
Bachelor of Science Thesis

Automated standard compliance
testing and visualization for the
QLever SPARQL engine

Rico Andris

March 25, 2024

Submitted to the University of Freiburg
IIF – Department of Computer Science
Chair for Algorithms and Data Structures

University of Freiburg
IIF – Department of Computer Science

Chair for Algorithms and Data Structures

Author Rico Andris,
Matriculation Number: 4943295

Editing Time January 23, 2024 - March 25, 2024

Examiners Prof. Dr. Hannah Bast,
IIF – Department of Computer Science
Chair for Algorithms and Data Structures

Supervisor M.Sc. Johannes Kalmbach,
IIF – Department of Computer Science
Chair for Algorithms and Data Structures

Declaration I hereby declare, that I am the sole author and composer
of this Thesis and that no other sources or learning aids,
other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others
by providing detailed references of said work.

I hereby also declare, that my Thesis has not been
prepared for another examination or assignment, either
wholly or excerpts thereof.

Place, Date Signature

Abstract

This thesis addresses the challenge of enhancing the reliability and standard com-
pliance of the QLever SPARQL engine, a tool utilized for querying RDF data.
The main focus of this work involves automating the process of executing a set of
standardized tests (SPARQL 1.1 test suite) against the engine to identify errors
and areas of non-compliance. To make the results easily accessible, a web-based
visualization tool was developed, enabling developers to quickly identify and rec-
tify discrepancies. Additionally, this work established the foundation for inte-
grating these tools into the QLever project’s GitHub workflow, ensuring that the
engine remains compliant with SPARQL 1.1 standards with each update. This
enables developers, even those who are not well-versed in SPARQL standards, to
promptly identify and resolve compliance issues.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1

2 Background 2
2.1 SPARQL . 2

2.1.1 Semantic Web . 2
2.1.2 Resource Description Framework 2
2.1.3 SPARQL Protocol and RDF Query Language 4

2.2 SPARQL Test Suite . 5
2.2.1 Test Suite . 5
2.2.2 SPARQL 1.1 Test Suite 5

2.3 QLever . 8
2.4 Bootstrap . 8

3 Implementation 10
3.1 Interactions with QLever . 10

3.1.1 Running QLever Commands 10
3.1.2 Sending SPARQL Queries 11

3.2 Extracting Tests . 12
3.3 Evaluating Tests . 13

3.3.1 XML Result Comparison 13
3.3.2 JSON Result Comparison 14
3.3.3 CSV/TSV Result Comparison 15
3.3.4 Turtle Result Comparison 16
3.3.5 Query Evaluation Tests and Result Format Tests 17
3.3.6 Syntax Tests . 17
3.3.7 Update Evaluation Tests 17
3.3.8 Protocol Tests . 18

Contents III

3.3.9 Service Description Tests 19
3.4 Visualizing Differences in Results 19

3.4.1 Challenges . 19
3.5 Website . 20
3.6 GitHub Workflow integration . 21

4 Results 23
4.1 Test Suite Execution . 23

4.1.1 Test Coverage . 23
4.1.2 Success Rate . 23
4.1.3 Error Identification . 24

4.2 Visualization Website Development 25
4.2.1 Clear Highlighting of Differences 25
4.2.2 Analysis of a single test suite run 25
4.2.3 Comparison of a two test suite runs 25

4.3 GitHub Workflow Integration . 26

5 Conclusion 27
5.1 Limitations . 27

5.1.1 Test Suite Execution and Coverage 27
5.1.2 Specificity to QLever . 28
5.1.3 GitHub Workflow Integration 28

5.2 Future work . 28
5.2.1 Enhancing Test Suite Execution and Coverage 28
5.2.2 Broadening Applicability Beyond QLever 29
5.2.3 Refining GitHub Workflow Integration 29

Bibliography 30

Chapter 1

Introduction

This chapter outlines the motivation and objective for this thesis.

1.1 Motivation
The motivation behind this thesis stems from the need to enhance the reliability
of QLever and to further QLever’s support for the SPARQL 1.1 standard. Our
goal is to streamline the testing process and make it more efficient by automating
the execution of the SPARQL 1.1 test suite. The visualization of the test results
makes it easier to identify functionality that is not SPARQL 1.1 compliant or
has not yet been implemented by QLever. Integrating this automated testing
into the QLever engine’s GitHub workflow ensures continuous compliance with
the SPARQL 1.1 standard. This facilitates the development of a more robust
SPARQL engine.

1.2 Objective
The aim of this thesis is to develop a tool that automates the execution of the
SPARQL 1.1 test suite and visually represents the results for easy analysis. Fur-
thermore, this project takes the initial steps to integrate the testing and visualiza-
tion framework into QLever’s GitHub workflow, promoting continuous improve-
ment that maintains the engine’s quality and adherence to standards throughout
its development.

Chapter 2

Background

This chapter provides the background necessary to understand the thesis. It
introduces the SPARQL Protocol and RDF Query Language, the SPARQL 1.1
test suite, QLever and Bootstrap.

2.1 SPARQL
This section explains basic features of the Resource Description Framework (RDF)
standard for knowledge bases and the SPARQL query language that are necessary
to understand our work.

2.1.1 Semantic Web

The Semantic Web is an extension of the current web. Its goal is to enable
machines to understand and interpret data on the web. To achieve this, the
Semantic Web relies on standards and technologies that categorize and link data,
such as the Resource Description Framework standard. This enables computers to
process the data directly, resulting in more intelligent applications that improve
tasks like data integration and personalized content delivery. The Semantic Web
is a significant advancement in making the internet more accessible for automated
processing.

