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Abstract

One of the primary challenges in visualizing movement in public transportation
networks is handling the amount of data. This becomes particularly difficult when
the visualization should be available in real-time and for arbitrary spatial parts of
the dataset, for example to provide an interactive live map. The main task is then
to reduce and crop the set of trajectories to the parts currently relevant for the
visualization. In this thesis, we present an approach that combines static schedule
data and real-time delay information into vehicle trajectories that are treated as
piecewise linear functions from the time domain to the projected map-plane, allowing
for fast interpolation. We introduce a highly efficient server that accepts temporal
and spatial boundaries as an input and returns trajectory parts within these limits.
We discuss the implementation details, show that our approach scales well and
demonstrate that it is able to handle public transit datasets of entire countries. As
a client, we introduce a thin vector-layer for map services that can display thousands
of (time-lapsed) vehicle-movements at the same time. This thesis also briefly outlines
an approach to extract vehicle trajectories from geospatial datasets.

Zusammenfassung

Eines der Hauptprobleme bei der Visualisierung von Fahrzeugbewegungen in Net-
zen des öffentlichen Nahverkehrs stellt die schiere Datenmenge dar. Diese wird vor
allem dann zum Problem, wenn eine Echtzeitvisualisierung auf beliebigen Teilen des
Datensatzes erfolgen soll (zum Beispiel, um eine interaktive Karte zu generieren).
In diesem Fall liegt die Hauptaufgabe darin, die Menge an Fahrtverläufen auf die
für die Visualisierung relevanten Teile zu reduzieren. In dieser Arbeit präsentieren
wir einen Ansatz, der statische Fahrplandaten und dynamische Echtzeitinformatio-
nen zu Fahrtverläufen aufbereitet, die als stückweise lineare Funktionen verstanden
werden und die Zeit auf Koordinaten der (projizierten) Kartenebene abbilden. Wir
legen einen effizienten Server vor, der zeitliche und räumliche Grenzen als Eingabe
akzeptiert und partielle Fahrtverläufe innerhalb dieser Grenzen ausgibt. Wir disku-
tieren die Details der Implementierung und zeigen, dass unser Ansatz problemlos
in der Lage ist, mit den öffentlichen Nahverkehrsdaten ganzer Länder umzugehen.
Darüber hinaus legen wir einen schlanken Vektor-Layer für Online-Kartendienste
vor, der gleichzeitig tausende von Fahrzeugbewegungen (mit optionaler Zeitraffer-
funktion) darstellen kann. Außerdem skizzieren wir einen Ansatz um für eine Liste
von Stationspunkten den tatsächlichen Linienverlauf aus Geodaten zu extrahieren.
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1. Introduction

Over the past years, there has been an increasing interest in visualizing public
transportation networks, especially in displaying the live positions of vehicles. After
the release of swisstrains.ch, a live map for the Swiss railway network in 2007,
several transport agencies released their own tools for tracking live movements of
trains, buses or streetcars. Notable examples include the train radars by Deutsche
Bahn1 and Österreichische Bundesbahnen2 as well as the live timetable of Munich’s
S-Bahn-System3. Among others, unofficial projects exist for the Stuttgart region4,
the UK5 and for the Freiburg area6. This list is far from complete.

Live maps of public transit networks are more than a mere toy for railroad enthu-
siasts. The increasing number of official maps leads to the assumption that there is a
certain promotional value in visualizing the live network of a transportation agency.
Other than with road networks, a static (possibly printed) map of a transit network
is not able to show the capacity of the system. While roads are (in general) contin-
uously accessible through fixed entry points, public transportation only allows for
intermittent access in most of the cases. Restrictions include stop positions, vehicle
types and, of course, the timetable. While it is easily possible to represent stations
and lines on a map, it is difficult to give a complete static two-dimensional picture
of the network’s train coverage.

Live maps can help with that, but it is not their primary asset. The now discontin-
ued train radar of the German newspaper “Süddeutsche Zeitung” used aggregated
delay information to analyze the long-distance network of Deutsche Bahn for punc-
tuality and compared it against official statistics. But visualization of real-time
public transit data can not only be useful to inform passengers about delays. It can
even help to straighten out minor shifts in the timetable by providing customers
with actual positions of vehicles, enabling them to plan their journey accordingly.
A possible use-case scenario could be a smartphone app that shows the position of
every vehicle in the surrounding area along with their routes and the nearby stations.

1 http://bahn.de/zugradar
2 http://zugradar.oebb.at
3 http://s-bahn-muenchen.hafas.de
4 http://www.nahverkehrskarte.de
5 http://traintimes.org.uk/map
6 http://tracker.patrickbrosi.de
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1. Introduction

Their full potential can be unleashed by combining them with classic route plan-
ners. This would have gone beyond the scope of this thesis, but we discuss this idea
as future work in Chapter 7.

Despite the various efforts put into the development of the services described
above, there exists (at least to our knowledge) no universal and scalable toolset for
the visualization of real-time public transit data. Existing approaches are either
bound to the specific data representation of a single service agency or they have
their own internal timetable format, very often scraped from various web services.
All approaches that we know of are restricted either to a specific agency, a location
(a region, a town, a country) or to certain types of vehicles (only trains, only buses,
only streetcars, only airplanes).

This thesis aims to overcome these restrictions. We describe a fully scalable
approach that uses static timetable data and real-time delay information to generate
a live transit map. In Chapter 2, we name the challenges that lie in such a task
and present basic approaches to master them. After that, Chapter 3 formalizes the
problem of getting the current position of a vehicle out of a vast array of scheduled
trips and real-time data. We proceed with a short introduction to map projections
that enable us to treat vehicle trajectories as piecewise linear curves on the plane. In
Chapter 5, we introduce TrajServ, a server that holds and reads General Transit Feed
Specification data (for a more detailed introduction to GTFS, see Section 3.1.3),
manages real-time data and outputs the cropped trajectories of vehicles inside a
certain bounding box. We also present TRAVIC, a thin browser-based client that is
able to display thousands of smooth vehicle movements on a map. We discuss the
implementation details, explore certain speed-up techniques and evaluate the overall
performance. We conclude with a list of possible future improvements, additional
use cases and a description of ideas how to extract vehicle routes out of geospatial
data using route planning or map matching.

To our best knowledge, this is not only the first implementation of a live transit
map that is entirely based on GTFS, but also the first that is (given the required
data) able to efficiently visualize the public transportation network of the whole
world.
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2. Challenges and Approaches

On a single Monday, there are 81,950 vehicle movements in the greater New York
City area. Each of those vehicles (including buses) makes an average of 38 stops
and each route is described by a polyline with an average of 284 vertices. On a
normal Monday morning at 8:00 am, there are ∼4,700 vehicles in the networks of
New York and New Jersey, including buses, trains, light rail and subways. Figure
2.1 gives an overview of the sizes of various networks around the world on a normal
Monday. The data is taken from TrajServ and is calculated from the processed and
optimized input GTFS.

Network area trips stations1 arr/dep events vertices2 vehicles 8am

Netherlands 111,537 73,293 2,438,857 3,843,780 4,8 k

New York City3 81,950 34,948 3,126,850 3,482,713 4,7 k

Switzerland4 77,949 21,689 2,092,196 —5 2 k

Turin 16,399 7,250 498,524 198,946 820

Freiburg 7,595 1,611 97,535 —5 ∼ 150

Vitoria-Gasteiz 1,766 338 35,867 4,198 65

Table 2.1: Parameters of several public transit networks on a single monday.

These numbers give an impression of the amount of data that has to be handled
if we want to visualize the vehicle movements of only a single metropolitan area on
a single day. A list of parameters for the whole datasets can be seen in Table 6.1.
The primary challenge lies in efficiently passing these vast amounts of data through
various bottlenecks to an end user’s screen. These bottlenecks include the processing
unit as well as the available memory, the interface between backend and frontend
and the rendering engine on the client machine. We will see in Chapter 6 that näıve
baseline approaches fail miserably in passing these bottlenecks and that additional
optimizations are necessary.

1 Total network number.
2 Unique shape waypoints. Waypoints are shared between trips.
3 MTA, LIRR, MNR, PATH, NJ TRANSIT.
4 SBB, BLS, RhB, BERNMOBIL, Transports publics de la région lausannoise, Baselland Transport

and others.
5 No line shape information available.
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2. Challenges and Approaches

Without transit data, of course, the bottlenecks will never clog and optimizations
would be like fighting windmills. We need data sources. In this chapter, we therefore
begin with discussing the advantages and disadvantages of static schedules and real-
time data. We explain why we think that neither of them are useful on their own for
a live transit map and introduce a combined approach. After that, we take a look
at possible client/server interfaces, describe the two general approaches that are in
use today and explain which alternative was chosen for TrajServ.

Server

• holds transit data

• updates real time data

• processes requests

Client

• draws vehicles

• fires requests

• provides user interaction

sends vehicle positions

bounding box requests

Figure 2.1: Architecture of a live transit map.

From now on, we will focus on a client/server architecture that resembles the
one depicted in Figure 2.1. The server manages transit data, receives requests and
outputs information that enables the client to display vehicles on the screen. A
client can either be a web application, a desktop application, a smartphone app
or something completely different. We try to be as implementation-independent as
possible during the next chapters.

2.1. Static vs. Real-Time Data

Static schedule data describes the state a transportation network is supposed to be
in at an arbitrary time t. Real-time transit data describes the state a transportation
network is currently (tcur) in. As avid train users know, there can be a huge differ-
ence between realtimeState(tcur) and staticState(tcur). Hence, settling for a transit
visualization that is based on static schedule data can lead to results that have little
to do with reality. Real-time data, on the other hand, is rarely available and almost
never network-complete.

2.1.1. Raw GPS Data

There are multiple ways to describe the current real-time state of a transit network.
The most intuitive, however, is a simple list of all vehicles currently moving through
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2.1. Static vs. Real-Time Data

the network, together with their actual GPS position. The positions can be aggre-
gated, for example, by GPS devices on every vehicle. A visualization based on data
like this would always show the state a network is really in. However, there are
multiple reasons why it is generally a bad idea to rely on raw GPS data alone, at
least in the year 2014 (and probably for many years to come.)

Low availability and coverage There are extremely few transportation agencies
that really provide raw GPS positions of their vehicles. In fact, we don’t know
of a single one. Even if an agency has GPS trackers on a few of their vehicles,
there are often smaller lines without tracking devices. Additionally, temporal
coverage is usually very bad, with vehicles sending their current position only
every few seconds.

No fall-back Relying on raw GPS positions means that if a tracking device fails,
the visualized vehicle will stop or even disappear. There is no fall-back.

No extrapolation Raw GPS positions are completely semantic. The data does not
reveal the underlying structure of the transit network at all. A typical server
output looks like this: vehicle a of line t is currently at position (x, y). We
generally don’t know the route of the vehicle, the remaining time until it
arrives at the next station or the vehicle’s process on the current part of its
route. Therefore, it is impossible to predict the way a vehicle will take during
the next few minutes. We can’t do lookahead requests because we cannot
even tell where the vehicle will be in two seconds. It is possible to calculate
this information by means of matching the position and line number against
a complete map of the network, but to do that we would need static data and
enter the realms of the combined approach (see Section 2.1.3).

Amount of data Because the client is not able to cache, we have to update the GPS
positions periodically. This means heavy traffic on the client/server interface.
We discuss this problem more detailed in Section 2.2.1.

2.1.2. Interpolated Schedules

A robust method to visualize vehicle movements is to do an interpolation of the offi-
cial static schedule. We describe the formal details to this approach in Section 3.1.4.
It has none of the disadvantages described in the section above. Static schedules
can be cached on the client side, they allow for visualization of the network’s (sched-
uled) state at arbitrary timepoints with arbitrary time-lapsing and they are much
more easy to obtain than GPS positions. However, the obvious disadvantage of this
approach is the lack of real-time information. If a vehicle is delayed, canceled or has
to change its route because of an accident or constructions, the approach is not able
to display this.

5



2. Challenges and Approaches

2.1.3. Combined Approach

In Section 2.1.1 we mentioned the impossibility of doing a correct spatial or temporal
extrapolation on raw GPS data. What we did not mention is that most modern
transit agencies have to solve this problem all the time. When you are standing
at a streetcar stop with a display that shows the minutes remaining until the next
streetcar, you see a temporal interpolation of the arrival time based on the vehicle’s
current position6. As hinted in Section 2.1.1, this is done by comparing the vehicle
position to the schedule. The difference between the extrapolated arrival time at
station A and the scheduled one is the delay δ. Knowledge of the current delay δ
of a vehicle allows us to do a spatial interpolation that is nearly equivalent to the
real-word position. In general, the smaller the distance between control points, the
smaller the deviation. Note that even in the worst case scenario where only stop
points are control points, the deviation will only be noticeable en route and converges
to 0 when the vehicle approaches the station. Many transportation agencies output
the delay information of their vehicle.

We call the extension of static schedules with live delay information for certain
control points the combined approach. It has all the advantages of static sched-
ule interpolation (robustness, cacheable look-ahead requests, time-lapsing) and is
nearly congruent with real-world positions. This approach adds minimal additional
information to each timepoint (the delay δ) and will fall back seamlessly to the
static schedule if no real-time information is available. TrajServ uses the combined
approach the calculate vehicle positions.

2.2. Client-Server-Interface

Figure 2.1 shows that the interface between client and server is a crucial bottleneck
of the visualization. In this section, we present the two most common interface
designs currently used in transit visualization maps. They closely correspond with
the data formats described in the previous section.

