Improved Dehyphenation of Line Breaks for PDF Text Extraction

Examiner: Prof. Dr. Hannah Bast

Adviser: Claudius Korzen

Marie Innomination of the particular in the part

Albert-Ludwigs-Universität Freiburg

Mari Sverresdatter Hernæs

Department of Computer Science
Chair of Algorithms and Data Structures

Problem 1/3

Motivation

- PDF only stores information about individual characters
- This makes it difficult to extract text correctly

In this paper, we describe our approach how to construct a high-quality benchmark from both TeX and PDF data. We create a benchmark from 12,000 scientific articles.

Problem

- Words split between two lines are two separate parts
- How to assemble these parts?

Problem 2/3

- There are four approaches
 - Do not merge the parts
 bench- mark, high- quality
 - Always merge the parts without a hyphen benchmark, highquality
 - 3. Always merge the parts with a hyphen bench-mark, **high-quality**
 - 4. Merge the parts with or without a hyphen depending on whether the actual word has a hyphen or not benchmark, high-quality

Problem 3/3

Problem definition

- Given a sequence of characters, ordered by left-to-right reading order, with a line-break hyphen on position i
 - $S = [c_1, c_2,...,c_{i-1},...,c_{i+1},...,c_n]$
- Decide if this hyphen should be deleted or kept...
 - $S^* = [c_1, c_{2,...,}c_{i-1}, c_{i+1,...,}c_n] \lor S^* = [c_1, c_{2,...,}c_{i-1,-..,}c_{i+1,...,}c_n]$
- ...so that S* is identical to the expected output

Questions?

Solution 1/9

- Three approaches
 - Vocabulary-based baseline
 - Logistic regression
 - Language model

Solution 2/9

- First approach, vocabulary-based baseline
 - Look up the word parts with and without a hyphen
 - and choose the most common word
 - for S = [e,l,e,-,p,h,a,n,t], look up 'ele-phant' and 'elephant'
 'ele-phant' is not a word remove the hyphen!
 - Works well for most cases.. but not for:
 - Misspellings (such as elhe-phant)
 - Plural or conjugated words (elephants, running), unless these are explicitly added to the vocabulary
 - Not always for multiple correct spellings (e-mail, email)

- First approach, vocabulary-based baseline
 - Not always for words with two different meanings

motion planning and control.

Several simulation cases are set up to evaluate the effectiveness of the LSM method. In Section 2, the concept of LSM is introduced and the procedure to obtain the LSM_m is given. Based on a mechanical model shown in Section 3 as well as the gait and computed leg-end forces described in Section 4, simulation results are obtained in Section 5. Four conditions are considered: walking on flat terrain without or with external forces; walking on slope with or without external forces. Conclusions are given in Section 6.

2 Leg-end Supporting Moment (LSM)

2.1 The Concept of LSM

As shown in Fig. 1, during the walk of a n-legged robot, when legs i and u, v are the supporting legs, the moment generated by the leg-ends around the line uv can be expressed as:

$$M_{uv} = \sum_{\substack{j \le \alpha \\ j \neq uu \neq v_{f}}} \left\{ \left[\left(\frac{\left| \boldsymbol{r}_{iu} \right| \left| \boldsymbol{r}_{iv} \right| \sin \alpha}{\left| \boldsymbol{r}_{iv} - \boldsymbol{r}_{iv} \right|} \hat{\boldsymbol{r}}_{i \perp uv} \right) \times \boldsymbol{F}_{i} \right] \cdot \hat{\boldsymbol{r}}_{uv} \right\}. \tag{3}$$

the sum of the generaliz acceleration forces of th in Eqs. (3-4) are the force Furthermore, the relation the LSM method is the external forces and acceleration that the sternal forces are general forces and accelerations.

by the forces acting on leg-ends (F_i, F_w, F_v) . As mentioned in reference [6], (M, F) can be obtained by using the legend forces, which can be sensed by the force sensors mounted on leg-ends. But in the SLM method, the leg-end forces are directly used to compute the stability margin. It can be then concluded that the LSM method is more direct and practical than the TSM method.