2.1.2 Resource Description Framework

The Resource Description Framework (RDF) is a standard for exchanging data
on the semantic web.1 RDF uses a graph-based model to represent information

1Find out more at https://www.w3.org/RDF/

Chapter 2 Background 3

and employs Uniform Resource Identifiers (URIs) to denote relationships between
entities. This approach ensures semantic precision and enhances data readability
for computers. Additionally, RDF facilitates linking of diverse data sets through
semantic relationships. The Resource Description Framework (RDF) is crucial
for the operation of the Semantic Web and for improving data interconnectivity
and interpretation. An example knowledge base, of the RDF standard, detailing
animals and their classification could look like this:

Subject Predicate Object
<Dog> <isA> <Mammal>
<Cat> <isA> <Mammal>
<Parrot> <isA> <Bird>

Table 2.1: Example RDF knowledge base

Dog

Cat

Parrot

Mammal

Bird

isA

isA

isA

Figure 2.1: Graph representation of the example knowledge base 2.1

Terse RDF Triple Language

The Terse RDF Triple Language (Turtle) format is a textual syntax for expressing
data in the Resource Description Framework that is intended to be easier to read
and write by humans compared to other RDF serializations like RDF/XML. This
example about a golden retriever called Rex, makes the benefits of using the Turtle
format very clear:

Listing 2.1: Turtle syntax for describing a dog

1 @prefix ex: <http://example.org/animals#> .
2
3 ex:Rex

Chapter 2 Background 4

4 ex:type ex:Dog ;
5 ex:name "Rex" ;
6 ex:breed "Golden Retriever" ;
7 ex:age 5 .

Listing 2.2: RDF/XML syntax for describing a dog

1 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
2 xmlns:ex="http://example.org/animals#">
3
4 <rdf:Description rdf:about="http://example.org/animals#Rex">
5 <ex:type rdf:resource="http://example.org/animals#Dog"/>
6 <ex:name>Rex</ex:name>
7 <ex:breed>Golden Retriever</ex:breed>
8 <ex:age rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">
9 5</ex:age>

10 </rdf:Description>
11
12 </rdf:RDF>

2.1.3 SPARQL Protocol and RDF Query Language

The SPARQL Protocol and RDF Query Language (SPARQL) is a cornerstone of
the Semantic Web, enabling the querying and manipulation of data stored in the
Resource Description Framework.2 SPARQL was developed to address the need
for a standardized query language for RDF data and since then has evolved to
include features like update capabilities in SPARQL 1.1. SPARQL is endorsed
and standardized by the RDF Data Access Working Group (DAWG) of the World
Wide Web Consortium (W3C).

Key Features

SPARQL’s key features include federated querying, which treats data from mul-
tiple sources as a single dataset, and a variety of query forms (SELECT, CON-
STRUCT, ASK, DESCRIBE) that allow users to extract, manipulate, and inquire
about data in versatile ways. This flexibility supports a broad range of applica-
tions. An example query for the knowledge base 2.1 can look like this:

2Find out more at https://www.w3.org/TR/sparql11-query/

Chapter 2 Background 5

Listing 2.3: Example SPARQL query to select animals

1 SELECT ?animal
2 WHERE {
3 ?animal isA Mammal .
4 }

?animal
<Dog>
<Cat>

Table 2.2: Example SPARQL query response in the CSV format

2.2 SPARQL Test Suite

2.2.1 Test Suite

A test suite is a collection of test cases that are designed to validate the behavior
of a software system. This validation process ensures that the software performs
as expected under various conditions and that any changes or updates to the code
do not inadvertently introduce errors or regressions.

2.2.2 SPARQL 1.1 Test Suite

To ensure the consistency, compatibility, and reliability of SPARQL implemen-
tations across different data stores and applications, the SPARQL 1.1 Test Suite
was developed. This comprehensive set of tests verifies that SPARQL query pro-
cessors adhere to the standards defined by the World Wide Web Consortium
(W3C) for SPARQL 1.1.3

For better manageability, the tests are split into smaller collections based on
the functionality being tested. Each collection has its own directory and manifest
file. The manifest file lists the tests in the collection and provides details about
them. This is done using the RDF format and in this case is is expressed in Turtle
(Section 2.1.2). This makes the test readable for humans and machines. Depend-
ing on the test the manifest entry of the test contains different information. An
example test called test-01, which specifies the action to run the query query01.rq

3Find out more at https://www.w3.org/2009/sparql/docs/tests/README.html

Chapter 2 Background 6

on the data graph01.ttl and specifies the result in the result01.srx , could look
like this:

Listing 2.4: How a test is specified in a manifest file

1 :test-01 rdf:type mf:QueryEvaluationTest ;
2 mf:name "Test 1" ;
3 rdfs:comment "A very useful test" ;
4 mf:action
5 [qt:query <query01.rq> ;
6 qt:data <graph01.ttl>] ;
7 mf:result <result01.srx> .

Components of the SPARQL 1.1 Test Suite

The test suite encompasses several types of tests, each targeting specific features
of the SPARQL 1.1 standard:

• Query Evaluation Tests.
• Syntax Tests.
• Result Format Tests.
• Update Evaluation Tests.
• Protocol Tests.
• Service Description Tests.

