# SEMANTIC SEARCH WITH KEYWORD QUERIES

Master's Thesis

Eugen Sawin

Chair of Algorithms and Data Structures University of Freiburg

# Full-Text Search

User Query

Films directed by Stanley Kubrick

### FULL-TEXT SEARCH

#### **User Query**

Films directed by Stanley Kubrick

#### Results

- Stanley Kubrick IMDb www.imdb.com/name/nm0000040/
- Stanley Kubrick Wikipedia en.wikipedia.org/wiki/Stanley\_Kubrick
- ➤ Stanley Kubrick, Film Director Dies at 70 www.nytimes.com/.../movies/stanley-kubrick...

#### **User Query**

Films directed by Stanley Kubrick

#### Results

- Stanley Kubrick IMDb www.imdb.com/name/nm0000040/
- Stanley Kubrick Wikipedia en.wikipedia.org/wiki/Stanley\_Kubrick
- ► Stanley Kubrick, Film Director Dies at 70 www.nytimes.com/.../movies/stanley-kubrick...

We asked for films - got documents

User Querv

Films directed by Stanley Kubrick

#### **User Query**

Films directed by Stanley Kubrick

#### Results

- ▶ A Clockwork Orange
- ► 2001: A Space Odyssey
- ► Dr. Strangelove or How I Learned...

#### **User Query**

Films directed by Stanley Kubrick

#### Results

- ▶ A Clockwork Orange
- ▶ 2001: A Space Odyssey
- ► Dr. Strangelove or How I Learned...

We asked for films - got film entities

### WHY SEMANTIC SEARCH?

- ► Over 40% of web searches are entity searches
- ► Focused results save time
- Suitable for machine consumption and voice output
- ► (Finds results where document retrieval fails)

MOTIVATION

#### WHY SEMANTIC SEARCH?

- ► Over 40% of web searches are entity searches
- ► Focused results save time
- ► Suitable for machine consumption and voice output
- (Finds results where document retrieval fails)

**Evolution of intelligent search** 

# WHY KEYWORD QUERIES?

#### Why keyword queries?

- ► Simple interface
- ▶ No expert knowledge required
  - Query languages
  - System-imposed limitations
- Effective for both text and voice input
- Users don't need to adapt

### WHY KEYWORD QUERIES?

- ▶ Simple interface
- ▶ No expert knowledge required
  - Query languages
  - System-imposed limitations
- Effective for both text and voice input
- Users don't need to adapt

Semantic search for human beings

## TWO-PHASE APPROACH



# ENTITY RETRIEVAL PHASE



# QUERY ANALYSIS



## **DOCUMENT RETRIEVAL**



# **DOCUMENT SEGMENTATION**



# **ENTITY EXTRACTION**



# **ENTITY RANKING**



# ENTITY FILTERING



### DEEP SEARCH PHASE



# Type Inference



# SEMANTIC QUERY CONSTRUCTION







## ENTITY RETRIEVAL

#### STRICT MATCHING RESULTS

| ont | Filter<br>qsim | ctype | <b>R</b><br>(%) | <i>P</i><br>(%) | <b>R@S</b><br>(%) | <b>P@S</b> (%) | <b>F@S</b> (%) |
|-----|----------------|-------|-----------------|-----------------|-------------------|----------------|----------------|
|     |                |       | 62              | 3               | 17                | 16             | 14             |
| •   |                |       | 54              | 6               | 19                | 27             | 20             |
|     | •              |       | 61              | 3               | 36                | 32             | 30             |
|     |                | •     | 51              | 5               | 14                | 16             | 13             |
| •   | •              |       | 53              | 6               | 32                | 43             | 32             |
| •   |                | •     | 42              | 7               | 15                | 23             | 16             |
|     | •              | •     | 56              | 6               | 35                | 38             | 32             |
| •   | •              | •     | 48              | 8               | 30                | 44             | 31             |

