Partitioning of Public Transit Networks [Bachelor's thesis]

Matthias Hertel

Albert-Ludwigs-Universität Freiburg

11.09.2015

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	0000000	000000	
Contents				

1 Introduction

- Motivation
- Goal

2 Data model

- 3 Algorithms
 - K-means
 - Merging algorithm
 - METIS
 - PUNCH

Transfer Patterns = sequences of transfers on optimal routes Freiburg \rightarrow Zürich: {[Freiburg, Zürich], [Freiburg, Basel, Zürich]}

Transfer Patterns = sequences of transfers on optimal routes Freiburg \rightarrow Zürich: {[Freiburg, Zürich], [Freiburg, Basel, Zürich]}

Compute Transfer Patterns between

- stations of the same partition
- border stations $b(C_x)$ and $b(C_y)$
- \Rightarrow reduced runtime
- $\Rightarrow \mathsf{reduced} \ \mathsf{space}$

Transfer Patterns = sequences of transfers on optimal routes Freiburg \rightarrow Zürich: {[Freiburg, Zürich], [Freiburg, Basel, Zürich]}

Compute Transfer Patterns between

- stations of the same partition
- border stations $b(C_x)$ and $b(C_y)$
- \Rightarrow reduced runtime
- $\Rightarrow \mathsf{reduced} \ \mathsf{space}$

Query "A \rightarrow B": A $\rightarrow b(C_A) \rightarrow b(C_B) \rightarrow$ B \Rightarrow little slower query times

Introduction	Data model	Algorithms	Evaluation	Appendix
○●	O	0000000	000000	
Goal				

Partition the stations of a public transit network, such that

- partitions are small
- most traffic lies inside the partitions

Introduction	Data model	Algorithms	Evaluation	Appendix
00	●	0000000	000000	
Dataset				

- schedule of Deutsche Bahn (2015)
- only local traffic (no ICEs and ICs)
- modelled as undirected weighted graph
- $\bullet \ \text{stations} \rightarrow \text{nodes}$
- $\bullet \ \ {\rm connections} \to {\rm edges}$
- ${\ \bullet\ }$ frequencies \rightarrow edge weights
- heuristical footpaths (distance \leq 400 m; weight 200,000)

uses only geographic data

Algorithm 1 k-means-clustering

initialize while assignments change do update assignments update means end while

- hierarchical
- merges neighboured partitions
- hyperparameter k = number of partitions
- hyperparameter U = upper bound partition size
- order distinguished by a utility function

- hierarchical
- merges neighboured partitions
- hyperparameter k = number of partitions
- hyperparameter U = upper bound partition size
- order distinguished by a utility function

$$f(u,v) = \frac{1}{s(u)\cdot s(v)} \cdot \left(\frac{w(u,v)}{\sqrt{s(u)}} + \frac{w(u,v)}{\sqrt{s(v)}}\right)$$

$$egin{aligned} s(u) &= ext{size of u} \ s(v) &= ext{size of v} \ w(u,v) &= ext{sum of edge weights between u and v} \end{aligned}$$

Introduction 00	Data model O	Algorithms	Evaluation 000000	Appendix
METIS [4]				

- graph partitioning framework
- state of the art
- ullet can be downloaded 1
- hyperparameter k = number of partitions
- three phases (next slide)

¹http://glaros.dtc.umn.edu/gkhome/metis/metis/download

Introduction 00	Data model O	Algorithms	Evaluation 000000	Appendix

Figure : The three phases of METIS (Source: [4])

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	0000000	000000	
PUNCH [5]				

- "partitioning using natural cut heuristics"
- hyperparameter U = upper bound partition size
- two phases
 - filtering phase
 - assembly phase

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	○○○○○●○	000000	
PUNCH				

Filtering phase: contract regions that are separated by small cuts

Introduction	Data model	Algorithms	Evaluation	Appendix
00	o	000000	000000	
PLINCH				

Assembly phase

- initial solution: run merging algorithm on filtered graph
- Iocal optimization:
 - uncontract small regions
 - rerun merging algorithm
 - take better solution

Figure : Cut size over maximum partition size.

Figure : Cut edges over maximum partition size.

