
On Compact Representation and Robustness
of Transfer Patterns

in Public Transportation Routing
Master’s Thesis

Jonas Sternisko

Institut für Informatik
Albert-Ludwigs-Universität Freiburg

22 March, 2013

Transfer Pattern Routing Compact Representation Robustness

Outline

Transfer Pattern Routing

Compact Representation of Transfer Patterns

Robustness of Transfer Patterns

2 / 23

Transfer Pattern Routing Compact Representation Robustness

Outline

Transfer Pattern Routing

Compact Representation of Transfer Patterns

Robustness of Transfer Patterns

2 / 23

Transfer Pattern Routing Compact Representation Robustness

Outline

Transfer Pattern Routing

Compact Representation of Transfer Patterns

Robustness of Transfer Patterns

2 / 23

Transfer Pattern Routing Compact Representation Robustness

Transfer Pattern Routing
Transfer Patterns

I Example Freiburg → Munich
[F, Karlsruhe, M], [F, Titisee, Ulm, M]

State-of-the-art routing algorithm (Hannah Bast et al. [1])
I Optimal transfer patterns
I Efficient direct connection queries

Modeling timetable data
I Time-expanded graph
I Realistic routing adds transfer buffer, walking (Robert

Geisberger [2])
I Multi-variate cost model: time of travel, number of transfers
I Pareto-optimal paths by multi-label Dijkstra

3 / 23

Transfer Pattern Routing Compact Representation Robustness

Transfer Patterns
Computation and Storage

Perform a full Dijkstra for every station
I Backtrack optimal paths from each destination
I Transfers along paths yield patterns

Store patterns as Directed Acyclic Graph

A B

C

C D

D

E

I Reversed, prefix-free
I One DAG per station
I Example for patterns ‘ABC‘,
‘AE‘, ‘ABE‘, ‘ABDE‘, ‘ABCDE‘

4 / 23

Transfer Pattern Routing Compact Representation Robustness

Transfer Patterns
Search

A B C D

D

E

Query Graph
I Construction from patterns
I Arcs present direct connections

Efficient search
I Direct connection queries for arc relaxation
I List-intersection based algorithm

Pareto-optimal paths within a few ms

5 / 23

Transfer Pattern Routing Compact Representation Robustness

Transfer Pattern Routing

Compact Representation of Transfer Patterns

Robustness of Transfer Patterns

6 / 23

Transfer Pattern Routing Compact Representation Robustness

Motivation

Size of the information
I Hardware requirements
I Access speed
I Future: increased number of patterns

(multi-modal route planning)

7 / 23

Transfer Pattern Routing Compact Representation Robustness

Motivation

Size of the information → Compact representation
I Hardware requirements
I Access speed
I Future: increased number of patterns

(multi-modal route planning)

7 / 23

Transfer Pattern Routing Compact Representation Robustness

First Approach
Routing with first transfers

Idea
I Store only the first transfer instead of full patterns
I At search time, recursively construct query graph
I Example Freiburg → Munich

Problems
I Requires same precomputation...
I ...but discards most information
I Less informed, search space twice as large → slower
I Only small advantage in space

8 / 23

Transfer Pattern Routing Compact Representation Robustness

First Approach
Routing with first transfers

Idea
I Store only the first transfer instead of full patterns
I At search time, recursively construct query graph
I Example Freiburg → Munich

Problems
I Requires same precomputation...
I ...but discards most information
I Less informed, search space twice as large → slower
I Only small advantage in space

8 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (1)
Equal suffixes

I DAG is prefix-free
I Detect and remove equal suffixes

A

B

D

E

C

D

E

F

A

B

D

E

F

C

D

E

F

1.

2.

3.

4.

5.

6.

7.

A

B

D

E

F

C

D

E

F

7.

A

B

D

E

C

F

9 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (1)
Equal suffixes

I DAG is prefix-free
I Detect and remove equal suffixes

A

B

D

E

C

D

E

F

A

B

D

E

F

C

D

E

F

1.

2.

3.

4.

5.

6.

7.

A

B

D

E

F

C

D

E

F

7.

A

B

D

E

C

F

9 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (1)
Equal suffixes

I DAG is prefix-free
I Detect and remove equal suffixes

A

B

D

E

C

D

E

F

A

B

D

E

F

C

D

E

F

1.

2.

3.

4.

5.

6.

7.

A

B

D

E

F

C

D

E

F

7.

