
Master Thesis

Multi-Modal Route Planning

Mirko Brodesser

April 2013

University of Freiburg
Faculty of Engineering

Department for Computer-Science

Bearbeitungszeitraum
September 2012 – April 2013

Gutachter
Prof. Dr. Hannah Bast
Prof. Dr. Christian Schindelhauer

Betreuer
Prof. Dr. Hannah Bast
Dr. Sabine Storandt

Erklärung

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine
anderen als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen,
die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als
solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Abschluss-
arbeit nicht, auch nicht auszugsweise, bereits für eine andere Prüfung angefertigt
wurde.

Freiburg, 11. April 2013 Mirko Brodesser

Zusammenfassung
Wir untersuchen die Berechnung von optimalen Routen, die aus der Benutzung
von öffentlichen Verkehrsmitteln, Laufen, und Autofahren bestehen. Eine eigene
Herausforderung ist es, prägnante und vielfältige Mengen an Routen zu bestimmen.
Wir betrachten Großstädte wie New York, bei denen eine schnelle Berechnung der
Routen eine weitere Schwierigkeit darstellt. Wir veranschaulichen, dass mehrere
Optimierungskriterien notwendig sind um vielfältige Mengen an Routen zu erhal-
ten. Dies erweitert die Menge an optimalen Routen stark, wobei viele der Routen
ähnlich sind. Um prägnante Mengen zu bestimmen, studieren wir verschiedene
Filterungsmethoden. Wir stellen ein Filterungsverfahren, Types aNd Thresholds
(TNT), vor, was zu den gewünschten Mengen führt. Zur Reduzierung der hohen
Berechnungszeit stellen wir optimalitätsbewahrende sowie heuristische Ideen vor.
In einer experimentellen Untersuchung werten wir die gefundenen Wege bezüglich
Qualität und Berechnungszeit aus. Die Experimente belegen die geforderte Qualität
von TNT und zeigen, dass die Laufzeit, unter Inkaufnahme eines Bruchteils an
suboptimalen Lösungen, in der Größenordnung von wenigen Sekunden liegt. Wir
beenden dieses Papier mit einer Übersicht von Verbesserungsmöglichkeiten.

Abstract
We examine the computation of optimal paths, which consist of using public trans-
portation, walking and taking a car. A challenge in itself is to determine concise
and diverse sets of paths. We consider metropolises like New York, where a fast
computation of the paths is difficult. We exemplify that multiple optimality criteria
are necessary to obtain diverse sets of paths. This extends the set of optimal paths
severely, whereas many paths are similar. To determine concise sets, we study dif-
ferent methods of filtering. We propose a filtering procedure, Types aNd Thresholds
(TNT), which leads to the desired sets. To reduce the high computation times,
we introduce several optimality-preserving and heuristic ideas. We experimentally
evaluate the found paths with respect to quality and computation time. The exper-
iments show the claimed quality of TNT and that the running time, while accepting
a fraction of suboptimal solutions, is in the magnitude of few seconds. We complete
the paper by giving an outline of possible improvements.

Contents

1 Introduction 1

2 Related Work 3

3 Routing Models and Algorithms 5
3.1 Models . 5

3.1.1 Road Networks . 5
3.1.2 Transit Networks . 5

3.2 Algorithms . 7
3.2.1 Dijkstra & Variants . 7
3.2.2 Contraction Hierarchies . 8
3.2.3 Transfer Patterns . 9

3.3 Combining Road and Transit Networks 10
3.3.1 Model . 10
3.3.2 Shortest Path Calculation . 12
3.3.3 Improving Compactness of the Model 13

4 Multi-Criteria Shortest Paths 15
4.1 Pareto Sets . 15
4.2 Criteria . 15

4.2.1 Duration and Transfer Penalty 16
4.2.2 Duration, Transfer Penalty and Car Duration 16

4.3 Filtering Pareto Sets . 16
4.3.1 Discretisation . 17
4.3.2 Types and Thresholds . 19

5 Exploring Speed-up Approaches 25
5.1 General . 25

5.1.1 Rounding on Transfers . 25
5.1.2 Flattening the Transit Graph 25

5.2 Discretising during Query Computation 26
5.3 Types and Thresholds . 27

5.3.1 Pruning with Pure Car and Walking Duration 27
5.3.2 Implicit Walking Duration . 28

i

6 Experiments 29
6.1 Setup . 29
6.2 Results . 30

6.2.1 Flattened Transit Graph . 30
6.2.2 Discretisation . 30
6.2.3 Types and Thresholds . 32

7 Possible Improvements 43
7.1 Quality . 43
7.2 Efficiency . 43
7.3 Further Extensions . 45

8 Conclusion 47

Danksagung 49

Bibliography 51

1 Introduction

Travelling shorter or longer distances every day has become a habit for many people
world-wide. Whether one has to get from home to work, from work to an external
meeting, or simply to visit a foreign city, one has to travel. If we want to travel by car,
we can find the shortest path using a navigation system. If we want to travel with
public transportation, there are websites to look up available connections. However,
if we want to travel somewhere, but do not want to limit ourselves to one type of
transportation, currently existing retrieval systems are too restricted to help us. For
example, there could be a path where taking a taxi between two stations yields a
real advantage. Present systems miss this path. We focus on computing feasible
sets of paths, which include such an advantageous path. We consider a set of paths
feasible if it is small, concise and diverse. Such sets of paths are good to compare
the truly distinct paths easily and allow to quickly decide for one of them.
As modes of transportation we consider walking, taking a car, public transporta-
tion, and their combinations. The corresponding networks we regard are almost
unrestricted. Most importantly, we allow for car usage at arbitrary parts of journeys.
To obtain diverse sets of optimal paths, we use multiple criteria: travel duration, car
duration, walking duration, and the number of transfers. We exemplify that mul-
tiple criteria are necessary for diverse paths. This significantly extends the set of
optimal paths, whereas many paths are similar. To get concise sets we propose sev-
eral approaches to filter the numerous results obtained. In comparison to uni-modal
optimal path calculation, computation times increase significantly. Therefore, we
introduce optimality-preserving as well as heuristic methods to reduce them.
Taking into account the properties (availability, velocity, price) of the different means
of transportation, we present a filtering procedure, Types aNd Thresholds (TNT)
which leads to sets of paths with the above mentioned properties.
The text is structured as follows. In section 2, we give a brief outline over the existing
work and findings in this area. In section 3, we recapitulate representations and
outstanding algorithms for the different types of networks. We introduce a model
combining the different types of networks to one multi-modal network and a method
to calculate optimal paths on it. In section 4, we examine several combinations of
optimality criteria and different filtering methods. The section is finalised with the
introduction of TNT. Section 5 is about speed-up approaches. We proceed with the
experimental evaluation of the proposed algorithms and their respective speed-up
techniques in section 6. In section 7, we sketch possible improvements with respect
to quality, efficiency and more realistic modelling and conclude with section 8.

1

2 Related Work

In this section we give a brief overview over existing algorithms in the area of shortest
path computation. The basis of many state-of-the-art algorithms forms Dijkstra’s
Algorithm [1], presented in 1959. For every graph with non-negative edge values, it
computes a shortest path from a given source node to all other nodes. For details,
see section 3.2.1.

For road networks exist many algorithms to reduce the time of calculating a short-
est path from one location to another. Among these are A∗, Landmarks, Arc-Flags,
Transit Node Routing and Contraction Hierarchies. A∗ [2] is a generalisation of Dijk-
stra’s Algorithm. It allows the usage of optimality preserving heuristics to compute
the distance to the target node with less iterations. One of these heuristics is to use
Landmarks [3]. The idea is to choose a very small, diverse set of nodes, the land-
marks. It is accompanied by the precomputation of the distances of the landmarks
to all other nodes. For a query, the precomputed distances are used to estimate the
distance of a node to the target. This leads to less iterations until the distance to
the target node is known. Assuming many queries are performed, precomputation
is a good investment. Another algorithm, Arc-Flags [4], precomputes a partition of
the graph to regions. Each node is assigned to exactly one region. Each arc has a
flag for each region r. The flag indicates if the arc has to be considered, when cal-
culating the shortest path to a node in region r. This allows to skip many arcs and
hence nodes, thus reducing the query time. A further approach that yields very low
query times is Transit Node Routing [5]. The algorithm is based on the observation
that the shortest path of long-distance queries always passes through a small set
of nodes which are close to the source node. These nodes are called transit nodes.
The same applies for the target node. Exploiting that the set of all transit nodes
can be chosen small, makes precomputing their pairwise distances feasible. Using
the precomputed results, long-distance queries can be answered efficiently. A major
improvement in computing shortest paths are Contraction Hierarchies developed by
Geisberger et al. [6]. We recapitulate the algorithm in section 3.2.2.