2.2 Computation of LSM

Four coordinate frames are defined in Fig. 1 for modeling purposes: the *Terrain Fixed Frame* (TFF) (O_t, X_t, Y_t, Z_t) , the *Body-Terrain Frame* (BTF) (O_b, X_b, Y_b, Z_b) , the *Body Fixed Frame* (BFF) (O_b, X_b, Y_b, Z_b) and the *Hip-Body frame* (HBF) $(O_{t0}, X_{t0}, Y_{t0}, Z_{t0})$. The TFF is fixed on the ground. The orientation of the BTF, which is a point-attached frame, is always the same as the TFF while the motion of the BTF is always translation. The origin of the

- the sentence should be "...can be obtained using the legend forces...."
- not "...can be obtained using the legend forces..."

Solution 4/9

- Second approach, logistic regression
 - Goal: recognise misspellings, conjugations and unknown words
 - Statistical classification: "learn" to recognise hyphenated words
 For example, 'high' is often followed by a hyphen
 (but not always, such as in 'higher')
 - Features for the prefix (before the hyphen) and for the suffix (after the hyphen)
 - Three last bigrams of the prefix and three first of the suffix high- quality, bigrams: hi,ig,gh, qu,ua,al

Solution 5/9

- Third approach, bi-LSTM Language Model
 - bidirectional Long short-term memory (bi-LSTM) Network
 - Can learn to connect information in (for example) a sentence and make predictions, despite large distances to the necessary information.

"I grew up in Norway.... I speak fluent Norwegian"

- We use a bi-LSTM on the character level
- Designed by Matthias Hertel for tokenization repair (a special type of spelling correction)
- Finds the most probable character (not word) at each position

Solution 6/9

- Third approach, bi-LSTM Language Model
 - Procedure:
 - Make two sentences; one with the line break hyphen, one without
 - 1)...to make a high-quality...2)...to make a highquality...
 - Predict the two sentences separately
 - Sum up the probabilities of (each character in) 'highquality' in the first sentence and 'highquality' in the second sentence

Solution 7/9

- Techniques, data sets
 - Sentences from ClueWeb12, Ontonotes 5.0 and Wikipedia
 - We inserted hyphens with the TeX hyphenation procedure
 - Roughly one or two new hyphens per sentence
 For example: "we de scribe a high-quality bench mark" for "we describe a high-quality benchmark"

<hyphenated sentence> TAB <original sentence>

Hyphenated data set	ClueWeb12 Large	ClueWeb12 Small	Ontonotes Release 5.0	Wikipedia Extract
size	104GB	152MB	23MB	63MB
sentences	2·370,958,448	2.529,933	2·117,450	-
words	2·10,182,157,839	2·14,553,968	2·2,234,528	2.5,294,052
new hyphens	543,538,945	776,700	126,028	300,009

Solution 8/9

UNI FREIBURG

- Techniques, vocabulary
 - We needed a good vocabulary for the baseline
 - Solution: take all words from either ClueWeb12 or Ontonotes
 - And register their frequencies
 - Problem: many words have numbers
 For example: 17-years-old, 19th-century
 - But we wanted reasonable frequency scores
 - Therefore, we replaced all numbers with X (chi)

Word	Frequency
the	576565079
and	289254192
of	277112975
in	228629057
to	210044965
a	169434632
for	88935175
is	85552512
business	4317176
XXth	4286474
team	4281688
XXXXs	1604329
valley	1600795

Solution 9/9

- Techniques, vocabulary
 - There was an obvious risk of vocabulary bias
 - We were going to evaluate the baseline on ClueWeb12, with a vocabulary made from the same sentences
 - Another collection of words: from IMDB (Maas et Al.'s Large Movie Review Dataset)
 - This vocabulary did **not** include words with numbers

