
Neural Language Models for
Spelling Correction

Master’s thesis

Matthias Hertel

December 6, 2019

Albert-Ludwigs-Universität Freiburg im Breisgau

Technische Fakultät

Institut für Informatik

Lehrstuhl für Algorithmen und Datenstrukturen

2

Working period

07. 06. 2019 – 06. 12. 2019

Supervisor

Prof. Dr. Hannah Bast

Examiners

Prof. Dr. Hannah Bast
Prof. Dr. Frank Hutter

3

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Further-
more, I declare that I have acknowledged the work of others by providing detailed
references of said work.
I also hereby declare that my thesis has not been prepared for another examination
or assignment, either in its entirety or excerpts thereof.

4

Abstract

Spelling correction is the task of automatically recovering the intended text from
a misspelled text. This enhances digital communication and enables Natural Lan-
guage Processing and Information Retrieval systems to work with misspelled text.
We propose NLMspell, a spelling corrector based on a neural language model.
NLMspell achieves correction F-scores of 91.5 % on artificial misspellings and
88.4 % on real misspellings. It outperforms our baselines methods based on tra-
ditional language models, as well as our neural machine translation approach to
spelling correction, and the commercial product of a large Internet company.

5

Zusammenfassung

Die Rechtschreibkorrektur ist die Aufgabe, den beabsichtigten Text aus einem
falsch geschriebenen Text automatisiert wiederherzustellen. Dies verbessert die
digitale Kommunikation und ermöglicht es Systemen zur Verarbeitung natür-
licher Sprache und zur Informationsbeschaffung, mit falsch geschriebenem Text
zu funktionieren. Wir schlagen NLMspell vor, einen Rechtschreibkorrektor, der
auf einem neuronalen Sprachmodell basiert. NLMspell erreicht Korrektur-F-
Scores von 91,5 % bei künstlichen Schreibfehlern und 88,4 % bei echten Schreibfehlern.
Es übertrifft unsere Baseline-Methoden, die auf traditionellen Sprachmodellen
basieren, sowie unseren neuronalen maschinellen Übersetzungsansatz zur Kor-
rektur der Rechtschreibung und das kommerzielle Produkt eines großen Interne-
tunternehmens.

6

Acknowledgement

The author would like to thank

• Prof. Dr. Hannah Bast for support during all phases of this thesis.
• Markus Näther for support with the GPU cluster and hints on spelling cor-

rection literature and benchmarking.
• Frank Dal-Ri for technical support.
• Heike Hägle for administrative support.
• My family, girlfriend and friends for emotional support.
• You, the reader, for your interest in this thesis.

Contents 7

Contents

1. Introduction 9
1.1. Motivation . 9
1.2. Task definition . 10
1.3. Outline . 10

2. Related work and contribution 11
2.1. Neural machine translation . 11
2.2. Language modeling . 11
2.3. Spelling Correction . 12
2.4. Contribution . 17

3. Background 19
3.1. Tokenization . 19
3.2. Byte pair encoding . 20
3.3. Neural networks . 22
3.4. Classification evaluation metrics 35
3.5. Language models . 36
3.6. Generative sampling of sequences 38
3.7. Edit distance . 40

4. Datasets 43
4.1. Wikipedia . 43
4.2. Typo collection . 44

5. Approaches 45
5.1. NLMspell: spelling correction with a neural language model . . 45
5.2. TranslationSpell: spelling correction with a neural machine trans-

lation model . 57

6. Baselines 61
6.1. UnigramSpell: a context-free baseline spelling corrector 61
6.2. NgramSpell: a context-dependent baseline spelling corrector . . 61
6.3. Commercial baseline . 62

Contents 8

7. Experiments 63
7.1. Language models . 63
7.2. Spelling correction benchmarks 64
7.3. Spelling correction evaluation metric 67
7.4. Spelling correction results . 75
7.5. NLMspell variants . 84
7.6. Robustness . 85

8. Limitations 88

9. Conclusion 89

10.Future work 91

References 93

A. Hyperparameter experiments 98
A.1. Transformer models . 98
A.2. Recurrent language models . 98

B. Typo extraction method 101

1. Introduction 9

1. Introduction

1.1. Motivation

Misspelled text can be difficult to read for humans and is problematic for Natural
Language Processing and Information Retrieval systems.

A lot of text is written with human-computer interfaces such as physical and
digital keyboards. When writing, humans introduce noise into text due to fast
typing or because they lack the knowledge about the correct orthography. With
the upcoming of small smartphone and wearable devices, these interfaces be-
come more vulnerable to noise. Although human reading is rather robust against
misspellings, we need more time to read a misspelled text than to read a correctly
spelled text [Rayner et al., 2006]. Misspellings can make a text incomprehensible
or even negate the meaning of a text.

Almost all smartphone operating systems address this problem with autocor-
rection methods, which predict the intended text from the noisy input. When
those systems fail in predicting the correct text, parsing the meaning of a sen-
tence can become even harder, since the wrong predictions are more difficult to
detect than the misspellings, and the predicted text can be orthographically less
similar to the intended text than the misspelled input. Recently, the wrong-going
of online conversations due to false autocorrections even became a common in-
ternet meme1.

Misspelled text is not only problematic for human readers, but also for Nat-
ural Language Processing systems. Noisy input can break the performance of
such systems, which usually assume correctly spelled input. This can lead to an
Information Retrieval system not returning the desired results for a noisy query
[Manning et al., 2010], or a mistranslation of an input sequence by Neural Ma-
chine Translation systems [Belinkov and Bisk, 2018]. Many Natural Language
Processing systems represent words as word embedding vectors [Mikolov et al.,
2013, Devlin et al., 2019]. When a word is misspelled, no pre-trained word em-
bedding can be retrieved. Recent work has shown that text classifiers are prone

1See, for example, http://www.autocorrectfail.org/, “Damn You, Autocorrect!”
by Jillian Madison, and “Damn You, Autocorrect! 2” by Lyndsey Saul.

http://www.autocorrectfail.org/

1. Introduction 10

to adversarial misspellings, meaning that a small change in the input text can flip
the classification result, which can result in wrongly classified sentiment [Pruthi
et al., 2019], spam filters not recognizing spam e-mails, toxicity detectors like
Google’s Perspective not recognizing toxic content, and hate speech detectors
not detecting hate speech [Gong et al., 2019]. However, correcting the input text
before handing it to the Natural Language Processing system can recover the sys-
tem’s performance.

1.2. Task definition

Spelling correction is the task of predicting the intended text S̄ from a misspelled
text S.

1.3. Outline

This thesis is divided as follows:

• Section 2 gives an introduction to recent developments in language model-
ing, neural machine translation and spelling correction.
• Section 3 explains background on the methods used in this work.
• Section 4 describes the datasets and benchmarks used to train and evaluate

the different methods.
• Section 5 describes deep learning approaches to spelling correction.
• Section 6 describes the baseline methods.
• Section 7 describes the experiments to evaluate and compare the methods.
• Section 8 discusses limitations of this thesis.
• Section 9 gives a conclusion.
• Future work on the topic is proposed in section 10.
• Appendix A contains results of the hyperparameter optimization experi-

ments.
• Appendix B describes a method to extract typos from the World Wide Web.

2. Related work and contribution 11

2. Related work and contribution

This section outlines recent progress in neural machine translation in 2.1, de-
scribes recent developments in neural language modeling in 2.2, presents related
work on spelling correction in 2.3, and states our contribution to the spelling
correction research in 2.4.

2.1. Neural machine translation

Recent progress in machine translation was achieved with sequence-to-sequence
neural networks [Sutskever et al., 2014], that consist of a recurrent encoder net-
work which transforms an input sequence into a fixed-size vector representation,
and a recurrent decoder network which generates an output sequence from that
representation.

This approach was improved with the introduction of the attention mechanism
[Bahdanau et al., 2015], allowing the network to look back to specific parts of
the input sequence that are relevant for the prediction of the next word in the
output sequence, instead of having to encode the whole input sequence into a
single vector. Using the attention mechanism, a new state of the art on English-
to-French translation was set [Bahdanau et al., 2015]. A few months later, Google
adopted the encoder-decoder neural machine translation approach with attention
for their machine translation system [Wu et al., 2016].

Not much later, a new single-model state of the art on English-to-French trans-
lation was achieved with the Transformer architecture [Vaswani et al., 2017], that
relies solely on the attention mechanism. Getting rid of the recurrence scheme of
the encoder and decoder networks allowed for better parallelization and reduced
the training cost.

2.2. Language modeling

A key challenge in language modeling is to capture long-term dependencies of
words, which is difficult for neural networks and impossible for n-grams. Re-
cently, two neural network architectures developed for Machine Translation al-

2. Related work and contribution 12

lowed to build models that cover some long-term dependencies: those are recur-
rent neural networks with attention and Transformer networks.

In [Radford et al., 2018] a high-capacity language model based on the Trans-
former neural network architecture is used as an unsupervised initial point for
supervised training for natural language inference, question answering, semantic
similarity prediction and text classification, improving the state of the art on 9 out
of 12 studied datasets.

A similar, but deeper model is trained on a large, heterogeneous corpus scraped
from the World Wide Web in [Radford et al., 2019]. It is able to generate consis-
tent texts that are hard to distinguish from human-written texts [Solaiman et al.,
2019]. Without further supervised training the model achieves state-of-the-art re-
sults on common noun prediction in the Children’s book test (selecting one out
of 10 choices for an omitted word), on the LAMBADA dataset (predicting the
last word of a sentence) and in the Winograd SCHEMA challenge (resolving am-
biguities in text). The claim that the model is a zero-shot multi-task learner is
supported by the fact that it can be used for reading comprehension, summariza-
tion, translation and question answering, although its performance on these tasks
is poor compared to the state of the art.

2.3. Spelling Correction

2.3.1. Overview

A literature review on spelling correction is given in [Kukich, 1992], which is
summarized in the following.

Subtasks Traditional spell checking algorithms divide the task into three sub-
tasks:

1. Error detection: distinguishing whether or not a word is misspelled.
2. Candidate generation: generating a set of candidate words that are similar

to the misspelled word.
3. Candidate ranking: ranking of the candidate words according to the proba-

bility that they are the intended word for the misspelled word, or determin-

2. Related work and contribution 13

ing only the most likely candidate word.

Error types Various sources of noise in human-written text exist:

1. Typographic errors, also known as typos, which are one of the following
operations:

a) Insertion of a character.
b) Deletion of a character.
c) Replacement of a character.
d) Transposition: swapping two neighboring characters.

2. Cognitive errors
a) Phonetic errors: wrong word choice due to similar pronunciation of

words (e.g. confusing there with their).
b) Grammatical errors: wrong word choice or wrong sentence structure

due to the lack of knowledge of grammatical rules (e.g. confusing his

with her).

Error classes Errors can be divided into two classes: nonword errors where
the resulting token does not exist in the target language, and real-word errors

where the resulting token is a valid word of the target language, but different
from the intended word. Real-word errors are usually more difficult to detect and
correct than nonword errors.

Context-free and context-dependent error correction Approaches to
spelling correction can be divided into context-free error correction algorithms
(sometimes called isolated-word error correction algorithms) and context-dependent

error correction algorithms.

Context-free error correction algorithms address the problem of detecting and
correcting misspelled words without considering the context a word appears in.
Error detection is done by a lookup in a dictionary of correctly spelled words,
or by analyzing whether a word’s character n-grams are all legal n-grams of the
language at hand. Candidate generation and ranking is done based on the min-
imum edit distance to the misspelled word, similarity keys, character n-grams,
confusion probabilities, word frequencies or rule-based.

2. Related work and contribution 14

Context-free error correction algorithms can only detect and correct a fraction
of all spelling errors. Namely, they are unable to detect real-word errors. Context
is also needed to dissolve ambiguities. For example, consider the misspelled
word yello. Is the intended word hello, yellow, or yell? The answer depends on
the context: different corrections are plausible for the sequences ’Bananas are

yello.’, ’yello world’ and ’Don’t yello at me.’.

2.3.2. Noisy Channel Model

Early context-dependent spelling correctors rely on the Noisy Channel Model
[Shannon, 1948]. Given an observed word t, the model finds the candidate word
c that maximizes the conditional probability p(c|t) = p(t|c) · p(c), where p(c) is
the prior probability given by a language model and p(t|c) is the channel model.

Candidate ranking In [Church and Gale, 1991], the Noisy Channel Model
is used to rank candidate corrections for words that the Unix spell program flags
as misspellings. The prior model is a unigram or bigram language model, and
the channel model is based on character confusion frequencies. Candidate words
are those words from a word list that can be transformed into the observed word
with a single character insertion, deletion, replacement or transposition operation.
The test set contains only cases with exactly two candidates (in addition to the
observed word), where the gold-standard intended word is one of them. Using
the context-free unigram language model, the model prefers the correct candidate
in 87 % of the test cases. This improves to 90 % with the bigram model.

Real-word error correction In [Mays et al., 1991] the Noisy Channel model
is used to correct real-word errors. Candidate words come from a vocabulary
with 20,000 words. The prior model is a trigram language model and the chan-
nel model assigns a constant probability α to the observed word and divides the
remaining 1 − α uniformly to all candidate words which are one edit operation
away from the observed word. The same edit operations as in [Church and Gale,
1991] are considered. The test set consists of 100 correctly spelled sentences and
all sentences one can generate by replacing a single word in one of the correctly
spelled sentences by one of the candidate words. For good choices of α, between

2. Related work and contribution 15

73.2 % and 79.0 % of the misspelled sentences are corrected, while between 1 %
and 3 % of the correctly spelled sentences get changed.

2.3.3. Neural network approaches

Semi-character RNN [Sakaguchi et al., 2017] develop a recurrent neural net-
work that corrects words with permuted internal letters. The approach is moti-
vated by the Cambridge effect. The Cambridge effect is the finding that humans
can easily read words with permuted letters, as long as the first and last letter
of a word remain intact (For epmxlae, try to raed tihs suceneqe.). Words are
represented as the concatenation of three vectors: the one-hot-encoded first let-
ter, the internal letters as a bag of characters, and the one-hot-encoded last letter.
A unidirectional LSTM gets the vector representations of the input words with
permuted letters as input, and predicts a correctly spelled word from a vocabu-
lary with 10,000 words for each input word. The model is tested on three noise
types, all of which keep the first and last letter of a word intact: permutation of
the internal characters (which does not affect the vector representation), deletion
of a single internal character, and insertion of a single internal character. The
model achieves 98.96 % word accuracy on words with permuted internal letters
and 96.70 % accuracy on words with a single inserted letter. The word accuracy
drops to 85.74 % on input words with deleted letters.

Nested RNN [Li et al., 2018] use a nested recurrent neural network model to
correct typos. On the lowest layer, a unidirectional Gated Recurrent Unit (GRU)
working on characters encodes each word into a vector. Those word vectors are
fed into the next layer, which is a bidirectional GRU. The hidden states from the
bidirectional GRU are used to predict one intended word for each input word. The
model is trained on text with artificial noise based on phonetic similarity of words.
For the evaluation, an annotator corrected the misspellings in the JFLEG test set
[Tetreault et al., 2017] to create ground truth labels. The nested RNN model
achieves an F0.5-score of 69.39 %, which outperforms a character convolutional
neural network (64 %) and the PyEnchant spell checker (54 %).

2. Related work and contribution 16

CCEAD [Ghosh and Kristensson, 2017] develop a method they call Correction
and Completion Encoder Decoder Attention Network (CCEAD). The encoder
is a combination of a Gated Recurrent Unit (GRU) and a convolutional Neural
Network that both work on character-level. The decoder is a word-level GRU
with attention to the encoder hidden states. Training and evaluation is done on
sequences from OpenSubtitles, where typos extracted from Twitter were induced.
They get 98.1 % word accuracy measured on all words including the ones that
were not affected by noise, and 68.9 % sequence accuracy. However, our analysis
of the Twitter typos revealed that only 2,466 unique words can be affected by
noise, and 9,294 unique misspellings exist. Only 939 of the misspellings are
ambiguous, while the other 8,355 translate to a single intended word. Since the
model is trained and evaluated on the same typos (with different context), we can
not tell whether it generalizes to new typos.

Spelling as a Foreign Language In [Zhou et al., 2017], the spelling cor-
rection task is modeled as a translation task. The task is to translate from En-
glish with misspellings to correct English. An encoder-decoder neural network
with attention achieves 62.5 % sequence accuracy on misspelled e-commerce
queries. The approach is compared to a statistical machine translation model,
which achieves a similar result.

2.3.4. Limitations and the lack of a common benchmark

Most of the presented papers limit their problem to a fixed set of possible ty-
pos or target words. [Church and Gale, 1991] and [Mays et al., 1991] explicitly
limit their algorithms to misspellings comprising a single character edit opera-
tion. [Sakaguchi et al., 2017] consider words with jumbled internal characters,
but assume that the first and last character of a word are always correct. The neu-
ral network approaches restrict their output to a pre-defined set of target words,
which contains between 3,000 and 20,000 words [Sakaguchi et al., 2017, Li et al.,
2018, Ghosh and Kristensson, 2017]. Almost all approaches [Church and Gale,
1991, Mays et al., 1991, Sakaguchi et al., 2017, Li et al., 2018, Ghosh and Kris-
tensson, 2017] predict one target word for each input word and are thereby not
able to correct tokenization errors, where words can be split into multiple parts or

2. Related work and contribution 17

multiple words can be merged. The least restricted approach is the one by [Zhou
et al., 2017], but it is only evaluated in the e-commerce domain, which usually
has a limited vocabulary and short queries.

There exists no common test benchmark, which makes comparisons between
publications difficult. Some evaluate on unpublished datasets [Church and Gale,
1991], while others create synthetic test sets [Mays et al., 1991, Sakaguchi et al.,
2017, Ghosh and Kristensson, 2017]. [Li et al., 2018] evaluate on typos from
the public JFLEG grammatical error correction dataset, but annotated the gold
standard manually and did not publish their ground truth.

Not only the benchmark datasets, but also the evaluation metrics differ between
publications. [Church and Gale, 1991] and [Sakaguchi et al., 2017] report word
accuracy measured on misspelled words. [Mays et al., 1991] and [Zhou et al.,
2017] report sequence accuracy. [Li et al., 2018] report F0.5-score. [Ghosh and
Kristensson, 2017] report word accuracy on all words and sequence accuracy.

