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Abstract

The decarbonization of the energy sector necessitates a large-scale expansion of low-voltage
(LV) grids. Yet, such expansion is expensive and increasingly difficult to plan, particularly in
face of the rising number of distributed energy generation facilities and the electrification of the
transportation sector. To assist utilities in the planning of electricity grids, scholars have pro-
posed a variety of tools that automatically search for optimal grid expansion strategies. Tools
that implement ant colony optimization (ACO), a heuristic framework for the solution of combi-
natorial optimization problems, rank among the best. Nevertheless, only few researchers have
studied the application of ACO to LV grid expansion planning; and existing research neglects the
cost savings potential of combining conventional power line expansion with a reconfiguration of
power switches. To fill this gap, I present AntPower, a tool that searches for a minimum cost
strategy to expand a given LV grid, subject to topological and electrical requirements that are
common in Europe. Unlike existing tools, AntPower integrates the installation, reinforcement,
and dismantling of power lines with an optimization of power switch settings. For evaluation, I
consider the case of expanding a heavily overloaded grid that powers an 800-inhabitant village
in rural Germany. The expansion plan generated by AntPower is by 60% cheaper than an ex-
pansion plan obtained through conventional, manual planning based on expert knowledge, and
is by 64% cheaper than the expansion plan generated using a local search algorithm. Finally, a
sensitivity analysis indicates that AntPower is robust against changes in most of its parameters;
and for the sensitive parameters, good default values exist.



Zusammenfassung

DieDekarbonisierungdesEnergiesektors erfordert einenumfassendenAusbau vonNiederspan-
nungsnetzen. Doch ein solcher Ausbau ist teuer und zunehmend schwer zu planen, besonders
in Hinblick auf die steigende Zahl verteilter Energieerzeugunganlagen und die Elekrifizierung
des Verkehrssektors. Um Energieversorgungsunternehmen in der Planung von Stromnetzen
zu unterstützen, habenWissenschaftler:innen eine Vielzahl verschiedener Tools entwickelt, die
automatisiert nach optimalen Netzausbaustrategien suchen. Zu den Tools, die am besten ab-
schneiden, gehören Implementierungen von Ant Colony Optimization (ACO) - ein heuristisches
Verfahren zur Lösung kombinatorischer Optimierungsprobleme. Doch die Anwendung von ACO
auf die Ausbauplanung von Niederspannungsnetzen wurde bisher wenig erforscht. Zudem ver-
nachlässigt die Forschung das Kosteneinsparungspotential, dasmit einer Kombination von kon-
ventionellem Leitungsausbau und einer Trennstellenoptimierung (d.h. einer Neukonfigurierung
vonLeistungsschaltern) einhergeht. Umdiese Lücke zu schließen,wird indieserArbeitAntPower
vorgestellt, ein Software-Tool, das nach einer kostenminimalen Ausbaustrategie für ein gegebe-
nes Niederspannungsnetz sucht und dabei in Europa übliche topologische und elektrische Rah-
menbedingungenberücksichtigt. ImGegensatz zubestehendenNetzplanungstools vereint Ant-
Power die Installation, Verstärkung und den Rückbau von Stomleitungen mit einer simultanen
Trennstellenoptimierung. Zur Evaluierung wird der Ausbau eines stark überlasteten Netzes be-
trachtet, das ein Dorf mit 800 Einwohner:innen versorgt. Der von AntPower generierte Ausbau-
plan ist um 60% günstiger als ein Ausbauplan, der mit einer konventionellen, händischen, auf
Expertenwissen beruhenden Planungsmethode erstellt wurde, und ist um 64% günstiger als
der Ausbauplan, der von einem lokalen Suchalgorithmus generiert wurde. Im Rahmen einer
Sensitivitätsanalyse zeigt sich AntPower robust gegenüber von Veränderungen der meisten Pa-
rameterwerte und für die übrigen Parameter sind gute Standardwerte vorhanden.
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1 Introduction

Before the energy transition, the structure of electricity grids was relatively simple. Large power
plants would feed electricity into the transmission grid, which would transmit the electricity
over long distances to large factories and distribution grids. The distribution grids would then
distribute the electricity among local consumers such as small factories, supermarkets, and res-
idential buildings. Meanwhile, the decarbonization of the energy sector has triggered a large-
scale transformation of distribution grids, involving the integration of generation facilities (e.g.,
photovoltaic appliances), energy storage (e.g., electric vehicles), and additional electrical loads
(e.g., heat pumps). This transformation pushes distribution grids to their limits, thereby forcing
many grid operators to expand their grids [1, 2].

However, planning the expansion of distribution grids is becoming increasingly challenging for
several reasons. First, distribution grids are becoming more complex due to the integration of
new technologies (e.g., load-scheduling controllers, on-load tap changers). Second, as distribu-
tion grids havenot beendesigned to accommodatedistributed electricity generation facilities [3,
4], the integration of such facilities can necessitate unusually large-scale restructuring and rein-
forcement measures. Third, as the energy transition accelerates, future supply and demand of
electricity is becoming harder to predict (e.g., due to the volatility of renewable energy sources,
the electrification of the transportation sector, and the liberation of electricity markets) [5–7].

Distribution grids often consist of sub-grids operating under low voltage (LV) or medium voltage
(MV), and the energy transition affects both the LV and the MV grids; yet, in two respects, the
expansion of LV grids poses a particular challenge. First, LV grids typically make up the largest
share of a country’s electricity grid in terms of line length; for example, Germany’s LV grids con-
stitute two thirds of the German grid [8]. Second, many LV grids must cope with large amounts
of fluctuating and dispersed electricity feed-ins (e.g., 37%of Italy’s and 54%of Germany’s pho-
tovoltaic capacity is installed in LV grids [9, 10], and 98%of Italy’s and 97%ofGermany’s photo-
voltaic plants are installed in LV grids [9, 11]). The resulting need for grid expansion incurs high
costs; for example, the German Federal Ministry for Economic Affairs and Energy estimated in
2014 that—given conventional planning principles—the expansion of Germany’s LV grids in the
period from 2012 to 2032 requires investments of 4.6B € to 9.8B € [2].

To facilitate the planning of distribution grids, many scholars have developed tools to automate
(parts of) the planning process [12–15]. The proposed approaches vary strongly, both in the
considered planning conditions (e.g., constraints, inputs) and the applied methods (e.g., tabu
search, genetic algorithms). While it is not known which method performs best under any given
set of planning conditions, the application of ant colony optimization (ACO) [16] to grid plan-
ning is a promising researchdirection, becauseACO-based grid planningmethods outperformed
othermethods in several studies [17–23]. Although various ACO-based grid planning tools exist
[17–27], only few support the expansion planning of LV grids; and those that do have only been
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evaluated on simplistic grids, that is, unrealistically small grids [21], grids without switches [17,
18, 21, 24], or grids with only one feed-in point [21, 24].

To fill this gap, I present AntPower, an implementation of ACO that facilitates efficient plan-
ning of LV grids, particularly grids that face heavy load or are expected to face heavy load in
the near future. AntPower searches for a cost-optimal strategy of expanding a given LV grid,
adhering to topological and electrical norms that are common in Europe. When generating an
expansion plan, AntPower regards power lines as sequences of line segments, each of which
may be installed, reinforced, and dismantled individually to keep down costs. Simultaneously,
AntPower searches for an optimal routing of electricity by evaluating different configurations of
power switches. Such re-routing of electricity can reduce load on parts of the grid, thus mak-
ing expensive construction projects redundant. For evaluation, I consider a 20 km-long LV grid,
which serves an 800-inhabitant village in rural Germany. There, the rising penetration of so-
lar energy necessitates large-scale grid expansion. The expansion plan generated by AntPower
meets all topological and electrical requirements. Its total cost (i.e., the cost of digging up roads,
acquiring cables, and operating switches) is by 60% lower than the cost of an expansion plan ob-
tained through careful manual planning, and is by 64% lower than the cost of an expansion plan
derived using a local search algorithm. Additionally, a systematic sensitivity analysis indicates
AntPower’s robustness against changes in most of its parameters; and for the few sensitive pa-
rameters, good default values exist.

Overall, this thesis makes the following contributions to previous research on grid planning:

1. It presentsAntPower, thefirst ACO-based tool that allows toplan theexpansionof LVgrids
using a combination of line expansion (i.e., installation, reinforcement, and dismantling of
power line segments) and switch reconfiguration (i.e., the optimization of switch settings).

2. It shows how planning the expansion of a large LV grid using ACO can cut expansion costs
by 60% as compared to using a conventional planning method, and can cut costs by 64%
as compared to using a local search algorithm.

3. It documents a straight-forward way of applying ACO to grid expansion planning in a lim-
ited context, disregarding advanced concepts such as load scheduling, multi-stage plan-
ning, and multi-objective optimization.

4. It analyses the sensitivity of ACO’s parameters in the context of LV grid expansion plan-
ning, and reports the ranges of parameter settings that yield best results.

5. It gives a concise and easy-to-follow introduction to grid planning, making grid planning
research accessible to scholars without background in power engineering.

This thesis has the following structure. Chapter § 2 lays the technical foundations that are nec-
essary to understand the problem AntPower seeks to solve. Chapter § 3 then formulates this
problem. Chapter § 4 documents how AntPower implements ACO to solve the given problem.
Chapter § 5 evaluates AntPower’s performance, and chapter § 6 concludes.



2 Technical Foundations

To begin with, this chapter gives a short introduction to the planning of electricity grids. The
chapter is intended to be easy to follow for scholars with background inmathematics, computer
science, physics, or engineering. I also recommend experts in power engineering to read this
chapter, as it establishes common ground for subsequent chapters.

This chapter has the following structure. First, subsection § 2.1 introduces the building blocks
and architecture of electricity grids, and outlines the requirements that grids must meet. Then,
subsection § 2.2 gives an overview of grid planning approaches by characterizing the underlying
conditions, models, and methods.

2.1 Grids

A grid is a network delivering electricity from feed-in points to components consuming electric-
ity. Grids highly vary in size, powering small villages just like whole continents.

2.1.1 Components

The components of a grid are the following:

Sources and Loads

Sources feed electricity into the grid. Examples include nuclear power plants, wind farms, do-
mestic photovoltaic appliances, and diesel generators. In turn, loads - such as households,
public facilities, and factories - consume electricity.

Storage Systems

Storage systems draw electricity from the grid, store the electricity, and feed it back to the grid
at a later time. That is, storage systems act as loads during charge periods, and play the role
of sources during discharge periods. Examples of storage systems are batteries and pumped-
storage hydropower plants.

Controllers

Somesourcesand loadsareequippedwith controllers, whichallow themto react to state changes
in the grid. For example, when a photovoltaic plant generates more electricity than the grid can
handle, the plant’s controller may detect a voltage spike and curtail the generation of electric-
ity. Conversely, controllers that control loads (e.g., charging stations) can schedule the load’s
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consumption of electricity. From an economic perspective, the use of controllers is a service of
electricity suppliers and consumers in that it provides grid operators with flexibility.

Lines

Lines transmit electricity from sources to loads. High voltage lines are typically overhead lines,
except in highly populated areas [28]. For lower voltages, some countries prefer overhead lines,
while others prefer underground lines [28]. A large number of cable types exists, varying in
features such as transmission capacity, impedance1, and cost [28].

Buses

Buses connect lines. A bus is essentially a bar of conductive metal [29], to which two or more
lines attach. In terms of reliability and stability (§ 2.1.2), buses are critical points [29].

Transformers

A transformer transforms an input voltage to some output voltage. Transformers with tap-chan-
gers allow adjusting the ratio of input and output voltage. There are two types of tap-changers
[28]: no-load and on-load tap changers. A transformer that is equipped with a no-load tap-
changer must be de-energized before the voltage ratio is adjusted. In contrast, on-load tap-
changers allow to adjust the voltage ratio during normal operation, either manually or automat-
ically in response to undesired voltage deviations at the transformer’s output.

Switches

Switches allow opening and closing connections between grid components. Types of switches
differ both in application and technical specification [28]. Some switches operate automatically,
such as circuit breakers: To protect other components, a circuit breaker opens when current
flow exceeds a critical value [29]. Other types of switches serve to reroute electricity, or to de-
energize grid segments for maintenance and in cases of congestion and failures [29].

2.1.2 Requirements

When managing grids, utilities must meet several, partly competing goals:

Reliability measures the degree at which electricity demand is met over time [29]. In a per-
fectly reliable grid, every load’s electricity demand is alwaysmet. Obviously, this requires
sources of electricity to feed in enough electricity to satisfy all loads at all times. However,
the grid must also be able to transmit the feed-ins to loads. In fact, most cases of supply
shortfall are caused by grid failure rather than generation shortfall [29].

Security describes a grid’s ability to withstand component failures [29]. A common criterion is
N-1 redundancy [29, 30]. A grid is N-1 redundant if it remains functional when a single,
arbitrary component fails. For that, the grid must have backup components such as spare
transformers and additional power lines.

1Impedance is a measure of a component’s opposition to the flow of power through the component.
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Stability describes the tendency of an alternating current (AC) grid to maintain a constant volt-
age level and to synchronize the phase of voltage oscillations across the grid [29]. Both
are crucial conditions for the grid to remain in a balanced operating state.