A

B

D

E

C

F

9 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (1)
Equal suffixes

I DAG is prefix-free
I Detect and remove equal suffixes

A

B

D

E

C

D

E

F

A

B

D

E

F

C

D

E

F

1.

2.

3.

4.

5.

6.

7.

A

B

D

E

F

C

D

E

F

7.

A

B

D

E

C

F

9 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (1)
Equal suffixes

I DAG is prefix-free
I Detect and remove equal suffixes

A

B

D

E

C

D

E

F

A

B

D

E

F

C

D

E

F

1.

2.

3.

4.

5.

6.

7.

A

B

D

E

F

C

D

E

F

7.

A

B

D

E

C

F

9 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (2)
Entry points

Information of destination nodes
I Station id + successors

Destination map determines station id as well
I Merge destination nodes with equal successors

A B

C

D

E

TargetMap(A)
C : C
D : D
E : E

10 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (2)
Entry points

Information of destination nodes
I Station id + successors

Destination map determines station id as well
I Merge destination nodes with equal successors

A B

C

D

E

TargetMap(A)
C : C
D : D
E : E

10 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (2)
Entry points

Information of destination nodes
I Station id + successors

Destination map determines station id as well
I Merge destination nodes with equal successors

A B

∗

D

∗

TargetMap(A)
C : ∗
D : D
E : ∗

10 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (2)
Entry points

Information of destination nodes
I Station id + successors

Destination map determines station id as well
I Merge destination nodes with equal successors

A B

*

D

TargetMap(A)

C : *
D : D
E : *

10 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (3)
Joint Graph

Observation
I Information of the departure node is redundant
I Context determines station id

Let all patterns share a common root
I Joint DAG resolves redundancy between all DAGs
I Station id is assigned at query time
I Other techniques can be applied on top of that

A C D

G

F

TargetMap(A)
G : G
F : F

B C D E
TargetMap(B)

E : E

11 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (3)
Joint Graph

Observation
I Information of the departure node is redundant
I Context determines station id

Let all patterns share a common root
I Joint DAG resolves redundancy between all DAGs
I Station id is assigned at query time
I Other techniques can be applied on top of that

* C D

G

F

TargetMap(A)
G : G
F : F

* C D E
TargetMap(B)

E : E

11 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (3)
Joint Graph

Observation
I Information of the departure node is redundant
I Context determines station id

Let all patterns share a common root
I Joint DAG resolves redundancy between all DAGs
I Station id is assigned at query time
I Other techniques can be applied on top of that

* C D

G

F

TargetMap(A)
G : G
F : F

* C D E
TargetMap(B)

E : E

11 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (3)
Joint Graph

Observation
I Information of the departure node is redundant
I Context determines station id

Let all patterns share a common root
I Joint DAG resolves redundancy between all DAGs
I Station id is assigned at query time
I Other techniques can be applied on top of that

∗ C

G

D E

F

TargetMap(A)
G : G
F : F

TargetMap(B)
E : E

11 / 23

Transfer Pattern Routing Compact Representation Robustness

Removing Redundancy (3)
Joint Graph

Observation
I Information of the departure node is redundant
I Context determines station id

Let all patterns share a common root
I Joint DAG resolves redundancy between all DAGs
I Station id is assigned at query time
I Other techniques can be applied on top of that

∗ C

G

D E

F

TargetMap(A)
G : G
F : F

TargetMap(B)
E : E

11 / 23

Transfer Pattern Routing Compact Representation Robustness

Results
Compact Representation

I Computed transfer patterns for Hawaii, Detroit, Toronto, NYC
I Measure size of 4 representations
I Example: Toronto at 1000m walking distance (162M patterns,

5.8 patterns per destination in average) 1

Toronto@1000m: 162.0M, 5.8
internal nodes 24.2M 20.6M 3.2M 3.0M
destination nodes 27.9M 11.7M 27.9M 7.2M
arcs 186.2M 110.0M 165.2M 78.3M
Memory size (Byte) 1.6G 1.1G 1.3G 659.8M
Byte/pattern 9.8 6.5 7.8 4.1

TP TPc jDAG jDAGc

1TPc : techniques 1 + 2, jDAG : technique 3, jDAGc : 1 + 2 + 3
12 / 23

Transfer Pattern Routing Compact Representation Robustness

Results
Compact Representation

Evaluation (general)
I Removing equal suffixes saves 10–20% internal nodes
I Merging destination nodes removes 50–80% nodes and a lot of

arcs
I Joint DAG shrinks the internal structures by factor ∼8
I Approaches combine very well
I Destination maps become dominant part of the data

13 / 23

Transfer Pattern Routing Compact Representation Robustness

Transfer Pattern Routing

Compact Representation of Transfer Patterns

Robustness of Transfer Patterns

14 / 23

Transfer Pattern Routing Compact Representation Robustness

Motivation
Transfer patterns vs. real-time updates

Time-consuming precomputation
I Computation of transfer patterns in O(N2)

I Heuristics: important stations, limits
I Still very long

Realistic applications
I Frequent updates: delay

I Traffic jam, strike, cow on the track, ...
I Can the patterns still guarantee optimal responses?

