
Undergraduate Thesis

Accurate Word Extraction

from Documents with

Complex Layouts

Tanyu Tanev

Examiner: Prof. Dr. Hannah Bast
Adviser: Claudius Korzen

Albert-Ludwigs-University Freiburg
Faculty of Engineering

Department of Computer Science
Chair for Algorithms and Data structures

October 15th, 2019

Writing period

15. 07. 2019 – 15. 10. 2019

Examiner

Prof. Dr. Hannah Bast

Adviser

Claudius Korzen

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare, that my Thesis has not been prepared for another examination
or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

PDF documents are commonly used to exchange and store information. Their compact
and self-contained nature has kept them relevant for a long time. It also, however,
leads to problems when trying to automate operations on them. An example of this is
the automatic extraction of textual content - a problem, which has not been entirely
solved to this day. Textual content within the documents is only stored at a character
level, which means that words and text lines have to be rebuilt from the ground
up. There exist rule-based algorithms, which try to solve the problem by taking
advantage of the spacing within the documents. Using them on documents with a
standard layout (e.g. scientific publications), which feature rectangular columns and
figures has achieved satisfactory results.

It is, however, more challenging for documents, which have a complex layout. Some
magazine and news articles, for example, feature circular pull quotes in-between text
columns, which are used to emphasize a certain point. This, in turn, makes it harder
to deploy the rule-based algorithms, because the spacing in the documents becomes
irregular.
In the following thesis, this problem is tackled with the help of a deep learning

approach. The approach looks at the pages of a PDF document as a collection of
sequences, which are in the form of text lines. These sequences are then processed by
a deep learning model and each character from them is grouped into its respective
word. The usage of not only the distances between the characters, but also their value
and information about their font, as input features, enables the model to more easily
identify complex elements (e.g. pull quotes) and accurately extract their textual
contents.

iii

Zusammenfassung

PDF-Dokumente werden häufig zum Austausch und zur Speicherung von Informatio-
nen verwendet. Ihre kompakte und eigenständige Natur hat sie lange Zeit relevant
gehalten. Es führt jedoch auch zu Problemen bei der Automatisierung von Operatio-
nen an ihnen. Ein Beispiel dafür ist die automatische Extraktion vom Textinhalt -
ein Problem, das bis heute nicht vollständig gelöst ist. Der Textinhalt der Dokumente
wird nur auf Zeichenebene gespeichert, was bedeutet, dass Wörter und Textzeilen
von Grund auf neu aufgebaut werden müssen. Es gibt regelbasierte Algorithmen, die
versuchen, das Problem zu lösen, indem sie den Abstand innerhalb der Dokumente
ausnutzen. Die Verwendung auf Dokumenten mit einem einheitlichen Layout (z.B.
wissenschaftliche Publikationen), die rechteckigen Spalten und Abbildungen enthalten,
hat zu guten Ergebnissen geführt.

Schwieriger ist es jedoch bei Dokumenten, die ein komplexes Layout haben. Einige
Zeitschriften- und Nachrichtenartikel enthalten beispielsweise kreisförmige Pull-Zitate
zwischen den Textspalten, die verwendet werden, um einen bestimmten Punkt her-
vorzuheben. Dies wiederum erschwert den Einsatz der regelbasierten Algorithmen,
da der Abstand in den Dokumenten unregelmäßig wird.

In der folgenden Arbeit wird dieses Problem mit Hilfe eines Deep Learning Ansatzes
angegangen. Der Ansatz betrachtet die Seiten eines PDF-Dokuments als eine Samm-
lung von Sequenzen, die in Form von Textzeilen vorliegen. Diese Sequenzen werden
dann von einem tiefen Lernmodell verarbeitet und jeder Charakter aus ihnen wird in
seinem jeweiligen Wort gruppiert. Die Verwendung nicht nur der Abstände zwischen
den Zeichen, sondern auch ihres Wertes und der Informationen über ihre Schrif-
tart als Eingabefunktionen ermöglicht es dem Modell, komplexe Elemente (z.B.
Pull-Anführungszeichen) leichter zu identifizieren und ihren Textinhalt präzise zu
extrahieren.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Difficulties . 4
1.3 Proposed solution . 5

2 Related Work 7
2.1 Pdftotext . 7
2.2 Grobid . 8

3 Approach 9
3.1 Data generation . 9

3.1.1 Randomly generated PDF files 10
3.1.2 JSON format . 10
3.1.3 JSON description files . 10

3.2 Data parsing from description files 13
3.2.1 Character metadata . 13
3.2.2 Non-character metadata . 14
3.2.3 Text line metadata . 14

3.3 Line grouping . 15
3.4 Rule-based baseline algorithm . 18

3.4.1 Recursive X-Y cut . 18
3.4.2 Word building . 23
3.4.3 Problems . 23

3.5 Deep learning solution . 24
3.5.1 External libraries for deep learning utilities 25

3.5.1.1 TensorFlow . 25
3.5.1.2 NumPy . 25

3.5.2 Foundations of deep learning 25
3.5.2.1 Overview . 25
3.5.2.2 Sequence labeling 27

vii

3.5.3 Encoder-Decoder model . 28
3.5.3.1 Training an Encoder-Decoder model 28
3.5.3.2 Using an Encoder-Decoder model 29

3.5.4 Data preprocessing . 29
3.5.4.1 Character data encoding 30
3.5.4.2 Distance data preprocessing 31

3.5.5 Training of deep learning model 31
3.5.5.1 Merging of text lines 31
3.5.5.2 Conversion to input and output data 33
3.5.5.3 Structure & Hyperparameters 36

3.5.6 Using the deep learning model 37
3.5.6.1 Production data generator 37
3.5.6.2 Getting the label predictions 37
3.5.6.3 Building the predicted lines 38

3.6 Evaluation methods . 39

4 Evaluation 41
4.1 Test sets . 41
4.2 Evaluation metrics . 41
4.3 Results . 42

4.3.1 Line grouping . 42
4.3.2 Rule-based baseline . 42
4.3.3 Deep learning approach . 43
4.3.4 Pdftotext approach . 43

5 Conclusion 45

6 Future Work 49

7 Acknowledgments 51

Bibliography 52

viii

List of Figures

1 Three different PDF document layouts 2
(a) Randomly generated PDF file with Manhattan layout 2
(b) Randomly generated PDF file with non-Manhattan layout and

pull quote . 2
(c) Randomly generated PDF file with non-Manhattan layout and

block quotation . 2
2 Bounding box of characters in a randomly generated PDF file 3
3 Bounding boxes of characters in words 5
4 Simplified workflow of proposed solution 6

(a) Original extract . 6
(b) Text lines, converted to input data 6
(c) The predicted labels for the text line characters 6
(d) Finished text lines . 6

5 A text line, spanning multiple columns, with low-hanging symbols . 15
6 Steps of line grouping algorithm . 17

(a) First step of line grouping algorithm 17
(b) Second step of line grouping algorithm 17
(c) Third step of line grouping algorithm 17
(d) Fourth step of line grouping algorithm 17
(e) Fifth step of line grouping algorithm 17
(f) Sixth step of line grouping algorithm 17
(g) Seventh step of line grouping algorithm 17
(h) Eighth step of line grouping algorithm 17
(i) Final step of line grouping algorithm 17

7 Using recursive X-Y cut to segment a PDF page 21
(a) X-Y cut original document . 21
(b) First X-Y cut . 21
(c) Second X-Y cut . 21
(d) Third X-Y cut . 21

ix

(e) Fourth X-Y cut . 21
(f) Final X-Y cut . 21

8 Simple abstract three-layer neural network 26
9 Simple two-layer neural network for deciding a house purchase 27
10 Simple example of sequence labeling 28

(a) Text line from random PDF file 28
(b) Characters with assigned labels 28

11 Training an Encoder-Decoder model 29
12 Predicting with an Encoder-Decoder model 30
13 Simple example of merging text lines 33

(a) Unmerged text lines of random PDF file 33
(b) Merged text lines . 33

14 Input data format . 35

x

List of Tables

1 Evalution metrics of line grouping . 42
2 Evalution metrics of rule-based baseline approach 43
3 Evalution metrics of deep-learning approach 44
4 Evalution metrics of pdftotext . 44

xi

List of Algorithms

1 Recusive X-Y cut . 19
2 Word building . 23
3 Line merging . 32

xiii

Listings

1.1 Character, distance and font input data 6
1.2 Predicted labels . 6
1.3 Finished text lines . 6

3.1 JSON “description” file, which holds PDF metadata 12

xv

1 Introduction

1.1 Motivation

An essential part of the modern digital world is the exchange of information. It comes
in multiple forms like books, news articles, user manuals, scientific publications and
many others. All these different types of textual data conform to different standards.
Figure 1 shows three examples of that. In Figure 1a, a randomly generated scientific
publication is shown. It follows a so called Manhattan layout. This means that
the text is grouped in simple, easy to define, rectangular columns. The font size and
style are persistent and the attached tables and figures are usually positioned in such
a way, as to not interfere with the textual content. In contrast to this, Figure 1b and
Figure 1c employ unusual non-Manhattan layouts. The pull quote in the first
figure and the block quotation in the second one lead to intertwined textual and
figure data with varying font styles. Such complex elements are used by authors to
emphasize important points of their works.

In order for all these different documents to be rendered correctly, a special file
format is needed. Namely one, which can encapsulate all of this information, including
content, references, font style and size, etc., in a self-contained package. This is where
the Portable Document Format (PDF) comes into play. Developed by Adobe in 1990,
this file format includes all the wanted attributes above, and more, into a compact
package [1]. It allows documents to appear exactly how their authors intended them
to, regardless of hardware and operating system. For this reason, PDF has been one
of the most widely adopted and used formats in the last years and will seemingly
continue to be in the years to come [2].

Being such a big part of the digital world, automatic extraction of the contents of
PDF files is a prevalent work field. Being able to, for example, accurately extract the
textual content of some PDF document, is a prerequisite for solving many practical
problems, involving PDF documents. A common example case of this is conversion
from PDF to other file types, like .doc (MS Word documents) or .html (web browser
documents). Another one is the indexing of PDF documents by search engines.