Power Quality measures how close various electrical quantities are to nominal values [29].
Measurements are taken at the pointswhere loads attach to the grid [29]. For power qual-
ity to be high, voltage and AC frequency must be steady and close to the nominal values,
and the waveform of voltage must resemble a sine wave [29].

Efficiency measures the cost that arises in the process of meeting the above requirements.
Grid planners traditionally define this cost as the sum of investment costs and operational
costs [31]. Investment costs are costs for buying and installing grid components. Opera-
tional costs include costs for maintenance, for the use of load flexibility (§ 2.1.1), and for
energy losses2 [31]. In addition to economic costs, other types of costs increasingly gain
attention in grid planning [31, 32]. For example, power lines incur high ecological costs if
they pass through natural reserves, andmay cause high social costs if they are built close
to popular tourist attractions.

2.1.3 Structure

Large grids consist of multiple layers, each layer being operated at a different voltage level.3
A grid’s top layer typically spans the widest area, and is operated at the highest voltage level.
With decreasing position in the layer stack, the sub-grids’ supply areas get smaller. For exam-
ple, Germany’s national grid has six main layers [28]. The lowest layer operates at 400 V, also
known as low voltage (LV). It is superimposed bymedium voltage (MV) layers, operating at 10 kV
and 20 kV and covering distances up to about 100 km. The highest layers are the high voltage
(HV) layer (110 kV) and the extra high voltage (EHV) layers (220 kV, 380 kV).

Transformers connect layers with each other. Figure 2.1 visualizes the connections between the
two EHV layers of Germany’s national grid, disregarding geographical distances. Transformers
(green) connect the upper layer (purple) with the lower layer (blue). On an abstract level, the
transformers constitute the interface between the two layers; from the lower layer’s perspec-
tive, the transformers feed in electricity to the grid, whereas from the upper layer’s perspective,
the transformers draw electricity from the grid.4 This abstraction allows viewing each layer as
a standalone grid, disregarding the other layers.

Grid layers not only have different voltage levels but also different topologies. Each topology
makes a different trade-off between economy and security (§ 2.1.2) [27]. In upper layers of a
grid, security is particularly important, because failures likely propagate down to subordinate

2Energy loss is the difference of produced and consumed electricity. This difference is always greater than zero,
because part of the produced electricity gets converted to heat during transmission.

3While higher voltage implies higher risk of electric shocks and fires and thus requires better insulation, it also
reduces the fraction of energy converted to heat in thewires [29]. The longer thewires, themore significant is the
loss of energy [29]. Grids transmitting energy over far distances are therefore operated at high voltages. Smaller
(sub-)grids, however, are operated at lower voltages, because insulation costs and safety concerns outweigh
costs for energy losses [29].

4Usually, electricity flows from high to low grid layers, but it can also flow in the opposite direction.
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Figure 2.1: Graph representation of a real-world grid structure [33]. Nodes are buses; edges
represent lines and transformers. Image by Cuffe [34] (license: https://creativeco
mmons.org/licenses/by-sa/4.0/)

layers. Therefore, a grid’s top layers are characterized by high interconnectivity, which implies
high redundancy and thus high security. In lower grid layers, however, costs of additional com-
ponents outweigh an increase in security.

Figure 2.2 shows topologies that are common in Germany. Radial topology is typical of LV grids,
which power small villages and city blocks [28]. In radial topology, lines called feeders depart
at the upstream transformers (i.e., at the transformers that connect the grid to upper layers).
Each feeder offers a set of connection points, that is, buses for the connection of sources, loads,
storage systems, and downstream transformers. Topologies that are more secure than radial
topology emerge when both ends of each feeder attach to upstream transformers [27]; con-
necting both ends to the same transformer yields a ring, whereas connecting the ends to differ-
ent transformers yields a thread. Each ring and thread contains an open switch, which is only
closed on demand [30]. Therefore, during normal operation, a grid with ring or thread topology
can be seen as a set of radially structured sub-grids, which are separated by open switches. Ring
and thread topologies incur higher installation and operation costs than radial topology, and are
typically used as a reference for MV grids [28]. Finally,mesh topology - the most expensive and
most secure topology - is predominant in HV and EHV grids. Mesh grids are characterized by
multiple feed-in points and cross-connections forming loops [30]. The majority of switches is

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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Figure 2.2: Predominant grid topologies in Germany. For simplicity, the figure does not show
normally closed switches. Adapted from Verheggen [27]

closed by default [30], so that loads and downstream transformers receive electricity frommul-
tiple directions simultaneously.

Although grids are generally plannedwith specific topologies inmind, they tend to havepeculiar-
ities diverging from ideal topology. For example, remote loads (e.g., farms, mountain shelters)
are rarely connected to an LV grid via new feeders, but rather via lines that attach to existing
feeders. Such lines are known as stitches [30].

2.2 Grid Planning

Future-proofing grids is challenging. On one hand, the development of grids involves expensive
construction projects with long lead times. As the lifespan of grid components typically lies in
the range of several decades, each new component is a long-time investment. On the other
hand, grids must be adapted to constantly changing needs of both producers and consumers of
electricity. However, supply and demand of electricity is hard to predict, evenmore its temporal
and regional distribution. Consequently, the development of grids must be planned carefully.

2.2.1 Planning Conditions

The choice or implementation of a suitable grid planning method depends on the conditions
that underlie the planning process. This subsection gives a short overview of these planning
conditions.
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Desired Output

First, a grid planner must know what type of output the planning process should yield. Often,
the desired output is a target grid [26, 27, 35, 36], that is, a specification of how a grid would
ideally look like under certain conditions. Another example of a planning output is the optimal
timing of construction projects on the basis of triggering events such as a component’s end of
life [25].

Planning Horizon

Another prerequisite of every grid planning process is the planning horizon 𝜃, defined as the
period that the grid planner will consider in the planning process. In Germany, for example, grid
planning usually involves a long-term and a short-term planning process [27]: First, long-term
planning yields a series of target grids, one of which is to be realized within 40-50 years (i.e.,
40 a ≤ 𝜃 ≤ 50 a). In a second stage, grid planners consider a much shorter period. The goal of
this second stage is to make short-term decisions on how to push forward the transition to the
target grid selected in the first planning stage.

Constraints

Furthermore, grid planning methods vary in constraints imposed on planning outcomes. These
constraints ensure that all requirements (§ 2.1.2) are met and laws are observed. Table 2.1
shows exemplary constraints and their purposes; in the next chapter, I will specify the actual
constraints that I focus on in this thesis.

Table 2.1: Exemplary grid planning constraints and their main purposes
Constrained aspects Exemplary constraints Main purposes
Voltage deviation Voltage must not deviate from the grid’s nominal

voltage by more than 5% at any bus and at any
time.

Stability, power
quality

Line loading The power that flows through a line must never ex-
ceed 60% of the line’s transmission capacity.

Reliability

Supply shortfall Blackoutsmust not last longer than three seconds. Reliability
Topology The grid must have ring topology. Security
Curtailment1 The annual curtailment of renewable energy

sources must not exceed 1% of generated
electricity.

Legality

Degrees of Freedom

In grid planning, many decisions must be taken, such as whether to install a new transformer at
a certain site or whether to reinforce a certain line. The number of decisions that must be taken

1Curtailment is a ”reduction in the output of a generator from what it could otherwise produce” [37].
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corresponds to the planning problem’s degrees of freedom. A problem with many degrees of
freedom is characterized by high complexity, but offersmuch flexibility for reaching the planning
goal. In grid planning, the degrees of freedom depend on the considered options for installing,
replacing, reinforcing, reconfiguring, and dismantling grid components. Options that have of-
ten been studied in previous research are the installation of new lines, transformers, sources,
and controllers; the reinforcement of existing lines and transformers; and the reconfiguration of
switches [12, 13].

Input Data

Finally, planning methods differ in the data they require as inputs. Table 2.2 distinguishes six
categories of inputs: (1) Technical inputs include component specifications and constants nee-
ded to define technical constraints. (2) Structural inputs consist of topological and geographical
data. (3) Feed-in and consumption profiles of sources and loads are specified either explicitly
(as time series), or are generated using parameterizable component models. (4) A financial
evaluation of planning outcomes requires prices and fees as inputs. (5) Finally, some planning
methods depend on the timing of events that occur within the planning horizon.

Table 2.2: Exemplary inputs of grid planning methods, by category
Categories Exemplary data points

(1) Technical Transmission capacity of line 7; maximumallowed deviation of voltages
from the grid’s nominal voltage

(2) Structural Location of transformer 2; number of installed photovoltaic appliances;
components attaching to bus 1

(3) Feed-in and
consumption

Electricity consumption of load 1 between 0:00 a.m. and 0:15 a.m. on
January 1, 2030; average solar radiation in August; power of wind farm
2 at wind speed of 50 km/h

(4) Financial Market price of transformers of type 𝑋; annual maintenance cost per
transformer; market price of 1 kWh of electricity on January 1, 2030
at 3:00 a.m.; Compensation for delaying the consumption of 1 kWh by
three hours

(5) Timing Time of connecting load 9 to the grid; end of life of transformer 3

Except for the last category, datamay either describe the status quo (e.g., the current grid struc-
ture) or future conditions (e.g., the anticipated number of installed photovoltaic appliances).
Some planning methods [27, 36] entirely disregard the status quo, that is, design grids from
scratch. For these methods, all inputs describe future conditions. Other methods [25, 35] aim
at adapting the existing grid to future conditions, and thus require inputs to describe both the
status quo and future conditions.

2.2.2 Power Flow Analysis

Unlike in routable networks (e.g., packet-switched communication networks), where the trans-
mitted objects (e.g., data packets) can be arbitrarily routed over the network, in grids, the flow
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of electricity follows physical laws. Simulating the flow of electricity in a grid is possible using a
technique known as power flow analysis (PFA). PFA is an essential part of most—if not all—grid
planning tools, because it allows to inspect the state of a grid under a given scenario of grid us-
age.

Intuitively, PFA considers how much electricity each source feeds into the grid and how much
electricity each load draws from the grid in a given moment, and, using this information, deter-
mines how the electricity flows through the grid in the given moment. Simulating the flow of
electricity for a whole period (e.g., a whole year) requires discretizing the period, that is, model-
ing the period as a series of time steps (e.g., one time step per hour), and then performing PFA
for each time step separately. For each time step, PFA yields the electrical quantities that are
required to assess if a grid meets given electrical constraints (e.g., the voltage and line loading
constraints given in Table 2.1).

For AC grids, state-of-the-art PFA amounts to solving a system of quadratic-trigonometric equa-
tions, whose variables are electrical quantities [38]. Such non-linear equation systems are com-
monly solved using numerical methods such as the Newton-Raphson method or the Gauss-
Seidelmethod [38]. As inputs, PFA requires the impedances of lines and transformers, the volt-
ages at sources, and the powers at sources, loads, and transformers [39]. Because the elec-
tricity drawn from the grid plus the electricity that gets lost during transmission may surpass
the electricity fed into the grid, one source or transformer is chosen as a ”slack component”,
which compensates for the difference [30, 39]. The power at this slack component is taken to
be unconstrained, and is not an input but an output of PFA. Apart from the power at the slack
component, the outputs include the voltages at the grid’s buses [38, 39]. These voltages in turn
allow to analytically determine the flow of electricity through the grid [38, 39]. Eventually, the
loading of each line can be calculated as the power that passes through the line divided by the
maximum power that may pass through the line (i.e., the line’s transmission capacity).

In the remainder of this thesis, I will abstract from the technical underpinnings of PFA to ease
reading—especially for readers without background in power engineering. From now on, PFA
will appear as a black box, which receives electrical quantities as inputs and outputs additional
electrical quantities. The only thing needed to remember is that the outputs of PFA are needed
to check if voltages or line loadings exceed critical values.

2.2.3 Optimization Models and Methods

Most scholars approach grid planning as an optimization problem [12, 13]. Adopting the nota-
tion of Dorigo and Stützle [40], an optimization problem Π is a triple (𝑆, 𝑓,Ω) where 𝑆 is a set
of candidate solutions, 𝑓 is a cost function assigning a cost 𝑓(𝑠) to each 𝑠 ∈ 𝑆, andΩ is a set of
constraints on 𝑆. If 𝑠 ∈ 𝑆 satisfies all constraints inΩ, 𝑠 is called feasible. Denoting the set of
feasible solutions by �̃�, the goal is to find solutions 𝑠∗ ∈ ̃𝑆 with 𝑓(𝑠∗) ≤ 𝑓(𝑠) for all 𝑠 ∈ �̃�.

The task of a grid planner is to deriveΠ from given planning conditions (§ 2.2.1). This task in-
volves a trade-off between model accuracy and optimization performance [35, 41]. If the plan-
ner makes many simplifying assumptions, optimization tends to be fast, and tends to find opti-
mal or close-to-optimal solutions with respect to the model. However, the model may oversim-
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plify the planning problem. Conversely, if the given planning conditions are modeled in detail,
the model better reflects the planning case, but optimization methods tend to become compu-
tationally infeasible, or fail to find close-to-optimal solutions. A variety of modeling decisions
mirror this trade-off [41], including the following:

Static↔ dynamic The simplest possible model disregards any dynamics within the planning
horizon. Inmore accuratemodels, not only the set of actions to perform is subject to opti-
mization but also their timing. In the most realistic case, time is modeled as a continuous
period representing the full planning horizon.

