
Master’s Thesis

Automatic Correction of Misaligned

Spaces and Typos Using Deep Learning

Mostafa M. Mohamed

Examiners: Prof. Dr. Hannah Bast &
Prof. Dr. Joschka Bödecker

Adviser: Prof. Dr. Hannah Bast

Albert-Ludwigs-University Freiburg
Faculty of Engineering

Department of Computer Science
Chair of Algorithms and Data Structures

June 14th, 2018

Writing period

15. 12. 2017 – 14. 06. 2018

Examiners

Prof. Dr. Hannah Bast

Prof. Dr. Joschka Bödecker

Adviser

Prof. Dr. Hannah Bast

2

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare, that my Thesis has not been prepared for another examination
or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

Large text corpora could get corrupted for a variety of reasons, such corruptions could
be tokenization corruptions, like removing correct spaces between words, adding wrong
spaces in-between words, splitting words across lines or garbling some characters
in words. These mistakes could make it hard for systems, that process large text
corpora, to identify the words within a text correctly, and as a result, lose a lot of
information about the text. This thesis developed a model which utilizes character-
based language models, that are trained as recurrent neural networks via deep learning.
The model automatically detects the tokenization mistakes in a given text and fixes
them accordingly. The model can successfully classify, and hence fix, the tokenization
errors with a mean F1-score that, depending on the model’s specifications, training
settings, and evaluation settings, varies between to 81% to 96%. Furthermore, two
non-learning dictionary-based approaches are presented, using a baseline greedy
strategy and dynamic programming, in addition to an end-to-end deep learning
approach and a baseline learning approach using 3-Gram Markov models. The models
are trained and evaluated using two datasets: Simple-Wikipedia and Reuters-21578.
The presented approaches are empirically evaluated to demonstrate the superior
performance of the presented model. Additionally, it is experimented using different
RNN architectures, RNN history length, model size, beam size in Beam-search,
training data size, tokenization errors and some internal features.

iii

Zusammenfassung

Korpora, die viel Text enthalten könnten durch verschiedene Gründe korrumpiert
werden. Solche Korruptionen können Tokenisierungskorruption sein, wie z.B. die Ent-
fernung korrekter Leerzeichen zwischen Wörtern, das Hinzufügen falscher Leerzeichen
zwischen Wörtern, die Aufteilung Wörtern auf verschiedene Zeilen oder die Korrup-
tion von Zeichen innerhalb von Wörtern. Solche Fehler können für Systeme, die große
Korpora verarbeiten, dazu führen, dass es für die Systeme schwer wird Wörter korrekt
zu identifizieren, was zu Informationsverlust über den Text führt. In dieser Arbeit
wurde ein Modell entwickelt, das Zeichen-basierte Sprachmodelle verwendet, die durch
tiefes Lernen mittels rekurrenten neuronalen Netzwerken trainiert wurden. Dieses
Modell findet Tokenisierungsfehler innerhalb eines Textes und repariert diese To-
kenisierungsfehler mit einem durchschnittlichen F1-Score, der zwischen 81% und 96%
variiert, erfolgreich. Außerdem wurden zwei Wörterbuch-basierte Ansätze vorgestellt,
die ein Greedy-Verfahren und dynamische Programmierung verwenden. Zusätzlich
wurde ein End-zu-End-Lernverfahren und, als Baseline, ein 3-Gram Markov-Modell en-
twickelt. Alle vorgestellten Modelle wurden auf zwei Datensätzen, Simple-Wikipedia
und Reuters-21578, trainiert und evaluiert. Die vorgestellten Verfahren wurden em-
pirisch evaluiert und gegenübergestellt um deren Leistung zu vergleichen. Außerdem
wurden verschiedene RNN Architekturen mit Variationen der Hyperparametern wie
der Sequenzlänge, der Modelgröße, der Suchtiefe der Beamsuche, der Größe des Train-
ingsdatensatzes, verschiedene Tokenisierungsfehler und anderen internen Merkmalen
untersucht.

v

Acknowledgments

First and foremost, I would like to thank each of ...

• Prof. Dr. Hannah Bast for choosing such an interesting topic, for giving me the
opportunity to work with her, for the guidance and crucial advice throughout
my thesis, and making sufficient resources at my disposal when needed.

• MSc. Markus Näther for his continuous support and help on a theoretical level
regarding deep learning, and on a technical level regarding tips and debugging
tools, and for maintaining RiseML which I used to run all the GPU training
and for proofreading my thesis.

• Frank Dal-Ri for responsiveness regarding the clusters I used to evaluate the
results of my experiments, and all related technical issues.

• MSc. Maged Shalaby for his suggestions about datasets and proofreading my
thesis.

• My family for their love, support and encouragement, that lead me where I am
today.

• My girlfriend Emese Pálffy for her support and patience with me throughout
my thesis.

• My friends Omar Kassem and Mina Nessiem for listening to my achievements
throughout my thesis and their proofread of my thesis.

• My friend Hatem Elshatlawy for being a supportive friend since I came Freiburg.

vii

Contents

1 Introduction 1

2 Related work 3

3 Background 5
3.1 Preliminaries and notations . 5
3.2 Dynamic programming review . 7

3.2.1 Edit distance . 8
3.3 Trie dictionary . 18
3.4 Neural network review . 19

3.4.1 Multi-class classification . 22
3.4.2 Class sampling . 23
3.4.3 Dropouts . 23

3.5 Recurrent neural networks review . 23
3.5.1 RNN cells: Simple, LSTM, GRU 24
3.5.2 Character-based language model 26

4 Datasets 31
4.1 Simple-Wikipedia dataset . 31
4.2 Reuters-21578 news dataset . 33
4.3 Corruptions . 33

5 Problem definition 37
5.1 Fixing evaluation definition . 37

6 Dictionary-based approaches 41
6.1 Greedy based approach . 41
6.2 Dynamic programming based approach 44

6.2.1 Token scoring . 44
6.2.2 Retokenization . 46
6.2.3 Grouping . 47

ix

7 Learning-based approaches 53
7.1 Maximum likelihood sequence estimation 53

7.1.1 Beam search . 55
7.1.2 State space . 56
7.1.3 State updates . 57

7.2 Input processing . 59
7.2.1 Input format for RNN models 59
7.2.2 Input perturbation . 60
7.2.3 Edit alignments . 61

7.3 Bicontext model . 62
7.3.1 Long looking and occurrence functions 62
7.3.2 Fixing operations . 65
7.3.3 Decisions tuner . 67
7.3.4 Look-forward in additions . 70
7.3.5 Wrapping up . 72

7.4 Baseline 3-Gram Markov model . 74
7.5 End-to-end model . 74
7.6 Utility . 75

7.6.1 Caching . 75

8 Experiments 79
8.1 Experiments specifications . 79
8.2 Character-based language models evaluation 82
8.3 Fixing evaluations . 84

9 Conclusion and future work 91
9.1 Summary and conclusions . 91
9.2 Future work . 93

Bibliography 94

x

List of Figures

1 Trie data-structure . 19
2 Neural network . 20
3 Unrolled many-to-one RNN . 29

4 Corruption and fixing operations diagram 39

5 Fixing actions updates . 58
6 Edit alignment example . 61

xi

List of Tables

1 Edit distance table example . 14

2 Datasets summary . 32

3 Tokens Scoring . 46
4 Retokenization values . 47
5 DP approach example . 50
6 DP approach example, tables . 52

7 Bicontext approach snapshots . 73

8 Simple-Wikipedia train/test losses 83
9 Reuters-21578 dataset train/test losses 88
10 Simple-Wikipedia fixing evaluations 89
11 Reuters-21578 fixing evaluations . 89
12 Different features evaluation . 90

xiii

List of Algorithms

1 Edit distance Tabular method . 10
2 Edit distance Tabular method . 11
3 Edit distance Tabular method, with dimension compression 12
4 Edit distance traceback construction 13
5 Trie word insertion . 20
6 Trie modified search . 21

7 Corruptor . 35

8 Greedy Trie traversal . 42
9 Greedy approach . 43
10 Retokenization . 48
11 Dynamic Programming approach . 51

12 Beam search . 54
13 Update(S) function in the beam search algorithm 59
14 Bicontext tuned transition function δ(S) 71
15 Bicontext approach . 72
16 Caching data structure . 77

xv

1 Introduction

One of the main mediums used for communication is texts, there are gigantic datasets
of text like the World Wide Web and Wikipedia. Texts exist in a variety of digital
forms, it can be in text files, documents, portable document format (PDF) files, web
pages and pictures. Having the text stored in some editable form gives more freedom
for using text, searching through it, copying it, correcting mistakes, adding comments
and making improvements. Consequently, there are methods for transformation of a
variety of sources into editable text files, and other methods are used to preprocess
text corpora and other methods for searching over text. Such methods could face
difficulties when dealing with corrupt texts, like in our case, texts with badly tokenized
words, or texts with spelling mistakes. Such issues could occur with text sources
that don’t have well-formulated text, for example, an image containing text could
be blurry and hence having unclear characters that get parsed wrongly, leading to
a corrupt version of the actual text. Also, a PDF parser/viewer could render the
spaces wrongly, and as a result, the parsed words could have misallocated spaces and
hence misalignment of words [1].
One class of errors that will be addressed in this thesis is mainly tokenization

errors in word-based languages (like English or French, but not Chinese). A variety of
systems and algorithms depend that a given text consists of individual tokens where
each token is a correct word in the language. Based on that a variety of processing
methods can be used on the data depending on the targeted application, for example,
word search and part-of-speech tagging depend on this [2]. Tokenization errors are
classified as one of four types:

1. Missing spaces (like ‘HelloWorld’)

2. Adding wrong spaces (like ‘Hello Wor ld’)

3. Line break hyphenation (like ‘Hello Wo-[newline]rld’)

4. Garbled characters (like ‘Hello Warld’)

The main issue addressed in this thesis is automatically fixing such tokenization
mistakes in a given text corpus. With the rise of machine learning and specifically

1

deep learning, there are a variety of models that could gain knowledge about texts
and predict a variety of features about them, one of the famous such examples is
word2vec [3], which generates n-dimensional vectors that correspond to languages’
words. This drives a motivation for using such models to fix corrupt texts according to
language models, which could get better results than other traditional methodologies.

In deep learning, there are character-based and word-based language models. The
significance of each model strongly depends on the application, for example, the
word-based language model is used in neural machine translation as in [4]. However,
the word-based model already assumes that the words are well-defined entities, which
is not the case in the given problem. On the other hand, the character-based models
get an intuition about the characters distribution in a corpus and hence can generate
sample text that "looks" very similar to texts in the training corpus [5]. The knowledge
of the character-based model regarding the characters distribution within text derived
the motivation to solve the addressed problem using character-based models. The
main presented approach by this thesis is a deep learning approach that utilizes
character-based language models to solve the tokenization errors. Additionally, in
order to have an insight about the performance of the proposed approach, which
is based on deep learning, two other learning approaches are presented, using end-
to-end deep learning and 3-Gram Markov models. Furthermore, two non-learning
dictionary-based approaches, using greedy and dynamic programming strategies, are
also proposed in order to compare the learning approaches against them.
The thesis is outlined as chapters: ‘Related work’ where I briefly talk about

other work that solve a similar problem or using similar techniques to solve other
problems, ‘Background’ where I list the notations that will be used throughout the
thesis and review some common background of algorithms and models like dynamic
programming and neural networks. After that, I elaborate on the datasets I used
and how I preprocessed them in the ‘Datasets’ chapter, followed by a short chapter
‘Problem definition’ which contains a formal definition of the problem and how it
will be evaluated. Followingly, the dictionary-based approaches are presented in
the ‘Dictionary-based approaches’ chapter. The learning approaches, including the
main approach (bicontext deep learning approach) are then presented in the chapter
‘Learning-based approaches’, followed by an empirical evaluation chapter ‘experiments’.
Finally, the last chapter is ‘Conclusion and Future work’ where I summarize the work
of the thesis, the results and talk about ideas for later improvements and shed the
light on some derivative problems from the presented problem, that might be solved
using the presented approach.

2

2 Related work

The work done by Déjean et. al. (2006) [1] builds a system that transform a given
PDF file into an XML representation. They encountered tokenization problems while
parsing PDFs, more particularly because of spaces, which is addressed by the first
two types of tokenization errors mentioned in the introduction chapter. One of the
reasons for the occurrence of these errors was the difference in glyphs’ (character-
representation) widths and the spacings between them. They attempted to solve this
problem by using a dictionary-based method and applying Viterbi algorithm. By
trying all possible retokenizations of the text, in attempt to match all the words.
Wen et. al. (2003) [6] developed an Hidden Markov Model (HMM) model which

identifies a token depending on the type of information it contains, like name, email
address, location, etc. Their model, however, uses a word-based language model, in
order to label tokens depending on the labels of neighboring tokens. This problem
would be even harder if the given text is not correctly tokenized due to the presented
mistakes.
Graves (2013) [5] developed character-based language models using RNNs, and

how to use it to generate fake text, which is a text that looks like a real text but
doesn’t have a particular meaning. This motivated deep learning to solve a variety of
text related problems. Some of the relevant work are solving syntactical or spelling
mistakes in a given text using deep learning. However, they are solving different types
of errors and not tokenization errors. Gupta et. al. (2017) [7] developed DeepFix
which tries to solve syntactical errors in C programs, using an end-to-end model
based on sequence-to-sequence with attention. Ghosh et. al. (2017) [8] developed a
sophisticated deep learning model, which combines convolutional layers, character-
based layers and word-based embedding layers in order to fix spelling mistakes that
are likely to happen during writing on a keyboard. Sakaguchi et. al. (2017) [9]
developed a deep learning model which is hybrid between characters and words, which
identifies words with reshuffled characters (except the first and last characters) and
fixes them.
Chollampatt et. al. (2016) [10, 11] developed two models for fixing grammatical

3

errors in a given text. Xie et. al. (2016) [12] developed a character-based language
model with attention that suggests better expressions for new language learners; these
are another forms of mistakes or corruptions that are being fixed using deep learning
models.
The approaches that are presented in this thesis are either based on dictionary

methods like [1] or deep learning like the other mentioned work. The main presented
approach was motivated by the character-based language model presented by [5], with
an enhancement of another character model that generates characters in a backward
direction.

4

3 Background

This chapter contains the definitions and notations that will be used throughout the
thesis, and it will review some topics, on which I will be building my models and
algorithms later on. The topics include dynamic programming, Trie data structure,
neural networks, recurrent neural networks (RNNs) and fake text generation using
RNNs, in addition to some topics/terminologies used in deep learning.

3.1 Preliminaries and notations

In order to be able to define the problem formally, a set of definitions and notations
is proposed, which will be used throughout the thesis.

• Partitioned alphabet Σ = Σ1 ∪ · · · ∪ Σn: An ordered set, which is a union of
disjoint sets of characters that are used to form the texts. Mainly, a union of
digits set, English alphabet set and special characters set.

• Delimiters Γ: A set of special characters that are used as delimiters or separators
to tokenize texts, such that Σ ∩ Γ = φ. Mainly, spaces and newlines.

• Padding character $̇: A special character that is used to fill in padding/empty
parts of strings, such that $̇ /∈ Σ ∪ Γ.

• Unknown character Ψ: A special character denoting an unknown character,
such that Ψ /∈ Σ ∪ Γ ∪ {$̇}.

• Character-set Λ: The universal alphabet set of all characters that will be used
in our models. In other words, Λ = Σ ∪ Γ ∪ {Ψ, $̇}.

• Text T : A sequence of characters from Λ, or in regular expression terms T ∈ Λ∗.

• Empty text ε: An empty sequence of characters.

• Substring Ti→j : A string that consists of the characters Ti, · · · , Tj−1, addition-
ally Ti�j is the string that consists of Ti, · · · , Tj .

5

• Prefix T→i: A string or sequence that consists of the elements T1, · · · , Ti−1,
also the prefix T�i is the sequence that consists of T1, · · · , Ti.

• Suffix Ti→: A string or sequence that consists of the characters Ti, · · · , T|T |; the
suffix will also be denoted by T−i→ which is the sequence T|T |−i+1, · · · , T|T |.

• Edit operation: An operation that can be applied on a string T that changes
the string. Such as:

1. (ADD, i, s): adds the character s before the i-th character in string T .

2. (DEL, i, Ti): deletes the i-th character in string T .

3. (CHG, i, s): changes the i-th character in string T to s.

• Copy (No-change) operation: (NOP, i, Ti) an ineffective edit operation that
copies the i-th character in the string T as it is. This might also be referred
to as (CPY, i, Ti) depending on the context. It is called ineffective, because it
doesn’t change the text.

• Corruption operation: An edit operation that is used to transform a correct
text into a corrupt one.

• Fixing operation: An edit operation that attempts to fix a corrupt text back
into a correct text.

• Token: A pair (w, sp) of a word w ∈ Σ+
s and delimiters split sp ∈ Γ∗. Σs is one

of the partitions of Σ.

• Concatenation ◦: A binary operator between two strings or sequences A and B
such that A ◦B = A1, A2, · · · , A|A|, B1, B2, · · · , B|B|

• Tokenization of a text T : A sequence of tokens Q1, · · · , Qr such that the words
and splits are maximals, and the concatenation Q1.w ◦ Q1.sp ◦Q2.w ◦ · · · ◦
Qr.sp = T .

• One-hot vector {c = 1}S : A unit vector of length |S| over an ordered set S.
If c has an index i in the set S, then i-th element of the vector is 1 and the
remaining are zeros.

• Smoothing ε: A small decimal number ≈ 10−30 or 10−10 that is used to smooth
formulas that could have undefined computations. Like, ab 7→

a
b+ε ,

a
b 7→

a+ε
b+ε or

log{x} 7→ log{x+ ε}.

6

• Discrete probability distribution pS : A vector of size |S|, corresponding to an
ordered set S. Such that for all i 0 ≤ pi ≤ 1 and

∑n
i=1 pi = 1. The value pi

corresponds to the probability of the i-th element to participate in some event.

• Tensor Q: n-dimensional array of numbers, often integers or real numbers.

• Boolean-to-integer notation [x]: An integer value, which is equal to 1 if the
boolean condition x is true, and 0 otherwise. This is also applicable on any
tensor by using this operator on all the elements point-wisely. For example,
given a matrix R, then [R > 3] is a matrix M where Mi,j = [Ri,j > 3] for all
i, j.

• Enumerator or Generator: A function that returns a collection of items on
demand, the items are returned using a yield statement, which returns an
object and pauses; upon the request of the next object, the function continues
until it yields the next element and pauses. This goes on until all the elements
are yielded.

• Element-wise product �: An operation between two tensors, that multiplies
each element of the two given tensors point-wisely. For example, given two
matrices A and B, then (A�B)ij = AijBij for all i, j.

3.2 Dynamic programming review

In this section, I will review dynamic programming because it will be essential to
construct one of the dictionary-based approaches. The most suitable example for this
is the edit distance algorithm because it will be used later on for the evaluation of
the performance of my approaches, and also it will be used to construct training data
for some of the approaches.

Dynamic programming is a well-known technique for solving a variety of problems
like optimization problems and combinatorial counting problems. It mainly depends
on the divide-and-conquer strategy that breaks down a given problem into a set of
subproblems that are simpler yet have the same underlying structure, then solves
each of the subproblems recursively and combine their solutions to solve the given
problem. Furthermore, dynamic programming makes use of overlapping subproblems
by caching the already known solutions of subproblems in order to avoid recomputing
the solutions for the same subproblems many times, which results in optimizing a
variety of algorithms from an exponential time complexity into a polynomial time

7

complexity. The general structure of dynamic programming solutions, similar to how
it is defined in [13], consists of the following generic steps:

1. Define any subproblem with a simple state, this also includes the main given
problem.

2. Divide and conquer the problem, by defining a recursive relationship between
the problem’s state and subproblems’ states.

3. Formulate a recursion that solves the complex problem by combining the
solutions of the simpler subproblems.

4. Compute the recursive formula while caching the computed results, in order
not to recompute overlapping subproblems.

5. Compute the solution from the computed information.

The caching in step 4 is done in one of two ways, either having a table and iterating
over it in a bottom-up approach (i.e. from the simple subproblems to the more
complex ones), or having a lookup table and recursively enumerate through the
problems in a top-down approach (i.e. from the complex problem to the simpler
subproblems) while keeping track if a subproblem is already computed or not in order
to avoid recomputation. These methods will be demonstrated in the edit distance
algorithm [14].

3.2.1 Edit distance

Given two strings T and S, we are asked to transform T to S by using a minimal
sequence of edit operations. For example, the string ‘heloworxld’ can be changed into
‘hello world’ by using 3 edit operations (ADD, 3, ‘l’), (ADD, 5, ‘ ’) and (DEL, 8, ‘x’).