1

(a) Randomly generated PDF file with
Manhattan layout

(b) Randomly generated PDF file with non-
Manhattan layout (pull quote in the
middle below)

(c) Randomly generated PDF file with non-
Manhattan layout (block quotation in
the middle right)

Figure 1: Three different PDF document layouts

2

Figure 2: Bounding box of characters in a randomly generated PDF file

Indexing is the process of keeping track of some document’s information. This is later
compared with user searches and it’s determined if the document is relevant to what
the user wants. Without automatic content extraction, the tasks above would require
a lot of manual labor and would be much slower.
The main struggle of researchers in the field has been with the file format itself.

PDF is layout-based - it assumes that the document is finished and no further
editing will be needed in the future. The main goal of the file format is to render its
contents in their proper places with their proper style. As such, it provides little to
no information about the semantic roles of the contents of the documents and the
connections between them. Textual information, for example, is provided in streams
of characters and are devoid of any semantic role. This can be seen when using a PDF
parser library (like Apache PDFBox [3]) to extract information about the characters
of a PDF document. Figure 2 showcases what developers have to work with - the
values of the characters, their bounding boxes and their font styles and sizes.

Despite the difficulties, there exist algorithms for rebuilding the textual content
of PDF documents. They are grouped in two categories:

• Top-down algorithms - such algorithms first start by segmenting a page into
big blocks (e.g. columns) and make their way downwards to word-level

• Bottom-up algorithms - opposed to the algorithms above, bottom-to-top ones
start off by grouping characters into words and text lines and finish with the

3

building of columns

Different types of rule-based algorithms have been able to group characters into their
respective bigger blocks with satisfying results. The main factor, which is used across
all of them, is spacing with the PDF document. Regular distances between different
“meta levels” (e.g. character-to-character, word-to-word, column-to-column)
allow the algorithms to achieve success. This is only true, however, for documents
with a Manhattan layout. Non-Manhattan layout documents have irregular spacing,
due to semantic blocks like pull quotes, block quotations and others (see Figure 1).
This, coupled with irregular font style and size, makes it harder to robustly use a
rule-based algorithm, which would work well across all non-Manhattan documents.

1.2 Difficulties

As mentioned in Section 1.1, spacing is one of the main factors, which enables rule-
based algorithms to work. One of the more broadly used from them uses spacing, in
order to segment the pages of a PDF document by “cutting” them into smaller blocks
[4]. This is done by searching for suitable vertical and horizontal axes, which don’t
intercept with any characters or figures. Such axes are then used to split a part of a
PDF page into two smaller blocks. These blocks can afterwards be further split into
even smaller parts, e.g. text lines and words. The advantage of this method is that
the hierarchical structure can be recorded and used to group characters into bigger
blocks. This does not, however, include determining the semantic role of the blocks.
This is another research topic, which is not looked at in this bachelor thesis.

It’s harder, however, to find a suitable cutting axis in the presence of non-rectangular
columns, like the ones in documents with non-Manhattan layouts. Such columns
are commonly observed in the presence of pull quotes (see Figure 1b), found in
news articles. Pull quotes are used to highlight certain information and are usually
intertwined somewhere within the textual content. Because of their position, it
becomes harder and, in some cases, impossible to cut the textual content into smaller
blocks.
Building words out of the PDF characters also has its caveats. If using the same

rule-based approach as above - factoring the white space between the characters -
problems occur immediately. An example of this is Figure 3. It shows the bounding
boxes of the characters of the words “serif font”. Based on the spacing configuration,
a rule-based algorithm could group them either as the following six words: “s”, “e”, “r”,
“iffo”, “n”, “t”, or properly as two. The success of the algorithm is highly influenced

4

Figure 3: Bounding boxes of characters in words

by custom defined thresholds, which have to be properly adapted with each new
document.
Lastly, PDF documents vary in font styles. If using predetermined thresholds for

the spacing to extract words and semantic blocks, performance may also greatly vary.
Because of the three problems above, the field of deep learning proves to be a valid
candidate to eliminate some of these threshold and to extend the limits of content
extraction.

1.3 Proposed solution

This bachelor thesis proposes a deep learning solution. It capitalizes not only on
information about the spacing of a document, but also on their font characteristics
and values. Figure 4 visualizes a simplified workflow of how it’s done exactly. The
example is based on a small snippet from a randomly generated PDF document, as
seen in Figure 4a. The snippet contains a section name and a part of a sentence, which
are on the same horizontal level, but the space between them has been shortened for
aesthetic reasons.
The first step of the proposed deep learning solution groups all characters with

similar horizontal coordinates into a text line. Figure 4b shows the result of this
process - an array with all characters of the text line, combined with their font
information and the distances between them. This can then be given to a neural
network, which predicts column and word endings. Figure 4c showcases how the
correct predictions for the text line should look like. The prediction classes are the
following three:

• 0 - normal character

• 1 - this character is at the end of some word

• 2 - this character is at the end of some column

By using the predictions explained above, the text line can be split into its respective
columns and words. The end result is showed in Figure 4d.

5

(a) Small extract from randomly generated PDF document

Listing 1.1: Character, distance and font input data
1 [[’A’, 0.0, 10.9, True, False], ..., [’H’, 184.5, 10.9, True, False],
2 [’t’, 0.0, 9.0, False, False], ..., [’e’, 0.0, 9.0, False, False]]

(b)

Listing 1.2: Predicted labels
1 [[’A’, 0.0, 10.9, True, False], ..., [’H’, 184.5, 10.9, True, False],
2 0 0 2
3 [’t’, 0.0, 9.0, False, False], ..., [’e’, 0.0, 9.0, False, False]]
4 0 0 2

(c)

Listing 1.3: Finished text lines
1 ["APPROACH", "twice during his tenure (2006, 2008) and came to Wayne"]

(d)

Figure 4: Simplified workflow of the proposed solution

The deep learning solution tries to solve the main issues, listed in Section 1.2. By
splitting a PDF page on the meta level of text lines, the problem with irregular
spacing is circumvented. Characters should also more reliably be grouped into their
respective words, because the model learns a statistical model of the English language.
The additional font features also make it easier to detect complex block formations,
like the ones seen in Figures 1b and 1c.

6

2 Related Work

As mentioned in Chapter 1, there exist many PDF content extraction tools, which
employ rule-based approaches. A comprehensive overview of the majority of them
and their performance was done by Hannah Bast and Claudius Korzen in their paper
“A Benchmark and Evaluation for Text Extraction from PDF” [5]. The results in
them serve as proof of the significance of the research field and that the problem is
still open.

In this chapter, I will mainly look into two tools: pdftotext [6] and Grobid [7]. The
former is one of the most popular tools to extract contents from PDF files and it
comes as a built-in command with many Linux distributions. The latter is one of the
most recent advances of content extraction, based on machine learning.

2.1 Pdftotext

Pdftotext is a commonly used tool for textual extraction. It is able to quickly and
robustly extract text out of a PDF document without running into major crashes [5].
However, its output also completely disregards any kind of semantic information.

Per default, the tool dumps all words in a top-down, left-right order. Luckily, the
addition of command-line arguments can make the data be more structured. The
“–layout” keyword configures the output to include the same spacing as in the original
document. This is done by using tabular (’\t’) and newline characters (‘\n’). Their
addition allows the text to be broken down into smaller semantic blocks, like text
lines. This is important, as the proposed solution of this bachelor thesis is evaluated
on a text line level. Two analogous arguments exist, namely “-simple” and “-table”,
which are used for one-page documents and table data respectively.

The robust nature and overall availability of this tool makes it a popular first choice
for text extraction. For this reason, it is also used in the borders of this bachelor
thesis as a basis of comparison for the proposed deep learning approach.

7

2.2 Grobid

Grobid is a content extraction tool, based on Conditional Random Fields (CRF).
It was originally showcased in 2009 with bibliographic data recognition and term
extraction as the main focus. As of current stand, in October 2019, the project is still
being worked on. Its tasks have increased to being able to extract header metadata
and the text of the file body.
The usage of CRF models has lead to state-of-the-art performances for the first

two fields [8] and satisfactory results in the last one [5]. The main idea of using
sequence labeling for content extraction carries over to this thesis as well, albeit used
in a different direction. Learning a statistical model of the language has proven to be
helpful in field.

Unfortunately, when using Grobid for full text extraction, the output is in the form
as free-flowing paragraphs. The paragraphs are presented as one continuous block,
with no information about the individual text lines within them. This makes it to
evaluate against the deep learning approach, proposed in this undergraduate thesis.

8

3 Approach

In this chapter, I will more closely look at the six main components of the bachelor
thesis:

• Data generation - what data was used to implement and evaluate the algorithms
in the work

• Data parsing - how the data, mentioned above, was parsed, in order to be
passed to the algorithms below

• Line grouping - essential process, which groups characters of a PDF documents
to text lines

• Baseline algorithm - rudimentary rule-based algorithm, which will serve as a
baseline during evaluation

• Deep learning solution - the main subject of this thesis

• Evaluation - how the evaluation was implemented and what it means

Each section will introduce the idea behind the respective step and show the most
important algorithms, classes and external libraries, which were used to implement
them. Their significance and usage will be explained, as well as showcased with
examples.

3.1 Data generation

Randomly generated PDF files were used in this thesis for the development of the
main algorithms and their evaluation. They feature different formats, combining both
Manhattan and non-Manhattan layouts. Each one of them is also accompanied by a
JSON “description” file, which contains metadata about the contents of the document.
All data was generated by my supervisor, Claudius Korzen, and was used only in the
borders of this thesis.

