal hyperparameters is also an important task
to improve the performance of the model. There are several kinds of hyperparameters,
like the number of layers in an MLP, the number of units in an MLP, the learning
rate, the dropout rate, etc.

3.2.3 Convolutional Neural Networks

Convolutional Neural Network (CNN) is an architecture of neural network primarily
designed for image classification tasks. CNNs contain at least one convolutional layer.
In each convolutional layer there can be one or more filters or kernels. Kernel size is

16

generally much smaller than the input image size. Convolutions are linear operations
between the kernel and the input. The weights in these kernels are the trainable
parameters that are updated after each epoch. These kernels are updated to learn to
identify spatial dependencies in the input. For images, 2D-Convoltions are used but
recently the idea of CNNs has also been extended for time series analysis which uses
1D-convolutions.

The diagrammatic representation of the architecture of 1-Dimensional convolutional
neural network is shown in Figure 6. Using this figure, we can shed more light into

Figure 6: One-dimensional convolutional neural network (1D-CNN) architecture [39]

how convolutions work. Let the 1-D input x = (x1,x2,..xn) have a size of n. Let there
be m kernels. Each kernel in the first convolutional layer is shown to have a size of 3.
Firstly, it computes a dot product with x1,x2 and x3 and adds these products. Then
it slides with a stride s across the input. If s=1, then the same operation will be
repeated with x2,x3 and x4 and so on until xn−2,xn−1 and xn. An activation function
is applied on this result. This operation is carried out in parallel for all the m kernels
in this layer. This output is the input for the next convolutional layer. Less complex
features of the input are detected in the earlier convolutional layers and with each
convolutional layers more complex features are detected, by combining the simpler
features from the previous layers.

17

The displayed architecture was only used to explain the working of CNN. More
refined models also involve pooling layers. Pooling is a downsampling operation.
Using pooling we want to make the model more robust against small translations in
the input. There are two types of pooling commonly used:

• Average Pooling: Calculates the average value for each patch of the feature
map. The size of a patch is also a hyperparameter.

• Max Pooling: The maximum value for each patch of the feature map is calcu-
lated.

3.2.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of neural network in which the results
of the previous step are fed into the current step as input. Thus, RNNs became
a popular choice for sequential data. For example, to predict the next word in a
sentence, previous words that provide context are also important. Since an MLP
takes each input independently of one another, it is not the preferred architecture for
sequential data. The Figure 7 shows the architecture of a recurrent neural network.
Let input x=(x1, x2,...xt). The current hidden state ht is generated by the previous
hidden state ht−1 and the current input xt . The equations used are as follows:

at = b +Wht−1 + Uxt (8)

ht = f (at) (9)

where b is the bias, U and W are the weight matrices and f is an activation function.

Long short-term memory (LSTM)

Long short-term memory networks, generally known as LSTMs is a variant of RNN.
Vanilla RNNs struggle to capture long-term dependencies and suffer from the problem
of vanishing gradients. Basically, the gradients calculated during backpropagation
tend to zero which leads to the model parameters not being updated effectively.
LSTMs help in addressing these issues. Figure 8 shows the architecture of a single
cell in an LSTM network.

18

Figure 7: Recurrent neural network architecture. Retrieved from towardsdatascience.com

Figure 8: Architecture of LSTM. Image Credit: Christopher Olah

LSTM also has a hidden state which can be thought of as short-term memory. The
current hidden state is represented by ht and the previous hidden state by ht−1. It
also includes cell state which can be thought of as long-term memory. The current
cell state is represented by ct and the previous hidden state by ct−1. The other
components of an LSTM cell are forget gate, input gate and output gate.

The forget gate is responsible for deciding how much information from the previous
timestamp is carried to the next one. The following equation describes its operation:

ft = σ(Wf ∗ [ht−1, xt] + bf) (10)

where Wf is the weight matrix and bf is the bias at the forget gate and σ is the
sigmoid activation function.

To compute the current cell state, we first perform operations on the input data using

19

the input gate which calculates the vector it . A new candidate vector c̃t is formed
using a tanh layer. These values it and c̃t , along with the previous cell state ct−1 are
used to update the current cell state ct . The equations are as follows:

it = σ(Wi ∗ [ht−1, xt] + bi) (11)

c̃t = tanh(Wc ∗ [ht−1, xt] + bc) (12)

ct = ft ∗ ct−1 + it ∗ c̃t (13)

where Wi is the weight matrix and bi is the bias at the input gate. Wc is the weight
matrix and bc is the bias for c̃t .

The hidden state ht is updated using the output gate and the current cell state.
The equations for the same are given by:

ot = σ(Wo ∗ [ht−1, xt] + bo) (14)

ht = ot ∗ ct (15)

where Wo is the weight vector and bo is the bias at the output gate. The current
hidden state and the current cell state then carry this information to the next
timestamp.

3.2.5 Transformers

The paper ’Attention Is All You Need’ [17] introduced a deep learning model called
Transformer. Transformers make use of attention mechanism. The use of recurrence
and convolutions is done away with entirely in these Transformers. Since Transformers
can deal with the entire input sequence at once, they have an advantage over RNN
models in that, the transformers are more parallelizable and hence take less time to
train. Figure 9 depicts the architecture of Transformer as described by [17]. The
main components of the Transformer are as follows:

• Token Embedding : Token embedding embeds the input sequence into a vector

20

Figure 9: Architecture of the Transformer model [17]

space of user-defined dimension. This is especially useful for Natural Language
Processing (NLP) tasks.

• Positional Encoding : Positional encodings are used to provide positional in-
formation about input tokens. A vector of the same dimension as the token
embedding vector is generated. These vectors are added to each other and are
passed on to the encoder block (on the left side of the Figure 9). To give an
example, words can have different meanings in different sentences. Positional
encoding helps in yielding contextual information of these words based on their
position in the sentence.

• Attention: The Attention Mechanism is the most significant aspect of this model.
Basically, an attention vector is generated for each input of the input sequence

21

which highlights the relevancy of other inputs of the input sequence with respect
to that particular input. This way more relevant inputs are weighted higher.
Figure 10 describes the attention mechanism. As the Figure 10 indicates, there

Figure 10: Attention Mechanism [17]

are 3 tensors used, namely Q (query), K (key) and V (value).

Scaled Dot-Product Attention: This defines the operation of a single
attention block. Firstly, a dot-product between the tensors Q and K is calcu-
lated and then scaled. This multiplication calculates the scores between each
input and all the other inputs in the input sequences. A softmax function
is then applied so that the scores add up to 1. Finally, this softmax score is
multiplied with the tensor V.

attention(Q,K ,V) = softmax
(
QKT

√
dk

)
V (16)

Multi-Head Attention: The transformer model as shown in Figure 9 uses
multi-head attention. Here multiple attention vectors are computed for each
input. Figure 10 shows there are h number of heads. Each head is projected
using a different weight matrix to create different representations of the input.