The edit distance algorithm finds such minimal sequence that transforms T to S.
An additional note, as seen in the example, the closer the edit distance to 0, the more
similar the strings T and S are.
Any instance of a subproblem is formulated by a pair (i, j) which denotes the prefixes
T1�i, S1�j , where 0 ≤ i ≤ |T | and 0 ≤ j ≤ |S|. The instance (i, j) is related to the
subproblems (i − 1, j), (i, j − 1) and (i − 1, j − 1) by the operations DEL, ADD
and NOP/CHG respectively. Then we have a recursive formula that solves the

8

subproblem (i, j) by using the solutions of the 3 subproblems using the formula:

edit[i, j] = min

edit[i− 1, j] + 1 i > 0, by deleting Ti

edit[i, j − 1] + 1 j > 0, by adding Sj between Ti, Ti+1

edit[i− 1, j − 1] + 1 i, j > 0 and Ti 6= Sj , by changing Ti → Sj

edit[i− 1, j − 1] i, j > 0 and Ti = Sj , by copying Ti

0 i = j = 0

(1)
Algorithm 1 shows how to compute the edit distance, according to equation 1, in a

tabular bottom-up fashion. The execution goes row-by-row from the smaller rows
to the higher rows, ensuring that when edit[i, j] is being computed, all the 3 needed
subproblems are already computed. The other approach for computation is using
recursion with memoization [13] in a top-down approach. The recursive function in
the top-down approach checks at the beginning if the global memoization lookup
table already has the computed solution for the given subproblem. Consequently, it
just returns the cached value if it exists, otherwise it computes the value recursively
and stores it in the lookup table then returns it. This is depicted in algorithm 2.
Both algorithms have the same time and space complexities given by O(|T ||S|),

because they both have a state space of that size and each element in it is computed
only one time by making O(1) steps, by checking values of a constant number of
subproblems. However, the top-down approach in practice can be slightly slower by
some small factor, because the recursion execution could have an overhead of how it
is internally computed. One of the advantages of the top-down approach is that, it is
more intuitive to understand, and we don’t need to care about the order of execution
because it’s automatically handled by the recursion. It simply uses recursion and
augments it with a caching structure. This idea will be useful in the main approach
in section 7.3.

Algorithm 3 shows how to compute the edit distance in a bottom-up approach like
algorithm 1, but with making use of the dimension compression technique [15], which
reduces the space complexity of the lookup table from O(|T ||S|) to O(|S|). This
technique operates on the key observation that the bottom-up approach is using only
2 rows at any given time (the current row and previous row), therefore it compresses
the dimension of the rows to only two rows, and uses them interchangeably. This
is achieved by using the mod 2 operation, when accessing the table using index i,
because i mod 2 points at the current row, and (i− 1) mod 2 (which is equal to (i

9

Algorithm 1 Edit distance Tabular method
function Edit-distance(T, S)

edit := Table((|T |+ 1, |S|+ 1),∞)
operation := Table((|T |+ 1, |S|+ 1), nil)
foreach i ∈ {0, 1, · · · , |T |} do

foreach j ∈ {0, 1, · · · , |S|} do
if i = j = 0 then

edit[i, j] := 0
end if
if i, j > 0 and edit[i, j] > edit[i− 1, j − 1] and Ti = Sj then

edit[i, j] := edit[i− 1, j − 1]
operation[i, j] := NOP

end if
. Remove this block if CHG operations are not allowed.

if i, j > 0 and edit[i, j] > edit[i− 1, j − 1] + 1 and Ti 6= Sj then
edit[i, j] := edit[i− 1, j − 1] + 1
operation[i, j] := CHG

end if
if j > 0 and edit[i, j] > edit[i, j − 1] + 1 then

edit[i, j] := edit[i, j − 1] + 1
operation[i, j] := ADD

end if
if i > 0 and edit[i, j] > edit[i− 1, j] + 1 then

edit[i, j] := edit[i− 1, j] + 1
operation[i, j] := DEL

end if
end for

end for
return operation

end function

10

Algorithm 2 Edit distance Tabular method
function Edit-distance(T, S)

edit := Table((|T |+ 1, |S|+ 1),∞)
operation := Table((|T |+ 1, |S|+ 1), nil)
procedure editDistFunc(i, j)

if i = j = 0 then
edit[i, j] := 0
return edit[i, j]

end if
if operation[i, j] 6= nil then

return edit[i, j] . The result was computed earlier
end if
edit[i, j] :=∞
if i, j > 0 and edit[i, j] > editDistFunc(i− 1, j − 1) and Ti = Sj then

edit[i, j] := editDistFunc(i− 1, j − 1)
operation[i, j] := NOP

end if
. Remove this block if CHG operations are not allowed.

if i, j > 0 and edit[i, j] > editDistFunc(i−1, j−1)+1 and Ti 6= Sj then
edit[i, j] := editDistFunc(i− 1, j − 1) + 1
operation[i, j] := CHG

end if
if j > 0 and edit[i, j] > editDistFunc(i, j − 1) + 1 then

edit[i, j] := editDistFunc(i, j − 1) + 1
operation[i, j] := ADD

end if
if i > 0 and edit[i, j] > editDistFunc(i− 1, j) + 1 then

edit[i, j] := editDistFunc(i− 1, j) + 1
operation[i, j] := DEL

end if
return edit[i, j]

end procedure
editDistFunc(|T |, |S|) . Calling the procedure, to fill the lookup table
return operation

end function

11

Algorithm 3 Edit distance Tabular method, with dimension compression
function Edit-distance(T, S)

edit := Table((2, |S|+ 1),∞)
operation := Table((|T |+ 1, |S|+ 1), nil)
foreach i ∈ {0, 1, · · · , |T |} do

i2 := i mod 2
foreach j ∈ {0, 1, · · · , |S|} do

edit[i2, j] :=∞
if i = j = 0 then

edit[i2, j] := 0
end if
if i, j > 0 and edit[i2, j] > edit[i2 ⊕ 1, j − 1] and Ti = Sj then

edit[i2, j] := edit[i2 ⊕ 1, j − 1]
operation[i, j] := NOP

end if
. Remove this block if CHG operations are not allowed.

if i, j > 0 and edit[i2, j] > edit[i2 ⊕ 1, j − 1] + 1 and Ti 6= Sj then
edit[i2, j] := edit[i2 ⊕ 1, j − 1] + 1
operation[i, j] := CHG

end if
if j > 0 and edit[i2, j] > edit[i2, j − 1] + 1 then

edit[i2, j] := edit[i2, j − 1] + 1
operation[i, j] := ADD

end if
if i > 0 and edit[i2, j] > edit[i2 ⊕ 1, j] + 1 then

edit[i2, j] := edit[i2 ⊕ 1, j] + 1
operation[i, j] := DEL

end if
end for

end for
return operation

end function

12

Algorithm 4 Edit distance traceback construction
function EditOperations(T, S, detailed = True)

operation := Edit-distance(T, S)
s0 := (|T |, |S|)
ops := []
t := 0
while st 6= (0, 0) do

t := t− 1
i, j := st+1

if operation[i, j] = NOP then . Ti = Sj
if detailed then

ops.push-front((i, j, (NOP, i, Ti))) . Rt pushed
end if
st := (i− 1, j − 1)

end if
if operation[i, j] = CHG then

if detailed then
ops.push-front((i, j, (CHG, i, Sj))) . Rt pushed

else
ops.push-front((CHG, i, Sj))

end if
st := (i− 1, j − 1)

end if
if operation[i, j] = ADD then

if detailed then
ops.push-front((i+ 1, j, (ADD, i+ 1, Sj))) . Rt pushed

else
ops.push-front((ADD, i+ 1, Sj))

end if
st := (i, j − 1)

end if
if operation[i, j] = DEL then

if detailed then
ops.push-front((i, j + 1, (DEL, i, Ti))) . Rt pushed

else
ops.push-front((DEL, i, Ti))

end if
st := (i− 1, j)

end if
end while
return ops . ops = R−m, · · · , R−2, R−1

end function

13

mod 2)⊕ 1, where ⊕ is the bit-wise xor operation) points at the previous row, and
then they are automatically interchanged. In practice, the table operation can be
stored using a smaller data type (1 byte instead of 4), because it has 4 possible values.
As a result, the memory complexity is still the same (because of the operation table),
but there is a factor of saved memory, from 8k|T ||S| to k|T ||S|+ 8k|S| bytes (nearly
saving a factor of 8), for some constant number k. This technique is only useable with
the bottom-up approach, which gives the bottom-up approach an advantage. This
saved factor was helpful during my evaluations, especially when they were ran using
multiple processes (between 4 and 24) simultaneously with a shared RAM memory.

All the algorithms 1, 2 or 3 have tie breaking rules which prefer NOP, CHG, ADD
then DEL respectively, by checking if the subproblem’s solution value is strictly less
then the current edit[i][j]. An operation is only assumed as optimal if it makes
additional improvement over the operation before it. Additionally, we can make the
CHG operations not allowed by removing the corresponding block from the algorithm
as shown by the comments, because in the evaluation metrics, the CHG operations
will not be used.

Algorithm 4 shows how to compute the actual edit operations from string T to
string S given the operation table computed in the algorithms 1, 2 or 3. The output
can be undetailed, which outputs a set of edit operations from T to S, that are not
ineffective (so mainly ADD, CHG or DEL), which shows the main differences between
the two texts. The output can also be detailed which is explained next.

j 0 1 2 3 4 5
i ε a b x c h
0 ε 0 ← 1 ← 2 ← 3 ← 4 ← 5
1 a ↑ 1 ↖ 0 ← 1 ← 2 ← 3 ← 4
2 x ↑ 2 ↑ 1 ← 2 ↖ 1 ← 2 ← 3
3 b ↑ 3 ↑ 2 ↖ 1 ← 2 ← 3 ← 4
4 c ↑ 4 ↑ 3 ↑ 2 ← 3 ↖ 2 ← 3

Table 1: Table of the values of edit[i][j], and the arrows show which subproblems
are used to compute the given values. The arrows are determined by the
values operation[i][j].

An example of the computed tables is demonstrated in table 1, where T = ‘abxc’,
S = ‘axbch’, ↑ denotes operation[i][j] = DEL, ↖ denotes operation[i][j] = NOP, ←
denotes operation[i][j] = ADD and CHG operations are not used.

14

Detailed edit operations

The detailed version of edit operations construction, has as output, a sequence of
triples if executed synchronously on the string T , then they would generate the string
S. The triples are on the form (i, j, op), where they denote that the first edit operation
to transform the suffix Ti→ to Sj→ is to use the edit operation op. The claim that
these triples denote that op is the first edit operation that transforms the suffix Ti→
to suffix Sj→, is the basis for edit alignments in subsection 7.2.3, and therefore I will
prove this claim here, the proof will be done by mathematical induction, but first,
few definitions need to be introduced. First, we define Rt as the element inserted
at time point t in the triples list (where t enumerates through 0,−1, · · · ,−m, and
m is the length of the returned result), so the output of the algorithm is the list
R−m, · · · , R−1. We define Rt := (xt, yt, opt), and also R0 = (|T | + 1, |S| + 1, nil)

and R−m−1 = (0, 0, nil) for completeness, but R0 and R−m−1 will not be pushed by
the algorithm. Additionally, we annotate st = (it, jt) which are the indices of the
traceback path (marked in grey in the example, in table 1). As observed in algorithm
4, for all t whenever Rt = (xt, yt, opt) is pushed in the resulting operations, st is set
to the value (xt − 1, yt − 1) 2-3 lines after that, thus we have for all t the equations
it = xt − 1, jt = yt − 1. If we consider when Rt is pushed (in one of the four marked
lines in algorithm 4), we find out that the values of all pairs (xt, yt), for all t, are
given by:

(xt, yt) =

(it+1, jt+1) = (xt+1 − 1, yt+1 − 1) if opt = (NOP, xt, Syt)

(it+1, jt+1) = (xt+1 − 1, yt+1 − 1) if opt = (CHG, xt, Syt)

(it+1 + 1, jt+1) = (xt+1, yt+1 − 1) if opt = (ADD, xt, Syt)

(it+1, jt+1 + 1) = (xt+1 − 1, yt+1) if opt = (DEL, xt, Txt)

(it+1, jt+1) = (0, 0) if t = −m− 1

(i0 + 1, j0 + 1) = (|T |+ 1, |S|+ 1) if t = 0

(2)

15

By rearrangement of the previous equation, we get that:

(xt, yt) =

(xt−1 + 1, yt−1 + 1) if opt−1 = (NOP, xt−1, Syt−1)

(xt−1 + 1, yt−1 + 1) if opt−1 = (CHG, xt−1, Syt−1)

(xt−1, yt−1 + 1) if opt−1 = (ADD, xt−1, Syt−1)

(xt−1 + 1, yt−1) if opt−1 = (DEL, xt−1, Txt−1)

(0, 0) if t = −m− 1

(i0 + 1, j0 + 1) = (|T |+ 1, |S|+ 1) if t = 0

(3)

In order to make the proof simple, we shift the sequence by introducing R̃t = Rt−m−1,
x̃t = xt−m−1, ỹt = yt−m−1, õpt = opt−m−1, after this shifting, the returned result by
algorithm 4 is the list of triples R̃1, · · · , R̃m. The equation after the shifting is given
by:

(x̃t, ỹt) =

(x̃t−1 + 1, ỹt−1 + 1) if õpt−1 = (NOP, x̃t−1, Sỹt−1)

(x̃t−1 + 1, ỹt−1 + 1) if õpt−1 = (CHG, x̃t−1, Sỹt−1)

(x̃t−1, ỹt−1 + 1) if õpt−1 = (ADD, x̃t−1, Sỹt−1)

(x̃t−1 + 1, ỹt−1) if õpt−1 = (DEL, x̃t−1, Tx̃t−1)

(0, 0) if t = 0

(|T |+ 1, |S|+ 1) if t = m+ 1

(4)

Finally, we introduce a function Apply, which can be interpreted as a function that
simulates applying the edit operations until it transforms the source string T to the
target string S, Apply is defined as:

Apply(X,R = (x, y, op)) :=

X ◦ Sy if op = (ADD, x, Sy)

X if op = (DEL, x, Tx)

X ◦ Tx if op = (NOP, x, Sy), where Tx = Sy

X ◦ Sy if op = (CHG, x, Sy)

(5)

and a sequence X which is defined recursively by: Xk := Apply(Xk−1, R̃k) for all
k > 0 and X0 = ε.

Proof. I will prove that Xk is constructed by transforming the prefix T�x̃k to the
prefix S�ỹk using the sequence of edit operations õp1, · · · , õpk. This is achieved by
proving Xk = S�ỹk by consuming T�x̃k for all k ≤ m + 1, which will be done by

16

mathematical induction on k.

• Induction Basis: k = 0⇒ X0 = ε = S�0

• Induction hypothesis: For all 0 ≤ r < k, Xr = S�ỹr which is transformed
from the prefix T�x̃r using the operations õp1, · · · , õpr.

• Induction step: If R̃k = (x̃k, ỹk, õpk), then we have one of 4 scenarios:

– If õpk = (NOP, x̃k, Sỹk), then Xk = Xk−1 ◦ Sỹk (by definition), then
Xk = S�ỹk−1

◦ Sỹk (by induction hypothesis), Xk = S�ỹk−1
◦ Sỹk−1+1 =

S�ỹk−1+1 = S�ỹk (because ỹk = ỹk−1 + 1). This is acquired by trans-
forming the prefix T�x̃k−1

(by induction hypothesis), and by copying Tx̃k ,
which is the transformation of T�x̃k (because x̃k = x̃k−1 + 1).

– If õpk = (CHG, x̃k, Sỹk), then Xk = Xk−1 ◦ Sỹk (by definition), then
Xk = S�ỹk−1

◦ Sỹk (by induction hypothesis), Xk = S�ỹk−1
◦ Sỹk−1+1 =

S�ỹk−1+1 = S�ỹk (because ỹk = ỹk−1 + 1). This is acquired by trans-
forming the prefix T�x̃k−1

(by induction hypothesis), and by changing
Tx̃k → Sỹk , which is the transformation of T�x̃k (because x̃k = x̃k−1 + 1).

– If õpk = (ADD, x̃k, Sỹk), then Xk = Xk−1 ◦ Sỹk (by definition), then
Xk = S�ỹk−1

◦ Sỹk (by induction hypothesis), Xk = S�ỹk−1
◦ Sỹk−1+1 =

S�ỹk−1+1 = S�ỹk (because ỹk = ỹk−1 + 1). This is acquired by trans-
forming the prefix T�x̃k−1

(by induction hypothesis), which is the same
as transforming T�x̃k (because x̃k = x̃k−1), then Sỹk is added after this
prefix.

– If õpk = (DEL, x̃k, Tx̃k), then Xk = Xk−1 (by definition), then Xk =

S�ỹk−1
(by induction hypothesis), Xk = S�ỹk (because ỹk = ỹk−1). This

is acquired by transforming the prefix T�x̃k−1
(by induction hypothesis) and

deleting Tx̃k , which is the transformation of T�x̃k (because x̃k = x̃k−1 + 1).

In conclusion, we proved that applying the first t returned operations, namely
õp1, · · · , õpt, will transform the prefix T�x̃t to the prefix S�ỹt , hereby we can notice
that all the operations before R̃t will not affect both prefixes T�xt and S�yt (it might
affect only one though), because for all t we have x̃t−1 < x̃t or ỹt−1 < ỹt (according to
the update equation 4), and therefore R̃k is the first operation applied on both of the
suffixes Tx̃t→ and Sỹt→ simultaneously, since Tx̃t and Sỹt form the only intersection
between both suffixes Tx̃t→, Sỹt→ and their corresponding prefixes T�x̃t , S�ỹt .

17

In the example shown earlier in table 1, the cells marked in grey are the cells that
algorithm 4 passes by during the edit operations construction, namely the values st,
and the corresponding detailed output is given by the list of triples: (1, 1, (NOP, 1, a)),
(2, 2, (DEL, 2, x)), (3, 2, (NOP, 3, b)), (4, 3, (ADD, 4, x)), (4, 4, (NOP, 4, c)), and finally
(5, 5, (ADD, 5, h)).

3.3 Trie dictionary

Trie is a data structure that is used to store a set or a dictionary of words and to
search efficiently on words using word’s prefixes [16]. It is built as a rooted directed
tree stucture, with labeled edges and nodes. In figure 1, an example of a Trie is
depicted that contains 6 strings a, abc, axc, axy, bxy and abcy. Each node in the
Trie’s tree represents a prefix of a certain word, and the highlighted nodes (marked in
grey) mark that this is a full prefix, i.e. it is one of the dictionary words that we are
storing. The edges of the Trie are labeled by the characters from a given alphabet Σ.

The construction of this structure is done by inserting all words into the Trie. The
insertion of a word is done by traversing the labeled edges of the Trie by using the
edges with labels from the word’s characters while creating necessary nodes on the
traversal path until the end of the path is reached (when the word is traversed), then
the terminal node is marked. This is depicted in algorithm 5. Given this structure,
we can easily search if a word exists or not be traversing through the edges of the
tree using the characters of the query word, and at the end, we answer the query
depending if the traversal reaches a marked node or not. Furthermore, the search
function can be modified in order to search if a query word exists in the dictionary or
to find words that are similar to the query word, where the similarity is defined as the
edit distance. The modification is done during traversal of the search query; if the
traversal is standing at a node u after traversing q1�i, we can either try traversing
using qi+2 as if qi+1 is deleted, or traverse all edges that use a character c 6= qi+1

then traverse starting from qi+2 after as if we changed qi+1 to c, or lastly we can
traverse using an arbitrary character c and then traverse starting from qi+1 as if
we added a character c before qi+1, meanwhile we can keep track of how many edit
traversals were done and deduct a ‘matching’ score of the query word accordingly.
The deduction will be by a factor 0 ≤ ϕ ≤ 1, for each edit operation. The words that
are found at the end of the traversal are returned with some matching score, which
is equal to 1 or some function on the relative frequency of the matched word. The
modified search function is shown by algorithm 6.

18

ε

a

ab

abc

abcy

ax

axc axy

b

bx

bxy

a b

b x

c

y

c y

x

y

Figure 1: Trie datastructure sample, with 6 inserted strings: ‘a’, ‘abc’, ‘axc’, ‘axy’,
‘bxy’, ‘abcy’

3.4 Neural network review

Neural networks is one of the machine learning topics, also referred to in some
contexts as deep learning. The model consists of nodes/neurons that are partitioned
into layers where the layers (and the neurons) are connected in a directed acyclic
graph (often a chain). The connections between neurons have weights, that can be
tuned in order to tune the output of each neuron and hence the output of the whole
network. The architecture of a network consists of input neurons that are grouped
in an input layer, then they are connected to hidden neurons (partitioned in hidden
layers), then connected to the output neurons which are grouped in an output layer.
This structure is depicted in figure 2. The number of layers in the network is also
referred to as the network’s depth, hence the name deep learning which refers to
deep neural networks. One of the strength points of deep neural networks is their
capability of approximating complicated functions without collapsing into a linear
function, by making use of a number of non-linear layers [17].
Neural networks operate in two main ways, forward propagation and backprop-

agation. In the forward propagation, the input neurons are fed with values that

19

Algorithm 5 Trie word insertion
procedure Insert(W, i = 1, nod = ROOT)

if i > |W | then
mark nod

else
if nod has no edge labeled Wi then

nod.next[Wi] := new Node . Create necessary unfound nodes
end if
Insert(W , i+ 1, nod.next[Wi])

end if
end procedure

x1

x2

...

xn ...
...

y1

y2

...

ym

Figure 2: Neural network example, x1, · · · , xn are the input neurons, y1, · · · , ym
are the output neurons. The remaining neurons are the hidden ones.

are passed to the successor neurons, then each hidden neuron computes the output
depending on its input values, connections’ weights and neuron’s bias, then the output
is fed forward as input to the successor neurons, this goes on until the output layer
computes its output, which is the output of the whole network [18]. This is how
a neural network can make a prediction or compute a value. This whole structure
behaves like a complicated non-linear differentiable function that has the biases and
weights as input parameters. On the other hand, backpropagation [18] is used to
tune the parameters of the model, it has to be used after a forward propagation;
backpropagation relies on the assumption that the forward propagation has cached
all its computations, then at the output layer, the predicted output is compared to a
ground truth output according to a differentiable cost function J , and based on this
comparison there are update values that get backpropagated from the output layer

20

Algorithm 6 Trie modified search
procedure Search(W , i = 1, nod =ROOT, R=‘’, e = 2) . Word W , index i

. allowed edits e, R is accumulated result, ϕ is damping factor
if i > |W | then

return (R, int(nod is marked)) . matched word score
end if
Wres, sres := (W, 0.0)
if nod has labeled edge Wi then

nxt = nod.next[Wi]
Wnop, snop := Search(W, i+ 1, nxt,R ◦Wi, e)
if snop ≥ sres then

Wres, sres := Wnop, snop
end if

end if
if s ≈ 1.0 then

return (Wr, s) . If the word is found, return it
end if
Wdel, sdel := Search(W, i+ 1, nod,R, e− 1)
if sdel ≥ sres then

Wres, sres := Wdel, ϕ · sdel . Try to delete Wi

end if
for next c of nod do

Wadd, sadd := Search(W, i, nod.next[c], R ◦ c, e− 1)
if sadd ≥ sres then

Wres, sres := Wadd, ϕ · sadd . Try to add c before Wi

end if
Wchg, schg := Search(W, i+ 1, nod.next[c], R ◦ c, e− 1)
if schg ≥ sres then

Wres, sres := Wchg, ϕ · schg . Try to change Wi → c
end if

end for
return (Wres, sres)

end procedure

21

until the input layer; the updates of a weight between two neurons depend on the
backpropagated values as well as the cached values (from the forward propagation)
of the output neuron.

