
Bachelor Thesis

Researcher Homepage Identification
and Name Extraction

Application of Machine Learning with Multiple
Views

Marc Ingold

Examiner : Prof. Dr. Hannah Bast

Adviser : Prof. Dr. Hannah Bast

Albert Ludwigs University, Freiburg im Breisgau
Faculty of Engineering

Department of Computer Science
Chair of Algorithms and Data Structures

July 26, 2019

Writing Period

15.05.2019 - 15.08.2019

Examiner

Prof. Dr. Hannah Bast

Adviser

Prof. Dr. Hannah Bast

Declaration

I hereby declare, that I am the sole author and composer of my thesis and
that no other sources or learning aids, other than those listed, have been used.
Furthermore, I declare that I have acknowledged the work of others by providing
detailed references of said work. I hereby also declare, that my thesis has not
been prepared for another examination or assignment, either wholly or excerpts
thereof.

Place, Date Signature

Abstract

The topic of this thesis is the implementation and evaluation of a machine learning
approach for the information extraction from researcher homepages. The key aspects
in this work are the data acquisition from the non-profit organization Common
Crawl and the development and assessment of two machine learning models. A
model for the identification of researcher homepages from a dataset of arbitrary
web documents and a model for the extraction of information from the researchers
homepage. Exemplary, the researchers name was extracted. The algorithm choice
for both models was restricted to methods that are fast to train and straight forward
to interpret such as the Random Forest and linear models with Stochastic Gradient
Descent learning. The classification of the web document type was done using a
multi-view approach. On the basis of two disjoint feature sets, namely the URL
surface patterns and the web page content features, two machine learning models
were trained. The final prediction was obtained by combining both of the models.
A F1 score of 68% was achieved for the identification of researcher homepages. The
extraction of the researchers name was done by extending a simple heuristic with
machine learning features. An increase of 6 percentage points in F1 score was
achieved in comparison to the heuristic, resulting in a F1 score of 94% for the final
researcher name extraction model.

I

Zusammenfassung

In dieser Thesis wird ein Ansatz zur Extraktion von Informationen von
Wissenschaftler Homepages mittels maschinellem Lernen entwickelt und evaluiert.

Hierzu wurden zunächst geeignete Datensätze von Common Crawl heruntergeladen
und vorverarbeitet. Auf der Basis dieser Daten wurden zwei machine learning Modelle

entwickelt, evaluiert und bewertet. Das erste Modell dient der Identifizierung von
Wissenschaftler Homepages und basiert auf dem maschinellen Lernen mit mehreren

Sichten (Multi-View Learning). Das zweite Modell dient der Extraktion von
Informationen von den gefunden Homepages. Exemplarisch wurde der Name des

Wissenschaftlers extrahiert. Hierzu wurde eine einfache Heuristik durch maschinelles
Lernen erweitert. Die untersuchten machine learning Algorithmen sind Random Forest
und lineare Modelle mit Optimierung durch stochastischen Gradienten-Abstieg. Diese
Algorithmen lassen sich schnell trainieren und leichter interpretieren als komplexere

Methoden. Bei der Identifizierung der Wissenschaftler Homepages wurde ein F1 Wert
von 68% erreicht. Bei der Extraktion des Namens wurde ein F1 Wert von 94% erreicht.

Dies ist eine Verbesserung von 6 Prozentpunkten im Vergleich zu der Heuristik.

III

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Implementation and Main Aspects 4

2 Related Work 7

3 Theoretical Foundation 8
3.1 Supervised Machine Learning . 8
3.2 Preprocessing Natural Language Data for Machine Learning . . 10
3.3 Vectorization of Text Data with Tfidf 11
3.4 Random Forest Classifier . 12
3.5 Stochastic Gradient Descent Training 15
3.6 Imbalanced Class Labels . 19
3.7 Metrics . 20

4 Web Page Data Source 22

5 Web Page Classification 23
5.1 Sampling . 24

5.1.1 Training Data . 24
5.1.2 Test Data . 25

5.2 URL Based Classifier . 25
5.2.1 URL Surface Patterns . 26
5.2.2 Machine Learning Method - Random Forest Classifier . . 27

5.3 Page Content Based Classifier . 28
5.3.1 Page Content and Structural Features 28
5.3.2 Machine Learning Method - Support Vector Machine . . . 29

5.4 Results . 29
5.5 Evaluation and Discussion . 30

5.5.1 URL Model Features: Evaluation 30
5.5.2 Page Content Features: Evaluation 32
5.5.3 Improvements of the Web Page Classification Models . . . 34
5.5.4 Combined Model: Prediction Probabilities 37

6 Homepage Owner Identification 40
6.1 Named Entity Recognition Model Comparison 40
6.2 Sampling and Preprocessing . 41
6.3 Results . 43
6.4 Evaluation and Discussion . 44

7 Runtime 47

V

8 Conclusion 48
8.1 Summary . 48
8.2 Future Work . 48

9 Acknowledgments 50

10 References 51

VI

List of Tables

1 Example URLs with Extracted Features 26
2 Results of the Web Page Classification 30
3 Selection of Web Page Classification Errors 35
4 Example Sentences for the NER Model Comparison 41
5 Results of the NER Model Comparison 41
6 Results of the Homepage Owner Identification 43

List of Figures

1 A Typical Researcher Homepage 2
2 An overview of the workflow and the implementations produced

during the development process. 5
3 Supervised Machine Learning Development Cycle 9
4 Random Forest Classification . 13
5 Information Gain in Random Forest Classification 14
6 Iterative Minimization with Gradient Descent 17
7 Support Vector Classifier . 18
8 Term Frequency for URL features 31
9 Feature Importance for the URL Based Model 32
10 Term Frequency and Feature Importance for the Page Content

Features . 33
11 Common Error of the Page Content Based Model 36
12 Prediction Probabilities for the Combined Homepage Classifica-

tion Model . 38
13 Feature Importance for the Researcher Identification Model . . . 43
14 Partial Dependency for the "number of name parts" Feature . . . 44
15 Results of the Homepage Owner Identification by Confidence

Interval . 45

VII

1. Introduction

Since the early stages of the internet as a research project at CERN, it became
the largest collection of unstructured data and the main means of information
exchange. It is reported that in 2018 the web consisted of around 200 million
active websites and 7,5 times more inactive websites [1]. One of the challenges
regarding the internet from a computer science perspective is the automated
extraction of information from this massive collection of unstructured data (e.g.
images, videos and natural language texts).

In this work, the application of a machine learning approach for the identifi-
cation of researcher homepages and the extraction of the researcher’s name was
investigated. The homepage identification was strongly inspired by Gollapalli
et al. [2, 3]. They utilise two separate views on the web page data, the page
content and the URL surface patterns to identify researcher homepages in a
binary classification manner. For each of the views, a separate machine learning
model was trained and evaluated. The prediction, if a web document is a
homepage or not was then made by a combination of the two models. The
homepage owner identification was also formulated as a binary classification
task. A machine learning classifier was trained, that estimates the probability
for each name on the page to be the name of the homepage owner.

A pipeline was developed, which covers the initial data acquisition, the
preparation of the data to be usable in the machine learning algorithms and the
application of the models. The result of this pipeline was a dataset of predicted
homepages with the predicted homepage owner and university for a given list
of web page URLs or domains.

The main focus of this thesis is the presentation of the development pro-
cess and the assessment of the researcher homepage and homepage owner
identification pipeline. Following the introductory chapters (1. Introduction
and 2. Related Work), the theoretical foundations are explained in chapter
3. In chapter 4 the acquisition of html data from the non profit organization
Common Crawl [4] is described. In chapters 5 and 6 the applied data sampling,
feature extraction, used machine learning algorithms and results of the machine
learning models for the identification of researcher homepages and homepage
owners are presented, analysed and evaluated. Chapter 7 gives an idea of the
expected runtime of the pipeline. The work is concluded in chapter 8 with the
overall verdict and the outline of possible future work.

1.1. Problem Description

When extracting information from web pages with a machine learning approach,
three main tasks have to be solved. Firstly, the web page data has to be obtained.
Secondly, the web pages of interest have to be identified. Thirdly, the desired
information has to be extracted.

1

1 INTRODUCTION

Figure 1: Exemplary researcher homepage. Elements of the rendered web page considered
fruitful for the identification of homepages are marked in blue.

The data acquisition task can be described as follows: For a given list of
URLs or domains, find, download and filter the html data for each URL or all
the web pages in that domain. With the use of existing datasets, bibliographic
databases and manual labour, generate a dataset which is usable in supervised
machine learning algorithms, i.e. the data contains labelled homepage examples
and counter examples. After the data acquisition, the html data typically has to
be transformed to a representation that is favourable for the machine learning
task. For each web page, a set of properties was extracted from the html,
which was assumed to make the different types of web pages separable. These
properties are called features. For web pages there are many possible feature
types and feature combinations.

Lets consider the rendered homepage as it is displayed in the web browser.
Figure 1 illustrates a typical researcher homepage. Key page elements, that
could support the classification of the web page type, can be easily found.

2

1.1 Problem Description

The text in the title area or headings of the page usually contain the academic
degree and the name of the person. Often times there is a portrait and the
contact details of the researcher. Additionally, text segments about the area of
research, the career path and publications can be frequently found on these
homepages. The range of different combinations of those page elements in
different homepages is quite large. In some homepages only the name and
email address of the researcher are displayed; in others the information about
the researcher is distributed over multiple pages. Web documents, furthermore,
have special properties, that distinguish them from text documents. Web
pages are semi-structured documents. Semi-structured means that there is
no fixed data structure, which applies to each type of document. The web
document itself contains part of its structuring information in the hypertext
markup language code. Tags with specific meanings (e.g. title, heading, link,
image, table etc.) augment the content elements in the page. Some of the tags
define how the content should be rendered by the browser, whereas others
define the behaviour of page elements on user interaction. Most of the tags
are not required for a valid html page and the combination and order of tags
is arbitrary. Also, the visual appearance and content displayed in the browser
can be influenced by Cascading Style Sheets (Css) and Java Script functions.
Lastly, web documents are directly interconnected with other web documents
through links or indirectly through its position in the domain. In addition to the
different feature sets, which could be directly extracted from the web document,
there is information about the web page on the surrounding web pages and the
URL. Those features could also be used for a web page classification.

So, there are on-page features like the text content, which might or might not
be augmented with the meaning of the accompanying tag. There is the rendered
image of the web page and the images contained in the web page. There are
the links leading to internal or external web documents etc. Then, there are
features from other web documents in the vicinity of the page, which could be
useful, if the web document itself does not contain enough information.

The decision which features should be utilised together with the selection
of the machine learning algorithm are basic steps in any supervised machine
learning approach. Generally, they are solved iteratively through experimen-
tation. For web documents this general approach was supplemented slightly.
The diversity of feature types makes web document classification a natural
contender for multi-view learning approaches. In multi-view learning, multiple
disjoint sets of features about the same object are used. Each view is modelled
separately. The URL, the text content, the rendered web page image etc. each
are different views of the same web document. Models trained on the different
views are consolidated in the end to produce the prediction. The prediction
result of the developed model is the probability for each web document to be a
researcher homepage.

With the developed data processing pipeline and machine learning model,

3

1 INTRODUCTION

homepages can be identified in a dataset of previously unseen web documents.
Then, the desired information from the predicted homepages can be extracted.
In this work, the researchers name was extracted, which was also done using
a supervised machine learning approach. Therefore, the core steps for any
supervised machine learning method, namely the data acquisition, the feature
extraction and selection, and the model training and evaluation, are also applied
here.

The main tasks for the homepage owner identification are the extraction
of person names from the text content of the homepage and the selection of
the correct homepage owner name from that list of names. The first task is
a named entity recognition (NER) problem. In NER, terms or short phrases,
that have a meaning in addition to the sole word meaning and that appear in a
unique context, like person names, geo-political entities, organizations, times
and dates, monetary values etc. are identified and categorized. The selection
of the homepage owner from the extracted list of person names for each web
document was achieved with a binary classifier. For the training of the model,
simple features were extracted for each person name. The prediction result is
the probability for each name to be the homepage owner.

1.2. Implementation and Main Aspects

In this section the implementations and main aspects of this thesis are described.
The implementations were mainly written in Python and the following criteria
were applied: The steps of the homepage and homepage owner identification
pipeline are loosely coupled. The data transfer between the steps was done
using flat files. The composition of the components was managed with make
files. The overall code base was wrapped in a docker container and unit testing
was applied.

