Multi-Modal Route Planning in Road and Transit Networks

Daniel Tischner

Master's thesis
SS 18
Contents

- What's it about?
- Models
- Routing
- Experiments
- Conclusion
 - Demo
What's it about?

- Finding *optimal* route from A to B

- Road networks
 - Well understood, many algorithms
 - Dijkstra, A*, ALT, Arc-Flags, CH, SHARC, CHASE, HLC, TNR

- Public Transit networks (train, bus, tram, ...)
 - Differ a lot from road networks
 - Transfer Patterns, RAPTOR, CSA
What's it about?

- Multi-modal routing
 - Combining road and transit networks

- Hard to combine
 - Algorithms exploit network properties
 - Network structure is very different

- Access Node Routing
 - Compute route piecewise in isolated networks
Models

- Road graph
 - Nodes: Road junctions
 - Edges: Roads connecting the junctions
Models

- Transit graph (realistic time expanded)
 - One node per event
 - arrival
 - departure
 - transfer
 - Edges indicating
 - traveling
 - transfer
Models
Models

- Link graph
 - Find road node for every transit stop
 - For example: nearest
 - Link edges
 - From road node to
 - all arrival nodes of transit stop

- Graph based combined network
Models

- **Timetable**
 - non-graph based transit network
 - tuple \((S, T, C, F)\)

- **Stops** \(S = \{ f, o, k \}\)

- **Trips** \(T = \{ t_{104}, t_{17024}, t_{17322}, t_{79} \}\)
Models

- **Connections C**
 - (f, o, 3:56 pm, 4:28 pm, t104)
 - (o, k, 4:29 pm, 4:58 pm, t104)
 - (f, o, 4:03 pm, 4:50 pm, t17024)
 - (o, k, 4:35 pm, 5:19 pm, t17322)
 - (k, f, 7:10 pm, 8:10 pm, t79)

- **Footpaths F**
 - (f, 300, f)
 - (o, 300, o)
 - (k, 300, k)
Routing

- Multi-modal route planning
 - Combining road and transit networks
 - Queries have transportation mode restrictions

- Modified Dijkstra
 - Simple baseline
 - Runs on Link graph
 - Combinable with optimizations (A*, ALT, ...)

University of Freiburg - Master's thesis SS 18 - Daniel Tischner
Routing

- Access Node Routing
 - Generic approach
 - Piecewise computation on isolated networks
 - Any road algorithm for road network (ALT)
 - Any transit algorithm for transit network (CSA)

- Access nodes for A and B
 - A and B in road network
 - Access nodes in transit network
Routing

- **Good access nodes**
 - Difficult to find, focus of research
 - Simple solution: \(k \)-nearest nodes (\(k = 3 \))

- Route consists of
 - A to access nodes (road network)
 - Access nodes of A to access nodes of B (transit network)
 - Access nodes to B (road network)
Routing
Experiments

- Generic route planning framework Cobweb
 - Data formatted as OSM or GTFS
 - Database for metadata
 - Represented in models (with serialization)
 - Extensive configuration and documentation

- Several algorithms
 - Dijkstra, A*, ALT,
 - CSA,
 - Modified Dijkstra, ANR,
 - Cover Trees,
 - Fuzzy prefix search
Experiments

- Model sizes

<table>
<thead>
<tr>
<th></th>
<th>data (MB)</th>
<th>Road graph</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>raw</td>
<td>filtered</td>
<td>nodes</td>
<td>edges</td>
</tr>
<tr>
<td>Freiburg</td>
<td>2260</td>
<td>86</td>
<td>743003</td>
<td>1494883</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>2420</td>
<td>118</td>
<td>973142</td>
<td>1950978</td>
</tr>
<tr>
<td>Switzerland</td>
<td>5530</td>
<td>279</td>
<td>2627645</td>
<td>5226060</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>data (KB)</th>
<th>Transit graph</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>raw</td>
<td>nodes</td>
<td>edges</td>
<td></td>
</tr>
<tr>
<td>Freiburg</td>
<td>1713</td>
<td>613329</td>
<td>1006862</td>
<td></td>
</tr>
<tr>
<td>Stuttgart</td>
<td>32213</td>
<td>4517511</td>
<td>7415894</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>75477</td>
<td>32688498</td>
<td>53370236</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Timetable</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>stops</td>
<td>trips</td>
<td>connections</td>
<td>footpaths</td>
</tr>
<tr>
<td>Freiburg</td>
<td>713</td>
<td>13249</td>
<td>191194</td>
<td>255495</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>7877</td>
<td>90475</td>
<td>1415362</td>
<td>1926611</td>
</tr>
<tr>
<td>Switzerland</td>
<td>30227</td>
<td>1014699</td>
<td>9881467</td>
<td>3793581</td>
</tr>
</tbody>
</table>
Experiments

- Dijkstra rank
 - Measure for distance
 - The higher the rank, the greater the distance

- Experiments
 - Time independent (Dijkstra, A*, ALT)
 - Time dependent (Dijkstra, CSA)
 - Multi-modal (Modified Dijkstra, ANR)
Experiments

- Bad scaling for increasing range
- A^* is bad, ALT can perform better
Experiments

- CSA is way faster than Dijkstra
- CSA is viable
Experiments

- CSA is subject to traffic congestion
Experiments

- ANR has much overhead
- If used with good algorithms, faster and feasible
Conclusion

- Multi-modal routing
 - Difficult, networks are very different

- Instead, hybrid approach
 - Isolate networks
 - Specialized algorithms for individual networks

- ANR is a promising technique
Conclusion

- However, still a lot to do
 - Turn penalties
 - Multi-criteria routing
 - Complex transportation mode restriction models
 - Integrating real-time data

- Many subproblems
 - Leading to many specialized techniques
 - So far, no viable approach that addresses all problems
Related links

- **Cobweb, a multi-modal journey planner**
 - https://github.com/ZabuzaW/Cobweb

- **Route Planning in Transportation Networks**
Related links

- **Connection Scan Algorithm**

- **Accelerating Multi-modal Route Planning by Access-Nodes**
 - https://link.springer.com/chapter/10.1007/978-3-642-04128-0_53
Contents

- What's it about?
- Models
- Routing
- Experiments
- Conclusion
 - Demo