
Master’s Thesis

Scriburg: A Configurable Preferential

Web Search Engine

Alhajras Algdairy

Examiners: Prof. Dr. Hannah Bast
Prof. Dr. Matthias Teschner

Supervisor: Natalie Prange

Albert-Ludwigs-University Freiburg
Faculty of Engineering

Department of Computer Science
Chair of Algorithms and Data Structures

November 27th, 2023

Writing period

08. 05. 2023 – 27. 11. 2023

Examiners

Prof. Dr. Hannah Bast

Prof. Dr. Matthias Teschner

Supervisor

Natalie Prange

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare, that my Thesis has not been prepared for another examination
or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Acknowledgments

I would like to extend my deepest gratitude to Professor Hannah Bast for accepting
my topic and her supervision.

My great thanks to my supervisor Natalie Prange for her competent opinions and
suggestions.

I would like to thank my beloved mother and father for their limitless love and
support.

Last but not least, I want to express my love and heartfelt gratitude to my wife
(Monya) for her love and support.

iii

Abstract

Online content analysis is crucial in making informed decisions in today’s business
landscape. However, existing solutions in this space are often proprietary, needing
more transparency in their code and flexibility for customization and scalability. In
this thesis, Scriburg is introduced, a prototype for a large-scale search engine that
can be configured to suit specific user preferences. Scriburg has been developed to
crawl efficiently and index web content, offering a range of settings through a user-
friendly interface. The system is designed to handle small and large websites, making
it adaptable to various scenarios. Scriburg is particularly well-suited for situations
where users have a specific interest in a subset of the web, such as a particular domain
or a select group of web pages. Despite the significance of web search engines, there
remains a need for further academic research focused on developing and designing
open-source search engine solutions that can be easily used and extended by a wide
range of users.

v

Contents

Acknowledgments iii

1 Introduction 1
1.1 Motivation . 1
1.2 Task Definition . 2
1.3 Contribution . 3
1.4 Chapter Overview . 3

2 Related Work 5
2.1 Existing Web Crawlers . 5
2.2 Google High-level Architecture . 7

3 Background 11
3.1 Web Search Engine . 11

3.1.1 Requirements and Features 11
3.2 Crawler . 13

3.2.1 Specifications . 13
3.2.2 Architecture . 14
3.2.3 Data Structure . 15

3.3 Indexing . 18
3.3.1 Tokenization . 18
3.3.2 Document Unit . 19
3.3.3 Inverted Index . 20

3.4 Ranking . 21
3.4.1 BM25 . 22

3.5 Fuzzy Search . 24
3.5.1 Fuzzy Search with Q-grams 26

4 Approach 29
4.1 Software Architecture . 29

vii

4.2 Crawler Implementation . 33
4.2.1 Threads Pool . 34
4.2.2 Scaling the System . 35
4.2.3 Practical Challenges . 35

4.3 Indexer Implementation . 37
4.4 User Interface Design . 39

4.4.1 Templates and Inspectors . 39
4.4.2 Crawlers . 40
4.4.3 Runners . 40
4.4.4 Indexers . 41
4.4.5 Search Engine Result Page (SERP) 43

5 Evaluation 45
5.1 Testing Environment . 45
5.2 Crawler . 45

5.2.1 Datasets . 46
5.2.2 Experiments . 47

5.3 Indexer . 62
5.3.1 Datasets . 62
5.3.2 Metrics . 63
5.3.3 Experiments . 64

5.4 User Experience . 70

6 Conclusions and Future Work 73
6.1 Conclusions . 73
6.2 Future Work . 74

Bibliography 76

viii

List of Figures

1 High-level view of Google search engine architecture, showing its main
components [Brin and Page, 1998]. 8

2 An overview of a generic search engine system. 12

3 An overview of a web crawler architecture [Manning et al., 2008]. . . 14

4 Illustration of the Breadth First Search (BFS) algorithm visiting five
URLs using a queue [geeksforgeeks, 2023a]. 16

5 Illustration of the Depth First Search (DFS) algorithm visiting five
URLs using a stack [geeksforgeeks, 2023b]. 17

6 An illustration of an inverted index featuring three documents. All
tokens are included in this example, and the sole text normalization
applied is converting all tokens to lowercase. Queries that involve
multiple tokens are resolved using intersection operations. However,
Scriburg uses a union operation and ranking score [Castillo, 2005]. . 21

7 A simple q-gram dictionary where three q-grams are linked to the
tokens that contain them and n = 2. 27

8 Scriburg software architecture overview. 30

9 An overview of the runner’s table, showing the runner’s status and
progress. 41

10 An overview of the indexers table, showing their status and progress. 43

11 Scriburg Search Engine Result Page (SERP). 43

12 Multithreading performance comparison used on crawler-test.com

site. 54

13 The workload distribution among four threads in four different runners.
The chart shows each thread how many documents it has collected
and the percentage. 55

ix

14 ParseHub project overview on the left and on the right, the website is
shown in a live session, allowing users to click to select the information
to parse. 71

x

List of Tables

1 Documents content used as an example of MB25 ranking. 23
2 The first ten tokens from the resulting inverted index and the corre-

sponding document scores. 24

3 Inspector form fields. Fields with * are required. 39
4 Crawler configuration options. Fields with * are required. 40
5 Indexer configuration options. Fields with * are required. 42

6 The testing environment of the machine used in this evaluation. . . . 45
7 Crawler configuration for the crawler-test.com website. 47
8 Completed crawler result of the crawler-test.com web site. 49
9 Crawler configuration for the crawler-test.com website, increasing

the depth to 10. 52
10 Completed crawler result of the crawler-test.com website when the

depth is 10. 53
11 World University Rankings website crawler configuration. 57
12 World University Rankings crawler results. 58
13 Douglas website crawler configuration. 59
14 Douglas crawler results. 60
15 Stack Overflow crawler configuration. 61
16 Stack Overflow crawler results. 62
17 Stack Overflow posts dataset. 62
18 Wikidata dictionary dataset. 63
19 Stack Overflow indexing configuration, test the default settings without

any changes. 65
20 Stack Overflow indexing configuration, the effect of changing BM25

parameters. 67
21 Stack Overflow indexing configuration, the effect of changing Stop Words 67
22 Stack Overflow indexing configuration, the effect of reducing the Small

Words Threshold attribute. 68

xi

23 Stack Overflow indexing configuration, the effect of using the Boosting
Formula. 70

xii

List of Algorithms

1 Start Crawling . 33
2 Create Inverted List . 38

xiii

1 Introduction

1.1 Motivation

Since the beginning of the Digital Revolution [Rindfleisch, 2020], known as the Third
Industrial Revolution, in the latter half of the 20th century, the importance of data has
increased as it became the new currency shaping the dynamics of our interconnected
world. From social media platforms and e-commerce transactions to information
sharing and entertainment consumption, online activities generate enormous amounts
of data. The online data is sometimes called the "new oil" or the "new currency," as it
impacts almost the same economies and societies as oil. Businesses and organizations
understand the power of data as they provide insight into consumer behavior, refine
business strategies, and enhance decision-making processes. Furthermore, the rise
of artificial intelligence has further amplified the value of Internet data. Natural
Language Processing (NLP)1 [Cambria and White, 2014] is becoming a new
hot topic as all the giant firms race to create their model; however, data is the
fuel to power those models. The more data is collected, the better the model can
become. Consequently, collecting, analyzing, and leveraging internet data has become
a cornerstone of competitiveness, innovation, and progress in the digital age.

Internet data can be harvested by using automated software programs called web
crawlers [Madhavan et al., 2008], also known as web spiders or web bots. Their main
goal is to discover, retrieve, and index2 [Lee et al., 1996] information from websites.
The applications and use cases of internet crawlers are diverse and valuable; however,
the main application that sparked this thesis was market research. Businesses use
web crawlers to collect data about their competitors, market trends, and consumer
opinion. This information helps in making informed business decisions.

Search engines like Google [Brin and Page, 1998], Bing, and DuckDuckGo excel
at web crawling and indexing, but businesses, especially in e-commerce, require

1Natural language processing is an interdisciplinary field that enables computers to understand
and manipulate speech.

2Indexing involves the storage of document indexes to enhance the speed and performance of
locating relevant documents in response to a search query.

1

competitive pricing insights beyond standard search results. Google’s parameters,
including brand visibility, user location, SEO3 ability and more hidden variables impact
document rankings. Different search engines yield unique results, and companies
may want to exclude parts of the internet from indexing. Customization to specific
domains and use cases, like price comparison, is necessary.

Businesses often seek a subset of the internet relevant to their domain. Indexing
and ranking criteria vary by use case, necessitating tailored configurations. Employing
domain expertise (ata scientists) is crucial to some businesses. However, data scientists
face initial setup challenges and costs. An infrastructure allowing data scientists to
use adaptable scripts with minimal programming knowledge would be valuable. Data
scientists do not have to reinvent the wheel to adjust a basic search engine and extend
it whenever needed.

1.2 Task Definition

Crawler (software that downloads web pages) starts crawling with a seed URL (initial
URL) donated as U1. Since more than one crawler usually runs in parallel for an
n number of crawlers, it yields the following seed URLs set U = {U1, U2, U3, ...Un}.
Each crawler has two objectives:

• Each crawler should be able to find new URLs from the seeds URLs U . This
means for each URL in U , a set of prospective URLs, Û = {Û1, Û2, Û3, ...Ûn},
should be found to extend the existing URLs in U , creating Utotal = {U ∪ Û}.
Iteratively the new found URLs Û will be visited to find a new set of URLs
ˆ̂U = { ˆ̂U1,

ˆ̂U2,
ˆ̂U3, ...

ˆ̂Un} to extend the existing URLs in Utotal = {U ∪ Û ∪ ˆ̂U}.

• For each visited URL in Utotal, download the whole page p content or download
only a subset of the page p content known as documents denoted as D =

{D1, D2, D3, ...Dn}.

Furthermore, for a user query q the goal is to return a set of relevant documents R
where the relevant documents are a subset of the crawled documents R ⊂ D.

While achieving the two mentioned tasks, a user-friendly interface that configures
the search engine implementation should be designed.

3SEO, or Search Engine Optimization, is the practice of optimizing online content and websites to
improve their ranking in search engine results.

2

1.3 Contribution

This thesis aims to answer the following questions:

• What are the challenges and bottlenecks to creating a scalable, configurable
search engine?

• Can a similar existing tool be surpassed?
• How does changing the configurations provided by the user interface affect the

results in the crawling and indexing accuracy?
• Can a User Interface (UI) be created that intuitively allows users to crawl and

index targeted websites from the internet?
• How well do crawlers react to different websites with different DOM4 structures?
• Can the indexing and crawling processes be integrated into the same tool?
• Can meaningful evaluation metrics for the implemented search engine be identi-

fied?

1.4 Chapter Overview

The organization of this thesis is as follows:

• Chapter 2 dives into the prior research that serves as the foundation for this
thesis.

• Chapter 3 clarifies the essential theoretical background for understanding this
thesis’s fundamental concepts.

• Chapter 4 presents an overview of the system’s architecture and design, describ-
ing the implementation of the crawling process and addressing the challenges
faced in the process.

• Chapter 5 discusses the process of crawling and indexing datasets used for
evaluation and the methodologies employed for conducting the evaluation.

• Chapter 6 summarises the findings and future research opportunities.

4The DOM (Document Object Model) is a programming interface that represents the structure of
a web page as a tree of objects, enabling developers to interact with and manipulate web page
elements using scripting languages like JavaScript.

3

2 Related Work

This chapter examines commercial and open-source solutions that provide function-
alities similar to Scriburg’s. In Section 2.1, a collection of currently available web
crawlers will be presented. Section 2.2 provides an overview of the architecture of
the Google search engine, as some of its fundamental architectural concepts will be
adapted with certain modifications.

2.1 Existing Web Crawlers

The concept of web crawling dates back to the early 1990s when the World Wide
Web [Berners-Lee et al., 1994] was still in its infancy.

WebCrawler, created by Brian Pinkerton in 1994 [Pinkerton, 2000], is considered
the first actual web crawler-powered search engine. One of the significant innovations
of WebCrawler was its full-text1 searchability. This capability made it famous and
highly functional.

Over the past few decades, web crawlers have evolved significantly, adopting various
designs and implementations to crawl and index the internet. They have adapted
to address emerging challenges and complexities, such as handling dynamic content,
user interactions, authentication, and ethical concerns. Notably, Google is a state-
of-the-art search engine dominating the entire market. As of 2023, Google controls a
market share of approximately 84% [Statista, 2023], surpassing its closest competitor,
Bing, by a significant margin of 75%. Bing, a well-known search engine developed by
Microsoft, has garnered increased attention recently. Nevertheless, given Google’s
dominance over other search engines, it is reasonable to focus on its solutions and
overlook the rest. Furthermore, Google makes some research papers available online,
a practice that has yet to be observed among other search engines like Bing, making
it easier for us to study it.

Although the previously mentioned search engines offer a wide range of features
and are used as generic crawlers to fetch all web pages from the entire internet, they

1Full-text search involves electronically searching through extensive text data and retrieving results
that contain either some or all of the words from the query.

5

still need to be more general and can not be used and configured to specific personal
use cases. Moreover, the most powerful search engines are not free; nobody can clone
and modify as they wish. Section 2.2 will explain Google’s robust infrastructure,
which will be used as a starting point for the Scriburg search engine. However, it
must be extended by adding a user interface to make it configurable.

Since using a general search engine like Google directly is currently not an option,
data scientists employ various tools to crawl and parse internet content. Each tool has
its advantages and disadvantages, depending on distinct use cases. The following list
summarizes several widely recognized crawling tools and explains how the proposed
solution in this thesis distinguishes itself from them.

Beautiful Soup [Richardson, 2007]: An open-source library that stands out
as a widely used web scraping library that simplifies retrieving data from HTML
and XML documents. Beautiful Soup demonstrates exceptional proficiency
in parsing HTML documents, streamlining the task of retrieving particular
components like headings, paragraphs, tables, and links. Beautiful Soup is
not a search engine. It lacks the most fundamental search engine components;
hence, it requires programming skills and can only be used to implement a
search engine. Beautiful Soup can only parse the first seen page HTML version.
Meaning it does not render the JavaScript code. This is bad as most modern
web pages use JavaScript heavily to improve the page’s latency. For example,
pagination2 will be an issue for Beautiful Soup.

Scrapy [Kouzis-Loukas, 2016]: It is an open-source, powerful, and flexible
tool that easily crawls and parses different websites. It allows the creation of
custom spiders to crawl multiple pages. Easy to scale makes it suitable for
large projects. This tool is perfect for programmers but not for non-technical
users, as it requires good knowledge of Python programming. Scriburg aims
to reduce the programming workload and save time by offering a user-friendly
interface that can be effortlessly configured for individual websites. Moreover,
Scrapy also does not render the JavaScript content out of the box and requires
an extra library named Splash 3.

Selenium [Huggins, 2004]: It is an open-source, robust, and adaptable
solution for web scraping, automating browser actions, interaction with web

2Website pagination is dividing a long list of content or search results into multiple pages to make
it easier for users to navigate and access information.

3Scrapy documentation: https://docs.scrapy.org/en/latest/topics/dynamic-content.html

6

https://docs.scrapy.org/en/latest/topics/dynamic-content.html

pages, and data extraction from online sources. It shares some features with the
Beautiful Soup as it is an excellent tool for parsing the HTML DOM. Still, it
also overcomes the issue previously mentioned about rendering JavaScript and
supporting dynamic contents as pagination. Interactive browser automation
makes it easy to mimic the user’s behavior, which makes it easier to navigate
toward hidden content that requires events and human interactions. Selenium
alone can not be used as a search engine; however, it will be used in this thesis
as a fundamental tool for the search engine implemented. Its primary role in
the implementation will be loading pages and parsing HTML.

ParseHub [Cargill and Vasylenko, 2015]: Stands out as a web crawler
tool with an intuitive User Interface, making it a preferred choice for many data
scientists. Its most significant advantage lies in its data extraction simplicity.
ParseHub has free and paid plans4, with the free version allowing users to
scrape up to 200 pages per run. While this limitation may prove a bit slow
for professional crawling, it suits personal use admirably. However, this tool
lacks the ability to fine-tune crawling algorithms and lacks an indexing feature.
Given its similarity to the solution implemented in this thesis, it will serve as a
valuable point of comparison in the evaluation chapter 5.