Figure 2 shows the workflow during the development process. The data
was obtained from Common Crawl [4]. Common Crawl searches the web on a
monthly basis and makes the obtained web page data and meta data publicly
available. Machine learning features were extracted from the downloaded and
filtered data. The resulting base dataset contained text and numeric features.
Different subsets of the features were used for the development of the homepage
identification model and the researcher name identification model. The latter
was only based on web page text features, whereas in the former also numeric
features and the URL of the web page were utilised. Samples of the base dataset
were drawn and labelled for the development of the two models.

The two models for the homepage identification were developed separately,
each with its own data preprocessing, feature selection, model training and
model evaluation. These iterative processes were tracked with jupyter notebooks
[5]. The data processing steps and machine learning models were assembled
using scikit-learn pipelines [6] for ease of use and reproducibility. Different

4

1.2 Implementation and Main Aspects

Figure 2: An overview of the workflow and the implementations produced during the develop-
ment process.

combinations of the individual models were composed and evaluated. With
this combined model an F1 score of 68% was achieved on the test data for the
homepage identification task.

For the researcher name identification, the person names appearing on the
web pages of the training sample and features representing each name were
extracted. As before, the preprocessing steps and the machine learning model

5

1 INTRODUCTION

were assembled with scikit-learn pipelines. A F1 score of 94% was achieved on
the test data for the researcher name identification task.

The best performing data preprocessing pipelines and machine learning
models were stored. Wrapper classes using those scikit-learn pipeline objects
were written for the sequential execution of the developed data acquisition, the
homepage and the researcher name identification. The procedure of building a
dataset of predicted homepages, predicted homepage owners and correspond-
ing universities from an input list of arbitrary URLs or domains was composed
with make file targets.

The key aspect of this thesis besides the described implementations is the
assessment of the developed data preprocessing pipelines and prediction mod-
els for the homepage identification and the name extraction. For this purpose,
the features used in the three machine learning models were analysed. Also,
the common errors produced by the models were evaluated and possible im-
provements suggested.

A few by-products were created during the thesis. They are listed here for
completeness:

• The adjustment of a web search server implementation of the University
of Freiburgs’ Chair of Algorithms and Data Structures for demonstration
purposes. A result dataset of predicted homepages, predicted homepage
owners and corresponding universities can be queried by researcher first
and last name or the university.
• The implementation of helper scripts for the manual labelling of training

data for the different machine learning tasks.
• A comparison of multiple publicly available Named Entity Recognition

models.
• Experiments with Co-training to improve the prediction performance on

unseen data.

6

2. Related Work

In this chapter, a short overview is given about work related to the web docu-
ment classification presented in the thesis. Methods of categorizing web pages
only with the URL have been presented by Kan [7] or Baykan et al. [8]. Kan
introduces multiple means of segmenting and expanding URL components
before training multiple binary SVMs, one for each web page type. Baykan et al.
compare different URL to feature mappings and machine learning algorithms in
a binary classification setup to determine if a web page belongs to a topic or not.
Qi and Davison [9] review web page classification methods based on on-page
web page content features and features that are extracted from neighbouring
web pages. A co-training approach using URL and web page content features
has been proposed by Gollapalli et al. [3]. Co-training is a semi-supervised
learning technique which is used to incorporate potentially large amounts of
unlabelled data in the model development based on a small amount of labelled
data. Onan [10] compares ensemble methods with varying feature selection
and base learners. Ensemble machine learning algorithms utilise a collective of
many weak learners to obtain a robust, aggregated prediction result.

7

3 THEORETICAL FOUNDATION

3. Theoretical Foundation

The key concepts and algorithms used in this work are explained in this chapter.
Section 3.1 introduces the general idea behind machine learning with labelled
data. In sections 3.2 and 3.3 common data preprocessing steps necessary to
apply machine learning to text data are explained. In sections 3.4 and 3.5 two
supervised machine learning algorithms for classification are presented. Finally,
in section 3.6 problematic effects due to imbalanced class labels are outlined
and in section 3.7 the utilised evaluation metrics are defined. The information
for this chapter has been taken from [11, 12, 16, 19].

3.1. Supervised Machine Learning

In the field of machine learning, there are three main types of learning al-
gorithms. Those are reinforcement, unsupervised and supervised learning.
Reinforcement learning describes the process of learning a sequence of actions
or solving a problem by interaction with a real world or virtual environment.
Every action taken is evaluated and either rewarded or penalized depending on
the effect of the action. Through continuous exploration and evaluation of the
possible actions the reward is maximized and beneficial actions are learned.

Unsupervised learning describes the process of finding outliers, novelties
and hidden patterns with the goal of learning what is typical, interesting or
strange about the data.

Supervised learning could be described as the process of learning from
past experience to predict the future. In contrast to unsupervised learning,
the data that is usable in a supervised learning context already contains the
information about the relationships and patterns, that are aimed to be learned.
If this information is not already present in the data, it has to be added by
manual labour.

For a collection of data points 〈(xi, yi)〉Ni=1, where xi is the ith data point, yi
the label for the ith data point and the number of data points N, which were
collected in the past, a function h : x → y should be learned, which predicts
the label yN+1 for a new data point xN+1. A data point xi is a vector in D
dimensional vector space RD. Each component of a data point is a measurable
property of the object that is to be analysed and is called a feature. This could be
the number of rooms, and the latitude and longitude of a house in a house price
prediction or the RGB values for each pixel in an image for an object detection
etc. The label yi can be continuous (yi ∈ R) or discrete (e.g. yi ∈ {true, f alse}).
In the former case, the supervised learning task is denoted as regression.
In the latter case it is denoted as classification. In classification, instead of
predicting the label explicitly, the conditional probability for the label yN+1
given a data point xN+1 can also be predicted, i.e. h(xN+1) = P(yN+1|xN+1).
The past experience 〈(xi, yi)〉Ni=1 will also be denoted as training data, the

8

3.1 Supervised Machine Learning

function h : x → y as model or hypothesis and a data point xi as observation.

Figure 3: The supervised machine learning development cycle as presented in the machine
learning lecture at the University of Freiburg. [11]

The development cycle for a supervised learning model as presented in
the Machine Learning lecture at the University of Freiburg [11] can be seen in
Figure 3.

The first step is the preprocessing. It involves obtaining and labelling of the
training data (if no labels are present yet) and the handling of missing values
and outliers in the dataset.

During the feature extraction and encoding, the data is prepared for the
use in machine learning algorithms. Numeric or at least numerically encoded
features can be directly used in machine learning, although it is not uncommon
to transform the raw data into more meaningful features before the model
training. If the data consist of text, which is the case in this work, features have
to be extracted and encoded first. The preparation of raw text data is described
in the sections 3.2 and 3.3.

The selection of a subset of the features is necessary, if the data contains
features that are detrimental for the prediction performance or the runtime.
The selection of useful features is highly dependent on the machine learning
algorithm. Some algorithms’ time or space complexity scale poorly with in-
creasing number of features. Other algorithms do automatic feature selection
and therefore scale well for high dimensional data. An example for such an
algorithm is the Random Forest, which will be explained in section 3.4.

The actual machine learning step is comprised of the selection of the learning
algorithm, the training of the model and the hyper-parameter tuning. Hyper-
parameters are used to set-up the machine learning algorithm before the training.
Hyper-parameters are algorithm dependant. For a tree based algorithm, the
number of trees or the depth limitation of the trees are two of the algorithm
specific hyper-parameters. Finding well performing hyper-parameter settings
is a major task in the development of a machine learning model. Often times
multiple algorithms are optimized with regard to their hyper-parameters and
compared to find the best performing model.

To assess the previously taken steps and to compare the multiple trained
models, the prediction results of the models for data not used in the model
training is evaluated. There are two phases of evaluation.

The first is the evaluation done during the model development. Different
algorithms are compared and the hyper-parameters for the algorithms are tuned

9

3 THEORETICAL FOUNDATION

to achieve the best results. For this purpose a sample of the training data is taken
before the model training to be used as validation data. A model is then fitted
to the training data but applied to the validation data to evaluate the models
performance. Iteratively, changes to the preprocessing, feature extraction /
selection, machine learning algorithm and hyper-parameters are made and
evaluated. In practice, more advanced methods of performance validation then
a single validation sample are applied. For example, training and validating
a model multiple times with changing training and validation samples (i.e.
Cross-Validation) or algorithm specific validation like the out-of-bag error for
Random Forests.

The second phase of evaluation is done after the model development. For
a machine learning model to be applicable, it is a prerequisite that the model
performs well on unseen data. This is called generalization performance. 1 It is
common practice to draw a sample right at the beginning of the development,
which should at no point be analysed or taken into consideration during the
development process. This dataset is called the test set. It will only be used
to evaluate the generalization performance of the trained models. Some of the
standard metrics to evaluate classification models will be explained in section
3.7.

The last step is the post-processing. It involves deployment of the model,
e.g. as a web API or integrated in an existing system, to take action based on
the models predictions.

3.2. Preprocessing Natural Language Data for Machine Learning

Developing machine learning models, that take natural language text data as
input, requires special preprocessing. In this section, the processing steps for
the preparation of text data for machine learning applied during this work are
explained.

Tokenization describes the process of splitting a sequence of characters into
useful semantic units, called tokens. For example the sentence: "Listen up -
there’s no war that will end all wars." can be split into:

| Listen | up | - | there’s | no | war | that | will | end | all | wars | . |

After the tokenization, different normalization steps are applied. Firstly,
every token is changed to have the same case. For many applications it does not

1In some sources, methods like Cross-Validation are presented as measures for the gener-
alization performance of the model. This can be misleading. If for example, the validation
data is used too excessively during the development it is possible that the model over-fitted the
validation data and might perform poorly for new data. Also it can disguise problems with
the initial dataset. If the initial data sample is biased or does not contain all of the necessary
patterns, validation data drawn from this initial datasets will not be a good measure for the
generalization performance.

10

3.3 Vectorization of Text Data with Tfidf

make a difference if the same word is written in lower or upper case. Secondly,
certain tokens are filtered from the dataset. Depending on the task, which is
aimed to be solved with the text data, there are tokens that are fruitful for the
solution of the task and others that are not. In English for example, words like
"a" or "the" appear very often in any kind of text, but they contribute very little
to the distinctness of different texts. Those words are called stopwords. The
most commonly removed stopwords are the words that appear most frequently
in a language. Manually created or corpus-specific stopword lists can also be
beneficial. Corpus-specific stopwords are the words appearing most in the set
of documents at hand. Additionally, punctuations and special symbols can be
removed.

Thirdly, stemming or lemmatization is applied. Both methods aim to reduce
words to a common base form. Stemming denotes the process of reducing
words to their word stem. For example the words "argue, argued, argues,
arguing" are all reduced to "argu". Stemming does not necessarily produce
proper words but can be an effective word normalization technique none the
less. Lemmatisation denotes the process of grouping inflected forms of a term
to their dictionary form, the lemma. For example all conjugated forms of a verb
are grouped to their proper base form ("am, are, is"→ "be").

3.3. Vectorization of Text Data with Tfidf

As machine learning algorithms rely on mathematical operations like the cal-
culation of conditional probabilities, euclidean distances and gradients or data
distributions, the data has to be numeric or at least numerically encoded.

When working with text data, it is therefore necessary to apply processing
steps that convert each word into a number (or vector) and the text for each
observation into a vector of numbers (or a matrix).

One of the basic variants of representing a document as a vector is the
calculation of the term frequencies for the given document. Each document is
firstly considered a bag-of-words, a collection of the occurring terms, which
disregards grammar and ordering, while keeping multiplicity. Each document
d is then represented as a sparse vector containing the number of times each
term occurred in the document, i.e the term frequency t f . For each term t ∈ T,
where T is the set of unique terms from all documents d ∈ D, each document d
is represented as

d = (t f (t0, d), ..., t f (tm, d)), for m = |T|.

A pitfall of this approach is, that words that occur often in the language
at hand, would also appear most frequently in many texts. Then, the words
with the highest frequency appear to be the most informative words, but would
actually contribute the least to the separability of the vectors. One method to
counteract this distorting effect was introduced in section 3.2, the stopwords.

11

3 THEORETICAL FOUNDATION

Additionally, the term frequencies can be weighted with the inverse document
frequency (id f) [12], which decreases the influence of words that appear in
many documents.

For the number of documents N, the inverse document frequency of term t
is defined as

id f (t) = log(
N

∑d:t∈d 1
).