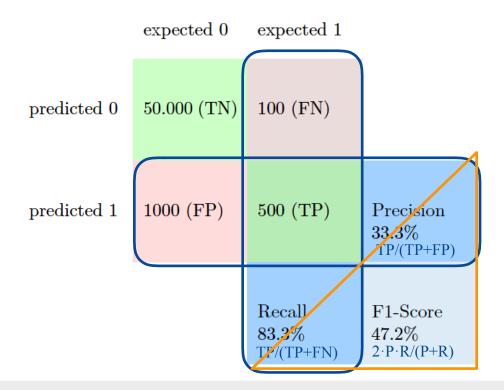
Questions?

Evaluation 1/5

Setup, ground truth

- We looked at the words with **new** hyphens in the hyphenated sentence (bench mark)
- Ground truth: the word in the original sentence (benchmark)
- Notice: nothing guaranteed that the ground truth did not contain any unusual spellings or misspellings.
- Also: there were many words with several valid spellings
 For example: e-mail / email

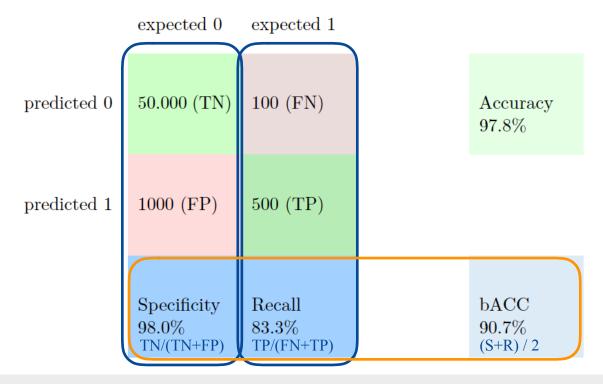
- Setup, metrics
 - Common evaluation metrics: Precison, Recall, F1 score
 - But we needed good positive and negative classifications



Evaluation 3/5

Setup, metrics

We used: Accuracy, Recall (accuracy for expected hyphen),
 Specificity (accuracy for expected non-hyphen), and
 balanced Accuracy (bACC)



Evaluation 4/5

Main results, ClueWeb12 Small776,700 hyphenated words. 13,112 expected hyphen

Model	Version	Accuracy	Specificity	Recall	bACC
Baseline	Vocabulary Ontonotes	98.79%	99.91%	33.83%	66.87%
Logistic regression	11.64% expected hyphen	98.75%	98.98%	85.78%	92.38%
bi-LSTM	-	99.25%	99.56%	80.71%	90.14%

Evaluation 5/5

Main results, "maximum achievable result"

Model	Dataset	Accuracy	Specificity	Recall	bACC
Baseline	ClueWeb12 Large	99.66%	99.94%	83.55%	91.74%
Logistic regression	Wikipedia Extract	99.52%	99.60%	95.01%	97.31%

Typical errors:

Several valid spellings: email / e-mail, southeast / south-east,

nonprofit / non-profit

Abbreviations: ADAC, APS-C

Words in camelCase: LocalWiki

Thank you for your attention

Liang's Hyphenation Algorithm

- Odd numbers: hyphen
- Even number: no hyphen

```
. h y p h e n a t e.
h e 2 n
h e n a 4
h e n 5 a t
h y 3 p h
1 n a
n 2 a t
n 4 t e.
h y 3 p h e 2 n 5 a 4 t e.
h y 7 p h e n a t e
```


 Top 10 mistakes for baseline with ClueWeb vocabulary on ClueWeb12 Large 1/2

False negative cases (predicted merge, expected hyphen):

frequency	mistake	confidence	score
66522	e·mail	0.73	
35007	wal·mart	0.52	
18053	long [·] time	0.61	
14941	on·line	0.97	
12647	plug [·] in	0.55	
12503	south east	0.89	
11508	line [·] up	0.7	
9920	north west	0.92	
9682	north east	0.89	
8278	south west	0.92	