2.2.1. Periodical Updates

The basic method of displaying vehicle movements on a map is to fire periodic
position requests for a certain area of the network and to draw the results on the
map. If client performance is low, this can be the preferred way to visualize vehicles,

6 In many cases, the interpolation is not based on the actual GPS coordinate of the vehicle, but
on certain control points that are positioned along the routes. Here, the static spatial network
data is “built into” the system. If a vehicle passes control point A, the system knows the time
the vehicle should be at A according to the schedule and is able to calculate a delay.
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2.2. Client-Server-Interface

as the client code can be extremely thin. In fact, for web applications, most map
APIs like Google Maps, OpenLayers or Leaflet provide methods that make it possible
to get a working client with only a few lines of code. Many of the transit visualization
maps described in Chapter 1 use this approach.

If the server uses raw GPS positions as a data source, this is the only practicable
interface. Nevertheless, it is also possible to use this approach with interpolated
schedule data.

There are several flaws in this method. Its biggest advantage, the absence of any
client code to calculate vehicle positions, is also its biggest disadvantage. Without
a new position request, vehicles won’t move. To achieve a smooth simulation, the
requests have to be repeated frequently. This generates a lot of server load. If
client and server are physically separated, it also means heavy network traffic. This
is especially problematic on mobile devices, where network connections can be ex-
tremely slow or even break down completely. If the server connection is interrupted,
the vehicle movement stops. This problem is related to the missing GPS updates
problem described in Section 2.1.1.

2.2.2. Spatiotemporal Queries

A better interface design that leverages the combined approach’s ability to do look-
ahead requests are spatiotemporal queries. In this design, the client does not request
vehicle positions, but partial vehicle trajectories within a certain rectangle for a spe-
cific timespan ∆t (e.g. 2 minutes). We call this request parameter a spatiotemporal
bounding box.

Definition 1. A spatiotemporal bounding box Bst is a 6-tuple (x1, y1, x2, y2, tb, te)
where x1, y1 is the lower left (we say: south-west) corner of a rectangle and x2, y2
the upper right one (we say: north-east). Bst is additionally bounded by begin time
tb and end time te.

Note that we only operate in two-dimensional space. We can now formally define
a spatiotemporal query interface.

Definition 2. A spatiotemporal query interface requires the client to request trajecto-
ries in Bst = (x1, y1, x2, y2, tb, te) with frequency f = (∆t− θ)−1 to achieve complete
temporal coverage, where ∆t = te − tb and θ is the overall interface delay (network
latency, server processing time etc.)

The client has to make another request only after exceeding Bst. This means
that as long as the client stays within the rectangle (x1, y1, x2, y2), it only has to do
requests every ∆t − θ time units. If Bst is spatially padded, it is even possible to

7



2. Challenges and Approaches

navigate through a certain area without the need for new requests. Note that vehicle
delays are only transmitted on each new request, which means that the client tends
to be inaccurate for small f . We describe this problem in Section 6.3.

With the definition of a spatiotemporal interface, it is now easy to see that peri-
odical update queries are in fact a special case of spatiotemporal queries.

Corollary 1. A periodical position-update interface is a special case of a spatiotem-
poral query interface where tb = te.

The frequency has then to be f = (−δ)−1 for complete temporal coverage. Even in
the best case scenario where δ = 0, the update frequency would have to be infinitely
large. If we assume the screen refresh rate to be 60 Hz, δ would have to be ≤ 16 ms
to get a smooth visualization, which is unrealistic if you consider communication
via HTTP requests and a server that has to answer 60 requests per second from
possibly hundreds of clients. The bottleneck will definitely clog.

This is the reason why it is generally not possible to get smooth vehicle movements
with periodical updates and spatiotemporal queries are preferable.

8



3. Data Structures

The primary application of public transit schedules is route planning. However, us-
ing transit data for a live vehicle movement visualization is essentially different than
using it for routing purposes. In route planning, the goal is to find shortest paths
through the transportation network very fast, beginning at a certain entry point. If
we want to display vehicle movements, we have to efficiently get all (partial) paths
of all vehicles passing through a certain spatiotemporal bounding box. Basically,
this means that data structures that were designed for route planning are not suited
for movement visualization per se. In this chapter, we formally describe data struc-
tures for the combined approach that allow for fast processing of spatiotemporal
queries. The basic data structure of our model is a vehicle trajectory T which can
be understood as the complete spatial and temporal path of a single vehicle. We
use the formal term trajectory and the GTFS term trip somewhat interchangeably,
but there are subtle differences between them.

3.1. Modeling Static Trajectories

Two data structures that are commonly used in route planning to model schedule
data are time-expanded and time-dependent graphs [1]. In this section, we explain
why they are not useful when it comes to live maps and describe an explicit approach
to model static transit data.

3.1.1. Implicit Approach

Both the time-expanded and the time-dependent models transform static schedule
data into a directed graph G = (V,E). In the time-dependent model, each v ∈
V models a station and each e = (u, v) ∈ E;u, v ∈ V models possible non-stop
connections between two nodes. This is an intuitive approach. The schedule is
modeled by introducing special cost functions cu,v(t) that respect the travel time
as well as the waiting time until the next departure. If, for example, there is a
connection from u to v that departs at 12pm and 2pm and takes 2 hours, cu,v(10) = 4,
cu,v(12) = 2, cu,v(13) = 3 and so on. For a detailed explanation of a shortest-path-
algorithm (e.g. Dijkstra) that works on time-dependent graphs, see [2]. Along with

9



3. Data Structures

departure times, line names and other vehicle attributes can be stored inside the
connection edges. It is possible to extend this model with a second class of nodes that
represent vertices of a polyline to store the exact trajectory between two stations.

A

B

C

α, β

βγ

Figure 3.1: Time-dependent graph with 3 stationsA, B and C connected by vehicles
α, β and γ.

In terms of modeling a transit network for a live movement visualization, time-
dependent graphs can be very space-efficient. They allow sharing route information
as well as station information, because trips are modeled implicitly on a shared
network of stations and routes. But it comes at a cost. Consider a basic request
like “output the complete trajectory of trip T on day d” on a time-dependent graph.
First, we would have to scan the set of nodes for the start node v1 of T . Then we
would have to follow an edge that represents the connection T provides on d to the
next station node on its route, v2. In v2, we would again have to check which edge
belongs to T and follow it to v3 and so on. We would have to execute a basic routing
algorithm, simply because T is not stored explicitly as a single entity. Now consider
a request that asks for all vehicle positions in a rectangle R at time t. First, we look
up the set S of all station nodes within R. For each v ∈ S, we now have to check
every outgoing edge (v, u) for vehicles that are currently between v and u. Even in
a small network like Freiburg’s with ∼1,600 station nodes, the number of edges can
be very high. The problem gets even more complex if you consider a spatiotemporal
request. For each trip that is implicitly described in S we have the check whether
it traverses the spatiotemporal bounding box B. We can’t just omit certain v ∈ S,
because each v possibly stores thousands of different departures and we don’t know
whether one of these departures lies within B. In the end, even for small networks,
we have to check millions of non-stop connections between station nodes just to get
the positions of only a handful of vehicles currently within B.

This exemplifies that time-dependent graphs are not a very useful data model
when it comes to visualization of vehicle movements. One of the reasons for their
impracticalness is that it is very difficult to access vehicle trajectories that are rele-
vant in the current timespan. Everything is connected with everything else in some
way or another. While this is essential for route planning, we don’t need transfer
connections between trajectories at all for movement visualization.

10



3.1. Modeling Static Trajectories

3.1.2. Explicit Approach

In the time-expanded approach, departures and arrivals are modeled as own nodes
in the graph [1]. Arcs between a departure and an arrival node are non-stop trips of
a single vehicle. To model changes of trains, the time-expanded model uses transfer
nodes. One might argue that in the time-expanded approach, trajectories are in fact
modeled explicitly because each arrival and each departure node belongs to a single
trip. While this is partly true, time-expanded graphs still model information that is
not needed for a live visualization (transfer nodes and waiting edges). Additionally,
the explicit storage of arrivals and departures as single nodes is not space-efficient.

In the next two sections, we describe how trajectories are represented in the GTFS
format and formalize trajectories as piecewise linear curves.

3.1.3. GTFS

During the last years, the General Transit Feed Specification has become the most
popular format to describe static schedule data of transit networks [7]. Both official
or user-generated feeds are available for a huge number of transit agencies around
the world [8]. GTFS can model weekly schedules as well as explicit day-wise trips,
provides the possibility to store polylines (“shapes”) for single or multiple trips, is
able to integrate multiple trips into a single service that is presented to network
users (“route”) and can hold many other attributes like wheelchair-accessibility,
route colors or fare information [3].

A GTFS feed consists of 13 CSV-files (some of them optional). For a better
understanding of Chapter 5, we give a short overview of the ones that are most
important for the purposes of this thesis.

agency.txt Holds information about one or multiple service agencies of this feed.
This file also holds the timezone. This is important because times are always
provided in a HH:MM:SS format, never as absolute timestamps.

stops.txt A list of all stations along with their respective IDs, human-readable
names and geographical positions.

trips.txt The headers of all vehicle movements in this feed. Each trip has a service
ID which specifies the days it operates on.

stop times.txt The exact station sequence for each trip. Each station has an arrival
and a departure time.

calendar.txt Holds weekly service times referenced by trips.txt.

calendar dates.txt Holds explicit date-wise service times referenced by trips.txt.
These services can extend services specified in calendar.txt with single ex-
ceptions, but they can also stand alone.
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shapes.txt Representation of geographical polylines that describe the exact route
a vehicle takes.

routes.txt Groups trips into single services that are presented to users.

A complete UML diagram describing the relationships and their cardinalities can
be found at [5]. For now, please note that despite the fact that vehicle trips are
stored explicitly, regular services only have to be specified a single time. Their
repetitive nature can be declared in calendar.txt. Also note that it is possible for
geographical polylines in shapes.txt to be shared between trips. This also holds
for services described in calendar.txt and calendar_dates.txt.

3.1.4. Vehicle Trajectories

Based on the GTFS format, we can now formally define vehicle trajectories as ex-
plicit entities. We describe a trajectory as a list of spatiotemporal waypoints. These
points can either be stations or vertices of a polyline. A trajectory describes the
way a single vehicle takes through time and two-dimensional space.

Definition 3. A spatiotemporal waypoint p is a 3-tuple (x, y, t) where x, y are coor-
dinates on the two-dimensional spatial plane and t is a timestamp. The set of all p
of a trajectory is P.

More formally, we can say that all p ∈ P form a parametrization (with parameter
t) of a piecewise linear curve in R2.

Definition 4. A two dimensional piecewise linear curve is a curve C : [0, n] 7→ R2

where n ∈ N and ∀i ∈ {0, 1, ..., n− 1} : the part of C between i and i + 1 is linear.
A parametrization of C is a mapping q : Q 7→ [0, n].

In practice, we combine arrival and departure points pa and pd into a single pstation
that holds both the arrival and departure times ta and td.

Note that in GTFS, t is not an absolute timestamp but a time relative to the
current service day. A vehicle defined by a trajectory can only appear once a day.
We say a trajectory is active for a specific date d if its activity function evaluates
to 1 for d.

Definition 5. An activity function α is a function D 7→ (0, 1) that is described as
follows:

α(d) =

{
1 if there is a service on d
0 if there is no service on d,

where d ∈ D and D is the set of valid dates.

With this, we can formally describe trajectories per service day.

12
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Figure 3.2: Temporal interpolation of non-timestamped waypoints between stations
A and B.

Definition 6. A trajectory T is a 2-tuple (P , α) where α is the activity function and
P = {p1, ..., pn}, pi = (xi, yi, ti) the set of spatiotemporal waypoints. ∀i, j ≤ n : i ≤
j ⇒ ti ≤ tj.

As mentioned above, P describes a vehicle’s route as a piecewise linear curve in
R2. This allows for fast clipping and interpolation algorithms. We point out that,
despite the obvious computational advantage, it is not necessary to model a vehicle’s
spatial route as a piecewise linear curve. We could also see the spatial components
of all pi as knots of a piecewise polynomial curve to achieve smoother interpolation
results. However, we argue that such an approach would be out of proportion here.

In Chapter 5 we frequently use the concept of a trajectory’s minimum spatiotem-
poral bounding box.

Corollary 2. Each trajectory T has a minimum spatiotemporal bounding box Bmin(T )
that describes the temporal and spatial extent of T .

We point out that there is a subtle difficulty with Definitions 6 and 3. In real-
world transit schedules, we usually don’t have a timestamp for every p. Temporal
information is only provided for station waypoints, with distance-ordered waypoints
in between. To get a trajectory T as defined in Definition 6, a temporal interpolation
is necessary.

Figure 3.2 shows the general approach to get timestamps for all p ∈ P . We assume
a constant speed between A and B. With

dAB = dist(A,B) = d1 + d2 + d3

tAB = tII − tI

13
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we get the interpolated timestamps

t1 =

(
d1
dAB
× tAB

)
+ tI

t2 =

(
d1 + d2
dAB

× tAB
)

+ tI

t3 =

(
d1 + d2 + d3

dAB
× tAB

)
+ tI .

This can be calculated either during construction of T or on-the-fly during execution
of the clipping and interpolation algorithms. We will discuss the advantages of both
approaches in Chapter 5.