2.4. Contribution

This thesis contributes the following:

• We study the usage of a sophisticated neural language model as our main
approach for the spelling correction task.
• We compare our main approach to a neural machine translation approach,

a simple baseline spelling corrector based on word frequencies, a more
sophisticated baseline corrector using a traditional n-gram language model,
and the commercial product of a large internet company.
• All approaches except for the translation-based approach predict words

from a vocabulary with 100,000 words, compared to 3,000 to 20,000 words
in the previous neural-network-based approaches from the literature. The
translation-based approach is not limited to words from a pre-defined vo-
cabulary.
• Our methods can correct misspellings comprising up to two character edits.

They are not restricted to character edits, but can also correct split words,
merged words and mixtures of error types.
• We prepare two benchmarks, that contain artificial and real misspellings

2. Related work and contribution 18

with context and ground truth corrections.
• We propose an evaluation metric, which assesses precision and recall rates.
• The performance of our main approach improves upon the baselines and

the commercial product on both benchmarks.

3. Background 19

3. Background

This section gives background about text representations, neural networks, lan-
guage models, sequence sampling and a distance measure for text. These con-
cepts will be used in the following sections, so this section is a recommended
read for readers who are not familiar with the mentioned topics.

3.1. Tokenization

Tokenization is the task of dividing text into smaller units called tokens. Depend-
ing on the application, we use two different tokenization procedures: one is space
tokenization and the other is tokenization with a regular expression.

3.1.1. Space tokenization

In the evaluation part of this work, tokens are defined as the substrings that are
separated by spaces. Space tokenization simply splits a text at all space positions.

For example, the space-split tokens of the sequence “10$ is too much.” are
“10$”, “is”, “too” and “much.”.

3.1.2. Tokenization with a regular expression

Sometimes it is useful to separate words and punctuation marks. In a large text
corpus, many words will appear with different punctuation marks attached to it.
For example the space-split tokens “world.”, “world?” and “world!” could all
appear in a text. Yet, we do not want them to be treated as three completely
different tokens. Instead, we want the tokenizer to recognize that in all three
cases the token “word” appears and is followed by different punctuation marks.

For that purpose, we tokenize text using a regular expression and the python re

module.

The regular expression used is the following:

\d+[.,]\d.,]*\d|\w[\w’-]+\w|\w+|\S

It comprises four patterns divided by the “or” symbol |. The patterns are

3. Background 20

1. \d+[.,]\d.,]*\d: Matches numbers separated by points or commas. For ex-
ample 123 and 1,000,000.01.

2. \w[\w’-]+\w: Matches hyphenated words and words with internal apostro-
phes. For example word-level, non-hyphenated and O’Connor’s.

3. \w+: Matches non-hyphenated words. For example word and München.
4. \S: Matches all other symbols except spaces. For example punctuation

marks and $.

For the example sequence “10$ is too much.” the resulting tokens are “10”,
“$” “is”, “too”, “much” and “.”.

3.2. Byte pair encoding

Traditionally, Natural Language Processing systems process text either on the
byte level, character level or word level. Using the byte or character representa-
tion, single elements contain little semantic information and sequence representa-
tions can get very long. Using the word representation, sequence representations
are shorter and each element contains a lot of semantic information. However,
the word representation has the disadvantage that one has to predefine a fixed vo-
cabulary and all words that are not in the vocabulary are represented by the same
out-of-vocabulary (OOV) symbol.

For the usage in neural networks, the input elements have to be encoded as
vectors. Common encodings are the one-hot encoding or trained embeddings. For
bigger vocabularies the one-hot-encoded word representations are bigger vectors,
too. This leads to more parameters in the input and output layers of a neural
network. The embedding size, on the other hand, can be fixed, but an embedding
has to be trained for each word in the vocabulary, so that more words also lead to
more parameters.

The byte pair encoding (BPE, [Sennrich et al., 2016]) interpolates between byte
level and word level. BPE splits text into subwords, which are variable-length
byte sequences. It is always able to represent all sequences entirely without the
necessity of an OOV symbol.

The byte pair encoding is created in an iterative procedure using a training text
corpus. Initially, the text in the training corpus is treated as a byte sequence. The

3. Background 21

initial subwords are the 256 bytes. The frequency of all consecutive byte pairs
is estimated on the training corpus. The most frequent byte pair gets merged
into a new subword with index 257 and all occurrences of the byte pair in the
training corpus replaced by the new subword. Merges across token boundaries
are prohibited, so that no subword can be longer than a token. This procedure is
iterated for K merging steps. The resulting subword set has K + 256 elements.
Short, frequent tokens get merged into a single subword quickly, while longer,
infrequent tokens are represented by a sequence of multiple subwords.

We use the code and byte pair merges published along with [Radford et al.,
2019], but limit the encoding to the first K merges, where K is a hyperparameter.

Example encodings Table 1 shows example subwords for three different
byte pair encodings. With zero merges, the subwords equal the bytes of the se-
quence, here represented as characters. Short, frequent words like “It”, “was”

and “day” are merged into a single subword already after 2,000 merges. After
10,000 merges, many frequent words are represented as single subwords.

merges subwords

0 "I", "t", " ", "w", "a", "s", " ", "a", " ", "b", "r", "i", "g", "h", "t", " ",
"c", "o", "l", "d", " ", "d", "a", "y", " ", "i", "n", " ", "A", "p", "r", "i",
"l", ",", " ", "a", "n", "d", " ", "t", "h", "e", " ", "c", "l", "o", "c", "k",
"s", " ", "w", "e", "r", "e", " ", "s", "t", "r", "i", "k", "i", "n", "g", " ",
"t", "h", "i", "r", "t", "e", "e", "n", "."

2,000 "It", " was", " a", " br", "ight", " c", "old", " day", " in", " A", "pr",
"il", ",", " and", " the", " cl", "oc", "ks", " were", " st", "ri", "k", "ing",
" th", "ir", "te", "en", "."

10,000 "It", " was", " a", " bright", " cold", " day", " in", " April", ",", " and",
" the", " cl", "ocks", " were", " striking", " th", "ir", "teen", "."

Table 1: Subwords of the sentence “It was a bright cold day in April, and the
clocks were striking thirteen.” for byte pair encodings with 0, 2,000 and
10,000 merge steps.

3. Background 22

3.3. Neural networks

A neural network (see [Goodfellow et al., 2016] for an overview) models a func-
tion ŷ = f(x) for inputs x. The function depends on parameters θ and can be
written ŷ = f(x, θ). The parameters θ are fit with supervised learning.

3.3.1. Fully-connected neural networks

A fully-connected neural network consists of layers f1 to fn which are stacked
on top of each other. Layers f1 to fn−1 are called hidden layers, whereas the last
layer fn is called output layer.

The input x to a fully-connected neural network is a vector of size d, containing
the values of d features. d is the input dimension of the fully-connected neural
network. The first layer f1 computes an output a1 = f1(x) from the input x. Each
following layer fi computes an output ai = fi(ai−1) from its preceding layer’s
output ai−1.

Each layer fi contains ui neurons, also called units. Its output ai is a vector of
size ui, where the ith entry is the activation value of the ith unit. The output an
of the output layer fn is the output of the fully-connected neural network. an has
size un, which is the output dimension of the network.

ŷ = an

The function fi is defined as follows, with Wi being a weight matrix of shape
(ui, ui−1), where u0 = d, bi being a bias vector of size ui, and φ a nonlinear
function:

fi(ai−1) = φ(Wiai−1 + bi)

The weight matrices Wi and biases bi form the set of trainable parameters θ of
the fully-connected neural network:

θ = {Wi, bi∀1 ≤ i ≤ n}

3. Background 23

3.3.2. Activation function

Each layer of a neural network comprises a nonlinear function φ, which is called
the activation function. Among others, a common choice for the activation func-
tion is the rectified linear unit (ReLU):

ReLU(a) = max(0, a)

3.3.3. Output function

For classification tasks, the output layer fn of a neural network must return a
probability distribution over all classes. For k classes, the desired output is a
probability vector of size k, where the ith entry is the estimated probability of
class i given the input x. To be a valid probability distribution, the entries of
the vector must sum up to one. The softmax output function transforms the in-
ternal activation a = Wnxn−1 + bn of the output layer into a valid probability
distribution:

softmax(a)i =
eai∑k
j=1 e

aj

3.3.4. Loss function

The loss function measures how close the predictions of a model f are to the
true values. Let X = {x1, ..., xN} be a set of inputs, Y = {y1, ..., yN} the
corresponding one-hot-encoded targets, Ŷ = {ŷ1, ..., ŷN} the predicted outputs,
where ŷi = f(xi), and k classes. The crossentroy loss is defined as:

crossentropy(Y, Ŷ) = − 1

N

N∑
i=1

k∑
j=1

yi,jlog(ŷi,j)

3.3.5. Supervised training

The parameters φ of a neural network are trained with stochastic optimization
techniques. In the beginning, all parameters are initialized randomly. Then, in
each training step i a subset (Xi, Yi) of the training examples (X, Y) is selected,
such that Xi ⊂ X and Yi ⊂ Y . This subset is called training batch. In a forward

3. Background 24

pass of the neural network, the predicted outputs Ŷi are computed. Then, the loss
is computed as loss = crossentropy(Yi, Ŷi). Beginning with the parameters of
the output layer, the gradients of the loss with respect to each layer’s parameters
is computed using the chain rule in a backward pass through the network. This
procedure is called backpropagation. An optimizer uses the gradients to update
the model’s parameters such that the loss on the training batch reduces.

3.3.6. Optimizer

The Adam optimizer ([Kingma and Ba, 2015]) maintains an estimate of the first
and second moment of each parameter’s gradient, and updates the parameters
with the following rule:

φi ← φi −
α ·m√
v + ε

where φi is the ith parameter, α the learning rate,m the first moment, v the second
moment and ε = 10−8.

3.3.7. Learning rate decay

Learning rate decay is reducing the learning rate over time, so that in early train-
ing steps the learning rate is big, allowing the model to change rapidly, and in
later steps, when the model is fine-tuned, the learning rate becomes smaller.

In addition to the initial learning rate α, exponential decay has two parameters:
the decay rate γ and the number of decay steps k. At training step t, the learning
rate is:

learning_rate(t) = α · γt/k

3.3.8. Recurrent neural networks

Recurrent neural networks get sequences x = (x1, ..., xT) as input. A recurrent
neural network layer generates a hidden state vector ht for each time step 1 ≤
t ≤ T with the following recursive procedure:

at = σ(Wxt + Uht−1 + b)

3. Background 25

where ht is the hidden state vector of size dh, with h0 the zero vector, W is a
weight matrix of shape (dh, d), U is a weight matrix of shape (dh, dh) b is the bias
vector of size dh, and σ is a nonlinear function. The hidden states can be fed into
a fully-connected network to estimate probability distributions for classification
tasks.

Figure 1 demonstrates the computational graph of a recurrent cell.

yt

W

ht

ch

+

ct

V U

ht−1 xt

tanh

Figure 1: Computational graph of a recurrent cell. ht−1 is the previous hidden
state, xt the input vector, ht the new hidden state and yt the output
vector. U , V and W the weight matrices. The + denotes the element-
wise sum of two vectors. Bias vectors are omitted in the figure for
simplicity.

3. Background 26

3.3.9. Long short-term memory

Recurrent neural networks as described above have difficulties capturing long-
term relationships [Hochreiter et al., 2001] and suffer from the vanishing gradient
problem [Hochreiter, 1991].

This motivates the long short-term memory (LSTM) cell introduced in [Hochre-
iter and Schmidhuber, 1997].

Here, the recursive procedure is as follows:

f t = σg(Wfx
t + Ufh

t−1 + bf)

it = σg(Wix
t + Uih

t−1 + bi)

ot = σg(Wox
t + Uoh

t−1 + bo)

ct = f t � ct−1 + it � σh(W cxt + U cht−1 + bc)

ht = ot � σh(ct)

where f t, it and ot are the forget gate, input gate and output gate vectors of size
dh, Wf , Wi, Wo and Wc are weight matrices of shape (dh, d), Uf , Ui, Uo and Uc

are weight matrices of shape (dh, dh), bf , bi, bo and bc are bias vectors of size dh,
ct is the internal state vector of size dh, with c0 the zero vector, ht is the hidden
state vector of size dh, with h0 the zero vector, σg is the sigmoid function, σh is
the hyperbolic tangent function, and � denotes the element-wise product.

The set of trainable parameters of a LSTM cell consists of the weight matrices
and bias vectors:

θ = {Wf ,Wi,Wo,Wc, Uf , Ui, Uo, Uc, bf , bi, bo, bc}

Figure 2 demonstrates the computational graph of a LSTM cell.

3. Background 27

ht

ct

�

+

ct−1 � ft it � ot

+ + + +

Wf Uf Wi Ui Wc Uc Wo Uo

ht−1
xt

σ σ σtanh

tanh

Figure 2: Computational graph of a LSTM cell. ct−i and ht−1 are the previous
hidden states, xt is the input vector, ct and ht the new hidden state. ht
is passed to the next layer. All W s and Us are weight matrices. ft is the
update vector, it the input gate and ot the output gate. A + denotes the
sum of two vectors, and � the element-wise product. Bias vectors are
omitted in the picture for simplicity.

3. Background 28

3.3.10. Backpropagation through time

The gradient computation for the stochastic optimization updates in recurrent
neural networks or LSTMs works similar to the backpropagation for fully-connected
networks. For T time steps, the network gets enrolled in a forward pass to gener-
ate the T hidden states, predicted outputs, and compute the loss. Then, the gradi-
ent of the loss with respect to each parameter is computed in a backward pass for
all time steps. For a parameter θi, T gradients are computed, one for each time
step, which get combined to the estimated gradient. Then, the optimizer uses the
estimated gradient to update the parameters as in the fully-connected network.

3.3.11. Encoder-decoder networks

Sequence-to-sequence neural networks consist of two parts, the encoder and the
decoder.

The encoder is a recurrent neural network that gets a sequence of vectors
x = (x1, ..., xT) as input and generates hidden states h1 to hT with a recursive
function:

ht = f(xt, ht−1)

In the vanilla encoder-decoder approach, the last hidden state of the encoder is
passed to the decoder as context vector c:

c = hT

The decoder is another recurrent neural network that estimates the probability
distribution of the next word in the output sequence, given the context vector and
the previous words:

p(yt) = f(yt−1, st, c)

where st−1 is the hidden state of the recurrent neural network and the context
vector is used as the initial hidden state:

s0 = c

st = f(yt−1, st−1)

3. Background 29

The encoder and decoder are trained jointly on bilingual pairs of sequences
x = (x1, ..., xT) and y = (y1, ..., yN).

Figure 3: Encoder-decoder scheme for machine translation. The encoder trans-
forms the input sequence into a fixed-size context vector, which is used
by the decoder to generate the output sequence. Image from [Luong,
2016].

3.3.12. Attention

In the encoder-decoder approach described above, the neural network encodes
the entire input sequence into a single vector hT , which is then passed to the
decoder. The attention mechanism introduced in [Bahdanau et al., 2015] is a way
to relax this constraint by allowing the decoder to look at different parts of the
input sequence at each step in the decoding process.

With attention, the conditional probability for the next word is defined as:

p(yt) = f(yt−1, st, ct)

where st is the hidden state of the decoder network. Other than in the encoder-
decoder approach without attention, the context vector ct now differs for each
word in the output sequence. It is a function of the decoder’s current hidden state
and all hidden states generated by the encoder:

ct = f(st, (h1, ..., hT))

The context vector ct is computed as a weighted average of the hidden states:

ct =
T∑
i=1

αithi

3. Background 30

where the weights αit are given by an alignment model a:

αit = a(hi, st)

Figure 4: Attention layer. The encoder hidden states are blue, the decoder hidden
states red. A context vector is computed as a weighted average of the
encoder’s hidden states. The gray vector is passed to the next layer of
the decoder. Image from [Luong, 2016].

3.3.13. Self-attention

Unlike neural machine translation models that translate from an input sequence
X = (x1, ..., xT) to an output sequence Y = (y1, ..., yT ′), neural language models
predict the next element of a single sequence S = (t1, ...tN).

The recurrent neural network predicts the next element given all previous ele-
ments. The version without attention mechanism is:

p(xt|x1, ...xt−1) = f(xt−1, ht−1)

and hidden states are generated recursively:

ht = f(xt, ht−1)

3. Background 31

With attention, the model can look back at previously generated hidden states,
and combine them to a context vector ct:

p(xt|x1, ..., xt−1) = f(xt−1, ht−1, ct)

with

ct = f(ht, (h1, ..., ht−1))

=
T∑
i=1

αithi

Given a sequence X = (x1, ..., xT), the recurrent network generates hidden
states h1 to hT . The hidden states are put into a matrix H ∈ RT×d an atten-
tion score matrix S ∈ RT×T is computed, where Sij is the score for hj when
predicting xi, and W a weight matrix:

S = HWH>

To prevent the network from attending to the current or future hidden states during
training, the diagonal and all entries above the diagonal are masked with −∞
before computing the softmax for each row, so that the masked scores become
zero after softmaxing.

3.3.14. Transformer

[Vaswani et al., 2017] introduces the Transformer model, an encoder-decoder
model that is solely based on the attention mechanism and does not include
any recurrent operations. The dispensation from recurrent operations makes the
Transformer faster than recurrent networks.

Figure 5 shows the Transformer’s components. The left part of the figure is
the encoder network, the right part is the decoder. N of the encoder and decoder
cells, shown in the figure as gray boxes, are stacked on top of each other.

3. Background 32

Figure 5: The Transformer architecture’s components. N of the encoder and de-
coder layers, presented as gray boxes, are stacked on top of each other.
Image from [Vaswani et al., 2017].

Inputs The input is a sequence X = (x1, ..., xn). For language modeling and
translation tasks, each value xi is the index of a subword in a dictionary. The input
sequence is split into tokens, which can be bytes, characters, subwords or words
for language modeling and translation tasks. An array containing the tokens’
labels in their sequential order is fed into the network.

3. Background 33

Input embedding The embedding layer transforms the n input labels from x

into a matrix X ∈ Rn×dmodel . An embedding vector ei ∈ Rdmodel is learned for
each input label i during training.

Positional encoding A positional signal is added to each of the rows in X
to allow the Transformer to infer from the sequential order of the inputs.

The positional encoding is a mixture of sine and cosine functions with different
frequencies:

PE (pos,2i) = sin(pos/10000 2i/dmodel)

PE (pos,2i+1) = cos(pos/10000 2i/dmodel)

where pos is the position in the sequence and i is the dimension in the encoding
vector.

The positional encoding is a relative encoding since it holds that for any fixed
offset k, BPpos+k can be represented as a linear function of BPpos . An advantage
over learned positional encodings is that the sinusoidal encoding can be extrapo-
lated to sequences of arbitrary length, which allows sequences during inference
to be longer than the training sequences.