With respect to modelling, we consider transit networks as more complicated than
road networks. For transit networks several models exist. We briefly introduce two of
the most common ones, time-expanded and time-dependent, in section 3.1.2. Details
can be found in [7]. For the time-expanded model, the same algorithms as for road
networks can be applied. One approach for transit networks, introduced by Bast et
al. [8], is to precompute Transfer Patterns. This method leads to query times of a
few milliseconds, also for huge networks. We study this idea in section 3.2.3 in more

3

detail. Recently, a round-based approach that does not rely on precomputation was
introduced in [9].
Predominantly for transit networks, multi-criteria optimisation receives growing at-
tention. Among the considered criteria are total duration, car duration, walking
duration, the number of transfers, and costs. Mapping multiple criteria linearly
to one criterion is considered problematic [10], because some desired solutions are
likely to be missed. Recent approaches focus on Pareto Sets [11] which lead to
non-dominating optimal paths. For a detailed discussion, see section 4.
Some approaches for transit networks (like [8]) consider walking to nearby stations.
Others consider different modes of transportation, restricted to a certain hierarchy
[12]. Less restricted multi-modal networks have recently been considered by Braun
[13] and Delling et al. [14]. The latter two papers show that using Pareto Sets with
multiple criteria enlarges the set of optimal paths to an impractical extent, especially
when car duration is considered. The paths become too numerous to be practical
when showing them to a user. Moreover, many paths are very similar and query
times increase to the order of minutes. Braun presented a model restricting approach
which significantly reduces the size of the Pareto Sets. However, Braun considers
his approach too restrictive with respect to preserving quality. An evaluation of the
latter is missing. Delling et al. introduced an approach that uses techniques from
fuzzy logic. It identifies the top-k most significant journeys in a post-processing
step. However, their definition of significance does not necessarily result in a diverse
set of solutions.
Modelling reliability and robustness (i.e., how good are the alternatives, in case a
transfer is missed) are other important aspects. Recently, the work of Strasser [15]
focused on this topic. However, it is limited to transit networks. In this paper, we do
not focus on this aspect. In the following section, we recapitulate modelling aspects
of road and transit networks and introduce a model to combine them to a multi-
modal scenario. Moreover, we present a method to combine existing algorithms to
compute optimal paths on the combined model.

4

3 Routing Models and Algorithms

3.1 Models

We distinguish two types of networks, road networks and transit networks. The
former are in our case car and walking networks, the latter represent buses, subways,
trains, etc.

3.1.1 Road Networks

A road network is modelled as a graph. Each node corresponds to a position on
earth. Each arc (u, v) contains the duration it takes to directly travel from u to v.
Figure 3.1 shows a simple example. Note that the graph is directed.

Freiburg Karlsruhe
1 hour, 39 minutes

Figure 3.1: Example of a road network graph.

3.1.2 Transit Networks

Transit vehicles operate on fixed schedules. For each departure of a vehicle exists a
next station where the vehicle stops at a certain time. We call this an elementary
connection. For transit networks, two models are common: One is called time-
dependent, the other time-expanded.
In the time-dependent model, each station of the real world corresponds to one
node in the model. For each elementary connection, an arc exists between the
respective nodes. Attached to the arc is a function depending on the time, mapping
to the duration to get from one station to the other. The function is also used
to model the waiting time until the connection is available. Figure 3.2 shows an
example of a time-dependent graph. This model yields a compact representation
of a transit network. However, including transfer buffers is not trivial. There are
several possibilities to solve this issue; for details consider Pyrga et al. [7].

5

Freiburg central station Karlsruhe central station Bruchsal station

fe1(t)

fe2(t)

fe3(t)

Figure 3.2: Example of a time-dependent graph. The elementary connections are
denoted by ei, the corresponding functions by fei

.

In the following we recapitulate the time-expanded model. For every departure
and arrival of an elementary connection, there exists one departure and one arrival
node. To model transfer buffers for each arrival and departure, a transfer node is
added. For a detailed explanation, we again refer to Pyrga et al. [7]. Figure 3.3
shows an example of a time-expanded graph. Since transfer buffers are explicitly
modelled in the graph, dealing with them is simple. Most algorithms applicable to
road networks can also be applied to time-expanded graphs. The reason is simple,
time-expanded graphs are also graphs with non-negative edge costs.

Freiburg central station

a@13:33 t@13:36 d@13:37

a@13:20 t@13:23 d@13:25

Karlsruhe central station

a@14:37 t@14:40 d@14:45

Figure 3.3: Example of a time-expanded graph. Each circle corresponds to one node.
They are labelled with type@time, where type is either a (arrival), t
(transfer) or d (departure). For simplicity, the durations of the arcs, the
differences of the time of the two adjacent nodes, were omitted.

6

3.2 Algorithms

We briefly introduced some existing shortest path algorithms in section 2. In this
section, we discuss one state-of-the-art algorithm for each type of network. For
road networks, we introduce Contraction Hierachies, for transit networks Transfer
Patterns. Before, we sketch the idea of Dijkstra and two of its relevant variants.

3.2.1 Dijkstra & Variants

Dijkstra’s Algorithm (often abbreviated as Dijkstra), is a shortest path algorithm
for graphs with non-negative edge values. For a given source node, it calculates the
shortest paths to all other nodes. Initially, tentative distances to all neighbours of
the source are kept in a priority queue (PQ). In each following iteration, the node
with the currently smallest tentative distance is taken out of the PQ. The nodes
tentative distance then equals its optimal distance to the source node. A node
taken out of the PQ is called settled. Whenever a node is settled, the tentative
distances of the neighbours are updated according to the edge values. This is called
relaxing the edges. For the calculation of a shortest path from A to B, the procedure
can be terminated as soon as B is settled. Given a graph G = (V, E) and using
a Fibonacci Heap, the amortized running time lies in O(|E| + |V | · log(|V |)). The
original algorithm presented by Dijkstra does not use a PQ and has a running time
of O(|V |2). However, when referring to Dijkstra one usually means the optimised
version which uses a PQ. We also stick to this habit.

Multi-Criteria Variant. There exists an extended version of Dijkstra, which takes
into account multiple criteria in terms of Pareto Sets (see section 4.1 for details).
Roughly, the idea is that instead of tentative distances, multiple tentative objects
are kept per node. An object corresponding to a specific node is called label. Here,
the PQ contains labels instead of integer values. For Pareto Sets, the PQ order has
to be a refinement of the order for the criteria. In the following, the important point
is that we can and do choose a PQ order where labels are popped from the PQ by
increasing duration.

Bidirectional Variant. With respect to Dijkstra, Bidirectional-Dijkstra is used to
reduce the number of visited nodes. It uses a graph with inverted arc directions, we
call it backwards graph. Parallel to a Dijkstra on the graph beginning at the source,
a Dijkstra on the backwards graph beginning at the target is performed. When the
two searches ’meet’, the shortest path from the source to the target is known. Figure
3.4 illustrates the different search spaces of Dijkstra and Bidirectional-Dijkstra.

7

s t

Figure 3.4: Exemplary illustration of the search spaces of Dijkstra (gray) and
Bidirectional-Dijkstra (blue).

3.2.2 Contraction Hierarchies

Prior to Contraction Hierarchies, Sanders et al. [16] developed the concept of High-
way Hierarchies. It is based on the following observation: In a road network, a
hierarchy-level can be assigned to every edge. Edges corresponding to side roads in
a village get a low level, whereas edges corresponding to motorways get a high level.
This approach can be generalized to an arbitrary number of levels. The concept of
Contraction Hierarchies, introduced by Geisberger et al. [6] uses this realisation.
One part of their idea is to remove a node v and insert the necessary arcs, shortcuts,
between the neighbours, such that their pairwise distances are preserved. This is
called contraction of node v. Figure 3.5 shows an example of contracting a node.

u v w1 2

3

Figure 3.5: Example of contracting a node. The graph before and after the con-
traction of node v. Note that if the arc (u, w) were not existent when
contracting v, this arc would be inserted as a shortcut.

All nodes are contracted in a specific order, called contraction order. It is chosen
through the use of heuristics, with the aim of putting nodes corresponding to streets

8

in villages at the bottom and nodes corresponding to highways at the top of the
ordering. The intention is to insert as few shortcuts as possible. One common
heuristic to define the contraction order is to consider the number of shortcuts to
be added, if a node would be contracted directly, minus the respective number of
removed arcs. These values are called edge differences. The order is then defined
according to increasing edge differences.

In practice, contraction of nodes does not result in deleting them from the graph.
Instead, during the iterative contraction process, all previously contracted nodes are
ignored.

Shortest path queries are performed on the contracted graph, using a special Bidirectional-
Dijkstra. From the source node only arcs to nodes with higher ordering are con-
sidered. From the target node in the backwards graph, only arcs to nodes with
higher ordering are considered. The intersection of the settled nodes originating to
the source and to the target yields the minimal distance between source and target.
Geisberger et al. state that even for huge networks, like the whole road network
of Western Europe, query times in the order of milliseconds can be achieved. For
further details, consider [6].

3.2.3 Transfer Patterns

Developed by Bast et al., Transfer Patterns [8] is one state-of-the-art solutions to
compute optimal paths in transit networks. It makes strong use of precomputation,
enabling queries to be answered in a few milliseconds. It is based on the observation
that for a fixed source-target combination transfers of optimal paths occur only
at few sequences of stations. These sequences are called transfer patterns. For
instance, the fastest connections from Freiburg to Zurich might either be direct or
include a transfer in Basel. Assuming the transfer patterns are precomputed, at
query time only the corresponding direct connections need to be considered. In
the above mentioned paper, exact and heuristic ways of precomputing the patterns
are described. The heuristics allow a precomputation time linear in the network
size, with only few non-optimal results. The latter is confirmed by the results of
Sternisko [17]. Moreover, Bast et al. consider a multi-modal scenario. However, it
is limited to transit and walking to nearby stations. As optimality criteria, duration
and number of transfers are applied. Braun [13] explored the extensibility to a
multi-modal scenario similar to ours. However, basic questions remain open. It is
not clear how to compute concise and diverse sets of paths. Moreover, handling
location-to-location queries is an unsolved problem.