Deterministic↔ stochastic Variousmethods are available tomodel uncertainty of future con-
ditions (e.g., Bayesian methods, Monte Carlo simulation, fuzzy set theory). In grid plan-
ning, the traditional method is to specify multiple scenarios and assign to each scenario
the probability that it will become reality [25, 27, 41]. Each scenario describes conditions
at some timewithin the planning horizon, and the probabilities of scenarios describing the
same time must add up to one. In the simplest case, only a single scenario is considered,
that is, uncertainty is not modeled at all.

Single-objective↔multi-objective In the early years of grid planning, cost function 𝑓was al-
ways a scalar function, usually measuring financial cost [41]. Today,multi-objective opti-
mizationmethods exist (e.g., Pareto-optimal methods, outrankingmethods), which allow
to consider multiple objectives simultaneously. In multi-objective optimization, 𝑓(𝑠) is a
vector for 𝑠 ∈ 𝑆, and each vector component measures a different quantity. For example,
𝑓1 would measure financial cost and 𝑓2 ecological cost.

Linear↔ non-linear Manyaspects of grid planningmodels can introducenon-linearity. Typical
sources of non-linearity are the cost function [26, 41], boolean variables (e.g., to model
the state of switches), and PFA (§ 2.2.2) [26, 42].

For sufficiently simple models or small problem sizes, exact optimization methods such as cut-
ting plane and branch-and-bound methods are efficient solution methods. Exact optimization
methods find minimum-cost solutions or solutions whose cost is within some band around the
global minimum [36]. However, real-world problem instances are generally too large or the un-
derlying models too complex for exact methods to be feasible [35, 36, 41]. Instead, heuristic
methods have become state of the art in grid planning, particularly genetic algorithms and par-
ticle swarm optimization [12, 13].



3 Problem Formulation

Having established technical foundations in the previous chapter, I now specify the problem that
I focus on in this thesis. First, I introduce a formalmodel of grids (§ 3.1). Then, using thismodel,
I formalize the objective (§ 3.2), the degrees of freedom (§ 3.3), the constraints (§ 3.4), and the
required inputs (§ 3.5). Finally, I summarize the problem’s characteristics (§ 3.6).

3.1 Grid Model

I begin by introducing a simpleway ofmodeling grids, inspired by the datamodel of the software
package PyPSA [39]. I model a grid as an undirected graph 𝐺 = (𝐵, 𝐸), whose nodes 𝐵 are the
grid’s buses and whose edges 𝐸 ∶= 𝐿 ∪ 𝑊 are the grid’s line segments 𝐿 and switches𝑊. For
ease of implementation (§ 4), I represent each switch by a pseudo line segment, which is only
present if the represented switch is closed. Furthermore, I do not explicitly model sources,
loads, storage systems, and transformers. Instead, I model these components implicitly in
terms of their aggregated electricity feed-in and consumption at each bus 𝑏 ∈ 𝐵; the next para-
graph will give the details. Figure 3.1 visualizes the graph 𝐺 = (𝐵, 𝐸) of an exemplary LV grid.
The set𝐵 contains the grid’s buses 𝑏1, … , 𝑏16, and the set𝐸 = 𝐿∪𝑊 the line segments 𝑙1, … , 𝑙9 ∈
𝐿 and closed switches 𝑤1, … , 𝑤5 ∈ 𝑊. Each switch links an MV-LV transformer (i.e., a trans-
former that connects an MV grid to an LV grid) with a feeder 𝐹 ∈ {{𝑙1, 𝑙2, 𝑙3}, {𝑙5}, {𝑙6}, {𝑙7, 𝑙8}, {𝑙9}}.
With that, the grid has radial topology (§ 2.1.3), except that it contains a stitch, which is repre-
sented by {𝑙4}.

The nodes and edges of𝐺 have several attributes, which fall into two categories: time-invariant
and time-dependent. The time-invariant attributes are necessary to model characteristics of
line segments and switches. Each line segment 𝑙 ∈ 𝐿 has two time-invariant attributes: a
length |𝑙| and a type 𝑧 ∈ 𝑍, where 𝑍 is the set of all considered types. The type in turn spec-
ifies a line segment’s impedance (i.e., the electrical opposition to the flow of power through
the line segment) and transmission capacity (i.e., the maximum power that may pass through
the line segment). A (closed) switch 𝑤 ∈ 𝑊 is a pseudo line segment of zero length, neg-
ligible impedance,1 and infinite transmission capacity. Unlike time-invariant attributes, time-
dependent attributes model the temporal state of the grid. I model time as a series of mo-
ments (𝑡1, 𝑡2, … , 𝑡𝑚), 𝑚 ≥ 1. The only time-dependent attribute of line segments 𝑙 ∈ 𝐿 is the
power flow 𝑝𝑙 = (𝑝𝑙(𝑡1), 𝑝𝑙(𝑡2), … , 𝑝𝑙(𝑡𝑚)), where 𝑝𝑙(𝑡𝑖) denotes the power that flows through
𝑙 at time 𝑡𝑖. Buses 𝑏 ∈ 𝐵 have two time-dependent attributes. The first is the bus voltage
𝑣𝑏 = (𝑣𝑏(𝑡1), 𝑣𝑏(𝑡2), … , 𝑣𝑏(𝑡𝑚)), where 𝑣𝑏(𝑡𝑖) denotes the voltage at 𝑏 and 𝑡𝑖. The second at-
tribute is a feed-in and consumption profile 𝑝𝑏 = (𝑝𝑏(𝑡1), 𝑝𝑏(𝑡2), … , 𝑝𝑏(𝑡𝑚)), where 𝑝𝑏(𝑡𝑖) denotes
the power at 𝑏 and 𝑡𝑖. If 𝑝𝑏(𝑡𝑖) is positive, the components attaching to 𝑏 in sum feed in more

1I do not model switches as components of zero impedance, because zero-impedance components can cause nu-
merical problems in PFA. Section § 4.5.1 gives further information.
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Figure 3.1: Model of an LV grid

electricity than they consume at 𝑡𝑖, and vice versa. With that, 𝑝𝑏 captures the aggregated impact
of all sources, loads, storage systems, controllers, and transformers that attach to 𝑏.

3.2 Objective

The goal of the problem that I consider in this thesis is to expand a given LV grid such that the
expanded grid satisfies a given set of constraints at minimum cost. Formally, given an LV grid
𝐺now = (𝐵, 𝐸now) and a set 𝐸add of options for expanding the grid, the desired outcome is a
target grid 𝐺∗ = (𝐵, 𝐸∗), 𝐸∗ ⊆ 𝐸now ∪ 𝐸add, and the cost 𝑐exp(𝐺now, 𝐺∗) of transitioning from
𝐺now to 𝐺∗. 𝐺∗ represents the target structure of 𝐺now at time 𝜃 (with reasonable values for
𝜃 ranging from one year to about 20 years), and ideally, 𝑐exp(𝐺now, 𝐺∗) ≤ 𝑐exp(𝐺now, 𝐺) for all
candidate target grids𝐺.

The expansion cost 𝑐exp(𝐺now, 𝐺∗) sums up the costs of all grid modifications that are involved
in the transition from𝐺now to𝐺∗. I define the costs of grid modifications as follows, denoting by
𝑐cab(𝑧) the per-unit market price of cable type 𝑧 ∈ 𝑍 and by 𝑐ins(𝑧) the per-unit installation cost
for lines of type 𝑧 ∈ 𝑍:

1. Installing or replacing a line segment 𝑙 of type 𝑧 and length |𝑙| costs |𝑙| ⋅ [𝑐ins(𝑧) + 𝑐cab(𝑧)].

2. Dismantling a line segment 𝑙 of type 𝑧 and length |𝑙| costs |𝑙| ⋅ 𝑐ins(𝑧).

3. Operating a switch costs 𝑐swi.

Throughout this thesis, I specify costs in terms of one-time expenses rather than annuity repay-
ment, because—given the long lifespan of grid components—most components will reach their
end of life long after the planning horizon 𝜃.
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3.3 Degrees of Freedom

Next, I specify the options that I consider for modifying the given grid𝐺now = (𝐵, 𝐿now∪𝑊now)
to yield an expanded grid 𝐺exp = (𝐵, 𝐿exp ∪ 𝑊exp) with 𝐿exp ⊆ 𝐿now ∪ 𝐿add and 𝑊exp ⊆
𝑊now ∪𝑊add. I allow five types of grid modifications:

1. The installation of a line segment 𝑙add ∈ 𝐿add at a site where no line is installed yet (𝑙add
connects two buses that are not connected by any 𝑙now ∈ 𝐿now)

2. The replacement of a line segment 𝑙now ∈ 𝐿now by a line segment 𝑙add ∈ 𝐿add with differ-
ent characteristics (𝑙add connects the same buses as 𝑙now)

3. The dismantling of a line segment 𝑙now ∈ 𝐿now

4. The opening of a closed switch𝑤now ∈ 𝑊now, that is, the removal of the pseudo line𝑤now
representing the closed switch

5. The closing of an open switch, that is, the construction of the pseudo line 𝑤add ∈ 𝑊add
representing the closed switch

Each of these modifications forces electricity into different routes, and can thus help to balance
loadacross the grid. Additionally, the installation and the reinforcement of lines locally increases
the amount of electricity that can pass through the grid.

3.4 Constraints

After applyingmodifications to grid𝐺now, the resulting expanded grid𝐺exp must satisfy several
constraints, which fall into two categories: electrical and topological.

3.4.1 Electrical Constraints

The electrical constraints impose limits on bus voltages (i.e., the voltages at the grid’s buses)
and power flows (i.e., the powers that flow through the grid’s line segments). By doing so, the
constraints ensure that the grid is able to cope with the strain that grid usage is expected to put
on the grid at the end of the planning horizon 𝜃.

To simulate this strain, I require an estimation of the power 𝑝𝑏(𝑡𝑖) at each of the grid’s connection
points 𝑏 ∈ {𝑏1, … , 𝑏𝑟} ⊂ 𝐵 formoments 𝑡𝑖 ≈ 𝜃, 𝑖 = 1, … ,𝑚,𝑚 ≥ 1. Notably, I do not require 𝑝𝑏(𝑡𝑖)
for buses to which upstream transformers attach, because I consider the amount of electricity
drawn from or fed into upper grid layers to be unconstrained. In analogy to the terminology of
the PyPSA software library, I call 𝑝(𝑡𝑖) ∶= (𝑝𝑏1(𝑡𝑖), … , 𝑝𝑏𝑟(𝑡𝑖)) a snapshot. The more snapshots
are available, the better they collectively estimate the strain put on the grid around time 𝜃.

The snapshots allow to simulate the flow of electricity through the grid using PFA (§ 2.2.2). For
each moment 𝑡𝑖, 𝑖 ∈ {1, … ,𝑚}, each bus 𝑏 ∈ 𝐵, and each line segment 𝑙 ∈ 𝐿exp, PFA outputs the
bus voltage 𝑣𝑏(𝑡𝑖) and power flow 𝑝𝑙(𝑡𝑖).
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The bus voltages and power flows are subject to the following constraints:

𝜔𝑏(𝑡𝑖) ∶ 𝑣min ≤ 𝑣𝑏(𝑡𝑖) ≤ 𝑣max

𝜓𝑙(𝑡𝑖) ∶ 𝑝𝑙(𝑡𝑖) ≤ 𝜆�̂�𝑙

where 𝑣min ∈ ℝ≥0, 𝑣max ∈ ℝ≥0, and 𝜆 ∈ [0, 1] are parameters. For 𝜔𝑏(𝑡𝑖) to hold true, the bus
voltage 𝑣𝑏(𝑡𝑖) must be in the interval [𝑣min, 𝑣max]. For 𝜓𝑙(𝑡𝑖) to hold true, the power flow 𝑝𝑙(𝑡𝑖)
must not exceed a fraction 𝜆 of line segment 𝑙’s transmission capacity �̂�𝑙; that is, the loading
𝑝𝑙(𝑡𝑖) / �̂�𝑙 of 𝑙 must not exceed 𝜆. In short, for all electrical constraints to be satisfied, the bus
voltages and line loadings must always stay within their given limits during PFA.

3.4.2 Topological Constraints

The expanded gridmust not only satisfy voltage and line loading constraints, butmust also have
a certain topology. In this thesis, I demand that the grid has radial topology (§ 2.1.3)—a com-
mon requirement for LV grids. However, I make two exceptions. First, the gridmay contain rings
and threads (for increased security); and second, it may contain stitches of arbitrary length and
branching (to reduce investment costs).

In the following, I formalize this topological constraint using basic graph theory. To recall, in ra-
dial grids, all lines branch out from the upstream transformers, and the lines neither form loops
nor do they connect upstream transformers with each other. In graph theoretical terms, the
buses to which the upstream transformers attach can be seen as the roots of trees, and each of
the trees’ branches represents a line. In other words, the graph of a radial grid is a forest, where
each tree contains exactly one upstream transformer.

This characterization is still valid when the grid contains rings, threads, or stitches. To recall,
each ring and thread contains an open switch; and open switches disappear in graph represen-
tation. Consequently, the graph of a radial grid with rings or threads still does not contain loops
or connections between upstream transformers. The same holds if the grid contains stitches of
arbitrary length andbranching, because in graph representation, such stitches are just sub-trees
of other trees.

