Semantic Search with Keyword Queries

MASTER’S THESIS
BY
EUGEN SawIN

ADVISOR
ProF. DR. HANNAH BAST
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF FREIBURG
79110 FREIBURG, GERMANY
FEBRUARY 2014

© 2013-2014 EUGEN SAWIN
ArL R1IGHTS RESERVED.

Acknowledgments

I FEEL VERY FORTUNATE FOR THE FREEDOM that I was granted during the years of my stud-
ies. The freedom to follow my passion and choose the topics of my interest and the freedom
to develop and apply my method of working with such great support. I thank Hannah Bast,
who inspired and powered my work on this thesis, Bjorn Buchhold and Elmar HaufSmann
for their general assistance and Mirko Brodesser for his critical proof reading of this text. My
special thanks go to my family and to Sam for enduring me in this time of excessive freedom.

6

Contents

INTRODUCTION

1.1 Motivation e e e
1.2 Contribution e
1.3 ThesisStructure e
RELATED WORK

2.1 Entity RetrievalontheWeb
2.2 UserQuerylnterfaces.
FOUNDATIONS

3.0 Full TextSearch
3.2 Natural Language Processing

SEMANTIC SEARCH WITH KEYWORDS

4.1 Two-PhaseApproach
4.2 UserExperience,
43 QueryAnalysis L
4.4 FullTextSearch
4.5 EntityExtraction 0 o 000,
4.6 EntityRanking o o o oL
4.7 Answer EntitiesSelection o
4.8 SemanticAnswerType
4.9 Entity Filtering & Clustering
4.10 Semantic Query Construction
IMPLEMENTATION

5.1 System Architecture Lo Lo o L
s2 UserlInterface
5.3 Full TextSearch
5.4 EntityExtraction 00 L.
s.5 EntityFiltering o o o
5.6 SemanticSearch
EvaruaTioNn

6.1 GroundTruth

0 J LN W

14
14
17

20
21
22
24
25
26
28
30
31
33
34

35
35
37
39
42
42
43

44

6.2
6.3

6.4
6.5

Performance Measures i it i e e e e
EntityRetrieval L o o
Answer Entities Selection
DeepSearch. o

7 DISCUSSION

7.1 Conclusion

72 FutureWork e
A APPENDICES

A.1 Yahoo Semantic Search Queries

A2 CombinedSearchResults.

A.3 Moving Average Pivot Selection Optimality
REFERENCES

$S
55
56

58
58
60
63

66

Semantic Search with Keyword Queries

ABSTRACT

We present a semantic search concept, which effectively combines the simplicity of keyword-
based search with the sophistication of semantic results. Our bootstrapping process is de-
signed to utilize the efficiency and precision of full-text search to provide reliable interme-
diate results during the retrieval phase. In the second phase, we perform a deep semantic
search, based on the previous results for their refinement. The introduced methods include
lexical query analysis, ranking and answer selection algorithms and a variety of filtering so-
lutions. We argue that a simple query interface based on keywords is essential to unlock the
potential of semantic search technologies and make them accessible for a greater audience.
Finally, we provide Pythia — an open source implementation of the two-phase approach -

to support further practical research on this topic.

Semantic Search with Keyword Queries

Z USAMMENFASSUNG

Wir prisentieren ein Konzept zur semantischen Suche, das die Bedienungsfreundlichkeit
von Schliisselwort-basierter Suche mit der Prazision semantischer Resultate vereint. Das
entwickelte Zweiphasenverfahren profitiert im ersten Schritt von der Effektivitit der Voll-
textsuche um verlissliche Zwischenresultate zu generieren. Basierend auf den Ergebnissen
der ersten Phase, wird als nichstes eine semantische Suche durchgefiihrt, deren Resultate
zur Verfeinerung des Gesamtergebnisses beitragen. Die vorgestellten Methoden umfassen
eine Query-Analyse, ein Ranking-Verfahren und eine Auswahl von Verfeinerungstechniken
zur Verbesserung der Ergebnisse. Zur Evaluation der Methode wird die Suchmaschine Pythia

entwickelt und zur weiterfithrenden Forschung zur Verfiigung gestellt.

Ifyou don’t know where you are going,

any road will get you there.

Lewis Carroll

Introduction

THIS THESIS PORTRAYS THE CREATION OF PYTHIA — an experimental engine for seman-
tic search with keyword queries. In section 1.1 we show our motivation for combining
keyword-based queries with semantic search, give an overview over the main contributions
of this work in section 1.2 and conclude this chapter with a structure outline of this paper in

section 1.3.

1.1 MOTIVATION

THE DAWN OF THE WORLD WIDE WEB HAS CREATED A NEW WORLD of information un-
precedented in growth and variety. However, its distributed nature does not support con-
tent discovery. Web search providers have established the de-facto centralized access to the
Web, enabling exploration and research using simple keyword queries. The full-text web
search engines have reached a high level of maturity in the 2000s and find relevant results
with high precision and efficiency. Moreover, they have become an integral part of our lives
and habits. With ubiquitous access through mobile devices, web search has even started to
transform our memory functions and the way we think [7]. What web search engines have

not managed to date, is to actually answer the questions we ask. Let us clarify this.

MORE THAN 40% OF ALL CONDUCTED WEB SEARCHES ARE ENTITY SEARCHES. We search for
names, products or locations, yet what we get are HTMLs, PDFs or worse. When we search
for “books written by lewis carroll”, we want to know the book titles of the published work by
Charles Lutwidge Dodgson, including his popular “Alice’s Adventures in Wonderland”, the se-
quel “Through the Looking-Glass” and “The Hunting of the Snark”. Using the query on a full-
text search engine returns a ranked list of document links, which may, or may not contain the
actual book titles we are looking for, since the documents are only guaranteed to contain the
words “books”, “written”, “Lewis” and" “Carroll” - this is called the document-centric approach.
On the other hand, a semantic search engine attempts to answer the query by consulting its
knowledge base to find all entities of type book, which stand in the relation of being written
by Lewis Carroll (Fig. 1.1.1), which, we argue, should be the natural way of answering such

a query and is called the entity-centric approach.

Figure 1.1.1: Query graph for “books written by Lewis Carroll”

A more complex example query is “female computer science professors in Germany”. Profes-
sors rarely specify their gender in the job description, so matching the word “female” in rele-
vant documents is problematic. Our only hope is for someone to compile a list of all female
computer science professors in Germany and to name it accordingly. Obviously such a so-
lution doesn’t scale well. This is where a good semantic search engine can shine, as long as
its knowledge base contains the person entities in question and all required relations. Fig-
ure 1.1.2 shows an example graph representation of the query, the specific form depends on

the types of entities and relations that are contained in the ontology.

Semantic queries can be complex, but the complexity is required to utilize the full potential
of the underlying ontology. The developers of semantic search engines do their best at hid-
ing the query complexity or they guide the user to the correct query by visual schemes or
auto-completion. However, commercial search engine providers do not adopt such com-

plex queries mechanics for a good reason: forcing user adaption is a bad business practice.

Our work in this thesis contributes to the research of providing the best of both worlds —

'Depending on the search engine, partial matches can also be supported

professor computer scientist female

Figure 1.1.2: Query graph for “female computer science professors in Germany”

the accessibility of keyword-based queries and the sophistication of semantic search. In our
bootstrapping approach, we first perform an inexact web search using keywords to extract
candidate answer entities — we call it the entity retrieval phase. Next, we use these intermedi-
ate results to construct a structured query. In the second phase, we use the structured query
on a semantic search engine to retrieve the semantically sound results — this is called the deep

search phase.

1.2 CONTRIBUTION

SEMANTIC SEARCH PROVIDES ACCESS TO THE HUMAN KNOWLEDGE in a rigorous way. For
semantic search to work, the knowledge base is translated from natural language to a for-
mal model. Accessing information on that model requires formal query languages, which

effectively means that we lose the ability to use natural language to interface with the data.

The success of a technology depends highly on the ratio between the value it provides and
the efficiency of its interface. Semantic search provides great value, but requires streamlining

of its interface to be adopted by a wider range of audience.

‘We would like for semantic search to succeed and to make it available to a wider audience
by removing the obstacle of a complex and inconvenient interface. With this thesis, we con-

tribute to the research in providing an easy-to-use interface for semantic search, including:
1. Quantitative entity retrieval based on full-text search and semantic processing
2. Rule-based lexical answer type detection
3. Quantitative semantic answer type inference
4. Rule-based translation of keyword queries to semantic queries

5. Open source experimental search engine

For this, we analyse the parts that make keyword-based semantic search possible, provide
solution and verify them using our search engine Pythia. The source code of Pythia and all
auxiliary materials are available online? under the GNU General Public License to allow for
for a frictionless reconstruction of the conducted experiments and the continuation of this

research.

1.3 THESIS STRUCTURE

‘We have structured the thesis as follows.

Chapter 1: Introduction is what you are reading now. Here we show our motivation, enu-

merate our contributions and describe the thesis structure.

Chapter 2: Related Work reaches out into the research community and compares related

work.

Chapter 3: Foundations establishes the theoretical framework and gives an overview of the

utilized techniques.

Chapter 4: Semantic Search with Keywords is the main chapter describing the proposed

methods to enable keyword-based queries for semantic search.
Chapter s: Implementation describes critical details of our experimental search engine Pythia.

Chapter 6: Evaluation provides an in-depth performance analysis of our approach using

Pythia and narrows down sources of errors for future research.

Chapter 7: Discussion addresses the results and proposes ideas for future work.

*https://github.com/eamsen/pythia

https://github.com/eamsen/pythia

“But I don’t want to go among mad people”, said Alice.
“Oh, you can’t help that” said the cat. “We're all mad here”.

Lewis Carroll

Related Work

For the discussion of related work, we compare the two phases of our approach separately —
the entity retrieval phase and the deep search phase. For the first phase, we analyse comparable
systems and their performance in section 2.1. The second phase is the construction of the
semantic query followed by a deep semantic search. Since our approach is unique in this regard,
we provide a more general discussion of alternative attempts to achieve the same goal in

section 2.2 — that is to provide an easy-to-use interface for semantic search.

2.1 ENTITY RETRIEVAL ON THE WEB

In the first phase of our approach, we search the web for relevant documents to leverage the
quality of full-text search to support the analysis and translation of the query in the next
phase. The intermediate results are the ranked semantic entities extracted from the docu-
ments. There is a variety of comparable systems from different conference tracks, which
aim to provide entity search on the web. We decided that the TREC 2010 Entity Track pro-
vides the most complete results and only minor deviant restrictions compared to our setting.

From this track, the Related Entity Finding Task is what essentially resembles the goal of this

thesis, but we explain the differences to our approach and constraints in 2.1.2. First, we give
a brief overview of the Related Entity Finding Task from the Entity Track, followed by an

analysis of some of the presented systems.

2.1.1 RELATED ENTITY FINDING TASK

The goal in the task is to automatically find all answer entities for each given query and identify

them uniquely with the entities’ homepages.
Here is an example query:

<query>
<entity name>David Bowie</entity name>
<entity url>davidbowie.com</entity url>
<target_ entity>organisation</target_ entity>
<narrative>
What record labels sell David Bowie recordings?
</narrative >

</query>

The query contains an entity name with its identifying URL, the answer entity type and the
narrative, which describes the relation between the requested entities and the given one.

The expected result is a ranked list of entity names and their homepages.

2.1.2 GENERAL METHOD

The most successful systems used similar approaches. The common methods are as follows.
1. Construct a keyword-based query from the given narrative.
2. Use the query on a web search engine to collect relevant documents.
3. Parse the documents using NLP tools to retrieve named entities.

4. Rank the retrieved entities using a linear combination of scores collected during the

previous steps.
5. Use web search again to find the entity homepages.

Steps 1-4 describe the outline of our approach, too, which makes the comparison to those
systems interesting. What are they doing differently? Which enhancements are effective?

What distinguishes the best systems from the others?

10

TO OUR DISAPPOINTMENT, step § — which results from the task’s requirement for returning
homepages owned by the entities, not just entity names — prohibits any direct comparisons be-
tween our evaluation results and the top performers of the track. And we note that the query
does provide additional context for the search with the explicit entity name and resolved an-
swer entity type. In comparison, our research is concerned with the task of performing the

search only on the narrative and without additional hints.

2.1.3 TOP-PERFORMING SYSTEMS

The top-performing system BIT [11] of the track yields a heavy-weight offline search to find
the most relevant documents during step 2. For this, they scan all documents for naviga-
tional menus, which are expected to be encoded in HTML lists or tables. They extract the
hierarchical site maps from the identified menus and use that to enrich the link anchor texts.
The Indri search engine relies heavily on link anchor texts for the assessment of a document’s
relevance and they use this fact to boost the performance during the document retrieval
phase. Their precision results are around 30%, which is promising compared to other sys-
tems. However, they have missed to provide evidence on the positive effects of the anchor
text enrichment. The good precision could be a result of other aspects of the process. We
conjecture that the local search on the ClueWebog' - a snapshot of a subset of the English
web — using Indri could have made all the difference to the competing systems, which used

filtered web search results instead.

The second best system of the track was FDWIM [10], with only slightly worse results than
BIT. Its straight-forward approach follows the scheme we have outlined, using Google for
web search and Stanford NER for the extraction of named entities. Their experiments have
revealed that deeper analysis of certain pages — like the Wikipedia page of the given entity
— can be beneficial. Furthermore they conclude that most errors are connected to inaccura-
cies of the NLP tools and propose to explore methods to reduce the strong dependence on

natural language processing in general.