22

Each head runs in parallel with the others.

headi = Attention(QWQ
i ,KWK

i ,VW V
i) (17)

Here, WQ
i , WK

i , W V
i are the weight matrices. The output of the individual

heads is then concatenated and multiplied with the weight matrix WO and the
final output of the multi-head attention is given by:

MultiHead(Q,K ,V) = Concat(head1, ..., headh)W
O (18)

When the tensors Q, K and V come from the same input sequence, it is
known as self attention. Whereas, when the tensors Q, K and V come from
different input sequences, then it is known as cross attention. Cross attention
is important in an encoder-decoder architecture. But in our implementation,
we have only made use of encoder.

• Encoder : The input that has been transformed after using token embedding
and postional encoding is passed onto the encoder block. As shown in Figure 9,
there are N such blocks in the left part of the figure. Each block consists of the
already mentioned multi-head attention layer. Since the attention mechanism
is applied on the same input sequence, this is self attention. The output of this
layer is then passed to a feed-forward network.

• Decoder : The architecture shows N blocks of decoder on the right side in
Figure 9. The decoder block is similar to the encoder block but it has 2
prominent differences. A look-ahead mask is used in the first attention layer.
This masking ensures that the self-attention procedure in this layer does not
attend to future positions of the sequence. The next sublayer is the encoder-
decoder attention layer. The output of the first attention layer in the decoder
and the output from the encoder block is the input to this sublayer. The Q
(query) tensor is provided by the first sublayer of the decoder whereas the K
(key) and V (value) come from the encoder. Since this attention layer uses two
different sequences, this is known as cross-attention. Similarly to the encoder
block, the output of the second sublayer is passed to a feed-forward network.

23

3.3 Evaluation Metrics

We are performing a regression task. Therefore, an obvious choice is that of root
mean square error (RMSE) as an evaluation metric.

Root Mean Square Error (RMSE)

RMSE computes the square root of the mean of the squared error between the
predicted values and the ground truth. RMSE is given be the following equation:

RMSE (y , ŷ) =

√
1

n
Σn
i=1(yi − ŷi)2 (19)

where y is the ground truth and ŷ represents the predicted values. n is the total
number of points to be predicted.

Normalized Disaggregation Error (NDE)

There are multiple devices used in NILM tasks and each device has different electrical
power values compared to the other devices. This makes it very hard to evaluate
the performance between devices simply using RMSE. Therefore, we have also used
Normalized Disaggregation Error (NDE) for this reason. NDE is calculated by sum-
ming the squared errors between the predicted values and the ground truth and
dividing/normalising this by sum of the squared values of the ground truth. Finally,
you take the square root of the resultant answer. The following equation represents
this metric:

NDE (y , ŷ) =

√
Σn
i=1(yi − ŷi)2

Σn
i=1(yi)

2
(20)

24

4 Datasets

In this chapter, we will introduce the datasets used in the thesis work and present
the relevant details of these datasets. As a part of the project DABESI, we were
provided data by ENIT Energy IT Systems, which monitors and provides energy
management services. Datasets from 2 factories were provided. One of them is a
plastic recycling company which we will refer as Company A, while the other one
produces micromechanical parts which we will refer as Company B.

4.1 Company A

Figure 11 depicts how the electrical power flows from the main meter to different
appliances/machines in Company A. Main meter is where the aggregate consumption
is measured while submeters indicate the various devices. The underlined bulbs
indicate the levels where the disaggregation tasks are performed in the thesis.

Figure 11: Flow of electricity from the main meter to the individual devices in Company A

25

Figure 12: Flow of electricity from trafo 1 to its connected devices. The red arrows indicate
the target devices for the disaggregation task.

Figure 12 shows the disaggregation of trafo 1 in the distribution network into the two
devices connected to it, Starlinger and Schredder. Two solar PV systems are also
connected to it which generate power instead of consuming it. Basically trafo1 acts
as the main meter in this task. The starlinger consumes a much higher proportion
of energy than the schredder as shown in the pie chart in Figure 13. As can be seen
in the diagram, there is also a loss component, which indicates that around 14%
of energy is unaccounted for. This noise can help in achieving a better regularized
model. For this disaggregation task, each data point is available at a sample rate of
60 seconds, which means one data point every minute or 60 seconds.

26

Figure 13: Energy composition of trafo1 in Company A

Figure 14 and Figure 15 show the energy measured at trafo1 and Starlinger over a
time period of two weeks. The long stretch of zero values in Figure 15 indicates that
it is a weekend and the machine is not running at all. While, the negative values in
the Figure 14 indicate the operation of the solar PV systems during that period.

27

Figure 14: Electrical Power measurement of trafo 1 over a two-week period

Figure 15: Electrical Power measurement of starlinger over a two-week period

28

Another disaggregation task involves the Extruders. Extruder MAS combined acts
as the main meter in this case. Figure 16 shows this task. In this case, each data point
is available at sample rate of 900, which means data points are sampled at intervals
of 15 minutes. The device Extruder MAS (10) was the largest consumer from all
the four devices connected to Extruder MAS combined. Since the amount of data
available is lower than in other disaggregation tasks, we made this disaggregation
task a candidate for transfer learning experiments.

Figure 16: Flow of electricity from extruder to its connected devices. The red arrows indicate
the target devices for the disaggregation task.

4.2 Company B

Figure 17 depicts how the electrical power flows from the main meter to different
appliances/machines in Company B. There are 3 transformers connected to the main
meter. We focus on trafo 1 for disaggregation tasks. The underlined bulb indicates
the level where the disaggregation task is performed for Company B. Figure 18
shows the disaggregation of trafo 1 in the distribution network into the four devices
connected to it.

29

Figure 17: Flow of electricity from the main meter to the individual devices in Company B

Figure 18: Flow of electricity from trafo 1 to its connected devices. The red arrows indicate
the target devices for the disaggregation task.

30

Figure 19: Energy consumption mix of trafo1 in Company B

Two of them, MUT and Waschanlage 2002 consume ∼85%, as can be seen in
Figure 19. The experiments were conducted on these two devices. The next figures
display the plots of trafo1, Waschanlage 2002 and MUT over 10 days period. Figure 20
shows the power measurement at trafo1. Figure 21 shows the power measurement
at Waschanlage 2002 and Figure 22 shows the power measurement at MUT. The
individual appliances Waschanlage and MUT have negative values because the solar
PV systems are directly connected to them.

31

Figure 20: Electrical Power measurement of trafo1 over a period of 10 days

Figure 21: Electrical Power measurement of Waschanlage 2002 over a period of 10 days

32

Figure 22: Electrical Power measurement of MUT over a period of 10 days

33

5 Approach and Deep Learning Methods
for NILM

This chapter is broadly divided into three sections. The first section describes the
procedure to convert the dataset into NILMTK-DF (NILMTK Data Format). In the
second section, the properties, and benefits of using NILMTK are explained. In the
third section, we discuss the various deep learning algorithms used for NILM.