Query Evaluation Tests

Query Evaluation Tests evaluate the correctness of a query execution and always
consist of a correct SPARQL query to be tested and an expected result. SPARQL
includes several query result formats:

• SPARQL Query Results XML Format.
• SPARQL Query Results JSON Format.
• SPARQL Query Results TSV Format.
• RDF/XML or Turtle.

In some cases a default graph is given, on which the query is executed. There
are special Query Evaluation Tests Entailment Evaluation Tests and Federated
Query Tests.

Entailment Evaluation Tests additionally test the entailment regime and
entailment profile. Entailment regimes in SPARQL allow users to perform queries

Chapter 2 Background 7

that can infer new information from the data that is not explicitly stated.
Federated Query Tests are tests designed to test queries who use the SER-

VICE keyword. The SERVICE keyword will be executed against an external
SPARQL endpoint. The results are then integrated into the overall query results.
This allows the user to combine data from multiple sources in a single query,
without needing to manually gather and merge data from these sources.

Syntax Tests

Syntax Tests verify that SPARQL query processors correctly interpret and handle
the syntax of SPARQL queries according to the specifications of the SPARQL
language.

Syntax tests only consist of a query and expect either a positive or negative
response to that query from the SPARQL endpoint.

Result Format Tests

SPARQL queries can produce results in various formats, and format tests are
used to verify the accuracy and compliance of these output formats. One of these
tests is the CSV Result Format Test. The CSV and TSV result formats are lossy
formats, meaning they cannot encode all the details of a result. Due to this loss
of detail, the format requires special handling. Otherwise, the format Tests work
like query evaluation tests.

Listing 2.5: Example result of a CSV test
1 subject,predicate,object
2 http://example.org/Dog,http://example.org/age,"5"

Table 2.3: Possible CSV result matches
Subject Predicate Object
http://example.org/Dog http://example.org/age "5"^^xsd:string
http://example.org/Dog http://example.org/age "5"^^xsd:decimal
http://example.org/Dog http://example.org/age "5"^^xsd:integer

Update Evaluation Tests

Update Evaluation Tests verify the implementation of SPARQL Update opera-
tions, ensuring correct data manipulation and integrity. Update Evaluation Tests

Chapter 2 Background 8

always contain an update query. A update query can contain several graphs, a
default graph and any amount of named graphs. The query can make use of all
of them.

Protocol Tests

Protocol Tests ensure the correct support of the transmission of queries to the
SPARQL service, typically via HTTP GET and POST methods. This includes
testing the correct handling of query parameters and content types. Protocol
tests consist of an HTTP request and the expected HTTP response.

Special protocol tests are the Graph Store HTTP Protocol Tests. The Graph
Store HTTP Protocol defines how clients can manage RDF graph content directly
via HTTP.

Service Description Tests

Assess the ability of SPARQL services to accurately describe their capabilities,
as per the SPARQL Service Description specification.

2.3 QLever
QLever is a high-performance SPARQL engine developed by the Chair for Al-
gorithms and Data Structures at the University of Freiburg. [1] The SPARQL
engine is designed to efficiently execute queries over large RDF datasets. QLever
uses a unique indexing strategy that allows it to handle very large datasets more
efficiently than many other SPARQL engines. QLever aims to fully support the
SPARQL 1.1 query language standard, enabling users to perform a wide range of
queries, from simple data retrievals to complex analytical queries. To work with
the QLever SPARQL engine we first have to index our graph data. After that
we can start the QLever server and execute our SPARQL queries. QLever offers
more features that are not relevant for our work.4 5

2.4 Bootstrap
Bootstrap is a free and open-source front-end framework for designing websites

4Use QLever at https://qlever.cs.uni-freiburg.de/wikidata
5QLever Code https://github.com/ad-freiburg/qlever

Chapter 2 Background 9

and web applications. It provides HTML, CSS, and JavaScript templates for
typography, forms, buttons, navigation, and other interface components, as well
as optional JavaScript extensions. 6

6Find Bootstrap at https://getbootstrap.com/

Chapter 3

Implementation

This chapter presents an overview of our approach to automating the testing of
the SPARQL 1.1 suite for the QLever engine. We also discuss how we visualize
differences in test results with the QLever result and the development of the
visualization website. Finally, we address the integration of the process into a
GitHub workflow.

3.1 Interactions with QLever
This work implements the SPARQL 1.1 test suite for the QLever SPARQL engine
and requires a Python interface to interact with the QLever binaries and endpoint.

3.1.1 Running QLever Commands

Some tests include a starting graph for the test. If we want to load a graph into
QLever, we have to build an index of that graph, using the QLever IndexBuil-
derMain executable. For graphs with a format not supported by QLever, we use
RDFlib to parse it to the turtle format. We also need to remove the index when
the next graph needs to be indexed.1

Another task is starting and stopping the SPARQL endpoint after indexing.
To do this we need to start the Qlever server using the QLever ServerMain ex-
ecutable. To achieve these tasks, we use the subprocess python module.2 This
module allows us to execute external commands and interact with other programs
in python, as if they were running in the terminal. This is crucial for the tasks
mentioned before.

1RDFlib at https://rdflib.readthedocs.io/en/stable/
2subprocess module at https://docs.python.org/3/library/subprocess.html

Chapter 3 Implementation 11

The reason we chose the subprocess module, instead of using the os.system
module, is the finer control over the subprocess’s input, output and error pipes.
We use this to capture the output and error messages to give useful informa-
tion as to why the test encountered an error, for example during indexing. The
module also makes it easier to identify and troubleshoot issues with the external
commands or processes by providing exceptions.