9

3.1.1 Randomly generated PDF files

The PDF files can be grouped in two main types, regarding their layout: Manhattan
and non-Manhattanf. Both types include the following semantic blocks:

• Title

• Single or multiple author(s), with e-mail and address information

• Paragraphs of text with randomly chosen sentences from the ClueWeb12 text
corpus [9]

• Non-embedded figures - meaning that any characters in them aren’t ex-
tractable

Additionally, the complex, non-Manhattan layout PDF documents also feature
pull quotes (see Figure 1b) and block quotations (see Figure 1c). The text within
them is usually of a different font style and size. The variety of possible contents
helps with making the solutions of this bachelor thesis work well across as many
document formats as possible.
For additional evaluation purposes, there are also documents with a Manhattan

layout but also broken spacing. In those documents, there is a 5% chance, that a
spacing between two words is removed. The documents were made, in order to get a
better idea of the role of distance when extracting words, for both the baseline and
deep learning algorithms.

3.1.2 JSON format

The ISO-standardized JSON format [10] provides a human-readable way of transmit-
ting and storing state information. Originally derived from the Javascript program-
ming language, JSON has become independent and is universally used in many places.
It supports so called objects (equivalent to associative arrays in Javascript), arrays,
strings, booleans and integers, along others. Listing 3.1 showcases the format and
how it is used in this thesis to hold metadata about the contents of a PDF document.

3.1.3 JSON description files

Each randomly generated PDF document has a JSON description file supplied to it.
The JSON description file contains metadata about the PDF document itself and
is what would be used by the baseline and deep learning solutions of this bachelor
thesis.

10

Each description file contains a single object with up to three key-value pairs:

• "textLines" - has an array of objects as the value, with each object representing
a text line in the PDF document

• "figures" - like above, but representing a figure

• "shapes" - like the first point, but representing a shape (e.g. lines)

A shortened version of the JSON description file of the PDF document, shown in
Figure 1c, is given in Listing 3.1. The first two keys of the ones, listed above, can be
seen in the listing. As the PDF document doesn’t contain any shapes, however, the
"shapes" key is missing. This functionality is shared with the other key-value pairs
as well - if something from the above three isn’t present in the document, it isn’t in
the JSON description file as well.
The snippet shows how the metadata of the single-word “Evaluation” text line in

Figure 1c looks like. Each text line contains a key-value pair about its position and
the words, from which it’s built. The position data includes the PDF page, on which
the text line appears, along with the coordinates of it’ s lower-left and upper-right
points. Those two points can be used to define a bounding box around the text line,
which is used extensively throughout the bachelor thesis. Position data is used in the
same way for metadata about words, characters, figures and shapes.

The value of the “words” key is an array of associative arrays, which offer metadata
about all words in the text line. Each word contains the following three types of
information:

• “text” - the text of the word itself

• “positions” - an array of associative arrays with position data, as described
above; there can be more than one position, because some words are wrapped
to other lines or pages

• “characters” - an array of associative arrays, which contain metadata about
each character of the word

The characters themselves also contain three main types of metadata. The first
one is the value of the character itself. The second one is a collection of information
about the font of the character, including size, base name of the font, family name of
the font, normalized name of the font, whether it’s bold and italics and if it’s a type 3
font or not. The last collection of metadata about the character is its position, which
follows the same format as explained above.

11

Listing 3.1: JSON “description” file, which holds PDF metadata
1 {"textLines": [..., {
2 "position": {
3 "pageNum": 5,
4 "minX": 158.0,
5 "minY": 516.6,
6 "maxX": 233.1,
7 "maxY": 526.6
8 },
9 "words": [{

10 "text": "Evaluation",
11 "positions": [{
12 "pageNum" : 5,
13 "minX": 158.0,
14 "minY": 516.6,
15 "maxX": 233.1,
16 "maxY": 526.6
17 }, ...],
18 "characters": [{
19 "text": "E",
20 "fontsize": 14.3,
21 "fontBaseName": "lmroman",
22 "fontFamilyName": null,
23 "fontNormalizedName": "lmroman12-bold",
24 "bold": true,
25 "italic": false,
26 "type3": false,
27 "pageNum": 5,
28 "minX": 158.0,
29 "minY": 516.7,
30 "maxX": 168.6,
31 "maxY": 526.5
32 }]
33 }]}, ...],
34
35 "figures": [{
36 "position": {
37 "pageNum": 4,
38 "minX": 133.8,
39 "minY": 371.7,
40 "maxX": 477.5,
41 "maxY": 580.2
42 }
43 }]
44 }

12

At the bottom of Figure 3.1 is the "figures" key and its value. Although not
visible in Figure 1c, the PDF document has a figure on page four and its bounding
box corresponds with the given metadata. It’s important to notice that the only
information, available for figures, is their position. The same applies for shapes as
well.

3.2 Data parsing from description files

The baseline algorithm and the deep learning solution work on the data, introduced
in Section 3.1. As mentioned there, metadata about the characters, figures and tables
in the documents is stored in JSON description files. Thus, parsing these files is the
necessary first step.
Four different kind of methods were implemented for metadata parsing:

• Parse character metadata - value, font style and position information

• Parse figures metadata - position information

• Parse shapes metadata - position information

• Parse text line metadata - text and position information of the text line, along
with metadata of the words and characters, which build it

The following subsections will go into more detail on how they function. Please
keep in mind that the processes for figures and shapes are analogous and will be
grouped under “non-character metadata”.

Another important thing to note is that the most common character width, height
and font size are tracked when parsing character metadata. Why this is done
ii explained in the following subsection. This is, however, not the case with the
fourth method - when parsing whole text lines. The difference is due to their use
cases.

3.2.1 Character metadata

Character metadata is parsed by a recursive algorithm. It takes advantage of the
structured format of the JSON description files, shown in Listing 3.1. The result is
stored in a dictionary, which has page numbers as keys and lists of metadata about
the characters in the pages as values.
The algorithm goes over all text lines and searches for the "words" key. If it’s

present, another iteration loop is started over all words of the text line. In each

13

word, another key-value pair is sought after - the "characters" one. If found, a final
loop goes over all characters of a respective word and appends their metadata to the
result dictionary. The metadata about the characters is stored in dictionaries, like
showcased in Listing 3.1.

Parallel to the algorithm above, the width, height and font size of each character are
also tracked. The font size is contained in the metadata about each character itself,
whilst the width and height are calculated by using the lower-left and upper-right
corners of a character. Three separate dictionaries are then used to store all unique
values and their occurrences. At the end of the character metadata extraction process,
a separate algorithm goes through the dictionaries and determines the most common
character width, height and font size. This information is needed, as their values will
be used later on to calculate spacing thresholds, used by both the baseline and line
grouping algorithms.

3.2.2 Non-character metadata

Extraction of figures and shapes is an analogous process to the one from the previous
subsection. A recursive algorithm goes through the values of the "figures" and "shapes"
keys of the description files (see Listing 3.1). Each dictionary, which represents a
figure or a shape, is then appended to a similar result dictionary as in the former
subsection. It contains page numbers as keys and lists of dictionaries, which represent
the respective non-character objects, as values.

Non-character metadata is used in the baseline algorithm later on. It helps “cut” the
pages of PDF documents properly, so that no figures or shapes are also intercepted.
It doesn’t, however, play a role in the deep learning solution. As introduced in
Section 1.3, the deep learning solution works on the level of text lines and the
characters within them. As such, non-character metadata is completely disregarded.

3.2.3 Text line metadata

Full text line metadata extraction is used for evaluation and creating training and
validation data for the deep learning solution. In contrast to Section 3.2.1, an
additional type of metadata is fetched - namely, the position of the text line. A loop
goes over the values of the "textLines" key in the description file (see Listing 3.1)
and gets every dictionary, which represents a text line. It appends them whole to a
result dictionary, which, again, stores them page-wise.

14

Figure 5: A text line, spanning multiple columns, with low-hanging symbols

3.3 Line grouping

Line grouping is a core part of this bachelor thesis. Text lines are the not only the
meta level, on which the deep learning approach works, but also on which its results
and the ones of the baseline approach are evaluated. Accurately grouped lines also
directly influence the performance of both algorithms, so it’s important to get it as
right as possible.
The algorithm for line grouping is rule-based. Before going deeper into it, I’m

going to introduce two definitions of low-hanging and High-hanging symbols. These
are extensively used in the rules of line grouping and are important to know:

• Low-hanging symbols - characters like ‘q’, ‘y’, ‘p’, ..., together with the two
punctuation marks ‘;’ and ‘,’. The main characteristic of such symbols is that
their lowest point hangs lower than the other characters of the text line, to
which they belong. This is a problem, as it could wrongly be interpreted by the
line grouping algorithm to be a start of a new line. Often, this happens when
a text line spans multiple columns and the parts from the different columns
aren’t vertically aligned. Figure 5 shows an example of exactly that. It shows a
snippet from the randomly generated PDF documents, described in Section 3.1.
The vertical anchor of the text line is on the left side. The anchor allows only
for characters with a similar lower-left coordinates to it to be appended to the
same text line. The base vertical level of the normal characters on the right is
high enough, such that they are appended to the text line. The low points of
the “g” and “y” characters, however, lie beyond the allowed threshold and are
considered as members of the next text line.

• High-hanging symbols - characters like ‘l’, ‘j’, ‘k’, ..., together with several
punctuation marks like ‘?’, ‘(’, ‘́’ and others. In contrast to the low-hanging
symbols, these are characterized by a higher upper-right corner. Proper catching
of those symbols is important because they can leave previous lines unfinished.
Because the algorithm goes through each character in a top-down order, high-
hanging symbols of some text line often times start being processed before the
last low-hanging ones of the previous one. This triggers the beginning of a new

15

line and messes up the correct grouping of both text lines - the missing symbols
from the upper line are added as unnecessary extra ones to the lower one.