3.5 Required Inputs

The previous sections imply which input data are needed to solve the presented planning prob-
lem. To summarize, the required inputs are:

1. The graph 𝐺now = (𝐵, 𝐿now ∪ 𝑊now) of the grid that is to be expanded, including the
length |𝑙| and type 𝑧𝑙 of each line segment 𝑙 ∈ 𝐿now

2. A set 𝐸add = 𝐿add ∪𝑊add of grid expansion options, including the length |𝑙| and type 𝑧𝑙 of
each line segment 𝑙 ∈ 𝐿add
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3. The installation cost 𝑐ins(𝑧) and cable cost 𝑐cab(𝑧) for each line type 𝑧 ∈ 𝑍, where 𝑍 con-
tains the types of all line segments in 𝐿now ∪𝐿add; and the cost 𝑐swi of operating a switch

4. Snapshots 𝑝(𝑡𝑖) for moments 𝑡𝑖 ≈ 𝜃, 𝑖 = 1, … ,𝑚,𝑚 ≥ 1, where 𝜃 is the planning horizon

5. Constants 𝑣min and 𝑣max, which limit the allowed range of bus voltages; and a constant
𝜆, which specifies the maximum allowed line loading

3.6 Problem Characteristics

To conclude, the planning conditions specified in the previous sections induce an optimization
model with the following properties:

1. It is static, because it does not consider dynamics within the planning horizon.2

2. It is deterministic, as it does not model uncertainty.3

3. It is single-objective, as the only objective is to minimize the financial cost of grid expan-
sion.

4. It is non-linear, because state-of-the-art PFA involves solvingequations that containquad-
ratic and trigonometric terms [38].

2The optimization model being static does not contradict the fact that it takes time series as inputs; this is because
the time series do not describe the period from now until planning horizon 𝜃 but the time right at the end of the
planning horizon, that is, the time around 𝜃.

3Implicitly, however, the optimization model accounts for uncertainty of the amount of strain resting on the grid
around time 𝜃 if the planner provides multiple scenarios (in form of snapshots) of grid usage around time 𝜃.
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In this chapter, I presentAntPower, a software tool that solves the grid expansion problem spec-
ified in the previous chapter.

4.1 Basic Software Characteristics

AntPower is a tested, easy-to-use, and cross-platform software tool that facilitates the expan-
sion planning of LV grids. The tool runs on any system on which a Docker environment is in-
stalled. AntPower is a Python application, and its algorithmic core (i.e., everything excluding
preprocessing, logging, and visualization) comprises 506 statements, 95%ofwhich are covered
by unit tests. Reaching a significantly higher test coverage is difficult due to the tool’s probabilis-
tic nature.

4.2 Ant Colony Optimization

AntPower implements ant colony optimization (ACO), a method that outperformed other meth-
ods in previous grid planning research [17–22]. ACO is a meta-heuristic, that is, ”a set of al-
gorithmic concepts that can be used to define heuristic methods applicable to a wide set of
different problems” [40]. It can be applied to optimization problemΠ = (𝑆, 𝑓,Ω) if [40]:

1. 𝑆 ⊆ 𝑋, where 𝑋 is a set of finite sequences over a finite set of components 𝐶. The ele-
ments of𝑋 are called states ofΠ.

2. A problem-dependent test defines a set of viable states �̃� with �̃� ⊆ 𝑋.

3. Let �̃� be the set of feasible solutions (defined in terms of the set of constraintsΩ). For the
set of optimal solutions 𝑆∗, it holds that 𝑆∗ ≠ ∅, 𝑆∗ ⊆ ̃𝑆, and 𝑆∗ ⊆ �̃�.

4. 𝑓 is defined (not only on 𝑆 ⊆ 𝑋 but) on𝑋.

In ACO, agents called ants construct candidate solutions 𝑠 ∈ 𝑆 in parallel. The construction
procedure is a randomized walk on the construction graph 𝐺𝐶 = (𝐶, 𝐶 × 𝐶). This procedure
works as follows. Consider an ant is in state 𝑥𝑟 = ⟨𝑥𝑟−1, 𝑐𝑖⟩ ∈ �̃�, that is, it resides on 𝑐𝑖 ∈ 𝐶. If no
termination condition holds, the ant moves to some 𝑐𝑗 ∈ 𝐶 in its neighborhood𝑁(𝑥𝑟) according
to a probabilistic transition rule. Afterwards, the ant’s state is ⟨𝑥𝑟, 𝑐𝑗⟩ ∈ �̃�. The only way for ants
to communicate is through pheromones. Pheromones are global and dynamic values attached
to the nodes of 𝐺𝐶. After an ant constructs a solution 𝑠 ∈ 𝑆, it may update pheromones as a
function of 𝑓(𝑠). The transition rule in turn is a function of the pheromones and, optionally, static
heuristics. Typically, an ant deposits pheromones on visited components after it constructed
a low-cost solution, thereby increasing the probability that ants will visit these components in
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futurewalks. Ideally, thismechanism leads to a situationwhere ants initially explore large areas
of 𝐺𝐶 (because the distribution of pheromones is roughly uniform) but increasingly exploit the
collective knowledge stored as pheromones to converge to optimal solutions. Dorigo andStützle
[40] and Blum [43] give detailed introductions to ACO and its many variants.

4.3 Selection of Libraries

Central to AntPower is PyPSA [39], a free and open-source Python library maintained by re-
searchers of the Karlsruhe Institute of Technology, Germany. PyPSA contributes to AntPower in
two ways. First, it provides a data structure for accurate grid modeling. Second, it implements
state-of-the-art PFA algorithms, one of which AntPower uses to determine if candidate target
grids observe voltage and line loading limits.1

In addition, AntPower depends on the following libraries, which are well-known in the field of
scientific computing: NumPy, pandas, and NetworkX for data representation andmanipulation;
andmatplotlib and plotly for data visualization.

Although several Python libraries exist that implement ACO2, I use none of them; instead, I
implement ACO from scratch. The reason is that the ACO libraries significantly lack general-
ity; probably for historical reasons, all of the ACO libraries implement ACO specifically for the
traveling salesman problem (TSP), a well-studied problem in operations research and computer
science [40]. As a result, the ACO libraries are strongly tied to the TSP, which strongly differs
from the grid expansion problem AntPower seeks to solve.

4.4 Algorithm

ThealgorithmAntPower implements is an adaptation of theACOvariantAnt ColonySystem (ACS)
[44]. The reason for basing AntPower on ACS (instead of basing it on ”pure” ACO) is the follow-
ing. ACO, being a meta-heuristic, is extremely flexible; and the downside of this flexibility is
that implementation involves making many difficult decisions. To limit the number of decisions
thatmust be taken, scholars developed variants of ACOwhose optimization frameworks are less
generic than that of pure ACO. One of these ACO variants is ACS. I base the implementation of
AntPower on ACS, because ACS performed well on grid planning problems in previous research
[26, 27]. I leave for future work the application of other ACO variants to grid planning problems.

1The PFA algorithm that is used in AntPower employs the Newton-Raphson method to numerically solve a system
of quadratic-trigonometric equations, whose variables are electrical quantities. PyPSA’s documentation formally
describes the PFA algorithm at: https://pypsa.readthedocs.io/en/latest/power_flow.html#full-non-linear-pow
er-flow

2On October 15, 2020, a keyword search for libraries implementing ACO (keywords: ”ant”, ”ant colony optimiza-
tion”, ”aco”; websites: google.com, pypi.org, anaconda.org, and github.com) yielded eight results: ”ACOpy”
(https://github.com/rhgrant10/acopy); ”swarmlib” (https://github.com/HaaLeo/swarmlib); ”PYaco”
(https://github.com/Ganariya/PyACO); ”ant-colony” (https://github.com/jurekpawlikowski/ant-colony);
”randomized-tsp” (https://github.com/akshatkarani/randomized_tsp); ”scikit-opt” (https://github.com/guofe
i9987/scikit-opt); ”AntColonyOptimization” (https://github.com/Akavall/AntColonyOptimization); ”ant-colony-
optimization” (https://github.com/pjmattingly/ant-colony-optimization).

https://pypsa.readthedocs.io/en/latest/power_flow.html#full-non-linear-power-flow
https://pypsa.readthedocs.io/en/latest/power_flow.html#full-non-linear-power-flow
https://github.com/rhgrant10/acopy
https://github.com/HaaLeo/swarmlib
https://github.com/Ganariya/PyACO
https://github.com/jurekpawlikowski/ant-colony
https://github.com/akshatkarani/randomized_tsp
https://github.com/guofei9987/scikit-opt
https://github.com/guofei9987/scikit-opt
https://github.com/Akavall/AntColonyOptimization
https://github.com/pjmattingly/ant-colony-optimization
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Algorithm 1 shows how AntPower works on an abstract level. In lines 2-6, 𝑘col groups of ants,
called colonies, independently search for the cheapest solutions they can find. Eventually, in
line 7, AntPower returns the cheapest of all found solutions alongwith this solution’s cost. While
𝑘col = 1 in ACS, 𝑘col ≥ 1 in AntPower. Each colony runs in a separate process, so that setting
𝑘col > 1 allows to run multiple colonies in parallel. The colonies are isolated from each other;
therefore, running AntPower with 𝑘col = 2 yields the same results as running AntPower with
𝑘col = 1 twice (except for differences caused by random effects). A promising direction for
future work is to implement communication between colonies. For example, the colonies could
from time to time exchange the pheromone trails they have produced [45].

Algorithm 1 High-level implementation of AntPower
1: procedure runAntPower
2: bestFoundSolutions← ∅
3: repeat 𝑘col times
4: bestFoundSolutions← bestFoundSolutions ∪ searchForBestSolution()
5: end repeat
6: bestFoundSolution← argmin(𝑓, bestFoundSolutions)
7: return bestFoundSolution, 𝑓(bestFoundSolution)
8: end procedure

Algorithm 2 outlines the implementation of colonies in AntPower. First, in line 2, the procedure
assigns to each solution component 𝑐𝑖 ∈ 𝐶 a pheromone value 𝜏𝑖 ∈ ℝ, and sets each 𝜏𝑖 to 𝜏0,
where 𝜏0 is a parameter of AntPower. Then, the colony iteratively searches for solutions (lines
3-16). In each of the 𝑘itr iterations, the colony’s ants construct solutions 𝑠𝑖 ∈ 𝑆, 𝑖 = 1, … , 𝑘ant
(lines 5-9). In the process of constructing solutions (which I will elaborate later) the ants re-
duce the pheromone values of the solution components they visit (line 7). The purpose of this
pheromone reduction is to discourage ants from visiting the same components over and over
again [40]. After all ants constructed solutions, the colony selects from the constructed solu-
tions a minimum cost solution (line 10). If the cost of this iteration-best solution is below that of
the best solution found so far (line 11), the colony remembers the iteration-best solution as the
best-so-far solution (lines 12-13). Next, it increases the pheromone values of all components
contained in the best-so-far solution (line 15), thus encouraging ants to construct solutions that
share components with the best-so-far solution. After the final iteration, the procedure returns
the best-so-far solution (line 17). In sum, this implementation of colonies equals that of ACS, ex-
cept for aminor simplification; whereas in ACS, ants construct solutions in parallel, in AntPower,
they construct solutions sequentially (lines 6-9).

Algorithm 3 zooms in on the implementation of ants. Starting with state 𝑥 ← ⟨⟩ ∈ 𝑋, an ant
iteratively selects components from its neighborhood𝑁(𝑥) and appends them to 𝑥, until 𝑥 ∈ 𝑆
(lines 2-7). The decision of which component to select next depends on the (dynamic) vector
of pheromone values 𝜏 ∶= (𝜏1, … , 𝜏𝑛), a (static) vector of heuristic values 𝜂 ∶= (𝜂1, … , 𝜂𝑛), and
chance; the higher 𝜏𝑖 and the higher 𝜂𝑖, the higher the probability that an ant selects 𝑐𝑖 ∈ 𝑁(𝑥).
Each time an ant visits a component 𝑐𝑖 (i.e., adds 𝑐𝑖 to 𝑥), it decreases 𝜏𝑖 (line 6); thereby it in-
centivizes all ants to visit components 𝑐 ∈ 𝐶\{𝑐𝑖}. Eventually, the procedure of constructing
solutions returns the constructed solution 𝑥 ∈ 𝑆 and the updated vector of pheromone values 𝜏
(line 8).
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Algorithm 2 Implementation of colonies in AntPower
1: procedure searchForBestSolution()
2: 𝜏 ← (𝜏1, 𝜏2, … , 𝜏𝑛) ← (𝜏0, 𝜏0, … , 𝜏0)
3: lowestCostSoFar←∞
4: repeat 𝑘itr times
5: solutions← ∅
6: repeat 𝑘ant times
7: solution, 𝜏 ← constructSolution(𝜏)
8: solutions← solutions ∪ solution
9: end repeat

10: iterationBestSolution← argmin(𝑓, solutions)
11: if 𝑓(iterationBestSolution) < lowestCostSoFar then
12: lowestCostSoFar←𝑓(iterationBestSolution)
13: bestSolutionSoFar← iterationBestSolution
14: end if
15: 𝜏 ← updatePheromones(𝜏, bestSolutionSoFar)
16: end repeat
17: return bestSolutionSoFar
18: end procedure

Algorithm 3 Implementation of ants in AntPower
1: procedure constructSolution(𝜏)
2: 𝑥 ← ⟨⟩
3: while ¬ isSolution(𝑥) do
4: 𝑐 ← selectBestComponent(𝑁(𝑥), 𝜏, 𝜂)
5: 𝑥 ← ⟨𝑥, 𝑐⟩
6: 𝜏 ← updatePheromones(𝜏, 𝑐)
7: end while
8: return 𝑥, 𝜏
9: end procedure

Although, eventually, AntPower is to return a feasible solution, neither Algorithm 1, Algorithm 2,
nor Algorithm 3 assesses the feasibility of a found solution. The reason is that I will later define
cost function 𝑓 such that 𝑓(𝑠) reflects whether 𝑠 ∈ 𝑆 is feasible or not. Concretely, I will penalize
infeasible solutions to incentivize the construction of feasible solutions. Chapter § 5 will show
that even a simple penalty term can efficiently guide ants toward feasible solutions.