The id f (t) decreases with increasing number of documents, that contain the
term. If all of the documents contain the term t the id f (t) is 0.
For a document d the term frequency inverse document frequency t f id f of term
t is given by

t f id f (t, d) = t f (t, d) · id f (t).

With this, each document d in the data set is represented as a sparse vector
of t f id f values for each term t ∈ T

d = (t f id f (t0, d), ..., t f id f (tm, d)), for m = |T|.

3.4. Random Forest Classifier

One of the machine learning algorithms, which produced the best results in
this work, is the Random Forest. Random Forests belong to a type of machine
learning methods that are called ensemble methods. Ensemble methods solve
a learning task by generating many, possibly weak, prediction models and ag-
gregating their results. The weak models for Random Forests are Classification
and Regression Trees (CART), which additionally to the Random Forests have
been proposed by Breiman [13, 14].

In this section the theory behind Random Forest Classification is presented.
Firstly, the training of individual trees and the criterion for finding the best split
at the nodes of the tree are outlined. Then, it is explained how the prediction
result for a new data point is achieved. Lastly, bagging [15] and random feature
subsets, two means of increasing the variance of the individual models are
described. The information for this section is taken from Criminisi and Shotton
[16].

For Random Forests, the training of the model translates to the construction
of the individual classification trees. A tree is a data structure consisting of a
collection of nodes and edges, which are organized in a hierarchical fashion. In
case of a binary tree, the inner nodes have exactly two outgoing edges and all
nodes except the root node have exactly one incoming edge. Figure 4 shows
a binary classification tree for a four class classification task. Beginning at the
root node, where all of the training data S0 is accessible, the data is split into
two subsets Sl and S2 which are associated with their respective child nodes 1

12

3.4 Random Forest Classifier

Figure 4: Training data and tree training for a four class classification toy example as shown in
Criminisi and Shotton [16]. a) Shows the training data in its 2 dimensional feature
space. The four classes are shown in different colors. b) Shows a binary classification
tree, which was trained on the data. Si denotes the set of data points associated with
the i-th node. The distribution of class labels is shown at the right. Traversing down
the tree, the class distribution gets less disordered.

and 2. 2 For each resulting subtree i the associated data Si is split further until
only a single data point is left at the node or a growth restricting condition
(e.g. the maximum depth of the tree or the minimum number of data points
necessary for a split) is met.

The classification tree is constructed by finding the best split of the data at
each node depending on a splitting criterion. A split denotes a selected feature
with a value for that feature, at which a decision is made, which separates the
data into two subsets. The splitting criterion is such that with each split the
disorder in the data regarding the class label distribution is decreased. The best
split is then achieved, if it produced the most homogeneous subsets of all the
possible splits. An often used splitting criterion is the Entropy and subsequently
the Information Gain.

The entropy can be described as a measure of disorder of a system. The
entropy H for a datasets S and probability p(y) for class labels y ∈ Y is defined
as

H(S) = − ∑
y∈Y

p(y) ∗ log2p(y).

If we have, for example, a binary classification task and both labels are
evenly present in the dataset, i.e. p(y = 0) = p(y = 1) = 0.5, the entropy is

2In an implementation of the Random Forest algorithm, the data is not actually split. Only
the split features and split values are stored. Imagining the data being split at each node rather
supports the intuition for the algorithm.

13

3 THEORETICAL FOUNDATION

Figure 5: Information gain for two splits on two different features of a four class classification
toy example as shown in Criminisi and Shotton [16]. a) Data and class distribution
before the split. b) Class distribution after a split on feature 2 - a horizontal split.
c) Class distribution after a split on feature 1 - a vertical split. The vertical split
produces less disordered class distributions and is therefore favourable.

maximal. The further the distribution changes to favour one of the classes, the
smaller the entropy gets.

The Information Gain is a measure for the change in entropy from one
distribution to another. If a dataset S is split into two subsets SL and SR, the
information gain is achieved by the split given by

I = H(S)− ∑
i∈L,R

|Si|
|S| H(Si),

where | · | denotes the cardinality of sets. If the sum of weighted entropy
for the subsets Si is less then the entropy for the data S before the split the
information gain is greater than 0 and the split is favourable. During the training
of a tree, the best split at each node is found by maximizing the information
gain with respect to a set of split features and their possible split values. Figure
5 illustrates the comparison of two different splits. It can easily be imagined,
that a further split at the child nodes resulting from the vertical split shown in
(c) would separate the classes almost perfectly.

The prediction of the label for a new data point is done by traversing down
the tree following a path determined by the previously learned split feature,
split value pairs at each node. The leaf node reached represents the result for
the given data point. As there are generally multiple data points left in the
leaf node, some form of aggregation needs to be applied. For classification
trees a majority vote, where the label is returned that appears the most in the
leaf node, can be used. Alternatively, the probabilities for the labels, which are
derived from the class label distribution in the leaf node, can be returned. The

14

3.5 Stochastic Gradient Descent Training

prediction for the Random Forest can then be derived by averaging over the
results of the individual tree results. For the number of trees T, the probability
for class label y for the data point x is then given by

p(y|x) = 1
T

T

∑
t=1

pt(y|x),

where pt(y|x) denotes the probability of label y given data point x obtained by
the t-th tree.

The individual decision trees are high-variance models. I.e. for slight
changes in the data, a vastly different tree could be grown. On the other
hand, when growing many trees on the same data little will be gained by
aggregating their results. Following Breiman, the error of the aggregated model
depends on the strength of the individual models and the degree to which
the models’ errors are uncorrelated. (c.f. [14]). By introducing randomness to
the individual models during the training phase the variance of the models is
increased and the errors become uncorrelated. Breiman proposed two means of
introducing randomness to the forest. Firstly, bagging (bootstrap aggregation)
[15], which denotes the training of the individual trees on randomly selected
(with replacement) subsets of the training data. Secondly, random feature
subsets, which denotes the restriction of the features used to find the best split
at each node to only a small random subset of the total features. By introducing
randomness to the individual trees, the errors get more uncorrelated, which
results in a better generalization of the aggregated model.

Random Forest have three additional favourable properties. Firstly, the
maximization of the information gain at each split leads to an automatic feature
selection during the model training. Some features will contribute more to
decreasing the entropy than others and will therefore be the split features
over the features that contribute less. Secondly, using random feature subsets
additionally makes the Random Forest training efficient for large numbers
of features. Thirdly, with sufficiently large numbers of individual trees, the
Random Forest furthermore provides a meaningful hierarchical order of the
features based on the amount of which they contributed to the separability of
the class labels. This order is called feature importance. The feature importance
gives insight into the way in which the model produces its predictions and can
also be used for the feature selection.

3.5. Stochastic Gradient Descent Training

The second machine learning algorithm utilised in this work is a support vector
machine (SVM) with the modified huber loss function and stochastic gradient
descent (SGD) optimization. In this section, this specific algorithm will not
be explained in detail. Although this specific variant of SVM performed best,

15

3 THEORETICAL FOUNDATION

other linear classifiers (e.g. SVM with hinge loss, Logistic Regression) with SGD
training produced similar results. Hence, the basic concepts behind SGD and
the intuition for SVMs will be presented. The information for this section is
taken from [11, 17, 18].

A core element of the training phase of many supervised machine learning
algorithms, (e.g. SVM, Logistic Regression, Neural Nets) is the iterative mini-
mization of the error made by the model. This requires some kind of measure
for the comparison of predicted and actual value for each observation. Let
〈(xi, yi)〉Ni=1 be the training dataset with data points xi ∈ RD and actual labels yi.
A function h : x → y should now be learned, which can predict the label yN+1
for a unseen data point xN+1. At each training step the error for the current
model has to be calculated. This is done with a so called loss function. Let
l(hφ(x), y) be the loss function, which computes the aggregated deviation of
the predicted labels hφ(x) and the actual labels y. The expression hφ denotes
that the model is dependent on a set of model parameters φ. Improving the
model then translates to finding the model parameters φ, which decrease the
loss for all data points x, i.e.

argminφl(hφ(x), y).

A simple example is a linear regression with the mean squared error. The
model is a linear function h(x) = wtx + b, where w is the slope and b the
y-intercept. The loss is given by

l(hw,b(x), y) =
1
N

N

∑
i=1

(h(xi)− yi)
2.

To find the best fitting hyperplane the loss function has to be minimized with
respect to w and b, i.e.

argminw,b
1
N

N

∑
i=1

(h(xi)− yi)
2.

Some of those optimization problems can be solved analytically, but in the
cases where this is not possible or computationally too expensive iterative
optimization strategies are applied.

A common algorithm for iterative optimization is gradient descent. The
gradient of a function (denoted with ∇ f) is the vector of partial derivatives of f ,
where the first component of the vector is the partial derivative with respect to
the first variable. The second component is the partial derivative with respect
to the second variable etc, i.e. ∇ f = (∂ f

∂x1
, ∂ f

∂x2
, ...)T. The intuition of the gradient

is the same as for the first derivative of functions with only one variable. Its
the slope of the tangent line to the graph of the function f (x) at the point x.
So the gradient of a function points in the direction of steepest ascent for a

16

3.5 Stochastic Gradient Descent Training

Figure 6: Iterative minimization with gradient descent as shown in the Optimization lecture at
the University of Freiburg [17]. Start point of the gradient descent in red. Each step
of gradient descent in green. The arrows show the direction of change. a) Gradient
descent for a single variable function. b) Gradient descent for a two variable function.

multi-variate function. In each step of gradient descent the negative gradient
of the loss function is calculated, which gives the direction of steepest descent.
The new parameter values φ are obtained by making a step in that direction.
For the direction of change dk, the parameters φk and the step size τk at step k,
one step of gradient descent is given by

dk := −∇l(hφk(x), y)

φk+1 := φk + τk ∗ dk.

This step is repeated until the algorithm converges to a local minimum. 3

This will gradually find parameters φ with minimal loss. Figure 6 illustrates
the iterative minimization with gradient descent.

A downside of gradient descent is, that it scales poorly with high number of
data points N. In each step of gradient descent the gradient of the loss function
has to be calculated, which accumulates the loss for the full training dataset.
A more efficient optimization algorithm is stochastic gradient descent (SGD).
Instead of calculating the next parameters φk+1 based on the full datasets, SGD
calculates the gradient descent step based on one randomly selected data point
(or a small batch of data points) at a time and then repeats the step on the next
data point (or batch). After randomly shuffling the training data one run of
SGD is given by:

3This is a very rough description of gradient descent optimization. Aspects not covered here
are the necessary conditions, the calculation of optimal step sizes and improvements of the
basic approach.

17

3 THEORETICAL FOUNDATION

Figure 7: Support Vector Classifier on two dimensional, two class classification toy example as
shown in [19]. The two classes are drawn in red and green respectively. A separating
decision function is given with hβ(x) = xT β + β0 = 0 which maximises the margin
M.

for i:= 1, ..., N {

dk := −∇l(hφk(xi), yi)

φk+1 := φk + τk ∗ dk

}.

After one run of this loop every data point of the training data has been
utilised to minimize the loss, which in some cases can be enough to be suffi-
ciently close to the minimum. If not, this step is repeated.

One of the machine learning algorithms, which can be optimized with SGD,
is the Support Vector Machine (SVM). The intuition for SVMs is as follows.
Given a binary classification task with training data 〈(xi, yi)〉Ni=1, with data
points xi ∈ RD and labels yi ∈ {−1, 1}. Find a hyperplane, which separates
the two classes, while maximising the distance (called margin) between the
closest data points for each class. Figure 7 illustrates such a hyperplane. The
hyperplane is defined with hβ,β0(x) = xTβ + β0 = 0. The direction and length
of β controls the orientation of the decision hyperplane. The hyperplane can
be computed by solving an optimization problem. The margin should be
maximised with the constraints that all data points are classified correctly and
have a minimum distance of 1 to the hyperplane.

argminβ,β0

1
2
||β||2,

subject to yih(xi) >= 1, for all i = 1, ..., N .

The vector β is orthogonal to the decision hyperplane. Minimizing β max-
imises the margin. Data points xi, which are directly on the margin have

18

3.6 Imbalanced Class Labels

a distance of 1 to the decision hyperplane. These are the so called support
vectors, which suffice to describe the hyperplane; hence the name support
vector machine. An efficient way of solving this optimization problem for large
datasets and sparse datasets is stochastic gradient descent. A reformulation of
the problem with the hinge loss function, i.e.

l(h(xi), yi) = (1− h(xi)yi)+,

gives the objective function for a linear SVM 4,

argminβ
1
2
||β||2 + 1

N

N

∑
i=1

(1− h(xi)yi)+.