15 / 23

Transfer Pattern Routing Compact Representation Robustness

Motivation
Transfer patterns vs. real-time updates

Time-consuming precomputation → Robustness
I Computation of transfer patterns in O(N2)

I Heuristics: important stations, limits
I Still very long

Realistic applications
I Frequent updates: delay

I Traffic jam, strike, cow on the track, ...
I Can the patterns still guarantee optimal responses?

15 / 23

Transfer Pattern Routing Compact Representation Robustness

Delay model
Scenarios

I Delay fixed percentage of trips
I Random, exponentially distributed offset
I After random insertion stop

Scenario Share of trips and average delay

Low 25% : 5 min
Medium 25% : 15 min
High 25% : 50 min
Switzerland 10% : 5 min, 3% : 15 min, 1% : 50 min
Germany 20% : 5 min, 10% : 15 min, 5% : 50 min
India 40% : 5 min, 40% : 15 min, 20% : 50 min

16 / 23

Transfer Pattern Routing Compact Representation Robustness

Experimental setup
I Compute transfer patterns
I Update network
I Answer random location queries

I Original transfer pattern, updated direct connection data
I Dijkstra on updated network

I Compare and classify responses

Class Difference d to optimal path costs c∗

optimal d = 0
almost optimal a d ≤ 5min ∧ d

c∗ ≤ 5%
almost optimal b d ≤ 10min ∧ d

c∗ ≤ 10%
failing otherwise

17 / 23

Transfer Pattern Routing Compact Representation Robustness

Results
Robustness

Example: 50,000 successful queries on Toronto
I Classification of responses

optimal almost a almost b failing

Null 99.98% 0.00% 0.00% 0.00%
Low 99.73% 0.12% 0.04% 0.08%
Medium 99.59% 0.20% 0.06% 0.13%
High 99.49% 0.27% 0.07% 0.16%
Switzerland 99.82% 0.09% 0.02% 0.05%
Germany 99.54% 0.22% 0.06% 0.16%
India 97.85% 1.12% 0.31% 0.70%

18 / 23

Transfer Pattern Routing Compact Representation Robustness

Results
Robustness

I Suboptimal responses: time of travel

0.0 0.2 0.4 0.6 0.8 1.0
Relative offset to optimal travel time

NULL

LOW

MEDIUM

HIGH

SWITZERLAND

GERMANY

INDIA

19 / 23

Transfer Pattern Routing Compact Representation Robustness

Results
Robustness

Evaluation (general)
I Never more than 5% suboptimal queries
I Majority of suboptimal responses is almost optimal
I Even under worst scenario india
I But: A few critical outliers

20 / 23

Transfer Pattern Routing Compact Representation Robustness

Summary
Compact Representation

Contribution
I Understanding sources of redundancy
I Several techniques reducing data size, maintain accessibility
I Store twice as many patterns in the same memory

Future work
I Dominant destination maps

I Joint destination maps
I Invest in hub selection strategies

I Space-efficient implementation

21 / 23

Transfer Pattern Routing Compact Representation Robustness

Summary
Robustness

Contribution
I Indication for robustness
I Even for extreme scenarios
I Quality guarantee for transfer pattern routing

Future work
I Acquire and test with real data
I Dependency from precomputation parameters
I How to improve robustness?

22 / 23

Transfer Pattern Routing Compact Representation Robustness

Bibliography

Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert
Geisberger, Chris Harrelson, Veselin Raychev, and Fabien Viger.
Fast Routing in Very Large Public Transportation Networks
Using Transfer Patterns.
In Mark de Berg and Ulrich Meyer, editors, ESA (1), volume
6346 of Lecture Notes in Computer Science, pages 290–301.
Springer, 2010.

Robert Geisberger.
Advanced Route Planning in Transportation Networks.
PhD thesis, KIT, 2011.

23 / 23

	Transfer Pattern Routing
	Compact Representation of Transfer Patterns
	Robustness of Transfer Patterns

