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Transfer Patterns [1] with partitioning

Transfer Patterns = sequences of transfers on optimal routes
Freiburg → Zürich: {[Freiburg, Zürich], [Freiburg, Basel, Zürich]}

Compute Transfer Patterns between

stations of the same partition

border stations b(Cx ) and b(Cy )

⇒ reduced runtime
⇒ reduced space

Query “A → B”:
A → b(CA)→ b(CB)→ B
⇒ little slower query times
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Goal

Partition the stations of a public transit network, such that

partitions are small

most traffic lies inside the partitions
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Dataset

schedule of Deutsche Bahn (2015)

only local traffic (no ICEs and ICs)

modelled as undirected weighted graph

stations → nodes

connections → edges

frequencies → edge weights

heuristical footpaths (distance ≤ 400 m; weight 200,000)



Introduction Data model Algorithms Evaluation Appendix

K-means-clustering [2]

uses only geographic data

Algorithm 1 k-means-clustering

initialize
while assignments change do

update assignments
update means

end while
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Merging algorithm [3]

hierarchical

merges neighboured partitions

hyperparameter k = number of partitions

hyperparameter U = upper bound partition size

order distinguished by a utility function

f (u, v) = 1
s(u)·s(v) · (

w(u,v)√
s(u)

+ w(u,v)√
s(v)

)

s(u) = size of u
s(v) = size of v
w(u, v) = sum of edge weights between u and v
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METIS [4]

graph partitioning framework

state of the art

can be downloaded 1

hyperparameter k = number of partitions

three phases (next slide)

1http://glaros.dtc.umn.edu/gkhome/metis/metis/download

http://glaros.dtc.umn.edu/gkhome/metis/metis/download
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METIS

Figure : The three phases of METIS (Source: [4])
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PUNCH [5]

“partitioning using natural cut heuristics”

hyperparameter U = upper bound partition size

two phases

filtering phase
assembly phase
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PUNCH

Filtering phase: contract regions that are separated by small cuts

main graph

1

< U

bridge
⇒

main graph

≤ U
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PUNCH

Assembly phase

initial solution: run merging algorithm on filtered graph

local optimization:

uncontract small regions
rerun merging algorithm
take better solution
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Comparison: cut size

maximum partition size
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Figure : Cut size over maximum partition size.
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Comparison: cut edges

maximum partition size
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Figure : Cut edges over maximum partition size.
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PUNCH - unweighted graph

main graph
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PUNCH - weighted graph
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PUNCH - weighted graph
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The gain of footpaths

merging algorithm with U=4,000

Figure : no footpaths

Figure : with footpaths
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The gain of footpaths

merging algorithm with U=4,000

Figure : no footpaths Figure : with footpaths
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Conclusions

K-means better than expected ⇒ traffic geographically
clustered

merging algorithm and METIS produce good results

arbitrary utility functions can be used with the merging
algorithm

PUNCH: filtering phase must use edge weights

footpaths prohibit geographically overlapping partitions
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Questions?

Thank you for your attention!



Introduction Data model Algorithms Evaluation Appendix

Bibliography

H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger, C. Harrelson, V. Raychev, and F. Viger, “Fast routing in

very large public transportation networks using transfer patterns,” in Algorithms–ESA 2010. Springer,
2010, pp. 290–301.

J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proceedings

of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, no. 14. Oakland, CA,
USA., 1967, pp. 281–297.

M. G. van der Horst, “Optimal route planning for car navigation systems,” Master’s thesis, Technische

Universitaet Eindhoven, 2003.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,”

SIAM Journal on scientific Computing, vol. 20, no. 1, pp. 359–392, 1998.

D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck, “Graph partitioning with natural cuts,” in

Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International. IEEE, 2011, pp.
1135–1146.



Introduction Data model Algorithms Evaluation Appendix

Cut size with k-means
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Figure : Cut size over maximum partition size.
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METIS

unbalancing ratio r

s(p) ≤ r · N
k
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Figure : Maximum partition size over number of partitions.
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METIS

number of partitions
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PUNCH

Filtering phase, pass 1: contract bridge-separated regions
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PUNCH

Filtering phase, pass 2: contract simple paths
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PUNCH

Filtering phase, pass 3: contract two-cut-separated regions
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PUNCH

Filtering phase, pass 4: contract “natural cut”-separated regions

Figure : Finding a “natural cut” (Source: [5])
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k-means merging PUNCH METIS

partitions 181 181 176 181
max. part. size 4,015 1,873 1,975 3,132
cut size 154.7·106 42.8·106 496.4·106 45.5·106

cut edges 12,273 9,497 13,917 8,562
cut edges (%) 2.2 1.7 2.5 1.6
border nodes 15,564 12,954 17,669 12,010
border nodes (%) 6.2 5.2 7.1 4.8
runtime (s) 53.8 2.9 118.3 0.3

Table : Results of the four algorithms with about 181 partitions.
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