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	0000000	000000	
PUNCH -	unweighted g	raph		

 \Rightarrow minimum cut preserved

	woighted gran	sh		
		000000	000000	
Introduction	Data model	Algorithms	Evaluation	Appendix

PUNCH - weighted graph

 \Rightarrow minimum cut **not** preserved

merging algorithm with U=4,000

Figure : no footpaths

merging algorithm with U=4,000

Figure : no footpaths

Figure : with footpaths

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	0000000	00000●	
Conclusions				

 $\bullet~$ K-means better than expected $\Rightarrow~$ traffic geographically clustered

Introduction	Data model	Algorithms	Evaluation	Appendix
00	0	0000000	00000●	
Conclusions				

- $\bullet~$ K-means better than expected \Rightarrow traffic geographically clustered
- merging algorithm and METIS produce good results

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	0000000	00000●	
Conclusions				

- $\bullet~$ K-means better than expected \Rightarrow traffic geographically clustered
- merging algorithm and METIS produce good results
- arbitrary utility functions can be used with the merging algorithm

Introduction	Data model	Algorithms	Evaluation	Appendix
00	0	0000000	00000●	
Conclusions				

- K-means better than expected \Rightarrow traffic geographically clustered
- merging algorithm and METIS produce good results
- arbitrary utility functions can be used with the merging algorithm
- PUNCH: filtering phase must use edge weights

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	0000000	00000●	
Conclusions				

- K-means better than expected \Rightarrow traffic geographically clustered
- merging algorithm and METIS produce good results
- arbitrary utility functions can be used with the merging algorithm
- PUNCH: filtering phase must use edge weights
- footpaths prohibit geographically overlapping partitions

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	0000000	000000	
Questions?				

Thank you for your attention!

Introduction	Data model	Algorithms	Evaluation	Appendix
00	0	0000000	000000	
Bibliography				

-	-	
	- 6	s
	_	

H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger, C. Harrelson, V. Raychev, and F. Viger, "Fast routing in very large public transportation networks using transfer patterns," in *Algorithms–ESA 2010*. Springer, 2010, pp. 290–301.

J. MacQueen, "Some methods for classification and analysis of multivariate observations," in *Proceedings* of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, no. 14. Oakland, CA, USA., 1967, pp. 281–297.

M. G. van der Horst, "Optimal route planning for car navigation systems," Master's thesis, Technische Universitaet Eindhoven, 2003.

G. Karypis and V. Kumar, "A fast and high quality multilevel scheme for partitioning irregular graphs," SIAM Journal on scientific Computing, vol. 20, no. 1, pp. 359–392, 1998.

D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck, "Graph partitioning with natural cuts," in *Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International.* IEEE, 2011, pp. 1135–1146.

Figure : Cut size over maximum partition size.

Introduction	Data model	Algorithms	Evaluation	Appendix
00	o	0000000	000000	
METIS				

unbalancing ratio r

Figure : Maximum partition size over number of partitions.

Introduction	Data model	Algorithms	Evaluation	Appendix
00	0	0000000	000000	
METIS				

Figure : Cut size over number of partitions.

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	0000000	000000	
PUNCH				

Filtering phase, pass 1: contract bridge-separated regions

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	0000000	000000	
PUNCH				

Filtering phase, pass 2: contract simple paths

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	0000000	000000	
PUNCH				

Introduction	Data model	Algorithms	Evaluation	Appendix
00	O	0000000	000000	
PUNCH				

Filtering phase, pass 4: contract "natural cut"-separated regions

Figure : Finding a "natural cut" (Source: [5])

Introduction	Data model	Algorithms	Appendix

	k-means	merging	PUNCH	METIS
partitions	181	181	176	181
max. part. size	4,015	1,873	1,975	3,132
cut size	154.7·10 ⁶	42.8·10 ⁶	496.4·10 ⁶	45.5·10 ⁶
cut edges	12,273	9,497	13,917	8,562
cut edges (%)	2.2	1.7	2.5	1.6
border nodes	15,564	12,954	17,669	12,010
border nodes (%)	6.2	5.2	7.1	4.8
runtime (s)	53.8	2.9	118.3	0.3

Table : Results of the four algorithms with about 181 partitions.