3.1.2 Sending SPARQL Queries

A crucial part is sending SPARQL queries to the SPARQL endpoint, in this case
the QLever server. The SPARQL 1.1 Protocol defines the query and update
operation. For the query operation we can either use the HTTP GET method or
the HTTP POST method, for the update operation we have to use the HTTP
POST method. In our implementation, we use the HTTP POST method because
it allows us to directly put the query string, which is read from the given query or
update file, into the HTTP Request Message Body, and we do not need different
functions for a query operation and update operation. There are two options for
sending a POST request. We chose the POST directly and not the URL-encoded
version, which is just unnecessary in this case.

An important part is specifying the format to be returned by the QLever
server. We do this, using the HTTP header ”Accept”. This header tells the
server what the client is able to interpret, using MIME types. We identify the
needed MIME type, for a given test, by looking at the format of the result. If
a test includes a result file, we use the file extension to indicate the format.
For instance, a result file named example.srj indicates the SPARQL 1.1 Query
Results JSON format, as denoted by the file extension srj, which in turn specifies
the MIME type application/sparql-results+json.

For executing POST requests, our implementation adopts the requests mod-
ule. This decision is anchored in the module’s user-friendliness, compatibility and
comprehensive documentation. The module ensures a seamless and consistent
interface irrespective of the underlying HTTP library differences. It simplifies
HTTP/1.1 requests, eliminating the complexities of manual query string manipu-
lation or POST data form-encoding. It offers several functions like get, post, put
and delete, which are all intuitive and make readable code.

Chapter 3 Implementation 12

3.2 Extracting Tests
To begin, we required a method for extracting the tests outlined in the SPARQL
1.1 test suite. Each test is detailed in a manifest file written in the Terse RDF
Triple Language (Turtle) format. There are various methods for extracting data
from a Turtle file, but we opted to use SPARQL queries to extract the necessary
data. To accomplish this task, a SPARQL engine is required. As we had to
implement the QLever SPARQL engine for testing purposes, we will use it to run
the queries and extract the tests.

For each test group we wrote a corresponding SPARQL query. Using QLever
we parse the manifest Turle file and run the query. Each group of tests then gets
saved in a CSV format file, where a row represents the details for one test. The
tests are split into groups that correspond with the task of running the tests.

Listing 3.1: Example of a query to extract tests

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX mf: ←↩

<http://www.w3.org/2001/sw/DataAccess/tests/test-manifest#>
4 PREFIX dawgt: ←↩

<http://www.w3.org/2001/sw/DataAccess/tests/test-dawg#>
5 PREFIX qt: <http://www.w3.org/2001/sw/DataAccess/tests/test-query#>
6 PREFIX ut: <http://www.w3.org/2009/sparql/tests/test-update#>
7 PREFIX sd: <http://www.w3.org/ns/sparql-service-description#>
8 PREFIX ent: <http://www.w3.org/ns/entailment/RDF>
9 PREFIX rs: <http://www.w3.org/2001/sw/DataAccess/tests/result-set#>

10
11 SELECT DISTINCT ?type ?name ?query ?result ?data ?test ←↩

(GROUP_CONCAT(DISTINCT ?feature; SEPARATOR=";") AS ←↩
?featureList) ?comment ?approval (GROUP_CONCAT(DISTINCT ←↩
?approvedBy; SEPARATOR=";") AS ?approvedByList) ?regime

12 WHERE {
13 ?test rdf:type mf:QueryEvaluationTest .
14 BIND ("QueryEvaluationTest" AS ?type) .
15 ?test mf:action ?action .
16 ?action qt:query ?query .
17 OPTIONAL {?action qt:data ?data .}
18 OPTIONAL {?action sd:entailmentRegime ?regime .}

Chapter 3 Implementation 13

19 OPTIONAL {?action qt:graphData ?actionGraphData .}
20 ?test mf:result ?result .
21 OPTIONAL {?test mf:name ?name .}
22 OPTIONAL {?test mf:feature ?feature .}
23 OPTIONAL {?test rdfs:comment ?comment .}
24 OPTIONAL {?test dawgt:approval ?approval .}
25 OPTIONAL {?test dawgt:approvedBy ?approvedBy .}
26 }
27 GROUP BY ?type ?name ?query ?result ?data ?test ?comment ←↩

?approval ?regime

3.3 Evaluating Tests
A big part of evaluating tests consists of comparing the given expected result,
with the reponse given by the QLever server. These results come in different
formats. For each format, we implemented a comparison. Automating the tests
of the SPARQL 1.1 test suite for the QLever SPARQL engine, meant a lot of
attention was dedicated to the comparison of query results in various formats
This section delves into the design choices, unique implementations, and module
usage within the comparison functionality for each format.

3.3.1 XML Result Comparison

The core XML handling functionality was developed with a focus on correct
results and flexibility of what is considered equal. Before comparing the results we
have to parse the XML into use-able data, in our approach we build ElementTrees.
A result tree is considered equal, if both trees are empty after deleting every
matching element.