After introducing the terminology, I’m going to continue ahead with the algorithm
itself. The main principle behind it is the following: group characters with a similar
lower-left point (minY) in the same text line. Three lines are kept track of at any
given time - the last built line, the currently built one, and, potentially, the next one.
Each text line has an anchor character, whose lower-left point is accepted as the
base vertical level for the line.
The characters are sorted from top to bottom (by minY values) and processed

according to their upper-right points. In each iteration of the main loop, a single
character is processed. The vertical difference between the lower-left point of the
character and the anchor point of the currently built text line is calculated. Then, a
custom defined threshold is used to determine if the difference is small enough for
the character to be considered a part of the current line. For this bachelor thesis, the
best performing threshold was found to be 40% of the most common character
font size.
If the vertical difference lies below the gap threshold, the character is appended

to the current line. If the gap is too big, however, this might be an indication that
a new line has to be begun. There are three cases, in which a new line shouldn’t
necessarily be started, even though the gap is big enough:

• The character is some kind of bracket or quotation mark (e.g. “(”, “"”). Symbols
like these have both elongated upper and lower parts can lead to both problems,
brought by low- or high-hanging symbols.

• The character is a high-hanging symbol - explained above.

• The character is a low-hanging symbol - also explained above.

Extra checks are made, in order to determine if the characters from the three
cases above belong to the currently built line. These include checking the difference
between the highest point of the characters and the anchor point. If, however, none
of the checks are fulfilled, a new line is started.
Figure 6 showcases how the characters of a snippet from a randomly generated

PDF document (see Section 3.1) are grouped in text lines. Figures 6a-6e follow the
building of the first text line. In Figure 6f, however, the vertical difference between
the lower-left point of the “F” character and the anchor point of the currently built

16

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 6: Steps of line grouping algorithm
17

line is too big and a new line is started. The rest of the figures (6g-6i) showcase how
the characters of the left text lines are grouper.
It’s important to notice how the text lines, which are built from this algorithm,

can span one or multiple columns. The rule-based baseline algorithm doesn’t have
this problem, as the text line are grouped out of page segments, instead of the whole
page. The deep learning approach takes on the task of splitting the multi-column
text lines itself.

3.4 Rule-based baseline algorithm

A rudimentary rule-based algorithm was created as the first step of the bachelor thesis.
This was done, in order to gauge the difficulties, into which algorithms like this run
into, when processing documents with non-Manhattan layouts. This section dives
deeper into its implementation and the important algorithms behind it. I will also
discuss the main problems, which the algorithm has. The results of the algorithm are
later on used during the evaluation as a baseline.
The baseline algorithm first extracts all metadata about characters, figures and

shapes from the JSON description file of some PDF document (see Section 3.2). It
then uses a recursive X-Y cut algorithm to first cut the pages of PDF documents into
segments. The segments are then taken and further split into text lines, by using
the line grouping algorithm, explained in Section 3.3. As a final step, the words
of the individual text lines are determined. I will go deeper into how the recursive
X-Y cut algorithm works and how the words are built from the text lines. I omit
explaining how the segmentation into text lines is done, as it was already explained
in Section 3.3.

3.4.1 Recursive X-Y cut

The baseline algorithm uses a variant of the recursive X-Y cut algorithm [4] for page
segmentation. Page segmentation is the process of cutting a PDF page down to
smaller blocks, e.g. columns. The characters of the PDF document can then be
grouped in those larger blocks, effectively supplying each character with information
about where it is in the overall layout of the document. It also provides an opportunity
to try to cut the blocks into even smaller ones, like text lines and words.
The recursive X-Y cut algorithm is alternating in nature. A given PDF page is

first cut horizontally. Each half is then taken and the algorithm tries to make a
vertical cut in it. If this is successful, the upper and lower parts are each taken as

18

new starting points and the process starts again from the beginning. If, however,
there weren’t any horizontal or vertical splits, the half is considered fully processed.
The characters in it are stored in a segment and appended to the result list. The
pseudocode in Algorithm 1 showcases the implementation of the algorithm.

Algorithm 1 Recusive X-Y cut
Input: all_symbols - array of characters, figures and shapes of a PDF page
Input: most_common_width - most common character width in a PDF document
Input: most_common_height - most common character height in a PDF document
Input: result - result array with all page segments
x_split← horizontal_split(all_symbols,most_common_width)

foreach x_cut ∈ x_split do
y_split← vertical_split(x_cut,most_common_height)

if size(x_split) == 1 and size(y_split) == 1 then
result.append(y_split[0]) . No cut was possible, so just

append segment to result
else

foreach y_cut ∈ y_split do . Do the whole process for each
vertical cut again

xy_cut(y_cut, result)

end for
end if

end for

The most important part of the algorithm is determining when to make a cut. In
the next couple of paragraphs, I’ll explain how that is one for horizontal cuts. The
workflow is, however, analogous when doing vertical cuts as well.

The first step of the horizontal cutting process is sorting the characters from left to
right by the horizontal coordinate of their lower-left corner. This is then used to do a
linear scan through all characters and examine each one, if it’s a valid “anchor” for a
horizontal split. A character is a valid anchor if it’s possible to “draw” a vertical line
along its upper-right corner through a PDF page, so that no other characters, figures
or shapes are intercepted by it. The check itself is done by going through all symbols
to the right of the considered one (possible because of the sorting beforehand) and
determining if the cut would intercept them. Even if only one such is found, the
considered symbol isn’t a valid anchor.

If a valid candidate for an anchor is found, there are two additional conditions to

19

be fulfilled. First it has to be made sure that a potential horizontal cut wouldn’t
split any sentences. Semantic blocks like the title, for example, are often written in a
bigger font size and in bold. This leads to bigger gaps between their characters, which
could be caught as false positives for a page split. Because of this, a rudimentary
check is made to search if any sentences would be interrupted. This is done by taking
the next character after the anchor one and checking if the horizontal and vertical
distance between the two fit under certain thresholds. The height threshold depends
on the height of the anchor character, while the width threshold - on its font size.
Each threshold is also multiplied by a constant, which was found to bring the best
performance to the algorithm:

height_threshold_constant = 0.5

width_threshold_constant = 0.6

The second condition concerns the size of the horizontal gap after the anchor
character. This prevents false positive cases, in which such a vertical line can
coincidentally be drawn through the middle of a paragraph. The threshold for the
gap is the most common character width, multiplied by 1.25. The extra 25% helps
prune a lot of the false cutting attempts.

Figure 7 showcases how a page from the randomly generated data, described in
section Section 3.1, is cut. Figure 7a shows which page will be segmented into blocks.
Even though the algorithm, described in Algorithm 1, always tries to make a horizontal
split first, the middle author block under the title prevents that. That’s why, as shown
in Figure 7b, the first possible vertical cut is taken. For the second cut, illustrated
in Figure 7c, a horizontal split is once again blocked by the same overlapping block.
Figure 7d visualizes the first possible horizontal cut, as the conflicting block was split
into a separate section. Figures 7e and 7f further show how the blocks from the right
part of the documents are segmented.

Please keep in mind, that the algorithm is recursive. The upper block of Figure 7c
is later on split itself into the three author blocks. The same is also true for the left
part of the document, which was split in Figure 7d. Their visualizations are omitted
from Figure 7 for the sake of brevity.

After the baseline algorithm has successfully segmented the PDF page, it continues
downwards. The characters of each segment are grouped into their respective text
lines, as explained in Section 3.3. If the page segmentation was successful, there
will be no multi-column spanning text lines. When processing documents with a

20

(a) Randomly generated PDF file (b) First (vertical) cut

(c) Second (vertical) cut (d) Third (vertical) cut

(e) Fourth (horizontal) cut (f) Final (vertical) cut

Figure 7: Using recursive X-Y cut to segment a PDF page
21

non-Manhattan layout, however, it could still happen that some text lines span
multiple columns because of the inability to segment the page.

22

3.4.2 Word building

The last step of the baseline algorithm involves grouping the characters of the
individual text lines into words. Algorithm 2 shows pseudocode of the algorithm. It
follows a really simple linear scan over all characters. It checks if the character distance
is enough to be considered a word break. This is once again done by multiplying the
most common character width of the PDF document with a given constant ‘a’. For
this bachelors, a value of 0.3 was chosen. If the gap is big enough, then the end of
the currently built word is reached. Its bounding box is calculated, as it is later used
for evaluation and it’s appended to the result array.

Algorithm 2 Word building
Input: characters - array of characters from some text line
Input: most_common_width - the most common character width in the line
Output: result - result array with the characters grouped in words
word← ””

Initialize bounding box (four courner coordinates) of word
horizontal_threshold← a ∗most_common_width

n← size(characters)

for i ∈ 1, 2, . . . , n do
Check if the corner points of the characters extend the ones of the word
dist← characters[i+ 1][”minx”]− characters[i][”maxX”]

if dist >= horizontal_threshold then
Build bounding box of word
result.append({"text": word, "bbox": <bounding box>})

else
word+ = characters[i][”text”]

end if
end for

3.4.3 Problems

The simplicity of the baseline algorithm is a big advantage. It can be implemented in
a short notice and can be used to satisfactory results with documents with a simple,
Manhattan layout. As alluded to in Chapter 1, however, it runs into some difficulties,
when trying to extend it to documents with more complex layouts:

• Irregular spacing - every part of the algorithm involves using a custom threshold,

23

which depends on document spacing. This can become a big burden, when deal-
ing with documents with a really complex non-Manhattan layout or documents
with a lot of noise. There is a risk of page segments, text lines and words being
left incorrectly merged.

• Dependence on custom threshold - some PDF documents greatly vary in style
and spacing. While the threshold for the baseline algorithm of this thesis
might work well for the randomly generated data, on which it’s evaluated, other
documents might feature much smaller spacing overall. This would lead to a
great performance hit for the algorithm.

The deep learning approach, which is going to be discussed in the following section,
tries to remedy these problems. It looks at the pages of a PDF document as collection
of sequences, in the form of text lines. The splitting work, done globally by the
baseline algorithm, is carried over to the meta level of text lines and the distances
between the characters between them. By learning common distances in the different
meta levels - character-to-character, word-to-word, column-to-column - the
model eliminates the need for custom threshold, when splitting the page into blocks
and later on - text lines into words.