After doing the temporal interpolation, given a time tcur between two waypoints
pi and pi+1 with timestamps ti and ti+1 (ti ≤ tcur ≤ ti+1), their respective delays
δi, δi+1 and spatial coordinates (xi, yi), (xi+1, yi+1), the current vehicle position can
be calculated using the equations

xT (tcur) =

[
(xi+1 − xi) (tcur − (ti + δi))

(ti+1 + δi+1)− (ti + δi)

]
+ xi,

yT (tcur) =

[
(yi+1 − yi) (tcur − (ti + δi))

(ti+1 + δi+1)− (ti + δi)

]
+ yi.

To allow for continuous spatial and temporal clipping of T , we introduce a partial
trajectory.

Definition 7. Given a trajectory T = (P , α), we call T par = (Ppar, pb, pe, α) a partial
trajectory of T . Ppar ⊆ P.

In other words, we add new starting and end points pb and pe that mark the exact
positions where a spatiotemporal bounding box B clips T . If multiple parts of T
lie within B, we use multiple T par.

Definition 8. If a partial trajectory T par belongs to a trajectory T , we write T par ⊆
T . We say T par = T if both have the same activity function α, P = Ppar, pb is
equal to the first waypoint in P and pe is equal to the last waypoint in P.

3.2. Multi-Layer Grids

In Chapter 2, we gave the sizes of several transit datasets. A näıve approach to
manage the set of vehicle trajectories inside a server would be a simple list. However,
for bigger datasets like the transit schedules of entire countries, such an approach is
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very inefficient. For each spatiotemporal request, each trajectory (possibly millions,
see Figure 2.1) has to be checked for parts that are inside the bounding box. This
becomes especially ineffective if the servers holds data from around the globe. Why
should we check for vehicles that currently move around in Boston when in fact we
are only looking at the city center of Turin?

A common index structure for geo-coordinates is an R-tree [9]. R-trees group
nearby objects and represent them with their minimum bounding rectangle. Mul-
tiple bounding rectangles can again be grouped by their respective bounding rect-
angles on the next level. R-Trees allow for fast nearest-neighbor and bounding
rectangle requests, and they are commonly used in geographic information systems.

However, as we will see in Chapter 5, we usually want to create a hierarchy among
trajectories. City buses, for example, should only appear in the live transit map if
we are above a certain zoom level. Subways or streetcars should not be visible if
we are at a very low zoom level and looking at an entire country. While this could
be modeled by using multiple R-trees for each zoom level, we still would have to
traverse each level’s R-tree if we wanted to output the vehicles on multiple levels.
Trains, for example, should appear on the highest zoom level along with buses,
streetcars or ferries.

To allow for hierarchical indexing, we chose the approach of a classic index grid.
A grid contains N × N grid cells with sizes n × n. It can be stored in a simple
two-dimensional array. To model the hierarchy, we use a multi-layer grid. Like an
R-tree, it groups multiple bounding rectangles into a bigger rectangle on the next
level. Figure 3.3 gives an example of such a multi-layer grid. Each layer is visible
on a certain zoom level. The side lengths of a cell on level n are two times the
lengths of a cell on level n + 1. This resembles the way tiles are generated for web
map services like OpenStreetMap or Google Maps. It can be seen as a tree with
a single cell of side lengths lr as a root and each vertex with side length l having
exactly four child nodes with side lengths l

2
. In Figure 3.3, a rectangle request for

zoom level 15 is highlighted along with the grid cells that have to be checked for
trajectories traversing the rectangle. The obvious disadvantage of this approach is
that we usually have to index a trajectory in multiple cells. However, this can be
minimized by choosing appropriate side lengths.

To index the temporal component of a trajectory, we chose a discrete approach
that sorts trajectories into multiple date bins, based on their activity function. In
TrajServ, we use 9 bins per grid cell. Bins 1-7 model weekdays. For example, a
trajectory is indexed in bin 2 if it is active on Tuesdays. Services that are active
on workdays are stored in bin 8. Bin 9 is reserved for irregular trajectories that are
only active on specific dates. Those bins can be implemented using a single array
in which trajectories are sorted by their bin number and by storing pointers to the
first element in each bin. Trajectories in bin 9 are additionally sorted by date.
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zreq

z

Figure 3.3: Example of a multi-layer grid. The current view-box and the grid cells
that have to be checked are highlighted.

3.3. Modeling Real-Time Data

As mentioned earlier, real-time public transit data is usually modeled as a list of
arrival and departure delays per trip and station.

Since August 2011, the GTFS specification is extended by a real-time transit data
feed. GTFS-realtime provides support for three types of information [4].

Trip updates describe deviations from the official schedule like delays (“stop time
updates”), cancellations and route changes. This is the main source of real-
time data for TrajServ. Updates are given with the IDs of the scheduled GTFS
trip they relate to.

Service alerts are general textual passenger announcements valid for a certain time
span.

Vehicle positions is a feed for GPS vehicle positions. This can be used for an ap-
proach like the one described in Section 2.2.1, where actual vehicle coordinates
are outputted explicitly, along with their current speed. At the time of writing
this thesis, this feed is usually not provided.
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In Section 3.1.4, we treated the spatial part of vehicle trajectories as curves on the
two-dimensional plane. However, public transit vehicles move around on the earth
surface, which is not flat. In this section, we briefly discuss several pitfalls that are
related to the ellipsoidal nature of the earth.

4.1. Plane vs. Ellipsoid

Figure 3.2 gave an example of a trajectory’s spatial path (a polyline) and the tem-
poral interpolation of non-timestamped waypoints. We implicitly assumed that the
shortest path between two vertices V1 and V2 is V1V2. This is not entirely correct. In
GTFS, vertices of vehicle trajectories are given as WGS 84 latitude and longitude
coordinates [3, 12]. The shortest path between two points on the earth surface is
not a straight-line segment, but part of a great-circle (an orthodrome) [13] between
V1 and V2 (Figure 4.1). This means we cannot, in general, treat vehicle polylines
consisting of WGS 84 vertices as piecewise linear functions. Both the spatial and
temporal interpolations would be wrong. Note that this only becomes noticeable
for large distances between coordinates. For smaller distances, the shortest path
converges to a straight line.

V1

V2

Figure 4.1: Great circle between two geo-coordinates.
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Figure 4.2: A cylindrical projection.

A complete introduction to spherical geometry would go beyond the scope of this
thesis. The computational cost that comes with it is best illustrated by comparing
the distance formulas. While on the two-dimensional plane, the Euclidean distance
formula d =

√
(x2 − x1)2 + (y2 − y1)2 is comparatively easy to compute (two sub-

tractions, two multiplications, one addition, one square root), on the sphere the
distance formula becomes

d = 2r arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

))
,

where φ1 and φ2 are latitudes, λ1 and λ2 are longitudes of two geo-coordinates [14].
We point out that a single trajectory consists of hundreds of vertices and that to
answer a single request, the server usually has to do spatiotemporal interpolations
of thousands of trajectories.

For completeness, we hint that even a great-circle is only an approximation of
the shortest path between two geo-coordinates because the earth is not a perfect
sphere [11].

4.2. Mercator Projection

One possibility to get back into the known waters of Euclidean geometry is to use a
map projection. Map projections transform latitudes and longitudes of points on a
sphere (the earth) into locations on a plane [11]. Figure 4.2 shows the basic principle
of a cylindrical projection. A classic cylindrical projection is the Mercator projection.
It was originally developed for navigational purposes but is today widely used for
map services (EPSG:3857). The spherical Mercator projection approximates the
earth surface with a sphere, not an ellipsoid.
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A projection usually consists of two functions x(λ), y(φ) which map a longitude
λ and a latitude φ to their Cartesian coordinates on the plane. For the spherical
Mercator projection, their most basic form is

x(λ) = λ− λ0 (4.1)

y(φ) = ln

[
tan

(
π

4
+
φ

2

)]
, (4.2)

where λ0 is the central meridian (usually zero [11]). The functions map λ and φ
onto a plane of width 2π. Since y(φ) becomes infinitely large at the poles (φ = ±π

2
),

it has to be truncated somewhere below 90◦. Common street map services truncate
at ±φ̂, where φ̂ = 2 arctan(eπ)− π

2
(≈ 85.0511◦). Because y(φ̂) = π, this leads to a

perfectly quadratic map.

To display x and y coordinates on the screen, we have to transform them into
pixel coordinates. Most services use tiles as a basic unit for the size of their maps.
A tile usually consists of 256 × 256 pixels [6]. On the lowest zoom level (z = 0),
the map fits into a single tile. As mentioned in Section 3.2, the side lengths of tiles
double with each zoom level, resulting in a total map side length of 256×2z for each
zoom level.

The origin of the standard Mercator projection is the intersection point of the
null meridian and the equator. TrajServ uses a projection where the origin is on the
lower left corner of the map, which means we have to shift coordinates. With this,
we get the pixel projection functions

xp(λ) =

(
x(λ)

2π
+

1

2

)
× lt × 2zmax

=

(
λ− λ0

2π
+

1

2

)
× lt × 2zmax (4.3)

yp(φ) =

(
y(φ)

2π
+

1

2

)
× lt × 2zmax

=

(
ln
[
tan
(
π
4

+ φ
2

)]
2π

+
1

2

)
× lt × 2zmax , (4.4)

where lt is the tile side length and zmax is the biggest zoom level the server should be
able to handle. TrajServer handles requests up to z = 20 by default, which results
in a total projected map size of 268,435,456 × 268,435,456 pixels. Since coordinates
are both stored as unsigned 32 bit integers, the maximum possible zoom level is
z = 32.
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The inverse projection functions are

λ(xp) =

(
xp

lt × 2zmax
− 1

2

)
× 2π + λ0 (4.5)

φ(yp) = 2 arctan

[
exp

((
yp

lt × 2zmax
− 1

2

)
× 2π

)]
− π

2
. (4.6)

After applying (4.3) and (4.4), we operate on a two dimensional plane and can
safely handle trajectories as piecewise linear functions. It is important to note that
even on the projected plane, the (real) shortest path between two vertices is not
always a straight line, but can still be a curve. However, we argue that vertices of
vehicle trajectories are very close together (usually the distance is below 100 meters),
which means we can safely approximate the path the vehicle will take as a straight
line. In addition, polylines of trajectories are usually represented with a planar map
in mind. Large distances between anchor points (> 500 km) usually mean that the
trajectory is only a rough approximation. In this case, straight lines seem more
intuitively correct then bent curves.

We close with two another advantages the spherical Mercator projection has be-
sides the safe theoretical ground. After applying equations (4.3) and (4.4), the
server only has to operate with 32 bit integers. Except for a few remaining cases
where high precision is necessary (for example for distance calculation during spa-
tial interpolation), there is no need for floating point operations anymore. Another
big advantage is discussed in Section 5.2. If the server already stores and outputs
projected coordinates, the client is relieved from the task of doing the projection
itself.
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In the previous chapters, we discussed the challenges that lie in creating a live transit
map, described and evaluated possible approaches, defined models for storing and
indexing vehicle trajectories and briefly explained map projections. In this chapter,
we combine these ideas and concepts to develop a scalable, efficient real-time public
transit map. We introduce TrajServ, a server that is able the answer spatiotemporal
vehicle requests very fast and can, in theory, be used with arbitrary clients. After
that, we introduce TRAVIC, a lightweight web-client that uses TrajServ data to
draw a live transit vector map layer. The general architecture of TrajServ and
TRAVIC has been shown in Figure 2.1.

5.1. TrajServ

TrajServ is a server written in C++ that holds transit data in a layered grid struc-
ture (Section 3.2), requests real-time data from feeds and responds to spatiotemporal
requests (Section 2.2.2) sent by the client via a HTTP-interface. TrajServ’s archi-
tecture and workflow are depicted in Figure 5.1. Listing 5.1 shows a partial JSON
answer outputted by TrajServ. Note that in the p fields, coordinates are not given
as latitudes and longitudes but as projected integer pixel coordinates relative to the
lower left corner of the client’s viewbox.

In this section, we highlight some difficulties related to the loading of GTFS files
and discuss the construction of the grid layer. We describe the central cropping
and interpolation algorithm and illustrate several techniques that are used to speed
up request processing. Section 5.1.4 covers the usage of real-time data and delay
updates.

5.1.1. Data Loading

In Section 3.1.4, we spoke of a trajectory T as a single entity that combines stop
information and line shape information. The GTFS format, however, separates
them [3]. This makes sense because line shape information is not necessarily part
of a schedule. Additionally, in most cases different vehicle trips share the same
line shape (e.g. regular services). Internally, TrajServ also tries to share line shape
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Figure 5.1: General architecture and workflow of TrajServ.

information between trips. However, at least at the current state of development,
this sharing is optimized for access time, not for space.

For spatial interpolation, TrajServ needs to associate the stop time information
stored in stop_times.txt (Listing 5.2) and the waypoint information stored in
shapes.txt (Listing 5.3). GTFS provides an easy way to do this by means of the
shape_dist_traveled field. If shape_dist_traveled is available, each waypoint
in shapes.txt stores a distance that has been traveled if the vehicle reaches this
waypoint. The unit of shape_dist_traveled is arbitrary and can be in miles,
kilometers, meters, percentage of the total route or something completely different.
Each line in stop_times.txt also provides a distance in the same unit that has
been traveled if the vehicle arrives at a stop. Stop waypoints and shape waypoints
can easily be combined by sorting them by shape_dist_traveled.