2.2 Google High-level Architecture

As highlighted in the prior section, Google’s foundational architecture serves as the
blueprint for designing Scriburg. Google’s search engine architecture provides a
comprehensive framework for building a scalable search engine, making it an ideal
starting point for any research in this domain. Most code within the Google search
engine was developed in C and C++ to ensure efficiency and compatibility with
operating systems like Solaris and Linux [Brin and Page, 1998]. On the contrary,
Scriburg is implemented in Python 3.10 [Van Rossum and Drake Jr, 1995]. This
choice was made because, in general, Python has a milder learning curve compared
to C and C++, making it more appealing to the majority of data scientists for
adjustments and modifications.

Figure 1 shows the basic Google high-level architecture. Google employs a dis-
tributed crawler system to retrieve web pages from the internet. The URL Server
maintains a list of discovered URLs that require crawling, effectively serving as a load

4ParseHub plans: https://www.parsehub.com/pricing

7

https://www.parsehub.com/pricing

balancer5 by dispatching these URLs to available Crawlers. The Crawlers then down-
load the required documents from the web pages, assign a unique identifier known as
a doc ID to each page, and store the page content on Store Servers. Subsequently,
the Store Servers compress and archive the pages in a Repository.

The next phase involves the Indexer component, which decompresses the pages and
parses their content. Each document transforms into a set of words referred to as hits,
where each hit records the word and its position within the document. The Indexer
later organizes these hits into Barrels. Furthermore, the Indexer collects links within
the crawled pages and maintains them in an anchor file. This anchor file contains
information about the links and their interrelationships [Brin and Page, 1998].

Figure 1: High-level view of Google search engine architecture, showing its main
components [Brin and Page, 1998].

The URL Resolver reads the links from the anchors’ file and converts the relative
URLs into absolute URLs. The URLs are then assigned to their doc ID. The links
database saves pairs of doc IDs that will be used to compute Page Ranks for all the
documents.

5A load balancer is a network device or software application that evenly distributes incoming network
traffic across multiple servers or resources to enhance efficiency and ensure high availability.

8

Initially organized by doc ID, the barrels are then rearranged by the sorter based
on word ID. This process generates an inverted index [Koehn and Knight, 2003].
Moreover, the sorter generates a list of word IDs and corresponding offsets within
the inverted index. More explanation about what an inverted index is and how to
implement one will be explained in Section 3.3.3.

9

3 Background

This chapter tackles the fundamental principles and groundwork of the theory
encompassing concepts, terminology, and methodologies related to search engines
as applied within this thesis. Section 3.1 dives into the essential components and
characteristics required to implement the search engine discussed in this thesis.
Section 3.2 provides a comprehensive examination of the crawler’s specifications and
architecture. Section 3.3 offers an in-depth explanation of the fundamental indexing
terms and concepts essential to this thesis, while Section 3.4 explores the ranking
score used in this research.

3.1 Web Search Engine

Web search engine is software that collects information from the web and indexes it
efficiently to optimize the searching process by the end user. When users enter their
queries to ask for information, the engine performs queries, looks up the pre-built
organized index, and returns relevant results. Search Engine Results Pages
(SERPs), present the returned results from a search. The result is then ranked based
on predefined criteria.

Web search engines use crawlers or spiders to collect and harvest the internet,
jumping from one page to another. Each page can contain several links. The crawler’s
task is to find the links, visit them, and harvest them. After the crawlers download
content from the visited pages, indexing is the next process where information is
organized and optimized for search.

3.1.1 Requirements and Features

Regardless of all the search engines’ implementation and design, they share certain
features and prerequisites for their effectiveness. Below is a compilation of the most
essential features:

Web Crawling and Indexing: As shown in Figure 2, the initial step in
the search engine’s operation is web crawling. Crawlers initiate the process

11

Figure 2: An overview of a generic search engine system.

by connecting to the web and downloading the required pages. Subsequently,
indexing comes into play, where the downloaded files are organized and indexed
to enhance querying and search efficiency. Parsing the downloaded pages can
be carried out in either the crawling phase or during indexing. In Scriburg, this
parsing occurs during the crawling process. It is worth noting that, in Scriburg,
pages are not downloaded; the targeted documents are parsed and stored in
the database, and the pages are discarded immediately. Scriburg only stores
the required information from the page, not the entire page. More explanation
on crawling and indexing will be given in sections 3.2 and 3.3.

Ranking and Relevancy: As indicated in Figure 2, when users input a
query to search for relevant documents, they face the Search Engine Results
Pages (SERP). Users typically focus on the top results while overlooking the
lower results. Hence, ranking the returned documents and prioritizing the most
relevant documents at the top and the less relevant ones further down is crucial
to user experience. More explanation on ranking will be given in Section 3.4.

Scalability and Performance: A distributed system is essential for man-
aging the extensive data and traffic demands. A load balancer is critical
in distributing the crawling tasks efficiently among nodes and threads. More
information on distributing the workload can be found in Section 4.2.1.

12

3.2 Crawler

The essential role of crawlers is to effectively and reliably collect as much information
from the web as possible. There are different types and categories of crawlers. The
first category is Universal or Broad crawler. This category of web crawlers does
not confine itself to web pages of a specific topic or domain; instead, they continuously
traverse links without limitations, collecting all encountered web pages. Google
and Bing are classified as universal search engines. The second category is called
Preferential crawler (Focused crawler). Focused crawlers target specific topics,
themes, or domains [Kumar et al., 2017]. They are designed to gather information
from a particular domain or subject area, providing specialized search results. Scriburg
falls into this category as it only focuses on a subset of links on the internet.

3.2.1 Specifications

Crawlers can display a diverse range of features and specifications. Nevertheless,
certain essential elements must be incorporated, while others are critical for ensuring
a reliable and functional crawler [Manning et al., 2008].

Robustness: Web crawlers can be fragile and easy to break due to the nature
of the dynamic contents on the web and the internet connection. Crawlers
may encounter broken links, leading to errors and incomplete indexing. Some
websites may block or ban crawlers’ IP addresses if they perceive them as
causing too much traffic or disruption. Web crawlers must identify those edge
cases and obstacles and tackle them.

Politeness: The crawler implementation can be unintentionally dangerous
if incorrectly designed. A Denial of Service (DoS) and a Distributed
Denial of Service (DDoS) attacks can occur due to an irresponsible crawler
implementation [Eliyan and Di Pietro, 2021]. Hence, crawlers must respect
website policies and avoid breaking up web services and loading the servers.

Performance and Efficiency: The crawling system should use various re-
sources, such as processing power, storage capacity, and network bandwidth.
Moreover, the crawler should be able to function in distributed microservices
across multiple machines. Making it scalable when needed.

Freshness: Obtaining recent versions of previously accessed pages, ensuring
the search index remains updated. The frequency of content updates varies

13

significantly depending on the type of website. For instance, news websites
typically refresh their content daily, while social media platforms update more
frequently, and landing pages may see updates every few weeks or months.
There are some methods for estimating the freshness and age of the pages to
update them when needed [Castillo, 2005]; however, in this thesis, the user can
manually rerun the crawler.

3.2.2 Architecture

Figure 3 shows a basic crawler architecture similar to the one used in Scriburg with
some minor modifications. The Fetch module communicates with the internet and
collects the pages passed by the URL Frontier module using HTTP requests. The
URL Frontier module contains a list of the URLs that need to be fetched by the Fetch
module. Parsing module that takes the page content found by the Fetch module
and parses the page content to find the following links to be passed to the URL
Frontier and also to parse any value needed from the page, like text and images.
The next step involves filtering the parsed document to eliminate previously visited
URLs, duplicate content, and pages prohibited by the website. The Domain Name
System (DNS)1 resolution module identifies the web server from which to retrieve
the page indicated by a given URL [Manning et al., 2008]. Since Selenium is used
for crawling, Selenium will use the default DNS provided by the Internet Service
Provider (ISP). Hence, the DNS will be excluded in this thesis.

Figure 3: An overview of a web crawler architecture [Manning et al., 2008].

The crawling process begins with adding a seed URL to the URL Frontier as a
starting point. The crawler retrieves and stores the corresponding page for parsing.

1The Domain Name System (DNS) is a distributed naming system for internet resources, linking
information to domain names.

14

The page’s textual content, embedded links, and images are extracted during parsing,
with the content prepared for use by the search engine’s indexer. Each parsed link
undergoes filtering to determine if it is eligible for inclusion in the URL Frontier.

Following parsing, a filtering process is essential. Firstly, the content’s uniqueness
is verified using a fingerprint, often a checksum2 stored in Doc FP’s database.
Next, newly parsed URLs are filtered based on various criteria, such as excluding
URLs outside the target country or restricted URLs. Website administrators can
specify additional filtering rules, often outlined in a robots.txt3 file. The Robots
Exclusion Protocol (robots.txt) file is a widely recognized standard websites use
to communicate which parts of the site are accessible to web crawlers and other web
robots [Koster et al., 2022].

The robots.txt file can be obtained at the start of the crawling process and cached
for efficiency, assuming it will not change during crawling. This approach is more
efficient than making repeated HTTP requests for each web page crawled, reducing
the number of requests and server load. Google crawlers detect the robots.txt file
changes after each 24 hours 4. Note that including robots.txt in the crawling
process, aligns with the politeness guidelines in the crawler specifications section
3.2.1.

3.2.3 Data Structure

Scriburg employs two distinct data structures for its crawling implementation: it uti-
lizes Breadth First Search (BFS) and Depth First Search (DFS) [Kozen, 1992].

Breadth First Search (BFS): Considering the link planned for crawling as a
vertex (node within a graph), it is worth noting that web pages can be conceptualized
as graphs rather than trees. In contrast to trees, graphs can include cycles, which
means revisiting the same vertex is possible. For instance, a basic illustration of this
is the home page link, which essentially represents a self-loop5 in a graph because
clicking on it will land us on the same page.

To prevent looping and revisiting already visited vertices (pages in the context
of the web), two distinct data structures can be used: "visited" and "not-visited"

2A checksum is a numerical value computed from data to verify its integrity by detecting errors or
changes in the data.

3A robots.txt file is a text file on a website that instructs web crawlers and search engine robots on
which parts of the site should be crawled or excluded from crawling.

4Refresh Google’s robots.txt cache: https://developers.google.com/search/docs/
crawling-indexing/robots/submit-updated-robots-txt

5A self-loop in a graph is an edge that connects a vertex to itself, creating a loop originating and
ending at the same point.

15

https://developers.google.com/search/docs/crawling-indexing/robots/submit-updated-robots-txt
https://developers.google.com/search/docs/crawling-indexing/robots/submit-updated-robots-txt

vertices. The "visited" vertices can be stored in a hashmap where the link serves as
the key, and the Boolean value represents whether the link has already been visited
(true for visited, false for not visited). The second data structure is a queue containing
links that still need to be visited.

(a) Initial condition (b) Visit the 0 vertex

(c) Visit 1 and 2 vertices (d) Completed condition

Figure 4: Illustration of the Breadth First Search (BFS) algorithm visiting five
URLs using a queue [geeksforgeeks, 2023a].

Figure 4 illustrates the BFS algorithm in operation to enhance visual understanding.
Let us visualize a seed URL, denoted as vertex 0. The seed URL page contains two
additional links, 1 and 2. The page represented by vertex 1 contains three links to
pages 0, 2, and 3. Similarly, the page associated with vertex 2 includes three links: 0,
1, and 4. The primary aim is to visit all nodes (pages), which is the fundamental
objective of the crawler. The crawler must avoid infinite looping and avoid revisiting
previously visited nodes (pages).

Initially, the queue and the hashmap are empty of any entries, which is the initial
state of the crawler. As the crawler launches its crawling journey, it begins by pushing
the seed URL, node 0, into the queue. Then, node 0 will be crawled since it is at
the beginning of the queue and flagged as "visited" in the hashmap. Subsequently,
once the 0 page has been visited, it is dequeued, and the following two discovered
links, 1 and 2, are added to the queue. These links, 1 and 2, are similarly dequeued
and recorded in the hashmap as visited links. This process persists until the queue is
empty, ensuring all the links (nodes) have been visited. It is essential to observe that
when the crawler encounters a loop or a link pointing to a previously visited link, it
can be verified if it has been marked as visited in the hashmap before pushing it to
the queue.

In the case of a random graph, the time complexity of BFS is denoted as O(|V |+|E|)

16

where |V | is the number of vertices and |E| is the number of edges in the graph
[Cormen et al., 2001]. Since the crawler can be implemented as a BFS algorithm,
each crawler has the time complexity of O(|V | + |E|). The |V | in the crawling
context is the number of web pages and the |E| is the number of links (URLs).

(a) Initial condition (b) Visit the 0 vertex

(c) Visit 1 and 2 vertices (d) Completed condition

Figure 5: Illustration of the Depth First Search (DFS) algorithm visiting five URLs
using a stack [geeksforgeeks, 2023b].

Depth First Search (DFS): It operates similarly to Breadth First Search (BFS).
However, instead of visiting the nodes (pages) discovered first, it explores the most
recently discovered nodes. Unlike BFS, DFS can be implemented using a stack.
Figure 5 visually represents how DFS operates while crawling a website.

The crawler begins with the seed URL node, labeled 0, where the crawler first
explores the seed URL node 0 and identifies the links within it (1, 2, and 3). Each of
these links is added to the stack, and after node 0 is visited, it is flagged as "visited"
in the "visited" hashmap. The next node to be visited is node 1. Since it does not
lead to any further linked nodes, the crawler proceeds to the next node in the stack,
node 2. Upon visiting node 2, it becomes noticeable that it contains an additional
link, denoted as 4. In contrast to BFS, which would visit node 3 in this scenario,
DFS prioritizes node 4 before 3 due to its use of a stack rather than a queue. Similar
to the BFS example, a hashmap is used to keep tracking the visited links to avoid
loops. Like BFS, DFS has a time complexity of O(|V |+ |E|).

17

3.3 Indexing

Within a search engine system, the indexer plays a crucial role in examining and
structuring the content found in web pages or documents. Its primary function is
to generate an index, an organized data structure that facilitates rapid and effective
retrieval of pertinent information when users initiate search queries.

The indexer breaks the content into smaller components, words, and phrases, known
as tokens. Afterward, it links these tokens to the respective URLs or documents
from which they were created. This structured data is then stored within the index,
serving as a vital reference for the search engine. It allows the search engine to swiftly
locate and present relevant search results, delivering a seamless and efficient user
experience.

3.3.1 Tokenization

Tokenization, within the context of indexing, entails fragmenting a textual document
or a text string into smaller components known as tokens. These tokens are typically
composed of words or subwords and are the fundamental building blocks for indexing
and searching within a text. Tokenization represents a foundational and essential stage
in natural language processing. A straightforward approach to tokenization involves
dividing the text content based on spaces. For instance, the sentence "university
of freiburg" would yield these tokens: "university", "of", and "freiburg". While
dividing text by spaces is a straightforward and convenient solution, tokenization is a
more convoluted task than it initially seems. For instance, words like "Freiburg?",
"Freiburg!" and "Freiburg" should be treated as a single word, "Freiburg" ; however,
splitting by space will treat them as three different words. Additionally, words such
as "New York," "New Delhi," and "New Zealand" should be treated as single tokens
instead of two split tokens. Lastly, in cases where phrases like "Freiburg-University"
are connected by a hyphen, splitting solely by spaces would treat it as a single word,
even though it comprises two distinct words "Freiburg" and "University".

Some languages are more challenging to tokenize than others. For example, the
German language combines two or more words to generate a new word without using
spaces (e.g., Geburtstagsgeschenk "birthday gift"), which makes splitting only by
spaces more problematic.

Including a compound-splitter [Koehn and Knight, 2003] module significantly
enhances the effectiveness of retrieval systems designed for the German language.
This module is typically employed to determine whether a word can be subdivided

18

into multiple words that exist in a vocabulary. Since the tokenization depends highly
on each language and the default language for the crawling and indexing in Scriburg
is English, the compound-splitter module will not be included in the implementation.

Various approaches to tokenization exist, and in this thesis, each document under-
goes a series of steps:

• Initial text segmentation by spaces.

• Conversion of all words to lowercase.

• Removal of all special characters using regular expressions.

For example, the sentence "What! Is this the University of Freiburg?" will be trans-
formed after undergoing these processes to "what", "is", "this", "the", "university",
"of", and "freiburg".