The deep learning approach also takes one further step and improves detection
of complex elements in documents with a non-Manhattan, along with their text
extraction. This is done with the inclusion of the font features of the characters in
the PDF, along with their values. A big part of the complex elements (e.g. pull
quotes, infoboxes) are written in a different font and/or a different font size, which
makes the features a valuable sign. The values of the characters also help the model
build a language model - a statistical model of the English language and word
probabilities. This should allow the model to group characters more reliably into
their respective words, even if there is irregular spacing.

3.5 Deep learning solution

This chapter introduces the proposed deep learning solution from Chapter 1. I will
first go through the external libraries, which made it possible to implement this
approach in Python. Then I will transition into a brief overview of deep learning and
how it is used in the scope of the bachelor thesis. I will finish up the chapter with
details of the implementation of the approach.

24

3.5.1 External libraries for deep learning utilities

The two libraries, which made it possible for me to work with deep learning models
in Python, are TensorFlow [11] and NumPy [12]. They are used extensively in the
world of data science and machine learning and also play a big role in this thesis.

3.5.1.1 TensorFlow

TensorFlow offers a broad library of tools for working on machine learning projects.
It was originally developed by Google to be used in-house, but was made open-source
in 2015. It provides loads of tutorials not only for beginners, e.g. how to solve a
simple regression problems, but also for workers in the field. Scientific publications
for new machine learning algorithms are adapted and offered as guides in TensorFlow.

Another advantage of the API is the Keras module. Keras [13] was first conceived
as an independent library for creating neural networks. As of 2017, however, it was
added to the core TensorFlow library. It offers a human-readable and intuitive way
of building deep learning solutions.
Training supervised models in TensorFlow Keras requires the input and output

data to be in one of several formats. The most widely used one are NumPy arrays.

3.5.1.2 NumPy

NumPy is a Python library, used primarily for linear algebra. The core components of
the API are its arrays, which can be used to represent high-dimensional tensors. They
are broadly used because of their lower memory footprint and faster performance, in
comparison with regular Python lists [14], and their ease of handling.

3.5.2 Foundations of deep learning

3.5.2.1 Overview

At the base of all deep learning projects are mathematical models, also called neural
networks. Figure 8 illustrates a basic neural network. It consist of “neurons” and
edges, which connect them. The neurons are grouped in layers. Additionally, each
edge has an associated weight value. The first layer of a model is called the input layer
and the values of the neurons there are the same as the ones of the different input
data points. The value of each input neuron is then passed through all edges, which
connect it with the next layer. The values, passed through the edges, are multiplied
by the weight of the connection. This is done until the output layer is reached. This

25

Figure 8: A simple three-layer neural network; red edges have negative weights,
while green edges have positive weights; the pale edges have very slight
positive weights

process is called forward propagation. In this case, the output layer contains only
one neuron - this means that the output of the model is a single numerical value. This
is, however, arbitrary - the number of neurons in the layers of a model are entirely
user-chosen.
The different weights of the edges are the key of how such a mathematical model

learns to solve a problem. Figure 9 showcases a simple example. The neural network
is designed to decide if a house is worth buying, based on three attributes: how dirty
it is, how cheap it is and how far away from the inner city it is. Notice how the
edges, which connect the “Dirty” and “Far away” neurons to the output neuron, have
negative weights. This means that higher positive values of the “Dirty” and “Far
away” neurons lead to a more negative number as output. On the other hand, high
values of the “Cheap” neuron result in positive numerical output values.

The adjustment of the weights of the edges of a neural network, so that correlations
like in Figure 9 can be found, is essentially the training of the model. This is
done by using backpropagation [15]. The algorithm first calculates the loss of the
actual output value with regard to the expected one. This value is then propagated
backwards into the model. Edge weights, which strongly affected the wrong output,
are changed by a bigger margin. Those who didn’t are just slightly adjusted. By
repeating this process for different examples, the network eventually learns a function,
which can more accurately predict the wanted results.

For the sake of completeness, a model can then be taught in the following three
ways:

26

Figure 9: A simple two-layer neural network, which decides if it’s worth it to buy a
house with the three given attributes; red edges have negative weights,
while green edges have positive weights

• Supervised learning - the model is given a problem input and expected
output; it learns to make accurate predictions, based on the given attributes

• Unsupervised learning - the model is given a problem input only ; its outputs
are then later on studied by researchers, in order to find correlations between
the different data points

• Reinforcement learning - the model isn’t given neither input, nor output
data; it, however, can interact with a given environment and learn the conse-
quences of its actions by a “reward system”

3.5.2.2 Sequence labeling

Sequence labeling tasks involve assigning labels to sequenced data. In the borders of
this thesis, this translates to assigning the following four types of classes to characters
in text lines:

• 0 - normal character

• 1 - character breaks up a word

• 2 - character breaks up a column

• 3 - character is padding

Figure 10 showcases the goal of the task on a minimal example. The snippet in
Figure 10a is taken from a random file from the training data, referenced in Section 3.1.
The distance in the middle has been shortened for aesthetic reasons.

27

(a) Text line from random PDF file

(b) Characters with assigned labels

Figure 10: Simple example of sequence labeling

The numbers beneath the characters in Figure 10b correspond to their expected
labels. Because both ‘1’ and ‘2’ are separate from their respective text, they are
looked at as separate words.

3.5.3 Encoder-Decoder model

Encoder-Decoder models, also called sequence-to-sequence models, were first intro-
duced in a paper by Google in 2014. [16] The architecture of the aptly named
models can be split into two main parts: an Encoder and a Decoder. They utilize
long short-term memory neural networks [17], in order to first derive an internal,
fixed-length representation of the input sequence and then classify each one of the
data points.
The models, mentioned above, have different workflows depending on whether

they’re training or used to to make predictions. The following two subsections will
go deeper into the intuition behind the two processes individually.

3.5.3.1 Training an Encoder-Decoder model

Figure 11 shows how an Encoder-Decoder model is trained. Please note, that the font
features of the characters are missing from this figure, for aesthetic reasons. Instead,
each data point only contains a value of some character and the distance to the next
one. The backward arrows, which point from the output targets to the hidden
cells of the Decoder, symbolize expected values.

As seen in the figure, the inputs are first processed by the Encoder. The hidden state
of each data point is carried over to the next one, in order to provide more context.
At the end of the process, the Encoder has computed an internal representation of the
input sequence. This is then carried over to the Decoder, which does the individual
classifications.

While training, the Decoder takes in one additional type of input, called “decoder
input”, along with expected targets. The decoder input follows the same values as

28

(w, 0.1) (o, 0.1) (r, 0.2) (d, 0.9) <PAD> 0 0 0

0 0 0 1

Figure 11: Encoder-Decoder model training on the word “word”
Font data is omitted from the data points
Legend:
yellow cells - formatted representation (embeddings)
red cells - Encoder
blue cells - Decoder

the expected ones, but is one step behind. Because of this reason, the first data point
in the decoder input is always some kind of padding character. The output of the
Decoder is disregarded whilst training. The only important thing is the adjustment
of the edges of the whole model.

3.5.3.2 Using an Encoder-Decoder model

Figure 12 showcases an Encoder-Decoder model making predictions. The figure
description about the input data and Encoder is the same as the one in the former
subsection. This time around, however, the Decoder doesn’t take in any predefined
decoder input and expected targets. Instead, every prediction is carried over to the
next time step as input. This way, the context and succession of the sequence data is
preserved and used.

3.5.4 Data preprocessing

Chapter 1 introduced the input features, which are used by the deep learning approach.
Each sequence (text line) contains data points with the following information:

• Value of a character

• Distance between a character and the next one

29

(w, 0.1) (o, 0.1) (r, 0.2) (d, 0.9) <PAD>

0 0 0 1

Figure 12: Encoder-Decoder model processing the word “word”
Font data is omitted from the data points
Legend:
yellow cells - formatted representation (embeddings)
red cells - Encoder
blue cells - Decoder

• Font features of a character, including:

– font size

– whether or not the character is in bold

– whether or not the character is in italics

Before feeding this data to the model, additional preprocessing is needed. Cate-
gorical data, like the value of the character and whether it’s in bold or italics, needs
to be encoded to numerical data, in order for the model to be able to work with
the data. The distance data also needs to be normalized, in order for the model to
become generic and improve its performance across all types of documents.

3.5.4.1 Character data encoding

Neural networks can only work with numerical data. Categorical data thus includes
all other types of information, which are non-numerical in nature. Characters of the
alphabet are one example of such data. In order to make them processable for the
Encoder-Decoder model, they have to be encoded. The most common way to do that
is by using so called one-hot encoding. This subsection is dedicated to them.
One-hot encoding some kind of data requires to have a vocabulary of it. In the

problem case of the thesis, the vocabulary for the character input data features

30

all lower- and uppercase english letters, with addition of digits and punctuation
symbols. There are two additional custom symbols: “<PAD>” and “<UNKW>”.
<PAD> marks padding characters, while <UNKW> - every non-standard character
in the PDF document. The latter symbol is required because of the frequent usage
of ligatures in PDF files. The vocabulary is essentially an associative array, which
assigns a unique integer to each unique character.
A one-hot encoded character is an integer array with the length of the respective

vocabulary. In order to one-hot encode a character, all contents of the array are set
to 0, except the one at the index, which corresponds with the unique integer of the
character in the vocabulary.
The output targets and decoder input are also one-hot encoded. The vocabulary

in that case is the corresponding classes, mentioned in Section 3.5.2.2.

3.5.4.2 Distance data preprocessing

As discussed in Section 3.5.5.1, the deep learning solution works with multiple-
column spanning lines. This could lead to big horizontal differences and values in the
distance input data. Such values, however, can skew the learning of a neural network
model. Because of this, the distance data goes through the process of normalization.
It converts its values to the range of [0, 1]. In the case of the thesis, the normalization
constant is simply the biggest distance in a PDF document. The conversion is carried
out by simply dividing each data point by the aforementioned constant.

Additionally, normalization also pushes the model to learn a more generic function,
regarding the distances. Without normalization, big numerical values could sway the
training of the model and make it sensitive to small changes. This is, however, not
the case, if all distance data lies in the range of [0, 1].