2.1.4 SUMMARY

Entity Retrieval is a hot topic in research and there are some first promising results. How-
ever, the conference tracks are still young and require some iterations to become practically

relevant and to establish a realistic and consistent environment for a fruitful competition.

'http://lemurproject.org/cluewebog

11

http://lemurproject.org/clueweb09

The approach used by the more successful systems in this track essentially resembles the first
phase or our method. We think that some of the proposed optimizations could improve the
performance of our method for the entity retrieval phase. However, most improvements are
based on structural or lexical assumptions, which could decrease the generality and robust-

ness when confronted with unformatted input or non-English corpora.

2.2 USER QUERY INTERFACES

There is a variety of ways to provide user interfaces for semantic search engines. We evaluate
some interface types for their usability, expressive power and robustness regarding malformed

user input.

2.2.1 NATURAL LANGUAGE QUERIES

Taking the first example from the introduction, a possible natural language query would be
“Which books did Lewis Carroll write?”

The queryis easy to read and the machine has enough context when applying natural language
processing to extract semantics. With natural language we can compose questions of arbitrary
complexity with no limit on expressiveness. However, queries in natural language are verbose
to write and the result precision relies heavily on the quality of the natural language processing
tools. The AquaLog system [6] fails in 69% of the test cases to translate the question into a

proper semantic query because of the inexact natural language processing.

2.2.2 KEYWORD-BASED QUERIES

Finally, let’s look at engines accepting keyword queries and how they differ from our imple-
mentation. Understanding keyword queries is hard. We are particularly interested in robust

semantic keyword interpretation without drawbacks on usability.

SemSearch [5] translates user queries to formal queries using syntax-based mapping of key-
words to classes, instances and properties of the underlying ontology. It does not apply nat-
ural language processing or quantitative methods to gain robustness in the translation. As a
consequence it requires a custom query format, which exposes the result type and limits the
query to a conjunction or disjunction of keywords to be associated with the result entity.

The mapping of keywords to semantic items leads to a combinatorial explosion when more

12

than two keywords are provided. To cope with the exponential growth of the number of
semantic mappings, they apply a heuristic-based selection to choose one viable mapping.
Even though we consider the custom query format to be lightweight and easy to learn, it still
forces the user to adapt to an unnatural way of posing questions and limits the expressiveness
of the queries. We also think that the mapping selection heuristic is critical to the success of

the method, but at the same time is difficult to optimize and evaluate.

XXploreKnow! [9] is similar to SemSearch as it attempts to map the query keywords to se-
mantic items of the knowledge base in the first step. Additionally, starting from the identified
entities and classes, the knowledge base is explored to infer the relations between the identi-
fied items. The explored ontology relations are finally mapped to semantic queries to initiate
the search procedure. Just like in [5], the approach suffers from the fast growth of possible
combinations for the keyword mapping, their solution is to let the user interactively refine
the query. Since the details of their evaluation are not exposed in [9], it is unclear how to rate

the reported precision values of 69% for fully automated and 85% for user-refined search.

IN SUMMARY, related keyword-based systems apply rule-based semantic mapping, resulting
in high precision variation due to the dependence on full ontology support and complex
and therefore error prone mapping mechanics. We see such an approach critical in regards

to practicality and robustness.

13

In the beginning there was nothing, which exploded.

Terry Pratchett

Foundations

SEMANTIC SEARCH IS A HUGE AND DIVERSE DOMAIN. This chapter provides a brief overview
of the foundations of full-text search in 3.1 and natural language processing in 3.2. Pythia is
the experimental semantic search engine we built to test the proposed methods within this
thesis. It makes use of existing tools and APIs for full-text search, natural language processing
and finally interacts with a semantic search engine. It is important to understand the basic
mechanics of these tools and especially to know their performance complexities to validate

the practicality of the proposed methods.

3.1 FULL-TEXT SEARCH

WEB SEARCH IS A SOLVED PROBLEM. It’s a bold statement, butit’s backed up by high-precision
results on indices of 50 billion pages in sub-second time frames, as provided by commercial

web search engines.

During the first phase, Pythia depends on the result quality of full-text search. To guarantee
the practicality of this approach, we need to research the efficiency and measures to increase

the precision of full-text search. The industry has developed techniques and architectures

14

to battle the exponential growth of the Web. Let us examine the basic principles these tech-

niques build on.

3.1.1 INVERTED INDEX

Assume a huge collection of text documents. Each document may be encoded as an index

of words, see example tables 3.1.1-3.1.3.

index 1 2 3 4 index 1 2 3 4
word I am the walrus word I am the walrus
Table 3.1.1: A: “/ am the walrus” Table 3.1.2: B: “/ am the egg man”
index 1 2 3 4 5 index 1 2 3
word They are the egg men document A B C
Table 3.1.3: C: “They are the egg men” Table 3.1.4: Index for A, B and C

The documents can be made accessible by the document index, see table 3.1.4. Thisis essen-
tially how documents and a folder of documents can be represented. It allows for efficient
access by document and word index, but it is considerably slow to search for documents

containing a speciﬁc word.

More precisely, matching a word in the whole index accumulates to a time complexity of

O(n), where n stands for the total number of characters in all documents combined.

Back to our example, with an index holding so billion pages, an average web page size of 170
KB and a scanning speed of 1 GB per second, it would take over 93 days to search through

all documents for one word.

A more practical solution is the inverted index. The idea is to provide efficient access by key-
words instead, see table 3.1.5. For example, to find all relevant documents for the keyword
“egg”, we just need to look up the document list for that word — all relevant documents for
the keywords “egg” and “man” can be computed by the intersection of the two lists, in our

example itis {B, C} N {B} = {B}, just as expected.

keyword i am the walrus egg man they are men

documents {A,B} {AB} {ABC} {A} {BC} {B} {C} {C} {C}

Table 3.1.5: Inverted index example

1§

The inverted index allows for constant time access for single keyword queries. For multiple
keywords we need to intersect the lists — with sorted lists this yields a time complexity of
O(klog n), where k is the combined number of elements in all lists and n the number ofists.
The keyword-based lookup can be implemented using a hash table with amortized constant
time access. It should be also noted that both words and documents would be addressed

using integer ids, not their original strings, for improved time and memory efficiency.

3.1.2 DOCUMENT RANKING

The inverted index allows us to efficiently find all relevant documents, but the result could
contain thousands or millions of documents. To make the results useful for the user, we

need a finer notion of relevance. Here are some examples of existing ranking formulae.

BINARY

This most basic form ranks all documents containing the keywords equally.

TeErRM FREQUENCY

The document rank depends only on the frequency of the keywords ¢fin the document. This

is a good base score, which is used in most ranking approaches with some refinement.

TF-IDF

Answering queries with multiple keywords based only on term frequency will skew the re-
sults towards documents containing the most dominant keywords, like “the” or common
verbs. To suppress the relative document frequency of a keyword, we produce the tf.idf score

by multiplying the term frequency with the inverse document frequency:
tfidf = tf - log
adf = tf - log —

where tfis the term frequency, is the total number of documents and df is the number of

documents containing the keyword.

16

BM2g

A refinement of the TF-IDF formula is the BM25, which is known for outperforming other
derived versions in general. For the BM2gs, we replace the plain term frequency with the
parametrized expression tf*. The parameters b and k can be used for fine tuning, for example,
we could emulate TE-IDF by setting b = o and k = oo. The default BM25 setting is
b =o0.75and k = 1.75.

tflk +1)
k(1—b+b- L)+ tf

bmzszﬁ*~logd%[with tf" =

where tfis the term frequency, n is the total number of documents, df is the number of docu-
ments containing the keyword, dl is the document length and avdl is the average document

length.

3.2 NATURAL LANGUAGE PROCESSING

NATURAL LANGUAGE IS AMBIGUOUS, which makes it difficult to build deterministic ma-
chines to process it in a reliable way. For some limited tasks, rule-based systems produce
good enough results efficiently. However, such systems are typically tied very close to a
specific language and depend on properly formed complete sentences. Statistical methods
on the other hand, show robust behaviour for different languages and generally outperform

rule-based systems in precision.

To move from the bag-of-words processing of full-text search to semantic reasoning, we need
methods to connect words to meaningful questions. As a base, that means we need to iden-
tify the parts of speech: nouns, verbs or adjectives. Next, we need to understand higher level
fragments of sentences: subjects, objects and predicates. Additionally, we are interested in

locating named entities: names of locations, products and people.

In our use case, user queries may be short phrases or only a collection of keywords. Proba-
bilistic methods allow us to identify the parts of speech even when only keywords are pro-
vided. This is important, because our query analysis (4.3) is based on the part of speech

tags.

17

3.2.1 PART OF SPEECH

The foundation of our semantic query and document analysis are the part of speech (POS)
tags. POS-tagging classifies each word of a sentence into a category, such as noun, verb,

adjective or adverb. Let us examine the example sentence “The cat grinned when it saw Alice”.

word “The” ‘cat” “grinned” “when” “it” “Ssaw” “Alice”

POS determiner noun verb adverb personal pronoun verb proper noun

Throughout this text, we only show the basic version of the part of speech tags for clarity.
Most tagger systems produce UPenn Tree Bank tags, which are more specific — in our ex-
ample, “grinned” and “saw” would be tagged as VBD (verb, past tense) and “when” as WRB
(wh-adverb). The example shows that POS-tagging is case sensitive: “The Cat” would be
tagged as a proper noun and depends on the context: “saw” can refer to an activity (verb) or

a tool (noun).

We claimed that natural language is inherently ambiguous, so let us look at an example for

this. The sentence
“flying planes can be dangerous”

could mean that either the act of flying planes is dangerous or that planes that are flying are
dangerous. It’s a classical example for syntactic ambiguity. In this case “flying” could be tagged

as a verb or adjective, both is considered to be correct.

Effective POS-tagging algorithms are based on rule-based or statistical methods. An early
success story was the rule-based the Brill tagger [2], however it was beaten in terms of pre-
cision by Stanford’s POS tagger [8] using a maximum entropy approach. A notable system
is SENNA [4], which produces competitive results at improved time efficiency utilizing an

artificial neural network.

3.2.2 NAMED ENTITY RECOGNITION

Named entities are specific persons, locations, organizations, products and everything that
has a unique identity. In the lexical context, a named entity is a proper noun classified into a

predefined category, further referred as its type.

In our case, semantic search is concerned with returning named entities. The process of

identifying named entities in text and annotating such with their type is called name entity

18

recognition (NER). For example, the named entity in the sentence
“Mars is named after the Roman god of war.”
is Mars, the fourth planet in our solar system. However, in the sentence
“Can you live on Mars?”

it could be the planet or the Mars chocolate bar. The Mars examples show that entities’
names are not unique and therefore not sufficient for their classification — in this case we have
one name for three types of entities: a planet, a god and a chocolate bar. Naturally, the name-
type combination of an entity does not identify it uniquely either — we can have millions of
persons named John Doe. But this is not an issue for NER — name ambiguity, however, is a
major problem for this task of identifying the correct answer entities in semantic search. We

address this again in chapter 4.

As with most natural language processing tasks, the main difference between the approaches
used is the reliance on human-crafted rules or on stochastic models. Systems achieve near-
perfect results in the detection of named entities using both approaches, with different trade
offs. The unresolved problem is the classification of the identified entities. There are mul-
tiple entity class hierarchies with different grades of granularities. To this date, no de-facto
standard has emerged for this, which makes it difficult to unify and compare results of dif-

ferent systems.

State-of-the-art named entity recognition systems like Stanfords’ NER achieve great results,
closing in on human performance. Again, the SENNA system shows a well balanced solu-

tion between precision, recall and performance.

19

When I use a word, it means just what I choose it to mean —

neither more nor less.

Lewis Carroll

Semantic Search with Keywords

TECHNOLOGY AMPLIFIES HUMAN ABILITIES. We don’t grow four legs to move faster — we
build cars. Web search providers learned that we have two dominant ways of asking ques-
tions — full phrases when using voice and keywords when typing. This behavior is analog to the
difference between the complex mechanics of walking and the simple control mechanisms
of driving. When driving, we tap the pedals to control acceleration and move the steering
wheel to control direction. It is an efficient way of signaling our intention in the same way

we use keywords to find relevant documents.

By our nature, we prefer to change our environment rather than having to adapt to it. Typing
long phrases is inconvenient, just like adapting to complex query schemes and user inter-
faces. Our goal in this thesis is to transfer the user experience of full-text search to semantic
search — to establish methods that understand a user query given only minimal context. We
want semantic search technology to adapt to our way of asking questions and that way pro-

vide a seamless transition from conventional full-text search.

The high-level components of a search engine are its user interface, knowledge base and answer
selection engine. The emphasis of this thesis is on the quality of the answer selection, with

the goal to enable a convenient keyword-based user interface. We are not concerned about

20

the specifics of the user interface besides the outlined principles in 4.2, or the data format of

the knowledge base.

When presenting our method, we strive to isolate the problems of query analysis, answer

entities selection and result refinement to find system-agnostic solutions.

IN THIS CHAPTER, we propose a method to enable keyword queries for semantic search by

combining full-text search results with semantic analysis.

4.1 'TwoO-PHASE APPROACH

In chapter 2 we discussed related systems with a qualitative approach to semantic search,
including query analysis. We find that a direct semantic translation of keywords to a formal
query is a difficult task to undertake and prone to errors. We refrain from using such bold

direct translations and propose a quantitative approach instead.