Stop Words

Tokens such as "the" and "of" in the previous example contribute little importance to
the overall outcome of the query because the query is equivalent to "What University
Freiburg". Although the last query is grammatically incorrect, it contains the most
critical tokens to understand the user’s intention. This is also why Google understands
the user query when it is incomplete. Eliminating these terms via stop words can
lead to excluding certain frequently used words from the indexing process. A stop
words [Fox, 1989] list is a list that holds words that can be excluded from the indexing
process. Selecting appropriate stop words can enhance search retrieval by using a
more compact indexer while also allowing user queries to bypass terms contained in
the stop words list. The exclusion of stop words from the indexer can result in more
relevant search results, as the search engine can direct its attention to the informative
words within the documents. In Scriburg, the user can enter the Stop words as a list
in the UI to be used by the indexer.

3.3.2 Document Unit

The term document frequently mentions the specific information intended for
retrieval from a web page. While, in some instances, this term encompasses the
entirety of a page’s content, this holds primarily for universal crawlers like Google.
However, in the case of the preferential crawler employed in this thesis, the definition
of a document unit is adjustable, depending on the nature of the website and the

19

specific data the user aims to collect. For instance, the document unit may be viewed
as a single product listing on an e-commerce website featuring product titles, prices,
and descriptions. Contrarily, a news website might treat each article as an individual
document. The chapter 4 will provide more comprehensive guidance on creating a
template corresponding to a document.

3.3.3 Inverted Index

Let us define q as the query string provided by the user and D as the set of documents
the user attempts to search in. A simple solution would need to iterate over each
term in q and then search each term against every document in D containing L terms.
This means three nested for-loop with a cubic complexity of O(qn ·Dn · L), where qn

is the number of terms in the q query, Dn is the total number of documents D and
the L is the average number of terms inside all the documents D.

for q_token in q_tokens :
for document in all_documents :

for document_token in document . tokens :
.

Listing 3.1: A naive way of finding a query match in all the documents.

Implementing an inverted index is a more efficient solution to address this issue. An
inverted index or inverted file [Koehn and Knight, 2003] is a data structure used
in information retrieval systems, particularly in search engines, to store and efficiently
retrieve information about the occurrences of terms (words or phrases) within a
collection of documents. It is called "inverted" because it inverts the relationship
between terms and documents. In an inverted index, each unique token in the
collection of documents is treated as a key, and the value associated with each token is
a list of references to the documents where that token appears. This list of references
allows for rapid access to all the documents containing a specific token. Some inverted
indexes also include the position of the token in the document.

Creating an Inverted index requires the following steps. The first step is to collect
the documents to be indexed. In the context of this thesis, the documents refer to the
content inside the crawled web pages. The second step is to tokenize the text, turning
each document into a list of words known as tokens. The last step is to create a
dictionary that maps each term with a list of the document IDs that occurred. The
tokenized terms are called dictionaries, and the list of IDs is called postings.

Given that the inverted list can be implemented as a hashmap or dictionary in
Python, where the average time complexity of a hashmap put and get operations

20

Figure 6: An illustration of an inverted index featuring three documents. All tokens
are included in this example, and the sole text normalization applied is
converting all tokens to lowercase. Queries that involve multiple tokens
are resolved using intersection operations. However, Scriburg uses a union
operation and ranking score [Castillo, 2005].

are O(1), the process of finding all the documents containing the query tokens qn

has an overall time complexity of O(qn · 1), which simplifies to O(qn). The next step
involves merging the resulting documents for each token in the query q.

Since each token inside the query q will result in a list of documents (postings),
the final result should be the union of each list. The number of lists to merge equals
the number of tokens inside the query qn.

Given that the time complexity of merging two sorted lists is O(n+m), where n is
the length of the first list, and m is the length of the second list. Consequently, the
time complexity merging all the postings is O(qn · l), where l represents the average
length of the posting list.

It is worth noting that qn is typically small; 40% of people use two search terms
for online search queries in the United States as of January 2020, and only 0.46%
use ten or more [Statista, 2020]. The essential advantage of using the inverted list is
that it makes indexing independent of the document’s length, significantly improving
performance.

3.4 Ranking

As explained, the indexing process prepares a dictionary that can be looked up to find
relevant tokens that match the search query q ; however, one needs to rank the returned
result based on relevance. For example, a user searching for "What is Freiburg?" will
be expecting a result about Freiburg city and not to return all documents that contain
tokens like "what" and "is", which are less important than the most informative
term in the sentence which is "Freiburg". There are many algorithms for document

21

ranking. However, this thesis will adopt BM25 [Robertson et al., 2009].

3.4.1 BM25

Given a query q, containing keywords {q1, q2, ..., qn}, the BM25 score of a document
d is:

score(d, q) = ˆtf · log2(
N

df
) (3.1)

ˆtf =
tf · (k + 1)

k · α+ tf
(3.2)

α = 1− b+
b ·DL

AVDL
(3.3)

N : total number of documents. tf : term frequency, the number of times a word
occurs in a document. df : document frequency, the number of documents containing a
particular word. DL: document length (number of words). AVDL: average document
length (number of words).

The parameter b prevents the impact of document length normalization. It is a
numeric value within the range of 0 to 1. When b is set to 0, there is no normalization,
implying that longer documents do not face any penalties. In contrast, a value of 1
indicates complete normalization, where longer documents are penalized in proportion
to their length. Scriburg uses 0.75 as a default value of b; however, this value can be
edited by the user in the user interface indexing options.

The parameter k governs the impact of term frequency saturation in scoring. It is a
positive parameter that dictates the speed at which the term frequency component of
the score achieves its peak value. When k is set to 0, there is no consideration of term
frequency, implying that the score remains unaffected by the number of times query
terms appear in the document. On the other hand, when k is set to a significant
value, more weight is given to term frequency, and the score escalates linearly with
term frequency. Scriburg uses 1.75 as a default value of k ; however, this value can
be edited by the user in the user interface indexing options.

The following example dives into the details of the BM25 equation and how it
impacts ranking. Table 1 shows a list of documents as an example of an input to
be indexed and ranked against different search queries. Starting by calculating the
variables needed to find the BM25 scores for each term in a document.

N equals to 3 since three documents are given. In the next step, each document’s
length DL can be calculated, resulting in {1 : 26, 2 : 21, 3 : 49}. The average document

22

length AVDL can be calculated as 26+21+49
3 = 32. Substituting these values into the

equation yields the inverted list in Table 2.

Document ID Document Content

1
The University of Freiburg, officially the Albert Ludwig University of

Freiburg, is a public research university located in Freiburg im
Breisgau, Baden-Württemberg, Germany.

2
Freiburg im Breisgau, usually called simply Freiburg, is an

independent city in the state of Baden-Württemberg in Germany.

3

A university from Latin universitas ’a whole’ is an institution of higher
(or tertiary) education and research which awards academic degrees in

several academic disciplines. Universities typically offer both
undergraduate and postgraduate programs. In the United States, the

designation is reserved for colleges that have a graduate school.

Table 1: Documents content used as an example of MB25
ranking.

When the data in Table 2 is analyzed, it becomes evident that tokens shared by all
three documents, such as "the", "of", and "is", have corresponding scores of 0. It is
normal to give low scores to tokens that contribute little to no to the query. Consider
a scenario where a user inputs the word "the" in their query. In this case, every
document contains this word, making it challenging to maintain relevance. The only
way to exhibit bias toward one document over another is when the token’s frequency
within a document is significantly higher than the document’s length.

On the other hand, unique words like "albert" and "ludwig" receive high scores since
they are exclusive to a single document. Words such as "freiburg" and "university"
have varying scores for each document, depending on their relative occurrences in
relation to the document’s length.

A user’s query "university of freiburg" will yield the following results: {(1, 2.142),
(2, 0.975), (3, 0.466)}. The initial document with ID 1 receives the highest score
(2.142) since it encompasses all three query terms ("university", "of", and "freiburg").
This outcome aligns with expectations, given that the first document is indeed about
the University of Freiburg.

However, the concern regarding relevancy lies in the two primary keywords, "uni-
versity" and "freiburg", mentioned in documents 2 and 3. The question then becomes,
which documents should be prioritized in this scenario? This distinction can be
influenced by adjusting the values of the b and k parameters. In this case, document
2 takes importance over document 3 because the term "freiburg" is repeated twice,
and the document itself is shorter than document 3.

23

Token Postings: (Doc. ID, BM25 Score)

the (1, 0), (2, 0), (3, 0)

university (1, 1.071), (3, 0.466)

of (1, 0), (2, 0), (3, 0)

freiburg (1, 1.071), (2, 0.975)

officially (1, 1.740)

albert (1, 1.740)

ludwig (1, 1.740)

is (1, 0), (2, 0), (3, 0)

a (1, 0.642), (3, 0.885)

public (1, 1.740)

Table 2: The first ten tokens from the resulting inverted
index and the corresponding document scores.

3.5 Fuzzy Search

Frequently, users make spelling errors in their input queries or may employ American
English spellings, such as "color", which is equivalent to British English spellings
"colour". It would be less than ideal to return no results solely because the user chose
a word variant over another. Other situations may occur where users need clarification
about the correct spelling of a new term or someone’s name. Scriburg uses fuzzy
search [Fu et al., 2016] to offer users suggestions as they type their queries and to
identify the closest matching query entered by the user. Moreover, it is used to forgive
misspelled queries in the search.

Fuzzy search is a technique used in natural language processing (NLP) and
information retrieval to find approximate matches for a given query or search term,
even when the exact spelling or wording might not be present in the target text. This
is particularly useful when dealing with typos, misspellings, phrasing variations, or
other minor deviations from the original text.

In Scriburg, the fuzzy search method employed for spelling correction is labeled as
isolated-term [Manning et al., 2008]. Isolated-term focuses on correcting individ-
ual query terms one by one rather than fixing the entire sentence within a contextual
context.

Fuzzy search algorithms typically involve techniques like Levenshtein distance
(Edit Distance ED) [Levenshtein et al., 1966], which calculates the minimum num-
ber of single-character edits (insertions, deletions, substitutions) required to transform

24

one string into another. Other techniques include using phonetic algorithms to find
similar-sounding words or tokenization and comparing word q-grams to identify
overlapping substrings. The greater the shared substring between the two texts, the
more likely this is the intended word the user was trying to search for. More details
on q-grams will be given in section 3.5.1.

Considering two character strings, s1 and s2, the edit distance that separates them
represents the minimal count of edit operations needed to transform s1 into s2. The
typical edit operations permitted for this purpose include inserting a character into a
string, deleting a character from a string, and replacing a character within a string
with another character. In the context of these operations, the term "Levenshtein
distance" is sometimes used interchangeably with "Edit Distance". For example, the
edit distance between "black" and "back" is one because only the letter "l" needs to
be removed from "black" to transform it to "back".

Scriburg useS Prefix Edit Distance PED [Gao et al., 2010] instead of Edit
Distance. Prefix edit distance is a variation of edit distance that focuses on finding
the minimum number of edit operations needed to transform one string into a
prefix of the other. The prefix edit distance between s1 and s2 is defined as
PED(s1, s2) = min

s
′
2
ED(s1, s

′
2) where s

′
2 is a prefix of s2.

Fuzzy search requires the existence of a dictionary, which comprises a collection
of words for conducting searches to locate the closest match and then return the
result. The creation of this dictionary can take various forms, and in the case of
Scriburg, it employs two distinct dictionaries.

The initial dictionary is the same one used during the document indexing process
when crawling the web. This choice derives from the desire to ensure that the words
indexed from the crawled documents can be effectively looked up.

The second dictionary, which is a user predefined, is presented by using Wikidata
in Scriburg. This dictionary is particularly valuable in scenarios where synonyms
are employed. For instance, if a user inputs "USA", a dropdown menu will display
"United States" as a suggestion.

Scriburg user interface offers users the flexibility to select the dictionary of their
choice. This option is essential, especially in specific domains where using a particular
dictionary is crucial for accurate results. The dictionary construction process is
carried out before indexing the crawled documents.

25

3.5.1 Fuzzy Search with Q-grams

Calculating the prefix edit distance or the edit distance can be done by using different
dynamic programming algorithms [Ukkonen, 1985]. However, the performance
bottleneck of computing the ED or PED in the current implementation is that this
must be repeated for all the pairs between the user query q and all the tokens inside
the inverted index. It would be wiser to narrow down the tokens inside the inverted
index and pick only the candidates that are more likely to be a match and only apply
the PED on this subset of tokens.

One approach involves using q-grams [Navarro and Baeza-Yates, 1998]. For a
given string s and a natural number n ∈ N , a multiset of q-grams, represented as
Qn(s), which encompasses all substrings of length n, is generated.

For example if s = "freiburg" and n = 3 then the resulting q-grams are:

Q3(”freiburg”) = {”fre”, ”rei”, ”eib”, ”ibu”, ”bur”, ”urg”}

Where the number of q-grams of a string s can be calculated as:

|Qn(s)| = |s| − n+ 1 = 8− 3 + 1 = 6

Now, instead of matching the user query tokens directly with the tokens inside the
inverted index, what one can do is generate the q-grams of all the tokens inside the
query q and match them with a new inverted index made of all the q-grams of the
tokens inside the documents called q-gram index.

In an intuitive form, if the q-grams Qn(s1) of a string s1 are similar to the set
of the q-grams Qn(s2) of string s2, then the set difference between the two sets
Qn(s1) \ Qn(s2) should be small [Bast and Celikik, 2013]. To put this in a more
formal way:

|Qn(s1) \Qn(s2)| ≤ n · ED(s1, s2) (3.4)

As an example given n equals 2, and two strings are given s1 ”freiburg” and s2

”freibad” . The edit distance (ED) calculated is three. Finding the q-grams for each
string and finding the set difference size to equal 4. It can be found that the equation
mentioned previously 3.4 holds.

26

n = 2, s1 = ”freiburg”, s2 = ”freibad”, ED(s1, s2) = 3

Q2(s1) = { ”fr”, ”re”, ”ei”, ”ib”, ”bu”, ”ur”, ”rg” }

Q2(s2) = { ”fr”, ”re”, ”ei”, ”ib”, ”ba”, ”ad” }

Qn(s1) \Qn(s2) = { ”bu”, ”ur”, ”rg” }

|Qn(s1) \Qn(s2)| = 3

3 ≤ 6

Since similar words have many q-grams in common, and looking at the equation
3.4, this yields the following bounding condition for Prefix Edit Distance PED:

|Qn(s1) ∩Qn(s2)| ≥ |Q(s1)| − n · PED(s1, s2) (3.5)

The searching task now changes to the following: Given s1 (query token) and δ

(distance threshold) [Bast and Celikik, 2013], all tokens s2 inside documents set D

that ED(s1, s2) ≤ δ can be found. Only the filtered set of tokens ŝ2 (candidates)
that holds the relation ED(s1, s2) ≤ δ can be a real math, and then the PED will be
computed to find the real match.

Q-gram Index

Section 3.3.3 already explained what an inverted index is, where tokens derived from
documents would be organized within a dictionary or hashmap to create a document
inverted index. The q-gram inverted index is structured with q-grams as keys
and values containing lists of document token IDs and the corresponding q-gram
frequencies.

Figure 7: A simple q-gram dictionary where three q-grams are linked to the tokens
that contain them and n = 2.

27

Figure 7 presents a visual representation illustrating the fundamental concept of
the q-gram inverted index. It is essential to clarify that the current implementation
stores references to the tokens associated with the q-gram rather than the tokens
themselves as strings. Furthermore, the frequency of occurrences of the q-gram within
a token will be tracked.

Given s1, the goal is to compute |Qn(s1)∩Qn(s2)| for all s2 tokens in all documents,
then the final algorithm for finding the matching string using fuzzy search should be
as follows:

• Find Qn(s1), which is the set of q-grams of the given s1 (user query).
• For each q-gram from Qn(s1), find its inverted list in the generated q-gram

inverted index.
• Compute the union of these |Qn(s1)| q-gram inverted lists and count how many

times each word occurs.
• Find the matching candidates by using the bounding condition 3.5 and calculate

their PEDs.