In terms of computational complexity, two parts of AntPower are significant: the underlying
PFA algorithm (§ 4.3) and the solution construction algorithm (Algorithm 3). The complexity of
the PFA algorithm results from the need to solve a system of equations 𝐴𝑥 = 0, where 𝐴 is
a square matrix whose number of rows is in the order of |𝐵| (i.e., the number of buses). The
(worst-case) time complexity of solving 𝐴𝑥 = 0 is 𝑂(|𝐵|3); and in each of AntPower’s 𝑘itr iter-
ations, each of the 𝑘col ⋅ 𝑘ant ants performs PFA for each of the 𝑚 snapshots. Therefore, PFA
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contributes𝑂(𝑘itr𝑘col𝑘ant𝑚|𝐵|3) to AntPower’s time complexity. Additionally, the solution con-
struction algorithm—that is, the implementation of ants—adds a significant amount of complex-
ity. In theworst case, a constructed solution comprises all𝑛 solution components, inwhich case
the respective ant must make 𝑛 decisions on which component to visit next. Each of these deci-
sions involves iterating over up to |𝐵| buses and 𝑛 components; thus the time complexity of the
solution construction algorithm is𝑂 (𝑛(|𝐵| + 𝑛)). As this algorithm runs 𝑘itr ⋅ 𝑘col ⋅ 𝑘ant times, the
construction of solutions contributes 𝑂(𝑘itr𝑘col𝑘ant𝑛(|𝐵| + 𝑛)) to AntPower’s time complexity.
With that, the overall time complexity of AntPower is𝑂(𝑘itr𝑘col𝑘ant(𝑚|𝐵|3+𝑛|𝐵|+𝑛2)). Regard-
ing space complexity, AntPower needs to store |𝐵| buses, up to 𝑛 solution components for each
of the 𝑘col ⋅ 𝑘ant ants, 𝑛 pheromone values for each of the 𝑘col colonies, and 𝑛 heuristic values.
In sum, these requirements imply a space complexity of𝑂(|𝐵| + 𝑘col𝑘ant𝑛).

4.5 Design Decisions

Implementing the algorithm presented in the previous section involves three decisions. First, I
must decide for a data model that enables an accurate representation of grids. Second, I must
decide how I translate the specification of the given planning problem to the methodological
framework of ACO; more precisely, I must define 𝐶, 𝑋, �̃�, 𝑆, �̃�, Ω, and 𝑓. Third, I must de-
cide for a search strategy; more precisely, I must define the ants’ neighborhood, transition rule,
pheromone update mechanism, and heuristic values. The following three subsections docu-
ment the decisions taken in the process of implementing AntPower: section § 4.5.1 discusses
AntPower’s data model; section § 4.5.2 shows how AntPower translates the planning condi-
tions to the ACO framework; and section § 4.5.3 presents the search strategy implemented by
AntPower.

4.5.1 Data Model

AntPower’s data model must be able to accurately represent the components, structure, and
states of a grid. PyPSA’s data model3 fulfills these criteria: it features parameterizable models
of grid components; it allows to model grids of arbitrary structure; and, for each grid compo-
nent, it stores values of electric quantities that together constitute the state of the modeled
grid. Therefore, I adopt PyPSA’s data model for the implementation of AntPower.

A limitation of PyPSA’s current version (0.17.1) is that it lacks a model of switches; thus it does
not allow specifying the locations and states of a grid’s switches. I circumvent this limitation
by modeling each switch as a low-impedance line segment that is present only if the switch is
in closed state. Typically, grid planners regard switches as components of zero impedance [28,
30]. However, zero-impedance components can cause numerical problems in PFA. Therefore, I
set the impedance of line segments that represent switches to 0.1 µΩ, which is the lowest value
that did not cause numerical problems in my experiments.

3PyPSA’s documentation comprehensively describes the data model at: https://pypsa.readthedocs.io/en/latest/c
omponents.html

https://pypsa.readthedocs.io/en/latest/components.html
https://pypsa.readthedocs.io/en/latest/components.html
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4.5.2 Translation of Planning Conditions to ACO

Thenext step in implementingAntPower is the translationof planning conditions toACO’smethod-
ological framework. This translation amounts to stating optimization problemΠ, which in turn
amounts to defining 𝐶,𝑋, �̃�, 𝑆, ̃𝑆,Ω, and 𝑓.

Solution Components (𝐶)

I begin by defining the set of solution components 𝐶. Considering that the planning objec-
tive is to find 𝐸∗, where 𝐸∗ is a subset of 𝐸now ∪ 𝐸add, a straight-forward approach is to set
𝐶 = 𝐸now ∪ 𝐸add. AntPower takes this approach.

Before I continue to define the other parts of Π, I try an approach for reducing the size of 𝐶,
that is, reducing the number of components. Reducing the number of components dramatically
reduces the number of solutions, considering that I will later define solutions as sequences over
𝐶. With a reduced number of solutions, ants can construct a larger fraction of solutions, which
in turn increases the probability of finding high-quality solutions.

The presented approach for reducing the number of components is based on the observation
that in LV grids, lines often run along streets, and connect multiple buildings in each street. In
graph representation (§ 3.1), a line running along a street corresponds to a series of consecutive
edges (line segments), which are connected by nodes (buses) of degree two, and the buses are
the connection points of the buildings along the street. Instead of considering each segment
as an individual component, the idea is to de-segment the lines, that is, to aggregate a line’s
segments into a single solution component.

In the exemplary problem shown in Figure 4.1, such de-segmentation yields six components
(𝑐1, … , 𝑐6), and thus reduces the number of components by 40%, as compared to the approach
of considering each segment to be an individual component. Notably, the three segments in
the upper-right corner form a cycle; therefore, grids that contain all of the three segments have
invalid topology. Consequently, as solution components are the atomic building blocks of solu-
tions, the three segments must constitute at least two components (𝑐4 and 𝑐5 in the example)
for ants to be able to create feasible solutions.

Although, at first glance, de-segmentation of lines is a promising preprocessing step, the ap-
proach turns out to be incompatible with the requirement for radial topology, given how ants
are implemented in AntPower. To recall, ants iteratively select components 𝑐 ∈ 𝐶 from their
neighborhood 𝑁(𝑥) ⊆ �̃�, and append them to their state 𝑥 ∈ �̃�. I will later define the set of
viable states �̃� to be the set of states that represent topologically valid grids. To adhere to this
definition, ants must begin the process of constructing a solution at the upstream transformers;
for example, in Figure 4.1, ants must begin by selecting either 𝑐1 or 𝑐4. If an ant selects 𝑐1 (i.e.,
𝑥 ← ⟨𝑐1⟩), it must then select 𝑐2, 𝑐3, or 𝑐4 (i.e., 𝑁(𝑥) = {𝑐2, 𝑐3, 𝑐4}), because these components
are the only components that preserve valid topology. An issue arises after an ant selects all
components except 𝑐3 and 𝑐5 (i.e., 𝑥 ← ⟨𝑐1, 𝑐2, 𝑐4, 𝑐6⟩). At this point, the ant’s neighborhood is
empty (i.e., 𝑁(𝑥) = ∅), because the ant has already selected all components except 𝑐3 and 𝑐5,
and selecting 𝑐3 or 𝑐5 would yield a topologically invalid grid (because 𝑐3 would connect the two
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Figure 4.1: De-segmentation of line segments

MV-LV transformers, and 𝑐5 would form a cycle with 𝑐4). At this stage, the ant has not yet found a
solution (i.e., 𝑥 ∉ 𝑆) if we suppose that, for 𝑥 to be a solution, the components in 𝑥must connect
each of the buses 𝑏1, … , 𝑏10 with an MV-LV transformer. In this situation, all an ant can do is to
start from scratch (i.e., 𝑥 ← ⟨⟩). In real-world problems, this issue can be such prevalent that
it prevents ants from finding any solution at all. However, discarding the de-segmentation step
resolves the issue.

As the de-segmentation approach fails, I stick to the original approach of considering each line
segment to be a separate solution component. That is, I set𝐶 = 𝐸now∪𝐸add, so that a solution
component is either a line segment 𝑙 ∈ 𝐿now ∪ 𝐿add or a closed switch𝑤 ∈ 𝑊now ∪𝑊add.

States (𝑋, �̃�)

Next, I define the set of states 𝑋 and the set of viable states �̃�. First, I define 𝑋 to be the set
of all sequences over𝐶 that contain each 𝑐 ∈ 𝐶 at most once. I exclude sequences that contain
any componentmore than once to ensure that ants visit each component at most once. Second,
I define �̃� as the set of all states that represent topologically valid grids. Considering that ants
can only reach states 𝑥 ∈ �̃�, the given definition prevents ants fromvisiting states that represent
topologically invalid grids. To recall from section § 3.4.2, the graph𝐺 of a topologically valid grid
is a forest, where each tree contains exactly one upstream transformer. Accordingly, denoting
by 𝐸 the set of components contained in 𝑥 ∈ 𝑋, 𝑥 is viable (𝑥 ∈ �̃�) if and only if 𝐺 = (𝐵, 𝐸) is a
forest where each tree contains exactly one upstream transformer.

Solutions (𝑆, ̃𝑆)

Having defined 𝑋, I can now specify the set of solutions 𝑆 ⊆ 𝑋. I define 𝑆 to be the set of all
states 𝑥 ∈ 𝑋 that have the following property 𝑃: If 𝐸 denotes the set of components appearing
in 𝑥, 𝐺 = (𝐵, 𝐸) connects each connection point with an upstream transformer. The rationale is
the following. If 𝑥 does not have property 𝑃, at least one connection point is isolated from the
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grid. Therefore, the ant whose state is 𝑥 should append components to 𝑥 until 𝑥 has property 𝑃,
that is, until all connection points are connected to the grid. Because the ant stops the process
of appending components to 𝑥 as soon as 𝑥 ∈ 𝑆, and because the ant should stop this process
as soon as 𝑥 has property 𝑃, I set 𝑆 ∶= {𝑥 ∈ 𝑋 | 𝑥 has property 𝑃}.

In addition, I must define the set of feasible solutions ̃𝑆. To recall, a solution is feasible if it
satisfies all constraints 𝜔 ∈ Ω. Consequently, the definition of ̃𝑆 follows fromΩ, which in turn
is defined as follows.

Constraints (Ω)

The set of constraints Ω simply consists of the voltage and line loading constraints (§ 3.4.1),
which are part of the problem specification. The problem specification additionally includes
a topological constraint (which asserts that grids have radial topology, except that they may
contain rings, threads, and stitches); yet, this constraint is not part of Ω, because it would be
redundant; given the definition of �̃�, ants can only construct topologically valid grids anyway.

Costs (𝑓)

To complete the definition ofΠ = (𝑆, 𝑓,Ω), the only thing left to do is to specify cost function
𝑓 ∶ 𝑋 → ℝ≥0. Because the optimization objective is to find a grid 𝐺∗ such that the cost of
transitioning from𝐺now to𝐺∗ is minimal, 𝑓(𝑥) should reflect the cost of transitioning from𝐺now
to 𝐺(𝑥), where 𝐺(𝑥) is the grid that 𝑥 represents. I approximate this cost by 𝑐exp(𝐺now, 𝐺(𝑥)),
which sums up the costs of all grid modifications that are involved in the transition from 𝐺now
to𝐺(𝑥). The formal definition of 𝑐exp is part of the problem specification (§ 3.2).

To guide ants toward feasible solutions, I add to the definition of 𝑓 a term 𝑃 that penalizes in-
feasible solutions depending on the degree of their infeasibility. For simplicity, I set this penalty
to be proportional to the number of violated constraints:

𝑃(𝑥) = ̂𝑓(𝑠∗) 𝑘vio(𝑥)

where ̂𝑓(𝑠∗) ∈ ℝ≥0 is a parameter estimating the cost of an optimal solution, and 𝑘vio(𝑥) denotes
the number of constraints𝜔 ∈ Ω violated by 𝑥. Eventually, I obtain the following definition of 𝑓:

𝑓(𝑥) = 𝑐exp (𝐺now, 𝐺(𝑥)) + 𝑃(𝑥)

4.5.3 Search Strategy

The final step in implementing AntPower is to implement the ants’ strategy of searching for
optimal solutions. A search strategy consists of a neighborhood function, a transition rule, a
pheromone update mechanism, and heuristic values.
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Neighborhood

Intuitively, an ant’s neighborhood comprises all states that the ant can reachwith one step. For-
mally, neighborhood function 𝑁 assigns to each state 𝑥 ∈ 𝑋 all components 𝑐 ∈ 𝐶 for which
⟨𝑥, 𝑐⟩ ∈ �̃�. Consequently, to define 𝑁, I only need to define �̃�, which I have already done in
section § 4.5.2. To recall, �̃� is the set of states that represent topologically valid grids. Conse-
quently, 𝑐 ∈ 𝑁(𝑥) if and only if ⟨𝑥, 𝑐⟩ represents a topologically valid grid.