Other variants of SVM with different loss functions can also be optimized
with gradient descent. The best performing variant for the web page classifica-
tion is a SVM with modified huber loss function and SGD optimization. The
modified huber loss is defined by

l(h(x), y) =

{
max(0, 1− yh(x))2 for yh(x) >= −1
−4yh(x) otherwise.

3.6. Imbalanced Class Labels

When developing methods for the classification of web pages, it must be
considered, that the different types of web pages are not necessarily represented
equally often in the data. This is particularly true, if a binary classification is
aimed for, where only one type of web page is aimed to be separated from all
other types of web pages, as it is done in this thesis. It was observed, that only
between 1% and 5% of the manually labelled web pages in the current dataset
are scientist homepages. This imbalance of class labels in the data requires
precaution, when developing and evaluating machine learning models. For
example, a machine learning model could learn that simply predicting the
majority class for all observations results in a nearly perfect accuracy score.

To avoid this, metrics like precision, recall, confusion matrix, f1 score and
precision recall curve should be used over accuracy and receiver operating
characteristic (ROC) curve. They allow for a better evaluation of the model
performance regarding the minority class.

When developing a model, there are multiple basic methods to counteract
the detrimental effect caused by imbalanced data. Firstly, machine learning
algorithms can be used, which allow for the application of weights to each
observation of the dataset. The minority class could be weighted more strongly,

4In practice, the linear SVM has to be optimized with the subgradient, as the hinge loss is
not differentiable.

19

3 THEORETICAL FOUNDATION

resulting in a bigger impact of errors of minority class observations on the
trained model. Secondly, re-sampling techniques can be utilised to obtain a more
balanced dataset. In an early experimental iteration of this work, undersampling,
oversampling with Synthetic Minority Over-sampling Technique (SMOTE),
and the use of the imbalanced dataset with class weights were compared.
Undersampling denotes the reduction of the dataset size by randomly selecting
only as many majority class observations as there are minority class observations.
This is a very simple approach, which additionally speeds up the training
process, but with the main disadvantage of loosing a large portion of data.
Oversampling denotes the process of generating more samples of the minority
class. SMOTE achieves this by considering the k-nearest neighbours for a
minority class observation and generating a synthetic data point in their vicinity.

Although oversampling with SMOTE produced better results in some of
the early experiments, the effect was not consistent and was accompanied by a
major increase in model training time 5. Training the models with imbalanced
data and class weights did not increase the prediction performance significantly
enough. Therefore, the simpler and faster undersampling method was applied
in this work.

3.7. Metrics

In this section, some of the standard metrics for binary classification are ex-
plained. Let h : x → y be a binary classification model, i.e. y ∈ {0, 1}. Let yi
be the true label and ŷi the label predicted by the model for observation i. The
model made an error, if yi 6= ŷi. There are two kinds of errors and two kinds of
correct prediction outcomes.

For binary classification results, the following evaluation metrics can be
calculated with respect to one of the classes (in this case class 1), denoted with
"positive":

True Positive : y = ŷ = 1.
A positive observation has been correctly classified.

True Negative : y = ŷ = 0.
A negative observation has been correctly classified.

False Positive : y = 0∧ ŷ = 1.
A negative observation has been falsely classified as positive.

5Training time here includes the preprocessing of the data. Only at a later stage of the
development, when the preprocessing steps and parameters were fixed, the model training was
separated from the data preprocessing.

20

3.7 Metrics

False Negative : y = 1∧ ŷ = 0.
A positive observation has been falsely classified as negative.

Let TP, TN, FP, FN be the count of the true positive, true negative, false
positive and false negative prediction results, respectively.

Precision : TP
TP+FP

The proportion of true positive out of the total number of positive predictions.
The precision, also called the positive predict value, gives a measure for the
quality of the positive predictions made by the model.

Recall : TP
TP+FN

The proportion of true positive out of the total number of actually positive
observations. The recall, also called the hit rate, measures how well the
model is suited to predict the positive class.

F1 Score : 2 · Precision·Recall
Precision+Recall

The F1 Score is the harmonic mean of precision and recall. Both, precision
and recall contribute evenly to the F1 Score.

21

4 WEB PAGE DATA SOURCE

4. Web Page Data Source

The initial step in the development of a machine learning model is the ac-
quisition of suitable datasets. In scientific work, often times well known and
tested datasets for a given machine learning problem are used. They allow the
comparison of the proposed methods and algorithms with existing work.

In this work, the application of the developed machine learning models
is in focus. It was therefore important to use only actual and unaltered data.
The source of the used data is Common Crawl [4]. Common Crawl is a non
profit organization, which makes html data, meta data and text extractions from
web pages publicly available. Common Crawl obtains the data by crawling
the web on a monthly basis. In 2018, the size of the uncompressed content
of a monthly crawl reached 215 to 270 TiB and consisted of 2.4 to 3.4 billion
individual web pages [4]. The Common Crawl data is stored in the Amazon
Web Services as part of their Public Datasets Program [20]. To access the data,
the Amazon Web Services storage location of the searched URLs or all of the
URLs from a domain have to be found. Common Crawl provides a server for
this purpose, the Common Crawl Index Server. The index server can be queried
via a web page or directly through an API. Alternatively, the 300 index files for
a monthly crawl can be downloaded and processed locally. The size of a single
uncompressed index file is around 5 GB.

The data for a web domain is stored distributively over many segments in
the Amazon Web Services without any particular order. Therefore, even when
downloading all of the web pages for a domain, many segments have to be
accessed, as each segment contains only a few of the desired web pages. For
example, the 127557 pages of the California Institute of Technology web domain
found in 3 crawls of 2018 are distributed over 86026 segments. Fortunately, it is
possible to utilise the offset and length information, which is part of the index
server query result to only download the desired bytes from a segment for each
of the web pages.

The data can be obtained in three formats. The WARC files [21] contain
the raw crawl data. This includes meta data about the crawl process, the http
header and the html data for the searched web page. The WAT files contain
meta data about the records stored in the WARC format, whereas the WET
data only contains the extracted plain text for a web page. For the experiments
conducted in this work, WARC formatted data served as starting point.

22

5. Web Page Classification

A machine learning model for the identification of researcher homepages was
developed with the acquired WARC data . This model estimates the probability
for a web document to be a homepage. To achieve this, a multi view learning
approach was used. Multi view learning consists of methods, which aim to
improve the generalization performance of prediction models by utilising two
or more disjoint feature sets regarding the same prediction object. This work
was inspired by the co-training approach proposed by Gollapalli et al. [3].

Co-training belongs to the sub-field of semi-supervised learning, where
unlabelled data is utilised to improve models previously trained on labelled
data. In co-training, two or more models are trained separately on different
views. In an iterative process, each of the models would predict samples of
unseen data and high confidence predictions would be used to augment the
initial two views. For example with the AddCross scheme, confident predictions
of model 1 would be added to view 2 and vice versa. Each model would be
retrained with its respective view in every iteration. Gollapalli et al. state the
following intuition: If the model based on view 1 is able to predict at least one
unlabelled observation confidently, which the model based on view 2 can not,
co-training should improve the models performance over the iterations. In this
work, an improvement of the models through co-training was not achieved.
Nonetheless, a major increase in prediction performance could be achieved by a
simple combination of two individual models trained on two disjoint feature
sets. The first model was based on URL path features. The second model
was based on text content and numeric features extracted from the html code
for a page. The models for each view were trained and evaluated separately.
The final, best performing classification model was obtained by evaluating
different combinations of URL and page content models. The two models were
combined by multiplying the prediction probabilities of the individual models.
An adjustment of the decision threshold for the combined model improved the
performance further. A significant increase in generalization capability was
observed with the combined model in comparison to the individual prediction
models.

In section 5.1 it is explained, how labelled training and testing data was
obtained. In sections 5.2 and 5.3 the development of the two individual models
is described. This involves the applied feature extraction and encoding, as
well as the selected machine learning algorithm. The results for the individual
and the combined models are presented in section 5.4. In the subsections of
5.5 additional findings regarding the feature extraction approach, the common
prediction errors of the models and improvements of the approach are discussed.

23

5 WEB PAGE CLASSIFICATION

5.1. Sampling

5.1.1 Training Data

Labelled training data for the web page classification task was obtained from
three sources.

Firstly a small subset of the 4 Universities Dataset provided by the World
Wide Knowledge Base project of the Carnegie Mellon University was used
[22]. This dataset contains 8,282 web pages from the universities of Cornell,
Texas, Washington and Wisconsin, which were manually classified into one of
seven categories. Of those categories the URLs for "student" and "staff" were
extracted and the corresponding WARC files contained in the nine monthly
crawls of January to September of 2018 were downloaded via Common Crawl.
As for all of the WARC files downloaded via Common Crawl the files were
filtered, only accepting web pages that were reachable at the time of the crawl
and contained at least a portion of English text. Of the 1778 web pages in the
"student" and "staff" category only 52 remained after the filtering. This was
due to the fact that the 4 Universities Dataset was raised in 1997 and most
of the web pages do not exist any more. Considering the fast pace in which
web content changes, it was assumed that the actuality of the training data has
a major impact on the generalization capabilities of the developed machine
learning models. Therefore, the loss of almost all the labelled data of the webkb
dataset was accepted.

Secondly, data from the Computer Sciences Bibliography (dblp) [23] founded
by the University of Trier was utilised. Dblp collects bibliography information
on major computer science publications and provides free access to information
about 4.4 million publications, published by more than 2.2 million authors.
The raw dblp data can be downloaded in a single xml file with a compressed
size of around 400 MB. The data set was searched for information about the
homepage of the authors. From the resulting data, web pages, which are not
part of a university domain, like social networks, code repositories or library
domains were removed. With the obtained homepage URLs, Common Crawl
was queried and after the filtering for reachability and language, 14473 WARC
entries from the July, August, and September crawls of 2018 were downloaded.

Thirdly, 2130 homepages were labelled manually. On the basis of WARC
data of the July, August, and September crawls of 2018 from the universities of
Freiburg, Munich, Stanford and the media faculty of the MIT homepage URLs
were extracted and the WARC data was downloaded from Common Crawl.

Additional filtering was applied to remove erroneous entries and entries
without any web page text. The remaining 13670 examples for homepages were
augmented with roughly the same amount of randomly selected data from the
rest of the crawled data. The final training dataset consisted of 27197 entries.

24

5.2 URL Based Classifier

5.1.2 Test Data

One of the main questions to answer, when developing machine learning
models, is how the model performs for data, which has not been used during
the model training. This is called generalization. To get an unbiased evaluation
of the models prediction capabilities, it is common practice to take a sample
from the data right at the beginning of the development and neither analyse nor
utilise it in any form during the development. This, so called, test dataset is only
used for the evaluation of the final model. In this work, a different approach
was applied to generate the test dataset. The training data was obtained only
from a few different sources. Therefore, it can not be assumed, that the training
data represents the real world conditions concerning the web page classification
extensively enough to test the generalization on a sample of that data. For
this reason, the test dataset was raised separately. From the July, August,
and September crawls of 2018, the WARC entries of six different university
domains not used for the training dataset were downloaded. The universities
are: California Institute of Technology, Princeton University, University of York
(GB), University of Stuttgart, University of Hamburg and the University of
Applied Sciences Upper Austria. From the WARC data of each university a
random sample of 250 entries was drawn and manually labelled. The test
data generated in this manner, consists of 1500 web pages, of which 86 are
homepages. The test data is therefore highly imbalanced. This approach of
obtaining the test data was chosen to get as close as possible to the actual
application environment of the final classification model.

5.2. URL Based Classifier

In this section, the approach for the first of the two individual web page
classification models is described. In the area of web page classification it has
been shown that a prediction model, which is solely based on URL features, can
produce good results [3, 7]. Often times, URL based models come to use, when
classification speed is of importance; for example in a focused web crawler,
which should quickly decide if a web page is relevant before it even fetches the
page content. URLs contain both structural information by representing the
location of the web page in the world wide web and also textual information.
Even if no filtering, summation or encoding of the URL elements is done, the
number of features, i.e. the number of unique words, is small (in comparison to
web page content features), as most URLs are quite short. This allows for fast
model training, evaluation and application. The major drawback is that some
URLs simply do not contain enough information for the classification of the
web pages.