28

4 Approach

This chapter outlines Scriburg’s comprehensive software architecture and implemen-
tation. This chapter covers the points that are not covered in the previous chapter.
For instance, Ranking and Fuzzy Search are already excluded in this chapter, as
they are completely covered in the previous chapter 3. However, only the compelling
implementation algorithms, workflow, and design left uncovered will be explained.
Section 4.1 showcases all the required components for constructing the Scriburg
search engine. Section 4.2 will clarify the functionality of Scriburg’s web crawlers.
This will contain the workflow, practical challenges encountered during crawling, and
corresponding solutions. Section 4.3 will demonstrate the indexing workflow. Finally,
Section 4.4 will delve into the user interface design, highlighting the configurations
made available to users and how they enhance the overall user experience.

4.1 Software Architecture

Figure 8 shows an overview of the software architecture employed by Scriburg search
engine. Microservices architecture was used to simplify scalability and split each
component’s responsibilities. Docker 24.0.7 is used to simplify adding and removing
crawling nodes. Ubuntu 18.04 image is used for each image. Below is a compilation
of the utilized technology stack:

Frontend (Angular & PrimeNG): One of the challenges in this thesis
involves creating a user-friendly interface for configuring the search engine,
targeting non-expert users. To address this challenge, an appealing HTML
component with an intuitive interface using the PrimeNG 15 framework will
be implemented. Another design decision is to employ client-side rendering1

with Angular 15.0.4 to enhance user experience and responsiveness.

1Client-side rendering (CSR) is an approach where web content is primarily rendered and processed
in the user’s web browser, allowing for dynamic, responsive user experiences but potentially
longer initial load times. It is commonly used in single-page applications and may pose SEO
challenges due to content generated via JavaScript.

29

Figure 8: Scriburg software architecture overview.

Backend (Django): Serving as the core intelligence of the search engine,
the backend houses both the crawler and indexer modules. It facilitates inter-
action with the PBS Head node to initiate crawling based on user-defined
configurations. Moreover, it establishes a connection with PostgreSQL 12.1
database for storing crawler and indexer configurations, along with job-related
information. The selection of the Django 4.1 as a backend framework was
used for several factors. It offers a user-friendly admin dashboard by default,
simplifying adding and removing nodes from the cluster. Additionally, Django
provides a robust API library, facilitating seamless communication with Angular.
The choice of Python as the primary language was influenced by its simplicity,
enabling future developers to modify and expand the codebase easily.

Selenium 4.7.2: Lives under the backend component, served as a web browser
automation tool employed to establish a web session that emulates a live user
session, allowing for the rendering of specific pages intended for crawling and
the downloading of documents to be indexed.

Head Node (PBS 20): Since crawling is a job that can run in multiple nodes
and a distributed system is used, a job scheduler must be used in the design.

30

The PBS head node is the central node that distributes the workload between
crawler nodes. Portable Batch System (PBS Pro.) is a job scheduling
and workload management system in high-performance computing (HPC)
environments. It allows users to submit and manage batch jobs on a cluster
of computers, making it easier to utilize the available computing resources
efficiently. PBS typically provides job submission, queuing, resource allocation,
prioritization, and status monitoring features. It helps administrators and users
manage and optimize the execution of computational tasks on a cluster, like
crawling in Scriburg’s use case. Other alternatives like Slurm can be used
instead of PBS as a job management system.

Crawler Node (PBS 20): The PBS crawler nodes are responsible for web
crawling and storing documents within a PostgreSQL database. They are
powered by the Django backend for the crawling process. Manually adding
crawler nodes is possible, and after adding a node, one can initiate crawling
jobs on it as needed.

As shown in Figure 8, the application setup initiates with a minimal requirement of
four microservices to operate the entire search engine. A Docker container containing
both Angular and Django communicating via API is the center service in the system.
Django communicates with the database to store the crawling and indexing configu-
rations and saves the submitted job metadata and statistics. The PBS head node
must be configured at least to use one crawler node. The crawler node will perform
the crawling job and save the results to the shared database. The more computing
power needed, the more nodes can be added to scale the system horizontally2.

The workflow begins with a user-friendly interface presented by Angular and
PrimeNG, encompassing all the configurations and tools enabling users to crawl
quickly and index various websites. Users can modify configurations and submit a
crawling job to the head node. The head node, in response, identifies an available
Crawler Node to execute the task. It is worth noting that the PBS cluster can be
bypassed, and the crawling process can be run locally on a localhost server. Users
can monitor the progress of the running job from the browser. Once crawling is
completed and the user is happy with the result, the user can start indexing. The
indexing job does not support a distributed architecture and will be executed locally
and not on the PBS cluster.

2Horizontal scaling involves expanding a system’s capacity by introducing more machines (nodes)
instead of enhancing the capabilities of the existing machines.

31

The primary reason for bypassing the distribution of the indexing task is that in
contrast to the intensive computing requirements of crawling, indexing the gathered
data often demands significantly less computational power, as seen in the experiments
chapter 5.3. It is important to note that this is not an absolute rule, as it relies on
the volume of documents to be indexed. However, in the case of specialized crawlers
like Scriburg, designed for specific domains rather than comprehensive web crawling,
this step can often be avoided.

32

4.2 Crawler Implementation

As illustrated by the pseudo-code shown in Algorithm 1, the crawler starts by loading
the configuration submitted by the user from the database. More details about the
configuration are in the user interface Section 4.4. Based on the crawler configuration,
a thread pool will be created. The thread pool contains all the threads crawling the
site, where each thread contains a queue of URLs that it crawls from. The thread
pool ensures that if one thread has no URLs, it can ask other threads to split the
workload. The choice between a Breadth First Search (BFS) or Depth First Search
(DFS) algorithm in the crawler depends on the user’s configurations. However, for
clarity, Algorithm 1 assumes using a BFS approach, and accordingly, a queue is used
instead of a stack.

Algorithm 1 Start Crawling
1: load_crawler_configurations() ▷ Configurations submitted by the user
2: thread ← create_threads_pool() ▷ Generate a thread and add it to the threads

pool
3: urls_queue ← get_thread_urls_queue(thread)
4: seed_url ← get_seed_url()
5: add_url_to_queue(urls_queue, seed_url)
6: robots_file ← load_robots_file_content()
7: while urls_queue not empty or all threads not done do
8: if urls_queue is empty then
9: urls_queue ← get_thread_urls_queue(thread) ▷ Share workload with

other threads, when queue is empty
10: else
11: current_url ← urls_queue.next()
12: load(current_url) ▷ Load and render the page
13: execute_automated_actions() ▷ If enabled, clicking, waiting, and

scrolling actions are executed
14: new_links ← find_all_page_links() ▷ Collect all links in the current

page
15: filter_unwanted_urls(new_links) ▷ Remove duplicated, disallowed and

cross-origin links
16: docs ← find_page_documents() ▷ Download all documents in the page
17: filter_duplicated_documents(docs)
18: end if
19: end while

A seed URL is pushed into the present thread queue, representing the initial point
for the crawling procedure as specified by the user configuration. This seed URL

33

enables retrieving the robots.txt content, which is downloaded once and utilized
throughout the crawling operation. Typically, robots.txt files are located at the root
path of the URL, but it is also possible to configure the crawler to fetch them from
a user-defined location. Without a specific user configuration, the default behavior
involves automatically reading the robots.txt file from the root.

Each crawler goes into an infinite loop that will continue to run until all crawler
queues are empty. This guarantees that although one thread is busy, the other free
threads will keep trying to share the workload if needed. If the thread queue becomes
empty, the thread will ask the threads pool to find the following URLs to fetch.
Otherwise, the next URL in the queue will be fetched, and a Selenium page request
will be made. Afterward, automated actions such as scrolling down, waiting, and
clicking defined by the user are executed. Those actions give the user the power to
control the browser to mimic real agent behavior. The action chain will be explained
more in the user interface design Section 4.4.

Once the page has fully loaded and the specified actions have been executed, the
crawler proceeds to retrieve all the next links, filter them, and then push them into
the queue. The final step involves downloading the documents intended for indexing.

4.2.1 Threads Pool

The threads pool for sharing URLs includes all the crawlers running on a single
machine, not all the clusters. In the current Scriburg implementation, each node
operates independently, so if two crawlers run on different nodes, the visited URLs
can be revisited by other nodes. To address this issue, a solution is to transfer the
in-memory visited URLs dictionary to a key-value database, such as Redis. Instead
of including visited URLs in a dictionary shared by the thread pool, they can be
stored in the Redis database, which is accessible to all other crawling nodes.

When a thread queue becomes empty, instead of terminating, the thread will pause
for five seconds and then inspect the threads in the thread pool. The thread with the
largest queue will divide it into two halves with the available free thread. If a thread
is available and another thread has fewer than five URLs, no division will occur, as
the threshold is set at five. Adjusting the splitting threshold to higher values like 20
or 50 would diminish the benefits of multithreading and not enhance performance, as
this will result in more early terminated threads. Reducing the threshold to smaller
values like 1 or 2 would lead to frequent queue sharing among all threads, increasing
the unnecessary overhead of link sharing. After experimenting with four threads, the
optimal balance was a split threshold between five and ten.

34

4.2.2 Scaling the System

One of the thesis’s primary goals is to create a system capable of performance
scalability by adding low-cost workstations to support extra components. Whether to
scale vertically by adding more threads or horizontally by introducing more machines,
it can be challenging to decide which scale to use and when. A single instance of
Scriburg would suffice for approximately four to eight crawlers. However, a second
crawl manager (a separate crawling system node) would be needed beyond this
point. Other approaches, such as those mentioned in [Shkapenyuk and Suel, 2002],
recommend introducing additional crawler managers or new crawler nodes when the
number of crawlers reaches eight.

4.2.3 Practical Challenges

Canonical URLs [Bar-Yossef et al., 2009]: As previously mentioned, avoiding
revisiting already-seen pages prevents content duplication and eliminates the
risk of the crawler getting stuck in a loop, thereby enhancing the efficiency of
the crawling process. Nevertheless, the task of identifying previously visited
URLs is complicated by dynamic URLs, where different URLs can ultimately
lead to the same page. To address this challenge, every fetched URL must be
normalized and transformed into its fundamental form. Listing 4.1 illustrates
various examples of different URL forms that ultimately point to the same URL.
Scriburg adopts a straightforward approach by disregarding parameters and
fragments from each fetched URL.

https : // uni−f r e i b u r g . de
https : // uni−f r e i b u r g . de/
https : // uni−f r e i b u r g . de/#fragment
https : // uni−f r e i b u r g . de/ index . html
https : // uni−f r e i b u r g . de/ index . html? tab=re s ea r ch
https : // uni−f r e i b u r g . de/ index . html? tab=re s ea r ch&user=12

Listing 4.1: Example of different forms of the same URL.

Duplicated Content: Around 29.2% of the web content is duplicated and it
is growing [Fetterly et al., 2003]. While a web crawler avoids revisiting identical
URLs to prevent content duplication, it is important to note that identical
content may exist in different URL paths within the same website. For instance,
a men’s shoe might be accessible via various links like "/winter/shoes/",

35

"/men/shoes/", or "/sales/shoes/". Relying solely on the URL as a unique
identifier to prevent content duplication is unreliable. Moreover, as explained,
URLs can have different forms; sometimes, the same page can be revisited
unintentionally. A more effective approach involves comparing the content with
the database after parsing. Instead of a straightforward content check against
the database, which can pose performance challenges, Scriburg employs a more
efficient method. A unique hash code is generated using the SHA-13 hashing
algorithm based on the content string intended for storage. This hash code is
then stored in the database. Before saving a new document, it is verified if
the hash code exists in the database. This method ensures content uniqueness,
even when it appears under different URLs on the same site, without the
computational overhead of directly comparing lengthy content strings in the
database. Note that sometimes, when the page admin edits their content, even
one character edited will be classified as a new document.

Dynamic Content: Crawling dynamic websites presents a distinct set of
challenges compared to static websites. Dynamic sites generate content on the
client side through technologies like JavaScript, adding complexity to the task of
accessing and extracting data. A primary concern lies in uncovering concealed
content that necessitates user interaction. For instance, certain websites hide
lengthy content portions, revealing them only upon clicking a "read more"
button. Additionally, most websites implement lazy loading, fetching content
on-demand via AJAX4 requests. Selenium establishes a live web browsing
session to address these challenges and fully renders the web page. This approach
emulates user interactions using action chains, which mimic waiting, scrolling,
and clicking. More details will be explained in the User Interface Design Section
4.4.

Robustness: The dynamic nature of web content introduces a multitude of
edge cases for web crawlers, which makes it challenging to ensure that all
these exceptional cases are thoroughly covered. Nonetheless, Scriburg simplifies
troubleshooting by implementing logs and employing effective monitoring and
termination criteria. Scriburg minimizes the risk of falling into unnecessary web

3SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash function that takes an input and
produces a fixed-length 160-bit (20-byte) hash value, typically represented as a 40-character
hexadecimal number. It was widely used for data integrity and security purposes.

4AJAX (Asynchronous JavaScript and XML) requests are a technology for sending and receiving
data from a web server without requiring a full page refresh, enabling dynamic and asynchronous
data updates in web applications.

36

traps (infinite rendering, infinite looping, infinite links), a particularly crucial
aspect when integrating cloud-based computing solutions like Amazon Web
Services AWS. Crawlers can be halted by establishing specific criteria to
ensure termination. The initial criterion involves defining a maximum depth,
which restricts the number of page transitions to a single level. Additionally,
monitoring and restricting the total count of visited pages and collected doc-
uments is possible. Another method is to use a wall-time measurement to
monitor the crawler’s runtime duration and trigger an abort if the crawler
exceeds the expected time frame.

Avoiding DoS: Increasing the number of requests and expanding the crawler’s
capacity by adding more threads or nodes may boost performance. However,
this approach carries a significant risk of overwhelming the targeted servers,
potentially resulting in Distributed Denial of Service (DDoS) or Denial
of Service (DoS) attacks. Servers can perceive this surge in requests as
an attack, which could lead to the crawler being blocked and subsequently
banned. To mitigate this risk, it is crucial to introduce a waiting period between
each request made by the same crawler. Additionally, when using Selenium, a
deliberate delay of at least one second or more is already integrated to allow for
the complete rendering of web pages. Nevertheless, more than these precautions
are required to prevent users from adding more nodes and executing DDoS
attacks on the servers. Consequently, it is strongly advisable to exercise cautious
management by monitoring and regulating the number of threads and nodes.
This approach demonstrates respect for the targeted servers and helps prevent
overloading them.

4.3 Indexer Implementation

Unlike crawling, which can be computationally intensive, indexing thousands of
documents is relatively lightweight. Hence, it is carried out on the localhost without
any multithreading support. Algorithm 2 clarifies the process of creating an inverted
list. Firstly, the indexer loads the user-defined indexing configurations from the
database. More configurations will be listed in Section 4.4. Subsequently, an empty
inverted list is initialized. Within Python, one can implement it as a dictionary, with
each word as a key and an associated value representing a list of document IDs that
include that word (postings). While one can include additional metadata in the list,
such as word frequency and positions of the words in the document, these details will

37

be excluded for simplicity.

Algorithm 2 Create Inverted List
Require: documents not empty
1: config ← load_indexer_configurations() ▷ Load user chosen configurations
2: inverted_list ← {} ▷ Initialize an empty dictionary
3: threshold ← get_small_words_threshold(config)
4: stop_list ← stop_words_list(config)
5: docs_length ← [] ▷ Initialize an array of documents lengths
6: for doc in documents do
7: doc_length ← 0
8: tokens ← tokenize(doc) ▷ Split the document into tokens
9: for token in tokens do

10: if token > threshold and token not in stop_list then
11: add_token_and_doc_id_to_inverted_list(token, doc.id)
12: doc_length ← doc_length + 1
13: end if
14: end for
15: docs_length.add(doc_length)
16: end for
17: calculate_bm25_score(inverted_list) ▷ Compute the BM25 score
18: cache(inverted_list) ▷ Cache the indexer for future usage

The user specifies three variables: threshold and stop_list, which are retrieved
from the database. The threshold represents the minimum word length required for
tokenization from a document. The stop_list is a predefined list of terms that should
be omitted from the indexing process. Afterward, all the documents are iterated
through, and the following steps are performed for each one: Initializes the document
length as a counter, initially set to zero. Tokenizes the document to obtain a list
of words. Iterates through the word list, checking each word’s length against the
threshold and verifying if it is not in the stop_list. If these conditions are met, the
word is added to the inverted list, and the document length counter is incremented
by one.

Once the inverted list is constructed, the BM25 score for each token in a document
is calculated based on equation 3.1. Afterward, it is saved into a cache for future
retrieval and use.