However, shape_dist_traveled is an optional field. Very few GTFS feeds actu-
ally provide it. One of the main reasons (besides lack of ambition) is the fact that
it bloats the data. The GTFS standard dictates that both in stop_times.txt and

T1 ,8:54:00 ,8:55:00 ,S6 ,11
T1 ,8:59:00 ,8:59:00 ,S7 ,12
T1 ,9:05:00 ,9:07:00 ,S8 ,13

Listing 5.2: stop times.txt

Shp4 ,47.991252 ,7.854387 ,71
Shp4 ,47.991403 ,7.85439 ,72
Shp4 ,47.991636 ,7.854377 ,73

Listing 5.3: shapes.txt
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Figure 5.2: Point-to-Point matching with two shape vertices (v1 and v2) and a sta-
tion (s1).

shapes.txt, shape_dist_traveled has to increase along the route. This means
that trips of the same route can only share line shape information in the same direc-
tion. For reverse travel, another shape has to be stored that is essentially the same,
but backwards. Since most routes are served in both directions, this usually means
that the size of shapes.txt doubles if shape_dist_traveled is introduced.

TrajServ does use shape_dist_traveled if present, but it does not rely on it.
One of the first things the GTFS-Parser does after reading the feed and project-
ing the coordinates onto the plane is to merge shape waypoints and station way-
points into a trajectory T . This is done by an algorithm that respects the se-
quence of both the shape and the station waypoints as well as the order of potential
shape_dist_traveled fields. If there is no such field present for all or some way-
points, TrajServ employs a simple map matching approach.

Figure 5.2 shows the general problem. We place a station sj ∈ S between two
shape vertices vi and vi+1 if di(sj) = (b + c)2 − a2 is minimal. If sj lies somewhere
on vivi+1, di is always zero (di = (b + c)2 − a2 = a2 − a2 = 0). Each station sj is
sorted in between those vi and vi+1 that have the smallest distance d to sj. There
are two important things to note here. First, the shape polyline we are matching
the stations to is guaranteed to belong to this station sequence. Second, because
we are respecting the order of station waypoints, each calculated position between
two vertices depends not only on d, but also on every position calculated for every
station before sj. We only test sj for positions between vertices succeeding the
station vertex sj−1 was positioned after. After positioning sj between two vertices,
there is the possibility to project the station onto the shape (s′1 in Figure 5.2).
This usually yields smoother trajectories. Algorithm 5.1 shows the general merging
procedure in pseudo-code. For each station sj of a trajectory, we search for the best
insertion place into the shape consisting of n vertices vi. If we encounter a vertex
shape_dist_traveled field that is bigger than the one of sj, we insert it before
this vertex. Otherwise, we compute di(sj) for each remaining vertex and insert sj
between those vi, vi+1 where di is smallest. The next station sj+1 is guaranteed to
be inserted after sj because i is never set back to 0.
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1: i← 0, vsucc ← v0
2: for all sj ∈ S do
3: dcur ←∞
4: while i < n do
5: if hasShapeDist(vi) ∧ hasShapeDist(sj) then
6: if shapeDist(vi) > shapeDist(sj) then
7: break
8: end if
9: vsucc ← vi ← vi+1

10: continue
11: end if
12: if i+ 1 < n then
13: d′ = d(sj, vi, vi+1)
14: if d′ < dcur then
15: dcur = d′

16: vsucc = vi+1

17: end if
18: end if
19: end while
20: sortIn(vsucc, sj)
21: end for

Algorithm 5.1: Merging shape waypoints and station waypoints of a GTFS feed.

TrajServ already performs trivial optimizations during the loading process. If
the distance of two shape vertices is below a certain threshold (usually ca. 1 m),
TrajServ skips the second vertex. Similarly, if two timepoints have exactly the same
arrival and departure times, TrajServ handles the first one as a simple shape vertex.
TrajServ also translates trajectory IDs, which are allowed to be arbitrary strings in
GTFS, into integers.

5.1.2. Grid Layer Construction and Indexing

After the data has been loaded into a set of trajectories, the grid layer is built.
Section 3.2 gave the general idea of the data structure. In this section, we describe
how a trajectory T is indexed, discuss the best size for a grid cell and lay out
techniques that optimize the overall grid size as well as access times.

The purpose of the multi layer grid is to give fast access to trajectories that
are inside the spatiotemporal bounding box Bst of a request. In the best case, only
trajectories of vehicles that currently move through Bst are given to the interpolation
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Figure 5.3: Effects of spatial grid size l. We measured the number of trajectory
indices and the number of outputted potential trajectories Tpot inside
a spatiotemporal bounding box with side length lr = 500.000 (ca. 45
km). Data is taken from the complete Netherlands GTFS.

algorithm. In the worst case, the grid only consists of a single cell containing every
trajectory of the dataset, thus reducing itself to a single, unsorted list.

To get optimal results, the side-length l of the bottom grid has to be chosen
wisely. If l is too small, the grid overhead gets too large and grid lookup times ex-
ceed even the actual interpolation times. If l is too big, trajectories of vehicles that
are not currently moving through the spatial part of Bst are given to the interpo-
lation algorithm, resulting in unnecessary interpolations. Figure 5.3 illustrates this
problem. We ran several tests against the GTFS feed of the Netherlands projected
onto a 268,435,456×268,435,456 map plane. Buses, streetcars and subways were
loaded into a single grid of cell size l, on which a spatial request with a square of
side lengths lr = 500,000 (≈ 45km) was executed. We measured the average index
count per trajectory as well as the number of trajectories that were given to the
interpolation algorithm. Note that only trajectories that were active on a normal
Monday were outputted. With smaller l, the number of indices per trajectory ex-
plodes. With bigger l, more and more unnecessary potential trajectories Tpot are
given to the interpolation algorithm. At l = 2.5 × 106, a single cell almost spans
the whole network and the number of Tpot reaches the total number of trajectories
active on a Monday. Note that the number of indices per T never reaches 1 because
there are some trajectories that have to be indexed temporally more than one time.

Figure 5.3 also shows that in general, grid cell sizes near the average expected size
of the spatial request rectangle are a good choice. However, small grid cells come at
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Figure 5.4: Sorting trajectories into a grid cell c.

the cost of increased memory usage.

After generating the grid layer, trajectories are indexed in two steps: first, the
spatial index is computed by sorting them into grid cells. After that, they are
temporally indexed by their activity function into the temporal bins of each cell.

Spatial indexing is not as trivial as it may seem at first glance. Figure 5.4 illus-
trates the difficulties of two näıve approaches to this problem. In the first approach,
a trajectory T1 is spatially indexed into a grid cell c if its minimum bounding box
Bmin(T1) intersects with c. As shown, this can lead to redundant indices. T1 never
crosses c. In a different approach, T2 is indexed into c if one or more waypoints of
T2 lie within c. Following this approach, T2 would not be sorted into c despite the
fact that T2 crosses c three times.

Instead, TrajServ uses a variant of the Cohen-Sutherland clipping algorithm [15] to
determine whether a trajectory really crosses a grid cell c. The algorithm surrounds
the bounding box (the grid cell) with 8 rectangular regions. To efficiently calculate
clipping points, flags are computed for each endpoint of a straight line that specify
the region the endpoint lies in. If, for example, one endpoint lies in the upper right
area and the other endpoint lies in the bottom right area, we can safely assume that
the straight line does not cross the bounding box. If a nontrivial situation occurs,
the algorithm clips the straight line at one endpoint based on the area the endpoint
is in. In the worst case, this linear interpolation has to be done for both endpoints,
which means the algorithm terminates in constant time. Cohen-Sutherland is also
used in the interpolation algorithm described in the next chapter.

Section 3.1.4 introduced the concept of a trajectory’s activity function α that tells
for a date d if T is providing service on d. Activity functions are related to and
created from services in a GTFS feed, but they are bit more abstract. In Section 3.2
we hinted that trajectories are indexed temporally based on α and that they are
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sorted into date bins. We explained that besides 7 bins for each day in the week,
there is a bin for trajectories that are active all day and a bin for additional services
that are not provided frequently.

A trajectory is indexed into one of bins 1-8 if it is usually active on that day or on
all workdays. This is an abstraction of the calendar.txt feed in GTFS. However,
as in GTFS, it is still possible for a regular service to have negative exceptions (in
GTFS, they are defined in calendar_dates.txt).

Many GTFS feeds only provide positive exceptions in calendar_dates.txt, which
basically means that each active day of a trajectory is given explicitly. This does not
allow for effective indexing and renders bins 1-8 useless. We are left with a single
bin that contains each trajectory that crosses the bin’s parent grid cell, indexed for
every day it is active. In a feed that only provides calendar_dates.txt, we have
to index each T per date because otherwise, for each requests, we would have to
scan all trajectories inside a grid cell for those that are active on the time of the
spatiotemporal request. This means that we either have to accept a bloated data
structure or long query times, both of which are unacceptable to us. For example,
consider a single trajectory that provides service from Monday till Saturday and
whose service is given explicitly for each day in the GTFS feed. If the feed is valid
for one year, we would have to create indices for ∼310 days T is active on, opposed
to the single index in the ”active on working days”-bin.

Before doing temporal indexing, TrajServ analyzes and compresses activity func-
tions. For example, if a feed that is valid from March 3rd until March 8th 2014
provides

α(d) =

{
1 on 2014-03-3, 2014-03-4, 2014-03-6, 2014-03-7, 2014-03-8,
0 else

as an activity function for T , TrajServ counts occurrences of α on all days of the
week and decides that it is more efficient to store the activity function as

α′(d) =

{
1 Monday till Saturdays,
0 on 2014-03-5.

In α′, T only has to be temporally indexed once opposed to the 6 indices α would
have required.

5.1.3. Clipping and Interpolation

After trajectories have been constructed and indexed in the multilayer grid, the
server enters request mode. Spatiotemporal requests as described in Section 2.2.2
are answered with unsorted lists of partial trajectories T par that describe the clipped
path a vehicle will take inside a geometrical rectangle between times tb and te. If a
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trajectory leaves Bst and reenters it multiple times, all resulting T par are grouped
by their parent trajectory T .

In Section 3.1.4, we mentioned the problem of non-timestamped shape vertices
that have to be temporally interpolated to allow for temporal clipping. We hinted
that the interpolation can either be done on the fly or as a precomputation during the
loading of the GTFS feed. For TrajServ, we decided to do on-the-fly interpolations.
Consider again the table given at the beginning of this thesis. In the Netherlands
GTFS, all trajectories contain a total sum of 34,961,174 shape vertices. In the
most basic form, a waypoint timestamp consists of two POSIX-timestamps (one for
arrival, one for departure time). If timestamps are stored as 32-bit integers, this
would add 34,961,174 × 64bit ≈ 279,7 MB to the data set. If a real-time update
occurs, each vertex of a trajectory has to hold its own arrival and departure delay
fields, which adds additional 16×2 bit per vertex if we want to store delays of up
to ca. 1000 minutes. Additionally, the temporal interpolation would have to be
recomputed for the whole trajectory on every real-time update (usually every 30
seconds) for all trajectories.

Because GTFS data already takes a lot of memory, we decided to do temporal
interpolations on-the-fly while the algorithm traverses a trajectory. Thus, the clip-
ping and interpolation algorithm has to do three basic tasks. It has to a) find exact
(interpolated) clipping points pb and pe at which a trajectory enters or leaves Bst,
b) output the waypoints that lie between pb and pe and c) do on-the-fly temporal
interpolation to transform shape vertices into full waypoints.

The general procedure is shown in Algorithm 5.2. Input is a single trajectory T
and a spatiotemporal bounding box Bst. The algorithm outputs Wret, a list of all
partial trajectories T par that cross Bst. In natural language, it can be described as
follows: we start with an empty set Wret at the first waypoint of T . We now search
for the first two timepoints (here, a timepoint is a timestamped waypoint, usually
station waypoints) tpprev and tpcur and check for entries or exits into Bst between
them. If an entry is found, we set the entry point as pb of the new partial trajectory,
and add all waypoints until the last waypoint still in Bst. If this waypoint is tpcur,
T never left Bst between tpprev and tpcur. We now set tpprev = tpcur and begin with
a search between the new tpprev and its new timepoint successor tpcur.

For brevity, we pass on showing the getCrossings-algorithm. It is sufficient
to know that it interpolates timestamps for shape vertices on-the-fly as described
above and uses the Cohen-Sutherland algorithm to do the spatial clipping. The
algorithm gets quite ugly as soon as delays are introduced. Without a depiction of
the algorithm itself we state that, if getCrossings checks for entry or exit points into
Bst between two waypoints pi, pj and j−i = n, the algorithm runs in O(n). We have
to traverse all p between pi and pj one time to calculate the total distance between pi
and pj (for temporal interpolation) and another time to do the actual clipping and
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1: Wret ← ∅
2: tpprev ← getNextTimePoint(wp0)
3: tpcur ← getNextTimePoint(tpprev)
4: wpprev ← tpprev
5: Ppar ← ∅
6: pb ← null
7: pe ← null
8: while tpprev ∈ P do
9: (Ppartemp, p

′
b, p
′
e)← getCrossings(tpprev, tpcur, wpprev, B)

10: Ppar ← Ppar ∪ Ppartemp

11: if p′b 6= null then
12: pb ← p′b
13: end if
14: if wpprev ∈ Ppartemp then
15: wpprev ← next(wpprev)
16: else
17: wpprev = last(Ppartemp)
18: end if
19: if p′e 6= null then
20: pe ← p′e
21: T par ← (Ppar, pb, pe, α)
22: Wret ← Wret ∪ {T par}
23: Ppar ← ∅, pb ← null, pe ← null
24: end if
25: if last(Ppartemp) ≥ tpcur ∨ tpcur /∈ P then
26: wplast ← tpcur
27: tpprev ← tpcur
28: tpcur = getNextTimePoint(tpcur)
29: end if
30: end while
31: Wret ← Wret ∪ {T par}

Algorithm 5.2: Basic trajectory clipping and interpolation algorithm, without delay
respectation or optimizations.

interpolation. Each straight vehicle path described by two waypoints pi and pi+1 is
checked for temporal crossings into Bst, which can be done in constant time, and
for spatial crossings by giving pi, pi+1 and Bst to the Cohen-Sutherland algorithm,
which calculates the clipping points in O(1) [15]. Thus, getCrossings terminates
in linear time. In Algorithm 5.2, getCrossings is called with a third parameter,
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0 1 2 3 4 5

δarr δdep δarr δdep δarr δdep δarr δdep δarr δdep δarr δdep
0 0 60 60 60 55 55 50 50 50 50 50

Table 5.1: Delays for a station sequence with 6 stations. Only bold delays are
actually provided in the feed.

wpprev which specifies the waypoint between tpprev and tpcur where getCrossings

should start. The starting point wpprev is always the last waypoint getCrossings

has outputted, which means that getCrossings never checks a straight line between
two pi, pi+1 twice. With this, we can state that the whole clipping algorithm runs
in O(n) with n = |P| being the number of waypoints of T . It is important to note
that the whole operation does not alter any data structure at all.