The positional encoding matrix for an input sequence has the same shape as the
embedding matrix X . The two are added element-wise and the resulting matrix
passed to the encoder.

Multi-Head Attention For queriesQ, keysK and values V , scaled dot-product
attention is:

attention(Q,K, V) = softmax(
QK>√
dk

V)

Multiple heads allow the model to attend to multiple inputs at the same time
step:

multihead(Q,K, V) = concat(head1, ..., headh)WO

where
headi = attention(QWQ

i , KW
K
i , V W

V
i)

3. Background 34

Residual connections A residual connection is employed around each sub-
layer of the encoder and the decoder: Residual(Sublayer, x) = x+ Sublayer(x)

Layer Normalization Layer normalization [Ba et al., 2016] is applied to the
output of each sublayer.

Position-wise feed-forward networks The feed-forward networks consist
of two dense layers, of which the first has a ReLU activation function and the
second a linear activation function. The first layer has dff units and the second
layer has dmodel units (usually dff > dmodel).

Outputs (shifted right) + embedding + positional encoding The out-
put sequence Y = (y1, ..., yn′) is right-shifted, so that the first element in the se-
quence is a <START> symbol. The output elements are encoded and embedded
in the same way as the inputs. A positional encoding is added to the embedding to
encode the sequential order. The resulting matrix is given to the decoder, which
predicts the next output at each position.

Decoder layers The decoder layers are similar to the encoder layers, but with
two major differences. First, the self-attention scores get masked such that the
decoder can not attend to future positions in the sequence. The corresponding
attention scores are set to −∞, so that after softmaxing they equal zero. Second,
the decoder layers contain an additional multi-head attention layer that attends
to the hidden states of the encoder layer. This cross-attention sublayer is located
between the self-attention sublayer and the feed-forward sublayer of each decoder
layer.

Output layer At each time step, the output layer of the decoder predicts a
probability distribution for the next element in the sequence from the output of
the last decoder layer. The output layer is a fully-connected layer with |V | units
using the softmax output function.

3. Background 35

Transformer as a language model The Transformer decoder as a language
model is introduced in [Liu et al., 2018]. It is constructed like the decoder of
the encoder-decoder Transformer, but without the multi-head attention sublayer
attending to the hidden states of an encoder.

3.4. Classification evaluation metrics

Accuracy is a metric for classification tasks with multiple classes. For binary
classification tasks, however, the F-score based on precision and recall rates is
often better suited.

3.4.1. Accuracy

Accuracy is defined as the number of cases where the model predicted the correct
class, divided by the total number of cases.

accuracy =
Ncorrect

N

3.4.2. Precision, recall, F-score

For binary classification tasks, it is often more interesting to look at precision and
recall rates instead of accuracy. When the class labels are imbalanced, accuracy
is a bad metric because a model that always predicts the more frequent class gets
a high accuracy, although it is not a good model. Precision and recall rates better
reflect a model’s capability of detecting cases of the less frequent class.

The more frequent class is defined to be class zero and the less frequent class
is class one. Let T be the set of cases where class one is the correct class, and P
the set where the model predicts class one. The true positives TP are the cases
where the model correctly predicts class one.

TP = T ∩ P

The false positives FP are the cases where the model incorrectly predicts class

3. Background 36

one.
TP = P \ T

The false negatives FN are the cases where the model incorrectly predicts class
zero.

FN = T \ P

Precision is the fraction of cases where the model is correct when it predicts class
one.

precision =
TP

TP + FP

Recall is the fraction of class one cases that were correctly predicted by the model.

recall =
TP

TP + FN

The F1-score combines precision and recall into a single metric. It is defined as
the harmonic mean of precision and recall.

F1 =
2 · precision · recall

precision + recall

3.5. Language models

A language model estimates the likelihood of texts belonging to a language (see
[Martin and Jurafsky, 2019] for an overview).

A sequence S is divided into N elements S = (x1, x2, ..., xN), and the lan-
guage model models the probability of an element given the previous elements,
p(xi|x1, ..., xi−1). The elements can be bytes, characters, subwords or tokens.

Then, the sequence likelihood is the product of the elements’ probabilities:

p(S) =
N∏
i=1

p(xi|x1, ..., xi−1)

3.5.1. N-gram models

An n-gram language model is based on the statistical frequency of groups of
tokens. An n-gram is an ordered group of n tokens. The bigrams of the sentence

3. Background 37

The cat eats fish. are (The, cat), (cat, eats), (eats, fish) and (fish, .). Its trigrams
are (The, cat, eats), (cat, eats, fish) and (eats, fish, .). The smallest n-grams with
n = 1 are called unigrams. They are simply the tokens appearing in the sentence.

The conditional probability p(wi|w1..wi−1) that a token wi appears after to-
kens w1 to wn−1 is estimated by Maximum Likelihood Estimation on a set of
training sequences. Let C(wi−n+1..wn) be the frequency of the n-gram ranging
from wi−n+1 to wn, and C(wi−n+1..wn−1) the frequency of the (n-1)-gram rang-
ing from wi−n+1 to wn−1. Then p(wi|w1..wi−1) is estimated as:

p(wi|w1..wi−1) =
C(wi−n+1..wn)

C(wi−n+1..wn−1)

The n-gram model can be combined with the models for the shorter unigrams
to (n-1)-grams as given by the following recursive definition, where 0 ≤ α ≤ 1

is an interpolation factor:

p(wi|wi−n+1..wi−1) =(1− α) · C(wi−n+1..wn)

C(wi−n+1..wn−1)
+ α · p(wi|wi−n+2..wi−1) if C(wi−n+1..wn−1) > 0

p(wi|wi−n+2..wi−1) otherwise

3.5.2. Neural language models

A neural language model uses a recurrent neural network or Transformer decoder
to estimate the probability p(xi|x1, ..., xi−1). The parameters of the model are
trained on a text corpus.

Sequences are padded with a start-of-sequence symbol <SOS> and an end-of-
sequence symbol <EOS>:

S = (<SOS>, x1, ..., xN ,<EOS>)

To be able to train on sequences with different lengths in the same batch,
shorter sequences are padded to the right, or longer sequences cut after a cer-
tain length. The loss on the padding symbols is set to zero, so that it does not
affect the training process.

3. Background 38

When the neural language model works on the subword level, the probability
p(w|S) that the word w follows the sequence S is

p(w|S) = p(W |U) =
n∏

i=1

p(wi|u1, ..., uN , w1, ..., wi−1)

whereW = (w1, ...wn) are the subwords of w and U = (u1, ..., uN) the subwords
of S.

3.5.3. Perplexity

Perplexity is a measure of how well a language model predicts a test corpusW . It
is the inverse of the probability that the model assigns to the corpus, normalized
by the number of words in the corpus:

PP (W) = pLM(w1, ..., wN)−
1
N

= N

√
1

pLM(w1, ..., wN)

= N

√√√√ N∏
i=1

1

pLM(wi|w1, ..., wi−1)

The lower the perplexity, the better does the model predict the training corpus.
In order not to compute the product of many small probabilities, which will be
rounded to zero in many programming languages, one can rewrite the formula as:

PP (W) = exp(− 1

N

N∑
i=1

log(pLM(wi|w1, ..., wi−1)))

3.6. Generative sampling of sequences

A language model gives a probability distribution over the characters, subwords
or words following a prefix. Three algorithms are used to generate sequences
from those distributions.

3. Background 39

3.6.1. Greedy decoding

Greedy decoding starts with an empty sequence and iteratively appends the most
likely element to it, until it reaches the <EOS> symbol. The procedure is given
in Algorithm 1.

Algorithm 1 Greedy Decoding
procedure GREEDYDECODING(model) . model is a language model.

sequence := ""
while ¬ sequence.ends_with(<EOS>) do

sequence.append(model.get_most_likely_appendix(sequence))
return sequence

3.6.2. Beam search

Beam search maintains a set of partial sequences. Those sequences are called
beams. The size k of the beam set is a hyperparameter. In each iteration, the k
most likely extensions to each beam are determined by the language model, and
new candidate beams created by appending them to the beam. The k most likely
beams are kept for the next iteration. Finally, the most likely beam ending with a
<EOS> symbol is returned. Algorithm 2 gives the procedure in pseudocode.

Algorithm 2 Beam Search
procedure BEAMSEARCH(model, k) . model is a Language Model, k is

the number of beams.
beams := {""} . A single empty beam.
terminated := {} . Terminated beams will be stored here.
while |terminated| < k do

new_beams := {}
for beam ∈ beams do

if beam.last_element() = <EOS> then
terminated.add(beam)

else
for extension ∈ model.most_likely_extensions(beam, k) do

new_beams.add(beam + extension)
beams := model.select_most_likely(new_beams, k)

best_beam := model.select_most_likely(beams, 1)
return best_beam

3. Background 40

3.6.3. Best-first search

Greedy search and beam search might not find the most likely sequence due to
the greedy decisions made in every iteration. Best-first search is a method to
compute the most likely sequence, or the k most likely sequences. It is a breadth-
first search guided by the probabilities of the partial sequences generated. The
procedure is given in Algorithm 3.

Algorithm 3 Best First Search
procedure BESTFIRSTSEARCH(model, k) . model is a Language Model, k

is the number of sequences to
generate.

V = model.vocabulary() . Characters, subwords or words.
q := Queue() . A minimum heap.
q.insert(0, "") . Empty sequence with score 0.
terminated := {} . Teminated sequences will be stored here.
while |teminated| < k do

score, sequence := q.pop()
if sequence.ends_with(<EOS>) then

terminated.add(sequence)
else

for w ∈ V do
new_sequence = sequence.append(w)
p = model.estimate(w|sequence)
new_score = score - log(p)
q.insert(new_score, new_sequence)

return terminated

3.7. Edit distance

The edit distance between two strings a and b is the minimum number of basic
edit operations needed to transform one into the other. The Damerau-Levenshtein
edit distance [Boytsov, 2011] uses the following basic edit operations:

1. Insertion of a character.
2. Deletion of a character.
3. Replacement of a character by another character.
4. Transposition of two neighboring characters.

3. Background 41

The restricted Damerau-Levenshtein edit distance is the Damerau-Levenshtein
edit distance under the assumption that no substring is edited more than once. It
is a lower bound of the unrestricted Damerau-Levenshtein edit distance. The re-
stricted and unrestricted Damerau-Levenshtein edit distance differ in cases where
the optimal edit operation sequence contains a replacement and insertion at the
same position. Consider as an example the problem of transforming string ab into
bca. In this case, the unrestricted Damerau-Levenshtein edit distance equals two,
because a transposition of the two characters a and b followed by an insertion of a
c between them transforms ab into abc with two basic edit operations. However,
the restricted Damerau-Levenshtein edit distance equals three, because the two
edit operations would edit the same substring ab and are therefore not allowed to
be applied together.

Algorithm 4 computes the restricted Damerau-Levenshtein edit distance in
time and space complexity in the order of the product of the lengths of the two
given strings. It is a dynamic programming algorithm that maintains a matrix d,
where entry di,j is the restricted Damerau-Levenshtein edit distance between the
prefix of a with length i and the prefix of b with length j.

The character edit operations that transform a into b can be retrieved from the
backtrace of matrix d. With each entry di,j we store its predecessor and operation
that led to the entry. Starting with the lower right corner of d, all predecessors
and operations are retrieved, until the entry d0,0 is reached.

To bias the algorithm towards leaving tokens intact, we prohibit replacements
and transpositions that affect spaces. As a result, spaces can only be inserted or
deleted.

Figure 6 shows an example edit distance matrix and edit operations retrieved
from the backtrace of the matrix.

3. Background 42

Algorithm 4 Restricted Damerau-Levenshtein Edit Distance
procedure EDITDISTANCE(a, b) . a and b are one-indexed strings

d := matrix[0 .. length(a), 0 .. length(b)] . d ∈ Zlength(a)×length(b),
entry d[i, j] is the edit dis-
tance between the prefix
of a with length i and the
prefix of b with length j

for i := 0 .. length(a) do
d[i, 0] := i

for j := 1 .. length(b) do
d[0, j] = j

for i := 1 .. length(a) do
for j := 1 .. length(b) do

if a[i] = b[j] then
cost := 0

else
cost := 1

d[i, j] := d[i-1, j] + 1 . deletion
d[i, j] := minimum(d[i, j], d[i, j-1] + 1) . insertion
d[i, j] := minimum(d[i, j], d[i-1, j-1] + cost) . replacement
if i > 1 ∧ j > 1 ∧ a[i] = b[j-1] ∧ a[i-1] = b[j] then

d[i, j] := minimum(d[i, j], d[i-2, j-2] + cost) . transposition
return d[length(a), length(b)]

ε

a

l

i

k

e

ε a l i f e

0 1 2 3 4 5 6

1 0 1 2 3 4 5

2 2 3 1 2 3 4

3 3 4 3 1 2 3

4 4 5 4 3 2 3

5 5 6 5 4 4 2

equal

insert equal

equal

replace

equal

Figure 6: Edit distance matrix and operations that transform the string “alike”
into “a life”. Spaces can only be inserted or deleted.

4. Datasets 43

4. Datasets

4.1. Wikipedia

We use Wikipedia as a corpus to train and evaluate the methods of this work.

Wikipedia has advantages over other text corpora that are frequently used in
language modeling. First, it is bigger than the Reuters and Europarl corpora,
so that models are unlikely to overfit to text seen in the training data. Second,
the texts come from a variety of topics, so that the resulting models will work on
multiple domains. Third, one can assume that most of the text is spelled correctly,
due to the active community continuously correcting errors. This is advantageous
over web-scraped corpora like ClueWeb or WebText (the latter not being publicly
available).

4.1.1. Text extraction

We downloaded the English Wikipedia dump from June 20, 2019.2 It contains
all articles with their metadata in XML format. The raw text of the articles was
extracted using the WikiExtractor script by Giuseppe Attardi.3

4.1.2. Preprocessing

The articles were split into a development and a test set, containing 10,000 articles
each, and the remaining training set. Articles were further split into paragraphs
by splitting at line breaks. Leading and trailing whitespaces were deleted from
the paragraphs, and empty paragraphs removed. Special whitespace characters
like the non-breaking space where replaced with the normal space.

4.1.3. Statistics

Table 2 gives the number of articles and paragraphs in the Wikipedia training,
development and test sets.

2File enwiki-20190620-pages-articles-multistream.xml.bz2 from https://dumps.
wikimedia.org/enwiki/20190620/.

3Downloadable at https://github.com/attardi/wikiextractor/wiki.

https://dumps.wikimedia.org/enwiki/20190620/enwiki-20190620-pages-articles-multistream.xml.bz2
https://dumps.wikimedia.org/enwiki/20190620/
https://dumps.wikimedia.org/enwiki/20190620/
https://github.com/attardi/wikiextractor/wiki

4. Datasets 44

training set development set test set

articles 5,860,206 10,000 10,000

paragraphs 43,103,197 74,112 73,600

Table 2: Statistics of the Wikipedia training, development and test sets.

4.2. Typo collection

As a source of typos we use a collection by Peter Norvig.4 It contains lists of
misspellings for 7,841 correctly spelled words. The typos are collected from
Wikipedia5 and by Roger Mitton6 We removed 19 pairs from the collection,
where the misspelling and the intended text were equal.

4http://norvig.com/ngrams/spell-errors.txt, accessed July 23, 2019
5http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_
misspellings/For_machines

6https://www.dcs.bbk.ac.uk/~ROGER/corpora.html

http://norvig.com/ngrams/spell-errors.txt
http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
https://www.dcs.bbk.ac.uk/~ROGER/corpora.html

5. Approaches 45

5. Approaches

5.1. NLMspell: spelling correction with a neural
language model

5.1.1. Procedure

Overview The Neural Language Model Spelling Corrector (NLMspell) gen-
erates candidate corrections for each token in the input sequence, estimates the
likelihood of the candidate corrections using a neural language model, and finds
the approximately most likely intended sequence with beam search.

NLMspell can correct misspellings that comprise up to two of the following
edit operations, in any combination:

• Character edit: the insertion or deletion of a character, replacement of a
character by another character or transposition of two neighboring charac-
ters.
• Token merge: the merge of two tokens by removing the space between

them.
• Token split: the split of a token into two tokens by inserting a space.

Candidate corrections First, the input sequence S is split into tokens (t1, ..., tn).
Here, the tokens are simply the parts of S that are separated by spaces.

NLMspell processes the tokens from left to right. At position i, candidate cor-
rections are generated based on tokens ti and ti+1. The 100,000 most frequent
words from the training data form the vocabulary V that is used to generate can-
didate corrections.

Before generating candidate corrections for a token, punctuation marks are
split from the token using the RegexTokenizer. After generating candidate cor-
rections for the punctuation-free token, the punctuation marks are re-attached to
the candidate corrections. For example, for the input sequence “Hello wurld!”,
the tokens are “Hello” and “wurld!”. For the second token, candidates are gen-
erated for the punctuation-free token “wurld”. Assume “world” is one of the
generated candidates. The exclamation mark is re-attached to the candidate to

5. Approaches 46

form the correction candidate “world!”.

The candidate set Ci for token ti contains the following candidates:

• Observed candidate: The observed token ti.
• Edit candidates: All words from V which have an edit distance to ti

smaller or equal to two.
• Split candidates: All splits of ti into two tokens tleft and tright, such that
tleft ∈ V and tright ∈ V .
• Merge candidate: The token ti merged with the next token ti+1, if the

resulting token t′ is in V .
• Split-edit candidates: For all splits of ti into two tokens tleft and tright,

such that tleft ∈ V , candidates (tleft, cright) are generated for words cright ∈
V such that the edit distance between tright and cright is one. Analog, can-
didates (cleft, tright) are generated if tright ∈ V such that the edit distance
between cleft and tleft is one.
• Merge-edit candidates: All words from V that have an edit distance of

one to the merge of ti with ti+1.
• Double-split candidates: All splits of ti into three tokens such that all

three tokens are in V .
• Double-merge candidates: ti merged with the next two tokens, if the

merged token is in V .
• Merge-split candidates: All splits of the merge of ti with ti+1 into two

tokens, such that the two tokens are in V .

Probability estimation Given a prefix Ŝi, for each candidate correction cj
from Ci the probability p(cj|Ŝi) that cj follows Ŝi is estimated with the neural
language model.