5.1 Converting Dataset into NILMTK-DF

First, the CSV files provided by ENIT Energy were extracted. Some datasets
contained erroneous values, i.e., those that had extremely high values that could
not be attributed to any real scenario. These values were replaced with the mean
of three previous values. To employ NILMTK and utilise its benefits, we have to
convert our datasets into a format compatible with NILMTK, known as NILMTK-DF.
NILMTK-DF is based on REDD data set format [10]. Basically each dataset folder
should contain a file with aggregate energy consumption and separate files for energy
consumption of each constituent device. The files extracted from the ENIT Energy
provider also have to be transformed. This transformation process involves converting
timestamps to unixtimestamp, string values to float values, replacing the ’comma’
with a ’decimal’ and finally storing these files in a ’.dat’ file format. Additionally,
a metadata file is created for each dataset. This file provides information like the
number of devices, the identifier for each device, the number of features available for
each meters, etc. Finally, a parser, using the metadata file, converts the dataset files
into a single Hierarchical Data Formats (HDF) file. Now, the input is ready for use
in NILMTK.

34

5.2 NILMTK Attributes

The features of NILMTK have already been described in section 3.1. We will briefly
mention the features that we have used. Visualizing the timeseries plots, plotting
the pie charts that show the fraction of energy consumed by each device, calculation
of proportion of submetered data, calculating basic statistics of the datasets was
made easier by using NILMTK. NILMTK was also used for preprocessing the data
which involved dropping NaN values, resampling data at different sample rates and
standardizing the input values for more effective use of deep learning algorithms.

5.3 Deep Learning Methods

All the deep learning algorithms used for conducting experiments will be explained
along with their specifications in this section. These deep learning algorithms are
provided in NILMTK-Contrib [40]. NILMTK-Contrib is built on NILMTK with the
addition of support for various deep learning algorithms. Since we worked in the
same department at Fraunhofer ISE on similar topics at the same time, the Section
5.3 follows the structure of Section 5.1 in [23].

5.3.1 CNN-based Sequence-to-Sequence (Seq2Seq) and
Sequence-to-Point (Seq2Point)

First, we will explain the Seq2Seq and Seq2Point concept used in the CNN-based
models. The Figure 23 depicts Seq2Seq concept. The Figure 24 depicts the Seq2Point
concept. The input, which is the aggregate signal, consists of a sliding window of
length l. The sliding window is actually the sequence length, which is an important
hyperparameter as will be shown in the next chapter. Let the length of the signal
be n. So the total number of sliding windows is n - l+1. In Seq2Seq architecture,
a window Xt:t+l−1 of the aggregate signal maps to a window Yt:t+l−1 of the output
appliance signal. In the Figure 23, the sliding windows of the input and the output
are of length 5. All the values of output sliding windows at a particular time point t
are added which produces a vector of size n at that time point t. The final prediction
of the appliance signal for the time point t is then computed by taking the mean of
this vector.

35

Figure 23: Sequence-to-Sequence concept

Figure 24: Sequence-to-Point concept

36

On the other hand, in the Seq2Point architecture, a sliding window of the aggregate
signal predicts for only the midpoint of that window. The input aggregate signal is
padded with ⌈l/2⌉ zeros on each side of the input aggregate signal. This is done to deal
with the end points of the sequence. Since every input sliding window predicts a single
output for each time point, we do not have to calculate any averages. Since we want to
predict for the midpoint, it is imperative that the length of the sliding windows be odd.

Figure 25 describes the implementation of CNN-based Sequence-to-Sequence model.
A sequence of 1D-convolutional layers is used. Dropout layers are added for regular-
ization. The output shapes after the application of each layers are mentioned next to
the arrow between the layers. The final output of the model is of the size of the sliding
window/sequence length. As an example case, l = 99 in all the following diagrams of
this chapter. The only difference between the Sequence-to-Sequence and Sequence-
to-Point models is in the last feed-forward layer. In the case of Sequence-to-Point, it
only emits a single value as its output.

37

Figure 25: Implementation details of Sequence-to-Sequence model

38

5.3.2 Long short-term memory (LSTM)

Recurrent Neural Networks (RNN) are well suited to deal with sequential data. But
since they are afflicted with the issue of vanishing gradients, a variant of RNN, LSTMs
are implemented. Bidirectional LSTMs are used where the input sequence is processed
in the forward direction as well as the backward direction. A 1D-convolutional layer
is used on the top of the LSTM layers for feature extraction. The convolutional layer
makes use of padding. Padding="same" in the figure means that the dimension of
the input to the convolutional layer and output will be the same. Finally, the model
emits a single output value as its prediction. Figure 26 indicates the architecture of
the model that is used.

Figure 26: Implementation details of LSTM model

39

5.3.3 Bidirectional Encoder Representations from Transformers (BERT)

Next, we have made use of Bidirectional Encoder Representations from Transformers
(BERT). This model only consists of the encoder block of the transformer. It works
using Seq2Seq concept, wherein both the input and the output sequence have the same
length. Similarly to the LSTM model, we have used a convolutional layer for feature
extraction. We have also adapted BERT implementation as in NILMTK-Contrib by
removing token embedding layer. Since we are not dealing with words here, it seemed
logical to remove token embedding. This led to a much more efficient algorithm and
also a significant increase in the performance of the model. The speedup was more
than 10 times as compared to the previous implementation. The number of attention
heads, the number of filters in the CNN layer and the number of encoder layers
are the hyperparameters. The default implementation uses 6 encoder layers with 2
attention blocks and the number of filters equal to 64. This model emits a sequence
of length l equal to the input sequence length. Figure 27 depicts the architecture of
the implemented BERT model. We have also made use of a Seq2Point variant of this
BERT model which we will refer as BERT2Point. We added one more dense layer
after the encoder block to the BERT2Point model for better prediction capability.

40

Figure 27: Implementation details of BERT model

41

6 Experiments

This chapter encompasses all the experiments and evaluations performed on our two
industrial datasets. We begin by describing the experimental setup in Section 6.1. In
Section 6.2, we compare the performance of different neural network models across
3 devices on different combinations of input features. In Section 6.3, we evaluated
the performance of various neural network models across different sample rates and
sequence lengths. In Section 6.4, we compare the performance of the BERT and
CNN-based Seq2Point model on 4 different appliances using NDE metric. In Section
6.5, we have discussed the performance of Seq2Point and Seq2Seq concepts on MUT
and Starlinger devices. In Section 6.6, we performed hyperparameter optimization on
BERT using Optuna. In Section 6.7, we show transfer learning experiments.

6.1 Experimental Setup

The implementation of the neural network models used in the experiments was done
using Keras. The models were trained using NVIDIA Quadro RTX 8000 GPU.
The values of all the input features of the data were standardized by subtracting
their mean and dividing by their standard deviation. This standardization is an
important prerequisite for applying neural network models on our data. For most of
the experiments, the training data has a duration of 1 year while the test data has
a duration of over 5 months. A further 15% split in training data forms a holdout
validation set. All the neural network models run for a maximum of 100 epochs.
The patience parameter for early stopping is chosen to be 10, which means that the
models stop training if the results do not improve in the next 10 epochs. The loss
function used is mean squared error and Adam optimizer is used in the training of all
the models. The parameters beta-1 and beta-2 of the Adam optimizer have the values
0.9 and 0.999 respectively. Additionally in the case of BERT model, the clipvalue
parameter is set to 0.5 and the clipnorm parameter to 1.0. We are using a sample

42

Model Total training time on average (s)
Seq2Point 200
Seq2Seq 200
LSTM 1900
BERT with 6 encoder layers 2500
BERT2Point 2400

Table 1: Training time for different algorithms at sample rate of 300 and sequence length of
99.

rate of 300 and a sequence length of 99 to display the comparison of the training
time of each model in Table 1. The CNN-based seq2point and seq2seq models shown
in the first two rows of Table 1 train much faster than the other models. Longer
sequence lengths and higher sampling frequency, i.e sample rates of 180 and 60 lead
to longer training times.