3.5.5 Training of deep learning model

This section looks more closely into the all steps, which the data goes through, before
being fed to the model. Additionally, the structure and hyperparamaters of the model
are introduced and discussed.

3.5.5.1 Merging of text lines

As shown in Figure 4a, the deep learning solution is intended to work with text lines,
which span single or multiple columns. The description files, from which the data
will be created, however, store the lines already properly split. In order to make sure

31

Algorithm 3 Line merging
Input: text_lines - associative array with all text lines of a PDF document, grouped
page-wise

Input: most_common_font_size - the most common character font size in a PDF
document

Output: result - result associative array with merged text lines, grouped page-wise
Output: max_line_length - the length of the longest text line in the PDF document,
in characters
height_threshold← a ∗most_common_font_size
max_length← 0
for page ∈ text_lines do

new_page_lines← []
page_lines← text_lines[page]
n← size(page_lines)
page_merged←[False for _ in range(n)]
for i ∈ 1, 2, . . . , n do

if page_merged[i] then
continue

end if
new_line← [page_lines[i]]
for j ∈ i, i+ 1, . . . , n do

if page_merged[j] then
continue

end if
level_diff ← page_lines[i][”minY ”]− page_lines[j][”minY ”]
if level_diff <= height_threshold then

new_line.append(page_lines[j])
page_merged[j]← True

end if
end for
new_page_lines.append(new_line)
max_line_length = max(max_line_length, size(new_line)
page_merged[i]← True

end for
end for

32

(a) Unmerged text lines of random PDF file

(b) Merged text lines

Figure 13: Simple example of merging text lines

that the training data will be similar to the data, which is used in production, the
first step of the data creation is merging the lines back to larger ones.
The pseudocode in Algorithm 3 gives an idea of how this step of data creation is

executed. The main principle behind it is similar to the algorithm for line grouping,
explained in Section 3.3. A height threshold is used to determine if two text lines
should be merged into a bigger one. A boolean array keeps track of all lines, which
have already been processed into a bigger one.
The “max_line_length” variable records the longest line in the whole PDF docu-

ment, in characters. It is used later on in the data creation and I will be referring
back to it.
“a”, which is used to calculate the height threshold in algorithm 3 is a constant.

Using 0.6 yielded good results, without sacrificing the overall robustness of the
algorithm. Figure 13 shows the result of line merging with the aforementioned
constant. The lines in Figure 13a are visualized depending on how they are stored
in the “description” files. Figure 13b shows them at the end of the line merging
algorithm.

3.5.5.2 Conversion to input and output data

After merging the text lines, the next step of the data preparation is transforming
them to a suitable format for training. As explained previously in Section 3.5.4, the
following types of data is needed:

• Character input data

• Distance input data

• Font input data

• Decoder input data

33

• Expected output labels

The conversion process is split into two. First, the data about characters and their
font is prepared simultaneously with the decoder input and the output targets. After
that, the character data is used as leverage to build the distance data. The following
two subsections will go into the two parts more in detail.

The merged text lines from Subsection 3.5.5.1 are handled one by one. The smaller
lines, which make up the merged ones, are iterated over. Additionally, another loop
goes over all the characters of their words. The character value, along with their
horizontal coordinates, are appended to the result array. Simultaneously, the output
target labels are built, following these three rules:

• If a character is the last one in a smaller line, assign label 2 (column break)

• If a character is the last one in a word, assign label 1 (word break)

• Otherwise, assign label 0 (normal character)

The last thing left, in order to finish this step of the process, is the padding of the
data. The “max_line_length” variable from Subsection 3.5.5.1 is used to calculate
the difference between the length of the currently processed text line and the longest
one in the PDF document. Padding characters are then added to the character input
data and 3-s are added to the output targets, in order to fill in the difference.
The decoder input is built last. It starts with building an array with a single

element - the number 3 (the class for padding characters). Then, all the contents of
the output targets are copied over, without the last one.

The second step of the process is taking the character input data and converting it
into distance data. This is done with the help of the horizontal coordinates of the
characters. Each character data point is replaced with the horizontal distance to the
next one. If the next data point is a padding character, the distance is set to zero.
All padding characters are replaced with a negative value, as they should be easy to
detect and not influence the model predictions strongly.
An example of what the data at this step looks like is shown in Figure 14. The

snippet from a randomly generated PDF document shows already merged text lines.
Additionally, an example is given of what the different kind of input and output
data for the last text line should look like. The first three types of inputs are self-
explanatory: they contain the character values, font features and intra-character
distances of the text line. The output targets show the expected output targets of
each data point in the text line. The figure has been shortened for aesthetic reasons,

34

Figure 14: Format of the input data

but the character “r” at then end of “September” also has the output target 1 (end
of word). The decoder inputs, as explained in Section 11, is essentially the same
information as the output targets, just one step behind. It is used, as the decoder
always uses the prediction from time step t-1 as input for time step t. Thus, the
first element in the decoder input data is a padding, or empty character. Please also
consider that the last element of the decoder input data corresponds to the data point
of the character “e” - not “r”. This is due to the backwards shift, as explained above.
The last step of the data creation involves one-hot encoding of the character

input data, decoder input and the output targets. The process follows the steps
explained in Section 3.5.4.1 Additionally, the distance data is normalized according
to Section 3.5.4.2. The two features from the font data, if a character is in bold or
italics, are one-hot encoded in the following way:

[0, 1], if the character isn’t bold/italics

[1, 0], otherwise

After doing all of this, all text lines of a PDF documents will be ready to be
processed by the model. They are sent to it in the following format:

[[character_input_data,

font_input_data,

distance_input_data,

decoder_input], output]

35

Each element from the output is formatted as a NumPy array with the shape of
(<number of text lines>, <max_line_length>, <number of features>).
The first two values are shared across all, while the third is different for the different
sets of data:

• 97 for character_input_data - size of vocabulary, explained in Section 3.5.4.1

• 5 for font_input_data - 1 for font size (not encoded) + 2x2 encoded bold-
ness/italicness information

• 1 for distance_input_data - singular numerical value

• 4 for decoder_input and output - the number of different output classes, as
explained in Section 3.5.2.2

3.5.5.3 Structure & Hyperparameters

The model I chose to use for this work has the following structure:
(NOTE: the x and y are defined as following for the whole model structure)

1. Input layer for character input data; its shape is (x, y, 97), with:

• x - the number of text lines in a PDF document

• y - the maximum line length (see Section 3.5.5.1)

• 97 - the number of features of the character input data

2. Input layer for font input data; its shape is (x, y, 5), with 5 being the number
of features of the font input data

3. Input layer for distance input data; its shape is (x, y, 1), with 1 being the
number of features of the distance input data

4. Concatenate layer, which merges the character and font input data into a single
tensor with the shape of (x, y, 102)

5. Concatenate layer, which merges the tensor from the last step and the distance
input data, resulting in a new tensor with (x, y, 103)

6. A bidirectional LSTM cell with 256 units and tanh activation function is used
as an Encoder

7. Input layer for decoder inputs; its shape is (x, y, 4), with 4 being the size of
the output targets vocabulary

36

8. An LSTM cell with 512 units (2 * Encoder) and tanh activation function is
used as a Decoder

9. Dense layer with 4 units (size of output targets vocabulary) and softmax
activation function; final output of the model has the shape (x, y, 4)

No grid search was executed, in order to come up with this architecture and
hyperparameter values. I had tried to experiment with the size of the LSTM cells,
in order to see if larger ones would perform better. The memory footprints of such
models, however, makes it impossible for me to train them.

3.5.6 Using the deep learning model

After the model is trained, it’s ready to be used to extract contents from PDF
documents. This chapter shows how it’s integrated in the overall process and how its
predictions are used to build the text lines and their respective words.

3.5.6.1 Production data generator

Similar to the training process, a data generator is used to prepare data from JSON
description files. The main difference is that this time around, only the character,
font and distance input data is needed. (see Section 3.5.3.2)

The data creation begins with parsing all character information from the description
file. At the current stand, the deep learning solution takes only character metadata
into consideration, excluding figures and shapes. The characters are then grouped
into text lines, using the algorithm from Section 3.3. Character, font and distance
data is then created and formatted in the same way as in the final two subsections in
Section 3.5.5.2. The final output of the production data generator looks like this:

((character_input_data,

font_input_data,

distance_input_data), max_line_length)

The "max_line_length" variable, as explained before in Subsection 3.5.5.1, stores
the character-wise maximum length of a line in a PDF document. It is used in the
next step of the deep learning solution - building the model predictions.

3.5.6.2 Getting the label predictions

JSON description files are processed page-wise. For each page, all of the character,
font and distance input data is first fed to the Encoder. This generates the internal

37

representation of the data, which is given to the Decoder. Then, the Decoder processes
all text lines of a given PDF document simultaneously and character-wise. The result
is stored in a 2D matrix with the shape (x, y), with x being the number of lines in
the PDF document and y - the value of max_line_length.

The building of the results themselves happen in the following way: there is a main
loop of max_line_length iterations. In each one of the iterations, the following events
take place:

1. The model is fed the internal representation of the data plus decoder input;
decoder input has the shape (x, 1, 4), with x being the same as above, 1 -
meaning that for each text line, there is one already processed character and 4
- the dimension of one-hot encoded output class of that processed character

2. For each line, the output target of the current character is decoded back from
its one-hot embedding and appended to the result matrix

3. The prediction is saved, in order to be used as decoder input in the next iteration
and the internal state is updated

Please consider that the decoder input in the first iteration of the loop above is set
in advance to be all padding characters, as explained in Subsubsection 3.5.3.1.

At the end, the result matrix contains predictions for every character in every line
of the currently processed PDF document. With their help, the text lines and their
respective words can be built next.