The two phases of our approach are entity retrieval and deep search, see figure 4.1.1 for an
overview. In the entity retrieval phase, we use traditional full-text search to find relevant
documents to the user query and retrieve relevant entities from these unstructured docu-
ments. The obtained results — such as the frequency of certain entities in the texts and their
types — give us a base for quantitative reasoning. The second phase begins with a seman-
tic analysis of first phase’s results. We infer the semantic answer type (SAT) based on type
frequency in the retrieved entities. Furthermore, we try to obtain the relation between the
requested answer entities and the given keywords. On successful semantic query construc-
tion, we use a semantic search engine to produce the final semantic answer entities, which
can be used as a replacement or base for verification of the intermediate answer entities from

the first phase.

By using this two-phase approach, we strive to gain more robustness in providing the right
answers by decreasing the dependence on the knowledge base and natural language process-
ing tools — which are both open research problems without perfectly practical solutions. At
its core, the entity retrieval phase is a quantitative replacement for the semantic query analy-
sis of related systems. The first phase is independent from the semantic knowledge base and
requires only named entity retrieval, and we foresee purely lexical replacement methods for

that, too.

21

Entity Retrieval Phase Deep Search Phase

Answer Entities

Type Inference

Full-Text Search <—m I'.

Relevant Documents BRRCELLEL s Query Construction

Semantic Query

Semantic Search

-
-

Post-Processing Answer Entities Semantic Answer Entities

Figure 4.1.1: Overview of the two-phase approach: entity retrieval on the left and the
deep search on the right, with shared intermediate results in the center

4.2 USER EXPERIENCE

The goal of semantic search is to answer queries with facts — in our case these facts are limited
to named entities. The user interfaces with the search engine via a text input field or using
voice. In both cases, the input consists of either keywords or whole phrases. The result
is a list of entities; see figure 4.2.1 for an example user interface scheme outline. A more
sophisticated result view could provide additional information like the type of the answer

entity, reference links and pictures, which helps the user to uniquely identify the entity.

4.2.1 USERINPUT

Our goal for the user experience regarding the type of input is to provide a convenient in-
terface adherent to the following principles:

1. Allow barrier-free user input

2. Allow incomplete and unstructured user queries

22

movies directed by stanley kubrick -

i A Clockwork Orange movie

i 2001: A Space Odyssey movie
Dr. Strangelove or How I Learned...
i The Shining movie

i Barry Lyndon movie

i Eyes Wide Shut movie

Figure 4.2.1: User interface example: query input field and search button at the top
and a result list containing entity name, its type and a link for additional information

3. Do not force user adaptation

By principle 1, we disregard all user input schemes which rely on interactive query refine-
ment. A user query should be submitted by typing into a text field without interference from
the system.

Principle 2 assures that any form of user input is allowed — whole questions, short phrases

and just keywords should be all supported in the best possible way.

The last principle assures that no hard restrictions of the query language are enforced and
no additional user input is required besides the naturally composed user query. We cannot
support queries of arbitrary complexity, as this requires strong artificial intelligence, but we

avoid restrictions of the query language by design and allow for easy extendability.

4.2.2 REsuLT OUuTPUT

The result output should reference the answer entities in a way to allow for their unique
identification. The deep search phase operates on the knowledge base, which is suitable for
unique entity identification — contrary to the entity retrieval phase, which is restricted to

quantitative methods on the lexical level.

Therefore, for the first phase, we introduce the loose concept of context-local identification.

The goal here is to produce intermediate result strings, which provide a reasonably clear

23

reference to the answer entities in the given query context. Practically, this means that the

string
“Jupiter”
is an acceptable answer for the queries
“Roman god of sky” and “largest planet”

without additional references.

4.3 QUERY ANALYSIS

Given the user query, the goal of the query analysis is to enrich and clean up the query. The
output of this phase are the keywords and the lexical answer type (LAT) of the query. A further
useful improvement would be to produce synonyms of the keywords and consider them

during the full-text search query construction.

First, we process the user query using part-of-speech (POS) tagging. The part-of-speech an-
notations are required to locate the nouns and important verbs in the query, which is used to
identify the lexical answer type and the relation between subject and object. For an explana-

tion of part-of-speech tagging, please revisit chapter 3.2.1.

4.3.1 KEYWORDS

Using part-of-speech tags, we can identify the important words — or keywords — in the user
query. We define keywords as all the nouns, adjectives, adverbs and non-trivial verbs of the
query. Trivial verbs like “is” and other word types are ignored. The keyword collection is the
basis for further query analysis, for the full-text search query and eventually for the entity

filtering. See table 4.3.1 for an example of part-of-speech-based keyword tagging.

word “books” “written” “by” “lewis” “carroll”
POS noun verb preposition propernoun proper noun
keyword yes yes no yes yes

Table 4.3.1: POS and keyword tags for the query “books written by lewis carroll”

Removing redundant words from the query is a way of reducing runtime complexity during
the filtering phase. It is also useful for the construction of the full-text search query, since

the number of keywords has an impact on the performance and result precision.

24

4.3.2 LExicAL ANSWER TYPE

The lexical answer type (LAT) is a single noun or noun phrase, which provides a hint for the
semantic answer type (SAT) of the query. We use simple heuristics to identify the LAT within
the query based on the provided part-of-speech tags. For example, the LAT for the query
“nicole kidman’s siblings” is “siblings” and itis “targets” for the query “first targets of the atomic bomb”

— depending on the ontology used, the SATs could be person and location respectively.

We apply a set of rules to identify the LAT robustly in a variation of queries. We have iden-
tified two ways of posing keyword and phrased queries:

1. [who/what/where/... <verb>] <LAT> <relation> <subject>
Example: “[which are the] books written by lewis carroll”

2. [who/what/where/... <verb>] <subject>’s <LAT>

"

Example: “lewis carroll’s books”

Both cases can be handled by examining the first noun. If the noun s in possessive form, then
case 2 holds and the LAT is expected to be the noun which follows next. Otherwise, the first
noun is the LAT. The example in table 4.3.2 demonstrates the rule-based LAT detection for

a query of case 1 and table 4.3.3 an example for case 2.

word ‘astronauts” “who” “landed” “on” “the” “moon”
POS noun pronoun verb preposition determiner (proper) noun
keyword LAT no yes no no yes

Table 4.3.2: LAT detection for a type 1 query

Ln

word “john” “lennon’s “parents”

POS propernoun possessive propernoun noun
keyword yes yes LAT

Table 4.3.3: LAT detection for a type 2 query

4.4 FULL-TEXT SEARCH

In this phase, we use the keywords from the first phase to construct a full-text search query.

Using the constructed search query, we use a full-text search engine to obtain the ranked

25

relevant documents.

We propose the inverted index for efficient query processing and a ranking based on BM25,
or similar; for details revisit chapter 3. The implementation of a full-text search engine is
out of scope of this thesis, but it should be noted that high-precision results in this phase are
critical for the quality of the final results of our approach.

4.4.1 QUERY CONSTRUCTION

Full-text search engines perform best when only the key terms are provided in the query.
However, redundant keywords generally do not harm the precision, if conditional keyword
elimination is supported — that means that relevant documents do not need to contain all
keywords necessarily. Additionally, popular terms do not have a negative effect on result

quality due to ranking relative to their document frequency.

We construct the full-text search query by including all identified keywords, as described in
4.3.1. If the search engine supports conditionals, we mark the lexical answer type to be un-
conditional, while all other keywords can be optimally removed, if the resulting documents
show more relevance without them. If the LAT is provided in plural form, we deduce its

singular version and include it as an alternative to the original term.
For example, the user query
“astronauts who landed on the moon”
would be translated to the full-text search query
“+(astronauts | astronaut) landed moon”

where the “+” denotes an unconditional keyword, which means that it must be included in all

returned documents and “|” is an or-conjunction between the two spelling versions.

4.5 ENTITY EXTRACTION

In the previous phase, we showed how to retrieve the syntactically relevant documents. The
next step is to extract the candidate entities from the documents using a named entity ex-

tractor and to count the frequency of occurrences of each entity in a given document.

Named entity extraction on large documents is time intensive. To reduce the load, we reduce
the amount of text of each document by preprocessing. For this, we strip all meta informa-

tion, which is contained in a HTML, including all HTML tags and their properties. The goal

26

of this preprocessing to reduce the text size without stripping away important context and

to do it in the most efficient way.

Regular expressions can be used to parse HTML files and locate tags and properties. How-
ever, this can be error prone for malformed HTML files or it amounts to a high complexity
in pattern matching to catch all corner cases, which is inefficient. We decided to go with a
much simpler approach by scanning for HTML tags beginning with unescaped “’<”” and

un_nn
>

stripping the tag out by finding the next . On uncertain conditions, we revert the text
removal, as to avoid destroying potential context for the natural language processing tools.

Also, we limit the parsing to the document’s body element.

4.5.1 TEXT SNIPPETS

A single document may cover multiple topics. When processing such a document, it is nec-
essary to identify relevant text passages to avoid the extraction of unrelated entities. This
can be handled by assigning a window around relevant keywords and only consider the text
within a set proximity to those. However, this can have a negative effect for large, in-depth
documents covering a specific topic; for example, like they are often found on Wikipedia.
Choosing the appropriate window size for each case is non-trivial and sub-optimal selec-

tion could degrade the final result quality.

An alternative approach is to include the proximity of the extracted entity to the next key-
word into the ranking of the entity. It enables a more fine-grained control over the entity

scores, but requires further tweaking to handle the different types of document contents.

Both approaches to avoid the promotion of irrelevant entities require a deep analysis to find
a parameter set that behaves robustly across the majority of documents. To our knowledge,
no suitable ground truth exists to support such parameter optimization and the construction
of such is out of scope of this thesis. Therefore, we have decided to process whole documents

with equally ranked entities across a document.

To counteract the inevitable influx or irrelevant entities, we use the short text snippets, as
they are provided by full-text search engines. The text snippets are processed as additional
documents inheriting the source document rank. This is a compromise between both ap-
proaches, but allows for more direct control and does not require complex parameter tweak-
ing. We acknowledge, that the existence of text snippets requires some form of contextual
preprocessing, which we would need to be reproduced when implementing the full-text

search instead of using a third-party provider.

27

4.6 ENTITY RANKING

The goal is to find the most relevant result entities and to achieve this, we need to rank the
candidate entities. The final score for each entity e from the given entity set E is a weighted

combination of the subscores and defined as:

score(e) = Z LM where s, = maxs(n)

Simax n€E

sE€Subscores

The Subscores is a set of scoring function used to control the contribution level of the differ-
ent occurrence types:

Subscores = {sc, su, Scp, SHD }

More specifically, s¢ rates the quantity and quality of the occurrences of an entity within
the documents’ contents and sy gives special significance to entities found in text snippets.
Additionally, we use the scp and sgp subscores to consider the number of documents and

text snippets the entity occurs in for increased confidence of low-frequency terms.

The subscore functions are trivially defined as the weighted linear combination of all occur-

rences:

s(e) = |Occurs(e)| fors € {scp,sup}

s(e) = Wrank " Jreq fors € {sc,su}

log(cf(e) + Cfbase)

=

(freq,rank) € Occurs(e)

The Occurs function returns the set of frequency-rank tuples for the given entity’s occurrences
within the documents. We use the w,,, weighting constants to give more significance to
top-ranked matches. The corpus entity frequency cfis required to yield the proper relevance
score for an entity given its general popularity. The cfj4 constant is in the range [1,00) and
can be used to weight the dependability of the acquired corpus frequencies. In general, the
weighting constants w; for each subscore and w4 for each individual document rank give

us fine-grained control over the scoring results and enables easy experimentation.

4.6.1 DOCUMENT RANK

The full-text search returns documents ranked by their relevance to the query. The relevance

of the source document is a strong indicator for potential candidate entities extracted from

28

them.

The resolution of the document relevance score determines the quality of the derived scores.
Alinear, discrete ranking scheme does not provide sufficient information to assess the actual
relative relevance between two ranks. However, if fine-grained scores are not available, we

apply dynamic document rank weighting to counteract the adverse effects.

The linear dampening of discrete ranks can be achieved using the weighting formula:

rank
1+ A - rank,q,

Wrank — 1 —

For example, the relevance factor for a ranking scheme in range [1, 10] between the top rank
1 and the bottom rank 10 is 10. In other words, an entity occurrence in the top ranked docu-
ment is scored equally to ten entity occurrences in the least ranked document. With a damp-
ening parameter of A = 1, the factor decreases to less than 2, which allows for a convenient
smoothing of overly popular document sources or inaccurate discrete ranking steps, as in

our case.

4.6.2 DOCUMENT & SNIPPET FREQUENCY

The document frequency of a given entity is the number of documents the entity occurs
in. The occurrence of a candidate entity in multiple sources increases the confidence in the
relevance of that entity. In this case, we disregard the actual frequency of the entity within

the documents and the document ranks.

Additional evidence for the relevance of an entity is provided, if the entity occurs in multiple
snippets. We handle snippets like regular, albeit very short, documents, but provide separate
weights from the full documents. This allows us to increase emphasis on snippet frequency,

which is generally a good indicator for the relevance of an entity.

4.6.3 Corrus ENTITY FREQUENCY

Some entities occur more often in texts than others. For example, many documents contain
USA or other popular locations even when the topic is about some event or person. We need
a way to suppress high frequency entities like that and give more relevance to less frequent

ones without skewing the results in favour of very rare entities.

TF-IDF and BM2§ scores — see 3.1.2 — put term frequencies relative to the popularity of the

term using the total number of documents the term occurs in. Since we rate entities, not

29

documents, we need a way of putting entity frequencies relative to their overall frequency

within the corpus.