9

3.3 Combining Road and Transit Networks

We introduce a model which combines transit, car and walking networks. We call
it combined model. It uses existing road and transit models, augmented by the
necessary connections. Simple extensions allow to incorporate further road networks.

3.3.1 Model

Assumptions, Definitions and Restrictions. The graphs of the car and walking
network, Gc and Gw, are assumed to be given in the representation introduced in
section 3.1.1. The transit network is assumed to be given in the time-expanded
representation, the corresponding graph is called Gt.

We use the notion of stops to refer to the locations for which a transit or road node
exists. That is, a stop can correspond to nodes in the transit and road networks. A
stop for which a transit node exists is called station.

We restrict transitions between the networks to stations. Transfers are limited
to road-network-to-transit and vice versa. This excludes (sub-)paths like ”walk
x minutes then take a car for y minutes”. In view of the fact that the remaining
(sub-)paths ”walk for x′ minutes” and ”take a car for y′ minutes” are not excluded,
we deem this is reasonable.

Embedding Existing Models. For all stops induced by Gt, Gc, Gw a start (S) and
end (END) node is added. A node of the car network is denoted by C, one of the
walking network by W. An arc from u to v with cost c is denoted by (u, v, c). For
each non-station the following arcs are added to the nodes corresponding to the stop:
(S, W, 0), (S, C, 0), (W, E, 0) and (C, E, ctp), where ctp denotes the transfer penalty
costs. Figure 3.6 shows an example comprising these arcs.

For all stations an exit (EX) and an entrance (EN) node is added.

The nodes of the time-expanded graph, which are of type arrival (A), departure (D)
and transfer (T), are augmented by the arcs: (A, EX, ctp), (EN, T, c∗), where c∗
denotes special costs, indicating that this arc should be treated separately. In section
3.3.2 we explain why and how. Ccl, Wcl denote the car and walking node closest
to the station and cccl, wccl their respective costs. Embedding the road networks
is continued by adding the arcs (EX, Ccl, cccl), (EX, Wcl, wccl), (Ccl, EN, ctp + cccl),
(Wcl, EN, wccl). The construction of the combined graph is finalised by iterating
over all stations and adding arcs of cost zero from start to entrance and exit as well
as from entrance and exit to end. Figure 3.7 shows an example of a station.

10

Some non-station stop

C W

END S

ctp

00
0

Figure 3.6: Example of a combined graph, it shows a stop which is not a station.

Some station

A D

T T

EX EN

END

S

C W

Figure 3.7: Example of a combined graph, it shows a station. For simplicity, arc
costs were ommited.

11

3.3.2 Shortest Path Calculation

In our setting, queries depend on a target and source stop and the earliest possible
departure time. To answer arbitrary location-to-location queries, we use the stops
closest to the given locations.

Partially Contracting the Road Graphs. As explained in section 3.3.1, the com-
bined model embeds a car and walking graph. To accelerate query computation we
use a technique presented by Delling et al. [14]. The idea is to partially contract
the road graphs before embedding them in the combined graph. The objective is to
contract as many nodes as possible while keeping the set of nodes which are clos-
est to any station, Scl, uncontracted. That is, car and walking distances between
all pairs of stations will be preserved. Not contracting these graphs would lead to
unnecessary propagation of results when only interested in the distances. Note that
this does not restrict our approach, as the paths of contracted graphs can be restored
efficiently, for details, consider [6].

Each road network is contracted as follows: Using a priority queue with edge dif-
ference (see section 3.2.2 for details) for all nodes, except the ones in Scl to which
value infinity is assigned. The priority queue determines the order of contraction.
Contraction is performed until one of the nodes in Scl is popped from the queue, or
the edge difference exceeds a fixed threshold (we use 10). The latter ensures that
the number of inserted shortcuts stays moderate.

Performing Stop-to-Stop Queries. In the following, we assume that increasing
numbers are assigned to the contracted nodes, corresponding to the contraction
order. We call these numbers contraction numbers. We assume all non-contracted
nodes (all transit, start, end, exit and entrance nodes) are assigned contraction
number infinity. Furthermore, we consider the graph where only arcs to nodes with
non-decreasing contraction numbers exist for each node. We refer to this as the
upwards graph.

The computation of the shortest paths for a source stop s, target stop t and earliest
departure time d can be divided into five parts:

1. Calculate the paths of walking exclusively and using the car exclusively from
s to t, using Contraction Hierarchies in the respective road graphs.

2. Compute the optimal paths from s to all nodes Scl, using multi-criteria Dijk-
stra. Consider only arcs in the upwards graph. Arcs from entrance nodes e to
transfer nodes tr are only valid, if the time of tr is greater or equal to d plus
the total duration of the current path to e.

3. For the car and walking network, use Dijkstra to compute the optimal path
from t to all nodes Scl. This is efficiently done by performing a separate query

12

from t in the upwards graph of the backwards graph, ignoring arcs to entrance
nodes.

4. Extend the paths from s to u, where u ∈ Scl, as calculated in 2., by the
remaining paths from u to t, as calculated in 3.

5. Return the optimal paths of the union of those calculated in 1. and 4.

Concerning the multi-criteria cost functions we consider, for walking exclusively and
using the car exclusively, only duration is relevant. Therefore, both can be calculated
using Contraction Hierarchies. Note that both computations are necessary since the
paths of walking exclusively and using the car exclusively determined in step 3 and
4 of the algorithm might not be optimal. In step 2, arcs from entrance to transfer
nodes need to be treated in a special way, since each transfer node corresponds to
a specific time, whereas entrance nodes are time-independent. Recall that we use a
priority queue order which pops labels by increasing duration. Here we can use this
property and sort outgoing arcs of entrance nodes by increasing time. This allows
to efficiently keep track of the potentially valid arcs.
For simplicity, queries begin at the start node of s and end at the end node of t. In
the following section, we explain why and how start and end nodes can be removed.

3.3.3 Improving Compactness of the Model

To make the combined model more compact, start and end nodes and their corre-
sponding edges can be removed.
The shortest path calculation has to be slightly adjusted. In step 2 of the algorithm,
we have to distinguish the case of beginning the multi-criteria Dijkstra at a station
or a normal stop. If it starts at a station, Dijkstra has to begin at the stations
entrance and exit node. If it begins at a normal stop, Dijkstra has to begin at
the stops car and walking node. To get the optimal paths of the target, we also
distinguish the case of it being a station and a normal stop. If it is a station, the
optimal paths are the optimal union of the paths ending at the stations entrance
and exit node. If it is a normal stop, the optimal paths are the optimal union of the
paths ending at the stops car and walking node. If the transfer penalty is not zero,
it needs to be added to all optimal paths ending at the car node. This finalises the
adjustment of the shortest path calculation. Its correctness can simply be seen by
comparing an imaginary shortest path computation on the normal and the compact
model.
The number of stops is usually very large (two million for our dataset of New York
City). Hence, shortest path computation becomes more efficient, since unnecessary
propagation of optimal labels is avoided. Especially for multi-criteria functions, this
is an important aspect. Moreover, the memory usage of the graph is reduced.

13

4 Multi-Criteria Shortest Paths

We discuss different optimality criteria and how to combine them to get concise and
diverse sets of optimal paths. In the previous sections we did not use a specific
definition for the optimality of paths. Here we catch up on this.

In road networks, exactly one criterion, i.e. duration, is sufficient in many cases. In
transit networks, convenience is another criterion [8]. Some people would want the
fastest connection, while others would prefer the most convenient one. We measure
convenience by the number of transfers (the number of boarded vehicles). We call
this transfer penalty. To optimise multiple criteria in a non-dominating way we use
Pareto Sets.

4.1 Pareto Sets

To model n criteria, n-tuples are used. Each component consists of a non-negative
entry, representing one criterion. Sometimes we refer to these tuples as costs. For
example, when modelling (duration, transfer penalty), the tuple (100, 2) corresponds
to ”duration is 100 minutes and one needs two transfers”.

We briefly recapitulate the definition of Pareto Sets. For two n-tuples t1, t2: if t1 ≤ t2
using component-wise comparison, we say that t1 dominates t2. Let S be a set of
n-tuples. The Pareto Set P ⊆ S is defined such that for all s ∈ S : ∃p ∈ P with
p ≤ s and for p1, p2 ∈ P with p1 6= p2 and p1 does not dominate p2. For instance,
the Pareto Set of {(100, 2), (105, 2), (130, 1)} is {(100, 2), (130, 1)}. This reflects that
(100, 2) dominates (105, 2), and that (130, 1) and (100, 2) are incomparable.

With Pareto Sets, multiple tuples can be optimal at a specific node. Each tuple is
included in a label. Moreover, a label corresponds to a path from the source to the
labels node.