Top 10 mistakes for baseline with ClueWeb vocabulary on ClueWeb12 Large 2/2

False positive cases (predicted hyphen, expected merge):

frequency	mistake	confidence	score
15057	non profit	0.53	
12649	best ⁻ selling	0.59	
6483	post·war	0.56	
5374	first-hand	0.54	
4279	non·stop	0.6	
4058	on·site	0.68	
3607	long [·] standing	0.6	
3487	semi [·] final	0.53	
3114	re-election	0.7	
3019	spider man	0.72	

Top 10 correct for baseline with ClueWeb vocabulary on ClueWeb12 Large 1/2

True positive cases (predicted hyphen, expected hyphen):

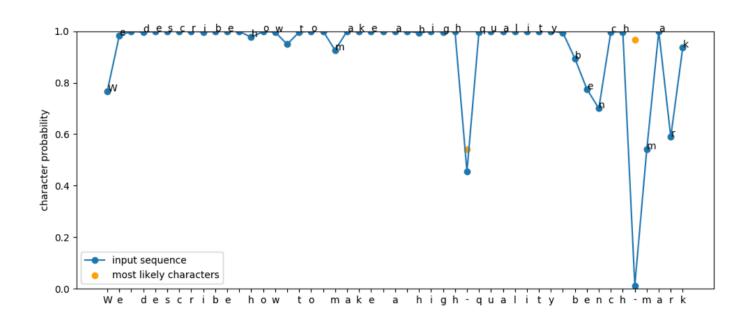
frequency	mistake	confidence score
56985	so [·] called	1.0
55825	long-term	0.99
53386	well [·] known	0.99
49720	wi [·] fi	0.59
31252	full:time	0.95
27220	blu ⁻ ray	0.93
26802	real ⁻ time	0.92
26410	built [·] in	0.99
26297	all·star	0.98
24772	all-time	0.99

Top 10 correct for baseline with ClueWeb vocabulary on ClueWeb12 Large 2/2

True negative cases (predicted merge, expected merge):

	,		<i>)</i> -
frequency	mistake	confidence	score
2878874	oth er	1.0	
1807802	af-ter	1.0	
1714932	peo ⁻ ple	1.0	
1687206	unit ⁻ ed	1.0	
1156943	be-fore	1.0	
1069576	be ⁻ ing	1.0	
990356	be-tween	1.0	
982421	be·cause	1.0	
908616	coun ⁻ try	1.0	
906160	dur ⁻ ing	1.0	

second approach, bi-LSTM Language Model



Backup slides

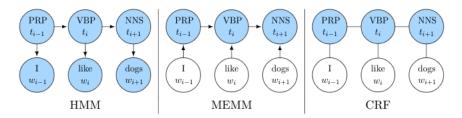


Figure 3.5: A graphical representation of the sequence models This figure shows the difference between HMM, MEMM and linear-chain CRF. The first two models are Bayesian networks, with arrows indicating conditional dependencies; the third is an undirected graphical model. A filled circle indicates a variable generated by the model.

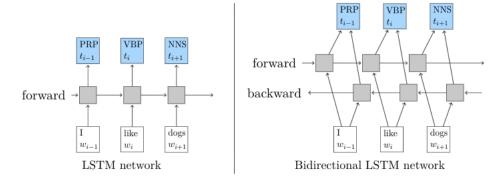


Figure 3.6: **LSTM Networks**. This example, inspired by Huang et Al. [28], shows a unidirectional and a bidirectional LSTM. Each grey box represents a LSTM memory cell. These cells can make use of long-range dependencies in the data.

Model	Version	Accuracy	Specificity	Recall	bACC
Baseline	Vocabulary Ontonotes	98.79%	99.91%	33.83%	66.87%
Logistic regression	11.64% expected hyphen	98.75%	98.98%	85.78%	92.38%
Logistic regression	4.42% expected hyphen	99.14%	99.55%	75.38%	87.47%
bi-LSTM	-	99.25%	99.56%	80.71%	90.14%