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Transfer Pattern Routing
Transfer Patterns

I Example Freiburg → Munich
[F, Karlsruhe, M], [F, Titisee, Ulm, M]

State-of-the-art routing algorithm (Hannah Bast et al. [1])
I Optimal transfer patterns
I Efficient direct connection queries

Modeling timetable data
I Time-expanded graph
I Realistic routing adds transfer buffer, walking (Robert

Geisberger [2])
I Multi-variate cost model: time of travel, number of transfers
I Pareto-optimal paths by multi-label Dijkstra
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Transfer Patterns
Computation and Storage

Perform a full Dijkstra for every station
I Backtrack optimal paths from each destination
I Transfers along paths yield patterns

Store patterns as Directed Acyclic Graph

A B

C

C D

D

E

I Reversed, prefix-free
I One DAG per station
I Example for patterns ‘ABC‘,
‘AE‘, ‘ABE‘, ‘ABDE‘, ‘ABCDE‘
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Transfer Patterns
Search

A B C D

D

E

Query Graph
I Construction from patterns
I Arcs present direct connections

Efficient search
I Direct connection queries for arc relaxation
I List-intersection based algorithm

Pareto-optimal paths within a few ms
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Motivation

Size of the information
I Hardware requirements
I Access speed
I Future: increased number of patterns

(multi-modal route planning)
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First Approach
Routing with first transfers

Idea
I Store only the first transfer instead of full patterns
I At search time, recursively construct query graph
I Example Freiburg → Munich

Problems
I Requires same precomputation...
I ...but discards most information
I Less informed, search space twice as large → slower
I Only small advantage in space
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Removing Redundancy (1)
Equal suffixes

I DAG is prefix-free
I Detect and remove equal suffixes
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Removing Redundancy (2)
Entry points

Information of destination nodes
I Station id + successors

Destination map determines station id as well
I Merge destination nodes with equal successors

A B

C

D

E

TargetMap(A)
C : C
D : D
E : E
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Removing Redundancy (2)
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Removing Redundancy (3)
Joint Graph

Observation
I Information of the departure node is redundant
I Context determines station id

Let all patterns share a common root
I Joint DAG resolves redundancy between all DAGs
I Station id is assigned at query time
I Other techniques can be applied on top of that

A C D

G

F

TargetMap(A)
G : G
F : F

B C D E
TargetMap(B)

E : E
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Results
Compact Representation

I Computed transfer patterns for Hawaii, Detroit, Toronto, NYC
I Measure size of 4 representations
I Example: Toronto at 1000m walking distance (162M patterns,

5.8 patterns per destination in average) 1

Toronto@1000m: 162.0M, 5.8
# internal nodes 24.2M 20.6M 3.2M 3.0M
# destination nodes 27.9M 11.7M 27.9M 7.2M
# arcs 186.2M 110.0M 165.2M 78.3M
Memory size (Byte) 1.6G 1.1G 1.3G 659.8M
Byte/pattern 9.8 6.5 7.8 4.1

TP TPc jDAG jDAGc

1TPc : techniques 1 + 2, jDAG : technique 3, jDAGc : 1 + 2 + 3
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Results
Compact Representation

Evaluation (general)
I Removing equal suffixes saves 10–20% internal nodes
I Merging destination nodes removes 50–80% nodes and a lot of

arcs
I Joint DAG shrinks the internal structures by factor ∼8
I Approaches combine very well
I Destination maps become dominant part of the data
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Transfer Pattern Routing

Compact Representation of Transfer Patterns

Robustness of Transfer Patterns
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Motivation
Transfer patterns vs. real-time updates

Time-consuming precomputation
I Computation of transfer patterns in O(N2)

I Heuristics: important stations, limits
I Still very long

Realistic applications
I Frequent updates: delay

I Traffic jam, strike, cow on the track, ...
I Can the patterns still guarantee optimal responses?
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Delay model
Scenarios

I Delay fixed percentage of trips
I Random, exponentially distributed offset
I After random insertion stop

Scenario Share of trips and average delay

Low 25% : 5 min
Medium 25% : 15 min
High 25% : 50 min
Switzerland 10% : 5 min, 3% : 15 min, 1% : 50 min
Germany 20% : 5 min, 10% : 15 min, 5% : 50 min
India 40% : 5 min, 40% : 15 min, 20% : 50 min
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Experimental setup
I Compute transfer patterns
I Update network
I Answer random location queries

I Original transfer pattern, updated direct connection data
I Dijkstra on updated network

I Compare and classify responses

Class Difference d to optimal path costs c∗

optimal d = 0
almost optimal a d ≤ 5min ∧ d

c∗ ≤ 5%
almost optimal b d ≤ 10min ∧ d

c∗ ≤ 10%
failing otherwise
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Results
Robustness

Example: 50,000 successful queries on Toronto
I Classification of responses

optimal almost a almost b failing

Null 99.98% 0.00% 0.00% 0.00%
Low 99.73% 0.12% 0.04% 0.08%
Medium 99.59% 0.20% 0.06% 0.13%
High 99.49% 0.27% 0.07% 0.16%
Switzerland 99.82% 0.09% 0.02% 0.05%
Germany 99.54% 0.22% 0.06% 0.16%
India 97.85% 1.12% 0.31% 0.70%
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Results
Robustness

I Suboptimal responses: time of travel

0.0 0.2 0.4 0.6 0.8 1.0
Relative offset to optimal travel time

NULL

LOW
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HIGH

SWITZERLAND

GERMANY

INDIA
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Results
Robustness

Evaluation (general)
I Never more than 5% suboptimal queries
I Majority of suboptimal responses is almost optimal
I Even under worst scenario india
I But: A few critical outliers
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Summary
Compact Representation

Contribution
I Understanding sources of redundancy
I Several techniques reducing data size, maintain accessibility
I Store twice as many patterns in the same memory

Future work
I Dominant destination maps

I Joint destination maps
I Invest in hub selection strategies

I Space-efficient implementation
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Summary
Robustness

Contribution
I Indication for robustness
I Even for extreme scenarios
I Quality guarantee for transfer pattern routing

Future work
I Acquire and test with real data
I Dependency from precomputation parameters
I How to improve robustness?
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