25

5 WEB PAGE CLASSIFICATION

URL

(1) https://ee.stanford.edu/research/control-and-optimization
research, hyphenatedword

(2) https://news.stanford.edu/2018/02/08/avoiding-blackouts-100-renewable-energy/
number, number, number, hyphenatedword

(3) https://www.inf.uni-hamburg.de/en/inst/ab/hci/news/rse15.html
nondict, nondict, nondict, nondict, news, alphanumeric

(4) http://abi.inf.uni-tuebingen.de/People/krueger
people, nondict

(5) http://people.ucas.ac.cn/∼zhangxiaopeng?language=en
tildenondict, querykeylanguage, queryvaluenondict

Table 1: Example URLs with the extracted features in the line after each URL

5.2.1 URL Surface Patterns

The extraction of URL based features, which can be used in the training of a
machine learning model, was done on the basis of Gollapalli et al. [3]. They
reason that in URL strings conventions can be observed, which are indicative of
the web page type. When examining the example URLs in Table 1 it can be seen,
that certain words like "research" or "news" in (1) and (3) or numeric patterns
in (2) make it highly unlikely, that those URLs lead to a scientist homepage.
Example (4) on the other hand, is more likely to be a homepage as it contains
the keyword "people" followed by a person’s name.

Gollapalli et al. [3] propose the encoding of the URL components with
surface patterns such as the presence of hyphenated or underscored words,
alphanumeric, numeric or long words (i.e. words with more than 30 charac-
ters), or the symbol ∼. By doing this, they aim to filter out certain kind of
web pages like course pages, announcements, calendars and auto-generated
content. They further propose the use of a term dictionary, i.e. the collection
of unigrams and bigrams, which appeared more than three times in the URLs
of the training data. Terms, which do not exist in the term dictionary and are
also not found in WordNet [24], a lexical database for English, are also encoded.
Additionally they add a special case, which is designed to capture scientist
homepage URLs often found in computer science departments. Those URLs
contain the researchers name prefixed by the tilde symbol. For example, in
"http://www.robotics.stanford.edu/∼ang" the term containing the tilde symbol
followed by an abbreviation for Andrew Ng would be encoded as "tildenondict".

In this work, the following steps were applied. Firstly, the domain and
subdomain components of the URLs were removed, as they would introduce
a strong bias with regard to the universities and the faculties present in the
training data. Secondly, the surface patterns were captured. In contrast to
Gollapalli et al. [3], URL path and URL query components were encoded

26

5.2 URL Based Classifier

separately. The path components were captured as described above. For
the query components, only the presence of alphanumeric, numeric or non
dictionary terms was captured and an identification prefix for the query key
and the query value was added. This was done to account for the observation,
that the query components often modify the contents of the page but are
not used to load new pages. For example, the query string "?language=en"
denotes, that the page content should be displayed in English, whereas an URL
path ending with "/language/en" could also indicate a new page, which has
something to do with the English language. Without the proposed distinction,
the features for both URLs would be the same. (I.e. "... , language, nondict")
With the proposed distinction the URL containing the query is represented as
"... , querykeylanguage, queryvaluenondict".

Also, the constraints on the term dictionary were loosened up. Instead
of filtering uni- and bigrams by their number of appearance, only unigrams
with more than three occurrences were added to the term dictionary. This was
done with the intention not to loose any information about the sequence of
the URL terms at this point. Allowing for n-grams was instead done after the
preprocessing.

Following the feature engineering, preprocessing steps were applied to the
URL features, which are common in natural language processing. The URLs
were tokenized. It was made sure that all tokens are lower case and do not
contain any white spaces. Additionally, stemming was applied.

Lastly, t f id f vectorization was applied to uni- and bigrams built from the
URL features. Corpus-specific stopwords were removed, by omitting all features,
which appear in more than half of the URLs. The hyper-parameters of the
feature engineering, the preprocessing and the vectorization were optimized
with a grid search [25].

By extracting URL features in this manner, a few beneficial properties can
be achieved. The number of features is reduced substantially. The URLs in the
training dataset contained 28307 unique terms. After the feature engineering
and preprocessing 2595 feature terms remained, which resulted in a final 8386
features after the t f id f vectorization. So the training data consisted of 27197
URLs each transformed into a 8386 dimensional sparse vector of weighted term
frequencies.

5.2.2 Machine Learning Method - Random Forest Classifier

For the URL based classification, Random Forest and linear models with Stochas-
tic Gradient Descent learning were compared. Scikit-learns Random Forest
Classifier [26] and SGD Classifier [27] were used. The best classification perfor-
mance on the test dataset could be achieved with the Random Forest Classifier.
Mostly the default parameters of the scikit-learn implementation were used.
Only the number of estimators was set to 1000. Different hyper-parameter

27

5 WEB PAGE CLASSIFICATION

settings were tested via grid search [25] without improving the prediction
performance.

5.3. Page Content Based Classifier

The second homepage classification model uses the web page text and numeric
features, which describe structural properties of the web page. It was observed
that many researcher homepages are comprised of a certain set of content
elements, like the contact information, the researchers academic background
and current activities, a listing of publications, the persons affiliations or an
image of the researcher. The variety in the composition of those elements is
very high, as some homepages only consist of the researchers image and the
contact information, whereas others contain any number of those elements or
have the information scattered over multiple pages. Despite this difficulty, it
is assumed that basic text and numeric features constructed to capture those
content elements, are sufficient for the classification.

5.3.1 Page Content and Structural Features

To obtain the features for each web page the text content of the title tag, the h1
tag, and the remaining visible text of each web page were extracted from the
RAW-html. The title and h1 texts were tokenized, stopwords and punctuations
were removed and prefixed with an identifier for their respective html tag. It
is assumed that the information about the text source can be quite beneficial
for the classification model. The remaining visible text of each web page was
filtered by the length of the text segments. Text segments that contain less than
7 words were disregarded. Initially this was meant to reduce the noise in the
text data by removing web page components, such as navigation. Through
experimentation, it was found that removing longer segments (length > 3)
produces better prediction results. Stopwords, punctuations and terms, which
could not be found in Wordnet [24], were also removed. Finally, the remaining
text for each page was tokenized and lemmatized. The processed title, h1
and page texts were concatenated, uni-, bi-, and trigrams were constructed
and vectorized via t f id f . The number of features produced by t f id f was
limited to 20000. Of the 110771 unique terms (before any preprocessing) 20000
features were generated. Experiments with multiple parameters settings for the
preprocessing were conducted. The preprocessing procedure described above
produced the best prediction results on the validation dataset.

In addition to the text based features, six simple numeric features were
extracted from the html data for each web page. Those are the number of
tables on the page, the number of links referencing an external web location,
the number of links referencing an internal location, the number of images on
the page, the number of person names in the html title tag and the number of

28

5.4 Results

person names in the h1 tag. When counting the number of images, size and
ratio limitations were applied to disregard irrelevant image types, like banners
and icons. The purpose of the number of tables, links and images is to rule out
certain non homepage types. A web page, for example, that has many tables or
images is unlikely to be a homepage. The extraction of the person names was
done with a pre-trained named entity recognition model ("en_core_web_lg")
from the spacy library [28]. It was observed that the title tag on homepages
often times contains the researcher name. The number of person names is
therefore assumed to be a strong indicator for homepages. Still, it has to be
noted that the named entity recognition in itself is a complex task. The person
name extraction is certainly not flawless and introduces an error to the training
data. That being said, the benefit of adding the numerical features could be
verified through experimentation. Finally, numeric features were normalized
with the scikit-learn MinMaxScaler [29] and concatenated with the vectorized
text features. Each of the 27197 web pages is then represented by a sparse vector
of length 20006.

5.3.2 Machine Learning Method - Support Vector Machine

For the page content based web page classification, Random Forest and linear
models with Stochastic Gradient Descent learning were compared. The best
classification performance on the test dataset could be achieved with a Support
Vector Machine (SVM) using the modified huber loss function [27]. Multiple
hyper-parameter settings were tested via grid search, but the default parameters
performed the best.

5.4. Results

In this section, the results for the URL based, the page content based, and the
combined model for the classification of homepages are presented (Table 2). For
the combined model results, the estimated probabilities of the two individual
models were multiplied, i.e.

Pcombined(y|x) = Purl(y|x) ∗ Ppage(y|x).

The prediction performance is high for the individual as well as the com-
bined model for the validation data. The URL feature based model has a F1
Score of 92%, the page content feature based model 96% and the combined
model 97%.

On the test data, the individual models show low precision with 18% and
12% for the URL based and the page content based model, respectively. A
significant increase in prediction performance could be achieved by combining
the two individual classification models. The precision for the prediction of
homepages was increased to 68% for the combined model. The recall of the

29

5 WEB PAGE CLASSIFICATION

Validation Data Test Data

Model Label Precision Recall F1 Score Precision Recall F1 Score

Page
Content

0 0.97 0.94 0.96 1 0.58 0.73

1 0.94 0.97 0.96 0.12 0.97 0.22

Url
0 0.91 0.91 0.91 0.99 0.77 0.86

1 0.92 0.92 0.92 0.18 0.84 0.29

Combined
0 0.95 1 0.97 0.98 0.98 0.98

1 1 0.94 0.97 0.68 0.69 0.68

Table 2: Results of the Web Page classification for the URL feature based, page content feature
based and the combined model for the validation and the test dataset. The combined
model is the product of the prediction probabilities of the two individual models. The
decision threshold for the combined model was increased to 0.62. Label 1 denotes
homepages, label 0 non homepages.

prediction of homepages decreased from 97% and 84% to 69%, whereas the
F1 score increased from 22% and 29% for the page content and URL based
model to 68% for the combined model. The test dataset is highly imbalanced
as it contains 1414 non homepages and 86 homepages. By combining the two
individual models, the number of false positives dropped from 595 and 331
to 28 and the number of false negatives increased from 3 and 14 to 27. The
increase in precision therefore has a significantly bigger impact on the quality
of the resulting dataset then the decrease in recall.

5.5. Evaluation and Discussion

In this section, additional findings are discussed. In section 5.5.1 and 5.5.2 the
feature extraction of the two individual models is evaluated. The most frequent
terms and the most important features are assessed. In section 5.5.3 common
prediction errors produced by the models are analysed and potential improve-
ments proposed. In section 5.5.4 the improvements achieved by combining the
two individual models are examined.

5.5.1 URL Model Features: Evaluation

In this section, the relationship between term frequency and separability of
web page types for the URL based model is examined. Firstly, it is checked, if
the frequent terms seem fruitful for the separation of web pages. Secondly the
features, which contributed most to the predictions with the Random Forest,
are examined.

Figure 8 shows the fifteen most frequent terms in the preprocessed training
data for the URL based model, separated by homepages and other web pages.

30

5.5 Evaluation and Discussion

The most frequent term for the homepages is "tildenondict", which corresponds
with Gollapalli et al.’s [3] observation and is not surprising as most of the train-
ing data comes from the Computer Science Bibliography [23]. The second most
common term is "nondict". Although a lot of different terms are summarized
by this feature it appeared almost two times more often in homepage URLs
than in other web pages.

Figure 8: Top 10 term frequencies for prepro-
cessed URL features by label. Most
frequent features in scientist home-
pages are in orange. Most frequent
features in non-homepages in blue.

This corresponds with the obser-
vation, that many homepage URLs
contain the name of the scientist or
at least an abbreviation of that name.
It is assumed that other terms,
which would also not be in the term
dictionary but appear in non home-
pages, often contain underscores,
hyphens or numbers. This could
be the case in auto-generated URLs
or web locations where many simi-
lar pages can be found, like library
or news pages. The frequency of
keywords like "peopl", "profil" and
"staff" for homepages and "index"
and "event" for other web pages sup-
port the assumption of separability
of web pages by URL naming con-
ventions.

The frequency of other key-
words, such as "en", "id" and "view"
do not seem to be very fruitful for
the web page classification as they
could appear in either context. The
surface patterns, hyphenated words,
underscored words, and numbers as
query value appeared often for both
web page types, but are more promi-
nent in non homepage URLs. More
informative seems to be the pres-
ence of numbers and alphanumeric
terms in the path or alphanumeric
terms in the query. They appear
about 10 times more often in non
homepage URLs than in homepage
URLs. It was also found that certain bigrams seemed to be valuable for the web
page classification task. Those are the keyword "people" followed by either a

31

5 WEB PAGE CLASSIFICATION

Figure 9: Feature importance as produced by the Random Forest Classifier for the URL based
web page classification model. The thirty most important features are shown.

hyphenated or non dictionary word in homepage URLs and the succession of
two numbers, two hyphenated words or two underscored words in the URL
path of non homepages.