4.2 Criteria

Determining a set of criteria that leads to concise and diverse sets of paths is a
challenge in itself. We discuss several combinations of criteria and demonstrate
their usefulness with respect to the above mentioned properties.

15

4.2.1 Duration and Transfer Penalty

Using duration and transfer penalty as Pareto criteria seems reasonable at first
sight. The transfer penalty can be extended to take car transfers into account, by
incrementing it not only when boarding a transit vehicle, but also when boarding a
car. However, the results are not satisfying. In our multi-modal scenario, the Pareto
Set of optimal costs usually has the following form:

{(x, 1), (y, 0)} with x < y.

The tuple (x, 1) corresponds to ”taking a car for the whole way”. The remaining
tuple corresponds to ”walking the whole way”. Paths including the usage of the
transit network are completely missing. The reason for these one-sided results is
that on the one hand, using a car is usually the fastest solution and it requires
only one transfer. On the other hand, walking exclusively has transfer penalty
zero, hence it is always optimal in the Pareto sense. The former is aggravated by
the fact that our model contains neither turn restrictions, traffic lights nor further
traffic information. We call this the blue light effect, since it reminds of the rules
applying to police cars.

4.2.2 Duration, Transfer Penalty and Car Duration

To generate more diverse results, we use car duration as an additional criterion.
Diversity increases, but the number of optimal paths grows enormously. Moreover,
many very similar paths are optimal. That is, we do not consider the set of optimal
paths to be concise. It brings along two problems. Firstly, the results are too
numerous to be considered practical to show to a human. Secondly, query times
become infeasible. Figure 4.1 shows an excerpt of an example query.
Obviously, some of the results are very similar, although all of them are optimal in
the Pareto sense. Two fundamentally different approaches can be considered in order
to solve this problem: On the one hand one could try to prohibit the generation
of similar solutions by restricting the model, on the other hand one could filter
the Pareto Set. The work presented in [13] focuses on the former approach and
indeed a significant reduction of computation time can be achieved, however, at
substantial expense of optimality. In this thesis, we focus on the latter approach.
In the following we study several ideas how to filter Pareto Sets of the three above
mentioned criteria.

4.3 Filtering Pareto Sets

In this section we focus on filtering Pareto Sets to concise and diverse subsets.

16

duration transfer penalty car duration
0:28:57 1 0:28:57

. . .
1:43:43 3 0:16:35
1:44:01 3 0:16:26
1:44:09 3 0:16:04
1:44:34 5 0:11:07
1:44:36 3 0:15:56
1:45:12 4 0:15:51

. . .
7:06:00 0 0

Figure 4.1: Excerpt of the optimal costs of an example query using duration, transfer
penalty and car duration as Pareto criteria.

4.3.1 Discretisation

As figure 4.1 shows, some of the Pareto optimal results are very similar. A first
approach is to round the durations from exactness to the second to full minutes.
We argue, that in practice, humans would not distinguish these solutions. For the
above example, this already reduces the number of Pareto optimal results, as figure
4.2 shows.

duration transfer penalty car duration
0:29:00 1 0:29:00

. . .
1:44:00 3 0:17:00
1:45:00 3 0:17:00
1:45:00 3 0:17:00
1:45:00 5 0:12:00
1:45:00 3 0:16:00
1:46:00 4 0:16:00

. . .
7:06:00 0 0

Figure 4.2: Excerpt of the optimal tuples of an example query. Durations were
rounded to full minutes. Green tuples are still Pareto optimal after
rounding, gray ones are not.

An extension of the above rounding to minutes, is to discretise car duration to certain
blocks (for example, 10 minutes). This idea was also introduced in [14]. However, it
was used as a heuristic during query time to reduce computation complexity. Our

17

intention is to obtain a coarser, smaller, yet still representative Pareto Set. The
result for the above example is shown in figure 4.3.

duration transfer penalty car duration discretised car duration
0:29:00 1 0:29:00 0:30:00

. . .
1:44:00 3 0:17:00 0:20:00
1:45:00 5 0:12:00 0:20:00
1:45:00 3 0:16:00 0:20:00

. . .
7:06:00 0 0 0

Figure 4.3: Excerpt of the optimal tuples of an example query, before and after
discretisation at blocks of 10 minutes. Green tuples are still Pareto
optimal after the discretisation, gray ones are not.

While the remaining tuples can be called representative in terms of the original
Pareto set, the following issues still exist. Discretisation might lead to pairs of costs
which are very similar. This is the case, if two costs at the common ’border’ of two
consecutive blocks are chosen as representatives. Consider the following example:

duration transfer penalty car duration discretised car duration
1:40:00 3 0:21:00 0:30:00
1:43:00 3 0:19:00 0:20:00

After discretising car duration to blocks of 10 minutes, both tuples remain Pareto
optimal. A solution is to halve the block size and choose the representative of every
second block. Considering the border problem solved, the filtered results are still not
satisfactory. Using a fixed block size implies the same level of absolute coarseness
for all car durations. The following image illustrates this:

0 10 20 30 40 50 60 70 80 90 100

We argue that in practice, a user does not want the same level of absolute coarseness,
but an increasing one. This can be achieved by using increasing block sizes. For
instance, setting the upper border of block i to 10 · 2i minutes yields the following
block distribution:

0 10 20 40 80

18

Note that due to Pareto optimality, the duration of the optimal costs using exclu-
sively the car from source to target is an upper bound for the car duration of all
other Pareto optimal costs. We call this bound pure car duration. While the num-
ber of optimal labels decreases (compared to fixed block sizes), it is, especially for
queries with large pure car duration, still too large for practical usage. Moreover, we
still consider some of the remaining tuples as not desirable. In the following section,
we introduce a filtering method which solves these problems.

4.3.2 Types and Thresholds

Discretisation as described above is based on the intuition that many Pareto optimal
solutions are similar, requiring to choose a representative subset. Each solution itself
is considered reasonable. Examining the solutions more closely indicates that the
latter is not the case. Consider the following example:

”Walk 120 minutes, then ride the train for 10 minutes and finally take a car for 5
minutes to arrive at the target”

While this path might be Pareto optimal, we consider it unlikely that anyone will
favour it. Especially if a path like ”Take the car for 15 minutes to arrive at the
target” exists as well. The idea underlying this example is: if a path already requires
much walking, one will not take a car for just a few minutes. Recall that we did
not consider walking duration as an explicit Pareto criterion. We discuss this issue
in the next section. In the following, we analyse transit, car and walking duration
with respect to their relative durations (RD). We classify them as reasonable and
unreasonable combinations. Based on this, we determine three types of paths,
incorporating all combinations classified as reasonable.
As relative durations we use zero (z), little (l), much (m). Hence RD := {z, l, m}.
We call a set of RD’s valid if at least one element is m. Our classification is based
on the following observations:

• Cars are available everywhere and fast, but expensive.
• Transit is medium-fast and medium-expensive, but at limited availability.
• Walking is possible everywhere and cheap, but slow.

Figure 4.4 contains all combinations of RD’s, annotated according to our classifica-
tion as reasonable (3) or unreasonable (7).
We assume the obvious order of z < l < m. The classification is consistent to
the effect that for each triple classified as reasonable each valid component-wise
smaller triple is classified reasonable, too. This can easily be inferred from the
above mentioned table.

19

transit duration walking duration car duration classification
z z z 7

z z l 7

z z m 3

z l z 7

z l l 7

z l m 7

z m z 3

z m l 7

z m m 7

l z z 7

l z l 7

l z m 7

l l z 7

l l l 7

l l m 7

l m z 3

l m l 7

l m m 7

m z z 3

m z l 3

m z m 7

m l z 3

m l l 3

m l m 7

m m z 3

m m l 7

m m m 7

Figure 4.4: All combinations of RD triples for transit, car and walking duration with
our classifications. White background indicates that an RD triple is not
valid. Gray color indicates that a triple is prohibited due to the graph
model. From the remaining triples, the ones classified reasonable are
green, the others are blue.

20

Finally, we determine three types of all reasonable solutions:
1. Only car.
2. Much walking, much transit, no car.
3. Much transit, little walking, little car.

Here, the attributesmuch and little should include all smaller relative durations. The
types are complete to the effect that exactly all elements classified as reasonable are
included. This can again be deduced simply from the table in figure 4.4.
For practical purposes, much and little need to be defined concrete. Incorporating
that little depends on the type of transportation, we chose the following definitions.
All durations are given in minutes and we omit the unit minutes for all function
values:

• zero(∗) := 0
• little(walking) := 10
• little(car) := 0 if pure car duration < 20, max(10, 25% ∗ pure car duration)

otherwise
• much(∗) :=∞

These definitions provide the necessary thresholds for all considered durations.
Actual filtering consists of two steps. Firstly, all labels not belonging to any type are
discarded. Secondly, with the following function, all car durations are transformed
to their relative durations:

rd(car duration) =


0, if car duration = 0
1, if 0 < car duration ≤ little(car)
2, if little(car) < car duration < much(car)

The Pareto Set of the transformed triples constitutes the result. We call the whole
concept Types aNd Thresholds (TNT). Figure 4.5 shows the final result of a
query performed on real data.

4.3.2.1 How to Take Walking Duration into Account?

In the previous section we proposed the concept of TNT, for which walking duration
is an important element. We discuss two ways of calculating it.
When filtering a Pareto Set of triples with criteria (duration, transfer penalty, car
duration), the implicit walking duration can be accumulated in a hidden variable
for each triple. However, this can lead to suboptimal results. The example in figure
4.6 illustrates how solutions can get lost, if walking duration is not considered as an
explicit Pareto criterion.
The problem of suboptimal paths can be alleviated by discarding certain labels
during query computation. As soon as a label does not belong to a certain type, its

21

duration transfer penalty car duration path-summary
0:23:00 1 0:23:00 23C
1:12:00 3 0:10:00 8W-4-23T-1W-2-26T-10C
1:47:00 2 0:10:00 10W-19-69T-10C
1:48:00 3 0 8W-4-23T-5W-1-19T-1-19T-30W
2:05:00 2 0 10W-19-24T-2W-6-34T-31W
2:35:00 1 0 75W-8-42T-31W
4:46:00 0 0 286W

Figure 4.5: Filtered results of a random query performed on real data. Paths are
summarised with the following regular expression:
(duration means-of-transportation (- waiting-time)?)*
Means of transportation is either car (C), walking (W) or transit (T).
Duration and waiting time are rounded and given in minutes.

extensions also cannot belong to that type. Therefore, if a label solely belongs to
type 3 and an extension does not belong to type 3, the extension can be discarded.
This implies, that an extension of a label belonging only to type 3, which exceeds the
walking duration threshold, can be discarded. Figure 4.7 shows an example which
illustrates why this can indeed improve the quality of the final results. Moreover,
discarding labels during query computation reduces the computation time. We
discuss this further in section 5.3.

s z

x

y

u t6 min car

20 min transit

15 min transit

4 min walk

8 min walk

5 min walk

Figure 4.6: Example for the suboptimality of using implicit walking duration with
Pareto criteria duration, transfer penalty, and car duration. Imagine a
query from stop s to stop t: at u the path via y would be optimal and
dominate the path via x. Hence, the path via x would be discarded.
At t, the path via y exceeds the threshold little(walking), hence it is
discarded during filtering. This is suboptimal, because at t the path via
x does not exceed the threshold little(walking).

An optimal solution is to use walking duration as a separate Pareto crite-
rion. However, this increases computation time. Moreover, it calls for additional
post-processing. Otherwise, many optimal paths would be similar, varying in the
amount of walking duration. Therefore, we post process the results by returning

22

s

u v

x

y

t

(41, 2, 10, 11*)

(35, 2, 10, 5*)
(46, 3, 10, 11*),
(47, 3, 10, 5*)

10 min car

20 min train

11 min walk

5 min walk

5 min train

12 min train

Figure 4.7: Example why not discarding labels without type during query compu-
tation can affect the final result. The nodes x, y, t are annotated with
their optimal labels (duration, transfer penalty, car duration, implicit
walking duration). The asterisk for implicit walking duration indicates
that it is not used as a Pareto criterion. Consider a query from s to t.
Then, at t, the label stemming from y, ly, would be dominated by the
one stemming from x, lx. Hence, lx would be kept. However, since it
does not belong to any type, it would be discarded in the post-processing
step. Therefore, lx can be discarded during query computation. Then ly
is not dominated and also survives the post-processing step.

the Pareto Set with respect to duration, transfer penalty, and car duration. That
is, after ensuring that no desired optimal solution got lost, we filter back to the
original Pareto criteria. This keeps at most one solution per triple (duration, trans-
fer penalty, relative car duration). However, computation times are expected to
increase even more. The experimental results confirm this, for details see section 6.
In the following section, we discuss different speed-up techniques to get a grip on
this problem.

23

5 Exploring Speed-up Approaches

5.1 General

5.1.1 Rounding on Transfers

In section 4.3.1, we introduced the idea of rounding to full minutes. A special form
can also be applied during query computation, yet preserve optimality in a certain
sense. In our implementation, the durations of arc costs are given exactly to the
second. This accuracy is necessary to avoid accumulating error (compared to using
full minutes). For road networks, we calculate durations depending on distances of
nodes. The GTFS data [18], which we use to model the transit network, provides
durations in seconds. Therefore, this is indeed practically relevant. We assume that
no kind of public transportation in practice provides accuracy by seconds. The speed
of humans in terms of walking and car usage varies too. Thus, we propose to round
up durations, immediately before transfers, to full minutes. This can also
be interpreted as a coarse transfer buffer. With respect to reality, we consider
this an optimality preserving technique. Figure 4.1 and 4.2 illustrate the rounding
effect on an example based on real data. We expect rounding during query time to
noticeably speed-up computation time. Arc relaxations will happen for less labels.
Moreover, the Pareto Set of labels attached to each node will shrink, resulting in
less comparisons when a new label is inserted.

5.1.2 Flattening the Transit Graph

Originally, our intention was to evaluate a heuristic to speed-up the computation
of transfer patterns for multi-modal networks. At that stage of the thesis, we were
not aware that finding an appropriate cost function would be a severe problem.
Therefore, we first focused on a heuristic approach of making the transit graph
independent of time. We call this flattening the transit graph. The aim was to make
transfer pattern computation significantly faster, taking into account a fraction of
non-optimal results. Trips which do not overtake each other and have the same
stop sequences are grouped to lines. For the transit graph, exactly one trip per
line is kept as a representative. The heuristic then diversifies into two branches. In
the first branch, it is encoded in the graph that the representatives are reachable
immediately after arriving at a station. We call this the immediate heuristic. In

25

the second branch, the representatives are reachable after the average difference of
the subsequent departure times of the respective lines. We call this the line average
heuristic.
To determine if the heuristics fulfil the assumption of significantly improving compu-
tation times, we evaluated them for location-to-location queries. As Pareto criteria
we chose duration, transfer penalty, and car duration. Since computation times were
not significantly lower, we rejected this approach. For details of the evaluation, con-
sider section 6.2.1.

5.2 Discretising during Query Computation

In section 4.3.1, we introduced the idea of discretising Pareto criteria in a post-
processing step, to filter the numerous optimal labels. Recall that incorporating
car duration as a separate criterion heavily increases query computation time. To
reduce it, we propose the heuristic of performing discretisation during query
computation:
• Pareto criteria are duration, transfer penalty, and discretised car duration.
• Car duration is a hidden parameter of each label. It is used to correctly

calculate the corresponding discretised car duration.
• Tie-breaking is necessary to decide for labels with equal Pareto criteria, as

to which one to keep. A natural decision is to choose the one with less car
duration.
• To break ties correctly, the priority queue order is chosen to compare the

criteria in the order duration, transfer penalty, car duration (not discretised
car duration).

Compared to performing discretisation as post-processing, performing it during
query computation does not necessarily preserve optimality. Figure 5.1 illustrates
this with an example.
Since it is not obvious that each settled label corresponds to a path, we show this
by proving that each settled label can never be replaced by another one.

Claim: For discretisation during query computation, a settled label can never be
replaced by another one.

Proof: Assume a label l1 exists which is settled and for the same node a label
l2 exists which afterwards is popped from the priority queue and has equal Pareto
criteria. The order of the priority queue implies l1.car-duration ≤ l2.car-duration. �

For each block, we call the representative obtained by applying discretisation as a
post-processing step optimal representative. Performing discretisation during query

26

s x y

u

t

(0, 0, 0, 0*) (2, 1, 0, 0*) (6, 1, 0, 0*)

(10, 1, 10, 8*), (11, 1, 10, 5*)

(14, 1, 10, 12*), (15, 1, 10, 9*)

2 min transit 4 min transit

8 min car 5 min car

4 min car

Figure 5.1: Example for the non-optimality of discretising during query computa-
tion. An asterisk is used to tag the hidden parameter car duration.
Assuming a block size of 10 minutes, the label (15, 1, 10, 9*) at stop t
would be missing. It would be available, if discretisation were performed
as a post-processing step. For simplicity, transfer times were neglected.

computation yields an average recall of the optimal representatives of around 90%.
For details of the experimental results see section 6.

5.3 Types and Thresholds

5.3.1 Pruning with Pure Car and Walking Duration

The types of paths and their thresholds introduced in section 4.3.2 can be used to
discard labels during query computation while preserving optimality. As soon as
a label belongs to no type, it cannot belong to the filtered Pareto Set, hence it is
superfluous and can be discarded.
Recall, part of the shortest path algorithm introduced in section 3.3.2 are Contrac-
tion Hierarchies to compute the shortest paths of exclusive walking and exclusive
car usage. Recall, the duration of the latter was defined as pure car duration. Ac-
cordingly, we call the duration of the former pure walking duration. Since both are
computed very fast (in the order of milliseconds) we can use them for our pruning
purposes.
That is, after step 1 of the shortest path algorithm, pure car duration is known.
Therefore, in steps 2-4, only labels belonging to type 2 or 3 need to be kept. This
induces the following pruning rule for all labels:

27

Pruning rule: A label can be discarded if:
1. duration > pure walking duration or
2. walking duration > little(walking) and car duration > 0 or
3. car duration > little(car)

Claim: The pruning rule preserves optimality.
Proof: Given a label, for extensions of the label, all Pareto criteria can only increase.
Thus, a label dominates its extensions. Any label which fulfils 1., will be dominated
by the label corresponding to pure walking duration, which has the form (pure
walking duration, 0, 0). Any label which fulfils 2. can not belong to type 2 or 3.
The same applies to 3. �

5.3.2 Implicit Walking Duration

As mentioned above, to filter labels to the three types, their walking durations have
to be available. We already showed that not using walking duration as an explicit
Pareto criterion can lead to non-optimal results. Nevertheless, in practice we expect
the difference to the optimal results to be minor.
To efficiently keep track of the implicit walking duration, we propose a similar
approach as for discretising during query computation. The walking duration should
be kept in a hidden parameter of the label. For labels with equal Pareto criteria,
the label with less walking duration should be kept.
It is noteworthy that using implicit walking duration will not affect the quality of
type 2 paths (much transit, much walking, no car). For the correctness of this ar-
gument, consider the following proof.

Claim: Let (A) be the result of using the Pareto criteria duration, transfer penalty,
car duration, and walking duration during query computation. Let (B) be the result
of using Pareto criteria duration, transfer penalty, and car duration with implicit
walking duration during query computation. We compare two labels by their common
Pareto criteria.
For a fixed node, for each label l of type 2 from (A), a label l′ of the same node of
type 2 from (B) with l′ ≤ l exists.
Proof: Each l of (A) corresponds to a path lu1 , . . ., lun = l, where lui

at node ui

denotes the predecessor of lui+1 . We prove by induction on that path, that for each
lui

of type 2, exists l
′
ui

of type 2 produced by (B) with l
′
ui
≤ lui

. For u1 this is
obvious. Assuming there exists l

′
ui

with l
′
ui
≤ lui

, we show there exists l
′
ui+1
≤ lui+1 :

Since the same graph is used for (A) and (B) and there must exist an arc from ui

to ui+1 with costs c = lui+1 − lui
, we have l

′
ui

+ c ≤ lui
+ c = lui+1 . Therefore, and

due to Pareto optimality where labels can only get dominated by labels with lower
costs, in (B) at node ui+1 exists l

′
ui+1

with l
′
ui+1
≤ lui+1 . �

28

6 Experiments

In this section, we evaluate the heuristics and filtering methods. We briefly evaluate
the heuristics of flattening the transit graph. We compare discretisation and using
types and thresholds with their heuristics. We measure query computation duration
and quality.

6.1 Setup

Our implementation of combined graph, as described in section 3.3.2, is written
in C++ and compiled with GCC 4.6.3 with the -O3 flag. The experiments were
performed on a machine with 96GB of RAM and two Intel Xenon E5649 CPUs with
8 cores, each having a frequency of 2.53 GHz (exactly one core was used at a time).
The used OS is Ubuntu 12.04, operating in 64-bit mode.

To instantiate the multi-modal networks we used publicly available OSM [19] and
GTFS data [18]. We only used data of a randomly selected Monday. OSM data
was chosen to cover the terrain corresponding to the GTFS data. For walking, we
assumed an average speed of 4 km/h. For the car network, average velocity was
chosen depending on the road type, ranging from 5 to 110 km/h. We evaluate our
algorithms on the networks of Austin, Dallas, Toronto and New York City. In the
following, the latter is abbreviated with New York. The table in figure 6.1 contains
an overview over the most important properties of these networks. The road network
graphs are symmetric and filtered to their largest connected component. Due to time
restrictions, we did not use the most memory-efficient solution. Start nodes and
their corresponding arcs were not removed. End nodes were not removed, however
we deleted their corresponding arcs. Compared to a more space-efficient solution
described in 3.3.3, the influence on computation time is negligible. Furthermore,
rounding on transfers is used for all algorithms.

For each multi-modal network, the following experiments were performed using 100
queries from random stops with some station within at most 1 km point-to-point
distance. We chose this restriction to exclude that a significant amount of queries
would be performed in areas where transit is not available. Departures times were
chosen randomly from the range of 06:00 a.m. to 10:00 p.m.

29

Austin Dallas Toronto New York
All
#Stations 2.7K 11.6K 10.9K 15.8K
#Stops 0.3M 1.4M 0.4M 2.0M
#Nodes 2.0M 7.5M 7.5M 16.9M
#Arcs 5.0M 18.9M 17.5M 41.1M
Transit
#Nodes 0.6M 1.8M 5.9M 9.0M
#Arcs 1.1M 3.2M 10.3M 15.6M
Car
#Nodes 0.3M 1.3M 0.4M 2.0M
#Nodes (core) 3.3K 20.8K 10.9K 28.0K
#Arcs 1.4M 5.9M 1.7M 8.5M
Walk
#Nodes 0.3M 1.4M 0.4M 2.0M
#Nodes (core) 3.7K 20.8K 12.5K 32.6K
#Arcs 1.4M 6.0M 1.7M 8.6M

Figure 6.1: Overview over the most important properties of the evaluated networks.

6.2 Results

6.2.1 Flattened Transit Graph

We performed only few experiments for the heuristics of flattening the transit graph,
because the expectation of significantly reduced query times was not fulfilled. The
table in figure 6.2 shows the results for using Pareto criteria duration, transfer
penalty, and car duration.
Note that each label corresponds to a pattern. Compared to the original transit
graph, the number of found patterns increased significantly for both of the heuristics.
Since the number of nodes and the number of labels per node have strong influence
on the query durations, this can lead to higher running times of the heuristics.
The intention behind flattening the transit graph was to reduce query computation
by paying with lower quality. Since the former is not the case, we refrained from
examining this approach in more detail.

6.2.2 Discretisation

In this section we compare discretisation as a post-processing method and using
it as a heuristic during query computation. The former uses the Pareto criteria
duration, transfer penalty, and car duration, the latter duration, transfer penalty
and discretised car duration, see section 5.2 for details. As block size we chose 10

30

Austin Dallas Toronto New York
Original Transitgraph
Duration (avg/50/90/99) 4/4/7/10 44/43/63/75 86/84/118/151 154/146/207/372
#Patterns (avg/50/90/99) 16/14/30/40 22/20/38/50 22/20/35/51 26/25/42/71
Flattened Transitgraph
#Transit nodes 17K 61K 92K 134K
Immediate Heuristic
Duration (avg/50/90/99) 3/2/4/5 41/41/57/85 24/21/37/66 57/56/85/112
#Patterns (avg/50/90/99) 21/19/36/58 30/27/50/72 27/24/42/79 33/31/59/85
Recall (avg/50/90/99) .3/.3/.6/1 .3/.2/.5/.8 .3/.2/.4/.8 .3/.3/.5/.7
Precision (avg/50/90/99) .2/.2/.4/.6 .2/.2/.3/.7 .2/.2/.3/.8 .2/.2/.4/.7
Line Average Heuristic
Duration (avg/50/90/99) 2/2/4/6 42/42/61/88 28/24/46/62 56/54/80/101
#Patterns (avg/50/90/99) 20/17/38/63 28/25/48/73 27/25/43/68 33/29/58/105
Recall (avg/50/90/99) .3/.3/.6/1 .3/.3/.5/.8 .3/.2/.5/.8 .3/.3/.5/.6
Precision (avg/50/90/99) .2/.2/.4/.7 .2/.2/.4/.8 .2/.2/.4/.7 .3/.2/.4/.6

Figure 6.2: Flattening the transit graph: Recall and precision are given with respect
to the optimal representatives. Durations are given in seconds. The table
provides average, 50%-ile, 90%-ile and 99%-ile values.

minutes. We examine query duration and quality. The latter is measured in recall
and precision of the optimal representatives (section 4.3.1). Additionally we use an
approximate recall measure, allowing for a deviation of x minutes and y percent of
the optimal solution. We call this measure recall-x,y. We use recall-5,5 and recall-
10,10. Moreover, we measure the percentage of paths for which no approximate
match (with the same discretised car duration) was found.

We consider these measures necessary, since the recall itself is not convincing to
determine the quality of the results. For example, assume the recall is 50%, and
distinguish two cases of duration deviation of optimal representatives: 1) 0.1% and
2) 200%. Despite having equal recall values, we consider the objective loss of quality
in the former case to be significantly lower than in the latter case. Figure 6.3 shows
the experimental results with respect to computation duration and number of found
optimal paths. Figure 6.4 reflects the quality of the found paths using boxplots.

To summarise, the heuristics lead to an improvement in duration of around factor
4. Absolute running times are roughly in the order of tens of seconds, which is too
high for practical application. Moreover, the number of filtered paths is roughly
around 8, which is on the border of feasibility. Precision and recall of the heuristic
are both around 90%, although some paths are not even matched approximately.

31

Duration #Paths #Filtered Paths
Data Algo avg/50/90/99 avg/50/90/99 avg/50/90/99

Austin PP 4/4/6/8 16/15/26/38 6/6/9/14
DCQ 1/1/1/1 - 6/6/9/15

Dallas PP 43/40/60/83 24/20/40/53 8/8/11/14
DCQ 7/7/8/9 - 7/7/10/13

Toronto PP 86/83/114/139 24/22/39/46 7/7/10/12
DCQ 22/22/25/26 - 7/7/10/12

New York PP 181/173/251/418 24/22/40/57 8/8/12/14
DCQ 37/37/46/54 - 8/8/11/14

Figure 6.3: Discretisation: Comparison of the post-processing method (PP) and as
a heuristic during query computation (DCQ). Durations are given in
seconds. The table provides average, 50%-ile, 90%-ile and 99%-ile values.

6.2.3 Types and Thresholds

In this section, we examine the approach of using types and thresholds (TNT) with
the respective speed-up techniques (section 5.3). We compare the basic algorithm
with the heuristic of using implicit walking duration (IWD). For the basic algorithm,
we also measure the effect of the pruning rule. We run the IWD heuristic always
with the pruning rule, since it affects the quality of the results. Recall that for the
basic algorithm this is not the case. Figure 6.5 shows the experimental results with
respect to computation duration and number of found optimal paths.
Quality is measured in the same manner as for discretisation. Figure 6.6 shows
the results. Since paths of type 3 are the only ones affected by the IWD heuristic,
we additionally measure the quality of the type 3 results. That is, we separately
take into account only those queries and paths, where the basic algorithm leads to
optimal paths of type 3. The results are shown in figure 6.7.
Especially for practical use, the total number of found paths and their distribution
to the three types is of interest. Figure 6.8 shows boxplots for the respective data.
The experimental results show that using TNT with the basic algorithm leads to
infeasible query times (order of tens of minutes for larger datasets). The pruned
version runs in the order of many seconds to few minutes. The heuristic of using
implicit walking duration leads to running times of a few seconds for small and
medium sized datasets and to tens of seconds for larger datasets. Precision and
recall are both close to 100%, although for a fraction of queries some optimal paths
are completely missed. The same is true when considering only those queries and
paths where the heuristic can have a negative effect on the quality. That is, the
heuristic returns almost optimal results.
The number of filtered paths is for all datasets roughly around five. There is always
one path of type 1 (using car exclusively), around four paths of type 2 (transit and

32

(a) Austin

(b) Dallas

Figure 6.4: Discretisation: Boxplots of Precision, Recall, Recall-5,5, Recall-10,10
and percentage of completely missed paths for all datasets.

33

(c) Toronto

(d) New York

Figure 6.4: Discretisation: Boxplots of Precision, Recall, Recall-5,5, Recall-10,10
and percentage of completely missed paths for all datasets.

34

Duration #Paths #Filtered Paths
Data Algo avg/50/90/99 avg/50/90/99 avg/50/90/99

Austin
Basic 22.9/19.8/35.2/60.8 61/54/109/198 -
Basic-pruned 2.7/0.8/7.6/14.9 15/10/36/64 4/4/6/8
IWD-pruned 0.5/0.3/1.2/2.4 5/4/7/18 4/4/6/8

Dallas
Basic 276.0/252.0/449.0/582.0 70/52/135/227 -
Basic-pruned 24.6/25.3/53.5/84.8 21/19/42/85 5/6/7/9
IWD-pruned 4.2/4.5/7.9/9.5 6/6/11/12 5/5/7/9

Toronto
Basic 924.0/846.0/1380.0/1620.0 123/110/215/320 -
Basic-pruned 124.0/126.0/240.0/349.0 44/45/81/105 6/6/8/9
IWD-pruned 12.1/13.5/21.1/24.8 8/8/12/16 6/6/8/9

New York
Basic 1770.0/1370.0/3220.0/5630.0 123/107/250/388 -
Basic-pruned 308.0/260.0/628.0/1450.0 40/29/85/109 5/5/8/9
IWD-pruned 54.1/25.8/81.0/298.0 7/5/11/16 5/5/7/9

Figure 6.5: Types and Thresholds: Comparison of the basic algorithm (with and
without pruning rule) and the IWD heuristic with pruning rule. Dura-
tions are given in seconds. The table provides average, 50%-ile, 90%-ile
and 99%-ile values.

walking) and around one path of type 3 (much transit, little walking and little car
usage). Hence, we consider the set of paths concise and diverse.
However, there is still room for improvement. In the following section we discuss
ideas to improve quality and especially reduce query computation.

35

(a) Austin

(b) Dallas

Figure 6.6: Types and Thresholds: Boxplots of Precision, Recall, Recall-5,5, Recall-
10,10 and percentage of completely missed paths for all datasets.

36

(c) Toronto

(d) New York

Figure 6.6: Types and Thresholds: Boxplots of Precision, Recall, Recall-5,5, Recall-
10,10 and percentage of completely missed paths for all datasets.

37

(a) Austin

(b) Dallas

Figure 6.7: Types and Thresholds: Boxplots of Precision, Recall, Recall-5,5, Recall-
10,10 and percentage of completely missed paths for all datasets, con-
sidering only those paths and queries affected by the IWD heuristic.38

(c) Toronto

(d) New York

Figure 6.7: Types and Thresholds: Boxplots of Precision, Recall, Recall-5,5, Recall-
10,10 and percentage of completely missed paths for all datasets, con-
sidering only those paths and queries affected by the IWD heuristic. 39

(a) Austin

(b) Dallas

Figure 6.8: Types and Thresholds: Boxplots of the number of paths and their dis-
tribution to the particular types.

40

(c) Toronto

(d) New York

Figure 6.8: Types and Thresholds: Boxplots of the number of paths and their dis-
tribution to the particular types.

41

7 Possible Improvements

As experimental results have shown, the approach of using types and thresholds
leads to concise and diverse sets of paths. However, certain improvements are still
possible. We first shed light on a potential weakness of the approach and discuss a
potential way to solve it; afterwards we introduce several ideas of how to improve the
query duration to make the algorithm applicable in practice. Moreover, we briefly
discuss further issues which were neglected in our approach.

7.1 Quality

Using types and thresholds, the number of returned paths is reasonably low, but
there can still be paths in the solution set which, taking into account the presence
of the other solution, can be considered unreasonable. The issue is based on using
transfer penalty as a Pareto criterion. Consider the following two optimal triples:

duration transfer penalty car duration
1:09:00 4 x
1:10:00 3 y

with either (a) x = 0 = y or (b) x 6= 0 6= y. The latter means that the two
triples belong to the same type (in case of (a) type 2 and in case of (b) type 3).
Because of that and due to the very similar duration, they can be considered similar
with respect to duration and car duration (which has to be either zero or little,
for both triples). Therefore, the triple with transfer penalty 4 can be considered
superfluous. In section 4.3.1 we introduced a means to solve a similar issue for the
Pareto criterion car duration. That is, to solve this problem we could discretise
duration in a post-processing step.

7.2 Efficiency

There are several possibilities to improve query durations. First, recall that we use
special termination conditions for Dijkstra. The optimality-preserving pruning rules
include using pure walking duration as an upper bound for all labels. If the bound
is very high, e.g., above 10 hours (which is common for longer-distance queries),

43

pruning of labels is very limited. The reason in in the time-expanded graph used
to represent the transit connections: every node corresponds to a specific time.
Thus, nodes with an arbitrary late time might also receive labels, whose extensions
can never be parts of optimal paths to the target. These labels are computed
unnecessarily. Due to our algorithm (see section 3.3.2) it is not obvious when to
stop Dijkstra, since the optimal labels at all core nodes are needed.

Intuitively, great potential lies in terminating Dijkstra as early as possible. This
claim is supported by the large amount (roughly 50-75 percent, considering only the
core nodes of the road networks) the transit graph constitutes of the whole graph.
In the following we describe a way to calculate tighter bounds to prune labels. It is
based on the assumption that there exists a final node, where all optimal labels of
the target stop are collected. Afterwards we describe an approach how to efficiently
fulfil this assumption.

Tighter bounds to prune labels. Assuming there exists a final node where all
optimal labels of the target are collected during the query, the settled labels of this
node can be used as upper bounds for all other labels. The reason is that all labels
based on such labels will eventually be dominated at the final node.

Extending the graph model to a final node for the target. To apply the tighter
bounds described above, we need to modify our current graph model. Recall that
currently two Dijkstras (besides the use of Contraction Hierarchies for pure car
and walking duration) are executed: Firstly, one from the source, using only non-
downward arcs and secondly, one from the target being restricted to the road network
graphs limited to non-downward arcs. The optimal costs from the target to all core
road network nodes can be expected to be calculated very fast (in the order of mil-
liseconds). Assume these are calculated. Then for each reachable core road network
node an arc to the target, with the previously calculated cost, could temporarily be
added. We call these arcs query arcs, since they are created depending on the spe-
cific query. Afterwards, calculating the optimal labels from the source to the target
would be possible by executing one Dijkstra from the source in the non-downwards
graph, additionally considering the query arcs. Thus, the required final node would
exist, where all optimal labels of the target are collected during the query.

While pruning of labels is likely to reduce query times, it is questionable if they will
be low enough to allow interactive queries. To achieve the latter, extending Transfer
Patterns to our multi-modal scenario seems to be a reasonable idea.

Extending Transfer Patterns to our multi-modal scenario. Recall that Braun
[13] introduced an approach for generalizing Transfer Patterns to a multi-modal
scenario similar to ours. Besides other questions, generalizing this approach to arbi-
trary location-to-location queries is only obvious in theory. In practice, computing

44

full Transfer Patterns for all pairs of locations is infeasible. A solution for traditional
Transfer Patterns (i.e., considering only transit and small amounts of walking) is
to use hubs. However, for our multi-modal scenario, due to the support of car as a
transportation mode, this approach does not seem to be extendable in an obvious
way. Further research needs to be done.