The input and output neurons are stacked in the vectors x and y respectively. The
l-th layer’s output is referred to as the vector hl, where x = h0 , y = hL and L is the
network’s depth. The output of the most basic layer (known as fully-connected layer)
is computed by hl = fl(hl−1Wl + bl), where Wl and bl are the weights matrix and
bias vector connecting layer l − 1 and l, and fl is differentiable function, referred to
as activation function. Usually, the activation function is one four common functions:
hyperbolic tangent tanh(z) = ez−e−z

ez+e−z , sigmoid σ(z) = 1
1+e−z , rectified linear unit

relu(z) = max(z, 0) and the identity function I(z) = z; the relu(z) function is not
differentiable at z = 0, but regardless of that, it is used in practice [19]. During
the backpropagation, a parameter u is updated depending on the gradient of the
cost function J , the update value is given by ∆u = ∂J

∂u = ∇J |u; the parameter u
is updated with a learning rate α and the value ∆u using one of the optimization
algorithms like Adam optimization algorithm [20]. One forward propagation followed
by backpropagation is a training step. Additionally, the training epochs is defined as
the number of times that the model trained on the whole dataset.

3.4.1 Multi-class classification

Neural networks can be used to classify a given input x as one of k classes, this can
be achieved by setting exactly k neurons in the output layer, then augmenting this
output layer by Softmax as the activation function [18]. The Softmax is computed by
the equation:

Softmax(y1, y2, · · · , yk) = (
ey1∑
i e
yi
,
ey2∑
i e
yi
, · · · , eyk∑

i e
yi

) (6)

The sum of this output vector is 1, as a result, we get an output which is a probability
distribution over k possible values corresponding to class 1, · · · to class k respectively,
which is interpreted as the probability of some class to be true. This output is usually
evaluated with the cost function categorical cross-entropy [18] which is defined by
the equation:

J(ŷ,y) = −
k∑
i=1

ŷi log{yi} (7)

where ŷ is the ground truth output vector which is a one-hot vector {s = 1}C , where
s is the corresponding true class. The value of this cost function will be minimal

22

(zero) if the probability of the class s that should be predicted is 1, because logys = 0

and for all q 6= s we have ŷq = 0.

3.4.2 Class sampling

Given a probability distribution vector p over a set C of k classes, we can accordingly
sample one of the classes by distilling [21] the probability distribution. This is

achieved by the function fτ (pi) = e
logpi
τ∑

j e
logpj
τ

for some temperature parameter τ , then

we can use this new distribution to sample a class i, by uniformly sampling a random
number r ∈ [0, 1) and i as the smallest number such that

∑i
j=1 pj > r.

The temperature parameter τ controls how diverse or conservative the sampling
is; as τ → 0 all the values of fτ (p) approach 0 except for the class of maximum
probability will approach 1, which is the one-hot vector of the most likely predicted
class, in this scenario the sampling is strongly sticking to the probabilities predicted
in p, which can get stuck on some patterns predicted by p. On the other hand,
as τ → ∞, all the values approach the value 1

k which is a uniform distribution,
consequently in this scenario, the model is less caring about the probabilities p, which
generates more diverse outputs and also with more mistakes.

3.4.3 Dropouts

Dropout [22] is a technique used while training a neural network, in order to enhance
the capability of the neural network to generalize over output and be less prune
to overfitting. It generally operates by choosing a drop-rate p, and used on some
input tensor Q (n-dimensional array), and it drops randomly an expected ratio of
p elements from this tensor, so these will neither be used to compute an output
nor be updated; this prevents that the output is dependent on a specific neuron. A
simple equation that can be used in practice to compute the dropout, is by sampling
R ∼ U(0, 1) (where R has the same shape as Q), then using P = 1

1−p [R > p] and
accordingly, the dropped out W̃ is given by W�P. The term 1

1−p is a correction
term, because the expected output was reduced by a factor of 1− p because there is
a ratio of p dropped out neurons.

3.5 Recurrent neural networks review

Recurrent neural networks (RNN) is a special type of neural networks, where neurons
can be connected with self-loops, and thus the output of a neuron is recursive

23

depending on the output and its own earlier output. This structure is suitable for
data that consists of sequences like x1, · · · , xT . Given the input sequence x1, · · · , xT
and an initial activation state a0, then the abstract procedure of the RNN is to
compute an activation state at = f(at−1, xt) and an output yt = g(at) for each
element xt in the sequence.

3.5.1 RNN cells: Simple, LSTM, GRU

One of the most basic implementations of RNN is the Vanilla RNN [23]. A Vanilla
RNN cell is implemented by the equations:

at =σ(Wa[at−1,xt])

ht =Oat
(8)

The notation [at−1,xt] denotes a stacking of the vectors at−1 and xt. Wa,O are
the training parameters. However, this RNN has a difficulty to keep a memory of
long-term dependencies between the sequence elements. In addition to suffering from
vanishing or exploding gradients during backpropagation [24], making the RNN hard
to train. The vanishing gradient problem occurs when the gradients have very small
(near zero) magnitude such that they are too slow to make any progress in tuning the
parameters. On the other hand, the exploding gradient happens when the gradients
have very large magnitudes, and as a consequence, the parameters diverge instead of
converging to some optimal value, which makes the output of the network undefined.
As a consequence, LSTM was introduced in order to solve these issues, and later on,
GRU was introduced to simplify the architecture of the LSTM. Both were shown to
have comparable performance [25] and superior results in gated RNNs, such that no
known gated RNN to date overperforms those two [19].

LSTM

Long short-term memory (LSTM) [26] is a sophisticated RNN that maintains a
memory cell c and gates to decide to forget or remember earlier terms from the given
sequence. This solves the issues that the basic RNNs suffered from. A LSTM cell is
given by the equations:

24

c̃t = tanh(Wc[at−1,xt] + bc)

ut =σ(Wu[at−1,xt] + bu)

ot =σ(Wo[at−1,xt] + bo)

ft =σ(Wf [at−1,xt] + bf)

ct =ut � c̃t + ft � ct−1

at =ot � tanh(ct)

(9)

Where c̃t is a candidate to replace the previous memory cell ct−1; u, o and f are
update, output and forget gates respectively. Using the forget f and update u gates
decide what to forget from the previous memory cell and what to update in it, then
the output gate o decides what is used from the memory cell to output the activation
state at. Wc,Wu,Wo,Wf ,bc,bu,bo,bf are the training parameters of the LSTM
cell.

GRU

GRU [27] (Gated Recurrent unit) was introduced as a simplification of the LSTM,
that still solves the same issues (long-term dependencies and vanishing/exploding
gradients). It also maintains a memory cell ct, which is also used as the activation
state at. A GRU cell is given by the equations:

c̃t = tanh(Wc[rt � ct−1,xt] + bc)

ut =σ(Wu[ct−1,xt] + bu)

rt =σ(Wr[ct−1,xt] + br)

ct =ut � c̃t + (1− ut)� ct−1

at =ct

(10)

Where c̃t is a candidate the replaces the previous memory cell ct−1; u and r are
the update and reset gates respectively. The reset r gate decides what to reset from
the previous memory cell. The update gate u decides what to update in the new
memory cell. Wc,Wu,Wr,bc,bu,br are the training parameters of the GRU cell.

25

Bidirectional RNN

Bidirectional RNN [19] is a recurrent neural network that processes the input sequence
twice, once in a forward direction and secondly in a backward direction using the
reversed input sequence. The outputs of both passes are then combined to give the
final activation value at some time step. One bidirectional RNN layer is comparable
to two unidirectional layers, with the difference that the input of the second layer is
fed from the reversed input sequence instead of the output of the first layer. The main
advantage of this architecture is providing information from both sides of the sequence
at each time step, instead of getting information only from the earlier terms of the
sequence. Bidirectional LSTM will be used in some of the presented experiments.

3.5.2 Character-based language model

Character-based language model is a probabilistic model that determines how likely
a given string s to appear in a language. It is mainly implemented using a recurrent
neural network that uses as input a sequence of characters of fixed length H. The
network solves a multi-classification over the character-set Λ, so the output of the
network is a probability distribution over the character-set characters predicting
the successor character. For example, given the input sequence ‘Hello frien’, and
H = 15 we feed the input ({$̇ = 1}Λ, {$̇ = 1}Λ, {$̇ = 1}Λ, {$̇ = 1}Λ, {H = 1}Λ, {e =

1}Λ, {l = 1}Λ, {l = 1}Λ, {o = 1}Λ, {‘ ’ = 1}Λ, {f = 1}Λ, {r = 1}Λ, {i = 1}Λ, {e =

1}Λ, {n = 1}Λ) to the language model which predicts a probability distribution over
the character-set, denoting the probability of a certain character being a successor,
this should predict the character ‘d’ with high probability. This model can be
implemented using many-to-many RNN or many-to-one RNN. In my implementation,
I used the many-to-one implementation as depicted in figure 3. The output will be
denoted by pf (c|s1, · · · , sH) which is interpreted as the probability that the character
c will follow the context string s1, · · · , sH . Furthermore, the same model can be
implemented to predict the preceding character instead of the successor character, so it
will be looking backwards before the given context. Both models will be distinguished
as the backward character model and forward character model, which points to
which direction the prediction is made. The backward model will be denoted by
pb(c|s1, · · · , sH), which is interpreted as the probability that the character c comes
before the string (s1, · · · , sH). Both formulas will be used in the approach chapter 7.

26

IO specification

The character model takes as input a 3-dimensional tensor X ∈ {0, 1}m×H×|Λ| where
the value Xi,t,c is 1 if the t-th element of i-th example is the c-th character in the
character-set Λ, or 0 otherwise. It is a representation of m examples of context
strings of length H, represented as one-hot vectors over the character-set. The
output is a corresponding 2-dimensional tensor y ∈ [0, 1]m×H , where yi,c is the
probability that the successor character of the i-th example is the c-th character,
namely pf (c|si,1, · · · , si,H) = yi,c for all i, c.
Additionally, if the context string is longer than H, than the last H characters

are taken, in case of the forward model, and the first H characters are taken in case
of the backward model. However, in case the context string is shorter than H, it is
padded from the beginning with $̇ characters, in case of the forward model, and it
is padded from the end with $̇ characters. This ensures that the input string will
always have the length H. Using of the padding characters was shown in the example
in the character-based language model definition.

Fake text generation

One of the applications of the character-based language model is the fake text
generation. It operates simply by maintaining a context string, of fixed history
length, and based on it, we predict the next character using the model. The newly
predicted character is appended to the result string and to the maintained context.
This keeps going on until the result string reaches a maximum length or some
distinguished character like an ‘end of text’ character. The sampled text yielded some
surprisingly good results [5], for example when the model is trained on Wikipedia
articles, the language model generates articles that look like Wikipedia articles with
similar vocabulary. 1 One of the models that I trained on the Simple-Wikipedia
dataset, using character class sampling as described in subsection 3.4.2, with diversity
temperature τ = 0.5, generated the text:

Island is a city of India. It is also colleged by the season of the Mangandand
went to the part of the more many of the part of the based of the band
of the and a player and head for the area of the police, and in order and
made in see that an area in a lot of the plants and a bened in children
services and the character that has been a second and his movie, and a

1There are more examples mentioned in the blog post http://karpathy.github.io/2015/05/21/
rnn-effectiveness/

27

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

second former encourage and the main faction of the company state of the
television of the series. It is also have been another characters. The movie
probably for the some of the same of the music in the movie shopper and
has a little of a commune. It is found in the second of the changes and
parts of the second of the lands and can be offered in the United States.
In 1964, the many was called a population of the change of the comeon
particles and particent. He was also the first most individual and and
interest and singing the family in the common Constantery in 1997.

And using temperature τ = 0.1, generates the more conservative (repetitive) text:

Island is a commune. It is found in the United States. It is a population
of the province of the second of the programs and the second of the second
of the state of the second of the second company in the United States.
It is a commune. It is found in the United States. It is a province of
the second of the south of the Constitution of the United States. It is
a province of the part of the second of the province of the state of the
second of the south of the United States. It is a province of the second of
the state of the state of the south of France. The company of the second
of the second of the state of the country in the United States. It is a
province of the second of the second of the second company in the country
of the second are a state of the second of the second of the second of the
second of the state of the second of the second production of the state of
the second of the state of the second of the second of the · · ·

Using temperature τ = 3.0 generates a total random string:
“ PeoplePSefosaCjiofhCntwas"mhefeonkshefro4cPunordend ”

28

x<1> x<2> · · · x<t>

c[1]<0> LSTM[1] LSTM[1] · · · LSTM[1] c[1]<t>

c[2]<0> LSTM[2] LSTM[2] · · · LSTM[2] c[2]<t>

h[2]<t>

dropout

softmax

y<t>

h[1]<1> h[1]<2> h[1]<t>

Figure 3: Many-to-one two-layered unrolled LSTM recurrent neural network, x<t>

is the t-th element in the input sequence, c[l]<t> is the t-th activation
value at the l-th layer. The output of the network h[l]<t> is followed by a
dropout layer then by a softmax layer, in order to classify the successor
element in the sequence.

29

4 Datasets

The given problem needs a dataset that consists of texts and corrupt texts, and
since it preferable to have a big amount of data for training[28], datasets from large
corpus were used. In the training and evaluations, two main datasets were used, a
collection of texts from Simple-Wikipedia, and the other dataset consists of news
from Reuters-21578. A summary of some statistics about the datasets is shown in
table 2.

The datasets are available as compressed files, which are uncompressed into a bunch
of raw files, each of them containing a set of articles in some format. The format
for each dataset will be mentioned in the corresponding sections 4.1 and 4.2. After
that, the articles’ texts are extracted from the raw files into text files. Additionally,
corrupted versions of the texts are constructed, as well as, files are computed, which
are storing the edit operations between the correct and corrupt texts.

During training or evaluation, the articles were loaded in a sorted lexicographically
order by file name, then shuffled in order to easily use a random sample that is
representative of the whole dataset, additionally, to ensure the replication of data
throughout the experiments, the files were always shuffled with a fixed seed (which
was 41). Furthermore, since the datasets only consist of correct text, a corruption
mechanism had to be made for synthesizing the correct texts, and generating corre-
sponding corrupt text files, the corruption algorithm is explained in details in section
4.3 and the construction of edit operations is done as explained by subsection 3.2.1
using algorithms 4 and 3.

4.1 Simple-Wikipedia dataset

Simple-Wikipedia is a corpus that contains articles like the English Wikipedia with
similar format, however, the articles are simpler in terms of length and complexity
of English language, yet still the articles contained a variety of topics from diverse
domains, which makes it a dataset with wide scope of topics, making the dataset
convenient to represent a large corpus with a diversity of domains. For example,

31

Feature Reuters-21578 dataset Simple-Wikipedia dataset
of articles 19,043 131,566
Avg. # of characters 800 800
Vocabulary size 49,847 348,924
Vocabulary size (freq ≥ 3) 24,986 130,191
Domain Economics Various
Raw format SGM XML

Table 2: Summary of the datasets

the dataset contains articles about ‘Donald Trump’(politics), ‘Evolution’(biology),
‘Ahmadiyya’(religious sect), ‘Catholicism’(religious sect), ‘China’(country), ‘Plato’
(ancient philosopher), ‘One Formula’ (entertainment) , ‘Rings’ (abstract-algebra),
‘The Matrix’ (movie), ‘Angela Merkel’(politics), ‘DNA’ (biology), ‘Benzene’ (organic
chemistry) ‘Bonsai’ (tree), ‘Freiburg im Breisgau’ (city) and ‘Egyptian Pyramids’
(tourism). The dataset contains nearly 130,000 articles, where the article on average
consists of 800 characters. Furthermore, the vocabulary of the dataset consists of
348,924 distinct words (from which 130,191 had frequency > 2) which is another
indicator of the diversity of the dataset, in comparison with the Reuters-21578 dataset.
The version of the dataset that I used throughout my experiments is the simple

Wikipedia dump 20180201 1, which is published on the 1st of February 2018. The
raw format of the dataset is stored in a compressed XML in bz2 compressed format.
I extracted it into JSON format using Attardi’s script: WikiExtractor. Attardi’s
script is a pure Python script that extracts and cleans Wikipedia articles from XML
compressed files. 2 The articles are extracted into a list of files, each contains a list of
lines, where each line is a JSON description of an article, including the title, article
id and text. I parsed the JSON descriptions into text files, and processed the text by
removing empty lines from the text.

1The dataset is available in the link https://dumps.wikimedia.org/simplewiki/20180201/
simplewiki-20180201-pages-meta-current.xml.bz2

2Attardi’s WikiExtractor script is available on the link https://github.com/attardi/
wikiextractor

32

https://dumps.wikimedia.org/simplewiki/20180201/simplewiki-20180201-pages-meta-current.xml.bz2
https://dumps.wikimedia.org/simplewiki/20180201/simplewiki-20180201-pages-meta-current.xml.bz2
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor

4.2 Reuters-21578 news dataset

The Reuters-21578 ("Reuters-21578, Distribution 1.0") dataset was collected from
news articles from Reuters news-wire 3; the dataset has mostly short news over a
period of 10 months in 1987. Some of the articles in this dataset were annotated
with some topics. The top topics included: earn, acq(acquisition), money-fx, crude,
grain, trade, interest, wheat, ship, corn, dlr (dollar), oilseed, money-supply and sugar;
which points out that the articles in this dataset has a narrower scope diversity,
that is more specific to economics. The dataset contained 19,043 articles, with an
average that consists of 800 characters per article. Additionally, the vocabulary of
the Reuters-21578 dataset contained 49,487 distinct words (from which 24,986 had
frequency > 2), which confirms the specificity of the domain of the dataset.

The raw format of the dataset is a list of SGM files (XML is a derivative of SGM);
it is formatted as a tree of tags containing a variety of information. Each article is
contained in a REUTERS tag, which contains some metadata and a TEXT tag which
contains the main information about the text, like a TITLE tag for article’s title and
a BODY tag which contains the actual text of the article. I extracted the texts in
the BODY tags into text files, and processed the texts by removing tabs (4 spaces)
at the beginning of each paragraph.

4.3 Corruptions

The construction of a large corpus with good and corrupt texts is necessary for a
rich dataset that can be used for deep learning, since deep learning often gets better
with a large amount of training data [28]. Therefore, in order to have the freedom
of the corruptions’ distribution, I constructed a corruption generation algorithm
that synthesizes the correct text files, and generates corresponding corrupt files.
The corruptions are constructed to mimic the tokenization errors mentioned in the
introduction chapter 1. The algorithm tokenizes the good text into a list of tokens,
and randomly (with probability p, I chose p = 0.5) corrupts a token by applying a
corruption operation on this word. The corruption operation either merges a token
with the token after it, splits a token into 2 by adding a space, splits a token into
two lines using ‘-[newline]’ or finally introduces an edit operation on the token. The
4 corruptions are distributed with the ratios 4 : 4 : 1 : 2 respectively. This corruption
procedure is shown in algorithm 7.

3The dataset is available on https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+
categorization+collection

33

https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection

The algorithm can be demonstrated on the example text:

‘This2 text is a1 really1 good text1

to demonstrate3 the4 corruption example1 and
how it4 works, because1 it is long2 enough2 to4 show how1 all the various

corruptions3 apply. Additionally2 I am putting2 here1 some2 more
extra2 text just to2 make4 it1 long enough.’

The underlined words are the tokens chosen with expected 50% chance to be
corrupted, there are 44 words in this paragraph, and 22 of them are underlined.
According to the ratio 4 : 4 : 1 : 2 mentioned, we expect to find 8 tokens with token
merge with the previous token (marked with 1), 8 tokens with word splits (marked
with 2), 2 tokens with split using line-hyphenation (marked with 3) and 4 tokens
with typos(marked with 4). As a result, it is corrupted to the following text:

‘Th is text is areallygood textto
demons-

trate ther corruption exampleand
how if works, becauseit is lon g eno ugh go show howall the various

corrupt-
ions apply. Additional ly I am puttin g he resome more

ext ra text just t o fake itlong enough.’