Average results with ontology filter (ont), query similarity filter (qsim) and coarse type filter (ctype)



## ENTITY RETRIEVAL

#### APPROXIMATE MATCHING RESULTS

| ont | Filter<br>qsim | ctype | <b>R</b><br>(%) | <i>P</i><br>(%) | <b>R@S</b><br>(%) | <b>P@S</b> (%) | <b>F@S</b> (%) |
|-----|----------------|-------|-----------------|-----------------|-------------------|----------------|----------------|
|     |                |       | 88              | 4               | 28                | 30             | 24             |
| •   |                |       | 72              | 7               | 27                | 39             | 28             |
|     | •              |       | 87              | 4               | 49                | 49             | 43             |
|     |                | •     | 76              | 7               | 25                | 31             | 23             |
| •   | •              |       | 70              | 7               | 41                | 57             | 41             |
| •   |                | •     | 57              | 9               | 22                | 36             | 24             |
|     | •              | •     | 78              | 7               | 48                | 59             | 47             |
| •   | •              | •     | 63              | -11             | 39                | 61             | 41             |

Average results with ontology filter (ont), query similarity filter (qsim) and coarse type filter (ctype)

# **SELECTION OPTIMALITY**

| Matching Type | F@S <sub>opt</sub> (%) | <b>R@S</b><br>(%) | <b>P@S</b> (%) | <b>F@S</b><br>(%) | <b>Q</b> s<br>(%) |
|---------------|------------------------|-------------------|----------------|-------------------|-------------------|
| strict        | 45                     | 43                | 34             | 34                | 78                |
| approximate   | 65                     | 59                | 49             | 48                | 71                |

Selection quality compared to the optimal selection  $\mathcal{S}_{opt}$ 



### Two-Phase Approach Results

| Phase | Matching Type | <b>R</b><br>(%) | <i>P</i><br>(%) | P@R<br>(%) | <b>R@S</b><br>(%) | <b>P@S</b> (%) | <b>F@S</b><br>(%) |
|-------|---------------|-----------------|-----------------|------------|-------------------|----------------|-------------------|
| ER    | strict        | 56              | 6               | 38         | 33                | 38             | 31                |
| ER    | approximate   | 78              | 7               | 56         | 47                | 60             | 46                |
| DS    | strict        | 44              | 9               | 24         | 20                | 22             | 19                |
| DS    | approximate   | 54              | 12              | 31         | 27                | 31             | 25                |

Overall results for both phases.

#### Conclusion

- ► Competitve results in entity retrieval phase
  - Simple and effective filtering
  - Near-optimal selection method
  - High noise in entity extraction
- Unsatisfactory deep search results
  - Unreliable semantic type detection
  - Ignored relation between entities

#### FUTURE WORK

- ► Further optimize results in entity retrieval phase
  - Add document segmentation
  - Increase number of retrieved documents
  - More robust named entity extraction
  - ► Enable entity linking
- Improve semantic query construction
  - ► Semantic type classification based on Freebase
  - Rule-based semantic type detection
    - $\blacktriangleright \ \ \text{"Who"} \to \text{person}$
    - ightharpoonup "Where" ightarrow location

### FUTURE WORK

- ► Further optimize results in entity retrieval phase
  - Add document segmentation
  - Increase number of retrieved documents
  - More robust named entity extraction
  - ► Enable entity linking
- Improve semantic query construction
  - ► Semantic type classification based on Freebase
  - Rule-based semantic type detection
    - "Who" → person
    - ightharpoonup "Where" ightarrow location

Leverage existing semantic search framework

### **PYTHIA**

#### SEMANTIC SEARCH ORACLE

#### Quote

"For all the things we have to learn before we can do them, we learn by doing them." Aristotle