The English Wikipedia offers a great open text corpus and is well suited for us due to the
high information density of its content. We processed all English Wikipedia pages to extract
the named entities and have used the resulting frequencies to assess the general popularity
of each extracted entity. The resulting corpus frequency cf for a given entity e are then used

as the factor for the subscoring functions:

1

log (Cf(e) + Cfbase)

Although the precision of named entity extraction is high, it is not perfect. That leaves us
with some imprecision in the data obtained — some entities are underrepresented relative
to the most popular ones. To avoid excessive boosts for such unique or difficult to extract
entities, we add the base frequency offset cfy,4,. to each frequency count and use alogarithmic

scale to flatten the relative differences between the entity scores.

4.7 ANSWER ENTITIES SELECTION

Search engines return answers to user queries, in our case the answers are named entities.
So far, we have ranked the entities according to their relevance and filtered out improbable

entities or entities of wrong types.

The next step is to find the set of answer entities among the top ranked candidates. We pro-
pose the Moving Average Pivot (MAP) selection method - a statistical approach solely based

on the entity scores.

4.7.1 MOVING AVERAGE PIvOT SELECTION

The selection set E; is a subset of the set of candidates E, and contains only entities, whose
scores satisfy the minimum score threshold §. An entity is denoted as e = (e,, ¢,) where e,

is the name of the entity and e; its assigned score.
E;={e€E.|e>8} where §= Savg + (27 — 1) (Spax — Sm,g)

The parameter y € R is in the range [0, 1] and used to balance between recall and precision.

We have found that higher values in the range [0.6, 0.7] for the first phase and lower values in

30

the range [0.4, 0.5] for the second phase performed well in our experiments, for more details

see chapter 6.

The extrema are defined in a natural way:
Smin = min{e; | e € E.} and S, = max{e; | e € E.}

The average score is used as a pivot for the selection. We propose using the exponential mov-
ing average (EMA) instead of the regular average to increase the influence of the top ranked
candidates’ scores over the less ranked ones’ Additionally, this has the positive effect of
dampening top ranked outliers relative to the average score; chapter 6 discusses the reason

for such score spikes in more detail. The recursive definition for the EMA score is:
Sawvgy = @ €ryy+ (1—a) - Sag_, with S, =e¢

where S, denotes the EMA score up to rank r and e, the entity tuple at rank r. The a co-
efficient is the smoothing factor in the range (o, 1]. To perform well across a high range of
entity set sizes, we determine the factor dynamically depending on the number of entities

considered:
2

AR
The goal of the selection is to detect score difference spikes in the higher ranks without iso-
lating outliers. Any numerical method that is capable of detecting value plateaus could be
suited for this task. The moving average pivot selection is simple, depends only on entity

scores, requires no additional memory and is computable in linear time.

4.8 SEMANTIC ANSWER TYPE

In 4.3 we discussed the importance and extraction method for the lexical answer type (LAT).
To provide the correct result entities however, we need to know the actual answer type sup-
ported by the ontology. There are multiple ways to infer the answer type, which we will
briefly discuss.

4.8.1 QUALITATIVE SAT INFERENCE

A qualitative analysis of the LAT can yield a set of candidate answer types by consulting the

ontology for abstractions of the LAT. One way is to trace the is-a relation paths until we

31

reach a type of a suitable abstraction level. Figure 4.8.1 shows an example for a hypothet-
ical type hierarchy. Based on this example, we would choose the SAT to be person for the
LATs “astronaut” and “sibling”. Alternatively, astronaut could be used directly as the SAT if
supported by the ontology.

Figure 4.8.1: Hypothetical ontology’s is-a relations

The qualitative approach can be effective, but is strongly coupled with the ontology. This
makes it less flexible and requires manual maintenance when the ontology database is being
switched or extended. What is more critical, the qualitative SAT inference fails, if some
critical relations are missing or if the LAT is highly ambiguous. For example, the query
“members of U2”, depends on the is-a relation between member and person. An ontology con-
taining the relation member — person will also contain member — state and others, which

yields a huge set of SAT candidates.

We think that this approach does have potential as a refinement of a type inference result,

but is impractical when used as the sole method.

4.8.2 QUANTITATIVE SAT INFERENCE

The quantitative approach infers the type through an analysis of the top scoring candidate
entities. For each entity, we identify its types in the ontology. The result is a set of candidate

SATs, which are ranked based on the entity score and the abstraction level of the type.

The quantitative approach should be more robust, perform well for abstract and ambiguous
types and be more independent from the quality of the underlying ontology. However, it
does depend on the quality and more so on the quantity of the retrieved entities, which
directly translates into a dependence on the precision of the full-text search and named entity

extraction.

32

4.9 ENTITY FILTERING & CLUSTERING

Entity filtering takes place as a post-processing step after entity extraction. The filtering is a

multi-pass procedure with optional clustering and applies the following techniques.

4.9.1 WORD CONSTRAINTS

Entity name sizes must be within a given range and only contain alphanumeric characters,

hyphens and apostrophes.

4.9.2 ENTITY CLUSTERING

The same entity can be referenced in a variety of ways. The United States of America may
be abbreviated with USA, U.S. or just the States or America. Our criteria for entity unifica-
tion considers the prefix-word distance between each word of two given entities. When the
number of similar words exceeds a set threshold, we unify both entity names by choosing a

representative name and accumulate the entity scores.

Additionally, we detect simple abbreviations like in our example USA and extend it. For
efficiency reasons, this feature is reduced to short initialisms — so we would detect USA' and

NSA?, but not Radar® and W3C*.

4.9.3 QUERY SIMILARITY

User queries can, and often do, contain named entities. For example, the query “nicole kidman’s”
“siblings” contains the person entity Nicole Kidman. Since the full-text search returnsrelevant
documents to the given strings, the documents will frequently contain some variation of the
entity’s name. Since this entity is part of the question, we need to filter it out of the candidate

entities.

For this, we use the entity clustering procedure and remove candidate entities that match
a query entity too closely. Our approach is based on word edit-distances, which reflect the
rate of similarity between two strings, [3] offers an interesting comparison for a variety of

algorithms, which are applicable in the case of entity disambiguation.

'USA is an initialism for United States of America.

2NSA is an initialism for National Security Agency.

*Radar is an acronym for Radio Detection and Ranging.

*W3C is an initialism shortcut for World Wide Web Consortium.

33

4.10 SEMANTIC QUERY CONSTRUCTION

For the deep search phase, we construct a semantic query based on the extracted keywords
and the inferred SAT. Our construction method is best suited as input for a hybrid search
engine, such as Broccoli [1]. The advantage of the hybrid search is that we can use the SAT
to declare the result type explicitly, while still being able to add the keywords for improved

relevancy.

We use a basic formula to construct the query — the SAT is used to provide the class of the
answer entities and the keywords are added to a occurs-with relation for syntactic full-text

matching. For example, the user query
“astronauts who walked on the moon”
could be translated to
“$1 is-a Astronaut; $1 occurs-with moon”

where $1 refers to the answer entities, the is-a relation denotes the type of the requested
entities and the occurs-with restricts the results to entities, whose reference pages contain
the string “moon”. Additionally, the verb walked can be added in its present form as “walk™”.

For more details regarding the supported syntax, please refer to [1].

34

For all the things we have to learn before we can do them,

we learn by doing them.

Aristotle

Implementation

The previous chapter described the two-phase approach for semantic search with keywords
in an implementation-agnostic way. In this chapter, we depict the details of Pythia — a
lightweight implementation of the proposed method. Our goal with Pythia is first to test
the effectiveness of the two-phase approach and its intermediate steps, and second to create

a platform for experimentation on semantic search in general.

After a brief system overview in 5.1, the following chapters describe the realization of each
module and we also note differences to the proposed method, which materialized during

the development of the platform.

5.1 SYSTEM ARCHITECTURE

Pythia is composed of a server application — the backend — and a web client — the frontend.

35

5.1.1 BACKEND

The backend serves all the required markup files via HITP, corresponding to a regular web
server. Additionally, it offers a simple query interface with the results returned in JSON*
format. When not noted otherwise, JSON is the exchange format used for the server-client

communication.

The first iterations of the server implemented the full-text search, the entity extraction, fil-
tering and ranking. To increase the dynamics of the platform, we moved all the critical pro-
cessing steps out of the backend into the web client. This allows us to quickly evaluate new
ranking and filtering concepts and gives us immediate results for an adjusted scoring scheme

without recompilation and reinitialization of the server application.

In the first step, the server accepts a query request from the client, analyses the query and
uses full-text search to find the most relevant documents for the query. The results contain
the document URLs, their titles and some meta data. We retrieve all documents for further

processing and assign a score to each based on the result rank.

Next, we extract the named entities from the retrieved documents. The results contain the
entity names, their frequencies in the respective documents and additionally the overall pop-
ularity of the entities, if provided by the knowledge base. The results are asynchronously sent
back to the requesting client.

The backend does also handle semantic entity type queries and ground truth requests, the
former are utilized during the inference of the SAT, the latter is required to provide the eval-

uation results, which are also displayed in the web client.

The server is written in C++11 using the Standard Template Library and following third-
party libraries:

« POCO C++? for HITP(S) handling and JSON decoding
« SENNA? for natural language processing

. gflags* for command line flags processing

. glog® for message logging

. gtest6 for unit testing

Thttp://json.org/
*http://pocoproject.org

3http ://ml.nec-labs.com/senna
*https://code.google.com/p/gflags
Shttps://code.google.com/p/google-glog
Shttps://code.google.com/p/googletest

36

http://json.org/
http://pocoproject.org
http://ml.nec-labs.com/senna
https://code.google.com/p/gflags
https://code.google.com/p/google-glog
https://code.google.com/p/googletest

. gperftools’ for performance profiling
« Flow® for serialization, string operations and JSON encoding

The modified cpplint® was used for code style checking. The server runs on Linux systems

supporting the GNU toolchain.

5.1.2 FRONTEND

The web client interfaces with the server via its HITP interface. As noted in 5.1.1, the fron-
tend filters, clusters and ranks the entities returned by the server. Finally, it visualizes the

ad-hoc query results and the evaluation statistics for the selected ground truth.

Even without further optimizations, the performance of current JavaScript implementations
was sufficient for our cause. Should it be required to speed up the processing — entity cluster-
ing is a good candidate for this — then there are options to achieve near-native performance
when using a subset of JavaScript in combination with asm.js'®. For best results, we can de-
velop the performance-critical procedures in C++ and compile them into efficient JavaScript

code using Emscripten'" — a LLVM'? to JavaScript compiler.

5.2 USERINTERFACE

The user interface (UI) is designed using HTMLs and CSS3 based on Bootstrap'®. The
client logic and communication with the server is realized in JavaScript with the help of

jQuery'* for convenient asynchronous message passing and more.

Pythia’s Ul is composed of a text field for the query input and collapsible result views for:
1. Performance overview
2. Query analysis including keyword and LAT tags
3. Semantic answer type (SAT)

4. Semantic query for Broccoli input

"http://code.google.com/p/gperftools
Shttps:// github.com/eamsen/flow
*https://github.com/eamsen/cpplint
Ohttp://asmjs.org

1 lhttps:/ /github.com/kripken/emscripten
17'http: //llvm.org
B3http://getbootstrap.com
Yhttp://jquery.com

37

http://code.google.com/p/gperftools
https://github.com/eamsen/flow
https://github.com/eamsen/cpplint
http://asmjs.org
https://github.com/kripken/emscripten
http://llvm.org/
http://getbootstrap.com
http://jquery.com

5. Result entity selection of the first phase
6. Result entity selection of the second phase
7. Complete candidate entity table
8. Retrieved documents list
9. Evaluation result table
10. Scoring function control
11. Logs for further analysis

The input field accepts free form text for the query. Result areas 1 through 8 show the details
for the last manual query. Figure 5.2.3 shows a possible UI configuration with expanded

views for 2, 3, 5 and 6 and figure 5.2.4 shows all candidate entity stats for the same query.

The performance view — see figure §.2.1 for an example — gives us a quick overview of the
execution times during the particular processing stages. It should be noted that the perfor-

mance becomes largely irrelevant for our experiments when result caching comes into effect.

- PERFORMANCE

[l Duration [ms] M Document
Retrieval
M Entity
Extraction
M Other

Query Analysis

Document Retrieval

Entity Extraction .

Total

0 2,000 4,000 6,000 8,000

Figure 5.2.1: Pythia performance view for an example uncached query run

The evaluation result table does not depend on the manual queries, instead it processes all
the queries of a selected ground truth set in the background and visualizes the average and

per-query metrics, see figure 5.2.2.

The scoring function is used for manual and automatic query result ranking. On scoring
parameter adjustment the last query results are recalculated and the automatic evaluation

restarts in the background to update the metrics on the evaluation result table.