ElementTree for XML Parsing

The xml.etree.ElementTree (ET)3 module was chosen for parsing XML documents
due to its balance of efficiency and ease of use. ET provides a straightforward
API for navigating and manipulating the XML tree structure, which is essential
for detailed comparison of query results. Several alternatives for XML processing

3https://docs.python.org/3/library/xml.etree.elementtree.html

Chapter 3 Implementation 14

exist in the Python ecosystem, such as lxml and minidom. In comparison to the
powerful tool lxml, ET was selected for its standard library availability, eliminat-
ing external dependencies, and its simplicity for the required tasks. While lxml
offers more features and potentially better performance, its additional complexity
and dependency requirements were deemed unnecessary for the core comparison
needs of this project.

Custom XML Comparison Logic

Instead of leveraging existing XML comparison libraries, a custom comparison
logic was implemented. The decision to develop a custom XML comparison
mechanism, rather than utilizing an existing library, was based on the unique
requirements of SPARQL result comparison. Existing libraries often focus on
general-purpose XML comparison, which may not cater to the nuanced differ-
ences significant in SPARQL results, such as order-insensitive comparison of cer-
tain elements. Another reason was to provide detailed feedback on discrepancies,
which will later be used to highlight errors. Additionally, we have full control
over what is deemed equal.

The custom logic includes a detailed comparison of XML elements, attributes,
and text content. Furthermore, it tracks and compares the use of blank nodes,
which are SPARQL specific. When comparing data types it also allows for two
different types to be considered equal. This was implemented to differentiate
between a failed test and a test that failed because of a QLever design decision.
The data types that are considered equal are stored in a config file. Numeric
types also need special handling since there might be formatting differences, that
we consider equal.

3.3.2 JSON Result Comparison

In our approach, we take advantage of the SPARQL JSON format. The SPARQL
standard allows two different structures. A special one for ASK queries, which
answer with a boolean, and the general one, which contains the results of a query.
The general structure has two relevant lists called vars and bindings. We consider
the lists to be the same if both are empty after deleting matches. The special
structure also has the vars list and instead of the bindings list it has a boolean,
the answer to the ASK query. For the vars list we use the same approach as
before and for the boolean we just compare the values.

Chapter 3 Implementation 15

Module for JSON Parsing

The decision to use Python’s built-in json module4 for reading and writing JSON
files stems from its sufficient functionality for the task at hand and its integration
into the Python standard library. This choice avoids additional dependencies and
leverages familiar syntax and features.

Custom JSON Comparison Logic

While libraries like jsondiff exist for comparing JSON documents, a custom so-
lution was developed to address the specific nuances of SPARQL and of QLever.
This includes handling of unordered lists (where list order does not indicate a dif-
ference) and specific formatting needs for the test suite’s output. The custom ap-
proach ensures that comparisons are tailored to the domain-specific requirements
of SPARQL, which may not be fully met by general-purpose JSON comparison
tools.

3.3.3 CSV/TSV Result Comparison

In the initial phase, we process the results, which are in either CSV or TSV format,
by converting them into a Python list of lists, where each nested list corresponds
to a row. Disregarding the order, we remove any rows that are identical. Should
this operation result in both lists being empty, we determine the results to be
equivalent.

Python’s Standard CSV Module

The decision to use Python’s standard csv module5 for handling CSV/TSV files
was motivated by its robustness, ease of use, and the absence of external de-
pendencies. This choice supports a wide range of CSV-related operations, from
file writing to custom parsing, with sufficient flexibility and features for the test
suite’s requirements.

Custom Comparison Mechanisms

While third-party libraries for CSV/TSV manipulation and comparison exist, cus-
tom implementations were preferred to meet the specific needs of SPARQL CSV

4https://docs.python.org/3/library/json.html
5https://docs.python.org/3/library/csv.html

Chapter 3 Implementation 16

and TSV data. This approach allows for more granular control over comparison
logic, especially in handling special cases unique to SPARQL.

Beyond basic file handling, custom comparison mechanisms were implemented
to address the nuances of SPARQL CSV and TSV data. This includes handling
numeric data accurately, ensuring that differences in number formatting do not
contribute to comparison mismatches and the special handling of the lossy nature
of the format and ignoring order or rows and columns when comparing results.

Special care was taken to correctly handle numeric values within CSV/TSV
rows by incorporating utility functions, to ensure that numeric comparisons are
accurate and not influenced by format variations, such as decimal places or leading
zeros. For example 1.234E3 is the equal to 1234.

Because of the lossy nature of the SPARQL CSV/TSV format, we cut of
information about data types, only comparing the actual values.

3.3.4 Turtle Result Comparison

Using the RDFlib6 we turn the given RDF data into a graphs and check if the
graphs are isomorphic.

RDFlib for RDF Processing

RDFlib is a powerful and widely used library for working with RDF in Python.
The tool’s capability to parse and serialize RDF data in various formats is a big
reason why we chose this library. In our work, RDFlib facilitates the conversion
between different RDF serializations, such as RDF/XML to Turtle, enabling a
standardized approach to graph comparison.

RDFlib for Equivalence Checking

The tool employs RDFlib’s graph isomorphism features to determine the equiva-
lence of RDF graphs. This method allows for a deep comparison that accounts for
RDF’s graph nature, ensuring that semantically equivalent graphs are recognized
as such, regardless of their serialization differences. This means there is no need
for a custom comparison logic.