38

4.4 User Interface Design

This thesis extends beyond merely building and designing a search engine. It also
encompasses the critical goal of enabling users to configure and utilize it effort-
lessly. This section will explore the user interface design, workflow, and user-facing
configurations.

4.4.1 Templates and Inspectors

The user begins their workflow on the homepage, where they can access documentation
explaining how to use the application. The application’s first component to be created
is the Template, which serves as a blueprint for specifying the document fields to
be extracted from web pages. Establishing a unique template for each page is a
prerequisite, although the same Template can also be applied across different websites.
These templates consist of a list of Inspectors. An inspector can be thought of
as a field. For example, creating a template for parsing a title and a product price
will require two different inspectors (title and price). Each inspector contains the
attributes shown in Table 3.

Name* Represents the inspector’s identifier, such as "Title" or "Price".

Selector* It contains the XPath expression identifying the chosen element value.

Type* This can take values like "Text", "Link", or "Image", signifying the
nature of the content to be extracted.

Variable Name An optional shorthand representation of the selector, facilitating its
use during the indexing process to enhance search results (Ranking).

Clean-up
Expression List

Used to refine the extracted value from the inspector. This proves
beneficial in eliminating unwanted noise (remove the currency when

extracting a price).

Attribute
Allows the user to specify an HTML element attribute, such as "src",

"name", or "href", as an optional parameter to be saved into the
database.

Table 3: Inspector form fields. Fields with * are required.

Each Template can have an Actions Chain list depending on the targeted web-
site’s characteristics. An Actions Chain constitutes an array of sequenced actions
replicating user interactions. This functionality is valuable for tasks such as accepting
cookies, scrolling to load additional content or waiting for the website to render in
cases where the process may exceed the expected duration.

39

4.4.2 Crawlers

Once the Template is created, the subsequent step is to access the Crawlers page
and create a new Crawler. A Crawler comprises various essential configurations as
shown in Table 4.

Name* A user-defined identifier for the crawler

Template* The blueprint for collecting documents with

Seed URL* The starting point of crawling

Max Pages The upper limit for the number of pages to be visited

Max Docs The maximum number of documents to be collected

Max Depth Maximum jumps between pages (crawling depth)

Robots.txt The URL where the robots.txt file can be located

Threads Number of threads used in the crawling process

Pagination Scope to collect the following URLs

Excluded
URLs URLs that the crawler must refrain from visiting

Walltime (ms) Sets the duration for which the crawler should continue crawling

Show Browser Deactivate the headless mode in Selenium

Table 4: Crawler configuration options. Fields with * are
required.

4.4.3 Runners

Once the crawler is set up with the appropriate configurations tailored to the targeted
website, the next step is to create a job referred to as a Runner. Multiple runners
can be associated with each crawler, allowing them to run on different nodes. It is
important to note that each runner can use multithreading based on the crawler’s
configurations and employ distinct crawler settings. This approach provides an
effective means to assess the crawler’s performance until the desired outcome is
achieved. Every runner instance necessitates the presence of the crawler and a
designated machine IP where it will execute. The chosen machine must be registered
within the PBS Head Node and online. By default, localhost is set as the value,
where some will use their local machine as a crawling node.

It is essential to keep a close eye on the crawler runner to monitor its performance
and configuration effectiveness before finalizing it. This proactive approach helps
save time and guarantees that the crawler collects targeted data accurately. The

40

Figure 9: An overview of the runner’s table, showing the
runner’s status and progress.

Runners table provides a straightforward and informative progress overview through
four primary status indicators. The initial status is New, representing the runner’s
initialization before the crawling process begins. Running signifies that the crawling
process is currently undergoing. Exit indicates a status change that occurs when
an error occurs, leading to the termination of the crawling process. Finally, Com-
pleted marks the last status, indicating that the runner has finished its task and
exited. During the crawling process, various statistics about the runner are collected,
including information such as the total number of visited pages, the average number
of documents discovered per page, and the various HTTP status codes encountered.
One can retrieve the documents collected by the runner by selecting the Download
CSV option from the actions drop-down menu.

4.4.4 Indexers

Once the runner has finished its job and the user is satisfied with the results, the
collected documents can be indexed and prepared for future searches. To access this
feature, one can navigate to the Indexers view, where the indexers table displays
the current indexers and their respective statuses.

In this context, inspectors come into play. These inspectors are responsible for
mapping the fields extracted from the document, such as Title, Price, and Image.
Users can select which inspectors to index from a drop-down menu, with the choice
limited to only text fields. Images and links are excluded from this indexing. Note that
if one template is used to fetch from different websites when indexing the collected
documents, one can select the inspectors related to this template, and the indexing
process will contain all the websites that use this template, which is a nice feature.

While some of the indexing configurations in Table 5 are already explained within

41

Name* A user-defined identifier for the indexer

Inspectors* Checklist of all the available inspectors used by the crawlers.

b Parameter b parameter for the BM25 formula.

k Parameter k parameter for the BM25 formula.

Stop Words
List List of words that should be excluded during the indexing process.

Small Words
Threshold

The threshold of which the word can be considered small and will be skipped
from the indexing process.

Words Weight
List

Boost some words by giving them weight, e.g. "Freiburg=5" will add more 5
points to the score when the "Freiburg" word is found.

Boosting
Formula

This formula result will be added to the final score. It uses inspectors
variable.

Dictionary File
Name The dictionary file name that helps the suggestions list by using synonyms.

Use Synonyms Enable using synonyms in the suggestions list. For example, typing "USA"
will result in "United States of America".

Q-Gram The n value of the q-grams for creating a q-gram inverted index, see Section
3.5.1

Table 5: Indexer configuration options. Fields with * are
required.

the table, others may benefit from further clarification. The Words Weight List
refers to a list of words along with their associated weights. If a term containing one
of these words is present in a query, its score will be added and contribute to the
overall query score. Adding more weights to some words can be beneficial as users
find them more important than others.

The Boosting Formula feature can be used with inspector variables to influence
the ranking process. For example, suppose one wants to rank products based on text
relevance and factors like reviews or prices (which are numeric values rather than
text). In that case, one can utilize the Boosting Formula. To do this, one can assign
a variable name to an inspector, such as review. Then, in the Boosting Formula field,
one can insert a formula like log(review), which will convert the numeric value in
the inspector field review into a numerical score. This score is then incorporated into
the ranking formula, contributing to the final ranking score.

Figure 10 shows the indexers table. In the indexer overview, one can note the
"Dictionary" status. The "Dictionary" status indicates that the job is creating the
dictionary for the suggestions list used in the SERP page. Once the dictionary is
created, it will be cached, and this process will be skipped for future indexing jobs.

42

Figure 10: An overview of the indexers table, showing
their status and progress.

4.4.5 Search Engine Result Page (SERP)

All the indexed documents can be easily searched on the search page, consisting of three
primary components. First, there is the search bar, which leverages the suggestions
list dictionary configured during the indexing phase. The second component is a
drop-down menu containing all the cached indexers that have previously been indexed.
The last component is the result table, which uses a dynamic layout depending on
the inspectors used for each document. For example, if the indexer indexes only the
title inspector of a product, then the table will only contain one column with the
inspector’s name as a header.

Figure 11: Scriburg Search Engine Result Page (SERP).

Table 11 shows the search result of products where it can be noted that it supports
different data types like images. Note that the search result shows the 25 top matching
results.

43

5 Evaluation

In this chapter, the primary goal is to assess and examine the implementation of the
Scriburg search engine while also drawing a comparison to the ParseHub solution.
The evaluation process is organized into three main sections. Section 5.2 will conduct
various experiments to assess the crawling process and discuss findings and outcomes.
In Section 5.3, the focus will shift to evaluating the indexing procedure. Finally, in
the last section, Section 5.4 will explore user experience and the pros and cons of
current user interface design.

5.1 Testing Environment

Demonstrating information about the testing machine used for the evaluation can
provide enhanced clarity and facilitate meaningful comparisons to reproduce similar
results. Table 6 shows the current testing environment used to test Scriburg.

Operating System Ubuntu 22.04.3 LTS

CPU Intel(R) Core(TM) i7-10510U @ 1.80 GHz; 4 cores; 8 threads

RAM 32 GB

Machine Lenovo ThinkPad P15s Gen 1

Table 6: The testing environment of the machine used in
this evaluation.

5.2 Crawler

Evaluating web crawlers can be challenging; there are different aspects and measures
to evaluate a crawler [Srinivasan et al., 2005]. The following are some of the most
critical features to evaluate the crawlers.

Coverage: This can be accomplished by maintaining a list of the URLs of
the targeted website and verifying whether the crawler successfully located

45

and processed all of them. It is worth noting that precise measurement can
be challenging because most websites do not disclose the total number of links
they contain. Websites often undergo dynamic changes, resulting in some links
being edited during the crawling process. Hence, running the same crawler with
the same configurations might result in different coverage.

Harvest Rate: "The rate at which crawled pages satisfy a given predicate"
[Srinivasan et al., 2005], which is, in this case, how many successful pages are
downloaded out of the found URLs.

Scalability: How manageable it is to scale the computing performance vertically
and horizontally, allowing users to crawl more and bigger websites.

Resilience: Assessing the crawler’s ability to navigate complex situations and
handle errors, including its performance with inaccessible pages, broken links,
slow networks, and dynamic content.

Politeness: The ability to respect the robots.txt rules and avoid getting
blacklisted from the website’s servers.

5.2.1 Datasets

Evaluating a web crawler requires a more static website as a reliable reference point.
Having a static website makes it easier to compare the content and the number of
links. The crawler-test1 website is an excellent choice for this purpose due to its
diverse content and links, containing a wide range of scenarios that a crawler might
encounter. This website effectively employs robots.txt to guide the crawler, allowing
for an assessment of its politeness. Moreover, it includes a section containing links
yielding various HTTP request status codes, such as 4xx and 5xx, which is valuable
for ensuring the crawler’s robustness. Additionally, it incorporates multiple instances
of page redirection, including scenarios like infinite redirection, which serves the dual
purpose of evaluating the crawler’s ability to avoid traps and enhancing its overall
resilience.

Three additional websites are used for evaluation to enhance the coverage and
versatility of the crawler testing, encompassing a broader range of use cases, ensuring
that the crawler can effectively handle various HTML structures and more generic

1A website suitable for crawler testing: https://crawler-test.com/

46

https://crawler-test.com/

scenarios. The first use case involves extracting product information from an e-
commerce platform like Douglas2. This website offers over 160,000 diverse products,
making it an ideal candidate for testing different content types, including images.

The second website, Times Higher Education3, specializes in annually ranking
universities. Since this website ranking is often updated yearly, it is a great candidate
to test the coverage as one can count the number of universities easily.

The third website is Stack Overflow4. Given this website’s extensive volume of
questions, the focus will be specifically on Python-related questions. The number of
documents to be crawled will also be limited.

5.2.2 Experiments

Crawler Test Base Evaluation

As mentioned, it is vital to test the crawler coverage, and the first website to test the
crawler against is the crawler-test.com website.

Seed URL* https://crawler-test.com/

Inspectors* //*[contains(@class, ’large-12 columns’)]

Allow Multi
Elements False

Max Pages 500

Threads 1

Max Depth 1

Pagination None

Actions None

Max Docs 500

Table 7: Crawler configuration for the crawler-test.com
website.

Table 7 displays the crawler testing configurations used in the experiment. The Seed
URL is set to the root path of the crawler-test.com. The Allow Multi Elements
checkbox is disabled (set to False) because the objective is not to gather a list of
documents; each page contains a single text field. The Max Pages parameter is
configured to a limit of 500, ensuring that the crawler does not exceed this number

2An e-commerce website: https://www.douglas.de/
3Universities world ranking 2023: https://www.timeshighereducation.com/
world-university-rankings/2023/world-ranking

4Stack Overflow Python-related posts: https://stackoverflow.com/questions/tagged/python

47

https://crawler-test.com/
https://www.douglas.de/
https://www.timeshighereducation.com/world-university-rankings/2023/world-ranking
https://www.timeshighereducation.com/world-university-rankings/2023/world-ranking
https://stackoverflow.com/questions/tagged/python

of pages. This figure can be adjusted based on the website’s size to be crawled;
for instance, smaller websites with around 50 pages may require a lower limit. To
enable easier coverage testing, the Max Depth is set to 1. This choice allows for easier
comparison between the number of visited pages and the number of URLs discovered
in the site’s root path, which, upon simple page inspection, contains 415 links. Since
the expected maximum number of pages is 415, the Max Docs parameter can be
constrained to 500. The inspectors are set to target the content of each page; thus,
one inspector is only needed. No automated actions, such as scrolling or waiting, are
necessary for this use case; therefore, they can be left. Any properties not explicitly
mentioned can be left at their default settings.

Coverage Evaluation

After creating a runner that runs, starts the crawling process, and is completed, the
result of the crawler should be similar to the one shown in Table 8. Looking at the
Links row, it can be noted that the crawler found 406 out of the expected 415 links.
This is a coverage of 97.8%. The other nine missing links can be excluded due to
different reasons (broken links, duplicated links, or normalizing). Normalizing the
links can result in duplicated links that can be skipped. 402 pages out of 406 found
links are crawled correctly. The other four pages are categorized as Cross Site links,
meaning they do not belong to the Seed URL hostname crawler-test.com. This
is important to evaluate to ensure that the crawler stays focused, does not jump
to sites out of the intended scope, and does not spend valuable resources. Already
Visited links is a counter that checks how many times the crawler found a link that
has already been visited and skipped, in this case, 0. When no multithreading is
used, and the Max Depth is only set to 1, the Already Visited is expected to be
0 because the duplicated links will be already excluded in the normalizing process
before starting to crawl.

The Docs & Content section provides information regarding the collected and
downloaded content. The Tot. Docs metric indicates that 255 documents have been
successfully downloaded. Twenty-five documents are duplicates and not saved in
the database. This duplication is expected, as this testing site contains repetitive
information designed to verify the functionality of this feature. The Avg. Docs Per
Page value is 1, indicating that the site typically presents one document per page.

48

Links
Collected Visited Already Visited Cross Site Excluded
406/415 402 0 4 1

Time
Tot. Spent Avg. Processing Avg. Page

Rendering Harvest Rate

671.19 s 1.68 s 0.697 s 1.66 r/s

Status
Codes

1XX 2XX 3XX 4XX 5XX
2 328 4 52 15

Docs &
Content

Tot. Docs Duplicated
Content

Avg. Docs Per
Page Avg. Page Size

255 24 1 1.6 MB

Table 8: Completed crawler result of the
crawler-test.com web site.

Performance Evaluation

Evaluating the performance of a web crawler is challenging as it depends on different
aspects, such as the page’s size and how fast the page loads. Moreover, if the
site uses pagination, this can add extra waiting time to render the rest of the
content. Furthermore, adding additional machines to enhance performance while not
overburdening the server with excessive requests is possible, presenting a challenging
balance between achieving excellent performance and maintaining proper politeness.
However, some valuable matrices can be helpful to give a good insight like those
shown in the Time row in Table 8. The total time spent to crawl 402 pages took
approximately 11 minutes. To give a better perspective, the enterprise solution
ParseHub 5 the free plan (without IP Rotation6), can crawl 200 pages in 40
minutes, and the Standard expensive plan (with IP Rotation) that costs $189 can
crawl 200 pages in 10 minutes. This means crawling the 402 pages inside the
crawler-test.com will take 20 minutes. Comparing the crawler with the ParseHub,
it is two times faster than the standard plan and eight times faster than the free
plan. Note that in this evaluation, the performance can be increased by using more
threads or nodes to distribute the loads, which will be evaluated in the multithreading
evaluation.

The Avg. Processing time reflects the duration in seconds for each request to process
the page, encompassing rendering time. The Harvest Rate signifies the number of
requests executed per second by the crawler; a higher value indicates improved crawler

5ParseHub plans: https://www.parsehub.com/pricing
6IP rotation is the practice of periodically changing the public IP address used by a device or server

to improve security, avoid detection, or access geographically restricted content.

49

https://www.parsehub.com/pricing

performance. However, it is advisable to exercise caution to avoid overloading the
crawler, as this could potentially crash the targeted server.