The waypoint coordinates of partial trajectories outputted by Algorithm 5.2 are
transformed into coordinates relative to the current viewbox of the client and then
outputted as JSON. Possibly the biggest effort to optimize the outputted JSON
and the client performance is made during this process. For higher zoom levels,
TrajServ again filters out projected waypoints (not timepoints) with predecessor
distances below a certain threshold (per zoom level). This heavily optimizes the
overall performance of the simulation. Without this step, TrajServ would output
complete trajectories with hundreds of waypoints on zoom levels where even dis-
tances of multiple kilometers are far below the surface-width of a single projection
pixel, meaning that TRAVIC would have to do thousands of interpolations without
any visible movement at all.

5.1.4. Real-Time Visualization

As described in Section 2.1.3, TrajServ uses delay information to achieve real-time
movements. It is able to hold an arbitrary number of GTFS-realtime feeds, fetched
at regular intervals. Feeds are provided in the protocol buffer format, an efficient
technique to serialize data for network communication. Protocol buffers are not
self-descriptive. There is no way to tell field names or field data types from the
message itself. This means that the client has to specifically compile program code
that is optimized for parsing messages of a certain type (specified in a .proto file).
Compilers are available for the most common languages [16].

Each timestamped waypoint of a trajectory can hold two delays, arrival delay δarr
and departure delay δdep. In the trajectory’s station sequence, a delay δi for sta-
tion i affects all stations > i and has to be explicitly neutralized by another delay
(Table 5.1). After the feed has been received and parsed, TrajServ updates each
affected trajectory. This is done by locking the trajectory (so that concurrent spa-
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seq 0 1 2 3 4 5

δarr 0s 0s 60s 180s 240s 60s

δdep 0s 0s 120s 180s 120s 60s

tarr 13:10:00 13:17:00 13:24:00 13:40:00 13:51:00 13:58:00

tdep 13:11:00 13:19:00 13:25:00 13:45:00 13:52:00 13:59:00

Table 5.2: Example of erroneous delay information. The invalid delay field is
marked red.

tiotemporal request runs won’t produce erroneous results) and updating the arrival
and delay fields of each timestamped waypoint in P .

Both Algorithm 5.2 and the getCrossings algorithm described in the previous
section respect delay fields by adding them to the station timestamps. Delay infor-
mation is also outputted to the client. TrajServ checks each received delay update
for validity, because a) realtime feeds sometimes output invalid delay times, espe-
cially for past stations and b) erroneous delay information (Table 5.2) could break
the clipping algorithm completely. Table 5.2 gives an example of a corrupted delay
feed. For station 4, δdep sets the departure time to 13:54:00, while δarr sets the arrival
time to 13:55:00. Due to the second law of thermodynamics, this is not possible.
The algorithm presented in the previous section will produce undefined results.

5.2. TRAVIC

The previous section introduced a server that can be used with any client that
understands JSON. We now go on to look at the client side and present TRAVIC, a
web client for TrajServ that serves both as a performance testing environment and
a proof-of-concept for the combined approach described in Section 2.1.3. TRAVIC
builds on Leaflet, an OpenSource JavaScript library for interactive web maps. It
can handle most of the available map tile formats, though it is mostly used with
Google Maps or OpenStreetMap tiles.

In this section, we describe how TRAVIC handles the data received from TrajServ,
explain how the vector layer is built and discuss other possible use cases for the
client. Figure 5.5 shows part of a complete TRAVIC real-time transit map of the
New York/New Jersey area during the morning rush hour, including trains, subways,
buses and ferries.
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5.2.1. Usage of Server Data

TRAVIC fires a spatiotemporal request every sixty seconds or after the view box
exceeds the bounding box of the current set of partial trajectories. After the answer
was received, it iterates through every set of partial trajectories belonging to a single
vehicle V , computes the current position of V (at time tcur) and moves the marker
accordingly. This step is repeated periodically. TrajServ uses an update interval of
50 ms at the lowest zoom level. Algorithm 5.3 shows the general approach.

1: (W , B, tb, te)←doServerRequest(map.currentViewBox(), getCurTime())
2: while simulation do
3: Bcur ←map.currentViewBox()
4: t← t0 ←getCurTime()
5: for all Wk ∈ W do
6: for all T pari ∈ Wk do
7: if active(T pari , t, Bcur) then . skip T par outside current timespan
8: (tpi, tpi+1)← getCurrentTimePointPair(T pari , t)
9: pcur ← interpolate(tpi, tpi+1, t)

10: if map.hasVehicleOf(T ) then
11: move(T , pcur)
12: else
13: draw(T , pcur)
14: end if
15: end if
16: end for
17: end for
18: wait(1000/f − (getCurTime()− t0)) . respect refresh frequency f
19: if exceeds(Bcur, t, (W , B, tb, te)) then
20: (W , B, tb, te)←doServerRequest(map.currentViewBox(), getCurrentTime())
21: end if
22: end while

Algorithm 5.3: TRAVIC’s main redraw algorithm (heavily simplified).

There are several important things to note here. First, since TrajServ outputs
Tpar as described in Section 3.1.4, TRAVIC has to do a single interpolation per
partial trajectory to get the actual current position of V . This interpolation has to
take place between the last waypoint before tcur and the first waypoint after tcur.
Second, because the actual drawing of the vehicle takes up most of the computation
time, TRAVIC cannot simply redraw the whole map at each interval. We describe
an effective method to update the canvas in the next section. Additionally, Algo-
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Figure 5.5: Real-time transit map of central New York at 8:44 EST.

rithm 5.3 leaves significant room for optimization. For example, in Line 8, it is not
necessary to check the whole T par for the current timepoints on each iteration. It
is sufficient to start the lookup process at the timepoint that was last outputted as
tpi, because as mentioned before, vehicles do not travel back in time. For brevity,
we left out all optimizations in Algorithm 5.3.

Because TRAVIC can both send arbitrary spatiotemporal requests to TrajServ
and chose the simulation speed, it is easily possible to display time lapsed movements
to visualize the vehicle movements of entire days. Due to the increasing lack of delay
information over lapsed time, the simulation then converges to the static schedule.

5.2.2. The Transit Layer

The common way to display locations on web maps is to draw a marker through
the map’s own API. Many transit maps handle vehicles as map markers and draw
them by using some map method that usually takes latitude and longitude values
as coordinates. The marker is then either drawn as a single HTML element (usually
an <IMG> wrapped inside a <DIV>, this approach is for example used by Google
Maps or Bing) or as an actual vector object on something like an SVG layer. The
latter approach is for example used by OpenLayers or Leaflet. While vector layers
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Figure 5.6: General architecture of TRAVIC and the Transit Layer.

are, in general, more efficient when it comes to displaying thousands of markers,
the basic method to place markers on them is still a method accepting latitude (φ)
and longitude (λ) coordinates as parameters. As mentioned above, this requires the
map to do a projection of φ and λ onto the map plane, which, in this case, is the
screen itself. For a few hundred markers that are positioned once, the projections
carry no computational weight. But consider the situation depicted in Figure 5.5.
During the morning rush-hour, there a very easily up to 4,000 vehicles moving on
the map. Each of these is updated every 50 ms, which means that if we would
do marker positioning by latitude/longitude coordinates, there would have to be
4,000×20 = 80,000 projections per second. In a JavaScript environment or on a
mobile device, this is too much for the client to handle. This is the main reason
why TrajServ projects trajectory waypoints onto the map plane and outputs only
projected pixel coordinates. TRAVIC leverages this by bypassing the map service
almost completely. It primarily builds on the Transit Layer, a vector layer we
developed for Leaflet. It is especially designed to display vehicles of any kind moving
on trajectories. Interaction between the map API (Leaflet) and the Transit Layer
only consists of a few callbacks responding to map dragging or zooming. The Transit
Layer is based on Raphaël, a vector library for JavaScript that makes for greater
browser compatibility (there are still browsers that don’t support SVG).

Figure 5.6 shows the general concept of the Transit Layer. A vector canvas is laid
over the actual map layer, pans and zooms along with it and passes through DOM
events like mouse clicks. Vehicles on the Transit Layer are drawn as vector objects
and are positioned by pixel coordinates outputted by TrajServ that don’t have to
be transformed in any way.

There are still subtle difficulties in redrawing the map. For example, deleting and
creating a new marker is much more expensive than re-positioning a marker that
already exists on the canvas. Additionally, redrawing a marker creates a flickering
effect. On the other hand, searching 4,000 markers to find the marker belonging to
a single trajectory is equally expensive. TRAVIC is heavily optimized for time over
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Figure 5.7: TRAVIC simulating the flow of motorized private traffic on the main
east-west-corridor in Freiburg, Germany.

space and holds a simple JavaScript array containing each marker that is currently
visible, indexed by their trajectory ID. Because trajectory IDs are always outputted
as integers by TrajServ, most browsers implement the array as a map optimized for
fast key access. Additionally, during the first update of a newly requested set of
partial trajectories, the marker of each trajectory is saved as a reference field inside
the trajectory object. This is just a selection of the most general speed-up techniques
of TRAVIC. JavaScript optimization very quickly enters the realms of the esoteric.
For brevity and spiritual salvation, we won’t go into further implementation details.

5.2.3. Other Use Cases

We end this chapter with a short note on TRAVIC’s applications beyond the scope
of public transit. The Transit Layer can, in theory, be used to display vehicles of any
kind. Outside the domain of public transportation, a vehicle could be an airplane,
a satellite or even an individual object like a car, a bike or a person. A possible
application of TRAVIC could be as a client for a server that outputs trajectories of
randomly distributed cars traveling on certain roads to visualize the traffic volume
at certain times. In the Freiburg city center, at a bridge heavily used for bike traffic,
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there is a device that counts bikes passing the bridge. The numbers are publicly
available [17]. Based on the numbers of a single day, we created a visualization that
shows the bike traffic on the main artery through the city.

Figure 5.7 shows a visualization of the motorized private traffic on Freiburg’s main
east-west-corridor. The vehicle numbers follow a bimodal distribution with peaks
at the morning and evening rush hours. Cars are distributed to sum up to a total
number of approximately 20,000 [18] vehicles passing the central Schwabentorbrücke
(φ = 47.990923, λ = 7.854274) in a single direction.
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1 ...
2 {
3 "id": "389045",
4 "t": 3,
5 "c": "#892222",
6 "tc": "white",
7 "hs": "Geuzenveld",
8 "sn": "352",
9 "ln": "Centraal Station - Geuzenveld",

10 "pts": [
11 [
12 {
13 "p": [
14 206,
15 265
16 ],
17 "at": 1385947571 ,
18 "dt": 1385947571
19 },
20 [
21 206,
22 263
23 ],
24 {
25 "p": [
26 201,
27 254
28 ],
29 "at": 1385947579 ,
30 "dt": 1385947597 ,
31 "sid": "02190"
32 },
33 {
34 "p": [
35 198,
36 247
37 ],
38 "at": 1385947601 ,
39 "dt": 1385947601
40 }
41 ]
42 ]
43 },
44 ...

Listing 5.1: Excerpt from a TrajServ JSON answer. Trajectory #3899045 to
Geuzenveld has a single partial trajectory within the spatiotemporal
request box, consisting of an entry point, a normal waypoint, a station
waypoint and an exit point.
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To evaluate the performance of TrajServ and TRAVIC, we ran tests on several
GTFS feeds and measured computation times. To show that the computational
cost of näıve approaches quickly grows beyond any limit reasonable for live map
requests, we started with smaller networks for single cities and gradually chose
bigger networks of entire countries. We then began loading TrajServ with multiple
datasets from around the world. A detailed overview of the dataset parameters is
given in Table 6.1. Note that the number of trajectories is counted for the entire
feed, not for a specific date or time like in Table 2.1. The number of trajectories at
the morning rush hour or in the late evening can be seen in the area scan results
(Section 6.1). The total dataset area and the total bounding box area are equal
for single GTFS feed datasets. For the combined dataset, area sums up the area
sizes of the included feeds, while bounding box area is the size of the bounding box
containing all feeds. Note that for country feeds, the bounding box area can be
substantially larger than the country itself. This is because of international lines
leaving the country.