6https://rdflib.readthedocs.io/en/stable/

Chapter 3 Implementation 17

3.3.5 Query Evaluation Tests and Result Format Tests

A critical component for the QLever engine, is the integration of the SPARQL
1.1 query evaluation tests to validate the engine’s compliance with the SPARQL
standard. Query evaluation tests and result format tests can be run the same
way. So in our approach we don’t differentiate between them when running the
tests.

A query evaluation test either defines a default graph or the default graph is
simply an empty graph. Since these tests do not change the data we do not need
to reset the graph after each test. This lets us group the tests using the same
default graph. For each group we have to set up the SPARQL endpoint only
once. How we setup a SPARQL endpoint with QLever is explained in chapter
3.1.1. Then we send the queries as explained in chapter 3.1.2. The last step is
evaluating the results using the comparison functions explained in section 3.3.1 -
3.3.4.

3.3.6 Syntax Tests

Syntax tests are important to test the query processor of the SPARQL engine.
Since the given result to a query of a syntax test, does not matter, all syntax
tests are run on an empty graph. To check if a syntax tests passes or fails, we
just have to check if the QLever engine raises an error. This of course does not
take into account why a query raises an error. For example the QLever engine
currently does not support ASK queries, so all syntax tests expecting a negative
result are considered passed.

3.3.7 Update Evaluation Tests

Our implementation does not fully support the testing of the SPARQL Update
evaluation tests. We only compare the resulting default graph with the expected
graph not taking into account change made to named graphs. QLever currently
does not support update queries and named graphs.

For each update test we set up the SPARQL endpoint. After sending the
update query, we send another query with the CONSTRUCT keyword to get the
changed default graph. The comparison then is handled as explained in sections
3.3.1 - 3.3.4..

Chapter 3 Implementation 18

3.3.8 Protocol Tests

The integration of the SPARQL 1.1 protocol tests using telnet addresses the need
to validate the QLever engine’s adherence to SPARQL protocols. This section
provides insight into the protocol testing functionality, emphasizing the use of
telnet for simulating client-server interactions.

Telnet for Network Simulation

The decision to use the telnetlib module for protocol testing was driven by the
need for a lightweight and flexible means of simulating client-server communi-
cation. Telnetlib provides a straightforward interface for sending requests and
receiving responses over TCP/IP, closely mirroring real-world SPARQL endpoint
interactions.

Request Preparation and Parsing

A significant part of the implementation involved the development of a function
, which processes a request-response string to extract and properly format the
request part. This function ensures that requests are correctly structured and
cleaned before being sent to the SPARQL endpoint.

Expected Response Preparation

Similar to the request, we process the request-response string given and extract
the relevant information. Relevant information include the HTTP status code,
the Content-Type HTTP header and in some cases the response body, which
holds the result to the query of the sent request. The result is either a boolean
or a RDF graph.

Response Validation

Upon receiving a response, the tool leverages the pre-proccessed information.
We use Pythons String Methods and regular expression operations to confirm
if the response contains the correct status code and content-type. To validate
the correctness of the response body against expected outcomes, we either use
the RDF comparison mentioned in chapter 3.3.4 or we just check if the correct
boolean is in the response.

Chapter 3 Implementation 19

3.3.9 Service Description Tests

This implementation does not support the Service Description Tests. A testing
service exists, provided by the W3C.7

3.4 Visualizing Differences in Results
The ability to quickly and accurately pinpoint differences in query results aids
in the rapid diagnosis and resolution of issues related to query processing and
result generation and also enhances the overall development workflow for QLever.
By providing a clear visual representation of discrepancies, developers can more
easily identify patterns or recurrent issues. We achieve this by generating strings
of the expected result and the result given by QLever, which when displayed on
the website, highlight differences of the results using the colors red or yellow.

The comparison functions mentioned in sections 3.3.1 - 3.3.4 also return two
objects, one object contains the parts of the expected result without a match
in the given result and the other object contains the parts of the given result
without a match in the expected result. Now we build string representations of
the expected and given result. Using the objects containing parts of the results
we highlight certain parts of the string representation using the HTML element
span.

3.4.1 Challenges

Some problems were encountered using our approach to highlight differences.

Varying XML Self-Closing Tags

An issue when highlighting differences of two XML elements is the variation in self-
closing tags (<tag/>) versus explicitly closed tags (<tag></tag>). To address
this, a function was implemented, which utilizes regular expressions to normalize
self-closing tags.

Multiple Highlighting

When a response to a query contained a result multiple times, only the first
occurrence of the result was highlighted and the other occurrences were not. To

7https://www.w3.org/2009/sparql/sdvalidator

Chapter 3 Implementation 20

Figure 3.1: This is the result of the generated string with HTML elements high-
lighting the differences

prevent this, we had to add a check to the regular expression to stop a result from
being highlighted twice. For example, an XML format containing three empty
results would cause the first empty result to be highlighted three times, while the
other two would not be highlighted at all.

3.5 Website
The development of the visualization website was guided by ensuring an intuitive,
informative, and user-friendly experience, when looking at the test results of a
run or when comparing the results of two runs.

The design approach prioritized simplicity and intuitiveness, enabling users
to easily interact with the website and access the information they need without
extensive guidance. This was achieved through clear labeling, consistent layout,
and interactive elements designed for ease of use. Bootstrap’s responsive design
features were extensively utilized to create a seamless experience on desktops and

Chapter 3 Implementation 21

tablets.