While some crawlers can achieve crawling rates of up to 300 pages/second
[Shkapenyuk and Suel, 2002], this comparison is not applicable. Crawling 300 pages
from the same domain, as has been done in this thesis, is more challenging than
simply crawling 300 different pages from 300 different websites. Distributing 300
HTTP requests evenly across these 300 websites is acceptable and does not result
in a Denial of Service (DoS) issue because each domain receives only one request
per second. However, in the context of Scriburg, users aim to target a specific set of
websites, which could include just one website. If 300 requests are sent to the same
website, it could overload and crash the site.

Rendering Dynamic Content Evaluation

Improving the average page rendering time (0.679 seconds) in Table 8 is achievable
by avoiding using rendering engines like Selenium. Processing a simple HTTP request
is often quicker than rendering the entire page and waiting for the page to finish
loading. However, it is essential to note that the rendering step is crucial in handling
dynamic content. For instance, consider the dynamically inserted text, indicated by
the link 7. This link is a straightforward example to illustrate the significance of the
rendering process for web crawlers.

<body>
<h1 id="h1"></h1>
<p id="par"></p>
<script>

document . getElementById ("h1") . innerHTML = ’Some random text ’ ;
document . getElementById ("par") . innerHTML = ’Some long content . . . ’ ;

</ script>
</body>

Listing 5.1: The dynamically-inserted-text link content before rendering.

Using a simple wget8 command in Linux, one can download the content shown
in Listing 5.1. This content reveals that the HTML tags, h1 and p, lack the inner
text the crawler can collect as a document. Although a JavaScript code is designed
to replace the innerHTML for each tag with text, without a rendering engine, the
JavaScript logic remains unexecuted. Consequently, gathering the inner text of these

7Rendering test: https://crawler-test.com/javascript/dynamically-inserted-text
8wget is a command-line utility for retrieving files from the internet using HTTP, HTTPS, FTP,

and FTPS protocols, primarily used in Unix-like operating systems.

50

https://crawler-test.com/javascript/dynamically-inserted-text

tags becomes an impossibility. On the other hand, Listing 5.2 shows the same page
content after rendering where both tags are updated, and both contain the right
content that the crawler can see and download.

While this is a simplified example, it is easy to visualize more complicated websites
employing advanced JavaScript frameworks and libraries for client-side rendering.
This complexity increases the rendering time due to the execution of all JavaScript
logic and the subsequent updating of the HTML DOM. Given that the crawler’s
objective is to locate and collect all HTML content, it is essential to discover all the
HTML content.

<body>
<h1 id="h1">

’Some random text ’
</h1>
<p id="par">

’Some long content . . . ’
</p>
<script>

document . getElementById ("h1") . innerHTML = ’Some random text ’ ;
document . getElementById ("par") . innerHTML = ’Some long content . . . ’ ;

</ script>
</body>

Listing 5.2: The dynamically-inserted-text link content after rendering.

Robustness and Politeness Evaluation

The Status Codes metric captured in Table 8 reveals the variety of distinct status
codes encountered while crawling. Given that this website serves as a testing ground
for various scenarios, it naturally exhibits a range of status codes. Evaluating the
crawler’s resilience across these diverse cases is vital for enhancing its stability. The
crawler should remain operational even when encountering a status code other than
the successful status codes 2xx. In the specific test case, it is worth noting that the
crawler confronted 52 4xx and 15 5xx different status codes without terminating
and completed the crawling operation. This outcome encompasses status codes from
the 1xx, 2xx, 3xx, 4xx, and 5xx ranges. In contrast, testing ParseHub to crawl
the same links from the crawler-test.com website hangs at some links. One of the
links that ParseHub stopped crawling and hanging was the redirect link9.

9Redirect page test: https://crawler-test.com/redirects/redirect_target

51

https://crawler-test.com/redirects/redirect_target

The presence of the robots.txt flag covers the commitment to polite crawling
behavior. The flag is set to True when this file is located and successfully downloaded.
It is essential to emphasize the importance of respectful crawling and commitment to
the robots.txt file protocol. For monitoring purposes, the Excluded links in Table
8 record the count of links disallowed from being crawled. In this specific test case,
there was only a single disallowed link. This matches the result expected in the
robots.txt file when looking at the user agent deepcrawl.

Changing Crawler Depth

Up to this point, the evaluation of the crawler has been limited to a single page to
assess its simplicity and test its coverage. However, the crawler’s functionality should
extend beyond merely identifying links; it should also be able to navigate between
them and continuously gather the target documents. The next step is to evaluate if
the crawler jumps between pages and can increase the coverage. To evaluate this, the
Max Depth is changed from 1 to 10. This will allow the crawler to jump up to 10 levels
deeper, collecting more links and documents. Table 9 shows the configurations used
for this test case. In practice, determining the precise depth can be challenging. In
many cases, this number can be aligned with the pagination structure on the website,
as the goal is to navigate through all pagination pages until they are completed. If
the exact number is unknown, an approximate value can be assigned.

Seed URL* https://crawler-test.com/

Inspectors* //*[contains(@class, ’large-12 columns’)]

Allow Multi
Elements False

Max Pages 1000

Threads 1

Max Depth 10

Pagination None

Actions None

Max Docs 1000

Table 9: Crawler configuration for the crawler-test.com
website, increasing the depth to 10.

Unfortunately, knowing exactly how many links the entire crawler-test.com site
contains is challenging. However, since it has been evaluated how the crawler behaves

52

https://crawler-test.com/

when the Max Depth equals one to test only the home page, one can have some degree
of assurance on the rest of the results on the rest of the pages. The Table 10 shows
895 links have been found. This number was expected to increase compared to the
first evaluation when the Max Depth equals one where the collected links were 406.

Given the increase in depth to 10, more documents should be collected. The
maximum page limit and the maximum number of collected documents are increased
to allow the crawler to crawl more pages. One vital difference between setting the
Max Depth and Max Pages is that if one single page contains 1000 links, and the Max
Depth is set to 1, then all the 1000 pages will be visited because all are living in the
first level of crawling (home page with level equals to one) so limited by the depth
only will not work. This is the reason for adding the Max Page as a termination
condition.

Links
Collected Visited Already Visited Cross Site Excluded

895 697 0 198 1

Time
Tot. Spent Avg. Processing Avg. Page

Rendering Harvest Rate

760.84 s 3.26 s 1.03 s 0.91 r/s

Status
Codes

1XX 2XX 3XX 4XX 5XX
2 292 4 47 15

Docs &
Content

Tot. Docs Duplicated
Content

Avg. Docs Per
Page Avg. Page Size

375 667 1 1.6 MB

Table 10: Completed crawler result of the
crawler-test.com website when the depth is

10.

When comparing the increased depth test of the base crawler to the base one in the
previous test, one notable metric is the significant increase in Cross Site links from 4
to 198. Typically, this suggests that the crawler is attempting to navigate beyond
the originating website specified in the seed URL. When this number rises, it often
indicates a need to adjust and refine the crawler settings. However, in the case of this
test website, such an increase is expected and considered normal. This is because
the website intentionally includes various tests designed to redirect the crawler to
external websites. While search engines like Google benefit from crawling across
different domains to index multiple websites, Scriburg’s specific crawler primarily
focuses on a single website, as this aligns with the user’s typical interest.

53

Multithreading Evaluation

It is crucial to assess the scalability of the crawler, primarily since it uses a unique
links-sharing multithreading pool. The same configurations detailed in Table 9 will
be used but adjust the threads parameter and monitor the overall time spent. The
results are presented in Figure 12, illustrating the outcomes of five different runs
using identical crawler settings while varying the number of threads 1, 2, 4, 6, and 8.

When switching from one thread to two, a reduction in time from 722 seconds
to 595 seconds, representing a 17.6% improvement, and increasing the threads to
four results in a time of 438 seconds, which is a 39.33% improvement compared
to using just one thread. However, further increasing the threads to six or eight
does not yield any additional performance enhancements in comparison to using four
threads. This is primarily because all threads communicate to share unvisited links
and avoid revisiting links already processed by other threads. Consequently, as the
number of threads increases, the communication between threads and the resources
sharing (database, logs, and buffers) overhead escalates. Users must fine-tune this
parameter until they find the optimal setting, which appears to be four threads in
the tested local environment.

Figure 12: Multithreading performance comparison used
on crawler-test.com site.

Another vital step in evaluating the effectiveness of multithreading is examining the
distribution of shared links among threads. This is crucial to prevent one thread from
overburdening while others remain inactive, which would be inefficient, especially
when using cloud services like AWS, where resources come at a cost. The same

54

configurations from Table 9 will be used, employing four threads, rerunning the same
crawler four times, and capturing their average.

To test the workload of each thread, a crawler is rerun with four threads four times,
and the number of documents collected by each thread is calculated. Subsequently,
the average of those four runs is also recorded. The results of the four runs, with
each run showcasing the distribution of crawled documents among each thread, are
displayed in Figure 13.

Figure 13: The workload distribution among four threads in four
different runners. The chart shows each thread how many

documents it has collected and the percentage.

While the ideal scenario would involve each thread downloading 25% of the
collected links, the chart shows otherwise. Looking at the Average column, one can
note that thread number 4 crawls more than 25%, while thread number 1 crawls
less, which is expected because as long as one thread contains less than five links, it
will keep crawling those links, and the other threads will remain idle. Only when the
thread contains more than five links in the queue will it share those links with one
other thread, and the others will remain idle.

For example, if a website contains only ten links, then only two threads will be
needed, where each will process five links, and the other two threads will remain idle.
All ten links are not split among the threads equally because the aim is to reduce the
communication and resource-sharing overhead of the threads, and a thread is only
utilized when necessary.

Although each thread was not precisely processing 25% of the workload, the result
looks decent as each thread is slightly more or less than 25% on average. The

55

worst-case scenario is to run four threads; only one keeps running while the other
three are idle; this wastes resources.

World University Rankings Evaluation

In order to assess the versatility of the web crawler and its adaptability to various
usage scenarios, as explained, three additional websites will be tested. The initial
test case involves crawling a university ranking website to retrieve comprehensive
information about all the universities listed, including their titles, respective countries,
and current world rankings. The configuration parameters used for crawling this
university-ranking website are detailed in Table 11. To accommodate the structure
of the website, where each page displays a table containing 25 universities, the Allow
Multi Element flag is set to True. Considering the pagination feature on the website,
which goes up to page 94, the Max Pages parameter is set to 100, as it is unlikely
that there will be more than 100 pages to crawl. Since the aim is to extract three
distinct pieces of information from the table, namely each university’s Title, Location,
and Ranking, three separate inspectors are required. Given that each page comprises
25 universities, and there are 94 pages in total, it can be estimated that a maximum
of 2,350 documents will be collected during the crawling process.

The Collected and Visited links shown in Table 12 are accurate and match the
expected count of 94. The fact that there are zero already visited links indicates
that no duplicate URLs have been encountered on the website. The total time spent
during this process is approximately six minutes, which is significantly shorter than
a similar test conducted using ParseHub, which took 20 minutes to complete all
94 pages.

Interestingly, even though the crawler successfully parsed and collected the results
correctly, it consistently received a 40310 status code in response to all HTTP
requests instead of the expected 200. This issue may be attributed to the website’s
use of Cloudflare service, as suggested by the information available at ScrapeOps11.
Cloudflare is a security service used by websites to prevent DoS attacks. In this
particular use case, the number of collected documents representing universities in
the table matches the results displayed in the page pagination, totaling 2,345. It
is worth noting that the website also deploys a robots.txt file, which the crawler
successfully detected and used; however, as shown, no links are excluded, indicating

10The HTTP 403 Forbidden status code signifies that the server comprehends the request but
declines to grant authorization for it.

11https://scrapeops.io/web-scraping-playbook/403-forbidden-error-web-scraping/

56

https://scrapeops.io/web-scraping-playbook/403-forbidden-error-web-scraping/

Seed URL* https://www.timeshighereducation.com/world
-university-rankings/2023/world-ranking

Inspectors*

• Name: //*[contains(@class, ’ranking-institution
-title’)]

• Location: //*[contains(concat(’ ’, normalize
-space(@class), ’ ’), ’ location ’)]

• Ranking: //*[contains(@class, ’rank’) and contains
(@class, ’sorting_1’) and contains(@class,
’sorting_2’)]

Allow Multi
Elements True

Max Pages 100

Threads 1

Max Depth 100

Pagination //*[contains(@class, ’pagination’)]

Actions None

Max Docs 2350

Table 11: World University Rankings website crawler
configuration.

that no disallowed links were found during the crawling.

Douglas Evaluation

The following use case involves extracting a specific category of products from an
e-commerce website. Various data types will be collected in this scenario, including
text and images. Table 13 shows the crawler configurations for this task, designed to
scrape a particular product category.

Given that the presence of 7 pages is indicated by the pagination of the Seed
URL link, the Max Pages and Max Depth parameters can be configured to be 10.
Multithreading can be employed to increase performance by setting the number of
threads to four. Lazy loading for image loading is employed by Douglas, causing
only 30 out of the available 48 products on the page to be fetched by the crawler.
To address this issue, the actions tab can be utilized to introduce a scrolling action,
repeating it ten times until the bottom of the page is reached, resulting in loading
the rest of the content. The inspectors in this context encompass four fields: brand,
title, price, and image.

The ability to configure automated actions depends on the website’s functionality.

57

https://www.timeshighereducation.com/world-university-rankings/2023/world-ranking
https://www.timeshighereducation.com/world-university-rankings/2023/world-ranking

Links
Collected Visited Already Visited Cross Site Excluded

94/94 94 0 0 0

Time
Tot. Spent Avg. Processing Avg. Page

Rendering Harvest Rate

351.66 s 2.57 s 1.020 s 0.26 r/s

Status
Codes

1XX 2XX 3XX 4XX 5XX
0 0 0 94 0

Docs &
Content

Tot. Docs Duplicated
Content

Avg. Docs Per
Page Avg. Page Size

2345 0 25 7.3 MB

Table 12: World University Rankings crawler results.

For instance, if lengthened loading times are experienced by the website, a waiting
action can be included to account for the estimated waiting time. If a clicking action
is necessary to reveal more information on the website, the click action can be utilized
for that purpose.

Table 14 displays the outcomes obtained following the execution of the Douglas
crawler. The Collected and Visited links align with the expected numbers within the
targeted pagination, which shows seven pages. The estimated time taken for this
operation is approximately 6.5 minutes. Notably, the average processing time is more
than double the time reported in the uni-ranking results in Table 12. The primary
reason for this extended processing time is the inclusion of additional scrolling-down
actions, which had to scroll-down ten times until it started parsing the documents.

Consider an alternative approach: instead of scrolling down ten times to reach the
page’s end for image loading, why not employ a scroll to the end of the page (The
End Key in Keyboard) event? This approach was tested on the Douglas website but
proved ineffective. The reason is that specific frontend frameworks only load content
when it is within the browser’s view. In such cases, a single "jump to the end of the
page" action will not suffice, as multiple scrolling-down actions are required.

The total count of collected documents indicates that 245 products were down-
loaded, which appears to be less than anticipated. Given that there are seven pages,
with the first page containing 48 products, the theoretical result should be around
7 · 48 = 336 products. Further investigation revealed that only some pages contain
exactly 48 products; some have more, while others have fewer. This is why it is
advisable to limit the Max Docs in the crawler configurations to more than the
anticipated number with a small margin.

It is important to note that, despite employing the robots.txt file for politeness

58

Seed URL* https://www.douglas.de/de/c/parfum/damenduefte/
duftsets/010111

Inspectors*

• Brand: //*[contains(@class, ’top-brand’)]

• Image: //a[contains(@class, ’product-tile__main
-link’)]/div[1]/div/img

• Name: //*[contains(@class, ’text’)]
[contains(@class, ’name’)]

• Price: //div[contains(concat(’ ’, normalize-space
(@class), ’ ’), ’ price-row ’)]

Allow Multi
Elements True

Max Pages 10

Threads 4

Max Depth 10

Pagination //*[contains(@class, ’pagination’)]

Actions Scrolling down 10 times

Max Docs 1000

Table 13: Douglas website crawler configuration.

and ensuring a relatively low Harvest Rate, yielding 0.017 requests/second, which
is relatively low and unlikely to overload the server, the IP address was eventually
banned, and access to the site was blocked after several attempts. This highlights
that each website may have its own unique security implementation based on its
firewall12 rules and the reverse proxy13 it uses.

Additionally, it is worth mentioning that the Douglas crawler was used without
issue for three months, but a ban was encountered recently. This emphasizes that
websites can adapt and modify their security measures over time.

It was already checked that the robots.txt file has been found, downloaded, and
used to filter the disallowed URLs in this use case.