6.2 Comparing the performance of NILM algorithms on
different input features

In this experiment, we have made use of multiple features and compared the per-
formances to show which features are the most vital ones. The list of features
includes:

• Active Power, which measures the power which is actually consumed by the
devices

• Active Power, Reactive Power, where the reactive power indicates the energy
that is flowing back and forth between the source and the load. Reactive power
is caused due to capacitive or inductive loads.

• Active Power, Reactive Power, Solar Power, where we also included the power
generation caused due to PV systems as an input feature.

• Active Power, Reactive Power, Voltage, Current, where additional electrical
features are used to see if they make any difference to our results.

All the evaluations are performed on a sample rate of 300 and a sequence length of 99.
The training period is one whole year of 2021, while the test period is first 5 months

43

of 2022. The evaluation metric used is RMSE. The results of this experiment are
tabulated in Tables 2, 3, and 4. Table 2 displays the prediction performance of various
algorithms on the Starlinger device of Company A using different input features,
while Tables 3 and 4 show the results for the devices MUT and Waschanlage-2002 of
Company B respectively. All the values are rounded off to the nearest integer.

Features BERT Seq2Point LSTM
Active 15123 20220 21893
Active, Reactive 10242 12566 16140
Active, Reactive, Solar Power 10685 15371 17189
Active, Reactive, Voltage, Current 15632 22311 25526

Table 2: RMSE results (measured in Watts) of different NILM algorithms on the Starlinger
device from Company A compared on different input features.

It can be clearly observed from all 3 tables, that for all the 3 devices and all
the 3 algorithms the pair of Active Power and Reactive Power as input features
gives the best results. Adding additional features like solar power, voltage, and
current actually have a negative effect on the prediction capability of algorithms,
which is more prominent in the case of voltage and current as features. One possible
explanation for worse results with the addition of voltage and current information
could be that changes in voltage are short term events, for example for a few seconds
when a machine is turned on. This information is lost at a sampling rate of 300 and
maybe this information would be more useful at higher resolutions like 6 seconds or 10
seconds. On the other hand, current closely follows active power and hence turns out
to be a redundant feature. It can also be seen that the results of BERT algorithm for
all the 3 devices are not affected by the addition of solar power, voltage and current
information to the same extent as Seq2Point and LSTM algorithms. Figure 28 and
Figure 29 lend pictorial evidence to the fact that using reactive power along with

Features BERT Seq2Point LSTM
Active 8945 9759 11594
Active, Reactive 7341 8363 8380
Active, Reactive, Solar Power 7727 9183 10627
Active, Reactive, Voltage, Current 8051 10368 12068

Table 3: RMSE results (measured in Watts) of different NILM algorithms on the MUT device
from Company B compared on different input features.

44

Features BERT Seq2Point LSTM
Active 10731 11768 15960
Active, Reactive 7818 9014 8775
Active, Reactive, Solar Power 8225 9420 9437
Active, Reactive, Voltage, Current 9060 10990 11322

Table 4: RMSE results (measured in Watts) of different NILM algorithms on the Washcanlage
2002 device from Company B compared on different input features.

Figure 28: Prediction result of Seq2point algorithm on Starlinger only using active power.
The plot in orange indicates the difference between the predicted values and the
ground truth.

active power leads to better prediction performance. Figure 28 displays the time
series plot of ground truth values of the Starlinger device and the difference between
the ground truth and the prediction by the Seq2Point algorithm. The red bubbles
highlight much higher error differences compared to errors in Figure 29. This clearly
indicates that using reactive power as an input feature is more useful in capturing
the signatures of individual devices.

45

Figure 29: Prediction result of Seq2point algorithm on Starlinger using active and reactive
power. The plot in orange indicates the difference between the predicted values
and the ground truth.

6.3 NILM algorithms compared at different sample rates
and sequence lengths

In this experiment, we investigate the effects of the application of various NILM
algorithms to predict the energy consumption of 3 different devices. Based on the
results of the previous experiments, we have used active and reactive power as the
input features in this and the following experiments, unless otherwise mentioned. We
make evaluations for various sample rates and sequence lengths. We also introduce
the readers to the term known as Effective Sequence Length (ESL), which was
first used in [41]. This term indicates the product of sequence length and sample
rate. For example, multiplying a sample rate of 300 (5 minutes) and 99 results in
an ESL of 495 minutes or ∼ 8 hours. Basically, this means that the length of the
sliding window, as discussed in the Methods chapter, is ∼ 8 hours. We have chosen
the algorithms BERT, Seq2Point and LSTM for this experiment. The sample rates
included are 60, 180, 300, and 900 and the sequence lengths are 39, 99, 159, and 219.
The devices chosen are the same as before, MUT, Waschanlage-2002, and Starlinger.
The evaluation metric used is RMSE. Tables 5, 6, and 7 show the results for this
experiment. Table 5 shows the results for Starlinger, while Tables 6 and 7 show the
results for the devices MUT and Waschanlage-2002 respectively. All the values are
rounded off to the nearest integer. The bold values in the tables indicate the best

46

values for each algorithm for each sample rate.

Sample Rate Sequence Length ESL (minutes) BERT Seq2Point LSTM

900

39 585 11789 13869 17112
99 1485 11892 13658 21347
159 2385 11751 14123 33645
219 3285 12136 14105 35527

300

39 195 11347 13928 14644
99 495 10615 13664 16477
159 795 10311 13021 23316
219 1095 11182 13299 24482

180

39 117 11184 12955 13677
99 297 10598 12485 15662
159 477 10338 12713 22176
219 657 10287 12157 21868

60

39 39 12165 14450 13520
99 99 12208 13324 12880
159 159 11360 13105 15078
219 219 11140 12788 17366

Table 5: RMSE results (measured in Watts) of different NILM algorithms on the Starlinger
device from Company A compared against different sample rates and sequence lengths.
Sample rate is in seconds.

47

Sample Rate Sequence Length ESL (minutes BERT Seq2Point LSTM

900

39 585 6828 7683 7959
99 1485 6752 7341 9059
159 2385 6980 7361 11733
219 3285 7174 7767 14936

300

39 195 7730 8387 8829
99 495 7474 8203 8909
159 795 7651 8082 10825
219 1095 7712 8294 10631

180

39 117 8334 9841 9594
99 297 8106 9255 9596
159 477 7994 9082 10542
219 657 8027 8979 11281

60

39 39 9880 11584 10820
99 99 9310 10210 10479
159 159 9253 10197 10989
219 219 9215 10032 11450

Table 6: RMSE results (measured in Watts) of different NILM algorithms on the MUT device
from Company B compared against different sample rates and sequence lengths.
Sample rate is in seconds.