Transition Rule

When an ant is in state 𝑥 ∈ �̃�, it moves to some state ⟨𝑥, 𝑐⟩ ∈ �̃� according to a transition rule. A
transition rule selects a component 𝑐 ∈ 𝑁(𝑥) as a function of pheromone values 𝜏1, … , 𝜏𝑛 and
heuristic values 𝜂1, … , 𝜂𝑛. AntPower adopts the transition rule of ACS, which probabilistically
selects 𝑐 ∈ 𝑁(𝑥) such that:

𝑐 =
⎧⎪⎨
⎪⎩
argmax𝑐𝑖∈𝑁(𝑥) 𝜏𝑖𝜂𝑖

𝛽 if 𝑞 ≤ 𝑞0
𝑐′ if 𝑞 > 𝑞0

where 𝑞 ∈ [0, 1] is a uniformly distributed random variable, 𝑞0 ∈ [0, 1] and 𝛽 ∈ ℝ≥0 are param-
eters, and 𝑐′ ∈ 𝐶 is a random variable with the following probability distribution 𝑝:

𝑝(𝑐𝑖) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝜏𝑖𝜂𝑖𝛽

∑𝑐𝑗∈𝑁(𝑥)𝜏𝑗𝜂𝑗
𝛽

if 𝑐𝑖 ∈ 𝑁(𝑥)

0 if 𝑐𝑖 ∉ 𝑁(𝑥)

Parameter 𝑞0 modulates the degree to which ants exploit their collective knowledge stored as
pheromones [40]. If 𝑞 ≤ 𝑞0, an ant selects from its neighborhood that component which maxi-
mizes 𝜏𝑖𝜂𝑖𝛽 (e.g., for 𝛽 = 0, the ant selects the component with the highest pheromone value).
In contrast, if 𝑞 > 𝑞0, the ant probabilistically selects 𝑐𝑖 ∈ 𝑁(𝑥), with the probability of selecting
𝑐𝑖 being proportional to 𝜏𝑖𝜂𝑖𝛽. Thus for high values of 𝑞0, ants tend to select components that
were part of high-quality solutions in earlier iterations, whereas for low values of 𝑞0, ants are
more likely to explore components that have been part of inferior solutions, or that have not
been selected by any ant so far.

Furthermore, parameter 𝛽 controls the relative weight of pheromone values as compared to
heuristic values. The purpose of both pheromone values and heuristic values is to guide ants
in the process of constructing solutions. The difference is that pheromone values are dynamic
values encoding the ants’ empirical knowledge, whereas heuristic values are a priori estimations
of the solution components’ quality. I will define the heuristic values at the end of this section.

Pheromone Update

ACSspecifies two rules for updatingpheromones, local pheromoneupdateand global pheromone
update. Local pheromone update occurs each time an ant visits a component 𝑐𝑖 ∈ 𝐶, and affects
only the pheromone value of the visited component:
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𝜏𝑖 ← (1 − 𝜉)𝜏𝑖 + 𝜉𝜏0

where 𝜉 ∈ (0, 1) is a parameter. The initial pheromone value 𝜏0 ∈ ℝ≥0 represents a base
level of pheromone, and 𝜏𝑖 converges to this base level exponentially with the number of local
pheromone updates. If 𝜏𝑖 > 𝜏0, local pheromone update decreases 𝜏𝑖 tomake 𝑐𝑖 less attractive;
conversely, if 𝜏𝑖 < 𝜏0, local pheromone update increases 𝜏𝑖 to make 𝑐𝑖 more attractive.

The second pheromone update rule, global pheromone update, is applied at the end of each
iteration, and affects only the pheromone values 𝜏𝑖 of components that are part of the best-so-
far solution 𝑠 ∈ 𝑆. If 𝑐𝑖 is a component of 𝑠, its pheromone value is updated as follows:

𝜏𝑖 ← (1 − 𝜌)𝜏𝑖 + 𝜌
̂𝑓(𝑠∗)
𝑓(𝑠)

where 𝜌 ∈ (0, 1) and ̂𝑓(𝑠∗) are parameters. Just as the local pheromone update rule, the global
pheromone update rule calculates a weighted average of the previous pheromone value and
a target value. Instead of 𝜏0, the target value is now the reciprocal of 𝑓(𝑠), normalized by the
estimated cost of an optimal solution 𝑠∗ ∈ 𝑆∗. With that, the change in 𝜏𝑖 depends on the quality
of 𝑠. More precisely, if the reciprocal of the normalized cost of 𝑠 exceeds 𝜏𝑖, then 𝜏𝑖 increases,
otherwise 𝜏𝑖 decreases.

Heuristic Values

Ants, whendecidingwhich component to visit next, not only consider pheromone values but also
heuristic values. Heuristic values are static values that estimate the quality of solution compo-
nents independent of other components. Without heuristic values, ants would initially have no
information about the structure of the problem to solve, and would therefore construct solu-
tions 𝑠 ∈ 𝑆 randomly. In real-world problems, the size of 𝑆 far exceeds the number of solutions
ants can construct; therefore, it is essential to guide ants toward high-quality solutions from the
beginning.

Following is the definition of the heuristic values used by AntPower. Denoting the cost of 𝑐 ∈ 𝐶
by 𝑔(𝑐) (as specified in subsection § 3.2), the heuristic value 𝜂𝑖 ∈ ℝ≥0 of component 𝑐𝑖 ∈ 𝐶 is
given by:

𝜂𝑖 =
1

𝑔(𝑐𝑖) − 𝑔min + 1

where 𝑔min is the minimum of 𝑔(𝑐) across all 𝑐 ∈ 𝐶. In other words, 𝜂𝑖 is the reciprocal of 𝑔(𝑐𝑖),
normalized such that the smallest heuristic value equals one. With this definition of 𝜂, ants
prefer low-cost grid modifications over expensive grid modifications—unless pheromone values
point toward expensive grid modifications that have proven valuable in previous iterations.
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I now evaluate AntPower’s performance. For that, I first present a real-world use case (§ 5.1).
Then, I develop two simple solution methods, which will serve as baselines for the benchmark-
ing of AntPower (§ 5.2). Next, I present the solution found by AntPower, and compare it to the
baseline solutions (§ 5.3). Finally, I study the effect of control parameters on AntPower’s per-
formance (§ 5.4).

5.1 Use Case

To begin with, I present a real-world use case of LV expansion planning. This use case will serve
as the basis for the benchmarking of AntPower (§ 5.3).

5.1.1 Planning Conditions

The presented use case is the case of expanding the LV grid shown in Figure 5.1. The grid powers
a village of 800 residents, and is located in a rural area of Central Germany. Five transformers
connect the grid to an MV grid. The grid contains 837 buses and 735 line segments. The lines’
total length is 20 km, and—as is common for LV grids in Germany—all lines are underground
lines. Furthermore, the grid contains 99 sources (mostly photovoltaic appliances), 357 loads
(mostly residential buildings), and 113 switches (most of which are closed).

The grid’s operator, having connected many photovoltaic appliances to the grid in recent years,
must now extensively expand the grid before the grid can cope with additional strain. As this
situation forces the operator to reject requests for the connection of further generators, it is im-
portant to expand the grid as soon as possible. Therefore, I assume a narrow planning horizon
of three years.

Following are the options that I consider for expanding the grid:

1. The installation of any of five line segments that run along new routes1

2. The replacement of any of 369 line segments by high-capacity line segments2

3. The dismantling of any of 369 line segments

4. The opening of any of the 102 closed switches

5. The closing of any of the 11 open switches
1The reason why I do not consider more options for laying lines along new routes is that the grid operator prefers

to lay lines along streets, and, in the given village, lines already run along most of the streets.
2I consider ”replacement lines” to consist of two parallel cables of type ”NAYY 4 x 240 SE”.
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Figure 5.1: Status quo of the grid that is to be expanded. For better clarity, the figure does not
show sources, loads, or switches.

Thereby, to reduce complexity, I allow the replacement or dismantling of line segments only
for the 369 line segments that are not private. I consider a line segment to be private if it at-
taches to a bus to which also a source or load attaches. In the given LV grid, most private line
segments are short segments that connect residential buildings to the grid. Excluding private
line segments from the set of allowed modification options greatly reduces the complexity of
the planning problem, considering that almost half of all installed line segments are private seg-
ments in the given use case. Section § 5.3will show that the remaining gridmodification options
suffice to efficiently expand the grid.

After expansion, I demand that the grid is able to cope with the maximum strain that grid us-
age can place on the grid. Maximum strain emerges from the following worst-case scenarios of
grid usage. In the first scenario, called feed case, all generators operate at peak power, while
none of the loads consumes any electricity. This scenario comes close to the grid usage that is
observed during the summer holidays, when photovoltaic generation peaks and electricity con-
sumption stagnates [46]. In the second scenario, called load case, none of the sources feeds
in any electricity, while all loads operate at peak power. This scenario resembles grid usage
on winter days at which photovoltaic generation is low and electricity consumption is high [46].
When performing PFA, I require that none of the line segments gets overloaded, both in the
feed case and the load case. Additionally, bus voltagesmust not deviate from the grid’s nominal
voltage (0.4 kV) by more than 6% in the feed case and 4% in the load case. Figure 5.2 shows
that the grid, given its current structure, violates these constraints at many locations. More pre-
cisely, one line segment (located in the village’s center) is overloaded, and at 83 buses, voltage
exceeds the allowed range in at least one of the two worst-case scenarios.
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Figure 5.2: The locations at which the grid that is to be expandedwill violate voltage or line load-
ing constraints at the end of the planning horizon, given the grid’s current structure
and worst-case scenarios of grid usage.

To recall from section § 3.4.2, the expanded grid must have radial topology, except that it may
contain rings, threads, and stitches. As of now, the grid does not satisfy this constraint, because
the grid currently contains several rings and threads in which all switches are closed, although
each ring and thread must contain an open switch, as we have seen in section § 2.1.3.

The last planning condition that is left to be specified is the cost of grid expansionmeasures. As
I lack information on the grid operator’s expenses, I roughly estimate costs of grid expansion
measures as follows. First, I suppose that each switching action incurs an operational cost of
1K €. Second, I assume that installing or replacing one kilometer of line costs 0.1M €. Third, I
approximate the acquisition cost of cables by 20K € per kilometer.

In addition to evaluating AntPower using the presented use case, it is essential to consider a
wide spectrum of other use cases in future research. The reason is that the grid planning prob-
lems AntPower supports vary in many aspects: the structure of the grid that is to be expanded;
the scenarios of expected grid usage; the options considered for grid expansion; the constraints
imposed on the expanded grid; and the costs of the considered expansion options. An evalua-
tion that covers this wide range of planning conditions requires a diverse set of test grids and
planning scenarios.3

3Generally, a standardized set of publicly available problem instances would facilitate the evaluation of grid plan-
ning tools. Such benchmark problem instances could be based on, for example, the recently published and pub-
licly available SimBench grids [47].
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5.1.2 Input Data

The planning conditions specified in the previous section translate to the following planning in-
puts:

1. AntPower obviously requires a specification of the grid that is to be expanded; therefore,
the planning inputs must specify both the technical properties of the grid’s components
and the grid’s structure 𝐺now = (𝐵, 𝐿now ∪ 𝑊now). In the given use case, |𝐵| = 837 (as
the grid contains 837 buses), |𝐿now| = 735 (as the grid contains 735 line segments), and
|𝑊now| = 102 (as the grid contains 102 closed switches).

2. AntPower expects to be given the set of expansion options 𝐸add = 𝐿add ∪ 𝑊add. In the
given use case, |𝐿add| = 374 (five lines that run along new routes plus 369 ”replacement
lines”) and |𝑊add| = 11 (as the grid contains 11 open switches).

3. The financial inputs are 𝑐swi = 1K€, 𝑐ins(𝑧) = 100€/m, and 𝑐cab(𝑧) = 20€/m, where 𝑧 ∈ 𝑍
is the type of lines that consist of two parallel ”NAYY 4 x 240 SE” cables. I suppose that
all newly laid lines are of type 𝑧; thus I do not need to specify installation costs and cable
costs for any other line types.

4. Further planning inputs are the load case 𝑝(𝑡1) and the feed case 𝑝(𝑡2), where 𝑡1 ≈ 𝑡2 ≈
𝜃 = 3 a (both the feed case and the load case describe grid usage at the end of the plan-
ning horizon, which is three years).