At the time of testing, real-time feeds were available for New York, San Francisco
and the Netherlands. However, delay information usually does not affect the request
times at all.

6.1. Server Performance

We tested the server performance by running several spatiotemporal queries against
the datasets described above. Each query requested the partial trajectories for the

GTFS feed #trajectories #stops #arr/dep #vertices area bbox area

Vitoria-Gasteiz 6,041 338 122,184 4,198 66.84 66.84

Budapest 147,556 5,357 2,660,027 237,386 1,952 1,952

New York Area 300,417 34,948 11,665,443 3,482,713 98,965 98,965

Switzerland 138,462 21,689 2,092,196 - 1.3·106 1.3·106

Netherlands 548,007 73,293 12,221,953 3,843,780 2.5·107 2.5·107

Combined feed 2,507,566 298,535 76,287,281 12,147,015 ∼ 5·107 ∼ 108

Table 6.1: Datasets used for testing. Areas are given in km2.
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next 60 minutes and was run twice: once in the morning rush hour with tb = 8:00:00
and once in the late evening with tb = 23:00:00. In a first step, we did a total area
scan that requested the partial trajectories of the entire dataset (z = 20). We then
proceeded with a spatiotemporal bounding box request that resembles the requests
fired by real clients. The request box with area A ≈ 10 km2 was handpicked from
the dataset’s center. The request zoom level was z = 20. A third request covered
an area of about 60,000 km2 at zoom level z = 9, which is roughly the size of
Switzerland’s bounding box.

All of these queries were answered using three different approaches. First, we
ran the test using a näıve approach where trajectories were stored as an unsorted
list. We then did the same request on a layered grid with base cell side length l =
500,000 (approximately 40 km in central Europe.) A third test run used a layered
grid with base cell side length l = 250,000. Note that in the näıve approach, there
are still some very simple optimizations present. Consider, for example, a query
that requests all partial trajectories between 8:00 and 9:00. If the näıve approach
finds a trajectory that leaves the first station at 9:20 and arrives at the last station
at 10:50, the trajectory is skipped and Algorithm 5.2 is not called.

We measured the total query time, the number of outputted partial trajectories
and the number of affected trajectories. We say a trajectory T is affected during
a query if a non-trivial computation has to be executed on T . Non-trivial compu-
tations include, for example, Algorithm 5.2 and a call to the trajectory’s activity
function. Calls to getter functions are considered trivial. A good measurement for
the scalability of an approach is the ratio of affected trajectories and outputted par-
tial trajectories. If, for example, TrajServ outputs 500 partial trajectories and only
had to look at 700 trajectories at all, we consider this a good result.

All tests were executed on a machine with two Intel Xeon E5640 CPUs (8 cores in
total) and 66 GB of RAM. TrajServ was compiled with gcc 4.4.6 and optimization
level -O3. For the layered grid queries, the vehicle types displayed at different zoom
levels can be seen in Table 6.2. The results in Tables 6.1 to 6.9 are averaged values
from 100 sample runs.

type streetcar subway rail bus ferry cable car gondola funicular

z 13-20 11-20 5-20 14-20 5-20 11-20 11-20 11-20

Table 6.2: Vehicle types on different zoom levels in the testing scenario.

For small networks like Vitoria-Gasteiz, the näıve approach yields reasonable good
results. However, even for this small dataset, request times are 5 to 20 times higher
than for the grid layer approach. Table 6.3 shows that, despite the fact that Vitoria-
Gasteiz does not have any vehicles that are displayed at zoom level 9, the näıve
approach still has to check 6,000 trajectories for the z = 9 box request.
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For bigger datasets like the Swiss rail network or Budapest, box requests at ground
level are still 20 times faster with the grid layer than with the näıve approach
(Tables 6.5 and Table 6.6). We found that for total area scans, a bigger grid size
usually yields better results. This is due to the computational overhead costs of the
grid. For box requests, the l = 250,000 grid yields only insignificant speed up, which
again can be explained with overhead costs.

In Table 6.8, the z = 9 box request for the New York City area at 23am yields
161 partial trajectories. To output this (small) number of T par, the näıve approach
has to look at 300,000 trajectories, while the l = 250,000 grid only has to look at
227.

Similar results can be seen in Table 6.7. At the time of writing this thesis and
to our best knowledge, the Netherlands GTFS is (by far) the biggest transit feed
available. It can be considered as ”complete”, meaning that every public transit
vehicle in the country is included with its full polyline. Still, despite the fact that
the total number of trajectory vertices is 16 times as high as in the Budapest feed
(the number of arrival/departure events is nearly 5 times as high), the time to
output ca. 1,000 partial trajectories at ground level in the city center of Amsterdam
is only slightly bigger than the time it took to output 1,000 T par in the city center
of Budapest. The higher time for the l = 250,000 box request in Amsterdam can
be explained by the higher network density in the city (2,000 affected trajectories
vs. 1,500 affected trajectories in Budapest) and mainly because of the higher vertex
density in the Netherlands feed. Note that the z = 9 box requests in Table 6.7,
which nearly covers the whole country of the Netherlands, only takes 23 ms during
the morning rush hour. However, keep in mind that at this zoom level, only trains
are outputted by TrajServ (Table 6.2).

In the introduction, we mentioned that TrajServ is easily able to handle the GTFS
feed of entire countries. We consider this statement proved by Tables 6.6 and 6.7. To
show that TrajServ is able to handle the public transit network of the whole world,
we ran the query of Table 6.7 against a dataset consisting of 22 feeds from around
the world. These feeds include three entire countries (Switzerland, Sweden and
the Netherlands). The other feeds are: public transit in the cities of Albuquerque,
Boston, Los Angeles, Miami, San Francisco, Portland, Chicago (all USA), Québec,
Montreal (both Canada), Manchester (UK), Budapest (Hungary), Rennes (France),
Turin (Italy), Vitoria-Gasteiz (Spain), Auckland, Wellington (both New Zealand),
Adelaide (Australia) and the public transit in the areas of Freiburg (Germany) and
New York (USA). The parameters of this combined feed are listed in Table 6.1.

Table 6.9 shows that even when run against the combined dataset, the grid layer
approach is still able the handle requests very fast. For the box requests, computa-
tion times are nearly the same (±1 ms).
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6.2. Client Performance

Measuring JavaScript Performance is a difficult task. Code examples that run effi-
ciently on one browser type can completely lock up another one. To evaluate the
performance of TRAVIC, we chose to run tests on the current versions of five different
web browsers: Firefox 27.0, Internet Explorer 11.0.2, Chromium 32.0.1700, Safari
5.1.7 and Opera 12.16. We loaded a TrajServ installation with the combined feed
described in the previous section, centered TRAVIC at the intersection of transept
and nave of the ”Oude Kerk” in Amsterdam (φ = 52.374359, λ = 4.898161) at
the highest zoom level possible and gradually zoomed out. For each zoom level, we
measured the number of displayed vehicles #v and the time it took to do a single
screen refresh tr. We did the same tests starting at the dome of New York City Hall
(φ = 40.712737, λ = −74.005973). Since TRAVIC uses lower refresh rates (1/f) at
lower zoom levels, we multiplied this time with the number of refreshes per second
at each level to get the amount of time ttot/s TRAVIC was busy with refreshing the
screen during a single second. If ttot/s > 1000 ms, TRAVIC could not compute the
intended number of refreshes in one second.

Tests for Firefox, Google Chrome and Opera were done on a machine with an Intel
Core i5-3320M Processor, 8 GB RAM and NVIDIA Quadro NVS 5400M graphics,
running Ubuntu 13.10. Tests for Internet Explorer and Safari were done on the same
machine, running Microsoft Windows 8 (SP1). All tests were run in full-screen mode
at 1920×1080. Values are averaged from 100 sample runs. Results can be seen in
Tables 6.10 and 6.12.

6.3. Asynchronous Delay Information

We end this chapter with a specific remark on the accuracy of TRAVIC. A problem
that is inherent to the approach of combining static schedule data and real-time
delay information into partial trajectories that are sent to the client is asynchronous
delay information. Consider the scenario depicted in Figure 6.1. A vehicle travels on
a certain route between two waypoints. At time t1, the client sends a spatiotemporal
request to the server, which currently holds a delay δ = 5 for the trajectory. A delay
of 5 is communicated to the client. Now, the server does an update and fetches the
newest version of the real-time feed. Somehow, the vehicle has regained the lost time
and δ is now 0 (at t = t2). The client, however, still operates within the bounds of
the spatiotemporal request answer received at t1. No new request is made. Thus,
for the client, δ is still 5. Now, at t = t3, the client finally fires a new spatiotemporal
requests and learns that the actual position of the vehicle is far behind the position
it currently displays. There is, of course, also the possibility of the vehicle being far
ahead of the current client position.
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Server Client

t

t1

t2

t3

update

update

δ = 5

δ = 0

δ = 0

δ = 5

δ = 5

?

Figure 6.1: Problems with asynchronous delay information.

There are two possible outcomes of this situation. In the first one, the client tries
to be as accurate as possible and immediately corrects the position, resulting in a
vehicle that jumps ahead (possibly multiple kilometers for long distance trains). In
the second, the client prioritizes smooth vehicle movements. If the first waypoint p1
of the new partial trajectory is ahead of the current client position pcur, the travel
speed is calculated in regard to pcur and an additional interpolation takes place
between pcur and p1. The vehicle will move faster to the next station, but it will
not jump. If p1 is behind pcur, p1 is completely ignored and travel speed is again
calculated in regard to pcur. The vehicle will move slower to the next station.

Currently, TrajServ displays vehicle jumps, but this remains an open issue.
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6. Evaluation

Näıve Grid (l = 500k) Grid (l = 250k)

8am 11pm 8am 11pm 8am 11pm

Total area scan
time in ms 18 17 3 < 1 3 < 1
#partial trajectories 175 71 175 71 175 71
#affected trajectories 6 k 6 k 277 126 277 126

request area in km2 66.8 66.8 66.8 66.8 66.8 66.8

Box request
time in ms 17 17 3 < 1 3 < 1
#partial trajectories 188 76 188 76 188 76
#affected trajectories 6 k 6 k 277 125 277 125

request area in km2 9.9 9.9 9.9 9.9 9.9 9.9

Box request with z = 9

time in ms 12 12 < 1 < 1 < 1 < 1
#partial trajectories 0 0 0 0 0 0
#affected trajectories 6 k 6 k 0 0 0 0

request area in km2 51.5 k 51.5 k 51.5 k 51.5 k 51.5 k 51.5 k

Table 6.3: Testing results for Vitoria-Gasteiz.

Näıve Grid (l = 500k) Grid (l = 250k)

8am 11pm 8am 11pm 8am 11pm

Total area scan
time in ms 15 13 4 < 1 4 < 1
#partial trajectories 4,3 k 768 4,3 k 768 4,3 k 768
#affected trajectories 45 k 45 k 4,3 k 768 4,3 k 768

request area in km2 38 38 38 38 38 38

Box request
time in ms 15 13 4 < 1 4 < 1
#partial trajectories 4,3 k 768 4,3 k 768 4,3 k 768
#affected trajectories 45 k 45 k 4,3 k 768 4,3 k 768

request area in km2 10.1 10.1 10.1 10.1 10.1 10.1

Box request with z = 9

time in ms 7 7 < 1 < 1 < 1 < 1
#partial trajectories 0 0 0 0 0 0
#affected trajectories 45 k 45 k 0 0 0 0

request area in km2 60 k 60 k 60 k 60 k 60 k 60 k

Table 6.4: Testing results for simulated traffic in Freiburg.
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6.3. Asynchronous Delay Information

Näıve Grid (l = 500k) Grid (l = 250k)

8am 11pm 8am 11pm 8am 11pm

Total area scan
time in ms 500 480 100 50 102 51
#partial trajectories 3.3 k 1.6 k 3.3 k 1.6 k 3.3 k 1.6 k
#affected trajectories 147.6 k 147.6 k 3.8 k 1.8 k 3.8 k 1.8 k

request area in km2 1.9 k 1.9 k 1.9 k 1.9 k 1.9 k 1.9 k

Box request
time in ms 457 460 27 12 27 12
#partial trajectories 1 k 434 1 k 434 1 k 434
#affected trajectories 147.6 k 147.6 k 1.5 k 628 1.5 k 628

request area in km2 9.9 9.9 9.9 9.9 9.9 9.9

Box request with z = 9

time in ms 328 326 1.8 < 1 1.8 < 1
#partial trajectories 73 39 73 39 73 39
#affected trajectories 147.6 k 147.6 k 73 39 73 39

request area in km2 60.2 k 60.2 k 60.2 k 60.2 k 60.2 k 60.2 k

Table 6.5: Testing results for Budapest.