Technology Stack

The core technologies used were HTML, CSS, and JavaScript, providing the foun-
dation for building the website’s structure, style, and functionality. Bootstrap
was employed to expedite the development process and ensure a responsive de-
sign. Its grid system, pre-designed components, and utility classes allowed for
rapid layout design and easy implementation.

To run the website locally, Python’s HTTP server module (python3 -m
http.server) is used to serve the static files (HTML, CSS, JavaScript). This
simplifies the deployment and hosting process, reducing the need for complex
backend development and maintenance while still efficiently delivering content
to users.

Features and Functionality

The website offers essential features and functionalities to facilitate the explo-
ration and analysis of test results Interactive elements and visualizations are im-
plemented using JavaScript, enabling users to dynamically explore test results.

Visual cues and simple graphics help in conveying the status of test outcomes,
improving the interpretability of data. JavaScript is also used to provide filtering
and search functionalities, allowing users to easily sift through the different runs
of the test suite and the test results based on specific criteria such as test names,
test groups, test types, test status and error type.

This development approach ensures that the website is not only a valuable
tool for visualizing test results but also accessible, easy to use, and responsive,
aligning with the project’s goals to support the QLever SPARQL engine’s devel-
opment and testing process.

3.6 GitHub Workflow integration
Our work takes the first step towards a seamless GitHub workflow integration.
Using GitHub Actions, we created a workflow that builds the current QLever
binaries and executes our testing implementation. After running the tests, we
push the results to a different GitHub repository. In that repository we host our
visualization website with GitHub Pages. The workflow will exit with an error if

Chapter 3 Implementation 22

the current run has tests that passed in a previous run.

Chapter 4

Results

This Chapter presents the outcomes of the project, encompassing the execution
of the SPARQL test suite using Python, the development of a web interface for
the visualization of the test results, and the integration of these components into
the GitHub workflow for the QLever SPARQL engine.

4.1 Test Suite Execution
The Python code developed for executing the SPARQL 1.1 test suite against the
QLever engine was successful in automating the testing process. The execution
of the test suite resulted in:

4.1.1 Test Coverage

A comprehensive coverage of 600 SPARQL tests consisting of:
• 282 Query Evaluation Tests
• 3 Result Format Tests
• 94 Update Evaluation Tests
• 169 Syntax Tests
• 52 Protocol Tests

4.1.2 Success Rate

The QLever engine successfully processed 23.83% of the test and failed 69.33%.
The remaining 6.83% fail because of intended behavior of the QLever engine and
are considered passed for the purposes of QLever (Semi-Passed).

Chapter 4 Results 24

As QLever aims to fully support the SPARQL 1.1 standard, let’s examine it
more closely. The standard is split into the following categories:

Category Tests Passed Semi-Passed Failed Pass Rate
SPARQL 1.1
Query
Language

301 97 39 165 32.22% / 45.18%

SPARQL 1.1
Update

157 21 0 136 13.38%

SPARQL 1.1
Query
Results, CSV
and TSV
Formats

6 6 0 0 100%

SPARQL 1.1
Query
Results,
JSON Format

4 0 2 2 0% / 50%

SPARQL 1.1
Federation
Extensions

10 0 0 10 0%

SPARQL 1.1
Entailment
Regimes

70 4 0 66 5.71%

SPARQL 1.1
Protocol

34 13 0 21 38.24%

SPARQL 1.1
Graph Store
HTTP
Protocol

18 2 0 16 11.11%

Table 4.1: SPARQL 1.1 standard tests summary

4.1.3 Error Identification

The tests identified 4 specific areas where the QLever engine’s response deviated
from expected outcomes, providing clear targets to enhace QLever’s support of
the SPARQL 1.1 standard.

Of the 416 failed tests 174 are query exceptions, this error indicates that
QLever does not support the sent query. For example 18 of the query exceptions
fail because ASK queries are not supported, another 13 fail because named graphs
are not supported.

Chapter 4 Results 25

72 tests fail because of differences in the expected result and QLever’s result
to a query, which indicates an error in the implementation of a functionality.

Another 94 tests fail because the HTTP Content-Type header application/sparql-
update is not supported.

And lastly 60 tests currently fail because the index can not be build. This
happened after a current change in the QLever code, which could’ve been pre-
vented by fully integrating this tool into the QLever GitHub workflow.

These results underscore the effectiveness of the automated testing frame-
work in assessing the QLever engine’s compliance, highlighting areas for improve-
ment.

4.2 Visualization Website Development
The development of a website to visualize the SPARQL 1.1 test suite results
yielded a user-friendly interface that enables:

4.2.1 Clear Highlighting of Differences

Differences between expected and actual query results are highlighted, employing
HTML elements to enhance readability and facilitate error analysis.

4.2.2 Analysis of a single test suite run

Users can interact with the test results, filtering by test type, error type, and
other criteria to delve deeper into areas of interest.

4.2.3 Comparison of a two test suite runs

Discrepancies between two runs will be shown to the user, who then can analyze
the differences between two runs of the SPARQL 1.1 test suite.

The visualization website serves as a valuable tool for the developers of the
QLever engine offering insights into the engine’s capabilities and guiding further
enhancements.

Chapter 4 Results 26

4.3 GitHub Workflow Integration
The first step of integrating the testing and visualization tools into the QLever en-
gine’s GitHub workflow has achieved the automatically execution of the SPARQL
1.1 test suite with each commit to the QLever main branch and the results from
the test suite are directly visualized on the project’s website, providing immediate
feedback to developers.