3.5.6.3 Building the predicted lines

The final process begins with once again getting the character metadata from the
JSON description file and grouping them in text lines. Then, each character is looked
at, coupled with its prediction. Two helper lists help keep track of the currently built
word and text line. The following four cases are possible:

• Output label == 0 ⇒ character is normal and is appended to the currently
built word

• Output label == 1 ⇒ character is word end; it’s appended to the currently
built word, which is itself appended to the currently built text line and reset

• Output label == 2 ⇒ character is column break; in addition to what happens
above, the text lines is now appended to the result list and reset

38

• Output label == 3 ⇒ character is padding; append any leftover words in text
lines and continue on to the next line

3.6 Evaluation methods

The evaluation is executed on both text line and word level. The following metrics
are used:

• Precision - this determines how much of the predicted lines/words are actually
correct

• Recall - this determines how much of the expected lines/words were correctly
predicted

• F1 score - harmonic mean of the two metrics above

The evaluation process itself follows the following pattern: it goes through the text
lines of the actual and expected extraction page-wise and tries to match text lines
with the same bounding box. If this is the case, the number of correctly predicted
lines is incremented. Additionally, the words of the two lines are compared. Similarly
to lines themselves, the amount of correctly predicted words is incremented for each
matched one.

At the end, we have information about the correctly predicted content of each page
of a PDF document. The three metrics above are then calculated in the following
way:

• Precision - #correctpredictions/#allpredictions

• Recall - #correctpredictions/#expectedobjects

• F1 score - 2 ∗ ((precision ∗ recall)/(precision+ recall))

39

4 Evaluation

This chapter first introduces the test sets, on which the line grouping, baseline and
deep learning approaches and pdftotext implementation were evaluated. Then, I
explain what metrics were used and what they mean in the context of PDF line and
word extraction. Finally, the evaluation results for each of on them are showcased,
discussed and compared with the others.

4.1 Test sets

All test sets are based on the randomly generated data, which was introduced in
Section 3.1. While training the Encoder-Decoder model, 20% were set aside to be
used as a test set. It consists of 3049 files, 2063 out of which are documents with a
Manhattan layout, while 968 employ a non-Manhattan layout. The two collections of
distinct layouts are also used as individual test sets. This creates a clearer picture of
where the strengths and weaknesses of the three approaches lie.

The fourth and final set is the full collection of 1034 documents with broken
word-spacing. (see Section 3.1) The set was created after the model was already
finished training and because of that, the deep learning model shouldn’t have any
bias towards that type of documents. The main goal of this collection of documents
was to test the importance of spacing, when extracting words from a PDF document.
It can also be used as an indication of the weight of distance as an input feature in
comparison to character values and font information.

4.2 Evaluation metrics

As already mentioned in Section 3.6, both line and word extraction were evaluated
using the following metrics:

• Precision - how conservative a given approach is, when faced with solving a
problem

• Recall - how sensitive a given approach is to a right answer to the problem

41

• F1 Score - a harmonic mean of both metrics above

4.3 Results

The line grouping, baseline and main algorithms were evaluated on the base of
bounding boxes, as explained in Section 3.6. This is, however, not the case for
pdftotext, as the tool didn’t provide any position data. For this reason, pdftotext
was evaluated based on “sentence equality” - if two text lines have the exact same
characters, they’re the same.

As an additional note, the JSON description files of some of the documents with a
Manhattan layout lacked textual contents. This has affected the recall value from
the pdftotext line extraction metrics. (see **)

4.3.1 Line grouping

The results of line grouping are shown in Table 1. A consistent 97% for both line and
word extraction promises, that the baseline and deep learning approaches won’t take
big performance hits, as they both need to be able to group characters into text lines.
An interesting takeaway from the results is the fact that line extraction from

Manhattan documents with broken word-spacing is not a problem (1.000 metric
value). This is, however, in contrast with the value for word extraction - only 90%.
This is due to the fact, that even if some characters or words are improperly merged
or excluded from certain text lines, the bounding box of the text line can still be the
same.

Line extraction Word extraction

Test set Precision Recall F1 Score Precision Recall F1 Score

Manhattan + non-Manhattan 0.967 0.966 0.967 0.970 0.964 0.967
Manhattan only 0.967 0.968 0.967 0.968 0.960 0.964
non-Manhattan only 0.968 0.962 0.965 0.972 0.974 0.973

Manhattan with
broken whitespaces 1.000 1.000 1.000 0.953 0.908 0.903

Table 1: Evalution metrics of line grouping

4.3.2 Rule-based baseline

The baseline rule-based approach gave expected results. As seen in Table 2, its
performance on documents with a Manhattan layout outperforms the performance on

42

Line extraction Word extraction

Test set Precision Recall F1 Score Precision Recall F1 Score

Manhattan + non-Manhattan 0.965 0.915 0.932 0.971 0.964 0.967
Manhattan only 0.984 0.920 0.941 0.991 0.980 0.985
non-Manhattan only 0.923 0.903 0.912 0.929 0.931 0.930

Manhattan with
broken whitespaces 0.978 0.959 0.968 0.933 0.890 0.911

Table 2: Evalution metrics of rule-based baseline approach

the other distinct collection. This proves the difficulties, discussed in Section 3.4.3.
Interestingly enough, word extraction on the collection of Manhattan documents

with broken word-spacing hasn’t dropped down a lot. The baseline algorithm can only
build words on the basis of spacing, which means that any missing spacing immediately
messes up the extraction of two words. Thus, the somewhat still relatively high
performance of the algorithm, can also be taken as a sing, that not many white spaces
have been removed.

4.3.3 Deep learning approach

The results of the deep learning approach., showcased in Table 3 are surprising. While
the algorithm is clearly superior, when dealing with documents with non-Manhattan
layouts, it falls a little short when processing ones with Manhattan layouts. Possible
explanations for this could be connected to overeagerness from the side of the
Encoder-Decoder model, a badly trained language model, or nonsensical textual
content.

Additionally, the word extraction metrics on the Manhattan documents with broken
word-spacing reveals the significance of distance as an input feature. One can tell by
the low number of almost 90% that the Encoder-Decoder model also highly depends
on the distance between characters, in order to be able to split them into words. All
in all, however, the percentage drop in the performance is lower than the one, seen
in results of the baseline algorithm. This can be accredited to the language model,
which also plays an important role in word extraction.

4.3.4 Pdftotext approach

The first striking thing in the evaluation metrics of pdftotext are the low metrics on
the test set with broken word-spacings (see Table 4. This, however, is expected. As
explained in the beginning of this section, pdftotext is evaluated on text equality,

43

Line extraction Word extraction

Test set Precision Recall F1 Score Precision Recall F1 Score

Manhattan + non-Manhattan 0.913 0.923 0.917 0.916 0.919 0.918
Manhattan only 0.904 0.911 0.907 0.901 0.904 0.902
non-Manhattan only 0.963 0.965 0.964 0.967 0.970 0.968

Manhattan with
broken whitespaces 0.961 0.951 0.955 0.920 0.878 0.899

Table 3: Evalution metrics of deep-learning approach

Line extraction Word extraction

Test set Precision Recall F1 Score Precision Recall F1 Score

Manhattan + non-Manhattan 0.902 0.880** 0.886 0.944 0.951 0.947
Manhattan only 0.913 0.876** 0.887 0.952 0.959 0.956
non-Manhattan only 0.878 0.889 0.883 0.927 0.934 0.930

Manhattan with
broken whitespaces 0.524 0.529 0.527 0.541 0.520 0.530

Table 4: Evalution metrics of pdftotext

instead of bounding box equality. This means that even if one character from a
pdftotext-extracted text line is different than what an expected text line looks like, it
wouldn’t be counted as a correct sample.

Other than that, the results of pdftotext also surprise with the difference between
its line and word extraction metrics. The difference can lead back to the fact, that
pdftotext is a little overeager in its content extraction. This means that it extracts
parts of the document, which aren’t part of its JSON description file (see Section 3.1) -
like page and section numbers, headers and footnotes and other. The word extraction
metrics, however, are an indicator for the fact that a big part of the expected text
lines were also successfully extracted.

Pdftotext performs similarly to the rule-based baseline algorithm, with a little lower
performance on documents with a Manhattan layout. The metrics on the test set
with non-Manhattan documents only is yet another proof of the fact, that rule-based
algorithms run into problems in such cases.

44

5 Conclusion

Automatic extraction of textual contents is an important task, which sadly carries
many problems and a lot of variance. The main difficulty comes from the fact
that text in PDF documents is stored in the form of characters, which have no
information which words and text lines they belong to. Rule-based approaches, which
were discussed in the borders of this bachelor thesis, have been able to rebuild the
textual contents of the documents. The common thing, which they share across all of
them, is the usage of spacing, in order to group characters into bigger blocks. They
use custom defined thresholds for the normal values of character-to-character,
word-to-word and column-to-column distances. By doing this, bigger gaps can
be found in the document and be used, in order to split the contents into their
respective blocks. Such methods have resulted in satisfactory context extraction,
as shown in Chapter 4, especially on documents, which have simple, Manhattan
layouts. This includes all documents, which group their textual content in rectangular
columns and position their figures in such a way, that they don’t intertwine with
the text. Another important feature of documents with Manhattan layouts is their
consistent spacing, which is the reason why they can be processed by rule-based
approaches so well.
The difficulties, which such algorithms face, begin to arise when trying to apply

them to documents with non-Manhattan layouts. Elements like pull quotes and block
quotations, like the ones shown in Figures 1b and 1c, often disrupt the rectangular
form of the textual content and occupy the gap space. Some documents with non-
Manhattan layouts also make use of multiple font styles and sizes, which could make
the determining of a proper threshold a hard task.
For these reasons, a deep learning approach was suggested in this bachelor thesis,

in order to further extend the limits of this field of work. It looks at the problem as
a sequence labeling task. The text lines of the pages of the PDF document being the
sequences and information about the characters within them being the data points.
Each data point contains the following three types of input features:

• the value of the character

45

• the distance between the character and the next one

• font data, under which:

– font size

– is the character in bold

– is the character in italics

The sequence labeling problem is solved from the model by predicting one of the
following classes for each one of the data points:

• character is at the end of a word

• character is at the end of a column

• none of the above (normal character)