To do so, the prefix Ŝi is encoded into a sequence of subwordsU = (u1, ..., u|U |)

and the candidate correction cj is encoded into a sequence of subwords W =

(w1, ..., w|W |). The neural language model is used to estimate the probabilities
for the subwords in W following the subword sequence U . The probability of

5. Approaches 47

candidate cj is the product of the probabilities of its subwords W :

p(cj|Ŝi) = p(W |U) =

|W |∏
i=1

p(wi|u1, ..., u|U |, w1, ..., wi−1)

The subword encodings of some words are prefixes of subword encodings of
other words. The probability of a prefix will always be greater than the proba-
bility of the longer word, because the product of the subword probabilities can
only decrease with more subwords. To get a better estimate of the probability
p(cj|Ŝi) we multiply the subword probability with the probability that cj is a
complete word. Complete words are followed by a space. We define the proba-
bility pcomplete(cj, Ŝi) that cj is a complete word as the sum of the probabilities of
all subwords that begin with a space:

pcomplete(cj, Ŝi) =
∑

s∈SPACE

p(s|Ŝi, cj)

where SPACE is the set of subwords beginning with a space. We then redefine
the candidate probability:

p(cj|Ŝi) = p(W |U) · pcomplete(cj, Ŝi)

Beam search The neural language model uses only the left context to esti-
mate the probability of a candidate correction. However, the right context gives
additional information that can help to determine the most likely correction. To
make use of the right context, NLMspell performs a beam search. Thereby, in-
stead of choosing the most likely correction greedily based only on the left con-
text, it maintains a set of candidate sequences and postpones the decision about
the most likely correction to a later step, where it will have seen some of the right
context.

For example, given the input sequence “The ct eats fish.”, at the second step
(processing “ct”), the language model gives the candidate sequence “The act” a
higher probability than “The cat”. However, both sequences are kept as candidate
sequences, and at the third step (now processing “eats”) the probability of “The

cat eats” becomes greater than the probability of “The act eats”. In this example,

5. Approaches 48

the right context word “eats” helped to find the correct intended word for “ct”.

The beam search proceeds as follows: Let Bi be the set of candidate sequences
maintained by NLMspell in iteration i. Each candidate sequence bl ∈ Bi is
assigned a score, that reflects how likely the candidate sequence is, given the
observed tokens t1 to ti−1. Initially, B1 contains just the empty sequence.

The tokens are processed from t1 to tn iteratively. In iteration i, candidate
correction set Ci for token ti is generated. Each candidate correction cj ∈ Ci is
appended to each candidate sequence bl ∈ Bi. That gives a candidate sequence
setBnew

i that contains |Bi|·|Ci| new sequences. For each new candidate sequence
bnewl,j , that was created by appending candidate correction cj to candidate sequence
bl, a score is computed based on the score of bl, the probability p(cj|bl) estimated
by the neural language model, and the similarity between cj and observed token
ti. The k new candidate sequences from Bnew

i with the best scores are kept as
the set Bi+1 for the next iteration. The size k of the candidate sequence set is a
hyperparameter of NLMspell.

The merge, merge-split, merge-edit and double-merge candidates are candi-
dates not only for token ti, but for tokens ti to ti+1 or ti+2 combined. The candi-
date sequences that are created with such a candidate are not added to Bi+1, but
to Bi+2 or (if it is a double-merge candidate) to Bi+3.

After n iterations, NLMspell terminates with a set of k candidate sequences
Bn+1. The candidate sequence with the best score gets returned as the predicted
sequence Ŝ for input sequence S.

Candidate scoring We score the candidates based on two assumptions:

1. Candidates that get a high probability by the language model are more
likely to be correct than candidates with a low probability.

2. Intended sequences are orthographically similar to the observed sequences.

As the score for a candidate, we use its negative log likelihood estimated by a
language model and punish it depending on the edit distance to the observed
token. The smaller the score, the better.

The punishment is necessary to bias the beam search towards candidate se-
quences that are similar to the input sequence. If we were to score the candi-

5. Approaches 49

dates without any punishment, the beam search would result in a sequence that
is likely spelled correctly, but not necessarily the intended sequence for the in-
put sequence. For example, the candidate “The” would always get the same
score, whether the observed sequence starts with “The”, “Te”, “Then”, “This”,
“That”, “Thus”, “He” and many other tokens for which “The” is contained in
the candidate set. We want the candidate “The” to get a high score when the
observed token is “The”, a medium score when the observed token is “Te”, and
a low score when the observed token is “He”. This is achieved by punishing the
score of a candidate depending on the candidate’s edit distance to the observed
token.

As the score of a candidate sequence bl ∈ Bi+1 we use the negative log likeli-
hood of the sequence plus a punishment for the number of edit operations needed
to transform the observed tokens t1 to ti into bl. The smaller the score, the better.

A candidate sequence b is a sequence of candidate corrections (c1, ..., ci). Each
candidate correction cj has a probability p(cj|c1, ..., cj−1) estimated by the neural
language model. The likelihood of the sequence b is the product of its candidate
corrections’ probabilities. It follows that the log likelihood is the sum of the log-
arithms of those probabilities. To compute the log likelihood of a new candidate
sequence bnewl,j , which is created by appending cj to candidate sequence bl, we add
the logarithm of p(cj|bl) to the log likelihood of bl.

log(p(bnewl,j)) = log(p(bl)) + log(p(cj|bl))

The punishment for a candidate correction cj is zero when cj is equal to the
observed token ti. Otherwise we add a punishment λ · edit_distance(cj, ti). As
with the log likelihood, we sum up the punishments for the individual candidate
corrections that form a candidate sequence to get the punishment for the entire
sequence.

Putting the log likelihood and the punishments together, the score of a new
candidate sequence bnewl,j , that is created by appending candidate correction cj to
candidate sequence bl, is computed from the score of bl, the probability p(cj|bl)

5. Approaches 50

and the punishment value:

score(p(bnewl,j)) = score(bl)− log(p(cj|bl)) + λ · edit_distance(cj, ti)

5.1.2. Runtime improvements

NLMspell has two potential runtime bottlenecks: one is the candidate generation,
and the other is the estimation of the probability for many candidate corrections.

For the generation of the candidate corrections Ci given a token ti, all words
from V with an edit distance to ti smaller or equal to two are to be determined.
The naïve way to find these words is to compute the edit distance between ti and
every word in V , and keep the words with edit distance smaller or equal to two.
However, with |V | = 100, 000, this results in 100,000 edit distance computations
per input token, which takes multiple seconds runtime.

After the candidate correction set Ci is computed, the probability for each can-
didate correction cj ∈ Ci as an appendix to every candidate sequence bl ∈ Bi has
to be evaluated with the neural language model. For some input tokens, Ci con-
tains more than 2,000 candidate corrections. With k = 10 candidate sequences
in Beam Search, that results in more than 20,000 candidate evaluations in one it-
eration of the Beam Search algorithm. The naïve solution to this problem would
be to generate all 20,000 candidate sequences and let the neural language model
estimate their probabilities one by one. This can be done in finite time, but would
take minutes to hours to evaluate.

Fast candidate generation An observation allows us to define a lower bound
on the edit distance between ti and the words in V , which we then use to pre-filter
V rapidly. We then only compute the edit distance between ti and a much smaller
pre-filtered set C ′i ⊂ V to determine Ci.

We observe that, when we define sets Wi for every word wi in V , such that Wi

contains all strings that can be generated fromwi by deleting up to two characters,
words wi and wj within an edit distance smaller or equal to two have at least one
common element in Wi ∩Wj . We call Wi the stump set of word wi.

The intuition is as follows: a character insertion, deletion or replacement af-

5. Approaches 51

fects up to one character in a word. If wi can be transformed into wj with two or
less edit operations, at maximum two characters in wi can be not present in wj ,
and the other way around. This holds also for the transposition of two characters:
regard the words “abcd” and “badc” which have edit distance two. Removing
the a and the c in both words results in the common stump “bd”.

We now know that the edit distance between token ti and word wj ∈ V is
greater than two if the stump set Ti of token ti and the stump set Wj of wj do not
have any element in common. In a preprocessing phase, we compute the stump
sets Wj for all words wj ∈ V . For every stump, we compute the set of words
in V that have this stump in their stump set. We call this the stump-word index.
Now, given an observed token ti, we compute the stump set Ti of ti, and retrieve
the words for every stump in Ti from the stump-word index. This set C ′i is much
smaller than V , which saves us a lot of edit distance computations.

An example shows that the stump method gives only a lower bound on the edit
distance, and that we therefore still have to compute the edit distance between ti
and every element in C ′i to determine the candidate correction set Ci. Consider
the words “aabb” and “bbcc”. Both have the stump “bb” in common. However,
the edit distance between the two words is 4 and therefore greater than 2.

Semi-fast probability estimation The estimation of all candidates correc-
tions as appendices to all candidate sequences is sped up by re-using hidden states
and batching candidates. However, a lot of evaluations remain, which is why we
call the method the semi-fast probability estimation.

With every candidate sequence bi we store the neural language model’s hidden
state for every subword. When appending candidate cj to bi, we start from the
last hidden state and process the subwords from cj iteratively. This saves us re-
computing the hidden states for the subwords in bi for every iteration and every
candidate.

Additionally, we group multiple candidate corrections into batches and pro-
cess them altogether. When candidate corrections do not have the same number
of subwords, shorter candidate corrections are padded. Only the subword proba-
bilities without padding are used to compute a candidate’s probability, and the last
hidden state not corresponding to a padding symbol is stored with the candidate.

5. Approaches 52

Candidate pre-filtering To reduce the number of word probability estima-
tions, we use the candidate corrections’ frequency in the training data as a heuris-
tic to pre-select a subset of promising candidates, and only evaluate their proba-
bility.

The edit candidates and the split-edit candidates are pre-filtered such that both
sets contain only the K most frequent candidates. For the edit candidates, simply
the word frequency in the training data is used to determine the most frequent
candidates. For the split-edit candidates, which consist of two words, frequencies
of the 10,000,000 most frequent bigrams are used to determine the most frequent
candidates. If a split-edit candidate is not among the most frequent 10,000,000
bigrams, its frequency is set to 0. For those candidate corrections the frequency
of its less frequent word is used as a tie-breaker.

5.1.3. Neural language model architecture and training
hyperparameters

We use a recurrent neural network as the language model in NLMspell. We expect
that a good language model is crucial for a good performance of NLMspell. In
the design of the neural language model, many decisions have to be made, which
affect the performance of the neural language model.

Hyperparameter search space When designing the neural language model,
we have to make the following decisions:

• How many byte pair merges to use for the encoding?
• How many LSTM layers does the model incorporate?
• How many hidden units per LSTM layer?
• How many dense layers to stack on top of the LSTM layers?
• How many hidden units per dense layer?
• Does the model incorporate self-attention?
• What is the learning rate or learning rate schedule?
• What batch size to use during training?
• How long to train the model?

With our approach we have already fixed some design decisions:

5. Approaches 53

• Unidirectional model. A bidirectional model would need to deal with
noisy input, since misspellings can appear everywhere in the sequence. We
found it convenient to use a unidirectional model and process the input
sequence from left to right, such that the left context is always corrected by
the model before predicting the next correction.
• Recurrent model. Recently, transformer models have shown great success

in language modeling and translation tasks. However, they are parameter-
heavy and training seems sensitive to hyperparameters. In our experiments,
we found recurrent models to train better with the resources available.
More details can be found in appendix A.1.
• ReLU. We always use ReLU as the activation function for dense layers be-

cause we believe the effect of changing the activation function to be small,
and we do not want to increase our hyperparameter search space unneces-
sarily.
• Adam optimizer. We use the Adam optimizer because we hope for the

per-parameter adaptive learning rates to stabilize training and found the
training loss of our models to decrease rapidly, even when just using the
default hyperparameters.

Figure 7 depicts the computational graph of a neural language model with at-
tention.

Hyperparameter optimization issues We are to test 20 different network
architectures with 6 different learning rates and 4 different decay rates A grid
search on that search space would require to train and evaluate 20 · 6 · 4 = 480

models. Since training a model can take more than a day, we are in the range of
multiple years runtime required for grid search.

Alternatives to grid search are Hyperband [Jamieson and Talwalkar, 2016] and
BOHB [Falkner et al., 2018], which both build on the Successive Halving algo-
rithm [Karnin et al., 2013]. Successive Halving trains models for a short training
time budget, evaluates them, and only trains the models further which perform
well after the short training time. However, we find that our models’ perfor-
mance correlates negatively over training time budgets, which is why we do not
use Hyperband and the approaches built upon it. In initial experiments we see

5. Approaches 54

x1 x2 x3 x4 x5

LSTM LSTM LSTM LSTM LSTM

h1 h2 h3 h4 h5

attention

context vector concat

dense

output

y

Figure 7: A recurrent neural language model with attention.

that small models train faster than big models, but big models have better per-
formance when trained for a long time. We see training loss curves of different
models cross after 18 hours training time and later. If we were to eliminate mod-
els after a short training time budget, we would only keep the models that train
fast in the beginning, and eliminate the models that train more slowly but have
better end performance.

Phased hyperparameter grid search Instead of using grid search or Suc-
cessive Halving to optimize the hyperparameters of our neural language model,
we use a procedure we call phased grid search. We assume that the choice of the
network architecture affects the model’s performance more than the learning rate

5. Approaches 55

used to train it, as long as the learning rate is in a reasonable range. In our exper-
iments we see that with the default learning rate 0.001 the training loss decreases
rapidly in early training steps. Therefore we decide to first train models with 20
different architectures and the default learning rate for one day each, in order to
find the best architecture. Training the 20 models is distributed to 20 machines
to save wall-clock time. The results of this experiment can be found in appendix
A.2.

In the second phase, we test different initial learning rates for the best archi-
tecture. Models are trained for 3,000 steps. The results of this experiment can be
found in appendix A.2.

In the third phase, we test different decay rates. Models are trained for 20,000
steps. The results of this experiment can be found in appendix A.2.

Overall, the entire hyperparameter search took less than two days wall-clock
time.

We finally choose a model with 10,000 byte pair merge steps, a single LSTM
layer with 1024 units, self-attention and a single dense layer with 1024 units, and
train it for 24 hours on a Nvidia Titan X GPU with a batch size of 64, and a
learning rate of 0.003 decaying every 1,000 training steps with a decay rate of
0.95.

5.1.4. Punishment value

We use the development benchmarks to find the optimal punishment value λ.

The development benchmarks contain pairs of noisy and intended sequences.
First we compute the ground truth corrections for all misspellings in an intended
sequence. To do so, we compute the character edit operations that transform
the noisy into the intended sequence, and apply these operations token-wise. If
a token from the noisy sequence does not get changed while transforming the
noisy into the intended sequence, it is correctly spelled in the noisy sequence.
Otherwise, it is a misspelling.

For every token in the noisy sequence there are two possibilities:

1. The token is spelled correctly. Usually there is a candidate correction that
gets a higher probability from the language model. However, the score of

5. Approaches 56

the candidate correction will be punished depending on λ. We compute the
minimum λ needed to preserve the correctly spelled token.

2. The token is misspelled. Usually the ground truth correction gets a higher
probability from the language model. However, the score of the ground
truth correction will be punished depending on λ. We compute the maxi-
mum λ such that the token gets corrected.

For case 1, consider a misspelled token ti and its ground truth correction ci.
Usually the probability of ci is greater than that of ti - otherwise NLMspell has
no chance of correcting ti. However, NLMspell will punish the score of ci by
edit_distance(ti, ci) · λ. That means, if λ is too high, NLMspell will not correct
ti. We get the probabilities p(ti|S) and p(ci|S) from the neural language model,
where S is the intended sequence until ci (ci not included). The scores of ti and
ci are the following:

score(ti) = −log(p(ti|S))

score(ci) = −log(p(ci|S)) + edit_distance(ti, ci) · λ

It follows that for
λ <

log(p(ci|S))− log(p(ti|S))

edit_distance(ti, ci)

NLMspell will correct ti and thereby generate a true positive.

For case 2, consider a correctly spelled token ti. Usually there are candidate
corrections that have a higher probability than ti. However, NLMspell will punish
their score by edit_distance(ti, ci)·λ. That means, if λ is high enough, NLMspell
will preserve ti. We compute the candidate set Ci for ti and estimate the proba-
bility p(cj|S) for each candidate correction cj , where S is the intended sequence
until ti. The scores for ti and all cj are the same as above. It follows that for

λ < max
cj∈Ci

log(p(cj|S))− log(p(ti|S))

edit_distance(ti, cj)

NLMspell will replace ti and thereby generate a false positive.

This procedure is done for every pair of sequences in a development bench-
mark. The resulting threshold λ-values for which NLMspell will generate a true
positive or false positive are stored in a list and sorted. Then, we move the pun-
ishment value λ from infinity to the lowest threshold value. For each threshold

5. Approaches 57

value we count the number of true positives TP and false positives FP that get
generated if λ was set to this value. To compute an F-score we also need the
number of false negatives FN. Since we know the total number of misspellings
M in the development benchmark, we can compute the number of false negatives
as:

FN = M− TP

Finally, we set λ to the threshold value that gives the highest F-score on the
development benchmark.

The threshold values are computed under the assumption that the model is
able to correct the left context perfectly. In practice this assumption will often
not hold, and many corrections will depend on previous corrections. However,
making this assumption allows us to compute the thresholds in a single run over
the development data, instead of having to simulate multiple beam searches with
different thresholds.

We slightly modify the approach described above to mimic the beam search
performed by NLMspell and make use of the advantage that NLMspell can post-
pone decisions to the next beam search iteration. When computing the scores for
an observed token and the candidate corrections, we do not only look at the prob-
ability of a token or correction given the left context, but also the probability that
the next token of the intended sequence follows the observed token or candidate.

score(ti) = −log(p(ti|S))− log(p(gi+1|S, ti)

score(ci) = −log(p(ci|S))− log(p(gi+1|S, ci) + edit_distance(ti, ci) · λ

where gi+1 is the next token from the intended sequence.

5.2. TranslationSpell: spelling correction with a neural
machine translation model

The Neural Machine Translation Spelling Corrector (TranslationSpell) models
the spelling correction task as a machine translation problem. The task is to
translate from English with spelling errors to correct English.

5. Approaches 58

5.2.1. Artificial training data

TranslationSpell incorporates a neural machine translation model that is trained
on sequence pairs (S, S̄), where S is a misspelled sequence and S̄ the intended
correctly spelled sequence.

The Wikipedia training sequences form the set of correctly spelled sequences.
To generate misspelled sequences, for each character in the sequence a random
error is introduced with probability p = 0.05. Errors are sampled from the fol-
lowing set:

1. Insertion of a random letter from a-z or A-Z.
2. Deletion of a character.
3. Replacement of a character by a random letter from a-z or A-Z.
4. Transposition of two neighboring characters.

The four error types are sampled with uniform probability.

5.2.2. Model architecture

The neural machine translation model is an encoder-decoder neural network with
attention. Figure 8 depicts the computational graph of the model.