An examination of the feature importance measure produced by the Ran-
dom Forest Classifier verified that the trained model picked up the intended
relationship of web page type and URL term frequency. The feature importance
can be seen in Figure 9. 20 of the 23 most frequent features are in the top
31 of important features. The remaining eleven important features contain
keywords, such as "project", "catalog", "news" and "robot" (The robot.txt in
the root directory of a website contains instructions for web crawlers.) and
bigrams like "event" followed by a hyphenated word or a number followed by
the term "index". The first 30 of the important features explain almost 50% of
the importance measure, though almost 2000 of the 8336 features are needed to
explain 95% of the importance measure.

5.5.2 Page Content Features: Evaluation

In this section, the relationship between the term frequency and the separability
of web page types for the model based on page content is examined analogous
to the previous section. Support Vector Machines, however, do not inherently
provide a measure for the feature importance. Therefore the feature importance
for the page content features is discussed based on the mutual information
metric. Mutual information is, besides other metrics, used to identify important
features before the model training, e.g. for feature selection.

32

5.5 Evaluation and Discussion

(a)

(b)

Figure 10: a) The 45 most frequent, preprocessed page content features by label. Most frequent
features in homepages in orange; most frequent features in non-homepages in blue.
b) The 45 most important features based on mutual information.

33

5 WEB PAGE CLASSIFICATION

Examining the term frequencies for the web page content features, shown
in Figure 10a, two problematic effects of the proposed data extraction and
preprocessing were observed. Firstly, a bias towards university domains and the
computer science field was seen. Terms like "university", "computer science",
"research", and "engineering" appeared within the 10 most frequent terms for
homepages. The bias towards university domains was expected and unprob-
lematic, as the web page classification task was constrained to only university
web pages in the first place. But the bias towards the computer science field
was the result of the selection of data sources for the training data. The majority
of training data was extracted utilising the Computer Science Bibliography
(dblp). Secondly, most of the frequent terms seem to be not fruitful for the web
page classification. For example, "system", "information", "data", and "interna-
tional" for homepages, and "medium", "titlevaluepersonal", and "find" for non
homepages.

The inspection of the feature importance, shown in Figure 10b, also revealed
a bias towards university domains and the computer science field. Out of the
first 15 important features six were related to those areas. Furthermore, there
seems to be an additional bias towards the University of Munich. Although
only a small subset of the training data was obtained from the University of
Munich domain, the feature importance measure indicated that the presence
of the terms "munich" or "lmu" in the title was important for separating the
two web page types. This is clearly not the case. Also, multiple other terms
("system", "www", "de", "http") were found in the important features, which are
very unlikely to actually impact the separability of web page types.

Besides those problematic aspects, there were also indicators for the usability
of the simple relationship of term frequency and web page type. There was a
significant separation of terms, which often appeared in homepages and terms,
which often appeared in other web pages. Also key terms like "professor",
"titlevaluehome", and academic titles in the title or h1 tag strongly indicate a
homepage, whereas uni-, bi- and trigrams containing the term "course" or the
terms "material", "titlevalueindex", and "titlevaluelab" indicate other web page
types. The simple numeric features seem to work as intended. The presence of
a person’s name in the title or h1 tag were ranked first and sixth, the number of
external and internal links seventh and 23rd, and the number of images 11th in
the most important features. The first 40 most important features explained 9%
of the feature importance measure. To explain 95% of the feature importance
measure, 14388 features were needed.

5.5.3 Improvements of the Web Page Classification Models

In this section, common errors of the models are examined and possible im-
provements for the data acquisition and the feature extraction for the individual
models are proposed.

34

5.5 Evaluation and Discussion

URL Purl(y = 1|x) Ppage(y = 1|x) Error Type

(1) http://www-users.cs.york.ac.uk/∼susan/sf/dani/PS_019.htm
.73 .14

false
positive

tildenondict, nondict, nondict, underscoredword
(2) https://www.ifm.uni-hamburg.de/en/datenschutz.html

1 .79
en, nondict

(3) https://www.york.ac.uk/economics/our-people/staff-profiles/john-hutton/
.37 .88

false
negative

economics, hyphenatedword, hyphenatedword, hyphenatedword
(4) http://carvermead.caltech.edu/research.html

.58 .74
research

Table 3: Selection of URLs of falsely classified web pages. Features are shown in the second
row for each URL. Purl(y = 1|x) is the prediction probability produced by the URL
based model for a web page being a homepage given its feature vector x. (1) was falsely
classified by the URL model only, (2), (3), (4) were falsely classified by the combined
model.

During the development of the models, the hyper-parameter tuning was
done using either a validation subset of the training data or cross validation as
part of the grid search [25]. The prediction performance of the models was con-
sistently high for the validation data. In addition, no overfitting, i.e. a decrease
in training error without a decrease in validation error, was observed. This
indicates that the engineered features and chosen machine learning methods
are suitable for the attempted binary web page classification.

The generalization capabilities, on the other hand, were sub-par. The most
obvious reason is that the training dataset does not contain enough of the
relationships and patterns necessary. Only a small subset of the training data
was manually selected and labelled and the majority of the training data was
obtained from the Computer Science Bibliography [23]. This introduced a
bias towards the computer science field to the training dataset. A common
measure to improve the generalization is the use of more training data. This
would increase the amount of relevant and not yet seen patterns in the data and
diminish the effect of the bias. Ideally, gold standard data sets for the web page
classification task would be utilized, or a substantial amount of data from many
different universities, cultures and faculties would be manually selected and
labelled.

Another measure to improve the generalization is the addition of new
features, which capture new patterns in the data, which are relevant for the
web page classification. The evaluation of the errors produced by the URL, the
page based, and the combined model gives insight about how the addition of
new features could increase the precision. Table 3 shows example errors made
by the URL based model. A frequently occurring error was the classification
of a non homepage as homepage, if the tildenondict feature was present. In
the majority of those cases, the tildenondict element was followed by one or
more URL path or query elements. Homepage URLs however often end with
the tildenondict feature. URL (1) in Table 3 is such a case, where the URL

35

5 WEB PAGE CLASSIFICATION

Figure 11: Common error of the page content based model. The title of the page contains a
person name.

based model misclassified a book review web page as homepage. Prof. Susan
Stepneys’ actual homepage is at "https://www-users.cs.york.ac.uk/∼susan. It
is assumed that the lack of sequence information, beside the use of bigrams,
leads to this kind of error. New features representing the beginning and end
element of the URL could reduce those errors.

An example for another error, which resulted from the handling of different
languages during the feature engineering, is shown in Table 3 (2). In this work,
only web pages with at least one English portion of text were used. However,
data from multiple German universities were utilised. With the proposed
feature engineering, any German word appearing in the URL is encoded as
nondict, disregarding its actual meaning. This introduces noise to the training
data in two ways. Firstly, the keyword "en", which was often present in URL
routes for the English variant of a web page, was falsely learned by the model
as being relevant for the classification. Secondly, the nondict feature, which
was designed to capture named entities and abbreviations, gets distorted by the
addition of non English words, which actually have a proper meaning. Adding
the keyword "en" to the stopwords, translating all terms to English before the
feature engineering or only using data from English universities could reduce
this kind of error.

Table 3 (3) shows a similar error type. The meaning of the URL route
terms was disregarded by the encoding as hyphenated words. This could be
circumvented by encoding the individual words of the hyphenated terms. In
this case keywords like "people", "staff", "profiles" followed by a nondict would
strongly indicate a person related web page.

An examples for the limit of the URL based model is shown in Table 3
(4). The URL leads to the homepage of Prof. Carver Mead but the URL route

36

5.5 Evaluation and Discussion

does not contain relevant information. It could be argued that the subdomain
elements of the URL should be included as feature, as in this case the Professors
name is present as subdomain element. But it was found that in many cases
the subdomains hold information about the faculty, the scientific area or the
laboratory (which sometimes was denoted by a person name). The former is
assumed not to improve the separability as only web pages from university
domains were used. The latter two might even introduce more noise. The bias
towards the computer science field could be reinforced by adding the scientific
area. Adding non person entities, which have person names would add a
misleading relationship to the data.

When examining common errors of the page based model, it is concluded
that a more elaborate feature engineering for the text content of web pages is
necessary to increase the precision of the classification. The simple features
utilised in this work perform pretty well for typical homepages (high recall),
but because of their simplicity only allow for a rough classification (very low
precision). The page based model misclassified non-homepages as homepages,
which only roughly resembled a homepage. Index pages for scientific authors,
for example, were confused as homepages. Fig. 11 shows such an index page.
It is assumed that the small amount of text content paired with the presence of
a person name in the title tag leads to the misclassification. The presence of a
person name in the title is a strong indicator for a homepage only if combined
with homepage specific web page attributes.

An improvement could be achieved by substantially expanding the stop-
words used in the preprocessing of the page content features. As seen in section
5.5.2, many unigrams appeared in the important features although it is unlikely
that they actually contribute to the separability of the two web page types. A
more elaborate method could be topic modelling applied to the page content
features. Gollapalli et al. [2] propose Latent Dirichlet Allocation (LDA) as part
of the feature engineering. In LDA, a document can be regarded as a collection
of topics and the presence of each term in the document contributes to one or
the other topic. The topic distribution of a web page would then be used as
features for the classifier.

5.5.4 Combined Model: Prediction Probabilities

The prediction results of the combined model were achieved by multiplying the
prediction probabilities of the URL based and the page content based model.
The prediction probability can be interpreted as a measure for the confidence
with which a prediction was made.6 By multiplying the prediction probabilities

6For binary classification the prediction probabilities with respect to class 1 are equal to the
converse prediction probabilities with respect to class 0. Here, only the prediction probabilities
with respect to the classification of homepages are examined. Prediction probability values
close to 0 or 1 a therefore considered confident, values close to 0.5 are considered uncertain.

37

5 WEB PAGE CLASSIFICATION

Figure 12: The prediction probabilities of the web page classification of the test dataset. The test
dataset is highly imbalanced. The decision threshold was adjusted to 0.62. Figure
(A) shows the prediction probabilities for non homepages. Figure (B) shows the
prediction probabilities for homepages. Figure (C) shows the prediction probabilities
for the combined model coloured by predicted label.

only the homepage predictions, which are confidently made in both models,
stay confident predictions in the combined model. Any insecurity of either
of the models further reduces the confidence value for the combined model.
The classification of the web page type was done using a threshold value for
the prediction probabilities. For a binary classification, the decision threshold
defaults to 0.5, but was set to 0.62 for the combined model, which increased
the prediction performance. So, a web page was classified as homepage, if the
prediction probability was greater than or equal to 0.62 and classified as non
homepage if the prediction probability was less than 0.62.

Figure 12 shows the prediction probability values produced by the URL
based, the page content based, and the combined model for the test dataset.
Figure (A) shows the prediction probability distribution for known non home-
pages. Prediction values greater than 0.62 are therefore prediction errors. The
URL based model confidently predicted (prediction probability <= 0.2) around
44% of web pages as non homepages. The page content based model only
predicted 20% of non-homepages confidently. Its distribution of prediction
probabilities shows that the majority of predictions are around the 0.5 value
and can therefore be considered uncertain. The distribution for the combined
model shows the previously stated decrease in classification error, as well as an
increase in the number of confident non homepage predictions. Here 74% of
predictions were done with a prediction probability of <= 0.2.

Figure (B) shows the prediction probabilities for known homepages. The
URL based and the page content based model show similar prediction probabil-
ity distributions. Of the predictions, 71% and 75% are made with a confidence
of greater than 80% by the URL based model and the page content based model,
respectively. The distribution for the combined model shows a decrease in con-
fident homepage predictions and the previously stated increase in classification

38

5.5 Evaluation and Discussion

error. Hence, only 52% of homepage predictions are done with a confidence
value of greater than or equal to 80%. Because the test dataset was highly
imbalanced and contains only 86 homepages, the shown distributions should
only be interpreted as tendencies.

Figure (C) shows the prediction probabilities for the combined model
coloured by the known web page type. The decrease in classification error
achieved by the adjustment of the decision threshold to 0.62 can be observed.
Also it can be seen that, although there is a significant amount of uncertainty
left in the predictions, there are no confidently made prediction errors.

39

6 HOMEPAGE OWNER IDENTIFICATION

6. Homepage Owner Identification

The step following the identification of researcher homepages is the extraction
of information from the identified web documents. Exemplary, the researcher’s
name was extracted. To identify the homepage owner, firstly, all person names
appearing on the web page were extracted. Secondly, a classifier was trained
that predicts the probability of a name belonging to the homepage owner. The
first subtask is a special case of a Named Entity Recognition (NER) problem,
the second is formulated as binary classification task. The machine learning
algorithm used for the second subtask was a Random Forest Classifier with
mostly default hyperparameters. Only the number of estimators was set to 30
and the minimum number of samples required for a node to be a leaf node was
set to 15. Those values were found through experimentation.