#### Repository

github.com/eamsen/pythia

## **ENTITY RANKING**

OVERALL

#### Formulo

$$\begin{aligned} \textit{score}(e) &= \sum_{s \in \textit{Subscores}} \frac{\textit{W}_s \cdot \textit{s}(e)}{\textit{s}_{\textit{max}}} & \textit{s}_{\textit{max}} = \max_{\textit{n} \in \textit{E}} \textit{s}(\textit{n}) \\ & \textit{Subscores} = \{\textit{s}_{\textit{C}}, \textit{s}_{\textit{H}}, \textit{s}_{\textit{CD}}, \textit{s}_{\textit{HD}}\} \end{aligned}$$

#### Description

- ▶ **w**<sub>s</sub>: weighting parameter
- ► s<sub>C</sub>: document entity freq.
- $\blacktriangleright$   $s_H$ : snippet entity freq.

- ► *s<sub>CD</sub>*: documents freq.
- ► SHD: snippets freq.

### **ENTITY RANKING**

**SUBSCORES** 

#### Formula

$$s(e) = |\textit{Occurs}(e)| \text{ for } s \in \{s_{\textit{CD}}, s_{\textit{HD}}\}$$

$$s(e) = \sum_{\langle \textit{freq}, \textit{rank} \rangle \in \textit{Occurs}(e)} \frac{w_{\textit{rank}} \cdot \textit{freq}}{\log(\textit{cf}(e) + \textit{cf}_{\textit{base}})} \text{ for } s \in \{s_{\textit{C}}, s_{\textit{H}}\}$$

#### Description

- ▶ W<sub>rank</sub>: weighting constants
- cf: corpus entity freq. (popularity)
- ightharpoonup cf<sub>base</sub>: in range  $[1,\infty)$
- $\triangleright$   $\lambda$ : dampening parameter

$$W_{rank} = 1 - \frac{rank}{1 + \lambda \cdot rank_{max}}$$

### Answer Selection

#### MOVING AVERAGE PIVOT

#### Formula

$$E_s = \{e \in E_c \mid e_s \ge \delta\}$$
  $\delta = S_{avg} + (2\gamma - 1)(S_{max} - S_{avg})$ 

#### Description

► E<sub>s</sub>: selection set

► Ec: candidate set

► es: entity score

 $\triangleright$   $\delta$ : score threshold

$$S_{avg_r} = \alpha \cdot e_{r-1_s} + (1 - \alpha) \cdot S_{avg_{r-1}} \text{ with } S_{avg_1} = e_{1_s}$$

 $ightharpoonup \gamma$ : in range [0, 1]

 MOTIVATION
 TWO-PHASE APPROACH
 RESULTS
 Misc

 0000
 000000000000
 000000
 000000

## Answer Selection

**EXAMPLE** 



Query "inventor of the python programming language": moving average score  $S_{avg}\approx 19$ , extrema  $S_{min}=3$  and  $S_{max}=83$ , with  $\gamma=0.65$  we get the threshold  $\delta\approx 38$ .

# WHAT IS A NAMED ENTITY?

#### Example

Milky Way, Mars, Alan Turing, you

#### **Properties**

- ▶ Name
- ▶ Туре
- Distinct identity

# TREC ENTITY TRACK: RELATED ENTITY FINDING

```
Query
<query>
  <entity_name>Daft Punk</entity_name>
  <entity_url>daftpunk.com</entity_url>
  <target_entity>organisation</target_entity>
  <narrative>
  What recording companies sell Daft Punk songs?
  </narrative>
</query>
```

#### **Answer Records**

virginrecords.com 1 0.98 .../wiki/Daft\_Punk somarecords.com 2 0.97 .../wiki/Daft\_Punk disney.go.com/music 3 0.89 .../wiki/Daft\_Punk

# CONNECTION TO QUESTION ANSWERING

|                         | Question Answering | Entity Retrieval           |
|-------------------------|--------------------|----------------------------|
| Emphasis<br>Result type | -1 /               | entity ranking<br>entities |
| in most cases           | factoids contain   | entities                   |