Using different graphs and algorithms. Our graph model is not necessarily the
ultimate solution. Possibly, time-dependent or even different approaches, like the
one proposed in [9], could lead to more efficient computations.

A divide and conquer approach. We already applied a divide and conquer ap-
proach in our shortest path algorithm. Computing the set of optimal paths is
achieved by calculating the solution of type 1 independently of those of type 2
and 3. We could proceed the dividing further. The solutions of type 2 look very
similar to the ones calculable by traditional Transfer Patterns. The only difference
is, that in our approach, for type 2 solutions, walking is not limited. Assuming there
exists a simple way to extend traditional Transfer Patterns to unlimited walking,
we can infer that these solutions could be calculated very fast during query compu-
tation. For the remaining solutions of type 3, we could use a modified graph such
that the implicit walking duration heuristic would (intuitively; a proof remains to
be done) become optimal. The modified graph should look as follows: First recall
the properties of type 3 solutions: much transit, little walking and little car; note
that we defined little(walking) as a fixed threshold (10 minutes) for each subpath
of pure walking. Therefore, in our graph model, we could replace the arcs cor-
responding to the walking network by arcs between of all pairs of (walking node,
station) with walking distance of at most 10 minutes. This could efficiently be done
by performing one Dijkstra (using only duration as criterion) from each station to
all nodes in the walking network and terminating each Dijkstra early by using the
10 minute threshold. Since all walking connections are now direct connections, it
seems that the heuristic of using implicit walking duration will produce equal results
like using explicit walking duration. That is, the heuristic would not be a heuristic
anymore, but produce optimal results. On this graph, the solutions for type 3 could
be computed expecting the amount of labels is considerably reduced, i.e., allowing
fast computation of the optimal solutions. Besides applying the introduced pruning
rule, the solutions for type 1 and 2, which are both expected to be available in the
order of milliseconds, could be used for additional pruning. Further research could
shed light on the practicability of this approach.

7.3 Further Extensions

Besides extending the labels to even more criteria, further steps towards meeting
every-day reality can be performed. To alleviate the blue light effect in the car

45

network, statistical values (like rush-hours) and real-time traffic news could be taken
into account. Moreover, reliability and robustness are important issues to consider.

46

8 Conclusion
We studied multi-modal route planning, with focus on (almost) unrestricted walking,
car and transit networks. We proposed a simple model to combine these networks.
Based on the premise that finding a useful cost function would be simple, we be-
gan to explore the usefulness of the heuristic of what we call flattening the transit
graph. While the heuristic turned out unfavourable, it became clear that finding
a useful cost-function for our multi-modal scenario was a challenge in itself, firstly
with respect to quality, secondly in terms of efficiency. We rejected the idea to lin-
early combine different criteria into a single criterion, and focused on Pareto Sets of
multiple criteria. The first challenge was to find a set of criteria, leading to more di-
versified results. We exemplified that the criteria duration, transfer penalty and car
duration fulfil this requirement. However, the number of optimal paths would grow
towards a number not practical for the use of humans. Moreover, this brought along
increased computation time. Since high quality of the computed paths is essential
for practical use, we focused on means to improve it, followed by investigations on
how to reduce the computation time. With the results in mind presented in [13] we
rejected the idea of mainly restricting the graph model to achieve good computa-
tion times and especially quality. We primarily focused on means to obtain results
of good quality, focusing on ways of post-processing the solution sets towards this
goal, with the above mentioned Pareto criteria. As a first approach we introduced
discretisation, which decreased the number of results and preserved the diversity of
the solution set. While the quality of the results improved, it revealed that some
types of solutions were not favourable. To filter out the undesired solutions, we ad-
ditionally used walking duration as a Pareto criterion and introduced the notion of
types. We defined the types based on availability, price and velocity of the different
means of transportation. The filtered results are concise and representative. Since
using walking duration as an additional Pareto criterion increased the computation
times even more, we subsequently focused on means to reduce it. We introduced
optimality-preserving ideas and heuristics.
Afterwards we evaluated quality and computation time of the presented algorithms
and speed-up techniques on different data sets. Besides showing flattening the tran-
sit graph is futile, discretisation proved not sufficient to achieve concise solution
sets. The results indicate that using types leads to feasible quality. Moreover, it
becomes clear that using the speed-up techniques is necessary. For larger datasets,
solely using optimality-preserving methods leads to query times in the order of few
minutes. Additionally using heuristics reduces them roughly by one order of mag-
nitude while loosing a small fraction of optimal results. Since this is not sufficient

47

for interactive queries, we proposed various ideas to further reduce the computation
time. Finally, we briefly discussed possible extensions for a more realistic modelling
of multi-modal route planning.

48

Danksagung

Mein Dank geht an Hannah Bast für zahlreiche Diskussionen und Denkanstöße.
Darüberhinaus danke ich Josef Brodesser, André Doser und Sabine Storandt dafür,
dass sie das Korrekturlesen übernommen haben. Christian Schindelhauer danke ich
dafür, dass er die Rolle des Zweitprüfers übernommen hat.

49

Bibliography

[1] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[2] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Systems Science
and Cybernetics, 4(2):100–107, 1968.

[3] Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25,
2005. SIAM, 2005.

[4] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas
Willhalm. Partitioning graphs to speed up dijkstra’s algorithm. In WEA, pages
189–202, 2005.

[5] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik
Schultes. In transit to constant time shortest-path queries in road networks. In
ALENEX, 2007.

[6] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Con-
traction hierarchies: Faster and simpler hierarchical routing in road networks.
In WEA, pages 319–333, 2008.

[7] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis.
Efficient models for timetable information in public transportation systems.
ACM Journal of Experimental Algorithmics, 12, 2007.

[8] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Har-
relson, Veselin Raychev, and Fabien Viger. Fast routing in very large public
transportation networks using transfer patterns. In ESA (1), pages 290–301,
2010.

[9] Daniel Delling, Thomas Pajor, and Renato Fonseca F. Werneck. Round-based
public transit routing. In ALENEX, pages 130–140, 2012.

[10] P. Fleming D. Corne, K. Deb and J. Knowles. The good of the many outhweighs
the good of the one: evolutionary multiobjective optimization. In coNNectionS
1 (1), pages 9–13. IEEE Neur. Net. Soc, 2003.

[11] P. Hansen. Bricriteria path problems. In Fandel, G., Gal, T. (eds.) Multiple
Criteria Decision Making - Theory and Application, pages 109–127, 1979.

51

[12] Haicong Yu and Feng Lu. Advanced multi-modal routing approach for pedes-
trians. In Consumer Electronics, Communications and Networks (CECNet),
2012 2nd International Conference on, pages 2349 –2352, april 2012.

[13] Manuel Braun. Multi-modal route planning with transfer patterns. Master’s
thesis, University of Freiburg, December 2012.

[14] Daniel Delling, Julian Dibbelt, Thomas Pajor, DorotheaWagner, and Renato F.
Werneck. Computing and evaluating multimodal journeys. Technical report,
Karlsruhe Institute of Technology, 2012.

[15] Ben Strasser. Delay-robust stochastic routing in timetable networks. Master’s
thesis, Karlsruhe Institute of Technology, August 2012.

[16] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest
path queries. In ESA, pages 568–579, 2005.

[17] Jonas Sternisko. On compact representation and robustness of transfer patterns
in public transportation routing. Master’s thesis, University of Freiburg, March
2013.

[18] General transit feed specification (gtfs). https://developers.google.com/
transit/gtfs/, October 2012.

[19] Open street map (osm). http://www.openstreetmap.org, October 2012.

52

https://developers.google.com/transit/gtfs/
https://developers.google.com/transit/gtfs/
http://www.openstreetmap.org

	Contents
	1 Introduction
	2 Related Work
	3 Routing Models and Algorithms
	3.1 Models
	3.1.1 Road Networks
	3.1.2 Transit Networks

	3.2 Algorithms
	3.2.1 Dijkstra & Variants
	3.2.2 Contraction Hierarchies
	3.2.3 Transfer Patterns

	3.3 Combining Road and Transit Networks
	3.3.1 Model
	3.3.2 Shortest Path Calculation
	3.3.3 Improving Compactness of the Model

	4 Multi-Criteria Shortest Paths
	4.1 Pareto Sets
	4.2 Criteria
	4.2.1 Duration and Transfer Penalty
	4.2.2 Duration, Transfer Penalty and Car Duration

	4.3 Filtering Pareto Sets
	4.3.1 Discretisation
	4.3.2 Types and Thresholds

	5 Exploring Speed-up Approaches
	5.1 General
	5.1.1 Rounding on Transfers
	5.1.2 Flattening the Transit Graph

	5.2 Discretising during Query Computation
	5.3 Types and Thresholds
	5.3.1 Pruning with Pure Car and Walking Duration
	5.3.2 Implicit Walking Duration

	6 Experiments
	6.1 Setup
	6.2 Results
	6.2.1 Flattened Transit Graph
	6.2.2 Discretisation
	6.2.3 Types and Thresholds

	7 Possible Improvements
	7.1 Quality
	7.2 Efficiency
	7.3 Further Extensions

	8 Conclusion
	Danksagung
	Bibliography