Various inferences can be derived from these results:

• The first inference from these results is that the BERT algorithm performs the
best from all the 3 algorithms for all the 3 devices.

• LSTM on the other hand performs the worst, especially at higher sequence
lengths. This can be attributed to the fact that LSTMs struggle with longer
sequence length inputs.

• It can also be observed that the results are worse for all the algorithms for all
the devices at the sample rate of 60. A reason for this could be lower ESL
compared to other sample rates using these sequence lengths. The results
indicate that increasing the sequence length for the sample rate of 60 could lead
to better results. This probably means that higher sampling frequencies are
not required in our case for NILM prediction tasks. This can result in savings
in data collection and data monitoring, and in computation power, as training
the neural networks at the sample rate of 60 and higher sequence lengths (than
the ones used) consumes a lot more time.

• Sequence Length is an important hyperparameter for these NILM algorithms.
But, the results reveal that the same sequence length cannot be used for all the
sample rates. Effective Sequence Length (ESL) is more important in providing

48

Sample Rate Sequence Length ESL (minutes) BERT Seq2Point LSTM

900

39 585 7149 8734 8616
99 1485 6883 8290 8729
159 2385 6989 8507 14402
219 3285 7132 8788 20151

300

39 195 8207 9540 9571
99 495 7860 9101 8743
159 795 7432 8882 14235
219 1095 7802 9041 14121

180

39 117 9126 10758 9537
99 297 8536 9625 9067
159 477 8181 9217 9260
219 657 7986 9039 14749

60

39 39 9043 11624 9780
99 99 8666 10308 9347
159 159 8701 10163 9721
219 219 8313 9855 9725

Table 7: RMSE results (measured in Watts) of different NILM algorithms on the Waschanlage-
2002 device from Company B compared against different sample rates and sequence
lengths. Sample rate is in seconds

informed choices about which sequence length is appropriate for a particular
sample rate. The general trend observed for all the 3 devices is that at very
high sample rates (900), better results are obtained at lower sequence lengths
and vice versa for lower sample rates (60). Taking an example of the BERT
algorithm, at the sample rate of 900, best results are obtained for the Starlinger
device at sequence length of 159, and for the MUT and Waschanlage device
at a sequence length of 99. While for the sample rate of 60, best results are
obtained for all the devices at the sequence length of 219. A similar trend is also
observed for Seq2point algorithm. Even for LSTM, results tend to be poorer at
very high ESL.

49

6.4 Comparison between different NILM algorithms on
various machines

In this experiment, we make comparisons of 4 devices, Starlinger and Schredder from
Company A, and Waschanlage-2002 and MUT from Company B. Unlike the other
machines, Schredder consumes a very little proportion of energy from its network,
just slightly more than 5%. We compare the prediction performance on these devices
for BERT and Seq2Point models. Since we are making comparisons between various
devices all with different power levels, we make use of the normalized metric, NDE,
for evaluation. We have compiled the results for this experiment in Table 8. All the
experiments are performed at a sample rate of 300.

Sequence Length Starlinger Schredder MUT Waschanlage

BERT Seq2Point BERT Seq2Point BERT Seq2Point BERT Seq2Point

39 0.056 0.071 0.812 0.954 0.154 0.173 0.168 0.201

99 0.053 0.069 0.716 0.848 0.148 0.168 0.159 0.188

159 0.052 0.066 0.682 0.769 0.151 0.161 0.152 0.180

219 0.057 0.067 0.757 0.842 0.153 0.163 0.156 0.185

Table 8: Results of different NILM algorithms on 4 different devices from Company A and
Company B

The following observations can be made by looking at the table:

• Both the algorithms, BERT and Seq2Point perform the best on Starlinger.

• These algorithms attain the lowest prediction accuracy on the Schredder device.

• While the performances on MUT and Waschanlage are much better than on
Schredder, they are still worse as compared to Starlinger.

According to our understanding, since Schredder consumes a very little proportion of
energy, it becomes hard for the algorithms to make accurate predictions. Conversely,
the Starlinger machine consumes ∼ 80% of energy in its power distribution network.
As for MUT and waschanlage the proportion of their energy consumption is around
50% and 30% respectively. Along with this, both the MUT and Waschanlage also
have negative power measurements while the Starlinger device only has positive
measurements. These reasons probably contribute to the predictions for MUT and
Waschanlage being worse than for Starlinger.

50

6.5 Comparison between Seq2Point and Seq2Seq
algorithms

In this experiment, we investigate the effects of Sequence-to-Point and Sequence-
to-Sequence concepts. CNN based Seq2Point and Seq2Seq models are described
in section 5.3.1. BERT, as previously described in section 5.3.3, is a Sequence-to-
Sequence model. We have also implemented a Sequence-to-Point version of BERT
similarly to the CNN based model. We will refer this model as BERT2Point. We
compare their prediction performances on two devices, Starlinger from Company A
and MUT from Company B. The evaluation metric used is NDE. The experiments are
performed at the sample rate of 300. The results for this experiment are tabulated in
Table 9.

Sequence Length Starlinger MUT

BERT BERT2Point Seq2Seq Seq2Point BERT BERT2Point Seq2Seq Seq2Point

39 0.056 0.0663 0.064 0.071 0.154 0.163 0.174 0.173

99 0.0529 0.0628 0.0612 0.069 0.148 0.155 0.171 0.168

159 0.0523 0.0605 0.0626 0.066 0.151 0.156 0.167 0.161

219 0.057 0.0609 0.0646 0.067 0.153 0.157 0.170 0.163

Table 9: Comparison of results of Seq2Point and Seq2Seq NILM algorithms on 2 different
devices from Company A and Company B.

For the Starlinger device, the Sequence-to-Sequence methods are clearly performing
better than their Sequence-to-Point counterparts. The mean error difference between
BERT and BERT2Point considering all the 4 sequence lengths is 14.9%. While for
CNN based Seq2Seq and Seq2Point, it is 7.47%. For the MUT device on the other
hand, the mean error difference between BERT and BERT2Point considering all the
4 sequence lengths is only 4.12%. In this case, the CNN-based Seq2Point performs
better than Seq2Seq, with the mean error difference being -2.62%. According to our
understanding, the results can be explained by the fact that the MUT device has
daily sharp peaks of energy consumption. For the starlinger device, there are minor
deviations in energy consumption as compared to the MUT device. The sequence-to-
point algorithms compute a single value, whereas the sequence-to sequence algorithms
compute l number of values, where l is the sequence length. These l values are
then averaged to yield the final answer. A possible explanation is that the averaging
of values makes it harder to accurately predict the sharper peaks and this is why
the performance of sequence-to-sequence algorithms drops when predicting for such

51

Figure 30: Prediction result of BERT algorithm on Starlinger. The ground truth shows less
sharper peaks for Starlinger

time-series sequences. The plots in figures Figure 30 and Figure 31 that show a 1
month duration energy consumption pattern for Starlinger and MUT will help in
making this point clearer.

52

Figure 31: Prediction result of BERT algorithm on MUT. The ground truth shows much
sharper peaks for MUT

6.6 Hyperparameter Optimization

We mainly focused on hyperparameter optimization of BERT algorithm. This was
because it widely outperformed both Seq2Point and LSTM algorithms even with
default parameters. Another factor was the lack of sufficient time to include the results
in the thesis. We used the Optuna [42] library to optimize the hyperparameters of
BERT. Since Optuna is based on Bayesian Optimization, it is more efficient at finding
the best hyperparameters than doing grid search. The values of the hyperparameters
are sampled from our user-defined search space. Table 10 provides the list for the
same.

Description Range Best Configuration
Learning Rate [1 · 10−4, 5 · 10−4, 1 · 10−3, 5 · 10−2, 1 · 10−2] 1 · 10−3

Number of Enc. Layers [1, 2, 4, 6] 6
No. of filters [8, 16, 32, 64] 64
No. of attention heads [1, 2] 2
Dropout rate [0.1, 0.2] 0.2

Table 10: The hyperparameters and their search space used for optimization.

The best combination of hyperparameters obtained by Optuna is shown in the third
column of table 10. The most consequential parameter was the number of encoder
layers. The number of filters in the inital CNN layer, which acts as a feature extractor,

53

was also an important parameter. Dropout rate was less relevant compared to other
hyperparameters. The choice of the number of attention heads was based on the work
done in [18] and [19], where the number of attention heads was 2. These parameters
were obtained with the number of trials = 60. On the other hand, using an exhaustive
grid search we would have needed 320 trials. The optimal hyperparameters chosen
indicate that the largest possible BERT model is chosen and increasing the model
size further, for example, by increasing the number of encoder layers, using more
number of attention heads could lead to an even better model. This remains to be
tested and must be tried in the future.

While we did not use Optuna for CNN-based Seq2Point, we did try some manual
fidgeting of hyperparameters. We changed the filter sizes for the initial convolutional
layers. We tried different weight initialization strategies for the layers. We even added
a convolutional layer. We also added pooling layers. Although, none of these changes
gave a convincing improvement over the default hyperparameter setting. While more
effort needs to be put into finding the best hyperparameters for CNN-based Seq2Point
algorithm, it is still unlikely to outperform BERT.

54

6.7 Transfer Learning

We have tested the transferability of CNN-based Seq2Point similarly to the approaches
in [20] and [21]. The results from these papers suggested that using transfer learning
can be effective across devices as well as different datasets. A major benefit of a
successful transfer learning strategy is that of reduced data monitoring of individual
appliances. Another benefit is reduced computation time due to the usage of pre-
trained models. We have used two devices, Starlinger and Extruder MAS (10). Both
these devices are extruders. The test period for all the comparisons is first 5 months
of 2022. We have multiple fine tuning sets of Extruder MAS (10), each having a
different time duration, as shown in Table 11. We make the following comparisons:

1. We train on the Starlinger device for a training time period of 1 year. We test
this model directly on Extruder MAS (10). This type of learning can be called
zero-shot learning.

2. We train on the Starlinger device for a training time period of 1 year. We use
this pre-trained model on the fine tuning dataset of Extruder MAS (10). In the
training process, we have left the last two dense layers unfrozen, the rest of the
layers are frozen. Then we finally test on the test set of Extruder MAS (10).

3. We train on the Starlinger device for a training time period of 1 year. We use
this pre-trained model on the fine tuning dataset of Extruder MAS (10). In the
training process, we have left all the layers unfrozen and the learning rate is
reduced to one-tenth of its default value. Then we finally test on the test set of
Extruder MAS (10).

4. We train on the fine tuning dataset of Extruder MAS (10) and we test on the
test set of Extruder MAS (10). This is used to compare the efficacy of the two
transfer learning approaches.

Table 11 shows the results obtained for this experiment. Seq2Point column indicates
the result of training and testing solely on Extruder MAS (10). CNN-2L column
indicates the results of keeping the last two layers of the pre-trained model unfrozen.
CNN-FL indicates the results of leaving all the layers of the pre-trained model
unfrozen.
The results of just testing using a pre-trained model (zero-shot learning) are the same
in all the rows since no training is happening. As expected, this learning gives the

55

Training Time (Days) Seq2Point CNN-2L CNN-FL Zero-Shot Learning
10 7928 7568 7303 8227
30 4082 3531 3125 8227
60 2972 3958 3542 8227
120 2558 3207 2812 8227
180 2330 2963 2570 8227

Table 11: RMSE Results (measured in Watts) of using transfer learning on the Extruder MAS
(10) device using pre-trained model, trained on the Starlinger device from Company
A.The results are compared against zero-shot learning and, training and testing solely on the
Extruder MAS (10) device.

Figure 32: Plot of number of days training using the fine tuning dataset vs the RMSE for all
the 4 methods.

worst results. It can also be seen that using transfer learning is beneficial only when
the amount of data is very less (not more than 30 days). In all other cases, training
and testing on Extruder MAS (10) without any pre-training gives a better result.
Transfer learning in the residential use case showed promising results indicating high
transferability of CNN-based Seq2Point across datasets [20], [21]. While the results of
using transfer learning are not much worse than using Seq2Point normally, the results
from the CNN-FL column especially indicate that there is some negative transfer
between the two devices. This tells us that in our case, using transfer learning in
this way is quite a limited technique with marginal success obtained only when the
number of samples are very few. Figure 32 shows this in a plot between the models’
performance (measured in RMSE) against the number of days of training in the fine
tuning dataset.

56

7 Conclusion and Future Work

Non-intrusive load monitoring is used to predict the energy consumption of individual
devices from the aggregated power measurement. Since most of the research work has
been carried out in the residential setting, we chose to tackle the energy disaggregation
task in the industrial space. We have performed an analysis using various NILM
algorithms on various devices from datasets of two German factories. This analysis
helps us in learning various nuances about the data as well as the algorithms. An
important work was presented in HIPE [6]. Their results show that the CNN-based
Sequence-to-Sequence and Sequence-to-Point algorithms were the best performing
algorithms and obtained an NDE of 0.72 and 0.73 respectively. We use the NDE
metric to make a comparison because it is a normalized metric. In our case, the best
results were obtained using the BERT algorithm. In a comparison across various
devices, we found that NDE of 0.0523 was obtained for the Starlinger device, NDE of
0.682 was obtained for the Schredder device, NDE was 0.148 for the MUT device,
and NDE was 0.152 for Waschanlage. Our choice of using a better algorithm (BERT),
which they did not include in their findings, and having more training data (1 year)
compared to their training period of only 2 months seem to be the likely reasons to
have contributed in obtaining better NDE on our devices. The Schredder device only
consumes around 5% of the aggregate reading whereas the starlinger device consumes
around 80% of the aggregate reading which contributes to the large error difference
between these two devices. We also compared the performance of the algorithms on
different input features and found that using reactive power along with active power
obtains the best results. We wish to include weather information like solar irradiance
to see how it can influence the energy disaggregation task since the two factories also
consist of solar PV systems that generate power.

Most of the research work in literature evaluates the NILM algorithm only at a
particular sample rate and sequence length. We have also compared the performance
of NILM algorithms across different sample rates and sequence lengths. We made

57

use of the term ’Effective Sequence Length’ to show that the same sequence length
cannot be used for all the sample rates. In fact, at higher sample rates, better results
are obtained at lower sequence lengths and vice versa for lower sample rates. In
the future, we would like to test with more sample rates and more sequence lengths
to find the optimal Effective Sequence Length for each device. The MUT device
has much sharper peaks than the Starlinger device. We performed an experiment
on these two devices to compare Sequence-to-Point and Sequence-to-Sequence al-
gorithms. The CNN-based Sequence-to-Point algorithm performs better than the
CNN-based Sequence-to-Sequence on MUT, while the opposite is observed for the
Starlinger device. Even for BERT and BERT2Point, the error difference betweeen
these two algorithms is lower for the MUT device than the Starlinger device. This
indicates that the averaging of values in Sequence-to-Sequence algorithms makes it
harder to accurately predict the sharper peaks and this is why the performance of
sequence-to-sequence algorithms drops when predicting for such time-series sequences.

We performed hyperparameter optimisation for BERT model. The optimal hy-
perparameters chosen indicate that the largest possible BERT model is chosen and
increasing the model size further could lead to an even better model. This must
be tried in the future. We must also perform hyperparameter optimisation for
CNN-based Sequence-to-Point algorithm. Transfer learning in the residential use case
showed promising results indicating high tranferability of CNN-based Seq2Point across
datasets [20] and [21]. Using CNN-based Sequence-to-Point for transfer learning, we
noticed that transfer learning was effective only when the training data availability
was low (upto 30 days). For bigger training datasets, transfer learning gave worse
results. An effective transfer learning strategy could prove to be an important mile-
stone to solve industrial NILM tasks. If the trained models on one device can be
transferred to other devices in the same factory or even in other factories, great cost
savings can be achieved by reducing the cost of data monitoring that the factories
have to pay. More effort needs to be certainly put in this direction. Figure 11 shows
that the power network has multiple levels of distribution. This means that there
are various points from which disaggregation can take place. An analysis needs to
be performed at various levels of the power network. If successful, this can also save
costs in data monitoring by avoiding the need to place sensors at intermediate levels
in the power network.

58

8 Acknowledgments

I would like to thank Fraunhofer ISE, University of Freiburg and various people who
have supported me and provided guidance. The list is not exhaustive.

• Benedikt Köpfer for constantly providing suggestions and guiding me throughout
the thesis.

• Matthias Hertel for regular interactions to suggest improvements and corrections.

• Prof. Dr. Hannah Bast and Prof. Dr. Christof Wittwer for being the examiners
of this thesis.

• Rohit Kerekoppa for providing various tips.

• My parents and my sister for their emotional support.

59

Bibliography

[1] K. Ehrhardt-Martinez, K. A. Donnelly, S. Laitner, et al., “Advanced meter-
ing initiatives and residential feedback programs: a meta-review for household
electricity-saving opportunities,” American Council for an Energy-Efficient Econ-
omy Washington, DC, 2010.

[2] H. Rashid, P. Singh, V. Stankovic, and L. Stankovic, “Can non-intrusive load
monitoring be used for identifying an appliance’s anomalous behaviour?,” Applied
energy, vol. 238, pp. 796–805, 2019.

[3] W. Schneider and F. Campello de Souza, “Non-intrusive load monitoring for
smart grids,” tech. rep., Technical report. DELL EMC, 2018.

[4] N. Noury, M. Berenguer, H. Teyssier, M.-J. Bouzid, and M. Giordani, “Building
an index of activity of inhabitants from their activity on the residential electrical
power line,” IEEE Transactions on Information Technology in Biomedicine,
vol. 15, no. 5, pp. 758–766, 2011.

[5] G. Bucci, F. Ciancetta, E. Fiorucci, S. Mari, and A. Fioravanti, “State of art
overview of non-intrusive load monitoring applications in smart grids,” Measure-
ment: Sensors, vol. 18, p. 100145, 2021.

[6] F. Kalinke, P. Bielski, S. Singh, E. Fouché, and K. Böhm, “An evaluation of
nilm approaches on industrial energy-consumption data,” in Proceedings of the
Twelfth ACM International Conference on Future Energy Systems, pp. 239–243,
2021.

[7] S. Bischof, H. Trittenbach, M. Vollmer, D. Werle, T. Blank, and K. Böhm, “Hipe:
An energy-status-data set from industrial production,” in Proceedings of the
Ninth International Conference on Future Energy Systems, pp. 599–603, 2018.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

60

[9] G. W. Hart, “Prototype nonintrusive appliance load monitor,” in MIT Energy
Laboratory Technical Report, and Electric Power Research Institute Technical
Report, 1985.

[10] J. Z. Kolter and M. J. Johnson, “Redd: A public data set for energy disaggregation
research,” in Workshop on data mining applications in sustainability (SIGKDD),
San Diego, CA, vol. 25, pp. 59–62, 2011.

[11] J. Z. Kolter and T. Jaakkola, “Approximate inference in additive factorial hmms
with application to energy disaggregation,” in Artificial intelligence and statistics,
pp. 1472–1482, PMLR, 2012.

[12] J. Kelly and W. Knottenbelt, “Neural nilm: Deep neural networks applied to
energy disaggregation,” in Proceedings of the 2nd ACM international conference
on embedded systems for energy-efficient built environments, pp. 55–64, 2015.

[13] J. Kelly and W. Knottenbelt, “The uk-dale dataset, domestic appliance-level
electricity demand and whole-house demand from five uk homes,” Scientific data,
vol. 2, no. 1, pp. 1–14, 2015.

[14] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” in Proceedings of the
25th international conference on Machine learning, pp. 1096–1103, 2008.

[15] J. Kim, H. Kim, et al., “Classification performance using gated recurrent unit
recurrent neural network on energy disaggregation,” in 2016 international confer-
ence on machine learning and cybernetics (ICMLC), vol. 1, pp. 105–110, IEEE,
2016.

[16] C. Zhang, M. Zhong, Z. Wang, N. Goddard, and C. Sutton, “Sequence-to-point
learning with neural networks for non-intrusive load monitoring,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 32, 2018.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” CoRR,
vol. abs/1706.03762, 2017.

[18] N. Lin, B. Zhou, G. Yang, and S. Ma, “Multi-head attention networks for
nonintrusive load monitoring,” in 2020 IEEE International Conference on Signal
Processing, Communications and Computing (ICSPCC), pp. 1–5, IEEE, 2020.

61

[19] Z. Yue, C. R. Witzig, D. Jorde, and H.-A. Jacobsen, “Bert4nilm: A bidirectional
transformer model for non-intrusive load monitoring,” in Proceedings of the 5th
International Workshop on Non-Intrusive Load Monitoring, pp. 89–93, 2020.