Encoder The encoder is a bidirectional LSTM cell. That is a combination of
two LSTM cells: one generates hidden states processing the input sequence in
forward direction, and the other in backward direction. Each cell has 1024 units.
We choose to represent the input sequence as bytes, since a byte representation is
more robust to noise than a subword representation. The subwords of a token can
change entirely if a single character of the token is changed, whereas most of its
bytes will remain intact.

For a byte sequence S = (x1, ..., xn), the forward LSTM cell generates hidden
states f1 to fn processing S from x1 to xn, and the backward LSTM cell generates
hidden states bn to b1 processing S from xn to x1. For each xi, the forward and
backward hidden states fi and bi are concatenated to a hidden state vector hi =

concat(fi, bi) that encodes information about xi and the left and right context.

5. Approaches 59

x1 x2 ... xn <SOS> y1

LSTM LSTM ... LSTM dense LSTM LSTM

h1 h2 ... hn s1 s2

attention

context vector concat

dense

output

y2

Figure 8: A neural translation model with attention. The bidirectional LSTM of
the encoder is blue, the LSTM of the decoder red. The dense layer
between the two LSTMs is the gate. <SOS> is a start symbol.

Decoder The decoder is a unidirectional LSTM cell with attention to the en-
coder. A dense layer and an output layer are stacked on top to predict the next
subword.

The last hidden state hn generated by the encoder is used as the initial hidden
state of the decoder. For hn to be usable in the decoder, we must pass it through a
gate which transforms it to a vector of the same size as the decoder LSTM cell’s
hidden state. The gate is a dense layer that has as many units as the decoder
LSTM cell.

The decoder LSTM cell has 1024 units. Given the previous hidden state and a

5. Approaches 60

subword, the it produces a hidden state h̄t. A context vector ct is computed with
the attention mechanism, where h̄t is the query and the encoder hidden states h1
to hn are the keys and values.

The context vector ct and the decoder hidden state h̄t are concatenated and fed
into a dense layer with 1024 units and ReLU activation, followed by a softmax
output layer that predicts the next subword. Subwords come from a byte pair
encoding with 2,000 merge steps.

5.2.3. Training

The training loss is the categorical crossentropy of the target sequence. The
model is trained with the Adam optimizer [Kingma and Ba, 2015], with the de-
fault learning rate 0.001, no decay, and a batch size of 64. We let the model train
for two days on a Nvidia GTX 1060 GPU.

5.2.4. Prediction

Before generating a prediction for an input sequence, the input sequence is split
into sentences with the NLTK tokenizer [Bird et al., 2009]. This is done because
translation models work better on shorter sequences, and sentence splitting is
often robust to misspellings. Then, the sentences are translated independently.

First, the encoder is used to encode the input sentence. Then, the most likely
target sentence according to the decoder is found with a best-first search.

We find that in some cases TranslationSpell predicts sentences that are too
short, ignoring parts of the input sentence. To circumvent this problem, we punish
the log likelihood of a predicted sequence by adding −0.99 · ed, where ed is the
edit distance between the input sequence and the predicted sequence. The short
sequences have a higher edit distance which results in a stronger punishment. We
then continue the best-first search until all sequences in the search queue are less
likely than the most likely punished sequence. The most likely punished sequence
is returned as predicted sequence Ŝ.

6. Baselines 61

6. Baselines

6.1. UnigramSpell: a context-free baseline spelling
corrector

As a baseline, we develop UnigramSpell, a context-free spelling corrector based
on a vocabulary of correct words and their frequencies in the training data. The
100,000 most frequent words form the vocabulary V .

Error detection UnigramSpell processes the tokens of an input sequence S =

(t1, ...tn) from left to right. Tokenization is done with the regular expression
method. All tokens that are numbers, punctuation marks or words contained in
V remain unchanged. All other tokens are considered to be misspellings and
replaced by a word from V .

Word replacement For a token ti that is not in V , and therefore considered a
misspelling, a candidate set Ci is generated the same way as in NLMspell. Then,
ti gets replaced by the single-edit candidate c ∈ Ci that is most frequent in the
training data. For split candidates, which consist of multiple words, the frequency
of the least frequent word is considered. If no single-edit candidate exists in Ci,
ti gets replaced by the most frequent two-edit candidate. If Ci is empty, ti does
not get replaced.

6.2. NgramSpell: a context-dependent baseline spelling
corrector

As a context-dependent baseline, we develop NgramSpell, a spelling corrector
using an n-gram language model. NgramSpell is the same as NLMspell, but
uses an n-gram language model instead of the neural language model to score
the candidate corrections. All other parts - candidate generation, beam search,
punishments, fitting of punishment values - are the same as in NLMspell.

6. Baselines 62

N-gram model An n-gram language model is used for the candidate selection
in NgramSpell. The model is an interpolation of a unigram model, a bigram
model and a trigram model. The unigram model uses the frequencies of all words
in the complete training data to estimate unigram probabilities.

The bigrams and trigrams, however, do not all fit into memory. Therefore
a stochastic estimation of the 30,000,000 most frequent bigrams and trigrams is
used. We train the bigram and trigram models on 10,000,000 training paragraphs.
After each 1,000,000 paragraphs, we remove all bigrams and trigrams from mem-
ory, which are not among the 30,000,000 most frequent.

The interpolation factor α is optimized on 1,000 development paragraphs by
testing 101 values ranging from 0 to 1 with uniform step size, and choosing the
value for α that minimizes perplexity. The best interpolation factor found was
α = 0.45.

6.3. Commercial baseline

The Google docs spelling corrector is used as a commercial baseline. The mis-
spelled benchmark sequences are copied into a Google docs document, and all
suggestions by the spelling corrector are applied, until no more edits are sug-
gested.

7. Experiments 63

7. Experiments

This chapter explains the different experiments we did to analyse the language
models and spelling correctors under study. A comparison of different language
models is given in 7.1. The spelling correction benchmarks and evaluation met-
ric are given in 7.2 and 7.3, followed by a comparison of the different spelling
correctors in 7.4. In 7.5 we test different variants of NLMspell, and in 7.6 we test
the robustness of the spelling correctors to varying error rates.

All models are implemented in TensorFlow [Abadi et al., 2015] and, if not
stated differently, trained on two Nvidia Titan X GPUs with data parallelism.

7.1. Language models

For a comparison of different kinds of language models, we train a recurrent
neural language model without attention, a recurrent neural language model with
attention and a Transformer language model on two Nvidia Titan X GPUs with
data parallelism for 24 hours each. All models use a byte pair encoding with
10,000 merge steps, which was found to be better than a smaller encoding during
the hyperparameter optimization.

For the recurrent models with and without attention we choose the best ar-
chitecture found during the hyperparameter optimization. That is a single-layer
LSTM with 1024 units, followed by a dense layer with 1024 units. The learning
rate is set to 0.003 and decayed with a factor of 0.95 every 1,000 training steps.

To find a good Transformer architecture, we test models with one to six layers.
All other hyperparameters are equal to the ones stated in [Vaswani et al., 2017].
We test different learning rate schedules for each architecture and train models
for 5,000 steps on a Nvidia GTX 1060 GPU. The learning rate schedules equal
the schedules in [Vaswani et al., 2017], but with the learning rate multiplied by
2, 1 or 0.5. The learning rate is increased linearly during the first 4,000 steps
and then decayed exponentially. We evaluate the models’ perplexity on 1,000
development paragraphs, and then train models with one to six layers using the
learning rate that gave the lowest perplexity for each number of layers. The results
for these models can be found in appendix A.1. The 3-layer model gives the

7. Experiments 64

lowest perplexity. However, we suspect that on two Nvidia Titan X GPUs we
can train a deeper model, because we can increase the batch size. We therefore
decide to train a 4-layer Transformer model and set the batch size to 64, such that
a training step takes less than one second.

Table 3 gives a comparison of the recurrent models and the Transformer model,
as well as the small model from [Radford et al., 2019]7 and our trigram model,
all evaluated on 10,000 development sequences. We observe that the top three
models are attention models. Despite having more parameters than the recurrent
models, the transformer model could be trained on more sequences than the re-
current models in 24 hours. However, our best model is the recurrent model with
attention. Our Transformer model performs almost as well as the recurrent model
with attention. Overall the model from [Radford et al., 2019] is the best model.

model parameters sequences perplexity

n-gram 40M 10.0M 378.9

LSTM 29M 7.0M 157.0

LSTM+attention 32M 6.9M 103.3

Transformer 44M 7.3M 106.5

GPT small [Radford et al., 2019] 117M - 78.7

Table 3: Per-token perplexity of our trigram model, recurrent model without at-
tention, recurrent model with attention, 4-layer Transformer model, and
the small model from [Radford et al., 2019] on 10,000 development se-
quences, together with the number of parameters of each model and the
number of sequences it was trained on. The best result is marked bold.
Our best result is marked italic.

7.2. Spelling correction benchmarks

To evaluate the quality of spelling correction methods, a benchmark of misspelled
sequences with the corresponding correct sequences is needed. To the best of
our knowledge no such dataset is publicly available. We therefore generate two

7Downloaded from https://github.com/openai/gpt-2

https://github.com/openai/gpt-2

7. Experiments 65

benchmarks with different types of misspellings: artificial, randomized typos and
realistic typos from a collection of typos.

Noise induction Two different benchmarks are created to evaluate the perfor-
mance of the approaches on the correction of artificial and realistic misspellings.
For both types of misspellings a development and a test benchmark is created.
This is done by inducing two different noise types into 1,000 paragraphs from the
Wikipedia development and test sets. Only paragraphs with a maximum length
of 1024 characters are considered, which equals the maximum sequence length
during training of the translation model used in TranslationSpell. The paragraphs
without noise form the ground truth sequences, and the noisy paragraphs the input
sequences.

Artificial misspellings The artificial benchmark contains sentences with ar-
tificial, random misspellings. Each token that is not a number, punctuation mark
or symbol is affected by noise with a probability of 20 %. If a token is affected
by noise, we introduce a single error with probability 80 %, and two errors with
probability 20 %. This follows the finding in [Damerau, 1964], that misspellings
comprising a single character edit operation account for about 80 % of all mis-
spellings. Errors are drawn from the following distribution:

• With 80 % probability a character edit is chosen. This can be a charac-
ter insertion, deletion, replacement or the transposition of two neighboring
characters.
• With 10 % probability a split operation is chosen. A space is inserted at a

randomly chosen position.
• With 10 % probability a merge operation is chosen. The space after the

token is removed.

When introducing two errors, every combination of error types is possible. Er-
rors are applied in the following order: merge, edit, split. When introducing two
character edits, it is ensured that no character is affected twice. Insertable char-
acters are all lowercase letters a-z and uppercase letters A-Z. Merges are only
applied when the token to merge with is not a number, punctuation mark or sym-
bol. Splits are only applied when the token has length two or greater. Table 4

7. Experiments 66

gives examples for all combinations of error types.

correct token(s) errors error type(s) misspelling

algorithm 1 edit algoritXhm

algorithm 1 split algo rithm

algorithm runs 1 merge algorithmruns

algorithm 2 edit, edit aglorihm

algorithm 2 edit, split amlgori thm

algorithm 2 split, split a lgor ithm

algorithm runs 2 merge, edit algorithrmruns

algorithm runs 2 merge, split algo rithmruns

algorithm runs in 2 merge, merge algorithmrunsin

Table 4: Examples of artificial misspellings for all combinations of error types
that can be generated in the artificial benchmark.

Real misspellings The other benchmark contains misspellings from the typo
collection. In the following, the benchmark will be called the realistic bench-
mark. The collection contains isolated misspellings with the corresponding in-
tended texts. The misspellings and intended texts are mostly single words, but
can be up to three words.

Before inducing the misspellings into paragraphs from the Wikipedia devel-
opment and test sets, we split the misspelling-intended pairs into a development
and a test set, both containing half of the pairs. We use the same ground truth
paragraphs as in the artificial benchmark, and induce misspellings from the de-
velopment set into the development paragraphs, and misspellings from the test
set into the test paragraphs.

We extend the 80-20 split between single-edit and multi-edit misspellings re-
ported in [Damerau, 1964] to more than two edit operations. We assume that a
misspelling with k or more character edits is four times less likely than a mis-
spelling with k − 1 character edits. That is, we give single-edit misspellings 80
% probability, two-edit misspellings 16 % probability, three-edit misspellings 3.2
% probability and so on. As a formula, the probability for a misspelling with k

7. Experiments 67

benchmark single-edit multi-edit split merge mixed nonword real-word total

artificial 5348 1015 651 1266 493 7294 1479 8773

realistic 3520 564 7 4 7 2448 1654 4102

Table 5: Number of ground truth tokens affected by the different error types in
the test benchmarks.

edits is:
pedits(k) = 0.8 · 0.2k−1

When inducing misspellings into a ground truth sequence S̄ to generate a noisy
sequence S, we proceed as follows. First, S̄ is tokenized into tokens (t̄1, ..., t̄n).
The tokens are processed from left to right. Each token is affected by noise with
a base probability p = 0.2. If a token t̄i is affected by noise, the number of edit
operations is sampled following pedits. Then, all misspellings for t̄i, (t̄i, ¯ti+1) and
(t̄i, ¯ti+1, ¯ti+2) that comprise the sampled number of edit operations are retrieved
from the misspelling collection. One of the retrieved misspellings is selected at
random and appended to S. If the collection does not contain a misspelling with
the sampled number of edit operations, ti is not affected by noise. If ti is not
affected by noise, it is simply appended to S.

Table 5 gives statistics about the error types sampled for the two test bench-
marks, and 6 shows example sequences.

7.3. Spelling correction evaluation metric

Goal An evaluation metric for the spelling correction task has to measure two
things:

1. How many of the misspelled tokens does the spelling corrector correct?
2. How many wrong corrections does the spelling corrector predict?

We are going to answer these two questions with precision and recall rates and
combine the two rates into a single F-score.

Definition In the evaluation, we are given triples of sequences (Sin, Strue, Spred)

where Sin is the noisy input sequence, Strue the ground truth sequence and Spred

7. Experiments 68

benchmark text

ground truth Tverdislav was subsequently accused by rival boyars of helping
the ruling princes to stifle the republic in Novgorod. Mutual ac-
cusations between boyar factions broke into a civil war in 1218,
when the prince declared Tverdislav’s posadnikship over, but
this act was deemed unlawful by all the parties and Tverdislav
managed to retain his position.

artificial Tverdislav aws subsequently accused by rivBal boyars of
hleping the ruling princes to sile thveG republli c in Nov-
gorod. Mutual accusations between boyar factions broke into
C Fcivil war in 1218, when the prince declared Tverdislav’s
posadnikship over, butO this act was deemed unlawful by all
the pnrties and Tverdislav managed to retain his position.

realistic Tverdislav wase subsequently accused by rival boyars of help-
ing the ruling princes to stifle the republic in Novgorod. Mu-
tual accusations between boyar factions broke into I civil war
in 1218, when the prince declared Tverdislav’s posadnikship
over, bat this act was deemed unlawful by all tie parties anf
Tverdislav managed to retain hed position.

Table 6: An example ground truth sequence and corresponding noisy sequences
from the two benchmarks.

7. Experiments 69

the predicted sequence. Each sequence is tokenized by splitting at spaces.

Sin = (tin1 , ..., t
in
nin

)

Strue = (ttrue1 , ..., ttruentrue
)

Spred = (tpred1 , ..., tprednpred
)

We use the following definitions to compute precision, recall and F-score:

• True positive: a ground truth token ttruei ∈ Strue that is misspelled in the
input sequence Sin is correctly predicted in Spred.
• False negative: a ground truth token ttruei ∈ Strue that is misspelled in the

input sequence Sin is not correctly predicted in Spred.
• False positive: the spelling corrector predicts the change of an input token
tini ∈ Sin that results in a token in Spred that is not in Strue.

For the determination of true positives, false negatives and false positives, we
need to compute the following:

• Which tokens of the ground truth sequence are misspelled in the input
sequence? The indices of these tokens are the ground truth positive set
misspelled.
• Which tokens of the ground truth sequence are present in the predicted se-

quence? The indices of these tokens are the correct prediction set restored.
• Which tokens of the input sequence are changed by the spelling corrector?

The indices of these tokens are the changed set changed.
• Which of the predicted tokens are correct? The indices of these tokens are

the set of correct predicted tokens correct.

Then, true positives TP, false negatives FN and false positives FP can be
computed:

TP = misspelled ∩ restored

FN = misspelled \ restored

FP = changed \ correct

Notice that the sets contain indices instead of words. By index we mean the
position of the token in the sequence. This is necessary because the same word

7. Experiments 70

can occur multiple times in a sequence, and it can be correct in one case and
wrong in the other.

Example Consider the following input sequence Sin, ground truth sequence
Strue and predicted sequence Spred:

Sin = “Te cute cteats delicious fi sh.”

Strue = “The cute cat eats delicious fish.”

Spred = “The cute act eats delicate fi sh.”

The misspelled set contains the indices of “The”, “cat”, “eats” and “fish.”.
Those are the tokens from the ground truth sequence that are misspelled in the
input sequence.

misspelled = {1, 3, 4, 6}

The restored set contains the indices of “The”, “cute” and “eats”. Those are the
tokens from the ground truth sequence that are present in the predicted sequence.

restored = {1, 2, 4}

The changed set contains the indices of “Te”, “cteats” and “delicious”. Those
are the tokens from the input sequence that are changed by the spelling corrector.

changed = {1, 3, 4}

The correct set contains the indices of “Te” and “cute”. Those are the tokens
from the input sequence for which the spelling corrector made the correct predic-
tion.

correct = {1, 2}

Note that the indices in misspelled and restored refer to the ground truth se-
quence, whereas the indices in changed and correct refer to the input sequence.

The true positives are “The” and “eats”. Those are the tokens from the ground
truth sequence that are misspelled in the input sequence and restored in the pre-

7. Experiments 71

dicted sequence.

TP = misspelled ∩ restored = {1, 4}

The false negatives are “cat” and “fish.”, Those are the tokens from the ground
truth sequence that are misspelled in the input sequence and not restored in the
predicted sequence.

FN = misspelled \ restored = {3, 6}

The false positives are “cteats” and “delicious”. They are tokens from the input
sequence that are changed by the spelling corrector but did not result in the correct
tokens from the ground truth sequence.

FP = changed \ correct = {3, 4}

The token “cute” is a true negative. It is present in all three sequences. True
negatives will not be used any further in the evaluation.

Procedure We compute the sets misspelled, restored, changed and correct

from the sequences Strue, Sin and Spred under the assumption that the noise induc-
tion process and the spelling corrector both change as less characters as possible.