38

- EVALUATION

Id Query GT Recall Prec Prec@10 Prec@R Recall@s Prec@S F@s

02 |SEMANTIC AVERAGE 8.17 |038[047] |009[0.11] [0.15[021] |021[027] |0.18[024] |019[028] |0.17[0.22]
11 | apollo astronauts ... 12 |os8[100] |013[0.15] |oso[0s0] |oso[o92] |oa7io2s] |oso[7s] |0.25[0.38]
12 12 |100[100] |029[0311 |oso[080] |075[0.75] |os0[050] |o86[086 |063[0.63]
21 | arab statesof the ... 6 083[100] |0.10[0.12] |o0s50[060] |0B3[083] |067[067] |080[080] |073[0.73]
22 6 100[100] |0.15[0.18] |060[060] |067[0671 |067[067] |080[080] |073[0.73]
31 |astronautswho... 12 |oso[ioo] |013[0.15] |o020[070] |025[0671 |o0o00[000] |00O[O0] |0.00[0.00]
32 12 |ooo[os0] |ooo[oool |ooo[ooo] |ooofoool |ooojooo]l |ooo[ool |ooo0[0.00]
41 | axis powers of ... 3 000[100] |ooo[001] |0o00[030] |o0oO[L00] |0OO[L00] |00O[L00] |0.00[1.00]
42 3 100[100] |o0o00[000] |020[030] |033[033] |o067[100] |014[0211 |024[035]
51 |boroughsof new ... 5 080[100] |017[021] |o040[050] |o0so[1oo] |o08o[100] |080[100] |0.80[1.00]
52 5 080[0.80] |003[004] |040[040] |o0so[0s0] |080[0.80] |100[100] |0.89[0.89]
6.1 |branchesoftheus.. 5 020[060] |007[0.11] |0.10[020] |020[0.40] |020[020] |100[100] |0.33[0.33]
62 5 000[0.00] |0o00[000] |000[000] |000[000] |0OO[000] |000[0.00] |0.00[0.00]
71 continents in the ... 7 0.86[1.00] 0.12[0.14] 0.60[0.70] 0.86[0.86] 0.86[0.86] 1.00[1.00] 0.92[0.92]
72 7 0.86[0.86] 0.03[0.04] 0.10[0.20] 0.14[0.29] 0.29[0.43] 0.12[0.18] 0.17[0.25]

Figure 5.2.2: Pythia evaluation view excerpt: averaged results on top; two rows (one
for each phase) per query; GT shows the number of expected answer entities; approxi-
mate match results are in brackets

5.3 FULL-TEXT SEARCH

A complete index of the Web and an accommodating search engine requires immense re-
sources and development time. Since it is not our goal to prove the effectiveness of web

search, we use the Google Custom Search API for ad-hoc search results.

Google’s search API provides high-quality results, but it also comes with some limitations —
it returns only the top 10 results, has a limited daily query quota and does not provide the

document scores.

The API does not reveal the actual scores in the results, which would be valuable for the
ranking process. This is an issue that we address by a more flexible scoring scheme, which is
explained in 4.6. The daily quota limit is not a big concern for us, since we cache all results
persistently. However, the restrictive result set, which contains only the top 10 documents,
can have a negative effect on the recall metric, since our quantitative approach gains stability

with larger sets of documents.

39

Pythia

largest planet
+PERFORMANCE
+SCORING
- QUERY AMNALYSIS - SEMANTIC ANSWER TYPES
PLANET SENNA: LOCATION
YAGO: PLANET

target keyword
+SEMANTIC QUERY

- ENTITY SELECTION

JUPITER

0 20

I Content Freg
M Snippet Freq

M Corpus Freg
(relative)

M Score (relative)

- SEMANTIC ENTITY SELECTION

JUPITER
SATURN
TITAN
4VESTA
NEPTUNE
CERES
2PALLAS
TriToN I
pro I
amaTHEA
uranus [
mercury [
canymeoe [

o] 50

100

150

200

M Score

Figure 5.2.3: Pythia Ul excerpt: query input at top; expanded views for query anal-
ysis, SAT, entity selection (first phase) and semantic entity selection (second phase);

other views are collapsed or out of screen

40

- ENTITY TABLE

Entity Coarse Type Content Freq Snippet Freq Document Freq Corpus Freq Score

JUPITER location 72 7 7 8570 149

URANUS location 4 1 2 2550 0.10
SATURN location 2 1 2 5117 0.08
EUROPA location 9 0 2 0 0.08
o] location 6 0 2 0 0.06

DIYTHEMES

META REGISTER

UNIVERSE TODAY location 3 0 2 6840 0.03

THE EARTH location 13 1 2 34520 0.03

Figure 5.2.4: Pythia candidate entities view for the query “largest planet”: coarse type
is detected by SENNA during entity extraction; darkened rows are filtered out entities

41

5.4 ENTITY EXTRACTION

Before entity extraction, we remove all HTML tags from the documents using a custom
implementation. Then we extract the named entities using SENNA - a natural language
processing toolset based on artificial neural networks. SENNA provides a good balance be-
tween precision and performance [4], which makes it better suited for Pythia than more

precise tools like the Stanford Named Entity Recognizer.

The result of the entity extraction are tuples containing the entity name and its type as rec-
ognized by SENNA. The type is important during the filtering phase; we refer to this type
as the coarse type, since it is limited to the broad categories organization, person, location and

misc for the rest.

5.5 ENTITY FILTERING

Entity filtering takes place on both, the backend and the frontend. The backend filtering
should reduce the load for the frontend, while the filtering in the frontend has the goal to

refine and improve the result quality.

5.5.1 SOFT FILTERING

The named entity extraction does produce some false positives, which need to be identi-
fied. To reduce the number of entities before proceeding with the more complex filtering
phase, we apply a soft filtering technique on the backend. The soft filtering discards entities,
which do not pass the required word constraints from 4.9.1 and also removes entities, which
have less than two supporting documents. On average, the soft filtering discards 50% of the

extracted entities, without negative effects on the recall metric.

5.5.2 MuLTI-PASs FILTERING

The soft filtering of the backend does improve the signal-to-noise ratio, but passes through
a high percentage of non-answer candidates. The frontend applies a multi-pass filtering pro-

cedure to remove such entities using a variety of techniques.

Pythia offers course type filtering, which is based on SENNA'’s type classification, query
similarity filtering, ontology-based type filtering and a lexical clustering method. The imple-

mentation applies the filtering at different stages — before the ranking and then again during

42

post-processing. Such a multi-pass approach makes it possible for the filtering to use ranked
type information to deduce the probable SAT, which is only available with ranked results.
The pre-filtering is based on lexical methods, which do not require semantic type informa-

tion.

5.6 SEMANTIC SEARCH

As already mentioned in the previous chapter, our semantic query construction requires a
hybrid semantic search interface. In the deep search phase, we query the JSON-based API
of Broccoli'®. The results are provided unfiltered, but with our selection method applied to

reduce the amount of answer entities and increase precision.

3http://broccoli.cs.uni-freiburg.de

43

http://broccoli.cs.uni-freiburg.de

“What is the use of a book”, thought Alice,

“without pictures and conversations?”.

Lewis Carroll

Evaluation

EMPIRICAL EVIDENCE IS THE FOUNDATION FOR PRACTICAL RESEARCH. In this chapter, we

evaluate the effectiveness of the two-phase approach using our Pythia search engine.

The base for a statistical evaluation is a ground truth, which we describe in 6.1 and suitable
performance measures, as laid down in 6.2. We analyse the performance of the entity re-
trieval phase in 6.3, review the MAP selection technique in 6.4 and provide the results of the
deep search phase in 6.5. The analysis includes all aspects of the process, including entity

filtering and ranking schemes.

6.1 GROUND TRUTH

The selection of a ground truth for our task was difficult. We have reviewed some bench-
marks for semantic search quality of and have found that no benchmark provides a consis-
tent way to compare systems, which are based on different methodologies. It is especially
difficult to compare our two-phased approach with other systems, which are mostly con-

strained by the specific conference rules.

44

But finally, we selected the Yahoo Semantic Search (SemSearch) queries, see A.1, for the eval-
uation of the two phases of our approach. SemSearch queries were gathered from actual user
input, which makes them practically relevant and they provide a good variety of different
query types, which helps evaluating the introduced methods in regards of robustness and

generality.

6.2 PERFORMANCE MEASURES
The quality of a search engine is measured by recall and precision - for each test query, we
analyse the results and compare them with the expected results from the ground truth.

|Results N Expected| . |Results N Expected|
precision =
|Results|

recall =

| Expected|

In our case, the ground truth establishes the notion of relevancy through a set of relevant
entities for each test query. More formally, let an entitybe atuplee = (e, ¢, eg, e, ey, €s, e,
where ¢, denotes the name of the entity, e, its type, ¢4 the set of frequency-document-rank
tuples (f, r), e, the set of frequency-snippet-rank tuples (f, r), ¢, its general popularity score,
es is the score assigned by our system and e, the resulting rank. Furthermore, let E¢ be the
candidate set of retrieved entities (see chapter 4), Eg the selection set (see 4.7) and Eg the
set of relevant entities according to the ground truth. Based on this, we compute recall R

and precision P for our results:

_ [EcNE| _ [BeNE|
|Er| |Ec|

More general, the recall and precision for a given entity set E are defined as:

_ [ENEg|

|E N Eg|
RE) = gy ~

P(E)
|E|
A large candidate set E¢ skews the measures in favor of recall, resulting in low precision. To

paint a more realistic image of the performance, we can restrict a given set E to the top k

ranks, with E[y = {e¢ € E | e, < k}. Similarly, we generalize the recall and precision
measures: Bl AE Bl A E
R(z)) = EELE p(g],) = Ze 05
|| k

Additionally, we define as a special case the dynamic rank value, namely PQR - also known

45

as R-precision — where PQR = P(Ec|;) with k = |Eg]|.

High precision can be obtained by sacrificing recall, which can be reasonable in specific sce-
narios, but is generally unpractical. F-score is the weighted average of precision and recall

and is useful to compare the quality of results by a single value. It is defined as:

(B* +1) - P(E) - R(E)
B*- P(E) + R(E)

Fy(E) =

For our measurements we use the harmonic mean F,, or just F for short; and F, ;, which
weights precision twice as high as recall. The latter is useful to measure the precision of
our selection method, without favoring selections, which only return the single best ranked

entity.

We note that PQR = RQR = FQR by definition and therefore it is sufficient to document

one representative value for these measures.

Here is an overview of the used quality measures abbreviations throughout this chapter:
R is the overall recall ratio.

R@S is the recall ratio for the retrieved entities within the selection.

P@S is the selection precision.

P@1o0 is the precision value for the top ten results.

P@R is the precision value for the top R results, where R is the number of total relevant

entities.

F@S is the f-measure for the selection results.

6.2.1 APPROXIMATE MATCHING

Named entities may not be uniquely identified by their name and type. The expected answer

entities for the query
“Axis powers of World War 11"
according to the ground truth are
“Nazi Germany”, “Empire of Japan” and “Kingdom of Italy”

as these are the official handles produces by the YAGO ontology. However, historic texts use
the short forms Germany, Japan and Italy within the context, when referring to the aforemen-

tioned entities. The result is that Pythia produces the following answer selection

46

“Germany”, “Japan” and “Italy”

which yields RQS = PQS = o. As we do not identify entities uniquely, an evaluation
based on strict matching would skew the results towards short entities or entities with unique
and context-independent handles. To counteract this, we provide an additional measure for
approximate matchings based on the prefix edit-distance. When reasonable, we provide the

approximate matching measures in addition to the strict matching delimited by a dash:
measure = strict/ approximate

For our running example, this gives us RQS = PQS = 0.0/1.0 as the results resemble a
perfect approximate matching with the ground truth. We note that strict < approximate

holds for all cases with the strict matchings being a subset of the approximate matchings.

6.2.2 EVALUATION PROCEDURE

As previously noted, we strive to evaluation each step in isolation, but doing so is a great
challenge. There is a strong interplay between each component — when optimizing filter-
ing, ranking and selection cutofl, it is required to make multiple iterations to let the results

propagate and to find the right balance with the adjustable parameters.

For example, we evaluate the filtering results on the previously determined optimal ranking
scheme. At the same time, the ranking results do strongly depend on the filtering. The side
effect of this iterative evaluation procedure is that some results may not match perfectly when
compared between different components, since they were collected at different stages of the

process.

6.3 ENTITY RETRIEVAL

Our bootstrapping approach involves two phases, first we use the user query to conduct
entity retrieval on the Web and then we use the intermediate results to construct a formal

query input for the Broccoli semantic search engine.

To demonstrate the quality of our approach, we show the quality of each phase separately.
This allows for a more consistent evaluation and comparison with similar systems and also

makes it simpler to identify issues that need further improvement.

During the first phase, we analyse the query, search the Web for relevant documents, ex-
tract entities, filter them and finally rank them. We dedicate an evaluation section to each

quantifiable process step.

47

6.3.1 ENTITY EXTRACTION & FILTERING

To find the candidate entities, we extract all entities of the relevant documents using SENNA'’s

named entity extraction feature.

A critical post-processing step after the extraction is the entity filtering. The goal of the fil-
tering is to discard unreasonable entities without removing viable answer candidates. Let us
analyse how effective the extraction works and whether the filtering applied improves the

overall results. Table 6.3.1 shows the average results with different filtering combinations

Filter R P R@S paQs FQSs
- 0.62/0.88 0.03/0.04 0.17/0.28 0.16/0.30 0.14/0.24
ont 0.54/0.72 0.06/0.07 o0.19/0.27 0.27/0.39 0.20/0.28
gsim 0.61/0.87 0.03/0.04 0.36/0.49 0.32/0.49 0.30/0.43
ctype 0.51/0.76 0.05/0.07 0.14/0.25 0.16/0.31 0.13/0.23
ont + gsim 0.53/0.70 0.06/0.07 0.32/0.41 0.43/0.57 0.32/0.41
ont + ctype 0.42/0.57 0.07/0.09 o0.15/0.22 0.23/0.36 0.16/0.24

gsim + ctype 0.56/0.78 0.06/0.07 0.35/0.48 0.38/0.59 0.32/0.47
ont + gsim + ctype 0.48/0.63 0.08/0.11 0.30/0.39 0.44/0.61 0.31/0.41

Table 6.3.1: Average results with ontology filter (ont), query similarity filter (gsim)
and coarse type filter (ctype)

over the queries. As expected, without filtering a high percentage of false positives remains

in the result list and to some degree also in the selection.