5. The use case’s voltage and line loading limits imply 𝜆 = 1 (the maximum power that is al-
lowed to flow througha line equals100%of the line’s transmission capacity), [𝑣min, 𝑣max] =
[376 V, 424 V] in the feed case (bus voltagesmay deviate from nominal voltage by atmost
6% in the feed case), and [𝑣min, 𝑣max] = [384 V, 416 V] in the load case (bus voltagesmay
deviate from nominal voltage by at most 4% in the load case).

5.2 Baselines

In this section, I present two simple methods that solve the problem instance described in the
previous section. These methods will serve as baselines when evaluating the solutions found
by AntPower.

5.2.1 Manual Method

The first of the two baselines aims to reflect how an expert would solve the given grid expansion
problem. To date, most utilities use expert judgment and empirical rules—rather than auto-
mated tools—to plan distribution grids [12]. Therefore, supported by an electrical engineer with
many years of research experience in grid planning, I developed a manual planning method,
which involves no computer aid except a PFA tool and a geographic map of the grid that is to be
expanded.

This manual planning method is a heuristic procedure of six steps. As a first step, I reinforce
overloaded line segments, that is, I replace each overloaded line segment by a line segment
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of higher transmission capacity. Second, I open all switches to fix the issue that 𝐺now contains
rings and threads inwhich all switches are closed. Third, by closing selected switches, I connect
sources and loads to their closest upstream transformers. I preferably close those switches that
are also closed in𝐺now to keep down costs. Fourth, I check for each new line segment (i.e., for
each line segment that—if built—runs along a route where no line is located so far) if integrating
this line segment into the grid significantly reduces the number of voltage limit violations. In-
tegrating a line segment thereby means installing the line segment and then fixing topology by
flipping switches and dismantling line segments as needed. Fifth, I shorten overly long feed-
ers if this shortening helps to further reduce the number of voltage band violations. To shorten
a feeder, I disconnect several line segments that are located at the end of the feeder, and re-
connect these segments to a nearby upstream transformer. Sixth, I fix the remaining voltage
limit violations by reinforcing lines as follows. Starting from each upstream transformer, I fol-
low the path to each bus at which voltage exceeds the allowed limits. For each of these paths, I
reinforce the line segments along the path, until the voltage limit violation at the end of the path
disappears.

5.2.2 One-Opt Local Search

To complement the previously presented human baseline with an automated, algorithmic base-
line, I implement a simple variant of local search. A local search algorithm is an algorithm that,
starting at some initial solution, iteratively moves to a solution in the neighborhood of the cur-
rent solution. The definition ofwhich solutions belong to a solution’s neighborhood varies across
variants of local search algorithms. In one-opt local search, the variant that I implement, the
neighborhood of solution 𝑠 ∈ 𝑆 comprises those solutions that result from replacing one com-
ponent of 𝑠 by some other component.

In the following, I present an algorithm that results from a straight-forward application of one-
opt local search to the grid expansion problem. First, to obtain an initial solution, the algorithm
randomly creates a forest 𝐺 = (𝐵, 𝐸), whose roots represent the buses to which the upstream
transformers attach and whose edges 𝐸 ⊆ 𝐿now ∪ 𝐿add connect all buses 𝑏 ∈ 𝐵 to the grid. To
recall, forests of this type represent topologically valid solutions to the grid expansion problem.
Having found an initial solution, the algorithm now iteratively moves from the current solution
𝑠 ∈ 𝑆 to a solution 𝑠′ ∈ 𝑆 in the neighborhood of 𝑠; the subsequent paragraph will explain in
detail how this transition works. After each transition, the algorithm assigns 𝑠 ← 𝑠′ but only
if 𝑓(𝑠′) < 𝑓(𝑠). The overall process terminates after 𝑘itr ⋅ 𝑘ant transitions. With that, a local
search process generates just as many solutions as a colony of AntPower. Furthermore, just
as AntPower runs 𝑘col colonies in parallel, the presented local search algorithm runs 𝑘col local
search processes in parallel. With that, AntPower and the local search algorithm generate the
same number of solutions, and use the same number of CPU cores. If 𝑘col > 1, an additional
advantage of executing 𝑘col local search processes (rather than only one) is that, due to the 𝑘col
random initializations, the quality of the final solution depends less on the quality of the initial
solution.

I now focus on the transition from one solution to another. To recall, in one-opt local search,
transitioning from one solution to another amounts to replacing one solution component by
another. Adopting AntPower’s definition of solution components (§ 4.5.2), I define the com-
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ponents of solution 𝑠 ∈ 𝑆 to be the edges 𝑒 ∈ 𝐸 of the graph 𝐺 = (𝐵, 𝐸) that represents
𝑠. With that, moving from 𝑠 ∈ 𝑆 to 𝑠′ ∈ 𝑆 amounts to replacing some edge 𝑒 ∈ 𝐸 by some
edge 𝑒′ ∈ (𝐿now ∪ 𝐿add) \ 𝐸. To implement this replacement, first I randomly select an edge
𝑒′ ∈ (𝐿now ∪ 𝐿add) \ 𝐸. Then, I remove an edge 𝑒 from 𝐸 such that 𝐸′ = (𝐸 ∪ {𝑒′}) \ {𝑒} yields
a topologically valid grid 𝐺′ = (𝐵, 𝐸′). To determine which edge to remove, I must distinguish
three cases. The first case is that the previously added edge 𝑒′ represents a reinforcement line;
that is, 𝑒′ connects the same buses as some (already existing) line 𝑙 ∈ 𝐿 ⊂ 𝐸. In this case, I
remove 𝑙, so that 𝑒′ replaces 𝑙. In the second case, 𝐸∪ {𝑒′} contains a cycle; that is, after adding
𝑒′, the grid contains a ring in which all switches are closed. To fix this, I remove one of the two
edges that are adjacent to 𝑒′ in the cycle. In the third case, 𝐸 ∪ {𝑒′} contains a path from one
of the forest’s roots to another; that is, after adding 𝑒′, the grid contains a thread in which all
switches are closed. Similarly to the previous case, I remove one of the two edges that are ad-
jacent to 𝑒′ in the path that connects the two roots. Consequently, in each of the three cases,
replacing 𝑒 by 𝑒′ amounts to transitioning from a topologically valid grid𝐺 to a topologically valid
grid𝐺′.

5.3 Results

This section presents the results of solving the problem instance introduced in section § 5.1
using the manual method, the local search method, and AntPower. I use the following set of
control parameters, which gave best results throughout my experiments: 𝑘col = 25; 𝑘ant =
10; 𝑘itr = 2K; 𝛽 = 1; 𝑞0 = 0.9; 𝜉 = 0.1; 𝜌 = 0.1; 𝜏0 = 0.008; and ̂𝑓(𝑠∗) = 0.1M €. This
section is structured as follows. First, subsection § 5.3.1 gives an overview by comparing the
results across the three solution methods. Then, the subsequent subsections examine in detail
the results obtained using the manual method (§ 5.3.2), the local search method (§ 5.3.3), and
AntPower (§ 5.3.4).

5.3.1 Overview

For a result overview, Table 5.1 compares the best solutions found by the two baselinemethods
with the best solution found by AntPower. Notably, all of the three methods succeed in finding
solutions that observe all constraints. Yet, the solution returned by AntPower saves 60% of
costs as compared to themanually created solution, and saves 64%as compared to the solution
created by the local search method. With that, AntPower clearly outperforms the two baseline
methods.

Table 5.1: Comparison of the best solutions found by the manual method, one-opt local search,
and AntPower

Feature of best found solution Manual method Local search AntPower
Topology of the expanded grid Valid topology Valid topology Valid topology
Number of overloaded lines 0 0 0
Number of voltage limit violations 0 0 0
Cost of grid expansion 210K € 231K € 84K €
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5.3.2 Manual Method

Figure 5.3 shows the manually created solution 𝑠 ∈ ̃𝑆, with 𝑐exp (𝐺now, 𝐺(𝑠)) = 210K €. The
expansion plan that 𝑠 represents involves: (1) the installation of four of the five line segments
that run along routes atwhich no lines are located so far (shown in purple); (2) the reinforcement
of 44 line segments, whose total length is 1.0 km (shown in blue); (3) the dismantling of three
very short line segments (shown in red but hardly visible due to their short lengths); (4) the
opening of eleven switches (shown in orange); and (5) the closing of one switch (also shown in
orange).

Figure 5.3: The expansion plan obtained using the manual planning method. Although the ex-
pansion plan involves the dismantling of three line segments, these line segments
are hardly visible in the figure due to their short lengths (the longest dismantled line
segment is only 17 meters long). Furthermore, each orange dot can represent sev-
eral switch operations.

The reason why the three dismantled line segments are very short (with the longest of the three
segments being only 17 meters long) is the following. In the context of the manual planning
method, the sole purpose of dismantling line segments is to fix violations of the grid’s topology.
To keep down costs, it is best to fix such violations by dismantling line segments that are as short
as possible. In practice, the grid operator may want to install normally open switches rather
than dismantling short line segments, because the installation of switches increases flexibility
in controlling the grid. Therefore, in future research, regarding the installation of switches as an
additional degree of freedom in grid expansion planning is likely worth the resulting increase in
problem complexity.
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5.3.3 One-Opt Local Search

Figure 5.4 shows the best solution 𝑠 ∈ ̃𝑆 obtained using the local search method. Strikingly,
the local search method selects the same new line segments as the manual method. Addi-
tionally, the total length of reinforced line segments is roughly equal across the two methods
(manual method: 1.0 km; local search method: 1.1 km). However, whereas the manual method
reinforces 44 line segments, which are located throughout the village, the local search method
reinforces only 19 line segments, which are located mainly in the village’s center. Furthermore,
the local search method dismantles 14 line segments (eleven more than the manual method),
opens eight switches (three less than the manual method), and closes ten switches (nine more
than the manual method). The costs of these expansion measures sum up to 231K €, which is
1.1 times the cost of the manually created expansion plan.

Figure 5.4: The best expansion plan obtained using the local search method. Each orange dot
can represent several switch operations.

Next, I examine the convergence of costs across iterations. Figure 5.5 shows the cost 𝑓(𝑠𝑖) of
the best found solution 𝑠𝑖 after each iteration 𝑖 ∈ {1, 2, … , 𝑘itr ⋅ 𝑘ant} for the first three of the 25
local search processes. Initially, the costs rapidly decrease. However, after 2.5K iterations at
the latest, the costs stagnate. This stagnationmeans that the local search processes get stuck in
local optima of 𝑓, which they cannot leave due to the greedy nature of one-opt local search. This
problem occurs across all processes—even when doubling the number of processes from 25 to
50, inwhich case the cost of the overall best solution decreases bymerely 9%. Furthermore, the
costs of the generated solutions vary widely, with a standard deviation as high as 2.6M € (based
on a sample of 50 local search processes). To conclude, the grid expansion problem appears to
be too complex to be efficiently and reliably solvable using a method as simple as one-opt local
search. This observation motivates the use of a more sophisticated method, such as the ACO
method that AntPower implements.
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Figure 5.5: Convergence behavior of the local search method. The right plot shows an excerpt
of the left plot. The figure shows only the first three of the 25 local search processes.

5.3.4 AntPower

Eventually, Figure 5.4 shows the best solution 𝑠 ∈ �̃� found by AntPower. Whereas the two base-
linemethods select four new line segments, AntPower selects only two. Furthermore, AntPower
reinforces only 19 line segments, with a total length of 0.67 km, which is 33% less than the to-
tal length of reinforced line segments obtained using the manual method. However, AntPower
dismantles more than thrice as many line segments as the manual method (ten vs. three line
segments), and closes thrice as many switches (three switches vs. one switch). Finally, the
number of opened switches (two) is far below that of the manual method (eleven). With a cost
of 𝑐exp (𝐺now, 𝐺(𝑠)) = 84K €, AntPower’s expansion plan is 60% cheaper than themanually cre-
ated expansion plan, and 64% cheaper than the expansion plan obtained using the local search
method.

In analogy to Figure 5.5, Figure 5.7 shows the cost of the best-so-far solution after each iter-
ation for the first three of the 25 colonies. Initially, the costs decrease rapidly for all colonies,
and then steadily converge to values between 84K € and 116K €. The costs’ standard devia-
tion, estimated using a sample of 50 colonies, equals 16K €, which is far below the standard
deviation estimated for the local search method (2.6M €). Thus the quality of generated solu-
tions is relatively stable. Still, it may be surprising to see that the second and the third colony
fail to catch up to the first colony, although the first colony’s solution hardly improves through-
out the end of the search. The reason is that, as the search goes on, pheromones increasingly
bias the ants’ behavior to the point that the ants hardly deviate from the best solutions found so
far. This pheromone bias is a requirement for ACS-based algorithms (like AntPower) to perform
well; ideally, ants initially explore a variety of different solutions, but increasingly focus on the
neighborhood of the best solutions found so far [40].

To ensure that the given pheromone biasmakes a reasonable trade-off between the exploration
of novel solutions and the exploitation of already found solutions, I evaluate how the degree to
which ants show exploratory behavior develops over time. I measure this degree of exploration
by the number of solution components that are visited by at least one ant in each iteration, rela-
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Figure 5.6: The best expansion plan found by AntPower. Each orange dot can represent several
switch operations.

tive to the total number of solution components (856). To capture temporal dynamics, Imeasure
the degree of exploration in each iteration, and, to smooth out local variations, I compute the
moving average using a window size of 50 iterations. Figure 5.8 shows the resulting plot. In the
first 1K iterations, the average degree of exploration falls from 64% to 57%, where it remains
throughout the second half of the search. With that, the ants show a high degree of exploration
initially, but increasingly search in the neighborhood of previously found solutions, as desired.