ParseHub, on the other hand, encountered a crash while running Douglas’s project,
resulting in the error message: "Segmentation fault (core dumped)." Although
this made it challenging to compare performance, it shed light on ParseHub’s stability

12A firewall is a network security tool that filters and controls network traffic to safeguard against
unauthorized access and cyber threats, serving as a barrier between trusted internal networks
and untrusted external networks, such as the Internet.

13A reverse proxy is a server or software component that sits between client devices and a web server,
forwarding client requests to the appropriate server and often providing additional functionalities
like load balancing, caching, and security protection.

59

https://www.douglas.de/de/c/parfum/damenduefte/duftsets/010111
https://www.douglas.de/de/c/parfum/damenduefte/duftsets/010111

Links
Collected Visited Already Visited Cross Site Excluded

7/7 7 0 0 0

Time
Tot. Spent Avg. Processing Avg. Page

Rendering Harvest Rate

395.209 s 7.87 s 2.638 s 0.017 r/s

Status
Codes

1XX 2XX 3XX 4XX 5XX
0 7 0 0 0

Docs &
Content

Tot. Docs Duplicated
Content

Avg. Docs Per
Page Avg. Page Size

245 0 49 15.5 MB

Table 14: Douglas crawler results.

issues, as ParseHub frequently struggles to handle websites without crashing.

Stack Overflow Evaluation

Another use case involved crawling Stack Overflow questions, focusing solely on the
"python" tag in the seed URL to retrieve Python-related questions. The configured
inspectors collected questions titles, summary, and vote counts. Initially, running
the crawler with four threads led to a ban after only ten pages were crawled. To
resolve this, the thread count is reduced to one, reducing the number of requests and
resolving the issue.

After completing the runner, the collected links exceeded those displayed in the
pagination, indicating an issue with the pagination selector "s-pagination" collecting
additional links. The number of visited pages reached 100, the configured limit,
as intended, preventing the crawler from continuing to crawl all 27,200 found links.
Many cross site and excluded links signaled that the crawler had lost track and
needed to collect correct links. While 885 documents were collected correctly, there
was no guarantee that they were all related to the chosen "Python" topic. Fortunately,
termination conditions like Max Pages, Max Docs, and Max Depth were in place to
conserve resources.

The Show Browser option was enabled to troubleshoot and rerun the crawler.
This allowed for easier visualization of the crawler’s behavior and the links it was
crawling. It revealed that the crawler was indeed lost and opening the wrong links.
The pagination selector "s-pagination" was missing from the configuration, which
caused the crawler to collect all the links on the page, leading it to crawl any post on
the website. This issue demonstrates how easy it is to debug and identify problems

60

Seed URL* https://stackoverflow.com/questions/tagged/python

Inspectors*

• Title: //*[contains(@class, ’s-post-summary–content
-title’)]

• Summary: //*[contains(@class, ’s-post-summary
–content-excerpt’)]

• Votes: //*[contains(@class, ’s-post-summary
–stats-item__emphasized’)]

Allow Multi
Elements True

Max Pages 100

Threads 1

Max Depth 100

Pagination //*[contains(@class, ’s-pagination’)]

Actions None

Max Docs 1000

Table 15: Stack Overflow crawler configuration.

when a crawler loses its way, highlighting the system’s stability.
After fixing the second issue (pagination selector) and rerunning the crawler, it

operated correctly and yielded results in Table 16. Cross-site and Excluded links
were reduced to zero, a positive sign. Additionally, the number of collected links
was lower than in the first attempt, totaling 900, with nine links collected per page.
Interestingly, there were a significant number of 42914 status codes. To address this,
it could be beneficial to include a wait action between requests to mitigate the 429
errors.

It was already checked that the robots.txt file has been found, downloaded, and
used to filter the disallowed URLs in this use case.

When the same test was conducted using ParseHub, it took 20 minutes to
complete, which was three times slower than Scriburg crawler’s 6 minutes runtime.
It is worth noting that the two issues encountered during crawling were not experienced
with ParseHub. This is because ParseHub’s request rate is slower, reducing the risk of
being banned. This is achieved by reducing the number of threads and can be further
improved by adding wait actions. The second issue concerning incorrect selectors
is where ParseHub shines. It offers an easy autodetect feature, simplifying selector
selection with a simple click instead of manual XPath insertion.

14The HTTP 429 status code suggests the crawler has sent too many requests.

61

https://stackoverflow.com/questions/tagged/python

Links
Collected Visited Already Visited Cross Site Excluded

900 100 0 0 0

Time
Tot. Spent Avg. Processing Avg. Page

Rendering Harvest Rate

354.734 s 2.66 s 0.155 s 0.28 r/s

Status
Codes

1XX 2XX 3XX 4XX 5XX
0 54 0 46 15

Docs &
Content

Tot. Docs Duplicated
Content

Avg. Docs Per
Page Avg. Page Size

2750 0 50 3.4 MB

Table 16: Stack Overflow crawler results.

5.3 Indexer

Following the crawling phase, the next step involves indexing, which requires a
dedicated section for evaluation. To perform a thorough assessment of indexing, a
real-world dataset obtained through one of the crawlers employed during the evaluation
process will be used. The ease and configurability of the indexer parameters and how
they influence the evaluation score will also be illustrated.

5.3.1 Datasets

The Stack Overflow dataset15 presented in Table 17 is selected out of the three
available use cases that have been used in the crawling evaluation. The primary
rationale for this choice is its larger size compared to the others, along with the
presence of post descriptions that can be employed for index evaluation. It is important
to note that the crawler was rerun to gather additional Stack Overflow posts.

File Size 1.4 MB

Entries Count 2,415

Words Count 108,122

Fields Title, Summary, Votes

Table 17: Stack Overflow posts dataset.

As explained, Scriburg supports adding a dictionary for the autocomplete queries
feature. The dictionary can be added under the directory /dictionaries, and during
15Stack Overflow dataset: https://github.com/Alhajras/webscraper/blob/main/datasets/

stack_overflow_posts_dataset.csv

62

https://github.com/Alhajras/webscraper/blob/main/datasets/stack_overflow_posts_dataset.csv
https://github.com/Alhajras/webscraper/blob/main/datasets/stack_overflow_posts_dataset.csv

the evaluation, we will use a Wikidata dataset as shown in the Table 18.

File Size 437,41 MB

Entries Count 2,642,529

Words Count 30,309,063

Table 18: Wikidata dictionary dataset.

To evaluate the indexing process, we need a benchmark that can be used for testing.
We have created a small benchmark16 made of 6 queries with an average of 6 relevant
documents per query, which will be used to evaluate all the following indexing tests.
The benchmark is created manually by following the next rules:

• Ensure that the queries are relevant to the selected topic, "python".

• Diversify the queries by including question-style queries, such as "how to" and
keyword-based queries.

• Incorporate acronyms with a small number of letters, such as "SQL", to assess
the handling of small tokens.

• Include duplicate queries that intentionally contain misspelled words, like
"environment" and "enviroment", to assess the fuzzy search feature.

5.3.2 Metrics

We assess precision at a given value k (P@k), and calculate the Average Precision
(AP) [Järvelin and Kekäläinen, 2017].

Precision at k (P@k)

P@k represents the proportion of valid predictions within the system’s top k predic-
tions. We define Qvalid(q) as the collection of valid predictions for a user query q,
as specified in the ground truth. Additionally, we denote Qk

result(q) as the set of the
system’s top k completion predictions for a given user query q. The calculation for
P@k is as follows:

P@k =
|Qvalid(q) ∩Qk

result(q)|
k

(5.1)

We will compute the precision at 5 (p@5) for all the various indexing configurations.
16Stack Overflow benchmark: https://github.com/Alhajras/webscraper/blob/main/datasets/

benchmark.txt

63

https://github.com/Alhajras/webscraper/blob/main/datasets/benchmark.txt
https://github.com/Alhajras/webscraper/blob/main/datasets/benchmark.txt

Average Precision (AP)

Consider R1 through Rk as the ordered list of positions where relevant documents are
located within the result list of a specific query. In this context, Average Precision
(AP) is computed as the average of the k Precision at Ri (P@Ri) values. AP is
computed as:

AP =

∑n
i=1 P@ri

n
(5.2)

For the predictions from Qvalid that are absent in Qresult, we assign a Precision at
position ri (P@ri) value of 0. We then calculate the average precision by averaging
these values across all queries in the ground truth.

Mean Precisions (MP@k, MP@R, MAP)

Having a benchmark containing multiple queries and their corresponding ground
truth data, we can assess the system’s performance by calculating the average value
of a specific metric across all the queries.
MP@k represents the mean precision at k values across all queries, MP@R

represents the mean precision at R values across all queries, and MAP signifies the
mean average precision values across all queries.

5.3.3 Experiments

Base Stack Overflow Evaluation

We will initiate the indexing process using the default settings specified in Table 19.
The Stack Overflow dataset consists of three inspector fields: Title, Summary,
and Votes. However, we intend to index only the textual fields, such as Title and
Summary, while retaining Votes as they contain numerical data intended solely for
ranking purposes. All other configuration parameters are set to their default values.
For a clearer understanding of the configuration attributes, please refer to Table 5,
which provides descriptions of each attribute.

Upon initiating the indexing process for the first time, without the availability of
any caching, it may take up to two minutes to complete. This indexing procedure
consists of two distinct stages: The first involves the creation of the Wikidata
dictionary, which aids in providing suggestions in the drop-down menu to help users
locate the appropriate queries. Creating this dictionary is the longer of the two stages,
typically taking around 1.8 minutes, while the indexing phase takes approximately

64

Inspectors* Title, Summary

BM25
Parameters b = 0.75, k = 1.75

Stop Words None

Small Words
Threshold 2

Q-gram 3

Boosting
Formula None

Result
MP@5 MP@R MAP Time(s)

0.73 0.72 0.87 0.31

Table 19: Stack Overflow indexing configuration, test the
default settings without any changes.

seven seconds. The primary difference between these stages lies in the size of the
entities involved; the Wikidata dictionary comprises 2.6 million entities, whereas
the Stack Overflow entities used for indexing consist of only two thousand entities. It
is worth noting that the overall duration of the indexing process is highly contingent
on the size of the file being indexed and, in this case, the volume of documents
crawled by the web crawler. Following the initial indexing process, the dictionary
index will be cached and no longer require further indexing. The user introduces the
Wikidata dictionary file so it will not change in the next indexing process.

Even though the search results return 25 documents, we will set the value of k
for the P@k metric to 5. This choice is based on the everyday user preference for
focusing on the top results in a search list. The overall metrics are presented in Table
19. While these results indicate reasonable accuracy, it is essential to acknowledge
that assessing relevance can be subjective, as it varies among users. For instance,
Google’s ranking system considers factors like user location, link authenticity, and
text matching, leading to potentially inconsistent results for the same query across
different users. Moreover, there is no solid threshold for the indexing metrics to be
classified as good. However, in the current evaluation, any value above 0.5 will be
considered acceptable based on a personal judgment.

Furthermore, aiming for an extremely high level of accuracy can lead to model
overfitting [Ying, 2019], which is when a model fits its training data too closely,
leading to poor performance when dealing with new, unseen data, causing it to
struggle with generalization. While it may achieve a high precision score with
benchmark data, it may need to improve when faced with new, unseen queries. This

65

is because all the model’s parameters have been fine-tuned to fit the benchmark
datasets perfectly. Therefore, balancing achieving a reasonable precision score and
ensuring that the model performs well on new, previously unseen datasets is crucial.
Therefore, achieving perfect accuracy scores in evaluations is challenging and involves
a trade-off. The Precision at k metric is significantly affected by the selection of both
the value of k and the relevance threshold. Different choices for k and the threshold
can result in varying P@k scores for the same model. As a result, it is essential to
carefully and consistently choose these parameters when comparing different models.

It can be noted that those default values already show a decent result without
any fine-tuning. This indicates that the default values provide a decent result to
non-technical users. The returned result takes, on average, around 0.31 seconds,
which is too slow in comparison to the Google search engine, which suggests the
speed of processing a query should be less than 0.1 [Hoelzle, 2012].

BM25 Parameters Effect

It is essential to allow users to quickly fine-tune their indexer since the b and k values
of the BM25 formula can be edited from the UI. The values of both parameters b

and k depend highly on the datasets, and there are no magic numbers that work
for all models. Table 20 displays the configuration of the Stack Overflow indexer,
with modifications made to the default b and k values to have higher accuracy than
the basic configurations shown in the previous Table 19. Changing the b and k

parameters resulted in the increase of the MP@5 by 8.75%, MP@R by 14.2%,
and MAP by 2.2%. The key takeaway is that modifying the attributes available in
the indexing user interface can enhance or diminish accuracy, providing users with a
convenient way to fine-tune their model.

Stop Words Effect

Let us retain the modified b and k parameters instead of using the default values,
as they produce improved results. The following attribute we consider for indexing
includes stop words and examining their impact on accuracy. Initially, the intuition
is to remove common words that are already used in the benchmark we created, such
as "how", "to", "by", "with", "in", "not", and "does" from the benchmark queries
since they may seem insignificant and lack essential information. Surprisingly, though,
removing these words reduces accuracy, as illustrated in Table 21. In comparison
to the previous Table 20 (without using stop words), the MP@5 was reduced by

66

Inspectors* Title, Summary

BM25
Parameters b = 0.1, k = 0.81

Stop Words None

Small Words
Threshold 2

Q-gram 3

Boosting
Formula None

Result
MP@5 MP@R MAP Time(s)

0.8 0.84 0.89 0.31

Table 20: Stack Overflow indexing configuration, the effect
of changing BM25 parameters.

17.5%, MP@R reduced by 25.7%, and reduced MAP by 14.6%.

Inspectors* Title, Summary

BM25
Parameters b = 0.1, k = 0.81

Stop Words how, to, by, with, in, not, does

Small Words
Threshold 2

Q-gram 3

Boosting
Formula None

Result
MP@5 MP@R MAP Time(s)

0.66 0.624 0.76 0.31

Table 21: Stack Overflow indexing configuration, the effect
of changing Stop Words

This could be attributed to the Stack Overflow dataset not being exceptionally
large, and the assumption that these words are common in the English language
may not hold for some queries in the small Stack Overflow dataset. Furthermore,
stop words are not just about eliminating common words; they can also be used to
consistently disregard words that typically provide no meaningful information in a
query. For example, in the current Stack Overflow dataset, which encompasses all
posts related to "python", including the term "python" in the query should have no
impact, as all the posts are Python-related, even if they do not explicitly mention

67

the word "python" but discuss Python libraries, for instance. There are already
available lists17 of stop words for each language that can be used; however, as we
have discovered, it is also essential to analyze the common words in the dataset to be
indexed as well. A simple way is to count the words and their occurrence in all the
documents and plot them.

It is important to note that stop words used that contain two characters or fewer
("to", "by", and "in") have no impact in this context and can be safely eliminated.
The rationale is that they should already be filtered out due to the Small Words
Threshold being set to two.

Small Words Threshold Effect

In the following evaluation in Table 22, we adjust the Small Words Threshold to zero,
which implies that no words are excluded during the indexing process. While the
results remain reasonably good compared to the best result found in Table 20, there
has been a decrease in precision. This suggests that in some instances, increasing
the Small Words Threshold and not setting it to zero may be advisable. However,
it is essential to exercise caution when eliminating small words, particularly those
with one to three characters, depending on the language. Additionally, it is worth
noting that some two-character words can be acronyms, such as "OS" (Operating
System).

Inspectors* Title, Summary

BM25
Parameters b = 0.1, k = 0.81

Stop Words None

Small Words
Threshold 0

Q-gram 3

Boosting
Formula None

Result
MP@5 MP@R MAP Time(s)

0.8 0.77 0.84 0.31

Table 22: Stack Overflow indexing configuration, the effect
of reducing the Small Words Threshold

attribute.

17Stop words lists: https://www.ranks.nl/stopwords

68

https://www.ranks.nl/stopwords

A better refinement can be done here; instead of having two different parameters,
Stop Words and Small Words Threshold, we could keep the Stop Words list, and
instead of saving them as words, we can save them as a regular expression. Using
regular expressions will also have the advantage of excluding patterns. For example,
instead of excluding all Python versions like Python 3.10.0 and Python 3.10.1, one
can add a stop word rule to remove all of them instead of adding them one by one.
It is worth noting that there is a workaround in the current implementation, which
is to use the Clean-up Expression List in inspectors form shown in Table 3. This
will remove the words that match the given pattern instead of skipping them in the
indexing process.