The single best-performing filtering technique is to discarding entities, which resembled a
too close similarity to some of the keywords in the query. This is a natural consequence of
the fact that we extract the entities from documents which are relevant to the keywords on
the lexical level. Combined with our selection method, this filter enables a relatively high
precision among the top ranked entities, which results in greatly boosted F-scores, while

leaving the rest of the stats untouched.

When filtered by the coarse type — as it is provided by the entity extraction tool — the over-
all precision increases, however, the selection suffers from lower recall at unchanged preci-
sion. The effect is caused by our dynamic selection cutoff method - in this case it automati-
cally maintains the precision levels by shrinking the size of the selection. Despite this effect,
coarse type filter provides the best overall results when combined with query similarity fil-

tering.

48

One of our goals was to reduce the dependency on the knowledge base and the ontology fil-
tering results support our motives. Removing entities, which are not known in the ontology
constitutes a great hit on recall. It shows, that the ontology does not adequately support all

the required entities for the queries.

6.3.2 RANKING SCHEMES

Ranking is a critical component of the search engine, so we utilized Pythia’s customization
options for parameter optimization — see table 6.3.2 for a brief description for the adjustable

parameters, the detailed explanation is in section 4.6.

Parameter Description

wc document entity frequency weight
Wi snippet entity frequency weight
wep document frequency weight
WHD snippet frequency weight
Ac document rank relevance
Ag snippet rank relevance

Table 6.3.2: Ranking parameter descriptions

Even though the selected ground truth does provide a good variety of query types, we try to
avoid overfitting by keeping the weighting schemes reasonably simple and comprehensible.
To allow for a strategic parameter optimization, we determine four ranking scheme classes
with distinct characteristics, see table 6.3.3. Based on that, we create a set of plausible ranking

schemes for each class — see table 6.3.4 — and start with their evaluation on our test set.

Scheme Class Characteristics

Isc document entity frequency only

rsh snippet entity frequency only

rsd document and snippet frequency only
Isx cross-over scheme for optimization

Table 6.3.3: Ranking scheme classes

49

Scheme wc¢ Ac wg Ay wep Wmp

rsco 1 1 o -
rsci 1 2 o -

rsca 1 -1 o -

rsho o - 1 1

rshi o - 1 2

rsha o - 1 -1

rsdo 0 - 0 - 1 o
rsd1 0 - o -)

rsd2 0 - 0 - 1 1
ISX0 030 2 0.35 2 1.00 1.0
sx1 030 2 0.35 2 0.50 1.0
Isx2 030 2 0.35 2 02§ 1.0
sx3 030 2 0.35 2 0.5 0.5
ISX4 0.50 2 0.35 2 0.5 0.5
ISX§ 030 2 0.20 2 0.25 0.5
ISX6 020 2 0.20 2 025 0.5
ISX7 020 2 020 2 02§ 0.7
rsx8 02§ 2 030 2 0.5 0.6

Table 6.3.4: Ranking schemes

Table 6.3.5 shows the complete results, we note that additional cross-over ranking schemes

rsx were added during the evaluation process to find the optimal configuration.

We retrieve over half of the answer entities if strictly matched, and close to 80% for approxi-
mate matchings. The overall precision is in the single digit percentage, due to the high quan-
tity of candidate entities retrieved, which is usually in the range of 1000 to 10000 entities
before frontend filtered is applied. The overall R and P ratios should not greatly variate be-
tween different rankings schemes, but with coarse type filtering enabled, it is possible for the

ranking scheme to promote a different set of accepted SATs.

The rsc results form our baseline and is comparable to TF-IDF ranking for full-text search.
For a basic scheme, it shows promising approximate matching results. The rsh scores, which
are solely based on Google’s result snippets, are competitive with the rsc results in the selec-

tion, which is a testament to Google’s text summarization quality.

More surprisingly are the rsd results, which surpass both previous results based on entity
frequencies. This could indicate that we are missing a lot of potential with the rsc and rsh

schemes and encourages us to continue our research on finding more effective entity fre-

50

Ranking R P P@R R@S P@S F@S

sco 0.56/0.78 0.06/0.07 o0.24/0.45 0.23/0.38 0.23/0.47 0.20/0.36
rsc1 0.55/0.77 0.05/0.06 0.22/0.44 0.22/0.37 0.22/0.48 0.19/0.34
rsca 0.56/0.78 0.06/0.07 0.23/0.44 0.19/0.33 0.21/0.52 0.17/0.35

rsho 0.53/0.77 0.06/0.08 0.28/0.43 0.26/0.35 0.27/0.45 0.24/0.35
rsh1 0.55/0.79 0.06/0.08 0.29/0.44 0.27/0.37 0.28/0.46 0.25/0.36
rsha 0.52/0.76 0.05/0.07 0.23/0.39 0.25/0.38 0.29/0.49 0.23/0.35

rsdo 0.54/0.77 0.05/0.06 0.29/0.47 0.33/0.46 0.28/0.40 0.28/0.39
rsd1 0.54/0.77 0.06/0.08 0.33/0.49 0.23/0.30 0.41/0.58 0.25/0.34
rsd2 0.56/0.79 0.06/0.07 0.36/0.53 0.36/0.50 0.34/0.48 0.32/0.45

rsXo 0.56/0.79 0.06/0.07 0.37/0.54 0.36/0.49 0.35/0.51 0.32/0.45
sx1 0.57/0.79 0.06/0.07 0.37/0.55 0.36/0.50 0.36/0.56 0.32/0.47
Isx2 0.56/0.78 0.06/0.07 0.38/0.56 0.32/0.45 0.38/0.60 0.31/0.46
rsx3 0.56/0.78 0.06/0.07 0.37/0.55 0.36/0.48 0.38/0.59 0.32/0.47
ISX4 0.55/0.77 0.06/0.07 0.36/0.54 0.34/0.47 0.37/0.59 0.31/0.46
SX§ 0.56/0.78 0.06/0.07 0.36/0.55 0.35/0.48 0.36/0.57 0.32/0.46
sx6 0.56/0.79 0.06/0.07 0.37/0.54 0.36/0.49 0.36/0.56 0.32/0.46
ISx7 0.57/0.79 0.06/0.07 0.38/0.56 0.36/0.49 0.38/0.57 0.32/0.47
rsx8 0.56/0.78 0.06/0.07 0.37/0.55 0.36/0.48 0.39/0.60 0.33/0.47

Table 6.3.5: Ranking results with gsim + ctype filtering and y = o.55 selection

quency based techniques.

With the cross-over schemes we try to combine the effects of all classes. After a multitude
of iterations — only eight settings are noted here — we found the results to peek at the rsx8
scheme. We reach around 60% approximately and 40% strictly matched precision results in

the selection at a similar recall, which yields up F-scores of 33%/47%.

6.4 ANSWER ENTITIES SELECTION

As noted before, we can not completely isolate the evaluation of each component without
affecting the overall results. For the same reason, we could not avoid showing the final se-
lection results in the previous section. In this section, we discuss how we determined the
optimal selection parameters and how much the results diverge from the theoretical opti-

mal selection.

The moving average pivot selection described in 4.7.1 is a lightweight approach to answer

entities selection. We recall that the selection Eg is based on a threshold score §, which sets

51

the minimum score for the answer entities:
Es={ec€Ec|e>8} with 8= S+ (27 —1)(Smax — Savg)

Similar to the R-precision, we define the selection recall RQS = R(Es) and selection preci-
sion PQS = P(Eg).

6.4.1 SELECTION PARAMETER OPTIMIZATION

Before evaluating the results of the selection method, we need to find the optimal parameter
setting for our scenario. The only value to tweak is 7, which controls the cutoft offset from

the average base.

We test out the range [o, 1] for y and narrow down the optimal value to a reasonable degree.
Table 6.4.1 shows the results of our experiments. As expected, lower cutoff offsets retain
more of the relevant entities at the cost of lower precision, where higher offsets increase the
precision of the selection. The optimal setting for the query selection is approximately at

7 = 0.55, which is used throughout the rest of the evaluation, if not noted otherwise.

y R@S P@S F@$

0.00 0.56/0.78 0.06/0.10 0.10/0.16
0.25 0.56/0.78 0.06/0.10 0.10/0.16
0.35 0.55/0.77 0.08/0.13 o0.12/0.19
0.45 0.50/0.70 0.17/0.26 0.23/0.34
0.50 0.46/0.63 0.26/0.38 0.30/0.43
0.52 0.45/0.62 0.29/0.42 0.32/0.45
0.55 0.43/0.59 0.34/0.49 0.34/0.48
0.§7 0.41/0.56 0.33/0.51 0.33/0.47
0.60 0.38/0.52 0.35/0.54 0.33/0.47
0.65 0.35/0.47 0.39/0.58 0.32/0.46
0.75 0.21/0.31 0.39/0.62 0.23/0.36
1.00 0.13/0.18 0.38/0.60 o0.17/0.24

Table 6.4.1: Selection optimization results with ranking scheme rsx8

6.4.2 SELECTION OPTIMALITY

The goal of the selection is to provide the correct answer entities based on the ranked can-

didates. Our approach to this is to find a score threshold to separate the candidate set into

52

selected and non-selected entities.

Given a set of ranked candidate entities, we can manually determine an optimal cutoff, which
guarantees the highest F-scores. In this section, we want to compare such an optimal section

with our selection method. The optimal selection Eg,, is defined as follows:
Es,, = Ecli with k = argmax F(Ecx)
k

To assess the performance of the selection we define the selection optimality measure:

F(Es)

&=)

Table 6.4.2 shows the average results for all queries, the complete results can be found in A. 3.
For the strict matching, the quality of the selection is at 78% of the optimal and it’s 71% for

the approximately matched results.

Query FQS,, RQS pas FQs Qs

1-47 0.45/0.65 0.43/0.59 0.34/0.49 0.34/0.48 0.78/0.71

Table 6.4.2: Moving average pivot selection results

THE VERDICT ON OUR SELECTION METHOD is overall positive. The results show that the
MAP selection is suitable as a baseline technique for the answer entities selection with close
to 80% optimality. However, we don’t think that further refinements of the MAP selection
could improve its quality without introducing bias, more promising research should con-

centrate on combining this technique with other approaches.

6.5 DEEP SEARCH

Based on the results of the first phase, we construct a query to be used on the Broccoli search
engines. In this section, we evaluation the results of this phase, as they are returned by Broc-

coli.

We do not filter the results of this phase, but we apply the MAP selection method to in-
crease the precision of the output. Just as in the selection optimization for the first phase,

we evaluate a range of y values to determine the optimal cutoff.

S3

The scores of the deep search results follow a different distribution than the scores our sys-
tem produces in the first phase, which makes it difficult to adjust the parameter to achieve the
best results. Where in the first phase, we could boost the precision from 6%/7% to 38%/60%

on average — a factor greater than 6 — the best improvement factor at this stage is around 2..s.

Query Phase R P P@R R@S P@S F@S
1-47 1 0.56/0.78 0.06/0.07 0.38/0.56 0.33/0.47 0.38/0.60 0.31/0.46
1-47 2 0.44/0.54 0.09/0.12 0.24/0.31 0.20/0.27 0.22/0.31 0.19/0.25

Table 6.5.1: Average results for entity retrieval (1) and deep search (2) phases

Table 6.5.1 shows the comparison of the average results between both phases, you can find
the complete results in A.2. The results indirectly mirror the quality of our semantic query
construction, but they are also influenced by the result quality of Broccoli and the complete-

ness of its knowledge base.

S4

It’s a poor sort of memory that only works backwards.

Lewis Carroll

Discussion

WE HAVE TAKEN ON THE GRAND TASK of enabling keyword-based semantic search — but
have we achieved all our goals? In this final chapter, we conclude our work on Pythia, dis-
cuss the presented results and give an outlook on future work that could improve the per-

formance of the two-phase approach.

7.1 CONCLUSION

We introduced a multi-phased approach to enable keyword-based queries for semantic search
and developed Pythia to evaluate its performance. Most existing work on providing conve-
nient user interfaces for semantic search offer interactive query composition or direct se-
mantic mapping of the keywords to a formal query. Such solutions do not provide the de-
sired user experience or create artificial constraints on the accepted user queries. Pythia
demonstrates that we can go beyond such constraints and offer a better user experience by

providing a barrier-free keyword-based interface for semantic search.

The evaluation of the first phase gives a positive outlook on the capabilities of our approach

with relatively high precision results in the answer selection. The evaluation shows that many

SS

results, when examined in detail, seem subjectively better than the numbers suggest, which
is also supported by the approximate matching results. Some simple filtering methods have
proved to be effective at reducing the number of candidate entities without high regression
on recall. However, we could not effectively cope with the noise introduced by the low qual-
ity of the entity extraction. We attacked it with lexical entity clustering, but this introduced

other issues, which diminished its positive effects.

The results of the deep search phase are considerably worse than the intermediate results
from the first phase. The most diverging metric between the two phases is the precision of
the selection, which is a natural consequence of our cutoff mechanics, which are better suited
for highly quantitative results. We also do not apply any filtering at this stage, which proved
to be effective for the results in the first phase. The semantic query construction failed to
provide a correct mapping in many cases, that way we could not reproduce the result quality

of manually composed Broccoli queries.

7.2 FUTURE WORK

The results of the entity retrieval phase are competitive with similar systems and we would
like to extend some features to further increase the result quality at this stage. We consider
the cause of many issues to be related to the inexact named entity extraction and the entity
type classification. To counter this, further decreasing the dependence on NLP tools should
be a desirable goal to pursue. Noun detection is more reliable and could replace the named
entity extraction when combined with SAT classification based on Freebase'. Often, the
query and LAT give good hints on the SAT - such as queries starting with “who” or “where”
— adding pattern-based type matching could provide a considerable boost to SAT detection
independent of the knowledge base.

With improved SAT detection, we would have a much better base for the construction of the
semantic query. A deeper analysis of the relation type between keywords of the user query,
could also increase the expressiveness of the semantic query and improve the results in the

deep search phase.

Entity linking as a combination of lexical matching and semantic type detection is a another
desirable feature, which could be used to refine the set of candidate entities. Complementary
to that, an extended result set in the document retrieval phase should further improve the

results by the increased frequencies of relevant entities.

Thttp:/ /www.freebase.com

56

http://www.freebase.com

We think that some methods introduced in this thesis are well suited to be integrated into
a fully-featured semantic search engine to harness its semantic database for improved type

detection and that way enable keyword-based queries for semantic search.

57

Appendices

A.1 YAHOO SEMANTIC SEARCH QUERIES

Q1
Q2
Q3
Q4
Qs
Q6
Q7
Qs

Qi3
Qi4

apollo astronauts who walked on the moon
arab states of the persian gulf
astronauts who landed on the Moon
axis powers of world war II
boroughs of new york city

branches of the us military
continents in the world

nicole kidman’s siblings

dioceses of the church of ireland
first targets of the atomic bomb

five great epics of tamil literature
gods who dwelt on mount olympus
henry ii’s brothers and sisters

hijackers in the september 11 attacks

58

Qu1s houses of the russian parliament

Q16 johnlennon’s parents

Q17 kenya’s captain in cricket

Q18 kublai khan siblings

Qu9 lilly allen parents

Q20 major leagues in the united states

Q21 manfred von richthofen parents

Q22 matt berry tv series

Q23 members of uz

Q24 movies starring erykah badu

Q25 movies starring joe frazier

Q26 movies starring rafael rosell

Q27 nations where Portuguese is an official language
Q28 orders or choirs of angels

Q29 permanent members of the un security council
Q3o presidents depicted on mount rushmore who died of shooting
Q31 provinces and territories of canada

Q32 ratt albums

Q33 republics of the former yugoslavia

Q34 revolutionaries of 1959 in cuba

Q35 standard axioms of set theory

Q36 states that border oklahoma

Q37 tenancient greek city-kingdoms of cyprus

Q38 the first 13 american states

Q39 twelve tribes or sons of israel

Q40 what books did paul of tarsus write

Q41 what languages do they speak in afghanistan
Q42 what tvshows has thomas jane been in

Q43 where the british monarch is also head of state
Q44 who created stumbleupon

Q45 who has jackie weaver been married to

Q46 who invented the python programming language
Q47 wonders of the ancient world

59

A.2 COMBINED SEARCH RESULTS

Query R P P@1o P@R R@S P@S F@S

1-47.1 0.56/0.78 0.06/0.07 0.23/0.36 0.38/0.56 0.33/0.47 0.38/0.60 0.31/0.46

1-47.2 0.44/0.54 o0.09/0.12 o0.17/0.22 0.24/0.31 0.20/0.27 0.22/0.31 0.19/0.25
1.1 1.00/1.00 o0.12/0.13 o0.50/0.80 0.58/0.83 0.25/0.33 0.50/0.67 0.33/0.44
1.2 1.00/1.00 0.29/0.31 o0.70/0.70 0.75/0.75 0.50/0.50 0.86/0.86 0.63/0.63
2.1 0.88/1.00 o0.10/0.11 0.70/0.80 0.88/1.00 0.88/1.00 0.88/1.00 0.88/1.00
2.2 1.00/1.00 0.21/0.23 o0.70/0.70 0.75/0.75 o0.50/0.50 0.80/0.80 0.62/0.62
3.1 1.00/1.00 0.16/0.17 0.40/0.40 0.42/0.50 0.00/0.08 0.00/0.50 0.00/0.14
3.2 0.00/0.50 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
4.1 0.33/1.00 0.01/0.01 0.00/0.30 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
4.2 1.00/1.00 0.00/0.00 0.20/0.30 0.33/0.33 0.67/1.00 o0.14/0.21 0.24/0.35
5.1 1.00/1.00 o0.13/0.15 o0.50/0.50 o0.80/1.00 0.80/1.00 0.80/1.00 0.80/1.00
5.2 0.80/0.80 0.03/0.04 0.40/0.40 0.80/0.80 0.80/0.80 1.00/1.00 0.89/0.89
6.1 0.80/1.00 o0.11/0.14 o0.10/0.50 0.20/0.80 0.20/0.80 0.20/0.80 0.20/0.80
6.2 0.40/0.80 0.00/0.00 0.20/0.20 0.40/0.40 0.40/0.40 0.18/0.18 0.25/0.25
7.1 1.00/1.00 o0.11/0.13 o0.70/0.70 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
7.2 0.86/0.86 0.03/0.04 0.10/0.20 0.14/0.29 0.29/0.43 o0.12/0.18 o0.17/0.25
8.1 1.00/1.00 0.01/0.02 o0.10/0.10 1.00/1.00 1.00/1.00 0.33/0.33 0.50/0.50
8.2 1.00/1.00 0.00/0.01 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
9.1 0.00/0.50 0.00/0.01 0.00/0.40 0.00/0.47 0.00/0.03 0.00/1.00 0.00/0.0§
9.2 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
10.1 1.00/1.00 0.03/0.05 0.20/0.20 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
10.2 1.00/1.00 0.18/0.27 0.20/0.20 0.50/0.50 o0.50/0.50 1.00/1.00 0.67/0.67
11.1 1.00/1.00 0.02/0.03 0.40/0.50 0.60/0.60 0.60/0.60 o0.50/0.50 0.55/0.55
11.2 0.60/0.60 0.75/0.90 0.30/0.30 0.60/0.60 0.00/0.00 0.00/0.00 0.00/0.00
12.1 1.00/1.00 0.17/0.18 0.90/0.90 0.92/0.92 0.17/0.17 0.67/0.67 0.27/0.27
12.2 0.67/0.67 0.26/0.28 0.60/0.60 0.58/0.58 o0.17/0.25 o0.50/0.75 0.25/0.38
13.1 0.33/0.67 0.00/0.01 0.10/0.20 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
13.2 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
14.1 0.00/0.0§ 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
14.2 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
15.1 0.50/1.00 0.04/0.08 o0.10/0.20 0.50/1.00 0.50/1.00 0.50/1.00 0.50/1.00

60

15.2
16.1
16.2
17.1
17.2
18.1
18.2
19.1
19.2
20.1
20.2
21.1
21.2
22.1
22.2
23.1
23.2
24.1
24.2
25.1
25.2
26.1
26.2
27.1
27.2
28.1
28.2
29.1
29.2
30.1
30.2
31.1
31.2
32.1
32.2

33.1

1.00/1.00
1.00/1.00
1.00/1.00
0.22/0.22
0.44/0.44
0.00/0.33
0.00/0.00
1.00/1.00
0.00/0.00
0.00/0.78
0.89/1.00
0.00/0.17
0.00/0.00
0.50/0.75
0.75/1.00
0.29/0.57
0.43/0.43
0.33/1.00
0.00/0.33
0.00/0.13
0.00/0.00
0.70/1.00
0.80/0.90
0.18/0.55
0.00/0.09
0.80/1.00
0.80/1.00
1.00/1.00
0.00/0.00
0.92/1.00
0.69/0.92
0.25/0.63
0.00/0.00
0.00/1.00
0.83/1.00
0.75/1.00

0.07/0.10
0.01/0.02
0.00/0.00
0.06/0.06
0.18/0.20
0.00/0.00
0.00/0.00
0.05/0.07
0.00/0.00
0.00/0.00
0.00/0.00
0.00/0.01
0.00/0.00
0.04/0.06
0.01/0.01
0.05/0.06
0.38/0.43
0.04/0.07
0.00/0.11
0.00/0.01
0.00/0.00
0.10/0.12
0.42/0.47
0.03/0.04
0.00/0.01
0.03/0.04
0.09/0.11
0.02/0.04
0.00/0.00
0.26/0.28
0.01/0.02
0.02/0.02
0.00/0.00
0.00/0.01
0.03/0.04
0.07/0.09

0.20/0.20
0.20/0.20
0.00/0.00
0.10/0.10
0.40/0.40
0.00/0.00
0.00/0.00
0.20/0.20
0.00/0.00
0.00/0.40
0.20/0.30
0.00/0.20
0.00/0.00
0.20/0.30
0.30/0.40
0.20/0.40
0.30/0.30
0.10/0.30
0.00/0.10
0.00/0.10
0.00/0.00
0.50/0.50
0.70/0.80
0.20/0.40
0.00/0.10
0.40/0.40
0.30/0.50
0.10/0.10
0.00/0.00
0.80/0.90
0.50/0.50
0.00/0.00
0.00/0.00
0.00/0.60
0.00/0.60

0.20/0.30

61

0.50/1.00
0.00/0.50
0.00/0.00
0.11/0.11
0.44/0.44
0.00/0.00
0.00/0.00
1.00/1.00
0.00/0.00
0.00/0.44
0.22/0.33
0.00/0.17
0.00/0.00
0.50/0.75
0.75/1.00
0.29/0.57
0.29/0.29
0.00/0.33
0.00/0.33
0.00/0.13
0.00/0.00
0.50/0.50
0.70/0.80
0.18/0.36
0.00/0.09
0.80/0.80
0.20/0.40
0.00/0.00
0.00/0.00
0.77/0.85
0.54/0.54

0.00/0.00
0.00/0.00
0.00/0.67
0.00/0.67

0.50/0.50

1.00/1.00
0.50/1.00
0.00/0.00
o.11/0.11
0.33/0.33
0.00/0.00
0.00/0.00
0.50/0.50
0.00/0.00
0.00/0.22
0.22/0.22
0.00/0.08
0.00/0.00
0.50/0.50
0.75/1.00
0.14/0.43
0.29/0.29
0.00/0.33
0.00/0.33
0.00/0.13
0.00/0.00
0.40/0.40
0.60/0.70
0.00/0.27
0.00/0.09
0.60/0.60
0.60/1.00
1.00/1.00
0.00/0.00
0.46/0.54
0.23/0.23
0.00/0.00
0.00/0.00
0.00/0.67
0.00/1.00

0.25/0.25

0.50/0.50
0.33/0.67
0.00/0.00
1.00/1.00
0.50/0.50
0.00/0.00
0.00/0.00
1.00/1.00
0.00/0.00
0.00/0.50
0.25/0.25
0.00/0.2§
0.00/0.00
1.00/1.00
0.43/0.57
0.25/0.75
0.67/0.67
0.00/0.33
0.00/1.00
0.00/0.33
0.00/0.00
0.50/0.50
0.67/0.78
0.00/1.00
0.00/1.00
1.00/1.00
0.30/0.50
0.17/0.17
0.00/0.00
0.86/1.00
0.50/0.50
0.00/0.00
0.00/0.00
0.00/0.80
0.00/0.75§

0.33/0.33

0.67/0.67
0.40/0.80
0.00/0.00
0.20/0.20
0.40/0.40
0.00/0.00
0.00/0.00
0.67/0.67
0.00/0.00
0.00/0.31
0.24/0.24
0.00/0.13
0.00/0.00
0.67/0.67
0.55/0.73
0.18/0.55
0.40/0.40
0.00/0.33
0.00/0.50
0.00/0.18
0.00/0.00
0.44/0.44
0.63/0.74
0.00/0.43
0.00/0.17
0.75/0.75
0.40/0.67
0.29/0.29
0.00/0.00
0.60/0.70
0.32/0.32
0.00/0.00
0.00/0.00
0.00/0.73
0.00/0.86
0.29/0.29

33.2 0.00/0.25 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
34.1 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
34.2 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
35.1 1.00/1.00 0.14/0.16 0.60/0.60 1.00/1.00 0.83/0.83 1.00/1.00 0.91/0.91
35.2 1.00/1.00 0.23/0.27 o0.50/0.50 0.67/0.67 o0.17/0.17 o0.50/0.50 0.25/0.25
36.1 0.46/0.54 o0.13/0.14 0.20/0.30 0.23/0.31 o0.15/0.15 0.29/0.29 0.20/0.20
36.2 0.62/0.85 0.57/0.63 0.60/0.80 0.62/0.85 0.00/0.00 0.00/0.00 0.00/0.00
37.1 1.00/1.00 o0.18/0.19 o0.70/0.70 0.77/0.77 0.08/0.08 1.00/1.00 0.14/0.14
37.2 0.92/1.00 0.03/0.03 o0.10/0.10 0.08/0.08 0.00/0.00 0.00/0.00 0.00/0.00
38.1 1.00/1.00 0.05/0.07 0.20/0.20 0.25/0.25 o0.25/0.25 o0.20/0.20 o0.22/0.22
38.2 1.00/1.00 0.02/0.03 0.40/0.40 0.25/0.25 o0.25/0.25 0.25/0.25 0.25/0.25
39.1 0.00/1.00 0.00/0.02 0.00/0.80 0.00/0.79 0.00/0.43 0.00/0.86 0.00/0.57
39.2 0.00/0.29 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
40.1 0.29/0.93 0.03/0.04 o0.10/0.30 0.07/0.29 0.07/0.29 0.08/0.33 0.08/0.31
40.2 0.00/0.21 0.00/0.01 0.00/0.20 0.00/0.14 0.00/0.00 0.00/0.00 0.00/0.00
41.1 0.04/0.43 0.02/0.03 0.10/0.40 0.04/0.35 0.04/0.13 0.14/0.43 0.07/0.20
41.2 0.00/0.17 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
42.1 0.08/0.25 0.02/0.03 o0.10/0.20 0.08/0.17 0.00/0.00 0.00/0.00 0.00/0.00
42.2 0.00/0.67 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
43.1 0.31/0.50 0.04/0.04 0.30/0.30 0.19/0.19 0.19/0.19 0.60/0.60 0.29/0.29
43.2 0.19/0.19 0.10/0.11 0.20/0.20 0.19/0.19 0.06/0.13 0.20/0.40 0.10/0.19
44.1 1.00/1.00 0.14/0.29 o0.10/0.10 1.00/1.00 1.00/1.00 0.50/0.50 0.67/0.67
44.2 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
45.1 1.00/1.00 0.06/0.08 0.40/0.40 0.50/0.50 1.00/1.00 0.57/0.57 0.73/0.73
45.2 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
46.1 1.00/1.00 0.04/0.07 0.10/0.10 1.00/1.00 1.00/1.00 0.50/0.50 0.67/0.67
46.2 1.00/1.00 0.50/1.00 o0.10/0.10 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
47.1 0.57/0.71 0.08/0.09 0.20/0.50 o0.14/0.71 o0.14/0.57 0.17/0.67 0.15/0.62
47.2 0.00/0.§57 0.00/0.01 0.00/0.30 0.00/0.29 0.00/0.57 0.00/0.29 0.00/0.38
1-47.1 0.56/0.78 0.06/0.07 0.23/0.36 0.38/0.56 0.33/0.47 0.38/0.60 0.31/0.46
1-47.2 0.44/0.54 0.09/0.12 0.17/0.22 0.24/0.31 0.20/0.27 0.22/0.31 0.19/0.25
Query R p P@1o P@R R@S P@S F@S

Table A.2.1: Results are referenced by query and phase numbers, e.g., 9.2 stands for
query Q9, second phase (deep search)

62

A.3 MOVING AVERAGE P1vOoT SELECTION OPTIMALITY

Query FQS,, RQS pas FQs Qs
1-47 0.45/0.65 0.43/0.59 0.34/0.49 0.34/0.48 0.78/0.71
1 0.67/1.04 0.75/0.92 0.56/0.69 0.64/0.79 0.96/0.76
2 0.93/1.00 0.88/1.00 0.88/1.00 0.88/1.00 0.94/1.00
3 0.58/0.79 0.25/0.33 0.50/0.67 0.33/0.44 0.58/0.56
4 0.02/1.00 0.00/1.00 0.00/0.38 0.00/0.55 0.00/0.55
5 0.80/1.00 0.80/1.00 0.80/1.00 0.80/1.00 1.00/1.00
6 0.33/0.89 0.20/0.80 0.20/0.80 0.20/0.80 0.60/0.90
7 1.00/1.00 1.00/1.00 0.64/0.64 0.78/0.78 0.78/0.78
8 1.00/1.00 1.00/1.00 o0.17/0.17 0.29/0.29 0.29/0.29
9 0.00/0.48 0.00/0.03 0.00/1.00 0.00/0.05 1.00/0.11
10 1.00/1.00 1.00/1.00 o0.50/0.50 0.67/0.67 0.67/0.67
11 0.67/0.89 0.80/1.00 0.36/0.45 0.50/0.62 0.75/0.70
12 0.74/0.74 0.33/0.33 1.00/1.00 o0.50/0.50 0.68/0.68
13 0.15/0.31 0.33/0.67 0.09/0.18 0.14/0.29 0.93/0.93
14 0.00/0.02 0.00/0.00 0.00/0.00 0.00/0.00 1.00/0.00
15 0.50/1.00 0.50/1.00 0.33/0.67 0.40/0.80 0.80/0.80
16 0.67/1.00 1.00/1.00 0.29/0.29 0.44/0.44 0.67/0.44
17 0.20/0.20 o0.11/0.11 0.33/0.33 o0.17/0.17 0.83/0.83
18 0.00/0.02 0.00/0.00 0.00/0.00 0.00/0.00 1.00/0.00
19 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
20 0.00/0.38 0.00/0.33 0.00/0.43 0.00/0.38 1.00/0.98
21 0.00/0.19 0.00/0.08 0.00/0.25 0.00/0.12 1.00/0.66
22 0.67/0.86 o0.50/0.75 0.67/1.00 0.57/0.86 0.86/1.00
23 0.33/0.71 0.29/0.43 0.33/0.50 0.31/0.46 0.92/0.65
24 0.25/0.55 0.00/0.33 0.00/0.25 0.00/0.29 0.00/0.52
25 0.00/0.18 0.00/0.12 0.00/0.20 0.00/0.15 1.00/0.85
26 0.57/0.59 0.60/0.60 0.50/0.50 0.55/0.55 0.95/0.92
27 0.20/0.50 0.09/0.36 o0.14/0.57 o0.11/0.44 0.56/0.89
28 0.80/0.80 0.80/0.80 0.80/0.80 0.80/0.80 1.00/1.00
29 0.29/0.29 1.00/1.00 o0.11/0.11 0.20/0.20 0.70/0.70
30 0.81/0.89 0.69/0.77 0.82/0.91 0.75/0.83 0.92/0.94

63

31 0.04/0.21 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
32 0.00/0.86 0.00/1.00 0.00/0.55 0.00/0.71 1.00/0.82
33 0.50/0.75 0.50/0.50 0.40/0.40 0.44/0.44 0.89/0.59
34 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 1.00/1.00
35 1.00/1.00 1.00/1.00 0.75/0.75 0.86/0.86 0.86/0.86
36 0.26/0.34 o0.15/0.15 o0.25/0.25 0.19/0.19 0.74/0.56
37 0.90/0.90 0.54/0.54 o0.70/0.70 0.61/0.61 0.68/0.68
38 0.31/0.33 o0.50/0.50 o0.22/0.22 0.31/0.31 1.00/0.92
39 0.00/0.84 0.00/0.57 0.00/0.73 0.00/0.64 1.00/0.76
40 0.20/0.47 o0.21/0.50 0.16/0.37 0.18/0.42 0.91/0.91
41 0.08/0.38 0.04/0.17 0.10/0.40 0.06/0.24 0.73/0.63
42 0.14/0.24 0.08/0.08 0.33/0.33 o0.13/0.13 0.93/0.57
43 0.29/0.29 0.19/0.19 0.43/0.43 0.26/0.26 0.91/0.91
44 1.00/1.00 1.00/1.00 0.50/0.50 0.67/0.67 0.67/0.67
45 0.73/0.73 1.00/1.00 0.44/0.44 0.62/0.62 0.85/0.85
46 1.00/1.00 1.00/1.00 0.33/0.33 0.50/0.50 0.50/0.50
47 0.32/0.74 o0.14/0.71 0.11/0.56 0.12/0.63 0.40/0.85
1-47 0.45/0.65 0.43/0.59 0.34/0.49 0.34/0.48 0.78/0.71
Query FQS,, R@S P@s Fas Qs

64

[1]

(2]
(3]

(4]

(5]

6]

(7]

8]

(9]

[10]

References

Hannah Bast, Florian Béurle, Bjérn Buchhold, and Elmar Haussmann, Broccoli: Se-
mantic full-text search at your fingertips, CoRR abs/1207.2615 (2012).

Eric Brill, A simple rule-based part of speech tagger, 1992.

William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg, A comparison of
string distance metrics for name-matching tasks, 2003, pp. 73-78.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
Pavel Kuksa, and Michael Collins, Natural language processing (almost) from scratch.
arxiv:1103.0398v1, 2011.

Yuangui Lei, Victoria Uren, and Enrico Motta, Semsearch: A search engine for the seman-
tic web, Proc. sth International Conference on Knowledge Engineering and Knowl-
edge Management Managing Knowledge in a World of Networks, Lect. Notes in
Comp. Sci., Springer, Podebrady, Czech Republic, Springer-Verlag, 2006, pp. 238-
245.

Vanessa Lopez and Enrico Motta, Ontology-driven question answering in aqualog, in pro-
ceedings of 9th international conference on applications of Natural Language to Infor-
mation, 2004.

Betsy Sparrow, Jenny Liu, and Daniel M. Wegner, Google effects on memory: Cognitive
consequences of having information at our fingertips, Science 333 (2011), no. 6043, 776
778.

Kristina Toutanova and Christopher D. Manning, Enriching the knowledge sources used
in a maximum entropy part-of-speech tagger, In EMNLP /VLC 2000, 2000, pp. 63—70.

Thanh Tran, Philipp Cimiano, Sebastian Rudolph, and Rudi Studer, Ontology-based
interpretation of keywords for semantic search, The Semantic Web, Springer, 2007,

Pp- 523-536.

Dong Wang, Qing Wu, Haiguang Chen, and Junyu Niu, A multiple-stage framework
for related entity finding, Proceedings of the 19th Text REtrieval Conference (TREC),

2010.

65

[11] Qing Yang, Peng Jiang, Chunxia Zhang, and Zhendong Niu, Reconstruct logical hierar-
chical sitemap for related entity finding, Proceedings of the 19th Text REtrieval Confer-
ence (TREC), 2010.

66

1.1.1
1.1.2

4.1.1

4.2.1

4.8.1

5.2.1
5.2.2

5.2.3

5.2.4

Listing of figures

Query graph for “books written by Lewis Carroll”
Query graph for “female computer science professors in Germany”

Overview of the two-phase approach: entity retrieval on the left and the
deep search on the right, with shared intermediate results in the center . . 22
User interface example: query input field and search button at the top and a
resultlist containing entity name, its type and alink for additional information 23

Hypothetical ontology’s is-arelations 32
Pythia performance view for an example uncached queryrun 38
Pythia evaluation view excerpt: averaged results on top; two rows (one for

each phase) per query; GT shows the number of expected answer entities;
approximate match results areinbrackets 0L 39
Pythia UI excerpt: query input at top; expanded views for query analysis,
SAT, entity selection (first phase) and semantic entity selection (second
phase); other views are collapsed or out of screen 40
Pythia candidate entities view for the query “largest planet”: coarse type is
detected by SENNA during entity extraction; darkened rows are filtered
outentities L. e e e e e e e e e 41

67

List of Tables

3.1.1 A “Tamthewalrus” e 15
3.1.2 B: Tamtheeggman” Lo o o o 15
3.1.3 C: “Theyaretheeggmen” 15
3.1.4 IndexforA,BandC 15
3.1.5 Invertedindexexample Lo Lo Lo oL 15
4.3.1 POS and keyword tags for the query “books written by lewis carroll” 24
4.3.2 LAT detectionforatyperquery 25
4.3.3 LAT detectionforatypeaquery 25
6.3.1 Average results with ontology filter (ont), query similarity filter (qsim) and

coarse type filter (ctype) 48
6.3.2 Ranking parameter descriptions 49
6.3.3 Rankingschemeclasses 49
6.3.4 Rankingschemes 50
6.3.5 Ranking results with gsim + ctype filtering and y = o.55 selection 51
6.4.1 Selection optimization results with ranking scheme rsx8 52
6.4.2 Moving average pivot selectionresults 53
6.5.1 Average results for entity retrieval (1) and deep search (2) phases 54

A.2.1 Results are referenced by query and phase numbers, e.g, 9.2 stands for
query Qo, second phase (deepsearch) 62

68

DECLARATION

I HEREBY DECLARE, that I am the sole author and composer of my Thesis and that no other
sources or learning aids, other than those listed, have been used. Furthermore, I declare
that I have acknowledged the work of others by providing detailed references of said work.
I hereby also declare, that my Thesis has not been prepared for another examination or as-
signment, either wholly or excerpts thereof.

OFFENBURG, 26. FEBRUARY 2014
PLACE, DATE EUGEN Sawin

71

Colophon

HIS THESIS WAS TYPESET using

BIEX, originally developed by Leslie

Lamport and based on Donald Knuth’s
TgX. The body text is set in 12 point Arno
Pro, designed by Robert Slimbach in the
style of book types from the Aldine Press in
Venice, and issued by Adobe in 2007. The
original template, which can be used to
format a thesis with a similar look and feel,
has been released under the permissive MIT
(x11) license, and can be found online at
github.com/suchow/ or from the author at
suchow@post.harvard.edu.

72

https://github.com/suchow/
mailto:suchow@fas.harvard.edu

	Introduction
	Motivation
	Contribution
	Thesis Structure

	Related Work
	Entity Retrieval on the Web
	User Query Interfaces

	Foundations
	Full-Text Search
	Natural Language Processing

	Semantic Search with Keywords
	Two-Phase Approach
	User Experience
	Query Analysis
	Full-Text Search
	Entity Extraction
	Entity Ranking
	Answer Entities Selection
	Semantic Answer Type
	Entity Filtering & Clustering
	Semantic Query Construction

	Implementation
	System Architecture
	User Interface
	Full-Text Search
	Entity Extraction
	Entity Filtering
	Semantic Search

	Evaluation
	Ground Truth
	Performance Measures
	Entity Retrieval
	Answer Entities Selection
	Deep Search

	Discussion
	Conclusion
	Future Work

	Appendices
	Yahoo Semantic Search Queries
	Combined Search Results
	Moving Average Pivot Selection Optimality

	References