Näıve Grid (l = 500k) Grid (l = 250k)

8am 11pm 8am 11pm 8am 11pm

Total area scan
time in ms 420 420 50 25 56 30
#partial trajectories 6.4 k 2.8 k 6.4 k 2.8 k 6.4 k 2.8 k
#affected trajectories 138 k 138 k 7 k 3.1 k 7 k 3.1 k

request area in km2 1.3 M 1.3 M 1.3 M 1.3 M 1.3 M 1.3 M

Box request
time in ms 410 410 30 18 28 17
#partial trajectories 411 242 411 242 411 242
#affected trajectories 138 k 138 k 539 330 539 330

request area in km2 10.2 10.2 10.2 10.2 10.2 10.2

Box request with z = 9

time in ms 320 320 4.2 2.2 4.5 2.5
#partial trajectories 875 434 875 434 875 434
#affected trajectories 138k 138 k 959 505 959 505

request area in km2 60 k 60 k 60 k 60 k 60 k 60 k

Table 6.6: Testing results for Switzerland.
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Näıve Grid (l = 500k) Grid (l = 250k)

8am 11pm 8am 11pm 8am 11pm

Total area scan
time in ms 2.1 k 1.9 k 706 310 998 434
#partial trajectories 11.5 k 5.1 k 11.5 k 5.1 k 11.5 k 5.1 k
#affected trajectories 548 k 548 k 18.1 k 8.2 k 18.1 k 8.2 k

request area in km2 25 M 25 M 25 M 25 M 25 M 25 M

Box request
time in ms 1.82 k 1.82 k 51 33 50 31
#partial trajectories 911 556 911 556 911 556
#affected trajectories 548 k 548 k 2 k 1.2 k 2 k 1.2 k

request area in km2 10.7 10.7 10.7 10.7 10.7 10.7

Box request with z = 9

time in ms 1.28 k 1.28 k 23 14 23 14
#partial trajectories 707 451 707 451 707 419
#affected trajectories 548 k 548 k 986 533 986 533

request area in km2 60 k 60 k 60 k 60 k 60 k 60 k

Table 6.7: Testing results for the Netherlands.

Näıve Grid (l = 500k) Grid (l = 250k)

8am 11pm 8am 11pm 8am 11pm

Total area scan
time in ms 1.3 k 1.1 k 478 155 495 185
#partial trajectories 11.5 k 3.6 k 11.5 k 3.6 k 11.5 3.6 k
#affected trajectories 300 k 300 k 17.2 k 3.8 k 17.2 k 3.8 k

request area in km2 98 k 98 k 98 k 98 k 98 k 98 k

Box request
time in ms 1.1 k 1 k 87 26 83 25
#partial trajectories 1.1 k 353 1.1 k 353 1.1 k 353
#affected trajectories 300 k 300 k 3.4 k 783 3.4 783

request area in km2 10.7 10.7 10.7 10.7 10.7 10.7

Box request with z = 9

time in ms 676 670 13 5 13 5
#partial trajectories 485 161 485 161 485 161
#affected trajectories 300 k 300 k 559 227 559 227

request area in km2 60.8 k 60.8 k 60.8 k 60.8 k 60.8 k 60.8 k

Table 6.8: Testing results for New York and New Jersey.
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6.3. Asynchronous Delay Information

Näıve Grid (l = 500k) Grid (l = 250k)

8am 11pm 8am 11pm 8am 11pm

Total area scan
time in ms 8 k 9 k 1.3 k 1.7 k 1.7 k 1.9 k
#partial trajectories 40.5 k 40.3 k 40.5 k 40.3 k 40.5 k 40.3 k
#affected trajectories 2,5 M 2,5 M 67.7 k 67.1 k 67.7 k 67.1 k

request area in km2 ∼100 M ∼100 M ∼100 M ∼100 M ∼100 M ∼100 M

Box request
time in ms 7.5 k 8.2 k 51 33 50 32
#partial trajectories 911 556 911 556 911 556
#affected trajectories 2,5 M 2,5 M 2 k 1.2 k 2 k 1.2 k

request area in km2 10.7 10.7 10.7 10.7 10.7 10.7

Box request with z = 9

time in ms 5.9 5.9 23 15 23 15
#partial trajectories 707 451 707 451 707 451
#affected trajectories 2,5 M 2,5 M 986 533 986 533

request area in km2 60 k 60 k 60 k 60 k 60 k 60 k

Table 6.9: Testing results for the combined feed. Box request areas are the same
as in Table 6.7. Request times are CET.

Chrome Firefox Opera Safari IE

z 1/f #v tr ttot/s tr ttot/s tr ttot/s tr ttot/s tr ttot/s

19 60 0 < 0.1 0.5 < 0.1 1.2 < 0.1 1.3 < 0.1 0.8 < 0.1 0.7
18 85 3 4.7 55.8 7.2 84.8 6 70.1 6.6 77.5 7.8 91.9
17 110 33 16 139.4 21.5 195.8 17.7 160.6 10.5 95.7 33.2 301.4
16 120 74 13.6 113.2 22.6 188.7 15.9 132.6 11.7 97.7 28.9 240.5
15 140 145 24 171.3 35.0 250.1 27.0 193.1 19.3 137.5 50.6 361.6
14 170 317 35 205.8 56.4 331.9 35.1 206.5 29.6 174.3 77.4 455.2
13 250 200 31.5 126.1 48.3 193 37.8 151.2 25.7 102.7 94.7 378.9
12 400 95 38 94.9 57.7 144.3 50.5 126.3 34.1 85.3 216.8 542.1
11 500 130 15.4 30.7 17.4 34.8 15.2 30.5 8.7 17.4 18.6 37.1
10 1 k 221 20 20 27.2 27.2 19.8 19.8 14.9 14.9 2.2 24.2
9 1 k 363 27.6 27.6 38.3 38.8 26.2 26.2 19.4 19.4 34.6 34.6
8 1 k 423 33.9 33.9 45.5 45.5 31.6 31.6 23.3 23.3 38.9 38.9
7 1 k 455 32.6 32.6 47.2 47.2 32 32 24.9 24.9 40.8 40.8
6 1 k 1 k 69.2 69.2 109.4 109.4 33.1 33.1 47.2 47.2 88 88
5 1 k 1.2 k 85.7 85.7 124.4 124.4 40.3 40.3 64.3 64.3 104.2 104.2

Table 6.10: TRAVIC performance on different browser types and zoom levels. Map
was centered at Amsterdam.
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Chrome Firefox Opera Safari IE

z 1/f #v tr ttot/s tr ttot/s tr ttot/s tr ttot/s tr ttot/s

19 60 30 2.6 42.6 3.1 52.3 2.5 41.7 1,8 29.8 4.2 70.2
18 85 68 5.2 60.6 5.7 67.5 4.3 50 4.3 50.4 9.3 168.9
17 110 117 6.5 59.4 7.9 71.8 5.9 54 6.4 58.1 14.3 129.6
16 120 195 9.2 76.5 11.3 94.1 8.2 67.9 10.3 85.7 20.5 171.1
15 140 285 11.2 80.2 14.1 100.9 10.7 77.6 12.5 89.2 26.1 185.9
14 170 331 12.7 74.8 15.5 91.4 11.8 69.9 13.9 81.7 26.5 175.9

Table 6.11: TRAVIC performance on different browser types and zoom levels. Map
was centered at Freiburg and individual traffic was simulated on the
main corridor.

Chrome Firefox Opera Safari IE

z 1/f #v tr ttot/s tr ttot/s tr ttot/s tr ttot/s tr ttot/s

19 60 4 2.6 43.5 3.5 57.8 3.3 54.5 3.6 59.8 9.9 165.3
18 85 14 6.4 75.2 8.3 98.1 7.2 85.2 9.9 116.8 28.8 332.7
17 110 47 8.7 79.1 10.4 94.1 9.3 84.4 13.3 121.3 34.1 310.1
16 120 111 17.3 144.3 24.3 202.5 19.9 165.5 25.8 215.3 135.9 1.1 k
15 140 233 30.4 217.4 45.6 325.5 38 271.6 46.8 334 458.8 3.3 k
14 170 745 32.3 189.7 55.5 326.2 34.9 205 44.5 261.9 172.1 1 k
13 250 431 23.1 92.4 34.9 139.5 25.9 103.8 35.1 140.4 142 568.1
12 400 599 33.3 83.3 53.3 133.3 34.9 87.4 48.2 120.6 200.4 500.9
11 500 674 21.5 43 34.1 68.2 24 48 34.3 68.5 55 110
10-5 1 k 210 10.8 10.8 13 13 9.9 9.89 16.6 16.6 25.2 25.2

Table 6.12: TRAVIC performance on different browser types and zoom levels. Map
was centered at New York.
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7. Future Work

At the time of writing this thesis, TrajServ and TRAVIC are stable and have been
heavily tested for weeks. Chapter 6 showed that performance of both the client and
the server is very good. Still, we think there is potential for improvements. Dur-
ing the work on this thesis, we also came up with ideas for additional features and
encountered some unexpected problems. The first section of this chapter serves as
a collection and an outline of future work related to real-time public transit visual-
ization. In the second section, we address the more complex problem of extracting
vehicle routes from geospatial datasets using map matching and route planning
strategies.

7.1. Improvements and Additional Features

Vehicle Trajectory Optimization Shape vertices use a lot of memory space and
slow down the clipping/interpolation algorithm. We mentioned in Section 5.1.1
that TrajServ filters out waypoints whose distance is below a certain threshold.
After applying this optimization, there are still many shape vertices that are com-
pletely redundant. Figure 7.1 gives examples of such waypoints. We figure that
an algorithm to reduce the number of shape vertices in a trajectory could lead to
significant speedup and to less memory usage. It could be feasible to apply the
Ramer-Douglas-Peucker [19] algorithm to the dataset before storing it into the grid
layer. Since RDP restricts the vertices of the simplified piecewise linear curve to
a subset of the original ones, the results are not optimal. There are other algo-
rithms that approximate a given piecewise linear curve with the minimum number
of vertices required to stay below a certain error bound [20].

Route Planner Integration One of the most interesting features we would like to
implement in the future is the integration of TrajServ and TRAVIC into a route
planning environment. Our goal is to create a full-featured public transit applica-

s1
s2

Figure 7.1: Redundant vertices s1, s2 on a piecewise linear curve.
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7. Future Work

tion that is not only able to provide route planning services, but can also display
the live positions of the vehicles a user is supposed to take for a given route or cur-
rently sits in. TrajServ can already handle requests for current positions of single
trajectories, so the main task would be to create a working client. One idea could
be to combine the Multimodal Routeplanner Client [21] with TRAVIC.

Asynchronous Delay Information As mentioned in Section 6.3, the problem of de-
lay asynchronicity still remains an open issue.

Mobile Client We plan to translate the JavaScript code of TRAVIC into Java code
to provide a mobile application for Android devices.

Map Tile Server It would be useful beyond the scope of live transit maps to provide
schematic network map tiles that are automatically rendered from the GTFS. To
our knowledge, no such tile server exists at the moment. To render a static map of
the dataset, TrajServ would have to build a graph, analyze the number, types and
labels of each vehicle connecting two stations and render the link between those
stations accordingly.

Memory Usage TrajServ still uses a lot of memory. Much of the memory con-
sumption is due to the fact that each trajectory holds references to each of its
shape vertices. This could be optimized by storing ”chunk references” of way-
points. So, instead of storing references to shape vertices 4545, 4546, 4547,

4548, 4549, 4550, 4551, 4552 between two stations, it would be better to store
<4545 - 4552>.

Support of Frequencies The GTFS standard includes vehicles that are not served
according to an exact schedule, but with a certain frequency at different times (like
the Paris Metro). Neither TrajServ nor TRAVIC are currently able to consider trips
that are defined in this way.

Support of Blocks To integrate multiple trips into a single vehicle (for example
to model vehicles that branch at a certain station into two separate trips) GTFS
provides the concept of blocks. At the moment, TrajServ completely ignores the
block_id. In the future, this field should be used by both the server and the client.

GTFS Output During the development of the server, it became clear to us that
TrajServ is by now a powerful tool to validate and minimize GTFS feeds. The
GTFS parser can handle corrupted feeds, is able to optimize the number of shape
vertices, dramatically reduces the number of service dates by transforming ex-
plicit service dates into weekly services with exceptions and can even add missing
shape_distance_travelled fields. To harvest this functionality for other areas of
public transit, TrajServ should be able to transform its internal representation of
trajectories back into the GTFS format.
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7.2. Extraction of Vehicle Routes

7.2. Extraction of Vehicle Routes

One of the biggest drawbacks of the increasing availability of public transit feeds is
the fact that many of them lack exact trajectory shapes. Without proper polylines
of a trajectory, vehicle routes are presented as straight station-to-station connections
to the end user. While this is a minor problem for bus and streetcar networks with a
high station density, long-distance trains that travel hundreds of kilometers without
a single stop appear to by flying over the countryside in the live map. It seems to
us that part of the problem is that many public transit companies simply do not
have exact spatial data of their vehicle routes. If there is any information at all (like
exact geospatial data of a rail network), it is not connected with single vehicle trips.
Because of this, it is necessary to either associate trajectory shapes by hand or to
extract the routes from geospatial datasets.

In this section, we roughly sketch several ideas of how to do such an extraction.
This has applications beyond the scope of public transit movement visualization.
The data can be used by transit companies internally or by route planners to output
the exact path a vehicle will take. We will discuss two entirely different approaches:
classic map matching and route planning.

7.2.1. Map Matching

Map matching is the process of associating geographical positions to map data. It is
for example used in route planning systems to tell the exact road a car is currently
on or to ”snap” paths of collected GPS data (with possible measurement errors) to
actual roads. We found very little literature on applying map matching algorithms to
extract public transit trajectories. Brakatsoulas et al. hint that most map matching
algorithms are optimized to find the current location of a single GPS coordinate [22].
They give an overview of several approaches to map lists of geographical positions
to map data. Although the primary focus of Brakatsoulas et al. is on mapping
collected GPS data from cars, we argue that their approaches can also be applied
to vehicle route extraction. A trajectory’s (ordered) list of station waypoints can be
understood as a set of (very sparse) sample positions along the way of the vehicle.