The distance feature in the input data is expected to convey information to the
model about the sizes of the gaps between the different blocks of text. The values of
the characters also help the deep learning build a language model - a statistical
representation of the English language on a character and word level. This should
assist in detecting characters, which are at the end of a column, as continuing a
sentence in another column often leads to nonsensical words. Finally, the font features
are of big help when identifying the complex elements of a document with a non-
Manhattan layout. This is due to the fact that the text inside pull quotes, for example,
is often bigger and in a different font style, than the regular textual content.
All the advantages above are supposed to fix the two main problems of the rule-

based approaches - irregular spacing and dependency on properly defined custom
thresholds.
The baseline and deep learning approaches, along with pdftotext, were evaluated

on four different test sets:

• A test set, consisting of 3049 documents with both Manhattan and non-
Manhattan layouts; Out of this test set, the following further two were also
created:

– A test set of the 2063 documents with only Manhattan layouts

– A test set of the 986 documents with only non-Manhattan layouts

• A test set, consisting of 1034 documents with a Manhattan layout and a 5%
chance of gaps between words to be missing

46

The reasoning behind the creation of the first three test sets is self-explanatory
- to study how the different approaches would perform on all types of data, plus
the two distinct collections of data. The final set was generated, in order to study
the significance of regular spacing, when extracting words. It was expected for the
rule-based baseline algorithm to take a performance hit, while the deep learning
algorithm - not so much, because of the language model.
The results were, for the most part, consistent with the expectations within

this bachelor thesis. The baseline rule-based approach had an overall satisfactory
performance across all types of documents, with the lower metrics being on documents
with non-Manhattan layouts. The test set with broken word-spacing also brought
down the metrics for word extraction, as expected. The same thing can also be said
for pdftotext, whose evaluation metrics were brought down even more because of it
not returning any positional information in its output.
The only surprising parts of the results were connected with the deep learning

approach. Even though it performed much better on documents with a non-Manhattan
layout, it fell a bit short when used on the collection with Manhattan layouts. This
could be attributed to one of the following reasons:

• Overeagerness on the side of the deep learning model - by training on different
types of data, the model could have learned that word and text line endings
come at a certain regular pace. This is additionally fueled by the documents
with non-Manhattan layouts, which have embedded complex elements in their
layouts, which require additional cutting.

• Badly developed language model and/or nonsensical textual content -
both the training of the model and its usage later on can be negatively impacted
by dirty textual contents. It is especially important to use documents with
proper sentences, so that the deep learning model can build a valid statistical
representation of the language.

Additionally, the algorithm also showed lower performance on the test set with
broken word-spacing, albeit being a much smaller percentage drop. This can be taken
as an indicator that the language model either isn’t developed well enough and/or
that the distance data remains the most influential feature.

All in all, the deep learning approach was shown to be a valuable step in the right
direction for handling automatic text extraction on documents with non-Manhattan
layouts. The problems, listed above, could potentially be solved by improving the
line grouping algorithm even further and training the model on even more data. This

47

would lead to an even better robust algorithm, which can be used across documents
with both Manhattan and non-Manhattan layouts.

48

6 Future Work

While the results of the thesis show promising results, there are several aspects, which
could be looked into in the future:

• Model for line grouping - as mentioned in Section 3.3, problems with line
grouping directly affect the performance of the model. A potential extension
would be analogous with the core problem of this thesis. Given a set of characters
and their coordinates, a sequence labeling problem can be defined. The output
labels would indicate if a character is at the end of a text line or not. The usage
of a neural network would eliminate the need the dependency on all kinds of
custom thresholds and would carry an increase in performance, if successful.

• Character embeddings - one-hot embeddings are a great basis for the repre-
sentation of categorical data, like characters. However, they lack contextual
information. Character embeddings would bring an additional feature to the
model and could impact it positively, as seen in other works. [18] [19]

• Higher LSTM cell size - it has not been possible thus far to increase the LSTM
cell size in the Encoder-Decoder model above 256 (see Section 3.5.5.3). However,
if the previous suggestion for character embeddings was to be implemented,
this would reduce the size of the training samples themselves. This would then
open the possibility of increasing the cell size and studying if that would have
a positive effect. While the model doesn’t show signs of under-fitting, it would
be informative to study the performance difference, if there is any.

• Transformer model - it has recently been shown that “attention” is the key part
of an Encoder-Decoder architecture. [20] A logical next step would be to study
the effects of introducing a transformer model to PDF content extraction and
seeing how it would compare.

49

7 Acknowledgments

I would like to extend a big thank you to the following people:

• my supervisor, Cladius Korzen - always ready to help and in a good mood.
When I hit roadblocks along the way, it was him, who set me back on track
with his suggestions. His past experience in the field was invaluable and served
as personal hope. He was also extremely helpful with the creation of data sets,
on which the model in this thesis was trained.

• my girlfriend, Katerina Samardzhieva - my emotional pillar during this under-
graduate thesis. She kept me stable both physically and mentally during this
work.

• my examiner, Prof. Dr. Hannah Bast - the best lecturer I’ve ever had the
chance to study under. She has helped me get better in every single aspect of my
computer science abilities and I am greatly thankful for all of the opportunities,
which she has given me.

51

Bibliography

[1] ISO Central Secretary, “Document management – portable document format
– part 2: Pdf 2.0,” Standard ISO 32000-2:2017, International Organization for
Standardization, Geneva, CH, 2017.

[2] D. Johnson, “Pdf statistics – the universe of electronic documents.” PDF Days
Europe 2018, 2018.

[3] A. S. Foundation, “Apache pdfbox.” https://github.com/apache/pdfbox,
2009.

[4] M. V. George Nagy, Sharad Seth, “A prototype document image analysis system
for technical journals,” in Proceedings. 1992 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (Cat. No.92CH3168-2), pp. 10–22,
IEEE, June 1992.

[5] H. Bast and C. Korzen, “A benchmark and evaluation for text extraction from
pdf,” in 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 1–
10, IEEE Computer Society, June 2017.

[6] G. . Cog, “Xpdf.” https://www.xpdfreader.com/index.html.

[7] P. Lopez, “Grobid: Combining automatic bibliographic data recognition and term
extraction for scholarship publications,” in Research and Advanced Technology
for Digital Libraries, vol. 5714, pp. 473–474, 09 2009.

[8] L. Romary and P. Lopez, “GROBID - Information Extraction from Scientific
Publications,” ERCIM News, vol. 100, Jan. 2015.

[9] E. Gabrilovich, M. Ringgaard, and A. Subramanya, “Facc1: Freebase annotation
of clueweb corpora, version 1 (release date 2013-06-26, format version 1, correction
level 0),” 06 2013.

[10] ISO Central Secretary, “Information technology – the json data interchange
syntax,” Standard ISO/IEC 21778:2017, International Organization for Stan-
dardization, Geneva, CH, 2017.

53

https://github.com/apache/pdfbox
https://www.xpdfreader.com/index.html

[11] G. Brain, “Tensorflow.” https://github.com/tensorflow/tensorflow, 2019.

[12] T. Oliphant, “Numpy.” https://github.com/numpy/numpy, 2019.

[13] F. Chollet, “Keras.” https://github.com/keras-team/keras, 2018.

[14] MOHITOMG3050, “How numpy arrays are better than python list - comparison
with examples,” October 2017. [Online; posted 04-October-2012].

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[16] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” Advances in Neural Information Processing Systems, vol. 4, 09
2014.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, pp. 1735–80, 12 1997.

[18] D. Xu, E. Laparra, and S. Bethard, “Pre-trained contextualized character embed-
dings lead to major improvements in time normalization: a detailed analysis,” in
Pre-trained Contextualized Character Embeddings Lead to Major Improvements in
Time Normalization: a Detailed Analysis, (Minneapolis, Minnesota), pp. 68–74,
Association for Computational Linguistics, 01 2019.

[19] P. Cerda, G. Varoquaux, and B. Kégl, “Similarity encoding for learning with
dirty categorical variables,” CoRR, vol. abs/1806.00979, 2018.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” CoRR,
vol. abs/1706.03762, 2017.

54

https://github.com/tensorflow/tensorflow
https://github.com/numpy/numpy
https://github.com/keras-team/keras

	1 Introduction
	1.1 Motivation
	1.2 Difficulties
	1.3 Proposed solution

	2 Related Work
	2.1 Pdftotext
	2.2 Grobid

	3 Approach
	3.1 Data generation
	3.1.1 Randomly generated PDF files
	3.1.2 JSON format
	3.1.3 JSON description files

	3.2 Data parsing from description files
	3.2.1 Character metadata
	3.2.2 Non-character metadata
	3.2.3 Text line metadata

	3.3 Line grouping
	3.4 Rule-based baseline algorithm
	3.4.1 Recursive X-Y cut
	3.4.2 Word building
	3.4.3 Problems

	3.5 Deep learning solution
	3.5.1 External libraries for deep learning utilities
	3.5.1.1 TensorFlow
	3.5.1.2 NumPy

	3.5.2 Foundations of deep learning
	3.5.2.1 Overview
	3.5.2.2 Sequence labeling

	3.5.3 Encoder-Decoder model
	3.5.3.1 Training an Encoder-Decoder model
	3.5.3.2 Using an Encoder-Decoder model

	3.5.4 Data preprocessing
	3.5.4.1 Character data encoding
	3.5.4.2 Distance data preprocessing

	3.5.5 Training of deep learning model
	3.5.5.1 Merging of text lines
	3.5.5.2 Conversion to input and output data
	3.5.5.3 Structure & Hyperparameters

	3.5.6 Using the deep learning model
	3.5.6.1 Production data generator
	3.5.6.2 Getting the label predictions
	3.5.6.3 Building the predicted lines

	3.6 Evaluation methods

	4 Evaluation
	4.1 Test sets
	4.2 Evaluation metrics
	4.3 Results
	4.3.1 Line grouping
	4.3.2 Rule-based baseline
	4.3.3 Deep learning approach
	4.3.4 Pdftotext approach

	5 Conclusion
	6 Future Work
	7 Acknowledgments
	Bibliography