From the backtrace of the edit distance matrix between Sin and Strue we get
the character edit operations that transform Sin into Strue. All tokens from Strue

that are affected by an edit operation are in the set misspelled. The removal of a
space between two tokens affects both tokens.

We do the same for the sequences Sin and Spred to get the tokens from Sin that
are changed by the spelling corrector. Those tokens are in the set changed.

Next, we compute the token matching between Strue and Spred. This is done
with a dynamic programming procedure computing a matrix D ∈ Zntrue×npred ,
where entry Di,j equals the number of matching tokens between the first i tokens
from Strue and the first j tokens from Spred. The procedure uses the following
recursive definition:

7. Experiments 72

Di,j = max



Di−1,j,

Di,j−1,

Di−1,j−1 + 1 if tini = tpredj

Di−1,j−1 otherwise

with the base cases D0,j = 0 ∀j and Di,0 = 0 ∀i. From the backtrace from
Dnin,npred

toD0,0 we get the pairs (tini , t
pred
j) such that the third line of the recursive

definition is used to compute Di,j . These are the matching pairs. All tini in the
matching pairs are in the set restored and all tpredj are correctly predicted tokens.

Finally we need to compute the set correct. It contains all tokens from Sin for
which the spelling corrector made the correct prediction. We first group tokens
from Sin together that get merged by the spelling corrector. To do so we look
at the edit operations that transform Sin into Spred and group tokens together if
the space between them gets removed. Then, for each merged group we want
to know the corresponding predicted tokens from Spred. For that, the number of
spaces that the spelling corrector inserts into the merged group is counted. If k
spaces are inserted into a merged group, i.e. the merged token is split k times,
the group results in k+ 1 tokens. A merged group, such that the previous merged
groups result in i predicted tokens and the group is split k times, results in the
(i + 1)th to (i + 1 + k)th tokens in Spred. If all the resulting tokens in Spred are
correctly predicted tokens, the tokens of the merged group are in the set correct.

Example (continued) Consider again the sequences Sin, Strue and Spred from
our example:

Sin = “Te cute cteats delicious fi sh.”

Strue = “The cute cat eats delicious fish.”

Spred = “The cute act eats delicate fi sh.”

The edit operations transforming Sin into Strue are:

• Insertion of an h after position 1, transforming “Te” into “The”.
• Insertion of an a after position 9, transforming “cteats” into “cateats”.
• Insertion of a space after position 10, splitting “cateats” into “cat” and

“eats”.

7. Experiments 73

• Deletion of a space at position 28, merging “fi” and “sh.” into “fish”.

The affected tokens from Strue are “The”, “cat”,“eats” and “fish”. Their indices
are in misspelled.

The edit operations transforming Sin into Spred are:

• Insertion of an h after position 1, transforming “Te” into “The”.
• Insertion of an a after position 8, transforming “cteats” into “acteats”.
• Insertion of a space after position 10, splitting “cateats” into “cat” and

“eats”.
• Three replacements of o, u and s at positions 21 to 23 with a, t and e,

transforming “delicious” into “delicates”.
• Deletion of an s at position 24, transforming “delicates” into “delicate”.

The affected tokens from Sin are “Te”, “cteats” and “delicious”. Their indices
are in changed.

The token matching between Strue and Spred matches “The”, “cute” and “eats”.
These are the tokens that are present in both sequences. Their indices in Strue are
in restored. Their indices in Spred are the set of correctly predicted tokens.

The spelling corrector does not merge any tokens. The only token that gets split
is “cteats”. We therefore get the predictions “Te”→ “The”, “cute”→ “cute”,
“cteats” → “act eats”, “delicious” → “delicate”, “fi” → “fi” and “sh.” →
“sh.”. The input tokens that result only in correctly predicted tokens are “Te”

and “cute”. Their indices are in correct.

From the four sets misspelled, restored, changed and correct we get the true
positives, false negatives and false positives as described above, which are then
used to compute precision, recall and F-score for the entire benchmark.

Detailed evaluation: error types To analyze if the spelling correctors per-
form different on different types of errors we distinguish the following types:

• Single-edit: a token is replaced by another token and the two tokens have
edit distance one.
• Multi-edit: a token is replaced by another token and the two tokens have

edit distance greater one.
• Split: a token is split into two tokens by inserting a space.

7. Experiments 74

• Merge: two tokens are merged by removing a space.
• Mixed: multiple splits, multiple merges or a mix of splits, merges and

character edits.

The error types of the true positives and false negatives are determined by the
ground truth character edit operations transforming Sin into Strue. The error types
of the false positives are determined by the character edit operations executed by
the spelling corrector, that is, the operations transforming Sin into Spred.

Error types refer to the type of the ground truth misspelling or predicted mis-
spelling, not to the edit operations executed by the spelling corrector. That is, for
example, if the spelling corrector inserts a space into an input token, it predicts a
merge error, since it predicts that the token is the merge of two tokens.

Detailed evaluation: error classes To analyze how well the spelling cor-
rectors work on different classes of errors, we distinguish between nonword and
real-word errors. We define that the 100,000 most frequent words in the training
data are words, and all other strings are nonwords.

Tokens from the intended sequence, which are misspelled in the input se-
quence, are real-word errors if the misspelling is a word. If the misspelling con-
sists of multiple tokens due to a token split, we require all tokens to be words to
make the misspelling a real-word error. Otherwise, the misspelling is a nonword
error.

False positives are classified as real-word errors if they involve an input token
that is a word. If the input token is a nonword, the false positive is a nonword
error.

Spelling error detection metric We introduce another metric that evaluates
how well a spelling corrector detects spelling errors. The detection metric does
not require that the spelling corrector finds the correct intended word, but mea-
sures how many of the misspelled input tokens get changed versus how many of
the correctly spelled input tokens get changed.

Let M be the misspelled input tokens and C the input tokens changed by the
spelling corrector. Then, true positives TP, false positives FP and false negatives

7. Experiments 75

FN are defined as follows:
TP = M ∩ C

FP = C \M

FN = M \ C

Precision, recall and F-score are computed from the numbers of true positives,
false positives and false negatives.

This is a useful metric for two reasons: First, there are scenarios where it is
enough to flag misspellings and let a user decide for the correct spelling instead
of automatically correcting it, e.g. as a writing aid software. Second, it gives
insight into the spelling corrector’s functionality: if a spelling corrector often
detects misspellings but does not correct them, it needs a better language model
to select the right candidate correction.

7.4. Spelling correction results

7.4.1. Artificial benchmark

Table 7 gives the results on the benchmark with artificial misspellings. With an
F-score of 91.5 %, NLMspell outperforms the other spelling correctors. It has the
highest precision and highest recall among all approaches.

It is noteworthy that the context-dependent baseline, NgramSpell, is the second-
best approach, outperforming the context-free baseline and the commercial base-
line as well as TranslationSpell. This suggests that little context is often enough
to find the correct word. However, there are cases where a better language model
helps: replacing the traditional language model in NgramSpell with the neural
language model in NLMspell improves the F-score by 3.4 % absolute. Compar-
ing the context-free UnigramSpell to the context-dependent NgramSpell, we find
that using context improves the F-score by 24.2 % absolute.

All approaches except for TranslationSpell show higher precision than recall
scores. The most conservative method is the commercial baseline, with a high
precision but low recall. The fact that TranslationSpell has higher recall than pre-
cision suggests that it has too much freedom in generating sequences that differ

7. Experiments 76

from the input sequences, thereby introducing many false corrections.

Regarding the error detection metric, we see the same pattern as for the correc-
tion metric: NLMspell has the highest F-score, followed by NgramSpell, Trans-
lationSpell, the commercial baseline and UnigramSpell. However, the detection
F-scores of NLMspell and NgramSpell are closer than the correction F-scores.
Both approaches are almost equally well on detecting misspellings, but the more
sophisticated model in NLMspell helps to find the correct intended word. The
gap between the detection F-scores and correction F-scores for TranslationSpell,
the commercial baseline and UnigramSpell is big. The commercial baseline has
difficulties with randomly inserted uppercase letters. It often predicts the correct
word, but keeps the wrong capitalization. UnigramSpell often predicts the wrong
word because it does not make use of the context. TranslationSpell is good in
detection misspellings, but has not developed a good language model to predict
the correct intended word.

Models that have a higher correction F-score also achieve a higher sequence
accuracy. However, it is difficult to solve a paragraph in its entirety. The best
sequence accuracy is below 50 %.

Error classes Table 8 gives the analysis for real-word and nonword errors.
All approaches perform better on nonword than on real-word errors. NLMspell
has the smallest gap between the two error classes, 5.2 % absolute correction
F-score. On both error classes, the top three approaches are the same as in the
overall analysis, in the same order: NLMspell performs best, followed by Ngram-
Spell and TranslationSpell. The only difference to the overall analysis is that
UnigramSpell is slightly better on nonword errors than the commercial baseline,
whereas the commercial baseline is better overall. UnigramSpell does not correct
any real-word errors by design.

Error types Table 9 gives the results on the same benchmark, broken down to
the different types of misspellings. We observe that NLMspell has better F-scores
than the other approaches across all error types.

Multi-edit replacements seem more difficult to correct than misspellings of the
other types. All approaches have much lower F-scores for multi-edit replace-

7. Experiments 77

ments than for single edit replacements. This includes our best approach, NLM-
spell, where the F-score for multi-edit replacements is 11.1 % absolute lower than
for single-edit replacements.

Random splits and merges on the other hand seem to be particularly easy to
solve, with NLMspell getting correction F-scores above 95 % on these cases.

Artificial test set
model detection correction sequence acc.

precision recall F-score precision recall F-score

UnigramSpell 87.1 % 71.6 % 78.6 % 67.4 % 60.8 % 63.9 % 17.3 %

NgramSpell 97.4 % 95.0 % 96.2 % 89.3 % 87.0 % 88.1 % 43.1 %

commercial 96.7 % 73.2 % 83.3 % 75.3 % 58.6 % 65.9 % 22.8 %

NLMspell 97.5 % 95.7 % 96.6 % 92.5 % 90.6 % 91.5 % 49.5 %

TranslationSpell 88.8 % 93.7 % 91.2 % 75.1 % 77.0 % 76.0 % 28.2 %

Table 7: Results on the test set with artificial errors. The best results are marked
bold.

7.4.2. Realistic benchmark

Table 10 gives the results on the benchmark with real misspellings. We observe
that the realistic misspellings are more difficult to correct than the random noise.
Almost all approaches have lower F-scores on the realistic benchmark than on the
artificial benchmark. This is because the realistic benchmark contains a greater
fraction of real-word errors than the artificial benchmark, which are more difficult
to detect and correct. The best correction F-score on the realistic benchmark is
3.1 % absolute lower than the best result on the artificial benchmark. However,
since there are less misspellings per sequence in the realistic benchmark than in
the artificial benchmark, the best sequence accuracy is 7.9 % higher.

The commercial baseline is the only approach that has a higher correction F-
score on the realistic than on the artificial benchmark, despite having a lower
correction F-score. It seems to be designed to correct common misspellings in-
stead of random noise.

7. Experiments 78

Artificial test set
model error class detection correction

precision recall F-score precision recall F-score

UnigramSpell nonword 87.1 % 96.5 % 91.6 % 67.4 % 73.1 % 70.1 %

real-word 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

NgramSpell nonword 98.0 % 96.7 % 97.3 % 90.7 % 88.8 % 89.7 %

real-word 95.6 % 90.1 % 92.8 % 82.0 % 78.3 % 80.1 %

commercial nonword 97.7 % 81.2 % 88.7 % 76.4 % 63.4 % 69.3 %

real-word 92.2 % 50.3 % 65.1 % 66.6 % 34.7 % 45.6 %

NLMspell nonword 98.0 % 96.0 % 97.0 % 93.7 % 91.2 % 92.4 %
real-word 96.1 % 94.8 % 95.5 % 87.0 % 87.4 % 87.2 %

TranslationSpell nonword 95.1 % 94.9 % 95.0 % 79.6 % 78.3 % 78.9 %

real-word 74.1 % 90.0 % 81.3 % 57.2 % 70.5 % 63.2 %

Table 8: Performance of the spelling correctors evaluated for different error
classes on the test set with artificial errors. The best results are marked
bold.

Comparing the performance of the different spelling correctors on the realistic
benchmark, we find a similar pattern like on the artificial benchmark. NLMspell
has the best F-score, best precision and best recall. The difference to NgramSpell
is greater than on the artificial benchmark, with a 7.2 % absolute difference in
correction F-score. The commercial baseline and TranslationSpell have swapped
their positions on the scoreboard, the commercial baseline now being better than
TranslationSpell. The correction F-score of TranslationSpell drops by dramatic
16.0 % absolute. It appears that TranslationSpell can not generalize well from
the randomized noise it was trained on to real misspellings.

Error classes Table 11 gives the analysis on the realistic benchmark broken
down to nonword and real-word errors. NLMspell is best in the correction of
both error classes.

The performance gap between the correction of real-word and nonword errors
is greater than on the random benchmark for the two best approaches: 8.7 % and

7. Experiments 79

Artificial test set
model error type detection correction

precision recall F-score precision recall F-score

UnigramSpell single-edit 92.8 % 80.7 % 86.3 % 69.9 % 69.4 % 69.7 %

multi-edit 76.6 % 88.4 % 82.1 % 51.9 % 41.4 % 46.0 %

split 100.0 % 27.4 % 43.0 % 99.0 % 16.0 % 27.5 %

merge 72.1 % 96.3 % 82.5 % 73.9 % 83.0 % 78.2 %

mixed 42.9 % 54.3 % 47.9 % 16.7 % 8.7 % 11.5 %

NgramSpell single-edit 96.9 % 95.2 % 96.0 % 89.1 % 88.6 % 88.9 %

multi-edit 96.4 % 93.6 % 95.0 % 75.0 % 70.6 % 72.8 %

split 99.3 % 96.3 % 97.8 % 93.9 % 95.2 % 94.6 %

merge 99.8 % 95.5 % 97.6 % 99.7 % 91.4 % 95.3 %

mixed 96.5 % 91.4 % 93.9 % 88.1 % 80.9 % 84.4 %

commercial single-edit 97.4 % 75.5 % 85.0 % 78.1 % 58.8 % 67.1 %

multi-edit 91.4 % 59.7 % 72.3 % 36.7 % 29.5 % 32.7 %

split 97.9 % 70.2 % 81.8 % 85.5 % 72.7 % 78.6 %

merge 97.5 % 92.8 % 95.1 % 96.8 % 80.6 % 88.0 %

mixed 96.3 % 65.5 % 78.0 % 53.2 % 40.8 % 46.2 %

NLMspell single-edit 97.1 % 95.6 % 96.3 % 93.0 % 91.6 % 92.3 %
multi-edit 96.1 % 95.8 % 95.9 % 81.0 % 81.3 % 81.2 %

split 99.1 % 96.7 % 97.9 % 95.4 % 95.2 % 95.3 %
merge 99.4 % 94.7 % 97.0 % 99.7 % 92.3 % 95.8 %
mixed 99.2 % 94.4 % 96.7 % 90.5 % 88.4 % 89.4 %

TranslationSpell single-edit 93.7 % 92.4 % 93.1 % 80.3 % 78.1 % 79.2 %

multi-edit 86.1 % 92.9 % 89.4 % 54.4 % 54.0 % 54.2 %

split 94.1 % 97.0 % 95.5 % 78.1 % 90.8 % 83.9 %

merge 96.0 % 95.1 % 95.5 % 97.4 % 86.6 % 91.7 %

mixed 61.8 % 96.4 % 75.3 % 37.6 % 69.2 % 48.7 %

Table 9: Performance of the spelling correctors evaluated for different error types
on the test set with artificial errors. The best results are marked bold.

7. Experiments 80

Realistic test set
model detection correction sequence acc.

precision recall F-score precision recall F-score

UnigramSpell 67.3 % 59.5 % 63.1 % 50.5 % 44.7 % 47.4 % 22.0 %

NgramSpell 89.7 % 86.5 % 88.1 % 82.7 % 79.8 % 81.2 % 45.7 %

commercial 92.2 % 60.1 % 72.7 % 85.9 % 56.0 % 67.8 % 35.0 %

NLMspell 92.7 % 93.6 % 93.1 % 88.2 % 88.7 % 88.4 % 57.4 %
TranslationSpell 71.6 % 75.6 % 73.5 % 61.2 % 58.9 % 60.0 % 30.8 %

Table 10: Results on the test set with realistic errors. The best results are marked
bold.

16.1 % absolute F-score difference for NLMspell and NgramSpell, compared to
5.2 % and 9.6 % on the artificial benchmark. TranslationSpell and the commercial
baseline perform poorly on real-word errors.

The only performance increase in comparison to the artificial benchmark is
seen for the commercial baseline on nonword errors. Apparently it is not designed
to remove random noise, but to correct typical misspellings. However, it is the
second-worst corrector on real-word errors, only beating UnigramSpell, which
does not deal with real-word errors by design.

Error types Table 12 gives the analysis on the realistic benchmark, broken
down to the different error types. NLMspell is the best approach across all error
types except for merged words, where NgramSpell is better.

7.4.3. Error analysis

It follows a qualitative analysis of the wrong predictions made by our best ap-
proach, NLMspell, on both benchmarks.

A fraction of false positives is due to unusual capitalization in the ground truth
data. For example, NLMspell corrects “Knockout Tournament” into “knockout

tournament” and “the eltway” into “the beltway” instead of “the Beltway”, but
the ground truth is upper case (apparently these are the names of a tournament

7. Experiments 81

Realistic test set
model error class detection correction

precision recall F-score precision recall F-score

UnigramSpell nonword 67.3 % 100.0 % 80.4 % 50.5 % 75.0 % 60.3 %

real-word 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

NgramSpell nonword 91.8 % 99.6 % 95.5 % 83.6 % 90.8 % 87.1 %

real-word 85.6 % 67.3 % 75.4 % 80.8 % 63.4 % 71.0 %

commercial nonword 93.8 % 83.0 % 88.0 % 87.9 % 77.7 % 82.5 %

real-word 85.5 % 26.5 % 40.5 % 77.7 % 23.8 % 36.5 %

NLMspell nonword 93.2 % 99.3 % 96.2 % 89.0 % 94.7 % 91.8 %
real-word 91.8 % 85.1 % 88.3 % 86.8 % 79.8 % 83.1 %

TranslationSpell nonword 85.6 % 93.3 % 89.3 % 68.9 % 74.1 % 71.4 %

real-word 49.3 % 49.8 % 49.6 % 45.8 % 36.6 % 40.7 %

Table 11: Performance of the spelling correctors evaluated for different error
classes on the test set with realistic errors. The best results are marked
bold.

7. Experiments 82

Realistic test set
model error type detection correction

precision recall F-score precision recall F-score

UnigramSpell single-edit 82.6 % 60.3 % 69.7 % 62.8 % 50.9 % 56.3 %

multi-edit 16.2 % 56.2 % 25.1 % 13.0 % 6.7 % 8.9 %

split 0.0 % 5.0 % 0.0 % 0.0 % 0.0 % 0.0 %

merge 11.2 % 100.0 % 20.2 % 1.2 % 100.0 % 2.4 %

mixed 2.5 % 37.5 % 4.7 % 0.0 % 0.0 % 0.0 %

NgramSpell single-edit 91.5 % 90.5 % 91.0 % 85.2 % 86.5 % 85.8 %

multi-edit 77.9 % 62.4 % 69.3 % 64.2 % 37.6 % 47.4 %

split 73.3 % 90.0 % 80.8 % 41.2 % 100.0 % 58.3 %

merge 40.0 % 100.0 % 57.1 % 57.1 % 100.0 % 72.7 %
mixed 26.7 % 50.0 % 34.8 % 14.3 % 57.1 % 22.9 %

commercial single-edit 96.1 % 63.9 % 76.8 % 90.4 % 60.7 % 72.6 %

multi-edit 72.8 % 35.3 % 47.5 % 65.8 % 26.6 % 37.9 %

split 47.8 % 85.0 % 61.2 % 19.4 % 100.0 % 32.6 %

merge 21.4 % 50.0 % 30.0 % 13.3 % 50.0 % 21.1 %

mixed 38.7 % 37.5 % 38.1 % 9.7 % 42.9 % 15.8 %

NLMspell single-edit 93.8 % 96.7 % 95.2 % 89.7 % 94.5 % 92.1 %
multi-edit 86.6 % 74.1 % 79.9 % 76.5 % 52.7 % 62.4 %

split 71.9 % 100.0 % 83.6 % 53.8 % 100.0 % 70.0 %
merge 20.0 % 50.0 % 28.6 % 33.3 % 50.0 % 40.0 %

mixed 60.0 % 87.5 % 71.2 % 42.9 % 85.7 % 57.1 %
TranslationSpell single-edit 86.9 % 78.7 % 82.6 % 72.9 % 65.6 % 69.0 %

multi-edit 52.5 % 57.6 % 55.0 % 28.6 % 17.9 % 22.0 %

split 29.2 % 50.0 % 36.9 % 4.4 % 42.9 % 8.0 %

merge 23.3 % 50.0 % 31.8 % 6.5 % 50.0 % 11.4 %

mixed 22.8 % 62.5 % 33.4 % 0.9 % 42.9 % 1.8 %

Table 12: Performance of the spelling correctors evaluated for different error
types on the test set with realistic errors. The best results are marked
bold.

7. Experiments 83

and a road).

Some errors are due to ambiguous cases that are hard to resolve. For example,
for the input “lacl tournament”, NLMspell predicts “last tournament” instead
of “local tournament”. Both corrections have edit distance two to the input.
The fact that three characters of “local” are present in “lacl”, compared to two
characters of “last” helps humans to resolve the case. However, NLMspell does
not make use of this information.

Many false positives are introduced in names. Apparently the language model
has a preference for some frequent names over other, less frequent names. For
example, NLMspell corrects “Michaeli” into “Michael”.

Some wrong predictions result in grammatical errors, like predicting “the strike

protested” for “the striker protested”, where it should be “the strikers protested”.

Misspelled abbreviations result in false negatives, because the abbreviations
are either not in the vocabulary of NLMspell or very infrequent.

Most false negatives are because of infrequent words. For example, “recat-

egorizedbythe” does not get split, “Kölenr” not corrected into “Kölner” and
“fadv-tracked” not into “fast-tracked”.

Some false negatives result from the fact that NLMspell does not correct mis-
spellings with more than two edits. For example, it does not correct “take” when
it should be “took”, and “a” when it should be “the”. However, we doubt that
the signal from the language model is strong enough that these cases could be
corrected if the true word was a candidate correction.

All in all we see very few cases where we think a better language model could
improve the corrections. Most errors by NLMspell can be explained with its
candidate generation procedure, its preference for less edit operations, and in-
frequent, difficult cases. However, an exception for the correction of names and
abbreviations could improve NLMspell.

7.4.4. Runtimes

Total runtimes of the approaches on the two test benchmarks are given in table
13.

UnigramSpell is by far the fastest algorithm. Most input tokens appear in

7. Experiments 84

corrector artificial realistic

UnigramSpell 5.5 2.5

NgramSpell 4,790.0 4,967.2

NLMspell 17,150.5 18,458.7

TranslationSpell 3,134.1 2,308.8

Table 13: Total runtimes of the spelling correctors on the two benchmarks, mea-
sured in seconds. Each benchmark consists of 1,000 paragraphs from
Wikipedia.

UnigramSpell’s vocabulary and are not modified, therefore not requiring much
runtime. In most of the remaining cases, UnigramSpell evaluates only the single-
edit candidates, which are much less than the two-edit candidates. NgramSpell
evaluates all candidates for all input tokens and is therefore much slower than
UnigramSpell.

NLMspell evaluates only a subset of the candidates, but uses a neural lan-
guage model with many parameters for the estimation, which makes it slower
than NgramSpell. The probability estimation takes most of NLMspell’s runtime,
the candidate generation only a small fraction of it.

During the best-first-search, TranslationSpell appends a subword to the se-
quence with the highest likelihood in each iteration. Unlikely candidates are
therefore never evaluated, which makes TranslationSpell faster than NgramSpell.

7.5. NLMspell variants

Next we test different variants of NLMspell. We are interested in whether NLM-
spell achieves better results when evaluating more candidate corrections, and
whether the attention mechanism in the neural language model improves the per-
formance.

We test a variant of NLMspell that evaluates 500 candidates of each type, in-
stead of 100. However, since this slows down the algorithm, we reduce the num-
ber of beams to 3 instead of 10.

Another variant is NLMspell with the language model replaced by a recurrent

7. Experiments 85

NLMspell variants
model detection correction sequence acc.

precision recall F-score precision recall F-score

original 97.5 % 95.7 % 96.6 % 92.5 % 90.6 % 91.5 % 49.5 %
more candidates 97.5 % 95.7 % 96.6 % 92.1 % 90.0 % 91.0 % 49.4 %

no attention 97.9 % 95.0 % 96.4 % 92.3 % 89.5 % 90.9 % 47.7 %

Table 14: Comparison of the three different variants of NLMspell on the artificial
test benchmark. The best results are marked in bold.

neural network without attention. We take the model we trained for 24 hours on
two Nvidia Titan X GPUs.

We evaluate the two variants and the original variant on the artificial test bench-
mark. The detection and correction results are given in table 14. We observe that
the greater number of beams in the original variant of NLMspell is more impor-
tant than the increased number of considered candidates. When increasing the
number of candidates of each type to 500 while reducing the number of beams to
3, the correction F-score drops by 0.5 % absolute and the sequence accuracy by
0.1 % absolute. It appears that there are few cases where the attention mechanism
helps to find the correct candidate. When using the model without attention, the
correction F-score drops by 0.6 % absolute and the sequence accuracy by 1.8 %
absolute.

When evaluating more candidates and using less beams, the average runtime
per paragraph increases from 17.1 seconds to 21.0 seconds. The model without
attention on the other hand is faster than the model with attention, with an average
runtime of 13.7 seconds.

7.6. Robustness

Next we are interested in how the performance of the spelling correctors changes
when the rate of misspellings in the input sequences varies. We generate two
new artificial test benchmarks with the same ground truth sequences as in the
previous experiment. In one benchmark we introduce an error into each token

7. Experiments 86

with probability p = 0.1, in the other benchmark with probability p = 0.5. 22.3
% of the test paragraphs contain no errors when p = 0.1, and 5.1 % when p = 0.5.

The correction evaluation of the spelling correctors on these two benchmarks
is given in table 15.

We observe that the F-scores for p = 0.1 are lower than for p = 0.2 and
p = 0.5 for all spelling correctors. For all spelling correctors the drop in preci-
sion is higher than the drop in recall. This is natural since there are less positive
examples in the ground truth data, so all approaches will produce more false pos-
itives and less true positives. In addition, the punishment values for NgramSpell
and NLMspell are fit on a development benchmark with an error rate of p = 0.2,
that is assuming a higher base error rate than with p = 0.1. This leads to the
spelling correctors making too many corrections. The same holds for Transla-
tionSpell where every character in the input sequences has a probability of 5 %
to be corrupted. The sequence accuracy, on the other hand, increases with less
misspellings.

All approaches are robust to a higher error rate of p = 0.5. The F-score
of NgramSpell drops only by 0.2 % absolute compared to the benchmark with
p = 0.2, and increases by 0.1 % absolute for NLMspell, by 2.5 % absolute for
UnigramSpell and by 0.5 % absolute for TranslationSpell. UnigramSpell does not
use the context to correct misspellings, so misspellings do not interact with each
other, which makes it robust to more misspellings. TranslationSpell was trained
on sequences containing many misspellings, which seems to fit with the p = 0.5

benchmark. However, the sequence accuracies decrease with higher error rates
for all approaches, since correcting an entire sequence becomes more difficult.
The best approach gets half as many sequences right with p = 0.5 compared to
p = 0.1.

7. Experiments 87

Robustness experiment
model error probability p = 0.1 error probability p = 0.5

precision recall F-score seq. acc. precision recall F-score seq. acc.

UnigramSpell 58.1 % 59.3 % 58.7 % 23.8 % 73.9 % 60.3 % 66.4 % 9.5 %

NgramSpell 85.5 % 85.2 % 85.4 % 55.1 % 90.2 % 85.5 % 87.8 % 25.5 %

NLMspell 89.7 % 89.7 % 89.7 % 61.6 % 93.5 % 89.7 % 91.6 % 30.8 %

TranslationSpell 69.3 % 77.2 % 73.1 % 37.8 % 77.8 % 75.2 % 76.5 % 14.2 %

Table 15: Correction results on artificial benchmarks with varying error probabil-
ities. The best result on each benchmark is marked in bold.

8. Limitations 88

8. Limitations

Error types In this work we focus on the correction of typographic errors,
excluding grammatical errors, punctuation errors and cognitive errors.

Our approaches to spelling correction are developed and evaluated under the
assumption that misspellings are likely to be orthographically similar to the in-
tended text. In cases where this assumption does not hold, our approaches will
not perform well.

In particular NLMspell is limited to the correction of misspellings comprising
up to two character edit operations, and fails for misspellings comprising three or
more edit operations.

Cognitive errors like word choice errors and grammatical errors will follow
particular patterns that could be exploited by statistical and machine learning
methods. Since we do not have training data for such errors at hand, we limit
our approach to the correction of typographic errors where the misspelled word
is orthographically similar to the intended word.

We do not address punctuation errors, because we believe them to be cognitive
errors rather than typographic errors. However, language models could be used
to correct punctuation with similar approaches like in this work.

Closed vocabulary correction Our baselines and NLMspell predict words
from a fixed vocabulary. In our experiments, we used the 100,000 most frequent
words from the training data as possible target words. While that covers most in-
tended words for the misspelled input sequences, there is a fraction of words that
can not be corrected. Those will be rare words like names, hyphenated compound
words and words from foreign languages.

TranslationSpell on the other hand is open-vocabulary. The translation model
predicts a sequence of subwords which can be any output string, without vocab-
ulary restrictions. However, TranslationSpell performed worse than the closed-
vocabulary approaches in our experiments.

9. Conclusion 89

9. Conclusion

Attention models are better language models. The best three language
models studied in our work incorporate attention mechanisms: the Transformer
model from [Radford et al., 2019] performed best, followed by our recurrent
neural network with attention and our Transformer model.

Neural language models improve spelling correction. We have shown
that the recent progress in neural language modeling can raise the performance in
the field of spelling correction over the performance of traditional approaches.

Our best spelling corrector, NLMspell, achieves correction F-scores of 91.5 %
and 88.4 % on artificial and real spelling errors, being better than an alternative
approach using a trigram language model, a neural machine translation approach
and context-free and commercial baselines.

Real-word errors and multi-edit errors are difficult. The correction of
real-word errors and multi-edit errors remain difficult problems. All methods
under study perform worse on those error types than on nonword errors and errors
comprising a single edit operation.

Artificial, randomly induced noise is easier to correct than real misspellings.
Humans tend to make more real-word errors, which are difficult to solve.

Posing spelling correction as a machine translation task is challeng-
ing. When posing the spelling correction problem as a machine translation
task, we face three major difficulties.

First, it is crucial that the model does not overfit the training data. We circum-
vented this problem by generating training data with a randomized procedure, so
that the model sees a variety of misspellings during training.

Second, the training data has to reflect the patterns of realistic misspellings. We
hoped that the model trained on artificial, randomized misspellings, would gen-
eralize to real misspellings, which are a subset of the randomized misspellings.
However, our analysis showed that the translation model is much better in cor-
recting artificial errors than in correcting real errors.

9. Conclusion 90

Third, the model has to deal with ambiguities. Before doing this work, we
believed the spelling correction task to be easier than the machine translation
task, since most of the input tokens are correctly spelled and can simply be copied
to the output sequence. In addition, a translation system has to deal with word
orders differing in the input and output language, as well as with cases where
one word in the input sequence can translate to multiple words in the output
sequence, or the other way around. A noisy sequence with misspellings, on the
other hand, can usually just be corrected from left to right. However, the work
on NLMspell showed that a lot of ambiguities lie in the spelling correction task.
When considering all words within an edit distance of two to an observed input
token, the number of candidates often exceeds 2,000. We are not aware of any
pair of languages where one word in the one language can be translated to as
many different words in the other.

10. Future work 91

10. Future work

The future work on neural language models for spelling correction will follow
two directions: one is to extend NLMspell to more error types, and the other is to
improve TranslationSpell.

Extension to more error types NLMspell generates candidate corrections
for every input token following a fixed procedure. Currently this does not include
candidates with an edit distance greater than two to the observed token. We do not
think that all those candidates can be included, because that would be too many
candidates that NLMspell can not score in reasonable amount of time. However,
a fixed set of common error patterns, like typing a single character instead of two
equal characters, could be used as additional edit operations to create candidates
with more than two edit operations.

An error type that can be supported by NLMspell in the future is punctuation
errors. For tokens ending with a punctuation mark, the token without punctuation
mark could be added to the candidate set. For tokens not ending with a punctu-
ation mark, one could generate candidates ending with the common punctuation
marks.

Runtimes With average runtimes of more than 18 seconds per paragraph,
NLMspell is more of theoretical interest than of practical use for most appli-
cations. However, it shows how far spelling correction can get when using neural
language models. To make a practical spelling corrector out of NLMspell, the
number of candidate evaluations must be reduced by introducing a better pre-
selection strategy.

Language models trained on more diverse text Our models are trained
and evaluated on Wikipedia. Text in Wikipedia usually follows certain patterns,
including repeating topics and sentence structures. We doubt that the models
generalize well to other domains, for example digital communication, where lan-
guage patterns are different. One could train several models on different domains
and plug them into different versions of NLMspell, which can then be used on

10. Future work 92

different domains. An alternative is to train a single model on a diverse dataset
containing texts from multiple sources, such that a single version of NLMspell
will work on multiple domains.

Improved translation model The machine translation approach has the po-
tential to make use of the patterns that are present in real misspellings.

Our experiments have shown that training on random noise is not enough to
correct real misspellings. More realistic noise could be induced using a large
set of misspellings extracted from a noisy corpus like ClueWeb or other World
Wide Web corpora. Appendix B presents a typo extraction method. To prevent
overfitting to the extracted misspellings, one could proceed similar to [Xie et al.,
2018] and first train a noise model on the misspellings, which will then be used
to sample misspellings for all words in the training corpus, including words that
originally did not appear in the extracted misspellings.

In principle, the decoder of a translation model should be able to learn a lan-
guage model as good as the neural language models from our work, and together
with the encoder could be trained as an end-to-end spelling corrector, without
the necessity of generating candidate corrections, computing edit distances and
fitting punishment values as in NLMspell. Predicting subwords from a byte pair
encoding, this would even be an open-vocabulary spelling corrector.

Transformer networks have recently become state of the art in neural machine
translation, and are promising to work best for spelling correction as a machine
translation task, too.

REFERENCES 93

References

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Good-
fellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L.,
Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. Software available from ten-
sorflow.org.

[Ba et al., 2016] Ba, L. J., Kiros, J. R., and Hinton, G. E. (2016). Layer Normal-
ization. CoRR, abs/1607.06450.

[Bahdanau et al., 2015] Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural
Machine Translation by Jointly Learning to Align and Translate. In 3rd In-

ternational Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings.

[Belinkov and Bisk, 2018] Belinkov, Y. and Bisk, Y. (2018). Synthetic and Nat-
ural Noise Both Break Neural Machine Translation. In 6th International Con-

ference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,

April 30 - May 3, 2018, Conference Track Proceedings.

[Bird et al., 2009] Bird, S., Klein, E., and Loper, E. (2009). Natural language

processing with Python: analyzing text with the natural language toolkit. "
O’Reilly Media, Inc.".

[Boytsov, 2011] Boytsov, L. (2011). Indexing methods for approximate dictio-
nary searching: Comparative analysis. ACM Journal of Experimental Algo-

rithmics, 16(1).

[Church and Gale, 1991] Church, K. W. and Gale, W. A. (1991). Probability
scoring for spelling correction. Statistics and Computing, 1(2):93–103.

[Damerau, 1964] Damerau, F. (1964). A technique for computer detection and
correction of spelling errors. Commun. ACM, 7(3):171–176.

[Devlin et al., 2019] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019).

https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://openreview.net/pdf?id=BJ8vJebC-
https://openreview.net/pdf?id=BJ8vJebC-
http://www.nltk.org/book/
http://www.nltk.org/book/
http://delivery.acm.org/10.1145/1970000/1963191/a1_1-boytsov.pdf?ip=132.230.194.192
http://delivery.acm.org/10.1145/1970000/1963191/a1_1-boytsov.pdf?ip=132.230.194.192
https://link.springer.com/content/pdf/10.1007/BF01889984.pdf
https://link.springer.com/content/pdf/10.1007/BF01889984.pdf
http://delivery.acm.org/10.1145/370000/363994/p171-damerau.pdf
http://delivery.acm.org/10.1145/370000/363994/p171-damerau.pdf

REFERENCES 94

BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language Tech-

nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume

1 (Long and Short Papers), pages 4171–4186.

[Falkner et al., 2018] Falkner, S., Klein, A., and Hutter, F. (2018). BOHB: Ro-
bust and Efficient Hyperparameter Optimization at Scale. In Proceedings of

the 35th International Conference on Machine Learning, ICML 2018, Stock-

holmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 1436–1445.