34

Algorithm 7 Corruptor
function Corrupt(S, p = 0.5)

T := Tokenize(S)
R := [] . result corrupt tokens
u := nil . Last processed token
foreach t in T do

if u is not nil then
t := Token(u.word + t.word, t.split)
u := nil

end if
mode := Random-Sample(merge-next : 4, split : 4, line-split : 1, edit : 2)
if mode = merge-next then

u := t
end if
if random() ≤ p and |w| ≥ 2 then

w = t.word
sp = t.split
i = random-int(1, |w| − 1)
if mode = split then

R.append(Token(w→i, ‘ ’))
R.append(Token(wi→, sp))

end if
if mode = split-line then

R.append(Token(w→i, ‘-[newline]’))
R.append(Token(wi→, sp))

end if
if mode = edit-operation then

q := sample-edit(w,Σ)
R.append(Token(q, sp))

end if
else

R.append(t)
end if

end for
return R

end function
function Sample-Edit(w,Σ)

op := Random-Sample(ADD,DEL,CHG)
c := Random-Sample(Σ)
if op = ADD then

i := random-int(1, |w|+ 1)
return w→i ◦ c ◦ wi→

end if
if op = DEL then

i := random-int(1, |w|)
return w→i ◦ wi+1→

end if
if op = CHG then

i := random-int(1, |w|)
return w→i ◦ c ◦ wi+1→

end if
end function

35

5 Problem definition

The given problem is formally defined as: Given a dataset that consists of pairs
(G,C) where G is a correct string, C is a string which is a corrupt version of G, with
tokenization corruptions (C can be constructed by algorithm 7), then we need to
construct a procedure ‘fix’ that fixes C into a string F := fix(C), where F is as
close as possible to G. The performance of the procedure ‘fix’ is evaluated as a binary
classification task where the procedure should classify edit operations as positive if
and only if the operation corrupted G → C, and hence fix it. The closeness of F
to G is measured by the F1-score of this binary classification task. The definition
of being "close" is detailed in section 5.1. At the end of the chapter, there is a full
rigorous definition of the given problem.

5.1 Fixing evaluation definition

In order to quantify how ‘good’ a fixing is, we need to define a measure of how "close"
is the fixed text to the actual correct text. This alone is not sufficient to quantify
the performance of a fixing, because we also need to take into consideration how
corrupted the corrupt text was, and also we need to consider if the fixer actually
introduced bad fixings that corrupted the good parts. In order to measure how much
improvement the fixing made, a triple comparison between the 3 texts G,F,C will
be introduced, to quantify the quality of the fixing.
If we define C := EditOperations(G,C) and F := EditOperations(G,F), where

EditOperations is not detailed (by setting detailed flag in algorithm 4 to false), then
C gets the operations that transform the correct text to the corrupt text, which are
exactly the corruption operations. Similarly, F gets the operations that transform
the correct text to the fixed text, which are the parts that were not fixed properly by
the procedure ‘fix’. Therefore, F is the set fixing/copy operations predicted by the
procedure.
The set C \ F is the set of corruption operations that are not in the non-fixed

operations, so it is the set of corruptions G → C that are actually fixed. The set

37

C ∩F is the set of corruption operations that are not fixed; the set F \ C is the set of
non-fixed operations that were not corruption operations, in other words, it is the
set of wrongly introduced fixings by the procedure ‘fix’. Finally, the set C ∪ F is
the set of copy operations that are shared between the corruption text C and fixed
text F which points to the characters that were unaffected neither by corruption
nor by fixing. A further note, the set F ∩ C has to be computed by longest common
subsequence LCS(F , C) algorithm [13], because the intersection has to take the order
of operations in consideration, especially because the addition operations can be
ambiguous. For example, Adding ’a’ then ’b’ at position 15, is not the same as ’b’ and
’a’ at position 15. The edit operations in algorithm 4 will be returned in the proper
order suitable for LCS. Additionally, we can’t use the detailed edit operations because
they include alignments between G and each of C and F , and these alignments are
unrelated and thus hard to to use it to evaluate.
According to the binary classification task defined earlier, C is the set of actual

positives. The sets of predicted positives and negatives are a bit tricky to identify.
The operations predicted as positive are the operations where fixings were made either
correctly fixed as in C \ F or wrongly fixed as in F \ C. The operations predicted
as negatives are the non-fixed operations, either by replicating the corruptions as
in F ∩ C or by copying operations as in F ∪ C. Based on this, we can deduce that
the true-positives are given by |C ∩ F| = |C \ F|, the false positives are given by
|F ∩ C| = |F \ C|, and the false negatives are given by |F ∩ C|. Then we can use
the classification measures recall and precision, in addition to the F1-score which is
defined as the harmonic mean between the recall and precision [29].

P =
TP

TP + FP
,R =

TP

TP + FN
,F1 =

2PR

P +R
(11)

These formulas are expanded to:

P =
|C \ F|

|C \ F|+ |F \ C|
=

1

1 + |F\C|
|C\F|

R =
|C \ F|

|C \ F|+ |F ∩ C|
=

1

1 + |F∩C|
|C\F|

F1 =
2|C \ F|

2|C \ F|+ |F|
=

1

1 + |F\C|+|F∩C|
2|C\F|

=
1

1 + |F|
2|C\F|

All the 3 values get higher if there are more corruptions are fixed. However, the

38

D12 A2,a

D2

D10

CF

D6

Figure 4: Simple Venn diagram of the two sets F and C. Deletion and addition
operations have the symbols D and A, respectively. G = ‘Hello world’,
F = ‘Helloworld!’ and C = ‘Halloword’

precision P gets lower if the text is fixed destructively, which is corrupting correct
parts of the given corrupt text; the recall R gets lower if the there are less fixed
corruptions, so the recall points out to how much progress the fixer made on the
corrupted parts. Eventually, the F1-score is the harmonic mean of P and R, so it will
get higher if more corruptions are fixed and will get lower if destructive fixings are
introduced, therefore it measures the overall progress of the fixer. Additionally from
the last equation, we can deduce that F1-score will get less if the edit distance |F|
between F,G gets higher (hence less-similar), and it will get more if more corruptions
are fixed, therefore it measures in a sense how much correct text is retrieved from
the corrupt text, relative to how much corruptions there are in the corrupt text,
which solves the issues addressed at the beginning of the section. These 3 metrics lie
between [0, 1], where 1 denotes the perfect fixing.

A further note on the last equations, in case |C \ F| = 0, then only the first forms
of the equations are valid because they don’t have a division by 0. Additionally, their
numerators and denominators can be smoothed by adding a smoothing ε ≈ 10−10 in
order to avoid division by 0 in case the corrupt text is identical to the correct text,
which results in |C| = |C \ F| = |C ∩ F| = 0.

39

The effects of these formulas can be demonstrated with an example; considering
G = ‘Hello world’, C = ‘Halloword’ and F = fix(C) = ‘Helloworld!’. The sets of
edit/fixing operations, depicted in figure 4, are given by:

F = {(DEL, 6, ‘ ’), (ADD, 12, ‘ !’)}

C = {(DEL, 2, ‘e’), (ADD, 2, ‘a’), (DEL, 6, ‘ ’), (DEL, 10, ‘l’)}

C \ F = {(DEL, 2, ‘e’), (ADD, 2, ‘a’), (DEL, 10, ‘l’)}

F \ C = {(ADD, 12, ‘ !’)}

C ∩ F = {(DEL, 6, ‘ ’)}

Which gives the values P = R = F1 = 3
4 . Instead, if F = ‘Hello world!’ with

fixings of all corruptions, then F = {(ADD, 12, ‘ !’)}, and |F| = 1, |C ∩ F| = 0,
and P = 4

5 , R = 1, F1 = 8
9 . Additionally, if instead, F = ‘Helloworld’ with no

destructive fixings introduced, then F = {(DEL, 6, ‘ ’)}, |F| = 1, |C ∩ F| = 1 and
P = 1, R = 3

4 , F1 = 6
7 .

In conclusion, using the F1-score, as defined, quantifies all the issues addressed
at the beginning of the section, and therefore we have a clear definition of fixing
performance of a procedure ‘fix’. Consequently, we can give a full rigorous definition
of the problem.

Formal problem definition

Given a set of texts G1, · · · , Gm of good texts, that are corrupted into
C1, · · · , Cm respectively, using the corruption procedure in algorithm
7, that is Ci = CORRUPT(Gi, p = 0.5), then we should construct a
procedure ‘fix’ that maps Gi 7→fix Fi in a manner that maximizes the
triple comparison performance measure, namely the mean F1-score given
by the equation:

F1 =
1

m

m∑
i=1

2|Ci \ Fi|+ ε

2|Ci \ Fi|+ |Fi|+ ε
(12)

where ε = 10−10 is for smoothing, Ci = EditOperations(Gi, Ci, detailed =

false) and Fi = EditOperations(Gi, Fi, detailed = false) asEditOperations
is computed by algorithm 4.

40

6 Dictionary-based approaches

In this chapter, two dictionary-based approaches will be presented, that are not based
on machine learning. Both approaches are dictionary based, so they attempt to
match words with a given dictionary, where the dictionary is implemented using a
Trie data structure as explained in section 3.3. The first approach is a greedy-based
approach, which tries to match words from beginning to end greedily according to
the dictionary, this greedy approach will be the baseline approach. The second is
a dynamic-programming (DP) based approach, which solves some of the issues in
the greedy approach. The DP approach tries to re-split the tokens of a given text in
attempt to globally match (according to the dictionary) as many correct words as
possible.

6.1 Greedy based approach

The greedy approach is a simplistic approach that attempts to solve the given problem.
Given a text T , it consumes a prefix of T to find all similar matching words, and
from the candidate matching words, it chooses one word greedily based on its length
and the minimal number of edit operations needed to match a dictionary word. It
keeps doing this until it consumes all the given text T and retrieves all the correct
words from the corrupt text. In order to match the first word, we traverse the Trie
dictionary using the non-delimiter characters from T with a restricted number of
allowed edit operations to use, in case words are partially matching. The traversal
is similar to the search query of the Trie, except that it returns all candidate words
and not only the first matched, this traversal is shown in algorithm 8, all the marked
nodes that were reached by the traversal are marked as candidate nodes (with their
corresponding candidate words), the matched word is chosen from the candidate
nodes to minimize the value min(2, |w|)− e, where w is the matched word, and e is
the number of edits used. In case there are tokens that consist of digits or special
characters only, they will be also matched as correct words. This description is shown
in the algorithm 9.

41

Algorithm 8 Greedy Trie traversal
function Get-Nexts(T, i, u, e, R, d) . Text T , index i, Trie node u

. edits allowed e, results R, last delimiter d
if Ti ∈ Γ then . Don’t use delimiters in R

yield-all Get-Nexts(T, i+ 1, u, e, R, Ti) . Change last delimiter d
end if
if Ti ∈ Σdigits ∪ Σspecial then . Don’t traverse Trie with non-English alphabet

yield-all Get-Nexts(T, i+ 1, u, e, R ◦ Ti, d)
end if
if i ≤ |T | then

if u is v as next node with character Ti then
v := u.next[Ti]
yield (v, i+ 1, e, R ◦ Ti, d) . Consume the text

end if
end if
if e > 0 then . Try editting the word

if i ≤ |T | then
yield (u, i+ 1, e− 1, R, d) . Delete Ti

end if
foreach char c, next node v in Trie D do

yield (v, i, e− 1, R ◦ c, d) . Add c before Ti
if i ≤ |T | and c 6= Ti then

yield (v, i+ 1, e− 1, R ◦ c, d) . Change Ti → c
end if

end for
end if

end function

42

Algorithm 9 Greedy approach
function Get-Word(T, i = 1, u = ROOT, e = 1, R = ‘’, d = ‘ ’)

. Text T , index i, Trie node u
. edits allowed e, results R, last delimiter d

F := []
Q := [(u, i, e, R, d)]
while Q is not Empty do

foreach q ∈ Q do
if q|u is marked or q|R ∈ (Σdigits ∪ Σspecial)

+ then
F.Append(q) . final state

end if
end for
N := []
foreach q ∈ Q do

S := Get-Nexts(T, q)
N.Extend(S)

end for
Q := N

end while
compare := λ · q : min{2, |q|R|} − q|e . Lambda expression with input q
q := FindMax(F, compare)
if q is not nil then

return (q|i, q|R ◦ q|d) . Word extracted
end if
return (i+ 1, ‘’)

end function
function Fix(T)

R := ‘’
i := 1
while i ≤ |T | do

i, w := Get-Word(T, i)
R := R ◦ w . word with appended delimiter

end while
return R

end function

43

6.2 Dynamic programming based approach

The dynamic programming (DP) approach has mainly three layers of abstraction,
built on top of each others. The first layer of the algorithm is the scoring of a token,
which decides how a token’s word will be scored if it matches (fully or partially) with
the dictionary. The other two layers are shown in the example below. The second
layer of the approach is a divide and conquer approach; when given a sequence of
tokens, it tries to re-split the characters in the tokens’ words in order to maximize
their overall score of matching the dictionary. The third layer is also a divide and
conquer approach, that decides which consecutive tokens should be grouped together,
such that the grouped tokens are retokenized (using the second layer) in order to best
match the given dictionary, then the newly constructed tokens are re-merged to form
the fixed text.
For example, given a text like:

’Hello, thisis the mostbasic ex amp le f or the algorithm."

would idealy be grouped as:

’(Hello)(,) (thisis) (the) (most)(basic) (ex amp le) (f or) (the) (algorithm)(.)"

and then the characters are retokenized as:

’(Hello)(,) (this is) (the) (most) (basic) (example) (for) (the) (algorithm)(.)"

and finally we get the fixed text:

’Hello, this is the most basic example for the algorithm."

6.2.1 Token scoring

Given a word w and a Trie dictionary D with damping factor ϕ for mismatches. We
will define a score function that tells how good this word matches the dictionary.
This scoring will be used in the 2nd layer of the algorithm, by summing up the score
of the individual tokens. Therefore, the scoring that will be constructed here, has to
take few issues into consideration:

1. The score should reward if more tokens are matched over the scenario that
fewer tokens are matched.

2. The score should reward matches of long words over short words.

44

3. The score should punish a match depending on the edit distance to the closest
matched word.

4. The score should take special consideration of abbreviations and special charac-
ters tokens.

The first consideration is essential in maximizing the number of matched tokens
in order to fix as much as possible from the text, another role for this is to balance
the effect of the second consideration. The second consideration is needed to avoid
the scenario that the algorithm prefers to use up correct parts of the word as more
correct tokens and leave some unusable bad parts. For example, we should avoid
giving the combined score of the 3 tokens: ‘a’, ‘fore’, ‘mentioned’ higher score than
‘aforementioned’. The third consideration is to assist fixing words with few typos, to
the nearest word, with partial score, however it will prefer not to change the correct
words. This might not fix words that have typos, if they happened to be in the
dictionary. The fourth consideration is mainly to handle the special cases that were
not properly addressed by the other considerations, this gives a fixed score for some
specific words, mainly abbreviations.

After taking all of this into consideration, I proposed a quardratic scoring function:

score(w) =

ζ if 3 ≤ |w| ≤ 4 and w == w.upper()

0 if e(w,D) > 1

ϕe(w,D)(α|ŵ|2 + β|ŵ|+ γ) otherwise

where e(w,D) is the smallest edit distance to a matching word ŵ in the Trie dictionary
D and ϕ is the dictionary’s damping factor. α, β, γ, ζ are used to tune the scoring.
The use of quadratic terms is mainly to handle the second consideration, because of
the property that |w1|2 + |w2|2 < (|w1|+ |w2|)2. The constant term γ handles the
first consideration. The term ϕe(w,D) handles the third consideration, and the fourth
consideration is handle by the constant ζ. Furthermore, since the functions in the
rest of the algorithm will just use linear combinations of this scoring function, and we
are seeking the maximum answer (without particularly caring if the score is scaled),
therefore we can divide all equation by γ (assuming that γ 6= 0) in order to have less

45

parameters to tune, so we end up having the scoring function:

score(w) =

ζ if 3 ≤ |w| ≤ 4 and w == w.upper()

0 if e(w,D) > 1

ϕe(w,D)(α|ŵ|2 + β|ŵ|+ 1) otherwise

(13)

After some experimenting (on a relatively small sample) with a variety of combina-
tions of values, α = 1.15, β = 0.1, γ = 1, ϕ = 0.5, ζ = 2 were found to yield the best
results throughout my experiments, measured by F1-score. A demonstration of some
queries and their scores are presented in table 3.

Query word q matched word w length |w| e(w,D) Score(q) Score(q)
|w|

Hello Hello 5 0 30.25 6.05
world world 5 0 30.25 6.05
warld world 5 1 15.125 3.025
war war 3 0 11.65 3.88
to to 2 0 5.8 2.9
td to 2 1 2.9 1.45
today today 5 0 30.25 6.05
tday today 5 1 15.125 6.05
the the 3 0 11.65 3.88
query - 0 > 1 0 0
ad - 0 > 1 0 0

Table 3: Table of tokens’ scores, q is a given query word, w is the nearest match
for it from the dictionary D, e(w,D) is the corresponding edit distance
(between w and q), Score(q) is value of the scoring function on the word q.
The dictionary contains the words ‘Hello’, ‘world’, ‘war’, ‘to’, ‘today’ and
‘the’.

6.2.2 Retokenization

The second layer of the DP approach is the retokenization, which is given a token
(w, sp) then we need to re-form it into new sequence of tokens Q1, Q2, · · · , Qs such that∑s

i=1 Score(Qi) is maximal. This problem can be solved as a dynamic programming
problem. The state of the dynamic programming is a single integer i where 1 ≤
i ≤ |w|+ 1, which encapsulates the suffix wi→. The subproblems of wi→ are shorter
suffixes wj→ where i < j ≤ |w|+ 1. We can solve the problem wi→ by trying to take

46

the word wi→j and solving the subproblem wj→ of the remaining characters. This is
achieved by the recursive relation:

Bw[i] = max
i<j≤|w|+1

{Bw[j] · θi,j + (1− θi,j) · Score(wi→j)} (14)

The function Bw[i] is interpreted as the optimal retokenization score of some suffix
wi→. It is also shown in algorithm 10 how this recursion is computed in a bottom-
up approach (from smallest suffixes to bigger suffixes). The factor θi,j = |w|−j+1

|w|−i+1

is a normalizing factor, that normalizes the score of a suffix Bw[i] by the suffix’s
length, which results in stronger consideration of the word wi→j , because without this
factor the value of Score(wi→j) will be much less than Bw[j] when the length of the
suffix wj→ is much longer than the word wi→j , leading to inaccurate computations
sometimes.

H e l l o w a r l d
i 1 2 3 4 5 6 7 8 9 10
B 22.69 12.80 10.18 11.63 12.79 15.13 1.45 0.0 0.0 0.0

nxt 6 6 4 6 6 11 9 9 10 11

Table 4: Table of values of retokenization of ‘Hellowarld’. The grey cells mark the
beginning of words as chosen by the traceback array nxt.

An example of retokenization of the string ‘Hellowarld’ is shown in table 4, the
given string is retokenized into ‘Hello world’. The table shows the values of B and
the traceback indices nxt, which are the ending indices of the first token for each
suffix. We start by picking the first token for the whole string (suffix B[1]), then pick
the next token starting from index 6 = nxt[1], then stop because nxt[6] = 11. The
beginnings of tokens are marked with grey color in the table, which also form the
traceback path.

6.2.3 Grouping

The third layer of the algorithm is grouping the tokens T1, T2, · · · , Tn, which is
partitioning the sequence of tokens into a sequence of groups of tokens, while keeping
the same elements with the same order. The subsequences should include all the
original tokens. The grouping can be used in the DP approach, by choosing a
grouping in order to maximize the score of the retokenization of each group, and
return the retokenized tokens Q1, Q2, · · · , Qm, where the retokenization is computed

47

Algorithm 10 Retokenization
function Retokenize(t)

w = t.word
sp = t.split
B := Array(|w|+ 1,−∞)
nx := Array(|w|+ 1, |w|+ 1) . Size |w|+ 1, default value |w|+ 1
B[|w|+ 1] := 0
for i := |w| to 1 do

for j := i+ 1 to |w|+ 1 do
θ := |w|−j+1

|w|−i+1

t := B[j] · θ + (1− θ) · Score(w[i,j))
if t > B[i] then

B[i] := t
nx[i] := j

end if
end for

end for
res := []
i = 1
while i ≤ |w| do

j := nx[i]
if j ≤ |w| then

res.append(Token(w[i,j), ‘ ’))
else

res.append(Token(w[i,j), sp))
end if
i := j

end while
return B[1], res

end function

48

as in subsection 6.2.2.
The grouping problem can also be solved by dynamic programming. Using a

function F , which operates on a state consisting of a single integer i where 1 ≤ i ≤ n+1

encapsulating the suffix of tokens Ti, Ti+1, · · · , Tn. The function F will be interpreted
as the optimal score of grouping a suffix of tokens.
The heuristic used in the grouping, is that if there’s a tokenization mistake that

needs to be fixed, then the needed information for the fixing will be found in one of
the neighboring tokens, or it won’t be found at all. Therefore we will consider groups
of small window size ω (which was set to 8 throughout the experiments).
The function F operates by choosing the size of the first group d, for the tokens

Ti, Ti+1, · · · , Ti+d−1, then try to retokenize the chosen group and solve the remaining
suffix of tokens recursively using F . Additionally, there is a helper function G which
tries to solve a sequence of tokens, by joining the tokens or by retokenizing them.
This is given by the equation:

F [i] := max
1≤d≤ω,n+1−i

{F [i+ d] +G(i, d)} (15)

The helper function G takes as input two integers i, d, and it tries to solve the
subsequence of tokens Ti, Ti+1, · · · , Ti+d−1. It first tries to join them, and see if it’s
a valid word in the dictionary, and if it’s not in the dictionary then it attempts to
retokenize the joined words.

G(i, d) = max

Score(ti ◦ ti+1 ◦ · · · ◦ ti+d−1) if not 0

Retokenize(ti ◦ ti+1 ◦ · · · ◦ ti+d−1) otherwise
(16)

Using these equations together, we can construct the grouping step, and the whole
DP approach as shown in algorithm 11, where the function F is computed in a
bottom-up approach from smaller suffixes to longer ones. As a demonstration of
the grouping and the DP approach, I will show an example of fixing the string
‘He llowarl d td ay’, which consists of 5 tokens. Ideally, this would be grouped as
‘(He llowarl d) (td ay)’ and gets retokenized and fixed as ‘Hello world today’. Table
5 shows how the helper function G is computed, and the corresponding retokenization
or joined tokens, and also table 6 shows two sub-tables, the values of G and the
values of the recursive function F (which shows the optimal scores of groups starting
from a suffix of tokens). The cells marked in grey in the table of the function G

demonstrate the positions where the text was not retokenized (the tokens are joined,
and consequently, found in the dictionary). The cells marked in grey in the table of

49

the function F show the beginnings of the optimal groups. The value ω = 3 is used
in this example.

i d Tokens group Retokenization Joined tokens Score G(i, d)

1 1 He He - 0.0
1 2 He, llowarl Hello, war - 21.21
1 3 He, llowarl, d Hello, world - 22.69
2 1 llowarl l, to, war - 6.49
2 2 llowarl, d l, to, world - 10.19
2 3 llowarl, d, td l, to, world, to - 8.72
3 1 d d - 0.0
3 2 d, td d, to - 1.93
3 3 d, td, ay d, today - 7.92
4 1 td - to 2.90
4 2 td, ay - today 9.90
5 1 ay ay - 0.0

Table 5: Helper function G values using 1st and 2nd layers. The inputs are i and
d, which considers the tokens i to i + d − 1. The considered tokens are
shown in the third column (comma separated), the fourth column has the
retokenization of the considered tokens. The fifth column shows the joining
of the considered tokens. The joining and retokenization are mutually
exclusive, as shown and also as defined by the function G.

50

Algorithm 11 Dynamic Programming approach
function Fix(T)

t := tokenize(T)
F := Array(|t|+ 1,−∞)
tb := Array(|t|+ 1, nil)
F [|t|+ 1] := 0
for i := |t| to 1 do

for j := 1 to min{ω, |t|+ 1− i} do
Gij ,_ := Score(ti ◦ ti+1 ◦ · · · ◦ ti+j−1)
a := WHOLE
if Gij ≈ 0 then

Gij ,_ := Retokenize(ti ◦ ti+1 ◦ ti+j−1)
a := RETOK

end if
if F [i+ j] +Gij ≥ F [i] then

F [i] := F [i+ j] +Gij
tb[i] := (j, a)

end if
end for

end for
i := 0
res := []
while i ≤ |t| do

j, a := tb[i]
if a = RETOK then

_, ts := Retokenize(ti ◦ ti+1 ◦ ti+j−1)
res.extend(ts)

else
_, ts := Score(ti ◦ ti+1 ◦ · · · ◦ ti+j−1)
res.append(ts)

end if
i := i+ j

end while
return join-tokens(res)

end function

51

He llowarl d td ay
G 1 2 3 4 5

He 1 0.0 21.21 22.69 - -
2 - 6.49 10.19 8.72 -
3 - - 0.0 1.93 7.92

td 4 - - - 2.90 9.90
5 - - - - 0.0

He llowarl d td ay
i 1 2 3 4 5
F 32.6 20.1 9.9 9.9 0.0
nxts 4 4 4 6 6

Table 6: The right table shows the values of F and the grey cells mark the beginnings
of the chosen groups, as computed by the traceback array nxts. The left
table shows the values of G, and the grey cells are the ones chosen by F ,
which mark the endings of groups

52

7 Learning-based approaches

In this chapter, we will first explore the outline of a probabilistic fixer algorithm that
utilizes beam search in order to find the best possible fixing. Followingly, details
about specific common components will be explored, namely, going through the input
processing for different models and the approaches attempted to solve the problem.
There are mainly three approaches, the first one is using two separate character-based
language models, one looking backward and one looking forward, then a combination
of these two is tuned using an optimization model described in subsection 7.3.3, then
this tuned combination is used to predict fixing decisions that fixes a given text,
this combined model is described in section 7.3. The second approach is a baseline
learning approach, which uses the first approach with replacing the language models
by a simpler probabilistic model, based on n-Gram Markov models [30]. The third
approach is a combination of all the components of the first approach in only one
end-to-end recurrent neural network that is trained to fix texts.

7.1 Maximum likelihood sequence estimation

Given a model M that predicts the posterior probability of an element of a sequence
given the prefix sequence before the predicted element, that is pM (An|A1, · · · , An−1).
We can estimate the most likely sequence S∗ according to the model M , this sequence
S∗ is estimated by the formula:

S∗ = arg max
A
{
n∏
i=1

pM (Ai|A1, · · · , Ai−1)} (17)

However, an alternative of this formula is used in practice, because this one is
problematic as it often leads to too small numbers that are hard to compare, so
we can use the logarithm function which is monotonically increasing, in order to

53

Algorithm 12 Beam search
function Beam-Search(S0, δ,TERMINAL, B)

Q := Queue()
Q.Push((0, S0)) . (cost, state) pair
R :=∞, nil
while Q is not empty do

P := PriorityQueue()
while Q is not empty do

(d, S) := Q.pop()
if terminal(S) and d < R.cost then . cost it the first element in R

R := (d, S)
else

foreach (a, c) ∈ δ(S) do . (transition action, action cost)
U := update(S, a)
if u is not nil then

P.Push(d+ c, U) . or normalized cost: d(1− 1
|H|U |

) + c 1
|H|U |

end if
end for

end if
end while
while P is not empty AND |Q| < B do . B is beam size

t := P.pop() . comparison is done by cost
Q.push(t)

end while
end while
_, Sf := R
return Sf

end function

54

reformulate the formula as:

S∗ = arg maxA{
∑n

i=1 log pM (Ai|A1, · · · , Ai−1)})

≈ arg maxA{
∑n

i=1 log{pM (Ai|A1, · · · , Ai−1) + ε}}

= arg minA{
∑n

i=1− log{pM (Ai|A1, · · · , Ai−1) + ε}}

= arg minA{Fn(A)}

where Fi(A) = Fi−1(A)− log{pM (Ai|A1, · · · , Ai−1) + ε}, F0(A) = 0

Additionally, we can also normalize the probabilities by the sequence length:

S∗ = arg maxA{(
∏n
i=1 pM (Ai|A1, · · · , Ai−1))

1
n }

= arg maxA{ 1
n

∑n
i=1 log pM (Ai|A1, · · · , Ai−1)})

≈ arg maxA{ 1
n

∑n
i=1 log{pM (Ai|A1, · · · , Ai−1) + ε}}

= arg minA{ 1
n

∑n
i=1− log{pM (Ai|A1, · · · , Ai−1) + ε}}

= arg minA{Gn(A)}

where Gi(A) = Gi−1(A)(1− 1
i)−

1
i log{pM (Ai|A1, · · · , Ai−1) + ε}, G0(A) = 0

Where ε ≈ 10−30 is for smoothing. We can compute the optimal sequence S∗ using
a search algorithm, where the transition from the prefix A1, · · ·Ai−1 to the prefix
A1, · · · , Ai is done by adding Ai with the cost − log{pM (Ai|A1, · · · , Ai−1) + ε}. In
our scenario, we are trying to estimate an optimally fixed text by applying a sequence
of fixing decisions, as shown by the Apply function defined in subsection 3.2.1. We
will find an approximation of it using the beam search algorithm.

7.1.1 Beam search

Beam search is an approximation algorithm, that searches for a target state with
the shortest path. However, since some state spaces could have a gigantic number
of states and transitions, beam search uses a heuristic of limiting the exploration of
considered states in order to reach a compromise between finding an optimal target
state and not exploring the gigantic number of states. Beam search operates in a
way similar to breadth-first search [13], which is expanding the states level by level,
however the beam search limits the size of considered states in each level up to a
fixed size [31], which is referred to as the beam size B. The states selected in each
level are the states with the shortest paths from the starting state. Beam search is
described in algorithm 12. The essential difference between the different approaches

55

(that will be introduced later) is how the transition function δ (including its costs)
will be computed. A further note, if B = 1 then the beam search becomes a greedy
search, and when B →∞ then the algorithm tends be a level-by-level breadth-first
search. The beam search has shown promising results in a variety of applications like
sequence-to-sequence based applications [12] and in speech recognition [32].

7.1.2 State space

The proposed approaches will use the same state space in the beam search, therefore
it will be presented here. The function update is also common between approaches,
and it is explained in the next subsection 7.1.3. Given a text T to be fixed, and
assuming F is the resulting fixed text, we will construct states which are defined as
7-tuples (B, v,A, i, R, added, U ;T) where i is the index where the fixer is standing in
order to make a fixing operation at Ti, B is a context string of the part before Fj (j
is the index that aligns the Fj with Ti), A is a context string of the part after Ti, v
is the character Ti, R is the so far accumulated fixed string, added is the number of
added characters since the last fixing operation that is not a character addition, U is
a list denoting the history of used fixing operations so far and T is an augmentation
of the given text, T is not a part of the state, however it is a global constant for all
the states. The initial state S0 is defined as ($̇h, T1, T2�h+1, 1, ε, 0, []), where h is a
fixed context length that will be used in the RNN models.
The fixing search goes on the text from beginning to end (left to right), and tries

to fix the text on the way. The context B is already acquired from the fixed portion
of the string, so it is preferred to be taken from the fixed text and not the corrupt
text because it will make more accurate decisions later on. On the other hand, the
after context A is acquired from the corrupt text. In subsection 7.2.2, a technique
will be introduced, which is used to synthesize the training data in order to make the
models more robust, since some predictions are made using the context A from the
corrupt text and B from the (probably non-perfect) fixed text.
Additionally, the approaches operate by using/generating tuples where suffixes of

T and F are aligned in some certain manner, where Ti is aligned with Fj for some j.
The alignment concept might be unclear here, this concept will be explored in details
in subsection 7.2.3, and how such alignments could be generated beforehand in order
to get training data for fixing operations.
The variable added in the state is used to control bias that could happen by the

fixer when it is biased or confused. The confusion can happen when all the decisions
are so uncertain (uniformly distributed predictions), or when there is some bias in the

56

model, then this causes the fixer to start adding a bulk text that it thinks suitable in
the given context, so it ends up adding a long fake text rather than actually making
progress on fixing the given text, even if the actual fixing decision is not so certain at
the given step. This ends up destructing the given text. Therefore, the variable added
controls this behavior by putting an upper bound on the number of consequently
added characters, therefore it only adds reasonable characters otherwise it ends up
adding a small portion of fake text that makes the whole fixation unreasonable and
hence gets eliminated early on during the beam search. During my experiments, I
made an upper limit on added to be 3, which means that there should be no states
explored if they have added > 3.
The variables R and U are used to accumulate the resulting fixed text and the

history of taken actions, respectively. The fixed text F mentioned earlier is the
result R of the final state. U can be used to trace the tokenization mistakes and the
corresponding fixing actions taken.

Finally, I point out that the variables B,A, v are redundant because they all could
be computed by B = R−h→, A = Ti+1�i+h and v = Ti, so they could be eliminated
from the state, in order to simplify the state and save more memory in case the beam
search has a large beam size or there are gigantic texts being fixed (which makes R
and U already huge). However keeping them was helpful in debugging and visualizing
the state, and they didn’t consume so much memory during my experiments because
they are additional 2h+ 1 characters, also the texts were not particularly long and I
used a small beam size.

7.1.3 State updates

In the presented approaches that will be presented, they both will use beam search
with the same state space and also the same possible actions outcome. Namely,
the 4 basic edit operations ADD, CHG, DEL, and NOP. Each action applies an
edit operation, and accordingly adjusts the contexts, the current character, and the
accumulated resulting fixed string, then moves the fixing pointer i forward. The
updates of a given state (B, v,A, i, R, added, U ;T) depending on the used action a
(also demonstrated in figure 5) is computed by:

• (NOP, i, v) operation: Copy the character v as is, then move the fixing pointer
forward, and as a result, append v it to the before context and resulting string,
and update the after context, which results in the state:

(B ◦ v,A1, A2→ ◦ Ti+h+1, i+ 1, R ◦ v, 0, U ◦ a;T)

57

Fix op Before context Current After context Fixed text

original: B = R−h→ v = Ti A = Ti+1�i+h R

NOCHG: B v A1 A2→ Ti+h+1 R v

DEL: B A1 A2→ Ti+h+1 R

CHG s: B s A1 A2→ Ti+h+1 R s

ADD s: B s v A R s

Figure 5: The effects of all fixing operations NOP, CHG, DEL and ADD, on the
updates of states. Namely, how the after context, before context, current
character and resulting string are updated. The first row is the state
before any update, the remaining rows are the updated state after using
a fixing operation on the state.

• (DEL, i, v) operation: Delete the character v, and move the fixing pointer
forward, and as a result, update the after context, which results in the state:

(B,A1, A2→ ◦ Ti+h+1, i+ 1, R, 0, U ◦ a;T)

• (CHG, i, s) operation: Change v to s, then move the fixing pointer forward,
and as a result, append s to the before context and the resulting string, and
adjust the after context accordingly, which results in the state:

(B ◦ s,A1, A2→ ◦ Ti+h+1, i+ 1, R ◦ s, 0, U ◦ a;T)

• (ADD, i, s) operation: Adds a character s before the character v, and as a
result, append it to the before context and the resulting string, which results in
the state:

(B ◦ s, v, A, i, R ◦ s, added+ 1, U ◦ a;T)

These updates are depicted in algorithm 13. If i+h+ 1 > |T |, then we will assume
that Ti+h+1 = $̇, which is a padding from the end. A state is a terminal state if and
only if the fixer pointer has finished the string i > |T |.

58

Algorithm 13 Update(S) function in the beam search algorithm

function update(S = (B, v,A, i, R, added, U ;T), a)
typ,, s := a
if typ = NOP then

return (B ◦ v,A1, A2→ ◦ Ti+h+1, i+ 1, R ◦ v, 0, U ◦ a;T)
end if
if typ = DEL then

return (B,A1, A2→ ◦ Ti+h+1, i+ 1, R, 0, U ◦ a;T)
end if
if typ = CHG then

return (B ◦ s,A1, A2→ ◦ Ti+h+1, i+ 1, R ◦ s, 0, U ◦ a;T)
end if
if typ = ADD and added+ 1 ≤ 3 then

return (B ◦ s, v, A, i, R ◦ s, added+ 1, U ◦ a;T)
end if
return nil

end function

7.2 Input processing

The datasets that were extracted consist of text files. However, we need a different
format to be able to use it with the presented models. In addition to that, there is
synthesization of the input data that needs to be considered, that makes the training
data richer, and to generate more robust models, this is explained in subsection 7.2.2.
Furthermore, the tuner in subsection 7.3.3 and the end-to-end approach in section
7.5 need a different input format than the other models, so I have to elaborate how
this format is computed in subsection 7.2.3.

7.2.1 Input format for RNN models

The recurrent neural networks, as described in subsection 3.5.2, need as input a
3-dimensional tensor, that consists of the batch size (or number of examples), length
of the input sequence and the number of possible values for each element in the
sequence. The size of the first dimension can be left as unknown, which is decided
on demand depending on the size of training data, the second dimension’s size will
be referred to as the context length h, and the third dimension’s size is the size of
the character-set Λ. The output of the RNN is a 2 dimensional tensor, which has
as sizes the batch size and the character-set size respectively, the output for each
example is a probability distribution over the values, denoting the probabilities of

59

the values following the given sequence. In practice, the input tensor X is stored in
2-dimensional format, because the third dimension is a one-hot vector, so the input is
stored without applying one-hot on the 2nd dimension, and only do it for the training
batch (which has much smaller size) on demand, in order to save RAM memory.

7.2.2 Input perturbation

The character-based language model is trained with a corpus of only correct texts,
which could make the model sensitive if there are few mistakes in the given text. For
example if we are given the two contexts ‘he is going t o the stadiu’, ‘ he is going
to the stadiu’, they both should predict that the next character is ‘m’ with high
probability, the extra space in the word ‘to’ in the first example shouldn’t significantly
change the predicted probabilities because the context is still having the same content
more or less.

The robustness against such minor mistakes is essential for making a strong fixing
model because the fixing models will rely on the given corrupt text in order to fix
it, which means that in some intermediate fixings, the model will use a context that
contains some mistakes (from the corrupt text) in order to predict how to fix a certain
part.
In order to overcome this issue, I used an idea introduced in stacked denoising

autoencoders [33], which is including correct examples as well as some examples that
have some random variation of the correct examples in order to make the neural
network have more robust representation of the input examples, and therefore making
more consistent and more robust predictions, even when some noise is introduced
in the input context. These examples with random variations will be referred to as
perturbed examples, and the number of perturbations is defined as the number of
perturbed examples per each correct example in the training set.

A perturbation on a given context is generated by introducing a random corruption
operation on the context, then flipping a biased coin with probability p = 0.8 to
try making further perturbations or it halts. This behavior will make exactly t edit
operations with probability pt−1(1 − p), which generates an expected number of

1
1−p =

∑
t>0 tp

t−1(1−p)∑
t>0 p

t−1(1−p) edit operations in each perturbed example. Additionally, the
corruption operations types DEL, CHG, ADD are chosen uniformly, however when it
is CHG or ADD, the new character is not chosen uniformly, it is chosen depending
on an approximation of how frequent the characters are in the datasets, in addition
to extra manual changes, that increases the chances of the newline characters, and
the pattern ‘-[newline]’ particularly, in order to address the 3rd type of tokenizaiton

60

S→i = ‘th is’ Si = ‘i’ Si+1→ = ‘s an example’

T→j = ‘this’ Tj = ‘ ’ Tj+1→ = ‘is an example’

Figure 6: Alignment example, where op = (6, 5, (ADD, 6, ‘ ’)), i = 6, j = 5
S = ‘th isis an example’, T = ‘this is an example’. The alignment
quadruple, with contexts of length 3, is: (‘his’, ‘i’, ‘s n’, (ADD, 6, ‘ ’))

errors. Also it avoids introducing a perturbed context that contains two consequent
delimiters. The chances of adding (or changing to) a space is 21.8%, a newline is
3.4%, a lower case character is 69.6%, an upper case character is 1.8%, a digit is 0.9%

and a special character is 2.5%. Furthermore, the perturbations are generated in a
sequence only in the portion that contains characters without the padding character
$̇. As an example, given a correct example $̇$̇$̇Hello worl. → d, would be perturbed
into $̇$̇He llo warl. → d or $̇$̇$̇$̇Hell worm. → d, but not $̇$̇Hello-[newline] worl. → d

because it has two consequent delimiters, the space and newline.

7.2.3 Edit alignments

The two approaches that will be introduced will need an alignment of the correct
and corrupt texts, and where exactly should a fixing operation be introduced. Both
models will use states that have two contexts B and A and a character v, B is
the context before v and A is the context after v. The model will have to predict
the fixing operation a to do with the character v, in order to fix the text at the
current state. Additionally, A will be a part of the corrupt text and B will be a
part of the fixed text. In order to generate input data that matches this format,
we will use the edit distance described in subsection 3.2.1 in order to generate such
alignments. If we have a corrupt text S and correct text T , then the edits generated
by EditOperations(S, T) are on the form of triples (i, j, f), where f is the first edit
(fixing) operation that transforms the suffix Si→ from the corrupt text to the suffix
Tj→ from the correct text. This triple aligns the positions in both strings for the
fixing operation. Consequently, if the fixing pointer is pointing at i-th character
(which is aligned with j in the correct text), from this we can obtain the before
context from the correct text (because it is the ground truth of the fixed text) as
B = T→j , the current character being fixed as v = Si, the not-yet-fixed after context

61

A = Si+1→ after the character being currently fixed and f = a is the ground truth
fixing operation. Figure 6 demonstrates this alignment, where the grey parts are the
parts that will be taken for alignment. Eventually, we can use all triples generated by
the edit distance as the ground truth of fixing operations at all locations of corrupt
and correct texts alignments. This will be used later in subsection 7.3.3 and section
7.5 as training data to optimize models for making good fixing operations. The
output of edit alignments are quadruples on the form (B, v,A, f) which are given by
the values (T→i, Si, Si+1→, f).

7.3 Bicontext model

The first approach used to solve the problem is the bicontext approach, which uses two
separate character-based language models, implemented by recurrent neural networks,
one to predict the successor character in a backward direction, and the other is
predicting the successor character in a forward direction, then they are combined in
order to decide how to fix the text. The combinations will predict a fixing operation,
in order to fix the text. The model that predicts forward will be referred to by pf and
the model predicting backward will be referred to by pb, as stated in subsection 3.5.2.

7.3.1 Long looking and occurrence functions

Using the two models, I construct Po(X,Y) which is defined as the expectancy of
occurrence of the string Y after the string X. However, in order to compute it, we
need to define two helper functions f and b. f(X,Y, s) is defined as the expected
length of a prefix from Y that comes after the context X, in other words, how likely
the string X ◦ Y will occur in the language. The parameter s puts an upper bound
on the prefix length from Y , since the change added is exponentially decaying in
the length of the prefix, therefore limiting the prefix length to a small fixed length
provides a good approximation. b(X,Y, s) is defined in a similar manner, which is the
expected length of a suffix from X that comes before the context Y . The parameter
s limits the length of the suffix. The function f is therefore defined as:

f(X,Y, s) :=

min{|Y |+1,s}∑
i=1

pf (Y1, · · · , Yi|X) (18)

where i is the length of the matched prefix, and the term pf (Y1, · · · , Yi|X) is the
probability that this prefix of length i is matched. Each of the terms in the summation

62

adds 1 expected character to the matched prefix. Similarly the function b is defined
as:

b(X,Y, s) :=

min{|X|+1,s}∑
i=1

pb(X−1, · · · , X−i|Y) (19)

We will assume if a predicted context is empty, then we are predicting the probability
of having a padding character $̇, which will act like an ‘end of text’ character. This
will be encountered when |Y | < s for the function f and |X| < s for the function b.
The two functions can be also computed recursively as:

fr(X,Y, s) =

0 if s ≤ 0

pf ($̇, X) if |Y | = 0 and s > 0

pf (Y1|X) · (fr(X ◦ Y1, Y2→, s− 1) + 1) otherwise

(20)

br(X,Y, s) =

0 if s ≤ 0

pb($̇, Y) if |X| = 0 and s > 0

pb(X|X||Y) · (br(X→|X|, X|X| ◦ Y, s− 1) + 1) otherwise
(21)

Since both functions br and fr have a similar recursive pattern, the claim will be
proven on the function f , that fr = f . There are two cases, if |Y | = 0, s > 0, then
by definition f(X,Y, s) = pf ($̇, X) = fr(X,Y, s). Otherwise, the claim is proven by
induction on s:

Proof.

• Induction basis: s = 0⇒ the function f(X,Y, s) = 0 = fr(X,Y, s).

• Induction hypothesis: ∀k < s the recursive formula for fr equals to the
summation formula of f , that is f(X,Y, k) = fr(X,Y, k).

• Induction step: The induction step is divided into two cases s > |Y |+ 1 and
s ≤ |Y |+ 1. If s > |Y |+ 1, then s − 1 ≥ |Y |+ 1 > 0, s − 1 > |Y2→|+ 1 and

63

s− 2 ≥ |Y2→|+ 1.

f(X ◦ Y1, Y2→, s− 1) =
∑|Y2→|+1

i=1 pf (Y2, · · · , Yi|X ◦ Y1) definition

f(X ◦ Y1, Y2→, s− 2) =
∑|Y2→|+1

i=1 pf (Y2, · · · , Yi|X ◦ Y1) definition

= f(X ◦ Y1, Y2→, s− 1)

f(X,Y, s− 1) =
∑|Y |+1

i=1 pf (Y1, · · · , Yi|X) definition

f(X,Y, s) =
∑|Y |+1

i=1 pf (Y1, · · · , Yi|X) definition

= f(X,Y, s− 1)

= fr(X,Y, s− 1) ind hypothesis

= pf (Y1, X) · (1 + fr(X ◦ Y1, Y2→, s− 2)) definition

= pf (Y1, X) · (1 + f(X ◦ Y1, Y2→, s− 2)) ind hypothesis

= pf (Y1, X) · (1 + f(X ◦ Y1, Y2→, s− 1))

= pf (Y1, X) · (1 + fr(X ◦ Y1, Y2→, s− 1)) ind hypothesis

= fr(X,Y, s) definition

otherwise if s ≤ |Y |+ 1

f(X,Y, s) =
∑s

i=1 pf (Y1, · · · , Yi|X) definition

= pf (Y1|X) +
∑s

i=2 pf (Y1, · · · , Yi|X) excluding first term

= pf (Y1|X) +
∑s

i=2 pf (Y1|X) · pf (Y2, · · · , Yi|X ◦ Y1) Bayes rule

= pf (Y1|X) +
∑s−1

i=1 pf (Y1|X) · pf (Y2, · · · , Yi+1|X ◦ Y1) shifting sum

= pf (Y1|X) · (1 +
∑s−1

i=1 pf (Y2, · · · , Yi+1|X ◦ Y1)) factoringPf (Y1|X)

= pf (Y1|X) · (1 + f(X ◦ Y1, Y2→s+1, s− 1)) definition

= pf (Y1|X) · (1 + fr(X ◦ Y1, Y2→s+1, s− 1)) ind. hypothesis

= fr(X,Y, s)

64

Using these 2 functions, the formula for Po is then defined as:

Po(X,Y) :=
br(X,Y, s)

s
· fr(X,Y, s)

s
(22)

where s is a fixed constant, s = 3 was chosen through the experiments, because it
provides a good approximation as well as not computing too many terms which can
make the time performance worse.
The division by the term s for both functions br and fr is to normalize the

expressions to become probabilities between 0 and 1. However, as it will shown later
in subsection 7.3.3, we will tune the probabilities Po using linear functions on the
logarithmic scale, therefore dividing Po by the term s2 is equivalent to adding a bias
log s−2 on logarithmic scale, which will not matter because the tuning will also tune
the bias values, as a consequence, a simpler expression will be used instead:

Po(X,Y) := br(X,Y, s) · fr(X,Y, s) (23)

The main advantage of the recursive formulas is caching some predictions of the
RNN models; if we keep track of the states that call the transition function δ(S)

during the beam search in a sequence S1, S2, · · · , we will find that there is a lot of
shared contexts between neighboring states. This enables using a cache of limited
capacity (that drops the values, that are not recently used) for the predictions pb and
pf values made by the RNNs, similar to the memoization in dynamic programming
as explained in subsection 3.2.1, which allows a big speedup because the RNN model
is one of the most computationally intense and most used operations in the fixer. The
caching data structure is briefly explained in subsection 7.6.1. How these functions
are used will be shown in the demonstration in subsection 7.3.5.

7.3.2 Fixing operations

Given the occurrence function Po defined earlier, we can, therefore, construct prob-
abilities for making different decisions, in order to compute the transition function
δ(S) of a given state S = (B, v,A, i, R, added, U ;T):

• Copy / No-change fixing operation (NOP) is estimated by a combination of the
two expressions Po(B ◦ v,A) and Po(B, v ◦A).

• Delete fixing operation (DEL) is estimated by the value Po(B,A).

• Addition fixing operation (ADD, s) is estimated by a combination of the two

65

expressions Po(B ◦ s, v ◦ A) and Po(B, s ◦ v ◦ A), or 0 depending on certain
conditions described in subsection 7.3.4

• Change fixing operation (CHG, s) is estimated by a combination of the two
expressions Po(B ◦ s,A) and Po(B, s ◦A).

It is important to consider the edited character v (or s in case of addition), in both
given contexts B and A, because the prediction can significantly change if the edited
character is in the input context or not. For example, to predict what comes after
‘Hello ’, it could be potentially a lot of possibilities, however predicting what comes
after ‘Hello W’ narrows down the possibilities which makes more accurate decision.
This applies to both language models. The demonstration in subsection 7.3.5 will
show the effect of the values.
In the expressions above, that predict estimations by combining two terms, we

can use a simple combination using geometric mean of the two values, or use a
more sophisticated combination as described in subsection 7.3.3. After that, if the
estimated probability for an action f is p, δ(S) is then computed as an enumeration
of all pairs (f,− log{p+ ε}), where ε ≈ 10−30 is for smoothing to avoid computing
log 0. After a slight manual tuning, the combinations that lead to good results are:

PDEL,v∈Γ = Po(B,A)⇒ logP = logPo(B,A)

PDEL,v 6∈Γ = 0.005Po(B,A)⇒ logP = logPo(B,A) + log 0.005

PNOP =
√
Po(Bv,A) · Po(B, vA)⇒ logP =

1

2
logPo(Bv,A) +

1

2
logPo(B, vA)

PADD s,s∈Γ =
√
Po(Bs, vA) · Po(B, svA)⇒ logP =

1

2
logPo(Bs, vA) + logPo(B, svA)

PADD s,s 6∈Γ = 0.0052
√
Po(Bs, vA) · Po(B, svA)⇒

logP =
1

2
logPo(Bs, vA) + logPo(B, svA) + 2 log 0.005

(24)

The resulting equations raised a motivation to develop an automatic tuning of the
log probabilities obtained. By weighting every contributing factor and adding a bias
value. This will be discussed in the decisions tuner subsection 7.3.3. The change
(CHG) operations were not used during my experiments, because they made the time
performance worse, and they can be replaced by a combination of DEL and ADD
operations.

66

7.3.3 Decisions tuner

The decisions tuner is a simple optimization model that attempts to find the combina-
tions of the probabilities of the fixing actions as described in subsection 7.3.2. Given
a before context B, after context A and current character v, then the delete operation
is decided by Po(B,A), the copy operation is decided by Po(B ◦v,A) and Po(B, v ◦A)

and the addition operation is decided by Po(B ◦ s, v ◦ A) and Po(B, s ◦ v ◦ A). For
each of the mentioned values, I made a distinction depending if the edited character v
(or s in case of addition) is a delimiter character (∈ Γ) or not, because the delimiter
characters are much more frequent, and also they are essential to handle the first
three types of tokenization mistakes. As a result, they could need more specific tuning
than the tuning of the non-delimiter characters. For each of the probabilities p listed
above, we will use the corresponding value −w · log{p+ ε} − b as action cost in the
beam search. There will be ten coefficients pairs (w, b) depending on which of the
five values above is used and also if the edited character is a delimiter or not.

In order to make predictions and tune the model using the weights and biases pairs
(w, b), we will formulate them in a matrix form, in order to easily formulate their
tuning as a multi-classification task. The ten pairs will be listed in the two vectors w
and b. Furthermore, given an triple (B, v,A) of a before context, current character,
after context and fixing action, we can then define a corresponding vector q of their
fixing probabilities by:

q :=

Po(B,A) · [v ∈ Γ]

Po(B,A) · [v 6∈ Γ]

Po(Bv,A) · [v ∈ Γ]

Po(B, vA) · [v ∈ Γ]

Po(Bv,A) · [v 6∈ Γ]

Po(B, vA) · [v 6∈ Γ]

Po(Bs, vA) · [s ∈ Γ]

Po(B, svA) · [s ∈ Γ]

Po(Bs, vA) · [s 6∈ Γ]

Po(B, svA) · [s 6∈ Γ]

(25)

After that we can compute the tuned probabilities vector d by:

d = MT (w� log{q + ε}+ b) (26)

67

where

M =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

, w :=

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

, b :=

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

(27)

which is expanded as:

d :=

(w1 log{Po(B,A)[v ∈ Γ] + ε}+ b1)

(w2 log{Po(B,A)[v 6∈ Γ] + ε}+ b2)

(w3 log{Po(Bv,A)[v ∈ Γ] + ε}+ w4 log{Po(B, vA)[v ∈ Γ] + ε}+ b3 + b4)

(w5 log{Po(Bv,A)[v 6∈ Γ] + ε}+ w6 log{Po(B, vA)[v 6∈ Γ] + ε}+ b5 + b6)

(w7 log{Po(Bs, vA)[s ∈ Γ] + ε}+ w8 log{Po(B, svA)[s ∈ Γ] + ε}+ b7 + b8)

(w9 log{Po(Bs, vA)[s 6∈ Γ] + ε}+ w10 log{Po(B, svA)[s 6∈ Γ] + ε}+ b9 + b10)

(28)

Where the elements of d correspond to the tuned log probabilities of the decisions
delete delimiter, delete non-delimiter, copy delimiter, copy non-delimiter, add delimiter
and add non-delimiter respectively. We can use the values depending on the category
of the decision f we need to use, as shown in algorithm 14.
As a result, we can compute the transition function δ(S) as an enumeration of

delete, copy, add-delimiter, add non-delimiter sb and add non-delimiter sf , where
sb = arg maxs pb(s|A|S) and sf = arg maxs pf (s|B|S), with the corresponding tuned
log probability predicted scores from the vector d. Trying characters other than sf
and sb will lead to more possibilities, which might improve the results, however, we
didn’t try that because it makes the model computationally intensive. The steps of
computing the transition function δ(S) are depicted in algorithm 14.

Tuner training

In order to get training data to tune w,b, we will use the quadruples extracted by
edit alignments, as described in subsection 7.2.3, as the ground truth data. Depending

68

on a given quadruple (B, v,A, f), we will construct the corresponding vector d̃ as a
one-hot vector for the decision f over the set of the six possible decisions mentioned
earlier, and also we construct q̃, by the equation:

q̃ :=

Po(B,A) · [v ∈ Γ]

Po(B,A) · [v 6∈ Γ]

Po(Bv,A) · [v ∈ Γ]

Po(B, vA) · [v ∈ Γ]

Po(Bv,A) · [v 6∈ Γ]

Po(B, vA) · [v 6∈ Γ]

maxs∈Γ Po(Bs, vA)

maxs∈Γ Po(B, svA)

1− (1−maxs∗∈{sf ,sb}\Γ Po(Bs
∗, vA)) · [(f = (ADD, s) and s 6∈ Γ) or ∀s · f 6= (ADD, s)]

1− (1−maxs∗∈{sf ,sb}\Γ Po(B, s
∗vA)) · [(f = (ADD, s) and s 6∈ Γ) or ∀s · f 6= (ADD, s)]

(29)

Tuning w and b is achieved by training a multi-class classifier, using categorical
cross-entropy as the loss function, that compares between the predicted classes
softmax(MT (w� log{q̃ + ε}+ b)) and the ground truth output d̃. It is important
to note that the multi-classification task will maximize the weights corresponding
to the probabilities of the ground truth action. This is achieved by tuning w, b to
maximize particular values in the vector MT (w� log{q̃+ ε}+b), which is equivalent
to minimizing the corresponding values in −MT (w� log{q̃ + ε}+ b), which will be
the returned costs for the fixing actions during the beam search. This assists the
beam search to assign the correct fixing actions as the best steps (with the least costs)
leading to the approximated shortest path.

The values of q̃ are the same as q except the last two elements, they are set to be
the maximum possible value (= 1.0) in case f = (ADD, s), and the corresponding
character s∗ with maximum score is not the same as s (s∗ is different for each
term). The reason for this is no matter how we tune the weights, we will never
get a combination that can classify the correct character to add, because the wrong
character s∗ will always have better score, and hence the weights of this example
should be intentionally punished in order to avoid being wrongly tuned. Similar to
the predictions part earlier, we will also try the non-delimiters that are top predicted
characters sf and bf by pf and pb respectively, in order to save computation time.

Futhermore, in case the tuner needs to be disabled, the weights and biases vectors
w and b can be set to default values, which will make the generated values identical
to the values obtained by manual tuning in equation 24. The default values will be

69

given by:

w :=

1

1

0.5

0.5

0.5

0.5

0.5

1

0.5

1

, b :=

0

log 0.005

0

0

0

0

0

0

log 0.005

log 0.005

(30)

7.3.4 Look-forward in additions

The addition fixing operation particularly is handled with additional technique, which
is looking forward. One of the concerns, that were observed when using an addition
fixing operation, is that the bicontext model tends to use the same addition operation
in an earlier position. For example, a text like ‘Helloworld’ which needs the fixing
operation (ADD, ‘ ’) at position 6, when is being fixed from left to right, the bicontext
model would predict that there should be a space to add when the fixer is still at
position 4, in other words the fixer at the earlier position 4 finds out that to add a
space is better than just copying or deleting the character at position 4, so it ends up
introducing a wrong fixing ‘Hel loworld’ and consequently, it decides that adding a
space at position 6 is not the best choice, so we end up having a bad fixing, because
the correct fixing operation was introduced few positions earlier.
However, another observation was found, that whenever a fixing operation is

introduced in an earlier position and then we make a look-forward and try to add
the same character after one or two positions, this forward addition will have higher
score. Consequently, whenever these scores are found, the addition score at the
current position is punished strongly to be 0 (or the smoothed log ε, in case of log
probabilities), which prevents the fixer from adding fixings in earlier positions than
where they actually should be made. This is depicted in the function "Look-Forward"
in the algorithm 14.
To demonstrate, when the fixer is standing at position 4 in the given example

‘Helloworld’, and finds that to add a space at 4 with score 0.1, and we look forward
and try to add the space instead at position 5 with score 0.05 and at position 6 with

70

Algorithm 14 Bicontext tuned transition function δ(S)

function Bicontext-Transition(S = (B, v,A, i, R, added, U ;T))
if v ∈ Γ then

cDEL = w1 log{Po(B,A) + ε}+ b1
yield ((DEL, i, v), cDEL)
cNOP = w3 log{Po(Bv,A) + ε}+ w4 log{Po(B, vA) + ε}+ b3 + b4
yield ((NOP, i, v), cNOP)

else
cDEL = w2 log{Po(B,A) + ε}+ b2
yield ((DEL, i, v), cDEL)
cNOP = w5 log{Po(Bv,A) + ε}+ w6 log{Po(B, vA) + ε}+ b5 + b6
yield ((NOP, i, v), cNOP)

end if
S := {sb, sf , ‘ ’}
foreach s ∈ S do

if s ∈ Γ then
cADD = w7 log{Po(Bs, vA) + ε}+ w8 log{Po(B, svA) + ε}+ b7 + b8
cADD := Look-Forward(cADD, B,A, v, s)
yield ((ADD, i, s), cADD)

else
cADD = w9 log{Po(Bs, vA) + ε}+ w10 log{Po(B, svA) + ε}+ b9 + b10

cADD := Look-Forward(cADD, B,A, v, s)
yield ((ADD, i, s), cADD)

end if
end for

end function
function Look-Forward(c,B,A, v, s)

if c < log{max1≤i≤2{Po(B,A�isvAi+1→)}+ ε} then
return log ε

else
return c

end if
end function

71

score 0.4, then we will punish the 0.1 to 0, because adding the character in 2 positions
later has better score. This will go on and it should be the case that at position 6,
it will have a higher score than looking forward further after position 6, and hence
apply the addition operation in the right place.

7.3.5 Wrapping up

Algorithm 15 Bicontext approach
global h . History length
global pf . Forward character-based language model
global pb . Backward character-based language model
global use Bicontext-Transition as δ . Use bicontext’s transition function
global function Po . Occurence function
global w1, · · · , w10, b1, · · · , b10 . Tuned weights and biases
global B = 2 . Beam size
function Fix(T)

terminal := λS : S|i > |T | . Terminal state if the text is processed
S0 := ($̇h, T1, T2�h+1, 1, ε, 0, [];T),
Sf := Beam-Search(S0, δ, terminal, B)
return Sf |R . Retrieve the resulting string R from the state

end function

In order to wrap up all the components, algorithm 15 shows the final presented "Fix"
function of the bicontext approach. Additionally, to demonstrate several components
of the approach, two snapshots are shown during the fixing of an article from the
Simple-Wikipedia dataset with the title "1976 Summer Paralympics". Similar to
section 4.3, the first text is the correct text, with markers which types of corruptions
are used, and the second text is the resulting corrupt text which will be fixed.

‘The 1976 Summer2 Paralympics1 took2 place2 in Toronto, Ontario, Canada.
1,657 athletes from2 381 were1 at4 the2 Games. People2 with these1 types of4

disabilities1 competed at the games2: spinal2 injury2, amputee,
blindness, and1 Les Autres.’

‘The 1976 Summe r Paraly mpicstook pla ce in Toronto, Ontario, Canada.
1,657 athletes fro m 3awereat th e Games. Pe ople with thesetypes f

disabilitiescompeted at the gam es: sp inal i njury, amputee,
blindness, andLes Autres.’

72

This text was almost totally fixed, except for the token ‘38’ wasn’t recovered. The
token was stroke out in the fixed text for demonstration, it is not actually there
though. The results of the evaluation metrics precision, recall and F1-score are
0.895, 0.944, 0.919 respectively. The resulting fixed text is:

‘The 1976 Summer Paralympics took place in Toronto, Ontario, Canada.
1,657 athletes from 38 were at the Games. People with these types of

disabilities competed at the games: spinal injury, amputee,
blindness, and Les Autres.’

X Y f(X,Y, 3) b(X,Y, 3) Po(X,Y) logPo −w logPo(X,Y)− b
B1 A1 10−6 6 · 10−6 10−10 −23.68 −0.45 ∗ −23.68− 0.88 = 13.35
B1v1 A1 0.004 0.028 10−4 −9.09 −0.22 ∗ −9.09− 1.89 = 0.11
B1 v1A1 0.014 0.0033 4 · 10−6 −10.00 −0.76 ∗ −10.00− 1.89 = 5.71
B1s1 v1A1 1.98 2.06 4.08 1.41 −1.05 ∗ 1.41 + 0.37 = −1.11
B1 s1v1A1 2.59 1.33 3.44 1.24 −1.03 ∗ 1.24 + 0.37 = −0.91

B2 A2 0.53 1.55 0.82 −0.19 −0.45 ∗ −0.19− 0.88 = −0.79
B2v2 A2 0.06 0.0007 4 · 10−5 −10.11 −0.47 ∗ −10.11− 2.57 = 2.18
B2 v2A2 0.001 0.058 8 · 10−5 −9.43 −0.76 ∗ −9.43− 2.55 = 4.61
B2s2 v2A2 0.87 0.26 0.22 −1.49 −1.05 ∗ −1.49 + 0.37 = 1.93
B2 s2v2A2 0.63 0.60 0.38 −0.97 −1.03 ∗ −0.97 + 0.37 = 1.37

Table 7: Two snapshots during the execution of the bicontext fixer. The two
snapshots are underlined in the corrupt text. The first has the contexts:
B1 = ‘le with these types ’, v1 = ‘f’, s1 = ‘o’, A1 = ‘ disabilitiescompete’,
and the second has the contexts: B2 = ‘ the games: spinal i’, v2 = ‘ ’,
s2 = ‘s’, A2 = ‘njury, amputee, blin’. In the first snapshot, dDEL = 13.353,
dNOP = 5.914, dADD, o = −1.994, and in the second snapshot dDEL =
−0.792, dNOP = 6.781 , dADD, s = 3.295. Which predicts the correct
decisions in both scenarios, with minimal scored as designed.

Table 7 shows two snapshots of the values of the occurrence function, the functions
f , b, log probabilities and weighted log probabilities; the snapshots are at two points
which are underlined in the corrupt text. The weights vector that was used in the exam-
ple is: w = [0.45, 0.40, 0.47, 0.76, 0.22, 0.76, 0.81, 0.72, 1.05, 1.03]T and the correspond-
ing bias vector is: b = [0.88,−3.90, 2.57, 2.55, 1.89, 1.89, 0.41, 0.41,−0.37,−0.37]T .
In the first snapshot, the values are obtained by dNOP = 5.914 ≈ 5.71 + 0.11

and dADD, o = −1.994 ≈ −0.91 + −1.11, and similarly in the second snapshot:
dNOP = 6.781 ≈ 2.18 + 4.61 and dADD, s = 3.295 ≈ 1.93 + 1.37. Furthermore, to give

73

an intuition about the character-based language model, I list the top 3 characters
predicted (with corresponding probabilities), in the four scenarios:

• pb(‘ disabilitiescompete’) predicts e : 0.17, s : 0.13, n : 0.09.

• pf (‘le with these types ’) predicts o : 0.88, a : 0.02, i : 0.02.

• pb(‘njury, amputee, blin’) predicts i : 0.79, e : 0.09, a : 0.06.

• pf (‘ the games: spinal i’) predicts n : 0.53, s : 0.34,m : 0.03.

7.4 Baseline 3-Gram Markov model

After introducing the bicontext approach, a baseline learning approach can be pre-
sented. The baseline learning approach is the same as the bicontext approach, without
weights tuning and input perturbation. The main difference is replacing the character-
based language models by a simple implementation of n-Gram Markov model [30].
The joint probability of predicting a character v to come after a context C can be
given by the equation:

p(v|C) =
count(C ◦ v)

count(C) + ε
(31)

Where ε ≈ 10−10 is for smoothing. The function ‘count’ is the count of the given
context string in the training corpus. The contexts C considered are 3-grams, meaning
that they are contexts of length 3. Furthermore, this model could be improved using
smoothing techniques as shown in [30, 34], however, they were not used in our
experiments because this was aimed to be for baseline comparison only.

7.5 End-to-end model

The final approach for solving the given problem is using an end-to-end deep learning
approach. This approach is mixing all the different components of the first approach
into one recurrent neural network, this model consists of input that concatenates the
before context B, current character v and after context A into an input sequence
X, then the output of the model is probability distribution over the list of possible
fixing decisions [DEL,NOP,ADD Λ1, · · · ,ADD Λ|Λ|,CHG Λ1, · · · ,CHG Λ|Λ|]. We
can also include perturbed examples by perturbing the two contexts B and A as
in the bicontext model. Consequently, we can compute the transition function

74

δ(S), for a given state S = (B, v,A, i, R, added, U ;T), as an enumeration of all
pairs (− log{F (B, v,A) + ε}, f) for all possible decisions f , where F (B, v,A) is the
prediction of the model on the B ◦ v ◦ A of the given state S, and ε ≈ 10−30 is for
smoothing 0. The training data for this model are obtained directly by the edit
alignments described in subsection 7.2.3, similar to how it was obtained for the tuner
in subsection 7.3.3. The model is trained as a multi-classification task, that tries to
classify the fixing actions to apply.
The main advantages of this model are its ultimate simplicity, very efficient com-

putation of the transition function δ(S) (it’s computed by making only one time
prediction using the RNN model) and utilizing deep learning to give more capacity
to optimize how the components are connected together instead of making these
connections manually and tuning the connections in a shallow sense as in the bicon-
text approach. However the main disadvantage of this model is its need for a much
bigger amount of training data because of its tendency to underfit due to the strong
unbalance of fixing decisions in the training data. The decisions NOP, DEL, (ADD,
‘ ’) (adding a space) are much more dominant in training set than the remaining
decisions. This issue was addressed by weighting the classes in the cost function, by
giving significantly lower weights to dominant classes in the training set, which ends
up having the effect of undersampling the dominant classes.

7.6 Utility

7.6.1 Caching

Caching is a strategy that was used in order to make the computations of the
predictions of the RNN models more efficient, since most predictions made in the
bicontext fixer are computed few times, consequently, if the computed predictions
are cached properly then they will achieve a speedup. On the other hand, there is a
numerous number of possible prediction inputs (context string with length between
20 ∼ 100), so it would consume a lot of resources to cache all the input strings
encountered, resources like memory and query time if too many predictions are
cached, therefore we will put a fixed upper bound on the size of the cache.
In addition to that, if we consider, for example, the predictions made by the

bicontext fixer, in order to compute Po(B, xyzA), we will compute the values
pf (B), Pf (Bx), Pf (Bxy) using the RNN, then in the next step while computing
Po(Bx, yzA), the values pf (Bx), pf (Bxy), pf (Bxyz) will be computed, and while
computing Po(Bxy, zA), the values pf (Bxy), pf (Bxyz) will also be computer. As

75

observed, there are many shared computations between nearby states, therefore
the values that are frequently used are recently computed values. From the men-
tioned pieces of information, I made a caching data structure with a fixed size, that
occasionally gets cleared except for the recently added or used values.

The data structure is initialized with a variable S, in order to construct the history
of the cache with size 2S. Whenever we add or search a value, we mark the most
recent time id used of the query key, in order to be able to identify if it’s recently
used or not. When the cache is full after an addition, then all the entries that were
not recently used are removed from the cache, and only up to S elements remain.
This is depicted in algorithm 16.

76

Algorithm 16 Caching data structure
procedure Cacher(S)

D := Hash-Table() . Cached values
H := Queue() . History
I := Hash-Table() . most recent IDs
function add-value(k, V)

D[k] := V
id := |I|
I[k] := id . Update most recent use
H.push-back(k)
Clear-old()

end function
function get-value(k)

if k ∈ D then
V := D[k]
add-value(k, v) . To mark the most recent use
return V

else
return nil

end if
end function
function clear-old()

if |H| > 2S then . Only clear if the cache is full
for k ∈ H1�S do

if k ∈ D and I[k] < S then . Most recent retrieval is old
delete D[k]

end if
end for
while |H| > S do

H.Pop-Front() . Remove all non-recent entries
end while
I.Clear()
for i, k ∈ enumerate(H) do

I[k] := i . Rename the time id’s
end for

end if
end function

end procedure

77

8 Experiments

In this chapter, we present an empirical evaluation of the models described throughout
the thesis, along with variations of some components. In summary, we have five
different models to compare, two of them are non-learning dictionary-based and three
are deep learning based. Since the bicontext RNN approach is the main proposed
method to solve the given problem, there will be further experiments of different
variants of this model; the variants include RNN architecture, context length h,
number of layers, reversing the input context, different beam sizes, not using the
decisions tuner and using less trained models.

There are mainly two perspectives to compare the models from; the most essential
perspective is the one stated in the formal problem definition at the end of section 5.1,
namely the fixing performance as computed by the F1-score. The second perspective
is only for the bicontext RNN model, which is comparing the train/test losses and
metrics of the character-based language models, and if it affects the corresponding
fixing performance.

8.1 Experiments specifications

Implementation specifications

The code was purely implemented in Python 3, using the deep learning framework
Keras (with tensorflow as backend) for the RNN models, because Keras provides
simple-yet-efficient code for deep learning; furthermore, the weights optimization
in subsection 7.3.3 was implemented using the framework tensorflow, because the
matrix form was ideal for using tensorflow. Additionally, the libraries NumPy and
scikit-learn were used for data containers and basic mathematical functions.

Datasets specifications

The evaluations were made on two datasets, a sample of 10,000 articles from the
Simple-Wikipedia dataset and a sample of 1,500 articles from the Reuters-21578
dataset were used. Then they were carried out using K-fold cross validation (with

79

K = 3 folds) [35], which divides the files into 3 parts, each one is used once as
test-data and the remaining files are used for training. Each dataset has its own
dictionary of words (that have frequency > 2). The corrupt versions of the texts were
created using the corruptor algorithm 7 with corruption rate p = 0.5, and tokenization
errors rates 4 : 4 : 1 : 2; another corrupt versions were created using only the first 3
types of tokenization errors (no typos/garbled characters) with rates 4 : 4 : 1 . For
each of those, the result of detailed edit operations (for edit alignments), as computed
by algorithm 4, was dumped into a Python pickle file, in order to save running time
to compute them in every experiment.

Dictionary-based approaches specifications

In the both dicionary-based approaches, a Trie dictionary was used (with words
depending on the dataset’s dictionary). The dictionary had mismatch damping factor
ϕ = 0.5 and upper limit on the edit distance to be 1 (it doesn’t partially match a
word if the edit distance is > 1). Additionally, if a word w is matched in the Trie
dictionary, then the matching score will be slightly decreased by the relative frequency
of w in the dictionary, therefore the score will be f0.05

w (which is mostly > 0.5) instead
of 1. In the dynamic programming (DP) approach, the grouping window size ω was
set to 8, and the parameters α = 1.15, β = 0.1, γ = 1.0, ζ = 2.0 were used.

Bicontext model specifications

The bicontext model is using two RNN character-based language models, forward
and backward, each model consists of one or two RNN layers of certain size and
history length, followed by a dropout layer with drop-rate 0.2, followed by a final fully-
connected layer with softmax activation function, in order to predict the character,
like figure 3. Additionally, in a different model like the sequence-to-sequence (seq2seq)
[36], reversing the input sequence enhanced the results of their predictions, and I
thought to experiment this idea as well. The character-set I used had nearly 100
characters, consisting from lower case alphabet, upper case alphabet, digits, special
characters, delimiter characters, an "unknown" character and a padding character.
The model was used with beam search size 2.

Decisions tuner in bicontext model specifications

A decisions tuner was started for each fixing evaluation experiment, it constructs the
training input from the edit alignments of 500 training files for the Simple-Wikipedia

80

dataset and 100 training files for the Reuters-21578 dataset. Then, the corresponding
multi-classification task is trained using Adam optimizer [20], for 10,000 epochs using
a learning rate 0.01. After that, the weights are saved and reloaded during evaluations.

End-to-end model specifications

The end-to-end model is a character-based RNN that predicts how to fix a text, the
architecture of the model consists of a bidirectional LSTM layer (which performs
similar to two LSTM layers), followed by a dropout layer of drop-rate 0.5, followed
by a fully connected layer with softmax as activation function to classify which fixing
decision should be made, additionally, the weight matrices of the LSTMs were also
dropped out with drop-rate 0.5. The model uses an input as the concatenation
B ◦ v ◦A (of length 2h+ 1).

Models notations

Since there are a lot of RNN models used in the experiments for the bicontext
approach, a short notation for the models had to be presented. The short name will
be a concatenation of the RNN architecture, hidden units size, history size, number
of layers and a flag N or R to indicate if the input sequence is reversed or not. For
example, GRU256H40L2R is a bicontext model with 2-layered GRU recurrent neural
networks, with 256 hidden units, context length 40 and the input sequence is reversed;
LSTM128H20L2R+N is a bicontext model with 2-layered LSTM recurrent neural
networks, with 128 hidden units, context length 20 and the input of the backward
model is reversed and the forward model is not reversed.

Character-based models training specifications

The training was done with input perturbation, as described in subsection 7.2.2,
with 2 perturbed examples for each correct example. The training was done for 100
epochs, and the perturbations were randomly regenerated every 10 epochs in order
not to overfit over them. Additionally, also each 10 epochs, the training data was
augmented with a space-separated concatenation of 30,000 randomly chosen words
from the dataset’s dictionary. For the end-to-end bidirectional model there was 7
perturbed examples instead of 2, because this model was suffering from underfitting.
All the 7 perturbed examples had perturbed after context, but only 2 of them had
perturbed before context, in order to mimic a fixed text. The training was made using
a GPU (Titan X), while using a large batch size of 8,192. The Simple-Wikipedia

81

dataset after adding the perturbed examples, had around 17,500,000 inputs examples,
which was around 2,100 batches, on the other hand, the Reuters-21578 dataset had
around 3,000,000 input examples, which was around 370 batches. For the 2-layered
architectures, with history 20 and 128 hidden units, the training epoch on the GPU
took around 8 minutes for the Simple-Wikipedia dataset and around 90 seconds for
the Reuters-21578 dataset. Furthermore, the number of parameters to be tuned in
each architecture are given by:

• The 1-layered LSTM128 had around 130,000 parameters.

• The 2-layered LSTM128 had around 260,000 parameters.

• The 2-layered LSTM256 had around 780,000 parameters.

• The 1-layered GRU128 had around 100,000 parameters.

• The 2-layered GRU128 had around 200,000 parameters.

Fixings evaluation specifications

The evaluation of the fixings of different models was ran on a subset of 1,400 files
from the test fold, which is half of the test fold in the Simple-Wikipedia dataset,
and the whole test fold in the Reuters-21578 dataset. The evaluation was ran using
multiprocessing of ∼ 8 parallel processes (or ∼ 23 in a bigger cluster), in order to
evaluate multiple files at the same time.

8.2 Character-based language models evaluation

In order to understand the relation between the character-based language model’s
accuracy and its fixing performance, I evaluated the different architectures using
the training/test data, but the evaluation is done without the perturbed training
examples, because they were changed frequently during training.
The models are evaluated using three metrics, the first is the optimized cost/loss

(L) function categorical cross-entropy, the second is the accuracy (A) which is the
ratio of examples that the true class is predicted with the highest probability, the
third metric is the top-5-categorical which is ratio of examples that the true class is
predicted in the top 5 predicted categories.

In table 8, the evaluation metrics of the train and test sets are shown, the evaluation
was done on all the RNN architectures using the Simple-Wikipedia dataset, and
similarly table 9 is for the Reuters-21578 dataset.

82

Dir Model train L train A train T5 test L test A test T5
back BiLSTM128H20L1R 1.461 0.575 0.846 1.503 0.565 0.838
back GRU128H20L1R 1.580 0.546 0.828 1.607 0.54 0.822
back GRU128H20L2R 1.423 0.588 0.853 1.469 0.576 0.844
back LSTM128H20L1N 1.667 0.524 0.816 1.691 0.519 0.812
back LSTM128H20L1R 1.569 0.547 0.828 1.597 0.542 0.823
back LSTM128H20L2N 1.519 0.562 0.838 1.555 0.554 0.831
back LSTM128H20L2R 1.407 0.587 0.853 1.454 0.577 0.844
forw BiLSTM128H20L1R 1.46 0.577 0.848 1.504 0.566 0.84
forw GRU128H20L1R 1.688 0.522 0.815 1.709 0.516 0.811
forw GRU128H20L2R 1.541 0.562 0.838 1.574 0.553 0.832
forw LSTM128H20L1N 1.563 0.55 0.833 1.591 0.543 0.828
forw LSTM128H20L1R 1.668 0.523 0.818 1.691 0.517 0.814
forw LSTM128H20L2N 1.403 0.59 0.856 1.45 0.579 0.847
forw LSTM128H20L2R 1.530 0.56 0.839 1.565 0.551 0.832

Table 8: Simple-Wikipedia train/test loss and accuracies. L is the categorical-cross
entropy, A is the accuracy and T5 is the top-5-categorical accuracy. The
shown results are the mean of the 3-fold cross validated metrics.

We can conclude from the evaluations that, by comparing LSTM128H20L1N,
LSTM128H20L2N against LSTM128H20L1R, LSTM128H20L2R, RNNs are better to
predict using the original order of sequence, that is predicting at after the sequence
a1, · · · , at−1 is better than predicting it after the sequence at−1, · · · , a1, since all the
forward models got higher score when the input’s natural English order was not
reversed. Additionally, the backward models also confirm this conclusion, because
their non-reversed input is the natural English order, so they also prefer that the
sequence is not reversed in the prediction direction (which corresponding to reversing
the input’s given natural English order). For example, to predict what comes before
‘ello’, the backward model yielded better performance when the input is fed as ‘olle’
and not ‘ello’. The sequence (in the prediction direction) is given by a1 = ‘o’, a2 = ‘l’,
a3 = ‘l’, a4 = ‘e’ and a5 = ‘H’.
The second conclusion we can draw is a confirmation of the findings of [25], that

the performance of GRUs is almost as good as LSTMs, this we can conclude because
the presented GRUs get nearly the same accuracy and top-5-categorical metrics
like the corresponding LSTMs (with the same settings), and very close loss value.
This conclusion is drawn by comparing GRU128H20L1R, GRU128H20L2R against
LSTM128H20L1R and LSTM128H20L2R. This will be further demonstrated in the

83

next section, when evaluating the fixing performance.
The last conclusion we can draw is that, deeper models tend to outperform shallower

models as shown on all the results of both datasets, by comparing LSTM128H20L1N,
LSTM128H20L1R, GRU128H20L1R, against LSTM128H20L2N, LSTM128H20L2R,
GRU128H20L2R; additionally, bigger models (measured by hidden units size) tend
to outperform smaller models, by comparing BiLSTM64H20L1N, BiLSTM128H20L1N,
BiLSTM256H20L1N against each others, and BiLSTM64H40L1N, BiLSTM128H40L1N,
BiLSTM256H40L1N against each others.

8.3 Fixing evaluations

Different models

Table 10 shows a comparison of the fixers performance for the Simple-Wikipedia
dataset and table 11 shows the same comparison for the Reuters-21578 dataset, the
results are comparing different neural network architectures. The performance is
evaluated using the mean F1-score, as defined at the end of section 5.1.
The score of the baseline greedy approach is not high because there are two

major drawbacks of the greedy approach. The first drawback is matching the first
word greedily, this doesn’t consider if the taken word would make it hard to fix the
remaining text or not, hence it can easily get trapped in choosing a word that leaves
the remaining text with portions that cannot be fixed at all, or fixed with a lot of
destructive modifications. The second drawback is not considering any neighboring
words, and how they might affect the choice of the correct words, which can result in
fixings that don’t have any particular meaning (for humans).
The DP approach gets much higher score than the baseline greedy approach,

because it has a strategy to deal with the first drawback, which is not getting stuck
with a word that makes it hard to fix the surrounding context, this is achieved via
the grouping layer of the approach which makes sure that neighboring contexts are
fixed in a reasonable fashion, with respect to the given dictionary. However, still
the second drawback remains, which is fixing words while taking in consideration if
such a fixing will make the output fit in context or not, because the dictionary-based
approach in general is just checking of the words are correct in the language without
further inspection of the context.
The deep learning based approaches take in consideration how to handle the

drawback that an introduced fixing doesn’t fit in context, this is due to the predictive
power of RNN language models to predict text from a given context. The prediction

84

in both directions backward and forward, made by the bicontext approach, provides a
method to predict how likely a given context string to appear in the language (using
the occurrence function Po), then both models behave as if they are peer-reviewing
each others, collectively they make a certain decision if both of them are certain
about it, and uncertain decision if one of them is certain and the other isn’t. The
drawbacks of the dictionary-based approaches are handled in the bicontext approach
by checking long enough contexts which gives an idea if an introduced fixing would
make the text unlikely to occur in the language. The first drawback in the baseline
greedy approach is additionally handled by the beam search, which gives some sort
of a buffer for the model to try few fixings and pick the ones that don’t damage the
surrounding text at a given point.

The effectiveness of deep learning is shown by the huge difference against the baseline
learning approach, which uses the bicontext approach with replacing the character-
based language models from RNN to 3-Grams Markov models, this replacement made
the results to be the worst results, which concludes how reliant the bicontext model
on the character-based language model, and how effective the RNN model is. This is
also supported by comparing the losses on the test sets in the training (in section
8.2), and observing the better the loss and accuracy values are, the better is the
corresponding fixer evaluation.

The end-to-end model achieved relatively good results, however they are still much
worse than the bicontext approach, in fact they are comparable to the DP approach.
The reasons for this are not very clear, but I suspect that the amount of data and the
model size might not have been enough for conducting a robust end-to-end training.

The effect of increasing the context history h doesn’t seem to show a big enhance-
ment on the fixing performance, and in the smaller dataset (Reuters-21578), it even
showed a slightly worse performance. However, the number of hidden units affected
the performance noticeably, as shown in the evaluations of the Reuters-21578 dataset.
The effects of the history length could be experimented in a future work with much
bigger datasets.
Another confirmation of the similar performance of the GRU and LSTM is

shown by this experiment, by comparing GRU128H20L1R, GRU128H20L2R against
LSTM128H20L1R and LSTM128H20L2R; all the GRU models get very similar
performance like the corresponding LSTM.

Finally, from this experiment, we can conclude that the results of the test evaluation,
as shown in the previous section, can be used as an indicator for how well the model
will fix a text, because an improvement in the backward or forward models tests’

85

evaluation is correlated with an improvement in the fixing results.

Different bicontext approach features

In order to measure the effectiveness of different components of the bicontext ap-
proach, few experiments were ran while changing one setting per experiment. The
RNN architectures used BiLSTM128H20L1R+N for the Reuters-21578 dataset and
LSTM128H20L2R+N for the Simple-Wikipedia dataset. The default settings for this
experiment, is training the models for 100 epochs, with 2 perturbation examples per
each correct example. The default setup of the fixing is using beam of size 2 in the
beam search, decisions tuner and look-forward strategy. The model was used to fix
texts with the four tokenization errors.
The experiments will change one of these per experiment. Beam size 1 and 4

will be experimented, the look-forward strategy will be disabled in one experiment
(by not calling the corresponding function in algorithm 14), the decisions tuner will
be disabled in one of the experiments (by using default weights in equation 30).
Additionally, different training settings are also experimented, once by using models
trained for only 50 epochs instead of 100, and secondly by training models without any
perturbed examples. There is an experiment on only one fold, which is using 20,000
articles instead of 10,000 during training. Lastly, we try to drop one of the constraints
of the problem, which is using text without any typos, so only the first three types
of tokenization mistakes, these are generated as in the datasets specifications in
section 8.1. The fixing then is evaluated using 3-Fold cross validation, using the mean
F1-score as performance measure. The results are presented in table 12 for both
datasets.
The main factor that affected the performance is the decisions tuner, using the

default weights (which are not tuned by the decisions tuner) yielded much worse results
on both datasets. All the factors of dropping the look-forward, training for less epochs
or training with no perturbations, showed that the models get worse, which concludes
that all these factors improve the model. However, the effect is not as significant
as dropping the decisions tuner. The reason why removing perturbations got worse
results is not totally clear; there are two possibilities, either the perturbations made
the model more robust as hypothesized or the other possibility could be less training
because training with two perturbation examples simply multiples the number of
training batches by three (one actual example and two perturbed examples), this
can be resolved, in a future work, by training a model with no perturbations for
300 epochs and comparing its results. Using a beam size 4 resulted in a very slight

86

improvement on the Simple-Wikipedia dataset and slightly worse performance on the
Reuters-21578 dataset. However, the beam of size 1 made the performance worse on
both datasets. Thus we can conclude using beam size 2 is a reasonable choice, further
experiments could be conducted in a future work to inspect if much bigger beam size
(10 or 12) would make a difference or not. Using more training data of double the
size in the Simple-Wikipedia showed a reasonable improvement, however this result
was only evaluated on one fold due to time restrictions. Further exploration of this
can be conducted in a future work. Finally, simplifying the problem by excluding the
typos from corruptions, resulted in a much better performance up to 96.3% on the
Simple-Wikipedia dataset and 91.9% on the Reuters-21578 dataset, which concludes
that the typos present a great difficulty in the given problem. Additionally, it also
presents a difficulty in terms of time performance, because fixing typos is only possible
by trying to add a variety of non-delimiter characters.

87

Dir Model train L train A train T5 test L test A test T5
back GRU128H20L1R 1.433 0.582 0.860 1.495 0.566 0.847
back GRU128H20L2R 1.256 0.630 0.886 1.358 0.603 0.866
back LSTM128H20L1N 1.652 0.522 0.828 1.687 0.513 0.821
back LSTM128H20L2N 1.488 0.565 0.852 1.534 0.554 0.843
back LSTM128H20L1R 1.469 0.572 0.854 1.524 0.559 0.843
back LSTM128H20L2R 1.302 0.614 0.877 1.391 0.592 0.861
back BiLSTM128H20L1R 1.337 0.604 0.873 1.421 0.583 0.857
back BiLSTM128H20L1N 1.328 0.606 0.874 1.414 0.585 0.858
back BiLSTM128H40L1N 1.325 0.604 0.873 1.429 0.579 0.853
back BiLSTM256H20L1N 1.039 0.684 0.915 1.282 0.620 0.875
back BiLSTM256H40L1N 0.976 0.705 0.925 1.368 0.602 0.862
back BiLSTM64H20L1N 1.635 0.527 0.829 1.670 0.519 0.822
back BiLSTM64H40L1N 1.600 0.531 0.832 1.641 0.523 0.824
forw GRU128H20L1R 1.693 0.523 0.823 1.723 0.516 0.818
forw GRU128H20L2R 1.430 0.595 0.861 1.485 0.581 0.850
forw LSTM128H20L1N 1.445 0.588 0.857 1.505 0.574 0.846
forw LSTM128H20L2N 1.274 0.631 0.879 1.370 0.607 0.863
forw LSTM128H20L1R 1.597 0.548 0.836 1.638 0.537 0.829
forw LSTM128H20L2R 1.448 0.586 0.856 1.499 0.574 0.847
forw BiLSTM128H20L1R 1.328 0.617 0.873 1.414 0.596 0.858
forw BiLSTM128H20L1N 1.334 0.615 0.873 1.419 0.594 0.857
forw BiLSTM128H40L1N 1.323 0.612 0.873 1.427 0.588 0.855
forw BiLSTM256H20L1N 1.038 0.692 0.912 1.282 0.629 0.874
forw BiLSTM256H40L1N 0.974 0.710 0.921 1.355 0.613 0.864
forw BiLSTM64H20L1N 1.613 0.543 0.835 1.649 0.534 0.828
forw BiLSTM64H40L1N 1.575 0.545 0.839 1.617 0.535 0.831

Table 9: Reuters-21578 train/test loss and accuracies. L is the categorical-cross
entropy, A is the accuracy and T5 is the top-5-categorical accuracy. The
shown results are the mean of the 3-fold cross validated metrics.

88

Model Fold 1 Fold 2 Fold 3 mean
Greedy baseline 0.421 0.420 0.419 0.420
3-Gram Markov baseline 0.466 0.466 0.471 0.468
DP approach 0.695 0.695 0.698 0.696
End-to-end BiLSTM128H20L1N 0.883 0.795 0.782 0.820
LSTM128H20L1N 0.857 0.853 0.858 0.856
LSTM128H20L1R 0.860 0.850 0.859 0.856
LSTM128H20L2N 0.883 0.874 0.880 0.879
LSTM128H20L2R 0.878 0.871 0.880 0.876
LSTM128H40L2R+N 0.890 0.885 0.895 0.890
LSTM128H20L2R+N 0.889 0.880 0.888 0.886
GRU128H20L1R 0.860 0.850 0.860 0.857
GRU128H20L2R 0.874 0.870 0.877 0.874
BiLSTM128H20L1R 0.874 0.876 0.885 0.878

Table 10: Fixing evaluations of the Simple-Wikipedia dataset, as measured by the
mean F1-scores. The result of each fold in the 3-fold cross validation is
shown.

Model Fold 1 Fold 2 Fold 3 mean
Greedy baseline 0.477 0.479 0.478 0.478
3-Gram Markov baseline 0.329 0.332 0.331 0.331
DP approach 0.684 0.678 0.679 0.680
End-to-end BiLSTM128H20L1N 0.745 0.740 0.725 0.737
GRU128H20L1R 0.831 0.833 0.836 0.833
GRU128H20L2R 0.857 0.853 0.861 0.857
LSTM128H20L1N 0.841 0.835 0.839 0.838
LSTM128H20L2N 0.862 0.862 0.862 0.862
LSTM128H20L1R 0.839 0.829 0.840 0.836
LSTM128H20L2R 0.854 0.847 0.856 0.852
BiLSTM128H20L1R+N 0.854 0.853 0.856 0.854
BiLSTM128H20L1N 0.862 0.857 0.858 0.859
BiLSTM128H20L1R 0.853 0.852 0.856 0.854
BiLSTM128H40L1N 0.856 0.853 0.851 0.853
BiLSTM256H20L1N 0.877 0.875 0.866 0.873
BiLSTM256H40L1N 0.864 0.852 0.845 0.854
BiLSTM64H20L1N 0.829 0.826 0.828 0.828
BiLSTM64H40L1N 0.828 0.825 0.830 0.828

Table 11: Fixing evaluations of the Reuters-21578 dataset, as measured by the mean
F1-scores. The result of each fold in the 3-fold cross validation is shown.

89

Type F1-score Simple-Wikipedia F1-score Reuters-21578
Architecture LSTM128H20L2-R+N BiLSTM128H20L1-R+N
Default 0.886 0.858
Beam size 1 0.872 0.846
Beam size 4 0.887 0.856
No typos 0.963 0.919
No look-forward 0.877 0.848
Using default tuner weights 0.819 0.814
50 Epochs 0.876 0.840
No perturbations 0.879 0.848
More data 0.903 -

Table 12: Experiements with changing one setting per experiment, using the bi-
context model. The default setting is using beam size 2, look-forward,
tuned weights, 100 epochs trained models, and fixing files that has all
tokenization errors including typos. The shown values are the mean
F1-scores of 3-fold cross validation.

90

9 Conclusion and future work

9.1 Summary and conclusions

In this thesis, I have addressed the problem of automatically fixing tokenization
errors in a given text. A variety of approaches were presented, two of them were
non-learning dictionary-based approaches, namely, greedy approach and dynamic
programming approach. The other three approaches are based on machine learning,
by using character-based probabilistic language models. The main learning approach
is the bicontext deep learning based approach, the second one is the same but replaces
the character-based language model by a 3-Gram Markov models instead of RNNs,
and the third approach merges most of the components of the bicontext approach into
one end-to-end deep learning approach. The bicontext approach was demonstrated
to show the best performance with F1-score that is close to 90%, and 96% in case
the corrupt texts didn’t include typos as tokenization errors.
Both dictionary-based approaches try to reconstruct the words of a given text to

make them as correct as possible according to a given dictionary. The greedy based
approach tries to match words from the beginning as much as it can, which is usually
not optimal to fix the remaining text. The dynamic-programming approach, enhances
this by considering a variety of possibilities to match words in order to globally match
as much words as possible, which makes the DP approach more powerful.
The learning based approaches are based on joint probabilities over characters,

using probabilistic character-based language models, these probabilities are used
in order to give scores for different fixing decisions. A beam search is then used
to find the most probable fixed text, by fixing a given corrupt text. Additionally,
the approaches maintain two contexts in order to properly decide how to fix the
character between them. The bicontext approach is more hand-crafted, as it uses
two separate RNN language models and combine their output and tune it in order to
make fixing decisions. However, the end-to-end approach, on the other hand, leaves
all the combinations and tuning for the neural network to learn.
The models were evaluated according to two datasets, Reuters-21578 and Simple-

91

Wikipedia. The Reuters-21578 dataset had less data and higher specificity of topics;
while the Simple-Wikipedia dataset had more data and more diverse topics. The
five models were compared against each other, the bicontext approach showed the
best performance with F1-score ≈ 0.88. The end-to-end approach showed also some
promising results with F1-score ≈ 0.78. The baseline learning approach (3-Gram)
which is the same like the bicontext approach but using 3-Gram Markov model as
the character-based language model, got an F1-score ≈ 0.40 which is significantly
outperformed by the both approaches based on deep learning, which concluded the
effectiveness of deep learning to produce robust probabilistic models. On the other
hand, the greedy approach showed the worst performance with F1-score ≈ 0.45,
because it often matches words that makes it hard to fix the remaining text. The
dynamic-programming approach had relatively good performance with F1-score
≈ 0.70, because it considers a divide and conquer strategy that attempts to ensure
that no poor decisions are made that would corrupt more surrounding tokens. Non-
learning based approaches suffer from not choosing words that fit within the given
context, in comparison with the learning based approaches.

The bicontext approach was thoroughly experimented with different model settings
for the character-based RNN language models, like varying the neural network’s
depth, hidden units size, context history length, RNN architecture and reversing the
input context. The choice of the context history and RNN architecture didn’t show
a big difference, in particular, increasing the history from 20 to 40, and similarly
for using GRU, LSTM or bidirectional LSTMs, they had comparable performance
(for models with similar size). On the other hand, deepening the neural network or
using more hidden units showed more promising improvements for all the models.
Reversing input showed improvement in the case of the backward language models,
because the sequence is given in the order more suitable for prediction. In addition to
that, the performance of the bicontext approach was improved by the improvement
of the character-based language models’s ability to predict the successor character as
measured by the loss, accuracy and top-5-categorical accuracy metrics on the test set.
Additionally, the bicontext model was used to evaluate a variety of settings, like

training the model less (50 epochs instead of 100), using bigger or smaller beam
size, turning off the decisions tuner, turning off the looking forward, training with no
input perturbations, or restricting the types of tokenization errors to be fixed. The
experiments concluded a significant improvement caused by using the decisions tuner;
each of the remaining bicontext approach components also showed some improvement.
Last but not least, the bicontext approach achieved much better results when it

92

was solving tokenization errors that don’t include typos, with a best performance of
mean F1-score if 96.3%.

9.2 Future work

In the developed bicontext approach, there are two main components that are designed
specifically for the given tokenization errors, mainly input perturbations and decisions
tuner. However, these two components could be changed in order to solve other
similar problems, that has to do with fixing text according to some language model.
One possible application is to fix text that is parsed from a corrupted picture

(blurry, for example) using an Optical Character Recognition (OCR) tool [37], because
such parsing results in garbled characters. Unlike the garbled characters used in this
thesis (which was one uniformly random garbled character), in such application there
might be consistent patterns of corruption. For example, the characters ‘1’, ‘l’, ‘i’
might be exchanged during parsing, because they look similar. Such patterns, could
be embedded in the input perturbations, in order to be able to identify and separate
these particular parsing mistakes, and hence it could fix texts that were not correctly
retrieved by an OCR tool, due to the low quality of the images.

As concluded, the strength of the probabilistic model used in the character-based
language model significantly affects the fixing performance of the given bicontext
fixer. A series of experiments could be conducted, in order to inspect the effects
of dropouts, and using different dropout rates. Furthermore, increasing the size of
the model also showed an improvement in the performance, mainly increasing the
number of layers and the number of hidden units. An experiment could be conducted
using deeper networks of three or four layers instead of only two layers, and also
increasing the hidden units size. Additionally, evaluations on bigger datasets can be
conducted since the difference in the datasets’ sizes between both datasets showed
an improvement in performance, in addition to the improvement on more data that
was also shown on one fold from the Simple-Wikipedia dataset. Finally, even though
input perturbations showed an improvement in the results, an experiment could verify
the reason of this effectiveness, whether it was due to more training examples or
because of the introduced perturbations.

There are two abstract ideas that could also improve the probabilistic model. The
first idea is to augment a context of characters with a context of words, in order to
better identify the fixes that result in more meaningful fixings. The second idea is to
augment the model with an encoder that encodes the whole text before predicting

93

any decisions, and then the predictions can be made by a given context and the
encoding of the text together. This gives the model an idea about the topic of the
text, which can decide which words are more likely to appear in text. For example,
the word ‘RNN’ is more likely to be fixed to ‘RNA’ if the context of the text is about
biology, and to ‘RNE’ if the context is about Spanish radio (or similar topic), or be
left as is if the context is about deep learning.

94

Bibliography

[1] H. Déjean and J.-L. Meunier, “A system for converting pdf documents into struc-
tured xml format,” in International Workshop on Document Analysis Systems,
pp. 129–140, Springer, 2006.

[2] A. Voutilainen, “Part-of-speech tagging,” The Oxford handbook of computational
linguistics, pp. 219–232, 2003.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances in
neural information processing systems, pp. 3111–3119, 2013.

[4] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.

[5] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint
arXiv:1308.0850, 2013.

[6] Y. Wen, I. H. Witten, and D. Wang, “Token identification using hmm and ppm
models,” in Australasian Joint Conference on Artificial Intelligence, pp. 173–185,
Springer, 2003.

[7] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common c
language errors by deep learning.,” 2017.

[8] S. Ghosh and P. O. Kristensson, “Neural networks for text correction and
completion in keyboard decoding,” CoRR, vol. abs/1709.06429, 2017.

[9] K. Sakaguchi, K. Duh, M. Post, and B. V. Durme, “Robsut wrod reocginiton via
semi-character recurrent neural network,” CoRR, vol. abs/1608.02214, 2016.

[10] S. Chollampatt, D. T. Hoang, and H. T. Ng, “Adapting grammatical error
correction based on the native language of writers with neural network joint
models,” in Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 1901–1911, 2016.

95

[11] S. Chollampatt, K. Taghipour, and H. T. Ng, “Neural network translation models
for grammatical error correction,” arXiv preprint arXiv:1606.00189, 2016.

[12] Z. Xie, A. Avati, N. Arivazhagan, D. Jurafsky, and A. Y. Ng, “Neural language
correction with character-based attention,” arXiv preprint arXiv:1603.09727,
2016.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition. The MIT Press, 3rd ed., 2009.

[14] G. Navarro, “A guided tour to approximate string matching,” ACM computing
surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[15] J. J. Tithi, N. C. Crago, and J. S. Emer, “Exploiting spatial architectures for
edit distance algorithms,” in Performance Analysis of Systems and Software
(ISPASS), 2014 IEEE International Symposium on, pp. 23–34, IEEE, 2014.

[16] R. De La Briandais, “File searching using variable length keys,” in Papers
Presented at the the March 3-5, 1959, Western Joint Computer Conference,
IRE-AIEE-ACM ’59 (Western), (New York, NY, USA), pp. 295–298, ACM,
1959.

[17] S. S. Haykin, S. S. Haykin, S. S. Haykin, and S. S. Haykin, Neural networks and
learning machines, vol. 3. Pearson Upper Saddle River, NJ, USA:, 2009.

[18] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[19] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1.
MIT press Cambridge, 2016.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014.

[21] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

96

[23] F. J. Pineda, “Generalization of back propagation to recurrent and higher order
neural networks,” in Neural information processing systems, pp. 602–611, 1988.

[24] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” Trans. Neur. Netw., vol. 5, pp. 157–166, Mar. 1994.

[25] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” CoRR, vol. abs/1412.3555,
2014.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[27] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (GRU) neural
networks,” CoRR, vol. abs/1701.05923, 2017.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[29] D. L. Olson and D. Delen, Advanced Data Mining Techniques. Springer Publishing
Company, Incorporated, 1st ed., 2008.

[30] F. Peng and D. Schuurmans, “Combining naive bayes and n-gram language
models for text classification,” in European Conference on Information Retrieval,
pp. 335–350, Springer, 2003.

[31] P. Norvig, Paradigms of Artificial Intelligence Programming: Case Studies in
Common LISP. Artificial intelligence programming languages, Morgan Kaufman
Publishers, 1992.

[32] P. Hayes-Roth, M. Fox, G. Gill, D. Mostow, and R. Reddy, “Speech understanding
systems: Summary of results of the five-year research effort,” 1976.

[33] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked
denoising autoencoders: Learning useful representations in a deep network with
a local denoising criterion,” J. Mach. Learn. Res., vol. 11, pp. 3371–3408, Dec.
2010.

[34] S. F. Chen and J. Goodman, “An empirical study of smoothing techniques for
language modeling,” Computer Speech & Language, vol. 13, no. 4, pp. 359–394,
1999.

97

[35] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning,
vol. 1.

[36] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in neural information processing systems, pp. 3104–3112,
2014.

[37] A. Chaudhuri, K. Mandaviya, P. Badelia, S. K. Ghosh, et al., Optical Character
Recognition Systems for Different Languages with Soft Computing. Springer.

98

	1 Introduction
	2 Related work
	3 Background
	3.1 Preliminaries and notations
	3.2 Dynamic programming review
	3.2.1 Edit distance

	3.3 Trie dictionary
	3.4 Neural network review
	3.4.1 Multi-class classification
	3.4.2 Class sampling
	3.4.3 Dropouts

	3.5 Recurrent neural networks review
	3.5.1 RNN cells: Simple, LSTM, GRU
	3.5.2 Character-based language model

	4 Datasets
	4.1 Simple-Wikipedia dataset
	4.2 Reuters-21578 news dataset
	4.3 Corruptions

	5 Problem definition
	5.1 Fixing evaluation definition

	6 Dictionary-based approaches
	6.1 Greedy based approach
	6.2 Dynamic programming based approach
	6.2.1 Token scoring
	6.2.2 Retokenization
	6.2.3 Grouping

	7 Learning-based approaches
	7.1 Maximum likelihood sequence estimation
	7.1.1 Beam search
	7.1.2 State space
	7.1.3 State updates

	7.2 Input processing
	7.2.1 Input format for RNN models
	7.2.2 Input perturbation
	7.2.3 Edit alignments

	7.3 Bicontext model
	7.3.1 Long looking and occurrence functions
	7.3.2 Fixing operations
	7.3.3 Decisions tuner
	7.3.4 Look-forward in additions
	7.3.5 Wrapping up

	7.4 Baseline 3-Gram Markov model
	7.5 End-to-end model
	7.6 Utility
	7.6.1 Caching

	8 Experiments
	8.1 Experiments specifications
	8.2 Character-based language models evaluation
	8.3 Fixing evaluations

	9 Conclusion and future work
	9.1 Summary and conclusions
	9.2 Future work

	Bibliography