In terms of runtime, AntPower benefits from the parallel implementation of colonies. As each
colony runs in a separate process, changing the number of colonies hardly affects AntPower’s
runtime, provided that the number of available CPU cores exceeds the number of colonies. Run-
ning 25 colonies in parallel on a computer with 32 CPU cores and a clock rate of 2.5 GHz takes
about two days—an acceptable duration, considering that grid planning is not a time critical task.
Notably, PFA consumes 24% of all runtime, even though the given use case (§ 5.1) comprises
only two snapshots (the feed case and the load case). With ten snapshots, the share of time
consumed by PFA rises to 46%, and overall runtime increases by 40%. With an even larger
number of snapshots, that is, with time series comprising tens or hundreds of snapshots, the
use of a less accurate PFA algorithm is necessary to achieve reasonable runtime performance.
However, rather than downgrading to a less accurate PFA algorithm, I recommend to not pass a
time series to the PFA algorithm in the first place; instead, I recommend to aggregate the time
series into few representative snapshots using a clustering technique—two snapshots generally
suffice to accurately represent a time series in the context of distribution grid planning [48].

Finally and not surprisingly, AntPower—not being a data-intense application—has low space re-
quirements. It uses 12 GB of memory, and generates 2 GB of outputs, most of which are eval-
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Figure 5.7: Convergence behavior of AntPower. The right plot shows an excerpt of the left plot.
For better clarity, the figure shows only the first three of the 25 colonies.

Figure 5.8: Degree to which the ants show exploratory behavior across iterations. For better
clarity, the figure shows only the first three of the 25 colonies.

uation data. Given the abundance of inexpensive memory and storage that is available today,
AntPower’s space requirements are insignificant.

5.4 Effect of Control Parameters

As a final evaluation step, I examine how AntPower reacts to changes in control parameter set-
tings. Moreprecisely, I study for each control parameter howvarying its valueaffectsAntPower’s
performance, while keeping all other parameters at their base values. As base values, I use the
values given in section § 5.3, except that I reduce the number of colonies from25 to three due to
limited computational resources. Furthermore, due to the large number of control parameters,
I limit the analysis to the effects of individual parameters, and leave an evaluation of interaction
effects for future research.

This section has the following structure. Subsection § 5.4.1 studies the parameters that control
the number of constructed solutions (𝑘col, 𝑘ant, and 𝑘itr). Subsection § 5.4.2 studies the param-
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eters of the transition rule (𝑞0, 𝛽, and 𝜏0); and subsection § 5.4.3 studies the parameters that
control the update of pheromones (𝜉, 𝜌, and ̂𝑓(𝑠∗)).

5.4.1 Parameters Controlling the Number of Constructed Solutions

Three parameters control the total number of solutions that ants construct during a run of Ant-
Power: the number of colonies (𝑘col), the number of ants per colony (𝑘ant), and the number of
iterations (𝑘itr). In the following, I focus on each of the three parameters individually.

I begin by considering the number of colonies (𝑘col). With an increasing number of colonies,
the cost of the best found solution decreases, until it remains constant at some point. To limit
computational effort (which rises proportionally to 𝑘col), it is reasonable to choose a value for
𝑘col beyond which the cost of the best found solution hardly decreases any further. To find such
a value, I examine the effect of varying 𝑘col as follows. For each 𝑖 ∈ {1, 2, … , 30}, I simulate
three runs of AntPower, each of which uses the setting 𝑘col = 𝑖. I simulate a run of AntPower by
drawing a random subsample of size 𝑘col from a sample of 180 colonies. For each 𝑘col, I then
calculate the mean cost across the three simulated runs. Figure 5.9a shows the results. As 𝑘col
increases, themean cost decreases, but stagnates at around 𝑘col = 25, indicating that 𝑘col = 25
is a reasonable setting.

(a) Effect of 𝑘col on the cost of the best solution (b) Effect of 𝑘ant on the convergence of costs

Figure 5.9: Effect of the number and size of colonies on AntPower’s performance

Next, I examine the effect of varying the number of ants per colony (𝑘ant). As Figure 5.9b shows,
𝑘ant hardly affects the cost of the best found solution, but rather influences the speed at which
the cost function converges to its final value; the larger 𝑘ant, the higher the speed of conver-
gence. For 3 < 𝑘ant ≤ 30, costs converge steadily and reasonably fast, so using any value in
this range is a reasonable choice, although 𝑘ant = 10 yields slightly better results than the other
settings. That 𝑘ant = 10 gives good results confirms the ACO authors’ finding that using ten ants
per colony is a good default value [40].

Finally, parameter 𝑘itr sets the number of iterations after which AntPower terminates the search
for solutions. In a future versionofAntPower, this parameterwill be obsolete, becauseAntPower
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will be able to automatically decide when to terminate its search (e.g., when costs have not de-
creased within the last, say, 50 iterations). Yet, the current need to specify 𝑘itr does not signifi-
cantly impair AntPower’s usability, because—as the analyses throughout this section indicate—
the base setting (𝑘itr = 2K) leads to satisfactory results independent of other settings.

5.4.2 Parameters Controlling the Transition Rule

I now turn toward the parameters of the transition rule, that is, the parameters that control how
ants move from one solution component to the next.

I begin by studying parameter 𝑞0, which modulates the degree to which the search for solutions
concentrates around the best solutions found so far. In doing so, 𝑞0 controls the trade-off be-
tween the exploitation of knowledge about the best solutions found so far and the acquisition of
additional knowledge through further exploration. Accordingly, Figure 5.10a shows a strong cor-
relation between 𝑞0 and the degree to which ants show exploratory behavior. The exploration-
exploitation trade-off largely affects the convergence of costs, as Figure 5.10b shows. If 𝑞0 is
too low (𝑞0 < 0.85), an overly strong focus on exploration hinders convergence toward low-cost
solutions. If 𝑞0 is too high (𝑞0 > 0.95), the ants run into sub-optimal solutions, too, because
they concentrate too much on the best solutions found so far. Using 𝑞0 = 0.9 (as recommended
by the authors of ACS [40]) yields best results.

Figure 5.10: Effect of parameter 𝑞0 on: (a) the degree of exploration; and (b) the convergence of
costs

The purpose of parameters 𝛽 and 𝜏0 is to adjust how much weight the ants give to pheromones
relative to heuristic values when deciding which solution component to visit next. Figure 5.11
indicates that AntPower is robust against changes in the values of 𝛽 and 𝜏0, considering that a
large range of settings (𝛽 = 1.9 ± 60%, 𝜏0 = 7.5 × 10−3 ± 50%) yields almost equal results.
Performance deteriorates only for 𝛽 < 0.8, 𝛽 > 4, 𝜏0 < 4.0 × 10−3, and 𝜏0 > 1.1 × 10−2. The
best-performing setting is:

𝛽 = 1; 𝜏0 =
̂𝑓(𝑠∗)
̂𝑓(𝑠°)

= 0.1M €
12.5M € = 8 × 10−3
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where ̂𝑓(𝑠∗) estimates the cost of the overall best solution, and ̂𝑓(𝑠°) the mean cost (including
penalty) of a randomly created solution. The formula 𝜏0 = ̂𝑓(𝑠∗) / ̂𝑓(𝑠°) is an adaptation of a
formula that the authors of ACS propose for the solution of the TSP [40].

Figure 5.11: Effect of parameters that control the weight of pheromones relative to heuristic
values on the convergence of costs: (a) parameter 𝛽; (b) parameter 𝜏0

Figure 5.12: Effect of parameters controlling the pheromone update on the convergence of
costs: (a) parameter 𝜉; (b) parameter 𝜌; and (c) parameter ̂𝑓(𝑠∗)
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5.4.3 Parameters Controlling the Pheromone Update

Lastly, I evaluate parameters 𝜉, 𝜌, and ̂𝑓(𝑠∗), which control the update of pheromones.

Parameter 𝜉 adjusts the speed at which pheromone values deviating from base value 𝜏0 con-
verge back to 𝜏0. A large range of settings (0.01 ≤ 𝜉 ≤ 0.25) yields satisfactory results, as
Figure 5.12a shows. Yet, AntPower’s performance deteriorates beyond this range. To demon-
strate why, Figure 5.13 shows how 𝜉 influences the temporal dynamics of pheromone levels.
With a large value of 𝜉 (as in Figure 5.13a), the pheromone values converge back to base value
𝜏0 = 8 × 10−3 rapidly (as indicated by the blue, horizontal lines that appear over and over again,
and by the lowmaximum pheromone level). As a result, ants lack guidance and thus fail to con-
centrate on high-quality solutions. In contrast, with a low value of 𝜉 (as in Figure 5.13c), the
pheromone values return only slowly to their base level, so that the amount of newly added
pheromones far outweighs the amount of pheromone that ”evaporates” in each iteration (as
indicated by the decreasing number of blue, horizontal lines). As a result, many solution com-
ponents accumulate large amounts of pheromones (the highest pheromone level is more than
four times as high as in Figure 5.13a). The high pheromone levels in turn ”trap” the ants in
neighborhoods of solutions found in previous iterations. Using 𝜉 = 0.1 (as in Figure 5.13b, and
as recommended by the authors of ACS [40]) yields an optimal balance between the two ex-
tremes shown in Figure 5.13a and Figure 5.13c.

Just as to parameter𝜉, AntPower appears to be insensitive to changes in parameters𝜌 and ̂𝑓(𝑠∗).
To recall, 𝜌 controls the global pheromone update, and ̂𝑓(𝑠∗) estimates the cost of an optimal
solution. According to Figure 5.12b and Figure 5.12c, the values for which AntPower shows
best performance range from 0.05 to 0.5 for 𝜌, and from 50K € to 0.5M € for ̂𝑓(𝑠∗). The best-
performing setting for𝜌, 0.1, equals the default setting recommended for ACS applications [40],
just as it was the case for parameters 𝑘ant, 𝑞0, and 𝜉. The best-performing setting for ̂𝑓(𝑠∗) is
0.1M€. That AntPower is insensitive to ̂𝑓(𝑠∗), that is, to the estimated cost of the best expansion
plan, is strongly in favor of AntPower’s usability, because estimating this cost precisely would
involve much effort.
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Figure 5.13: Temporal dynamics of pheromone levels for: (a) 𝜉 = 0.9; (b) 𝜉 = 0.1; and (c)
𝜉 = 0.001



6 Conclusion
In this thesis, I presented AntPower, a software tool that facilitates the expansion planning of
LV grids. I started by formulating the grid expansion problem that AntPower seeks to solve, and
characterized it as a static, deterministic, single-objective, and non-linear optimization prob-
lem. As amethod to solve this problem, I selected ACO, an optimization framework that outper-
formed other methods in previous grid planning research. Applying ACO to the grid expansion
problem involved various design decisions, such as how to define the cost function and how to
implement the ants’ search strategy. To evaluate AntPower, I considered the real-world task of
expanding an LV grid of 837 buses and five MV-LV transformers. I compared AntPower’s perfor-
mance to that of a conventional, manual planningmethod and a one-opt local search algorithm.
Each of the threemethods yielded expansion plans that combine the installation, reinforcement,
anddismantling of line segmentswith the opening and closing of switches, thereby ensuring that
the expanded grid meets all topological and electrical constraints. The expansion plan gener-
ated by AntPower turned out to be 60% cheaper than themanually created expansion plan, and
64% cheaper than that of the local search method. Eventually, a sensitivity analysis demon-
strated AntPower’s robustness against most of the control parameters, and indicated that, for
the few sensitive control parameters, the default parameter settings of ACS are optimal.

Following are my main findings:

1. Planning grid expansion using ACO can reduce expansion costs tremendously, both com-
pared to using a manual planning method that is based on expert knowledge and com-
pared to using a local search algorithm.

2. That ACO hasmany control parameters does not pose a challenge in the context of LV grid
expansion planning, because most control parameters are insensitive to changes in their
values, and for the sensitive parameters, good default values exist.

3. Due to the computational complexity of high-accuracy PFA algorithms, using such an al-
gorithm at the core of an automated grid planning tool is advisable only when considering
few time steps. Otherwise, an aggregation of time steps or, alternatively, the use of a
computationally less demanding PFA algorithm is necessary to achieve reasonable com-
putation time.

I acknowledge that a holistic assessment of AntPower’s performance requires further evalua-
tion. In particular, AntPower should be benchmarked against other state-of-the-art grid plan-
ning tools (e.g., genetic algorithms) using an as diverse as possible set of realistic problem in-
stances. The creation and publication of such problem instances would not only facilitate the
evaluation of AntPower, but would likely fuel the advancement of grid planning methods in gen-
eral. Another direction for future research is the generalization of AntPower to a wider range of
grid expansion problems. Particularly, increasing AntPower’s planning freedom (e.g., allowing
the installation of new switches and transformers) wouldmake AntPowermore attractive to grid
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planners. Furthermore, adding support for different grid topologies would extend AntPower’s
scope of application from LV grids to MV and HV grids.
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