[20] M. D’Incecco, S. Squartini, and M. Zhong, “Transfer learning for non-intrusive
load monitoring,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1419–
1429, 2019.

[21] L. Wang, S. Mao, B. M. Wilamowski, and R. M. Nelms, “Pre-trained models
for non-intrusive appliance load monitoring,” IEEE Transactions on Green
Communications and Networking, vol. 6, no. 1, pp. 56–68, 2021.

[22] N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A. Singh,
and M. Srivastava, “Nilmtk: An open source toolkit for non-intrusive load
monitoring,” in Proceedings of the 5th international conference on Future energy
systems, pp. 265–276, 2014.

[23] R. Kerekoppa, “Detection of high energy consuming appliances’ load profiles
using non-intrusive load monitoring,” Master’s thesis, University of Freiburg,
2022.

[24] F. Peixoto, “A simple overview of multilayer perceptron (mlp) deep learning.”
https://www.analyticsvidhya.com/blog/2020/12/mlp-multilayer-percep

tron-simple-overview, Dec 2020.

[25] P. Sharma, “Feedforward neural network: Its layers, functions, and importance.”
https://www.analyticsvidhya.com/blog/2022/01/feedforward-neural-ne

twork-its-layers-functions-and-importance, Aug 2022.

[26] Shankar297, “Understanding loss function in deep learning.” https://www.an

alyticsvidhya.com/blog/2022/06/understanding-loss-function-in-deep

-learning/, Jul 2022.

[27] Saurabh, “Backpropagation – algorithm for training a neural network.” https:

//www.edureka.co/blog/backpropagation/, Nov 2022.

[28] S. Senthil, “Energy price forecasting with uncertainty estimation,” Master’s thesis,
University of Freiburg, 2022.

[29] J. Brownlee, “Gentle introduction to the adam optimization algorithm for deep
learning.” https://machinelearningmastery.com/adam-optimization-alg

orithm-for-deep-learning/, Jan 2021.

62

https://www.analyticsvidhya.com/blog/2020/12/mlp-multilayer-perceptron-simple-overview
https://www.analyticsvidhya.com/blog/2020/12/mlp-multilayer-perceptron-simple-overview
https://www.analyticsvidhya.com/blog/2022/01/feedforward-neural-network-its-layers-functions-and-importance
https://www.analyticsvidhya.com/blog/2022/01/feedforward-neural-network-its-layers-functions-and-importance
https://www.analyticsvidhya.com/blog/2022/06/understanding-loss-function-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/06/understanding-loss-function-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/06/understanding-loss-function-in-deep-learning/
https://www.edureka.co/blog/backpropagation/
https://www.edureka.co/blog/backpropagation/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

[30] J. Brownlee, “A gentle introduction to dropout for regularizing deep neural
networks.” https://machinelearningmastery.com/dropout-for-regulariz

ing-deep-neural-networks/, Aug 2019.

[31] J. Brownlee, “1d convolutional neural network models for human activity recog-
nition.” https://machinelearningmastery.com/cnn-models-for-human-ac

tivity-recognition-time-series-classification/, Aug 2020.

[32] M. Mandal, “Introduction to convolutional neural networks (cnn).” https:

//www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networ

ks-cnn/, Dec 2022.

[33] Aishwarya, “Introduction to recurrent neural network.” https://www.geeksfor

geeks.org/introduction-to-recurrent-neural-network/, Nov 2022.

[34] J. Ma, “All of recurrent neural networks.” https://medium.com/@jianqiangma

/all-about-recurrent-neural-networks-9e5ae2936f6e, Apr 2016.

[35] E. Muñoz, “Attention is all you need: Discovering the transformer paper.”
https://towardsdatascience.com/attention-is-all-you-need-discove

ring-the-transformer-paper-73e5ff5e0634, Feb 2021.

[36] G. Loukas, T. Vuong, R. Heartfield, G. Sakellari, Y. Yoon, and D. Gan, “Cloud-
based cyber-physical intrusion detection for vehicles using deep learning,” Ieee
Access, vol. 6, pp. 3491–3508, 2017.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.

[39] A. Shenfield and M. Howarth, “A novel deep learning model for the detection
and identification of rolling element-bearing faults,” Sensors, vol. 20, no. 18,
p. 5112, 2020.

[40] R. Kukunuri, N. Batra, A. Pandey, R. Malakar, R. Kumar, O. Krystalakos,
M. Zhong, P. Meira, and O. Parson, “Nilmtk-contrib: Towards reproducible
state-of-the-art energy disaggregation,” in Proceedings of the AI Social Good
Workshop, Virtual, pp. 20–21, 2020.

63

https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://machinelearningmastery.com/cnn-models-for-human-activity-recognition-time-series-classification/
https://machinelearningmastery.com/cnn-models-for-human-activity-recognition-time-series-classification/
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://medium.com/@jianqiangma/all-about-recurrent-neural-networks-9e5ae2936f6e
https://medium.com/@jianqiangma/all-about-recurrent-neural-networks-9e5ae2936f6e
https://towardsdatascience.com/attention-is-all-you-need-discovering-the-transformer-paper-73e5ff5e0634
https://towardsdatascience.com/attention-is-all-you-need-discovering-the-transformer-paper-73e5ff5e0634

[41] A. Reinhardt and M. Bouchur, “On the impact of the sequence length on sequence-
to-sequence and sequence-to-point learning for nilm,” in Proceedings of the 5th
International Workshop on Non-Intrusive Load Monitoring, pp. 75–78, 2020.

[42] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 2623–2631, 2019.

64

	1 Introduction
	1.1 NILM for industrial data
	1.2 Formal definition of the problem statement
	1.3 Contributions
	1.4 Overview

	2 Related Work
	2.1 Legacy Algorithms
	2.2 Deep Learning Algorithms
	2.3 HIPE

	3 Background
	3.1 NILMTK
	3.2 Deep learning
	3.2.1 Artificial Neural Networks
	3.2.2 Training a Neural Network
	3.2.3 Convolutional Neural Networks
	3.2.4 Recurrent Neural Networks
	3.2.5 Transformers

	3.3 Evaluation Metrics

	4 Datasets
	4.1 Company A
	4.2 Company B

	5 Approach and Deep Learning Methods for NILM
	5.1 Converting Dataset into NILMTK-DF
	5.2 NILMTK Attributes
	5.3 Deep Learning Methods
	5.3.1 CNN-based Sequence-to-Sequence (Seq2Seq) and Sequence-to-Point (Seq2Point)
	5.3.2 Long short-term memory (LSTM)
	5.3.3 Bidirectional Encoder Representations from Transformers (BERT)

	6 Experiments
	6.1 Experimental Setup
	6.2 Comparing the performance of NILM algorithms on different input features
	6.3 NILM algorithms compared at different sample rates and sequence lengths
	6.4 Comparison between different NILM algorithms on various machines
	6.5 Comparison between Seq2Point and Seq2Seq algorithms
	6.6 Hyperparameter Optimization
	6.7 Transfer Learning

	7 Conclusion and Future Work
	8 Acknowledgments
	Bibliography