For the first subtask, a publicly available NER model was used. To find the
best performing NER model for the person name extraction from web page text
segments, a comparison was conducted.

The results of that comparison are presented in section 6.1. The sampling and
preprocessing of the data for the homepage owner identification is described in
section 6.2. The results are presented in section 6.3, which is followed by the
evaluation of the developed model in section 6.4.

6.1. Named Entity Recognition Model Comparison

To get a rough idea which of the publicly available NER models is likely to
perform best in the person name extraction, a simple comparison was done for
three NER models of the spacy library [30] (en_core_web_sm, en_core_web_md,
en_core_web_lg), the NER model of the nltk library [31] and the Stanford
Named Entity Recognizer [32]. To generate testing data, lists of frequent first
and last names were obtained from the US Census Bureau [33]. 750 male
and female first names with varying length and number of abbreviations were
randomly generated and suffixed with a randomly selected surname. This
produces names like "Aretha Randee Bagaoisan", "Ora G. J. Mattock" and "X.
Laine".

In the first step, it was evaluated how well those randomly generated
names by themselves are recognized by the NER models. Also basic means of
combining the results of two models were evaluated. Those are the union and
intersection of results of two models. It is expected that the union of results
has a higher recall and the intersection a higher precision than the individual
models. The worst performing individual model came from the nltk library
achieving an accuracy of 42% and an F1 score of 59%. The Stanford Named
Entity Recognizer performed best in extracting randomly generated names with
an accuracy of 96% and an F1 score of 98%.

Based on the assumption that the person name that appears in the title

40

6.2 Sampling and Preprocessing

Test Sentence True Name

(1) Homepage of C. Ignacio Baierl C. Ignacio Baierl

(2) Prof. Dr. Eric Aulder | The Insight Centre for Data Analytics Eric Aulder

(3) Brigida J. C. Heilig | TAMU Brigida J. C. Heilig

(4) Overview | Staff | nbrooks -

(5) The Gordon Lab -

Table 4: Example sentences for the NER model comparison. Academic titles should be disre-
garded. (4) and (5) are negative examples. No person name should be found here.

or header tags of a homepage is most likely the homepage owners name, the
second comparison was done constructing test sentences similar to homepage
titles and headings. Thirty-one test sentences were constructed and augmented
with 50 random person names each. Example test sentences are shown in
Table 4. Table 5 shows the performance metrics for a selection of models. The
Stanford NE Recognizer performed best. The Stanford model ranks first in F1
score (91%) followed by the union of the Stanford and medium spacy model
(F1 : 86%).

Stanford stanford ∪ spacy_md spacy_md spacy_lg stanford ∩ nltk spacy_sm nltk

F1 Score 0.91 0.86 0.78 0.68 0.67 0.61 0.59

Precision 0.86 0.77 0.71 0.58 0.99 0.54 0.46

Recall 0.96 0.98 0.87 0.85 0.5 0.71 0.86

Table 5: A selection of results of the NER model comparison for test sentences similar to
homepage titles and headings.

As this experimental setup is very basic and was only meant to get an idea
of the general performance of some of the publicly available NER models, small
differences in any of the metrics are not significant. All the individual models
beside the Stanford NE Recognizer are found to be in the middle or even the
end of the list of compared models. The combination of models lead to higher
recall (for union) and higher precision (for intersection) with a loss in the other
metrics. Therefore, the Stanford Named Entity Recognizer was selected for the
preprocessing step of person name extraction.

6.2. Sampling and Preprocessing

The source of the training and test datasets for the scientist identification was the
same data used for the web page classification task. Training data was obtained
by randomly selecting 1705 web pages of the web page classification training
dataset. The test dataset was obtained by randomly selecting 83 web pages
from the web page classification test dataset. Both datasets were preprocessed
in the same way. The preprocessing is described next.

41

6 HOMEPAGE OWNER IDENTIFICATION

Firstly, the person names were extracted for each web page utilising the
Stanford Named Entity Recognizer Server (sner) module [34]. The sner variant
is substantially faster than the nltk python interface.

Secondly, different spelling variations of a name, in terms of number and
abbreviation of first-names, were merged favouring the longest name. For
example, the names "John A. Doe", "John Doe", "A. Doe", "J A Doe" would all be
merged to "John A. Doe". This obviously is a very basic approach only meant
to capture some of the different naming conventions found in publication lists.
Different name order, short forms of names or nicknames were not covered. For
the 1705 web pages in the training dataset, 36123 person names were extracted.
For the 83 web pages of the test dataset 2106 person names were extracted. One
of the extracted and merged person names per page was manually labelled as
homepage owner. So it was not attempted to find the full, written out name of
the scientist. A prediction is rather considered correct, if the predicted name
is equal to the manually labelled, longest name variant appearing on the web
page.

Thirdly, three categorical and four numerical features were extracted for
each name. Those are the flags for the appearance of the name in the title, and
any h1 or h2 tag. The numeric features are the total number of occurrence of
the name, the count of the name in the first half of the page, the count of the
name in the first third of the page and the number of parts a name consists of.

The categorical features are inspired by Gollapalli et al [2]. They propose
the simple heuristic that the person name that appears first on the web page
is actually the name of the homepage owner. Although they report only 30%
exact matches, they argue that the Jaccard similarity 7 of the extracted and
actual names of 80% shows that most extraction errors are due to name spelling
variations.

In this work, instead of relying on the order of appearance of names on a
web page, the source tag of the name was utilised. It was observed that the
order of names on the rendered web page is not necessarily the same as the
order of names in the html code. This could be the case when a navigation
element of the web page lists the names of the scientist. In such cases the name
order heuristic would only rely on the title of the page.

The numeric features were designed to support the classification if none of
the person names for a page appear in the title or the h1 tag. It was observed
that on homepages, that contain publication lists, the homepage owner’s name
appears more often than the co-researchers’ names. Also a name that appears
often on the page but not often at the top is unlikely to be the homepage owner.
Most scientist names on homepages in the training data consist of two parts,
a first and a last name. The number of parts a name consists of was added to

7The Jaccard similarity measures similarities between sets. The Jaccard similarity J(A, B)
given sets A and B is defined as: J(A, B) = A∩B

A∪B .

42

6.3 Results

Figure 13: Shows the feature importance for the homepage owner identification model as
produced by the Random Forest Classifier.

rule out name extraction and name merging errors. Names consisting only of
one or a lot of parts are likely to be a preprocessing errors.

Finally, the three name count features were standardized by calculating the
z-scores 8. As the range of values of the number of occurrences for different
web pages is very large, the standardization was done for each URL separately.
In this manner, the relation of the values for each web page are kept while still
producing similar value ranges for the total dataset.

Figure 13 shows the feature importance measure produced by the Random
Forest Classifier. It can be clearly seen, that the majority of the predictive
capability of the trained model comes from the two categorical features. Those
first two features already explain 74% of the importance measure. To explain
95% of the importance measure, all three name count features are needed.

6.3. Results

The results for a baseline heuristic and two feature subsets for the homepage
owner identification model are presented in this section.

Validation Data Test Data

Model Precision Recall F1 Score Precision Recall F1 Score

(1) 0.93 0.84 0.88 0.95 0.92 0.93

(2) 0.93 0.92 0.92 0.95 0.93 0.94

(3) 0.96 0.91 0.94 0.95 0.93 0.94

Table 6: The performance of homepage owner identification models. (1) is the baseline heuristic,
(2) is a model with the four most important features (appearance in title and h1 tag,
total name count and name count in the first half of the web page), (3) is the model
with the full feature set.

It has previously been stated that the presence of a person name in the title
tag is a strong indicator, that the name belongs to the homepage owner. A

8The z-score zi, given observation xi, the sample mean µ and the sample standard deviation
σ is defined as: zi =

xi−µ
σ

43

6 HOMEPAGE OWNER IDENTIFICATION

Figure 14: Shows the partial dependency plot for the "number of name parts" feature of the
homepage owner identification model. Below the x-axis the distribution is shown.

simple baseline heuristic using this observation was utilised to evaluated the
effect of additional features. For the baseline, a person name was predicted
to be the homepage owner’s name if it appeared in the title. Table 6 shows
the performance measures for the baseline and two sets of features. Table 6 (1)
shows the results of the baseline heuristic. It already achieved 88% F1 score for
the validation data. The model (2) is using the four most important features,
i.e. appearance in title and h1 tag, total name count and name count in the first
half of the web page. It has a 4 percentage point higher F1 score.

With the model using all seven features (3) an increase in precision of 3
percentage points could be achieved, resulting in a F1 score of 94%. However
the recall is slightly reduced, if compared to model (2).

The results for the test data are added to Table 6 to indicate, that the built
models generalize well. Due to the fact, that the test dataset is quite small and
small differences in the performance metrics can therefore not be considered
significant, it is not used to compare the models.

6.4. Evaluation and Discussion

Most interestingly, the even more simple heuristic than the one proposed by
Gollapalli et al. [2] performs very well. Although the html code for similar
looking web pages as well as the usage of certain tags for certain page elements
can differ quite a lot, as not every developer follows the same coding standard,
the convention of writing the persons name in the title tag of homepages seems
to be widely held. Using only the information about the appearance of the
name in the title, 84% of homepage owners could be identified, while only
producing 7% false positive errors. Obviously, this approach is dependent on
the quality of the name extraction.

By adding a few simple features the prediction performance could be in-

44

6.4 Evaluation and Discussion

Figure 15: Classification results of the homepage owner prediction by confidence intervals.
A random sample was drawn for each of the confidence intervals and manually
classified. Correct classifications in bin 1, person identification model errors in bin
0, homepage classification errors in bin -1.

creased. Although some of the features are listed with very low importance
for the classification done by the Random Forest as seen in Figure 13 (i.e. the
name count in the first third of the page, the name appearance in the h2 tag
and the number of parts a name consists of), they still improve the precision by
3 percentage points. When examining the partial dependency plot (Figure 14)
for the number of parts a name consists of, an increase in probability for the
name to be the homepage owners name is observed for the transition from a
name consisting of one to two parts. This feature seem to rule out a particular
error. If a name only consists of one part it is less likely for the name to be the
homepage owners name.

The examination of the errors produced by the classifier give hints for
improvements of the model. Of the 15 false positive errors around 80% are due
to name extraction and name merging errors. For the name extraction errors,
either no person at all (e.g. "Carnegie Mellon", "-RRB-", "GeNeura Team") or
only part of a name were extracted. The latter was found in cases, where special
characters appeared in between the name components. In "Robert (“Bob”) Elliot
Kahn" the names "Robert" and "Elliot Kahn" were extracted separately.

For the merging errors three types could be found. Firstly, nicknames are
not handled (e.g. "Ted" denotes the same person as "Theodore"). Secondly,
different spelling for umlauts or the presence / absence of accents is not unified.
Thirdly, different ordering of names is not handled. Improvements of the name
merging approach could be achieved through the equalization of the spelling
before the comparison of the names and the addition of comparison cases for
name ordering and nicknames.

When applying the person identification model to homepages predicted
by the web page classifier, falsely classified web pages will have a detrimental
effect on the performance of the person identification. In a sample of predicted
homepage owners the errors for different intervals of person identification
confidence were examined. Figure 15 shows the prediction results for the 10-
30% and the 30-50% confidence interval for that sample. In the bottom interval

45

6 HOMEPAGE OWNER IDENTIFICATION

72% of homepage owner predictions are false and 86% of the errors are due
to homepage classification errors. In the 30-50% confidence interval only 34%
of homepage owner predictions were false, but the proportion of homepage
classification errors is still high with 69%. Instead of the default value of 0.5
for the decision threshold, it was reduced to 0.3. So in the application of the
model, the person name with the highest confidence value for each homepage
is selected, omitting predictions with less than 30% prediction probability. In
this manner, a substantial amount of correct person names could be added
to the resulting data, while introducing an acceptable amount of error. With
further improvements of the homepage classifier, that threshold could further
be reduced.