We hint that we already gave a subtle description of matching station waypoints
to their exact route shape. In Section 5.1.1, we presented an algorithm that sorted
station waypoints into shape vertices during the loading process of the GTFS feed.
This algorithm works as follows: for each station waypoint sj, we look at all vertices
vi after the vertex vin the station waypoint sj−1 was inserted at. For each pair of
vertices proceeding vin (for each edge e), we calculate a distance δ between e and
sj. After all distances have been computed, we chose the edge with minimal δ as
the new edge to hold sj. This algorithm can be optimized into a greedy algorithm
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that stops lookaheads if d gets bigger with each step (such reducing the probability
of sj being inserted into any proceeding edge). TrajServ uses the distance function

δi(sj) = (b+ c)2 − a2, (7.1)

where b is the distance between vi and sj, c is the distance between vi+1 and sj and
a is the length of edge (vi, vi+1) (Figure 5.2).

In Section 5.1.1, the shape path we associated the set of stations to was always
guaranteed to belong to the stations. This is no longer the case in map matching.
More importantly, paths can now have branches. However, we argue that the ap-
proach still applies. Consider the algorithm tries to match the station waypoints of
a train to a railroad track. If the track branches, we simply run the algorithm on
all branches and chose the one that has the minimum (averaged) δ. Brakatsoulas
et al. describe a similar algorithm (with another distance formula) that is limited
to exactly 4 lookahead steps per branch [22]. After 4 edges of a branch have been
checked, the next branch is looked at. Distances can either be compared by the
maximum distance per branch or by the average distance per branch. Because of
the large distance between sample points, however, a limitation of 4 edges does not
seem practical to us for transit route extraction. Another possibility to avoid the
explosion of computation time in huge networks is the approach described above
where lookahead stops if the distance only gets bigger with each step. This can lead
to false results for complicated vehicle paths. In some cases, the geospatial dataset
holds information that can be used to sort out entire branches very easily. Usable
information includes lists of vehicle types for each branch or even lists of route de-
scription strings that can be compared to the route descriptions stored in the public
transit feed.

Another strategy is to do global matching. Global matching tries to find a path
inside the geospatial network data that is as close as possible to the path described
by the list of sample points [22]. Comparison between two paths can be done using
the Fréchet Distance δF .

We mentioned in Section 3.1.4 that a vehicle trajectory can be understood as
a parametrization of a piecewise linear curve in R2 (Definition 4). There, the pa-

s1 s2
C2

s3

s4

s5

C1

CT

Figure 7.2: Problems with map matching algorithms for vehicle trajectories.
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rameter was time t. We can also chose the percentage p of traveled distance as a
parameter, thus yielding a parametrization [0, 1] 7→ R2. The same applies to any
path in the geospatial network data.

The Fréchet Distance is commonly described as the minimum length a leash has
to have to connect a dog and its owner, both traveling on separate paths A and B.

More formally:

δF (A,B) = inf
α,β

max
p∈[0,1]

{
d
(
A(α(p)), B(β(p))

)}
, (7.2)

where α and β are non-decreasing mappings [0, 1] 7→ [0, 1] and d is the distance
function in R2. Because α and β are non-decreasing, it is not possible for dog or
owner to travel backwards.

While the Fréchet Distance is one of the best similarity measures for curves, there
are some problems when it comes to route extraction for public transit vehicles. The
main problem is the low sample rate induced by the fact that only station position
are available for a trajectory curve. Figure 7.2 gives an example of a simple railroad
network consisting of two paths C1 and C2. CT is the piecewise linear curve induced
by a trajectory T . The Fréchet Distance method (and the local method described
above as well) yields C2 as the curve closest to CT . But what if CT is actually a
long distance rapid train that takes the high speed track C1 between stations s1 and
s4 to avoid driving through all stations between s1 and s4?

We suggest to use a slightly altered version of the Fréchet Distance that takes into
account the number of skipped stations. If A is a curve induced by a trajectory T ,
B is a curve in a geospatial public transit dataset, S is the set of stations on A and
S ′ is the set of stations on B, we propose a distance function like

δ′F (A,B) = δF (A,B) + c1
∣∣S ′ \ S∣∣+ c2

∣∣S \ S ′∣∣. (7.3)

Constant c1 is the penalty for skipped stations, c2 is the penalty for stations that
are on A, but do not appear on B.

7.2.2. Route Planning

Map matching can be a reasonable strategy for low-density, rail-bound transit net-
works. Bus routes, however, use the road network. Even between two single bus
stops, there could be thousands of possible routes for the bus to take (Figure 7.3).
Classic map matching does not seem feasible here.

It is adequate to assume that between two stops, a bus always takes the shortest
route. A robust solution to get the complete route a bus takes through the road
network could be to do shortest-path queries between each consecutive stops. The
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s1

s2

Figure 7.3: Direct connection.

s1

s2

Figure 7.4: Shortest path.

shortest-path algorithm would have to respect roads that are closed for buses as
well as special bus-only roads. This approach could also be applied to rail-bound
networks.

We presume that routes computed by iteratively computing shortest paths be-
tween stops are very close to the actual routes the vehicles take. In Figure 7.4,
the shortest path between two regional bus stops in Freiburg (computed with the
Google Directions API) is the same as the actual route. Even if they slightly differ,
the computed routes can still be used as a very good starting point to do manual
corrections.
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8. Conclusion

This thesis presented a scalable approach to do live visualizations of real-time public
transit data. We described a strategy that handles vehicle trajectories as piecewise
linear curves on the projected map plane and combines delay information with static
schedule data to provide a visualization that is both close to reality and robust
against missing real-time updates. We discussed the advantages of the approach
compared to periodically updated GPS positions and developed a client/server sys-
tem consisting of TrajServ, a partial trajectory HTTP server written in C++, and
TRAVIC, a JavaScript client consisting of a high-performance vector layer for map
services.

Evaluation showed that even in dense transportation networks, the average re-
quest times for TrajServ are very low (usually between 1 and 80 ms). Further tests
showed that the request times stay the same if the dataset grows in both the number
of trajectories and covered area. In Section 6.2, we demonstrated that client per-
formance is also very good, resulting in smooth vehicle movements for almost every
scenario, on different browsers. The only case where we could measure significant
performance problems was during the visualization of New York City in Internet
Explorer 11. Both TrajServ and TRAVIC are stable. Their source codes have been
published under GPL v2 and are available to download1.

For large update intervals, the problem of asynchronous delay information poses a
problem that has yet to be addressed. We proposed possible solutions to this issue in
Section 6.3. In addition, future work will include further optimization of the server
performance (especially memory usage) as well as the adding of additional features.
We also plan a route planner integration.

During the development process, we noticed the lack of proper methods to ex-
tract vehicle routes from geospatial data. In Section 7.2, we discussed two general
strategies to solve the problem of associating trajectories that only consist of station
coordinates to exact geospatial paths: map matching and shortest-path iteration.
Further investigations will concentrate on how to apply these approaches program-
matically to huge datasets. We plan to implement an algorithm that uses global map
matching on OpenStreetMap data to find vehicle routes for GTFS feeds without a
shapes.txt file.

1 https://github.com/patrickbr/trajserver

https://github.com/patrickbr/TRAVIC
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8. Conclusion

At the outset of this thesis, we planned to provide a toolset able to create live
maps for arbitrary public transit feeds in the GTFS format. With TrajServ and
TRAVIC, it is not only possible to do real-time public transit visualizations for
single cities, but for entire areas or countries. With the increasing availability of
static and real-time GTFS feeds, we hope that in the future, TrajServ and TRAVIC
will provide the framework for a live map that covers the entire world.
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A. TrajServ Request Parameters and
JSON Output

This appendix serves as a manual to TrajServ’s request parameters and to the format
of their JSON output. TrajServ knows four basic request commands: vehiclepos,
trajectories, trajectory and trajstations. Request parameters must be given
as GET-parameters. Each request can have optional fields cb and rid. The callback
cb can be used to pad the JSON with a callback function to get a JSONP output that
can be accessed across domains. The request ID rid is passed through unchanged to
the output and helps to distinguish different request answers. If no callback function
was specified, the output will be raw JSON.

/vehiclepos

This is the most basic command. It outputs the current positions of all vehicles
within a request rectangle. This is a mapping of a trajectories request with
btime=etime. Parameters are:

swx=〈integer〉, swy=〈integer〉, nex=〈integer〉, ney=〈integer〉
The lower left (swx, swy) and the upper right (nex, ney) corner of the
request rectangle, given in absolute projected coordinates (not as lati-
tude/longitude).

orx=〈integer〉, ory=〈integer〉
Coordinates will be outputted relative to (orx, ory). Usually, this is the
upper left corner of the clients current viewbox.

date=〈YYYY:MM:DD〉
The request date.

time=〈HH:MM:SS 〉
A single request time.

z=〈1-32 〉
The current zoom level.

The server will output a list of all vehicles currently moving through the request
rectangle, containing their IDs, types, human readable names, colors and positions.
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A. TrajServ Request Parameters and JSON Output

Field rid holds the request ID, tz holds all timezones currently displayed and a con-
tains a list of vehicle positions (p) along with their parameters. <TIMEZONE_OFFSET>
is in seconds.

{

"rid": <REQUEST_ID>,

"tz": [

{

"c": <TIMEZONE_CODE>,

"os": <TIMEZONE_OFFSET>

}*

],

"a": [

{

"id": <TRAJECTORY_ID>,

"t": <0 - 7>,

"c": <HEX COLOR>,

"tc": <HEX COLOR>,

"hs": <HEADSIGN>,

"sn": <SHORT_NAME>,

"ln": <LONG_NAME>,

"p": [<X>, <Y>]

}*

]}
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/trajectories

This is the command for spatiotemporal requests as described in Section 2.2.2. It
allows to get all clipped vehicle trajectories that cross a rectangle in a certain time-
span. Parameters are essentially the same as with vehiclepos, except for time,
which is replaced by btime and etime:

btime=〈HH:MM:SS 〉
The begin time of this request’s timespan.

etime=〈HH:MM:SS 〉
The end time of this request’s timespan.

The answer format resembles that of vehiclepos, but instead of positions, partial
trajectories are outputted for each vehicle (see the JSON output of trajectory

below for a specification of <PARTIAL_TRAJECTORY_WRAP>).

{

"rid": <REQUEST_ID>,

"tz": [

{

"c": <TIMEZONE_CODE>,

"os": <TIMEZONE_OFFSET>

}*

],

"a": [

<PARTIAL_TRAJECTORY_WRAP>*

]}
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A. TrajServ Request Parameters and JSON Output

/trajectory

A single trajectory version of vehiclepos. This can for example be used to display
the path a specific vehicle takes. Parameters are the same is for trajectories,
except for

id=〈integer〉
The trajectory ID.

{

"rid": <REQUEST_ID>,

"id": <TRAJECTORY_ID>,

"t": <0 - 7>,

"c": <HEX COLOR>,

"tc": <HEX COLOR>,

"hs": <HEADSIGN>,

"sn": <SHORT_NAME>,

"ln": <LONG_NAME>,

"pts": [

[

<SPATIOTEMPORAL_WAYPOINT>*

]*

]

}

The server outputs a single <PARTIAL_TRAJECTORY_WRAP> describing a single tra-
jectory’s way through a spatiotemporal bounding box. Field id is the (internal)
trip ID, t is the GTFS type of the vehicle, c and tc are color and text color of the
vehicle, hs is the headsign (for example ”Amsterdam Centraal”), sn is the vehicle’s
short name (often the train ID) and ln is the long name. Field pts holds partial
trajectories.

<SPATIOTEMPORAL_WAYPOINT> is either a timestamped waypoint

{

"p": <WAYPOINT>,

"at": <ARRIVAL_TIME>,

"dt": <DEPARTURE_TIME>,

"ad": <ARRIVAL_DELAY>,

"dd": <DEPARTURE_DELAY>,

"sid": <STATION_ID>

}
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where p is a normal waypoint, at and dt are arrival and departure times, given as
POSIX timestamps (UTC), ad and dd are delays, sid is an optional field holding
station IDs. <SPATIOTEMPORAL WAYPOINT> can also just be a raw normal waypoint
[<INTEGER, INTEGER>], where the first field is the x-coordinate, the second field
the y-coordinate.
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A. TrajServ Request Parameters and JSON Output

/trajstations

Outputs the complete list of stations of a trajectory, for example to display the
vehicle’s schedule. This command only takes a single parameter:

id=〈integer〉
The trajectory ID.

{

"rid": <REQUEST_ID>,

"id": <TRAJECTORY_ID>,

"t": <0 - 7>,

"c": <HEX COLOR>,

"tc": <HEX COLOR>,

"hs": <HEADSIGN>,

"sn": <SHORT_NAME>,

"ln": <LONG_NAME>,

"tt": {

"t": <BITMAP AS INTEGER>,

"n": [

<DATE_OB>,

],

"p": [

<DATE_OB>

]

},

"sts": [

{

"p": [<INTEGER>, <INTEGER>],

"at": <ARRIVAL_TIME>,

"dt": <DEPARTURE_TIME>,

"ad": <ARRIVAL_DELAY>,

"dd": <DEPARTURE_DELAY>m

"sid": <STATION_ID>,

"n": <STATION_NAME>

}*

]

}

The list of stations is outputted to sts, the service dates of this trajectory are
outputted as a bitmap to <BITMAP AS INTEGER>. Positive service date exceptions
are stored in tt.p, negative service date exceptions in tt.n.
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