Chapter 5

Conclusion

This thesis was motivated by the need to enhance the reliability of the QLever
SPARQL engine and to expand its compliance to the SPARQL 1.1 standard.
Recognizing the challenges inherent in manual testing processes and the difficulty
in diagnosing non-compliance or unimplemented functionalities, this work set out
to improve the testing for QLever. This was achieved by automating the execution
of the SPARQL 1.1 test suite.

Another achievement of this thesis is the development of a visualization
tool that intuitively represents differences between expected query results and
QLever’s query results. This has greatly simplified the task of pinpointing devia-
tions from the SPARQL 1.1 standard, thereby accelerating the process of enhanc-
ing QLever’s compliance and functionality. Furthermore, taking the first steps to
integrate these automated tools into the QLever’s GitHub workflow represents a
step towards continuous quality assurance during development.

5.1 Limitations
While the project has achieved its objectives, it is not without its limitations.
Acknowledging these limitations is crucial for understanding the scope of the
study and guiding future directions.

5.1.1 Test Suite Execution and Coverage

One of the foundational aspects of this project was the execution of the SPARQL
1.1 test suite against the QLever engine. The SPARQL 1.1 test suite, while
extensive, may not encapsulate all possible query scenarios or edge cases, which
poses a limitation. Consequently, there might be aspects of the QLever engine’s

Chapter 5 Conclusion 28

performance and compliance that remain untested. Another limitation is that
our approach does not fully support all Update Evaluation Tests.

5.1.2 Specificity to QLever

The tools and methodologies developed are tailored to the QLever engine, limiting
their applicability to other SPARQL engines without modifications.

5.1.3 GitHub Workflow Integration

The GitHub integration of the automated execution and visualization for the
SPARQL 1.1 test suite, while a first step forward, presents limitations in its cur-
rent implementation that may affect its utility for QLever developers. A notable
limitation is its application solely to changes in the main branch, excluding pull
requests from automated testing. This oversight can lead to scenarios where code
that potentially reduces compliance with the SPARQL standard could be merged
without undergoing the necessary evaluations. Addressing this limitation is es-
sential to fully harness the benefits of automation in maintaining and enhancing
standard compliance throughout the development process.

5.2 Future work
The identification of limitations within the current scope of work lays a foundation
for future development. Addressing these limitations not only promises to refine
the existing tool but also extends its applicability and effectiveness. This chapter
outlines potential directions for future work, informed by the limitations discussed
previously.

5.2.1 Enhancing Test Suite Execution and Coverage

Future work could focus on expanding the current SPARQL 1.1 test suite to cover
more query scenarios and edge cases, ensuring a more exhaustive evaluation of
SPARQL engines.

Another area for improvement is the full support for Update Evaluation Tests
within the test suite. Future iterations of the project could aim to integrate these
tests seamlessly, ensuring that the SPARQL engine’s performance in handling
SPARQL update queries is thoroughly assessed.

Chapter 5 Conclusion 29

5.2.2 Broadening Applicability Beyond QLever

To transcend the specificity to QLever, future efforts could be directed towards
making the testing and visualization tools more adaptable to other SPARQL
engines. This would involve abstracting engine-specific functionalities(Chapters
3.1.1 and 3.1.2) and creating an architecture that allows for easy customization
and integration with various SPARQL engines.

5.2.3 Refining GitHub Workflow Integration

A critical area for future improvement is the GitHub workflow integration, specif-
ically extending the automated testing and visualization to include pull requests.
Implementing a system that triggers automated tests for every pull request and
visualizes the results before merging could significantly mitigate the risk of intro-
ducing non-compliant code into the main branch.

Bibliography

[1] Bast and Buchhold. “Qlever: A query engine for efficient sparql+text search.”
(2017), [Online]. Available: https://ad-publications.informatik.uni-
freiburg.de/CIKM_qlever_BB_2017.pdf (visited on 03/24/2023).

https://ad-publications.informatik.uni-freiburg.de/CIKM_qlever_BB_2017.pdf
https://ad-publications.informatik.uni-freiburg.de/CIKM_qlever_BB_2017.pdf

	Introduction
	Motivation
	Objective

	Background
	SPARQL
	Semantic Web
	Resource Description Framework
	SPARQL Protocol and RDF Query Language

	SPARQL Test Suite
	Test Suite
	SPARQL 1.1 Test Suite

	QLever
	Bootstrap

	Implementation
	Interactions with QLever
	Running QLever Commands
	Sending SPARQL Queries

	Extracting Tests
	Evaluating Tests
	XML Result Comparison
	JSON Result Comparison
	CSV/TSV Result Comparison
	Turtle Result Comparison
	Query Evaluation Tests and Result Format Tests
	Syntax Tests
	Update Evaluation Tests
	Protocol Tests
	Service Description Tests

	Visualizing Differences in Results
	Challenges

	Website
	GitHub Workflow integration

	Results
	Test Suite Execution
	Test Coverage
	Success Rate
	Error Identification

	Visualization Website Development
	Clear Highlighting of Differences
	Analysis of a single test suite run
	Comparison of a two test suite runs

	GitHub Workflow Integration

	Conclusion
	Limitations
	Test Suite Execution and Coverage
	Specificity to QLever
	GitHub Workflow Integration

	Future work
	Enhancing Test Suite Execution and Coverage
	Broadening Applicability Beyond QLever
	Refining GitHub Workflow Integration

	Bibliography