46

7. Runtime

In this work, the focus was the development and analysis of a machine learning
approach for the information extraction from web documents. Optimizing the
runtime was therefore postponed to a later phase, when the developed method
should be applied to a web size corpus. Until now, python was used for most
of the components, as it allows for fast development and prototyping. To get an
idea of the runtime of the components and where optimization might be most
impactful, rough runtime estimates are given in this section. The development
machine was a AMD FX(tm)-8150 Eight-Core Processor at 3.6 GHz. It has 32
GB of Ram. When possible, parallel processing was utilised. The download
of the storage locations and the WARC data was bound by the download rate
allowed by the Common Crawl and Amazon Web Services servers. Querying
the Common Crawl index server to get the storage locations of the WARC data
in AWS for three different crawls took 1 hour for 5k entries. Downloading
the WARC data from AWS for 400k web pages took 3 hours 9. Extracting the
features for the homepage identification model for the 400k WARC files took 8
hours and the application of the model to the extracted features 2 hours. The
majority of the runtime of the model application was the preprocessing of the
features. The actual prediction with the model takes merely minutes. In an
optimized pipeline, the feature extraction and preprocessing could be done at
the same time and should be implemented in a more efficient programming
language. Extracting the features for the researcher identification, namely the
person name extraction with the Stanford NER server, the merging of different
name spelling, and the collection of metrics for each name took 1 hour for
6k web pages. The prediction (including the preprocessing) of the correct
homepage owner on the 300k names extracted from those 6k web pages then
took 20 minutes.

9A vastly different download time has be observed in one of the data acquisition attempts.
A lot of server side connection termination and name resolution errors were the reason for
continuous retry attempts. Those where handled with exponential back-off. Downloading 80k
web pages then took 1 day and 15 hours.

47

8 CONCLUSION

8. Conclusion

8.1. Summary

In this thesis a machine learning approach for the identification of researcher
homepages and the extraction of the researcher name was investigated. A F1
score of 68% could be achieved for the identification of homepages and a F1
score of 94% for the identification of the researcher name for the respective test
data. The html data for the training of the models and the application of the
models in the homepage and researcher identification pipeline was obtained
from Common Crawl. Common Crawl provides easy access to web page html
and meta data through web APIs. As the data is stored in the Amazon Web
Services, it can be also accessed with cloud compute, enabling scalability to
big data approaches. The model trained for the identification of homepages
performed well, considering the issues with the training data sampling. The
good performance on the validation data indicates, that the two view approach,
the choice of features and machine learning algorithms are well suited for
the homepage identification task. The examination of the researcher name
identification revealed i.a., that the convention of writing the researcher name
in the title of the homepage is widely applied. A heuristic based on that
observation was refined with a machine learning setup to improve the name
extraction significantly.

8.2. Future Work

The poor generalization capability of the individual homepage identification
models leads to prioritizing possible improvements to the individual models in
any future work. The pitfalls and suggested improvements of the training data
sampling and the individual models feature extraction and selection have been
discussed in detail in the sections 5.5.1, 5.5.2 and 5.5.3. Therefore, necessary
improvements regarding a future work will be only summarized in this section.
After that, potential next steps for the homepage identification and expansions
on the information extraction aspect of this work will be outlined.

To develop a classifier that performs well in a real world scenario, the quality
of the training data has to be improved. This can be achieved by acquisition and
evaluation of gold standard datasets and the manual selection and labelling of
web pages. The aim should be an unbiased dataset which covers a sufficient
amount of various homepage types and ideally counter-examples, that are
similar to homepages.

As for the individual models, the URL based model could be improved
by adding information about the beginning and end elements of a URL and
by better handling of non-English languages and composite terms. Kan [7]
proposes methods of segmentation of composite terms and also expansion of

48

8.2 Future Work

abbreviations, which could be added to the feature set presented in this work.
The already discussed improvements for the page content based model are the
expansion of the stopwords used in the preprocessing and topic modelling with
Latent Dirichlet Allocation [2]. As in both cases the feature sets are very large,
feature selection techniques should be utilised. By removing less important
features, a reduction in noise in the data can be achieved. This is more important
for non-tree-based machine learning methods as they do not inherently select
important features. If the improvements lead to a classification model that
performs sufficiently well on unseen real world data, further steps, which
address the special properties of web page data are applicable. One of the
special properties is the change of conventions, coding or design standards and
tools for web development over time and subsequently the change in the data
representing web page types. Another one is the accessibility of a vast amount
of unlabelled data. Under such circumstances semi-supervised methods are
often applied. Gollapalli et al. [3] have shown that co-training is well suited
for the web page classification. Combining the improvements to the prediction
probability estimates proposed by Tanha et al. [35] with a co-training approach
could be the next step.

As for the homepage owner identification, improvements could be achieved
with better name extraction and name merging procedures. Further work
could be done in expanding the information extraction. Beside the name of
the researcher, multiple other topics are of interest. For example the research
field, the contact information, the image of the person, the members of the
researchers team etc.

49

9 ACKNOWLEDGMENTS

9. Acknowledgments

Firstly, I want to thank my supervisor Prof. Dr. Hannah Bast for the guidance,
continuous assistance, as well as the numerous suggestions provided throughout
this thesis.
I further want to thank my colleague Nils Flaschel. Our many discussions
always left me with new ideas and opportunities for improvement.
Last but not least, I want to thank my family for the unconditional support and
the family cohesion I experienced in the difficult times we had.

50

10. References

[1] Internet-Live-Stats, Internet live stats: Total number of websites, http://
www.internetlivestats.com/total-number-of-websites/, Accessed:
2019-02.

[2] S. D. Gollapalli, C. L. Giles, P. Mitra, and C. Caragea, “On identifying
academic homepages for digital libraries”, in Proceedings of the 11th annual
international ACM/IEEE joint conference on Digital libraries, ACM, 2011,
pp. 123–132.

[3] S. D. Gollapalli, C. Caragea, P. Mitra, and C. L. Giles, “Improving re-
searcher homepage classification with unlabeled data”, ACM Transactions
on the Web, vol. 9, no. 4, pp. 1–32, 2015, issn: 15591131. doi: 10.1145/
2767135.

[4] Common Crawl, Common crawl, https://commoncrawl.org/, Accessed:
2019-02.

[5] The Jupyter Project, Jupyter notebook, https://jupyter.org/, Accessed:
2019-02.

[6] Scikit Learn, Pipeline, https://scikit- learn.org/stable/modules/
generated/sklearn.pipeline.Pipeline.html, Accessed: 2019-02.

[7] M.-Y. Kan, Web Page Categorization without the Web Page. New York, NY:
ACM, 2004, isbn: 1581139128. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1013367.

[8] E. Baykan, M. Henzinger, L. Marian, and I. Weber, “A comprehensive
study of features and algorithms for url-based topic classification”, ACM
Transactions on the Web, vol. 5, no. 3, pp. 1–29, 2011, issn: 15591131. doi:
10.1145/1993053.1993057.

[9] X. Qi and B. D. Davison, “Web page classification:features and algo-
rithms”, ACM Computing Surveys, vol. 41, no. 2, pp. 1–31, 2009, issn:
03600300. doi: 10.1145/1459352.1459357.

[10] A. Onan, “Classifier and feature set ensembles for web page classification”,
Journal of Information Science, vol. 42, no. 2, pp. 150–165, 2016, issn: 0165-
5515. doi: 10.1177/0165551515591724.

[11] J. Boedecker, F. Hutter, and M. Tangermann, Machine learning, Albert
Ludwigs University Freiburg Lecture, 2017.

[12] C. Manning, P. Raghavan, and H. Schütze, “Introduction to information
retrieval”, Natural Language Engineering, vol. 16, no. 1, pp. 117–120, 2010.

[13] L. Breiman, J. H. Friedmann, R. A. Olshen, and C. J. Stone, Classification
and regression trees. CRC Press, New York, 1999.

51

http://www.internetlivestats.com/total-number-of-websites/
http://www.internetlivestats.com/total-number-of-websites/
https://doi.org/10.1145/2767135
https://doi.org/10.1145/2767135
https://commoncrawl.org/
https://jupyter.org/
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
http://dl.acm.org/citation.cfm?id=1013367
http://dl.acm.org/citation.cfm?id=1013367
https://doi.org/10.1145/1993053.1993057
https://doi.org/10.1145/1459352.1459357
https://doi.org/10.1177/0165551515591724

10 REFERENCES

[14] L. Breiman, “Random forests”, Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[15] L. Breiman, “Bagging predictors”, Machine learning, vol. 24, no. 2, pp. 123–
140, 1996.

[16] A. Criminisi and J. Shotton, Decision forests for computer vision and medical
image analysis. Springer Science & Business Media, 2013.

[17] B. Thomas, Optimization, Albert Ludwigs University Freiburg Lecture,
2016.

[18] T. Zhang, “Solving large scale linear prediction problems using stochastic
gradient descent algorithms”, in Proceedings of the twenty-first international
conference on Machine learning, ACM, 2004, p. 116.

[19] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning,
10. Springer series in statistics New York, 2001, vol. 1.

[20] Amazon Web Services, Common crawl registry of open data in aws, https:
//registry.opendata.aws/commoncrawl/, Accessed: 2019-02.

[21] WARC, The web archive format, https://iipc.github.io/warc-specifications/
specifications/warc-format/warc-1.1/, Accessed: 2019-02.

[22] Webkb, World wide knowledge base - 4 universities dataset, https://www.
cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/, Accessed:
2018-11.

[23] dblp, Computer science bibliography, https://dblp.org/, Accessed: 2018-
11.

[24] G. A. Miller, “Wordnet: A lexical database for english”, Communications of
the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[25] Scikit Learn, Grid search, https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.GridSearchCV.html, Accessed:
2019-02.

[26] Scikit Learn, Random forest classifier, https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestClassifier.html,
Accessed: 2019-02.

[27] Scikit Learn, Stochastic gradient descent classifier, https://scikit-learn.
org/stable/modules/generated/sklearn.linear_model.SGDClassifier.

html, Accessed: 2019-02.

[28] Spacy, Industrial-strength natural language processing, https://spacy.io/,
Accessed: 2018-11.

[29] Scikit Learn, Min-max scaler, https : / / scikit - learn . org / stable /

modules/generated/sklearn.preprocessing.MinMaxScaler.html, Ac-
cessed: 2019-02.

52

https://registry.opendata.aws/commoncrawl/
https://registry.opendata.aws/commoncrawl/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
https://dblp.org/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://spacy.io/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

[30] Spacy, Entity recogniser, https://spacy.io/api/entityrecognizer/,
Accessed: 2018-11.

[31] Nltk, Named entity chunker, https://www.nltk.org/api/nltk.chunk.
html, Accessed: 2018-11.

[32] Stanford Natural Language Processing Group, Name entitiy recognizer,
https://nlp.stanford.edu/software/CRF-NER.html, Accessed: 2018-
11.

[33] United States Census Bureau, List of frequent names, https://www.census.
gov/topics/population/genealogy/data/1990_census/1990_census_

namefiles.html, Accessed: 2019-01.

[34] Pypi, Name entitiy recognizer server, https://pypi.org/project/sner/,
Accessed: 2018-11.

[35] J. Tanha, M. van Someren, and H. Afsarmanesh, “Semi-supervised self-
training for decision tree classifiers”, International Journal of Machine Learn-
ing and Cybernetics, vol. 8, no. 1, pp. 355–370, 2017, issn: 1868-8071. doi:
10.1007/s13042-015-0328-7.

53

https://spacy.io/api/entityrecognizer/
https://www.nltk.org/api/nltk.chunk.html
https://www.nltk.org/api/nltk.chunk.html
https://nlp.stanford.edu/software/CRF-NER.html
https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
https://pypi.org/project/sner/
https://doi.org/10.1007/s13042-015-0328-7

	Introduction
	Problem Description
	Implementation and Main Aspects

	Related Work
	Theoretical Foundation
	Supervised Machine Learning
	Preprocessing Natural Language Data for Machine Learning
	Vectorization of Text Data with Tfidf
	Random Forest Classifier
	Stochastic Gradient Descent Training
	Imbalanced Class Labels
	Metrics

	Web Page Data Source
	Web Page Classification
	Sampling
	Training Data
	Test Data

	URL Based Classifier
	URL Surface Patterns
	Machine Learning Method - Random Forest Classifier

	Page Content Based Classifier
	Page Content and Structural Features
	Machine Learning Method - Support Vector Machine

	Results
	Evaluation and Discussion
	URL Model Features: Evaluation
	Page Content Features: Evaluation
	Improvements of the Web Page Classification Models
	Combined Model: Prediction Probabilities

	Homepage Owner Identification
	Named Entity Recognition Model Comparison
	Sampling and Preprocessing
	Results
	Evaluation and Discussion

	Runtime
	Conclusion
	Summary
	Future Work

	Acknowledgments
	References