[Ghosh and Kristensson, 2017] Ghosh, S. and Kristensson, P. O. (2017). Neural
Networks for Text Correction and Completion in Keyboard Decoding. CoRR,
abs/1709.06429.

[Gong et al., 2019] Gong, H., Li, Y., Bhat, S., and Viswanath, P. (2019). Context-
Sensitive Malicious Spelling Error Correction. In The World Wide Web Con-

ference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, pages 2771–
2777.

[Goodfellow et al., 2016] Goodfellow, I. J., Bengio, Y., and Courville, A. C.
(2016). Deep Learning. Adaptive computation and machine learning. MIT
Press.

[Hochreiter, 1991] Hochreiter, S. (1991). Untersuchungen zu dynamischen neu-
ronalen Netzen. Diploma, Technische Universität München, 91(1).

[Hochreiter et al., 2001] Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber,
J., et al. (2001). Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).
Long Short-Term Memory. Neural Computation, 9(8):1735–1780.

[Jamieson and Talwalkar, 2016] Jamieson, K. G. and Talwalkar, A. (2016). Non-
stochastic Best Arm Identification and Hyperparameter Optimization. In Pro-

ceedings of the 19th International Conference on Artificial Intelligence and

Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pages 240–248.

[Karnin et al., 2013] Karnin, Z., Koren, T., and Somekh, O. (2013). Almost op-
timal exploration in multi-armed bandits. In International Conference on Ma-

https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
http://proceedings.mlr.press/v80/falkner18a/falkner18a.pdf
http://proceedings.mlr.press/v80/falkner18a/falkner18a.pdf
https://arxiv.org/pdf/1709.06429.pdf
https://arxiv.org/pdf/1709.06429.pdf
http://delivery.acm.org/10.1145/3320000/3313431/p2771-gong.pdf
http://delivery.acm.org/10.1145/3320000/3313431/p2771-gong.pdf
http://www.deeplearningbook.org
http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
https://www.mitpressjournals.org/doi/pdf/10.1162/neco.1997.9.8.1735
http://proceedings.mlr.press/v51/jamieson16.pdf
http://proceedings.mlr.press/v51/jamieson16.pdf
http://www.jmlr.org/proceedings/papers/v28/karnin13.pdf
http://www.jmlr.org/proceedings/papers/v28/karnin13.pdf

REFERENCES 95

chine Learning, pages 1238–1246.

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A Method
for Stochastic Optimization. In 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings.

[Kukich, 1992] Kukich, K. (1992). Techniques for Automatically Correcting
Words in Text. ACM Comput. Surv., 24(4):377–439.

[Li et al., 2018] Li, H., Wang, Y., Liu, X., Sheng, Z., and Wei, S. (2018). Spelling
Error Correction Using a Nested RNN Model and Pseudo Training Data.
CoRR, abs/1811.00238.

[Liu et al., 2018] Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser,
L., and Shazeer, N. (2018). Generating Wikipedia by Summarizing Long Se-
quences. In 6th International Conference on Learning Representations, ICLR

2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Pro-

ceedings.

[Luong, 2016] Luong, M.-T. (2016). Neural machine translation. PhD thesis,
Stanford University.

[Manning et al., 2010] Manning, C., Raghavan, P., and Schütze, H. (2010).
Introduction to information retrieval. Natural Language Engineering,
16(1):100–103.

[Martin and Jurafsky, 2019] Martin, J. H. and Jurafsky, D. (2019). Speech and

language processing: An introduction to natural language processing, com-

putational linguistics, and speech recognition, 3rd edition. Draft available at
https://web.stanford.edu/~jurafsky/slp3/.

[Mays et al., 1991] Mays, E., Damerau, F. J., and Mercer, R. L. (1991). Context
based spelling correction. Inf. Process. Manage., 27(5):517–522.

[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed Representations of Words and Phrases and their
Compositionality. In Advances in Neural Information Processing Systems

26: 27th Annual Conference on Neural Information Processing Systems 2013.

Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada,

United States, pages 3111–3119.

https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://delivery.acm.org/10.1145/150000/146380/p377-kukich.pdf
http://delivery.acm.org/10.1145/150000/146380/p377-kukich.pdf
https://arxiv.org/pdf/1811.00238.pdf
https://arxiv.org/pdf/1811.00238.pdf
https://openreview.net/pdf?id=Hyg0vbWC-
https://openreview.net/pdf?id=Hyg0vbWC-
https://github.com/lmthang/thesis/raw/master/thesis.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://web.stanford.edu/~jurafsky/slp3/
https://pdf.sciencedirectassets.com/271647/1-s2.0-S0306457300X00714/1-s2.0-030645739190066U/main.pdf
https://pdf.sciencedirectassets.com/271647/1-s2.0-S0306457300X00714/1-s2.0-030645739190066U/main.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

REFERENCES 96

[Pruthi et al., 2019] Pruthi, D., Dhingra, B., and Lipton, Z. C. (2019). Combating
Adversarial Misspellings with Robust Word Recognition. In Proceedings of

the 57th Conference of the Association for Computational Linguistics, ACL

2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages
5582–5591.

[Radford et al., 2018] Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. (2018). Improving language understanding by generative pre-training.

[Radford et al., 2019] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. (2019). Language models are unsupervised multitask learners.

[Rayner et al., 2006] Rayner, K., White, S., Johnson, R., and Liversedge, S.
(2006). Raeding wrods with jubmled lettres: there is a cost. Psychological

science, 17(3):192–193.

[Sakaguchi et al., 2017] Sakaguchi, K., Duh, K., Post, M., and Durme, B. V.
(2017). Robsut Wrod Reocginiton via Semi-Character Recurrent Neural Net-
work. In Proceedings of the Thirty-First AAAI Conference on Artificial In-

telligence, February 4-9, 2017, San Francisco, California, USA, pages 3281–
3287.

[Sennrich et al., 2016] Sennrich, R., Haddow, B., and Birch, A. (2016). Neural
Machine Translation of Rare Words with Subword Units. In Proceedings of

the 54th Annual Meeting of the Association for Computational Linguistics,

ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communica-
tion. Bell system technical journal, 27(3):379–423.

[Solaiman et al., 2019] Solaiman, I., Brundage, M., Clark, J., Askell, A.,
Herbert-Voss, A., Wu, J., Radford, A., and Wang, J. (2019). Release strategies
and the social impacts of language models. CoRR, abs/1908.09203.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Se-
quence to Sequence Learning with Neural Networks. In Advances in Neu-

ral Information Processing Systems 27: Annual Conference on Neural Infor-

mation Processing Systems 2014, December 8-13 2014, Montreal, Quebec,

Canada, pages 3104–3112.

[Tetreault et al., 2017] Tetreault, J. R., Sakaguchi, K., and Napoles, C. (2017).

https://www.aclweb.org/anthology/P19-1561.pdf
https://www.aclweb.org/anthology/P19-1561.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
http://openai-assets.s3.amazonaws.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://lra.le.ac.uk/bitstream/2381/3897/1/Rayner_White_Johnson_Liversedge_06_PS.pdf
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14332/14216
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14332/14216
https://www.aclweb.org/anthology/P16-1162.pdf
https://www.aclweb.org/anthology/P16-1162.pdf
http://delivery.acm.org/10.1145/590000/584093/p3-shannon.pdf
http://delivery.acm.org/10.1145/590000/584093/p3-shannon.pdf
https://arxiv.org/pdf/1908.09203.pdf
https://arxiv.org/pdf/1908.09203.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

REFERENCES 97

JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction.
In Proceedings of the 15th Conference of the European Chapter of the Associ-

ation for Computational Linguistics, EACL 2017, Valencia, Spain, April 3-7,

2017, Volume 2: Short Papers, pages 229–234.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is All you
Need. In Advances in Neural Information Processing Systems 30: Annual

Conference on Neural Information Processing Systems 2017, 4-9 December

2017, Long Beach, CA, USA, pages 5998–6008.

[Whitelaw et al., 2009] Whitelaw, C., Hutchinson, B., Chung, G., and Ellis, G.
(2009). Using the Web for Language Independent Spellchecking and Auto-
correction. In Proceedings of the 2009 Conference on Empirical Methods in

Natural Language Processing, EMNLP 2009, 6-7 August 2009, Singapore, A

meeting of SIGDAT, a Special Interest Group of the ACL, pages 890–899.

[Wu et al., 2016] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah,
A., Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa,
H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa,
J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., and Dean, J. (2016).
Google’s Neural Machine Translation System: Bridging the Gap between Hu-
man and Machine Translation. CoRR, abs/1609.08144.

[Xie et al., 2018] Xie, Z., Genthial, G., Xie, S., Ng, A. Y., and Jurafsky, D.
(2018). Noising and Denoising Natural Language: Diverse Backtranslation
for Grammar Correction. In Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA,

June 1-6, 2018, Volume 1 (Long Papers), pages 619–628.

[Zhou et al., 2017] Zhou, Y., Porwal, U., and Konow, R. (2017). Spelling Cor-
rection as a Foreign Language. CoRR, abs/1705.07371.

The author does not take any responsibility for the content of the linked web
pages.

https://www.aclweb.org/anthology/E17-2037.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://www.aclweb.org/anthology/D09-1093.pdf
https://www.aclweb.org/anthology/D09-1093.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://www.aclweb.org/anthology/N18-1057.pdf
https://www.aclweb.org/anthology/N18-1057.pdf
https://arxiv.org/pdf/1705.07371.pdf
https://arxiv.org/pdf/1705.07371.pdf

A. Hyperparameter experiments 98

A. Hyperparameter experiments

A.1. Transformer models

layers parameters batch size sequences perplexity

1 22.9M 32 5.8M 218

2 29.9M 16 4.5M 196

3 37.0M 16 3.7M 183
4 44.1M 8 3.0M 300

6 58.3M 8 2.6M 426

Table 16: Perplexity of different Transformer language models trained for 24
hours on a GTX 1060 GPU. The best result is marked in bold.

A.2. Recurrent language models

Neural network architectures In the first phase of the phased grid search,
we search for the best architecture for the neural language model. Performing
a grid search on the architecture search space, we train neural language models
with 20 different architectures for one day each on a Nvidia GTX 1060 GPU. The
architectures contain byte pair encodings with 2,000 or 10,000 merge steps, one
or two LSTM layers with 512, 1024 or 2048 units, always a single dense layer
on top with the same number of units as for the LSTM layers, and either with
or without self-attention. The batch size is set to 128, or smaller if 128 leads
to out-of-memory errors. Perplexity of a development set with 1,000 sequences
is evaluated for each model and the architecture giving the lowest perplexity is
chosen for the final model. The results of the first phase are found in table 17.

A. Hyperparameter experiments 99

BPE merges LSTM units attention parameters batch size sequences perplexity

2000 512 no 4.4M 128 15.0M 330

yes 5.2M 128 15.7M 189

2 × 512 no 6.5M 128 12.1M 327

yes 7.3M 128 12.0M 169

1024 no 13.0M 128 9.0M 243

yes 16.2M 64 5.4M 163

2 × 1024 no 21.4M 64 4.2M 273

yes 24.6M 64 3.8M 143

2048 no 42.8M 64 3.2M 250

yes 55.4M 32 1.5M 200

10000 512 no 12.6M 128 6.9M 233

yes 13.4M 64 5.9M 155

2 × 512 no 14.7M 64 5.1M 244

yes 15.5M 64 5.0M 156

1024 no 29.4M 64 3.9M 186

yes 32.6M 64 3.5M 136
2 × 1024 no 37.8M 32 1.9M 229

yes 40.9M 32 1.9M 148

2048 no 75.6M 32 1.7M 241

yes 88.2M 16 0.8M 200

Table 17: Evaluation of different neural language model architectures. Values for
empty table entries are equal to the value in the previous line. Perplex-
ity is measured per token on a development set with 1,000 sequences.
The best result is marked in bold. All models except for the model writ-
ten in italic are trained for 24 hours on a GTX 1060 GPU. The italic
model was trained for 30.5 hours accidentally.

Learning rates In the second phase, we test different learning rate schedules
for the chosen architecture. To reduce the number of training runs, we optimize
the learning rate schedule in two steps: first, we find a good initial learning rate,
and second, we test different decay rates. To find a good learning rate, we train
models for 3,000 training steps, varying the learning rate between 0.01, 0.005,

A. Hyperparameter experiments 100

0.003, 0.002, 0.001 and 0.0005. Training a model takes approximately 75 min-
utes. The initial learning rate resulting in the model with the lowest perplexity
on the development set is chosen as the initial learning rate for training the final
model.

learning rate perplexity

0.01 ∞
0.005 551

0.003 373
0.002 433

0.001 466

0.0005 627

Table 18: Evaluation of different initial learning rates for the best architecture
from A.2. Each model is trained for 3000 steps. The best result is
marked in bold.

Decay rates Finally, we are interested in finding a good decay rate. Starting
with the best initial learning rate found in the previous experiment, we train differ-
ent models, decaying the learning rate every 1,000 training steps with decay rates
1 (no decay), 0.99, 0.95 or 0.5. We train each model for 20,000 steps. Training
a model takes approximately 9 hours. Again the perplexity of each model on the
development set is evaluated and the learning rate schedule that gave the lowest
perplexity is chosen for training the final model.

decay rate perplexity

1 212

0.99 196

0.95 156
0.5 257

Table 19: Evaluation of different decay rates for the best architecture from A.2
with the best initial learning rate from A.2. Each model is trained for
20,000 steps. The best result is marked in bold.

B. Typo extraction method 101

B. Typo extraction method

Similar to [Whitelaw et al., 2009], we use a World Wide Web corpus as a source
of typos with corresponding intended words. Text from the World Wide Web is
noisy, in the sense that it consists of correctly spelled and misspelled words. We
make the following assumptions:

1. Correctly spelled words are more frequent than misspelled words.
2. Misspelled words are similar to the corresponding intended words.
3. Misspelled words and corresponding intended words appear in the same

contexts.

We use ClueWeb as World Wide Web text corpus. Raw text was extracted from
2 out of 244 folders of ClueWeb by searching for lines that start with a <p> tag
and contain no other HTML tag, except for an optional <\p> tag in the end. The
resulting corpus contains 17,006,105 paragraphs.

Word frequency counts and trigram frequency counts were computed from the
resulting sequences. We look at trigrams t = (l, w, r) and t′ = (l′, w′, r′) such
that l = l′, r = r′, i.e. w and w′ appear in the same context. We add w′ to the
misspellings of w, if one of the following cases is met:

1. The edit distance between is w and w′ is one, w at least 100 times more
frequent than w′ and t at least 200 times more frequent than t′.

2. The edit distance between is w and w′ is two, w at least 10,000 times more
frequent than w′ and t at least 1,000 times more frequent than t′.

The resulting typo collection contains 37,795 misspellings for 5,240 correctly
spelled words. Table 20 shows examples of extracted typos.

B. Typo extraction method 102

intended word misspellings

especially Especialy, eYpecially, epecially, epsecially, escpecially, es-
ecially, esepcially, esopecially, espacially, espacialy, espae-
cially, espcecially, espcially, especailly, especaily, especally,
especcially, especcialy, especiall, especiallin, especiallly, es-
peciallt, especiallyÂ, especialy, especialyl, especiaslly, es-
pecilally, especilly, especitally, espeically, espepcially, espes-
cially, espesially, espoecially, esspeically, expecially, expe-
cialy, specally, speciallt, specically

is Bis, Bs, Cs, Dis, Ds, Eis, Fs, Gis, Hs, Js, Ls, Mis, Ms, Nis,
Os, Ps, Ris, Rs, Sis, Ss, Tis, Ts, Us, Vis, Vs, Ws, Ys, _s, ais,
bis, bs, cis, cs, dis, ds, eis, es, fis, fs, gis, gs, hs, i’s, iA, iB,
iD, iI, iOs, iQ, iX, ia, ias, ib, ic, ics, id, ids, ie, ies, ifs, ig, ih,
ihs, ii, iis, ij, ik, il, im, ins, io, ios, ip, ips, iq, ir, isa, isc, ise,
ish, isi, isl, ism, isn, iso, iss, ist, isÂ, ius, iv, ix, iz, js, ks, lis,
ls, ms, ns, ois, os, ps, qs, ris, rs, si, sis, ss, tis, ts, vis, vs, wis,
ws, yis, ys

world orld, owrld, wiorld, wirld, woald, wodld, woeld, woerld,
woirld, wold, wolrd, woprld, wordd, wordl, workd, worl,
worldm, worldt, worldy, worlf, worlk, worls, wotld, wotrld,
wourld, woyrld, wrld, wrold, wurld, zorld

University Ubiversity, Uiversity, Uniersity, Unievrsity, Univerisity, Uni-
veristy, Univerity, Universirty, Universiry, Universit, Univer-
sita, Universite, Universitys, Universiy, Universiyt, Univer-
siyty, Universtity, Universtiy, Universty, Univesity, Unives-
rity, Univewrsity, Univsersity, Unniversity, Unversity, Un-
viersity, Unviversity

of Ef, Of, af, bof, cf, dof, ef, eof, f, ff, fo, gf, iof, lf, nof, o, oF,
oK, ob, oc, od, oe, ofa, ofd, ofg, ofm, ofr, oft, ofÂ, og, ogf,
oh, oi, oif, ok, ol, om, oof, op, opf, orf, os, osf, ot, ou, ouf, ov,
ow, oy, pf, rf, sof, tof, uf, yf

Stanford Standford

Google Goggle, Googe, Googgle, Googl, Googled, Googls, Goole,
Goolge, Gooqle, iGoogle, oogle

Table 20: Examples of typos extracted from ClueWeb.

	Introduction
	Motivation
	Task definition
	Outline

	Related work and contribution
	Neural machine translation
	Language modeling
	Spelling Correction
	Contribution

	Background
	Tokenization
	Byte pair encoding
	Neural networks
	Classification evaluation metrics
	Language models
	Generative sampling of sequences
	Edit distance

	Datasets
	Wikipedia
	Typo collection

	Approaches
	NLMspell: spelling correction with a neural language model
	TranslationSpell: spelling correction with a neural machine translation model

	Baselines
	UnigramSpell: a context-free baseline spelling corrector
	NgramSpell: a context-dependent baseline spelling corrector
	Commercial baseline

	Experiments
	Language models
	Spelling correction benchmarks
	Spelling correction evaluation metric
	Spelling correction results
	NLMspell variants
	Robustness

	Limitations
	Conclusion
	Future work
	References
	Hyperparameter experiments
	Transformer models
	Recurrent language models

	Typo extraction method