Boosting Formula Effect

The final attribute to adjust is the Boosting Formula. The Boosting Formula is
an optional field and particularly useful for ranking documents containing a numeric
field. Examples of such fields include product prices, product reviews, post likes, post
shares, or the order of items in a list, like the example of university rankings 5.2.2.

In the specific context of the Stack Overflow example, each post is associated with
an up-vote number, which indicates how helpful an answer is. This numeric field can
be a valuable indicator of document quality and relevancy. The more users find a post
helpful, the more valuable it becomes to display as one of the top results. To assign
a higher score to posts with a high number of votes, one can employ the Boosting
Formula. One practical choice is to use the logarithm of the votes. However, more
suitable options may exist since votes can be zero or even negative. The formula
shown in Table 23 has been used for this straightforward use case. Note that one
can overcome this challenge by adding a constant to the voting to avoid negative
numbers.

After boosting the score for each post by the number of up-votes, the MP@5

was reduced by 33.75% MP@R was reduced by 26.2%, and MAP by 29.21%.
This is because some posts have negative votes (down-votes), and some have positive,
resulting in significant differences in the score added to the BM25 formula. For
example, if the query is "how to import panda library in python" and the returned
results contain one matching post but have fewer votes than a second post that only
mentions "python" but has higher up-votes than the first post, which is less relevant
will be at the top.

69

Inspectors* Title, Summary

BM25
Parameters b = 0.1, k = 0.81

Stop Words None

Small Words
Threshold 2

Q-gram 3

Boosting
Formula

votes
10

Result
MP@5 MP@R MAP Time(s)

0.53 0.62 0.63 0.31

Table 23: Stack Overflow indexing configuration, the effect
of using the Boosting Formula.

5.4 User Experience

There are notable advantages and disadvantages when comparing ParseHub with
Scriburg.

One of the standout features of ParseHub is its automatic detection of document
fields, which is achieved by clicking. As shown in Figure 14, ParseHub opens a live
browser session, allowing the user to click on any field that wants to be collected.
In contrast, Scriburg requires manual input of HTML element XPath to obtain this
information, which takes much work. Creating the crawlers manually often took more
than ten minutes, whereas ParseHub accomplished the same results in ten seconds.
Another advantage of ParseHub is its project-based approach to crawling instead of
Scriburg lists view. Starting a crawler in ParseHub can be done by providing only the
Seed URL without further options, simplifying the process. However, it is essential to
note that this feature can be easily extended and is a manageable hurdle in Scriburg.

The current implementation allows adding more threads and nodes to enhance
performance, a flexibility not available in ParseHub. Furthermore, the current
implementation has proven resilient in handling various edge cases, whereas ParseHub
struggled to manage these scenarios effectively. The adaptability and configuration
options offered by the current implementation make it well-suited for various websites
and scenarios.

The user interface employed in ParseHub needs to be updated; it lacks responsive-
ness and features a font that is challenging to read. However, the most frustrating
aspect is the frequent occurrence of the browser unexpectedly crashing and shut-

70

Figure 14: ParseHub project overview on the left and on
the right, the website is shown in a live session,
allowing users to click to select the information

to parse.

ting down without apparent cause. In contrast, utilizing a frontend framework like
Angular with PrimeNG significantly improved the current implementation, making
it responsive and delivering a seamless user experience. The monitoring used by
Scriburg made it easy to debug the crawlers and stop them before wasting resources.

When crawling a large dataset, having an indexed version becomes crucial, mainly
if the dataset is intended to be served as an API, for example, which Scriburg supports
but not ParseHub.

71

6 Conclusions and Future Work

This chapter addresses the questions initially introduced at the opening of the thesis
(Section 1.3), concludes the conducted experiments, and opens the door for additional
research to enhance the solution and explore areas that have not been previously
examined.

6.1 Conclusions

It is crucial to remember the primary questions and contributions intended to be
accomplished by this thesis and whether it has been successfully addressed or if they
remain abstract. The following list iterates through the contributions mentioned in
Section 1.3 and discusses the final findings.

• What are the challenges and bottlenecks to creating a scalable, configurable
search engine? Two primary bottlenecks restrict the crawler’s performance.
The first is the loading time or the time it takes to render a page, which varies
for each page and ultimately affects the rate at which the crawler can make
requests. The second challenge is that websites can block the crawler if the
request rate increases, which is also contingent on the configurations of the
websites’ firewalls. The configurable search engine is a good idea; however,
manually adding the XPath for each field takes more time and is tedious.

• Can a similar existing tool be surpassed? ParseHub demonstrated an advantage
with its smoother workflow and improved automated field selection. Nonetheless,
Scriburg surpassed ParseHub in performance, overall robustness, and flexibility.

• How does changing the configurations provided by the user interface affect
the results in the crawling and indexing accuracy? The user interface offers
forms, including optional and advanced crawling and indexing options. The
used options deliver a helpful and adaptable user experience. Even users with
limited programming experience can easily configure and execute straightforward
crawling and indexing tasks by relying on the default values provided.

73

• Can a User Interface (UI) be created that intuitively allows users to crawl and
index targeted websites from the internet? Yes, it can be. However, manually
adding and removing inspectors was time-consuming and should be refined.

• How well do crawlers react to different websites with different DOM structures?
While the internet hosts millions of websites, making it impossible to ensure
coverage for all possible use cases, many websites have been evaluated and
effectively overcome their diverse implementations.

• Can the indexing and crawling processes be integrated into the same tool? It was
possible to provide a user-friendly interface that combines both functionalities.

• Can meaningful evaluation metrics for the implemented search engine be iden-
tified? It has been discovered that evaluating crawling can pose challenges,
but certain aspects can be addressed to provide insights into the crawler’s
performance, like coverage and harvest rate.

6.2 Future Work

While evaluating Scriburg, the most wanted feature was to automate the inspector’s
selections. The solution should be similar to what ParseHub is implementing. The
user should be faced with a live session where they can click on any title or price they
want to collect simply by clicking. However, this feature is not easy to implement
and can take up to three months to perfect. Note that the time boxing given in
this section is based on personal estimation.

Adding IP Rotation is highly recommended because although the crawling rate
was not high in the evaluation, the crawler got banned twice from different websites.
Implementing IP Rotation is relatively easy. Some services provide free proxy list
API1 to be used to make proxied requests. One can add each proxy bypassing the flag
proxy-server in Selenium. This feature can take up to three days to implement
and test.

Adding a Steps2 component can allow the users to crawl and index step by step.
For example, the first step is to create a project name like Stack Overflow. This name
will be used for all templates, runners, crawlers, and indexers instead of entering the
name in each form. The steps will make running a crawler intuitive and reduce user
confusion. Using the Steps component from PrimeNG can take up to two weeks

1SSL Proxies: https://www.sslproxies.org/
2PrimeNG Steps: https://primeng.org/steps/personal

74

https://www.sslproxies.org/
https://primeng.org/steps/personal

to implement and add this functionality. This feature can solve the issue by making
the user interface more intuitive and easily used. This is equivalent to the project
based on ParseHub.

Early stopping the crawlers once they are inefficient helps save resources. This can
be due to an internet connection; the website is down, the crawler needs to be better
configured, and more issues can make crawling inefficient. Although Scriburg serves
valuable information to help monitor the crawling process, for non-technical users,
it can be hard to understand what the HTTP status codes stand for. To fix this,
one can set up some rules to convert errors into valuable messages that users can
understand. Based on personal estimation, for example, if the crawler seems slow,
an icon can be shown to indicate that; if the crawler is not collecting any document
for more than ten requests, an icon can be shown to reflect that. Implementing this
feature can take between two weeks to one month based on a personal estimation.

Leveraging the robots.txt file to direct web crawlers can be effective, but there is a
need for further research into establishing a robust protocol for crawler behavior. For
instance, it proves beneficial for crawlers to gain insights into website characteristics,
such as estimating the number of links, products, or items present. This information
helps users in determining the appropriate scaling of their crawlers. Additionally, the
file can specify the maximum allowable harvest rate to prevent potential denial-of-
service (DoS) issues. It could also contain preferences regarding crawl timings, such
as restricting activity to nighttime.

Evaluating the crawling process proves to be a challenging task due to the dynamic
nature of websites. While crawler-test.com served as a valuable platform for
evaluating the crawler, further research is necessary to establish a robust evaluation
website. This website should incorporate essential statistics, such as the count of
links on each page, the total number of pages within the site, and the maximum
harvesting rate.

75

Bibliography

[Bar-Yossef et al., 2009] Bar-Yossef, Z., Keidar, I., and Schonfeld, U. (2009). Do not
crawl in the dust: Different urls with similar text. ACM Transactions on the Web
(TWEB), 3(1):1–31.

[Bast and Celikik, 2013] Bast, H. and Celikik, M. (2013). Efficient fuzzy search in
large text collections. ACM Trans. Inf. Syst., 31(2).

[Berners-Lee et al., 1994] Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F.,
and Secret, A. (1994). The world-wide web. Communications of the ACM, 37(8):76–
82.

[Brin and Page, 1998] Brin, S. and Page, L. (1998). The anatomy of a large-scale
hypertextual web search engine. Computer networks and ISDN systems, 30(1-
7):107–117.

[Cambria and White, 2014] Cambria, E. and White, B. (2014). Jumping nlp curves:
A review of natural language processing research. IEEE Computational intelligence
magazine, 9(2):48–57.

[Cargill and Vasylenko, 2015] Cargill, A. and Vasylenko, A. (2015). Parsehub docu-
mentation.

[Castillo, 2005] Castillo, C. (2005). Effective web crawling. SIGIR Forum,
39(1):55–56.

[Cormen et al., 2001] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2001). Introduction to Algorithms. The MIT Press, 2nd edition.

[Eliyan and Di Pietro, 2021] Eliyan, L. F. and Di Pietro, R. (2021). Dos and ddos
attacks in software defined networks: A survey of existing solutions and research
challenges. Future Generation Computer Systems, 122:149–171.

[Fetterly et al., 2003] Fetterly, D., Manasse, M., and Najork, M. (2003). On the evolu-
tion of clusters of near-duplicate web pages. In Proceedings of the IEEE/LEOS 3rd

77

International Conference on Numerical Simulation of Semiconductor Optoelectronic
Devices (IEEE Cat. No. 03EX726), pages 37–45. IEEE.

[Fox, 1989] Fox, C. (1989). A stop list for general text. In Acm sigir forum, volume 24,
pages 19–21. ACM New York, NY, USA.

[Fu et al., 2016] Fu, Z., Wu, X., Guan, C., Sun, X., and Ren, K. (2016). Toward
efficient multi-keyword fuzzy search over encrypted outsourced data with accu-
racy improvement. IEEE Transactions on Information Forensics and Security,
11(12):2706–2716.

[Gao et al., 2010] Gao, X., Xiao, B., Tao, D., and Li, X. (2010). A survey of graph
edit distance. Pattern Analysis and applications, 13:113–129.

[geeksforgeeks, 2023a] geeksforgeeks (2023a). Breadth first search or bfs for a graph.

[geeksforgeeks, 2023b] geeksforgeeks (2023b). Depth first search or dfs for a graph.

[Hoelzle, 2012] Hoelzle, U. (2012). The google gospel of speed.

[Huggins, 2004] Huggins, J. (2004). Selenium documentation.

[Järvelin and Kekäläinen, 2017] Järvelin, K. and Kekäläinen, J. (2017). Ir evalua-
tion methods for retrieving highly relevant documents. In ACM SIGIR Forum,
volume 51, pages 243–250. ACM New York, NY, USA.

[Koehn and Knight, 2003] Koehn, P. and Knight, K. (2003). Empirical methods for
compound splitting. arXiv preprint cs/0302032.

[Koster et al., 2022] Koster, M., Illyes, G., Zeller, H., and Sassman, L. (2022). Robots
Exclusion Protocol. RFC 9309.

[Kouzis-Loukas, 2016] Kouzis-Loukas, D. (2016). Learning Scrapy. Packt Publishing
Ltd.

[Kozen, 1992] Kozen, D. C. (1992). Depth-First and Breadth-First Search, pages
19–24. Springer New York, New York, NY.

[Kumar et al., 2017] Kumar, M., Bhatia, R., and Rattan, D. (2017). A survey of web
crawlers for information retrieval. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 7(6):e1218.

78

[Lee et al., 1996] Lee, Y. K., Yoo, S.-J., Yoon, K., and Berra, P. B. (1996). Index
structures for structured documents. In Proceedings of the first ACM international
conference on Digital libraries, pages 91–99.

[Levenshtein et al., 1966] Levenshtein, V. I. et al. (1966). Binary codes capable of
correcting deletions, insertions, and reversals. In Soviet physics doklady, volume 10,
pages 707–710. Soviet Union.

[Madhavan et al., 2008] Madhavan, J., Ko, D., Kot, Ł., Ganapathy, V., Rasmussen,
A., and Halevy, A. (2008). Google’s deep web crawl. Proceedings of the VLDB
Endowment, 1(2):1241–1252.

[Manning et al., 2008] Manning, C. D., Raghavan, P., and Schütze, H. (2008). Intro-
duction to Information Retrieval. Cambridge University Press.

[Navarro and Baeza-Yates, 1998] Navarro, G. and Baeza-Yates, R. (1998). A prac-
tical q-gram index for text retrieval allowing errors. CLEI Electronic Journal,
1(2):1.

[Pinkerton, 2000] Pinkerton, B. (2000). Webcrawler: Finding what people want.
University of Washington.

[Richardson, 2007] Richardson, L. (2007). Beautiful soup documentation. April.

[Rindfleisch, 2020] Rindfleisch, A. (2020). The second digital revolution. Marketing
Letters, 31:13–17.

[Robertson et al., 2009] Robertson, S., Zaragoza, H., et al. (2009). The probabilistic
relevance framework: Bm25 and beyond. Foundations and Trends® in Information
Retrieval, 3(4):333–389.

[Shkapenyuk and Suel, 2002] Shkapenyuk, V. and Suel, T. (2002). Design and im-
plementation of a high-performance distributed web crawler. In Proceedings 18th
International Conference on Data Engineering, pages 357–368. IEEE.

[Srinivasan et al., 2005] Srinivasan, P., Menczer, F., and Pant, G. (2005). A general
evaluation framework for topical crawlers. Information Retrieval, 8(3):417–447.

[Statista, 2020] Statista (2020). Average number of search terms for online search
queries in the united states as of january 2020.

79

[Statista, 2023] Statista (2023). Market share of leading desktop search engines
worldwide from january 2015 to july 2023.

[Ukkonen, 1985] Ukkonen, E. (1985). Algorithms for approximate string matching.
Information and control, 64(1-3):100–118.

[Van Rossum and Drake Jr, 1995] Van Rossum, G. and Drake Jr, F. L. (1995).
Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam.

[Ying, 2019] Ying, X. (2019). An overview of overfitting and its solutions. In Journal
of physics: Conference series, volume 1168, page 022022. IOP Publishing.

80

	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Task Definition
	1.3 Contribution
	1.4 Chapter Overview

	2 Related Work
	2.1 Existing Web Crawlers
	2.2 Google High-level Architecture

	3 Background
	3.1 Web Search Engine
	3.1.1 Requirements and Features

	3.2 Crawler
	3.2.1 Specifications
	3.2.2 Architecture
	3.2.3 Data Structure

	3.3 Indexing
	3.3.1 Tokenization
	3.3.2 Document Unit
	3.3.3 Inverted Index

	3.4 Ranking
	3.4.1 BM25

	3.5 Fuzzy Search
	3.5.1 Fuzzy Search with Q-grams

	4 Approach
	4.1 Software Architecture
	4.2 Crawler Implementation
	4.2.1 Threads Pool
	4.2.2 Scaling the System
	4.2.3 Practical Challenges

	4.3 Indexer Implementation
	4.4 User Interface Design
	4.4.1 Templates and Inspectors
	4.4.2 Crawlers
	4.4.3 Runners
	4.4.4 Indexers
	4.4.5 Search Engine Result Page (SERP)

	5 Evaluation
	5.1 Testing Environment
	5.2 Crawler
	5.2.1 Datasets
	5.2.2 Experiments

	5.3 Indexer
	5.3.1 Datasets
	5.3.2 Metrics
	5.3.3 Experiments

	5.4 User Experience

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography

