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Abstract

This thesis presents and describes x-search, a C++ library for string searching on external

data. x-search provides a basic framework for implementing pipeline-based procedures.

x-search provides a simple, ready to use API for searching patterns within file contents

that can easily be included within C++ projects. The main goals of the x-search library

include

• Performance: optimized multi-thread accelerated I/O and search routines.

• Usability: a simple yet powerful API for the most commonly used search result

types (byte offsets, line indices, lines) and simple inclusion to other C++ projects.

• Variability: a robust backbone that enables developers to optimize the process for

more specific use cases or to extend it by additional features.

The default components included in x-search work on text data encoded in UTF-8 and

provide an interface for working on preprocessed data using x-search-specific preprocessing

such as compression.

We further introduce a GNU grep-like executable called xs grep which uses x-search as its

backbone. We will show that xs grep performs multiple times faster than GNU grep (a

standard in exact string searching software on external data) on single files. We further

show that xs grep also outperforms ripgrep (a grep-like command line search tool with

better performances than GNU grep) in scenarios, in which the search process dominates

reading the data. Therefore, we present and discuss runtime comparisons of xs grep,

GNU grep and ripgrep on different hardware and with different search complexities (e.g.

case-insensitive or regex searches).
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Zusammenfassung

In dieser Arbeit wird x-search, eine C++-Bibliothek für die Stringsuche in externen Daten,

vorgestellt und beschrieben. x-search bietet ein Grundgerüst für die implementierung

von pipline basierten Prozessen. Außerdem beinhaltet x-search eine einfache API für die

Suche von Suchwörtern in Dateien. Zu den Hauptzielen der x-search-Library gehören

• Leistung: optimierte I/O- und Suchroutinen

• Nutzbarkeit: eine einfache, aber leistungsfähige API für die am häufigsten verwende-

ten Suchen (Byte-Offsets, Zeilenindizes, Zeilen) und einfache Einbindung in andere

C++-Projekte

• Variabilität: ein robustes Grundgerüst, das von Entwicklern erweitert und angepasst

werden kann, um den Prozess für spezifische Anwendungsfälle zu optimieren oder

zusätzliche Funktionen hinzuzufügen

Die in x-search enthaltenen Algorithmen arbeiten mit UTF-8 kodierten Textdaten und

bieten eine Schnittstelle für die Arbeit mit vorverarbeiteten Daten unter Verwendung von

x-search-spezifischer Vorverarbeitung wie zum Beispiel Kompression der Daten.

Darüber hinaus stellen wir ein GNU grep-ähnliches Programm namens xs grep vor, das

x-search als Grundlage verwendet. Wir zeigen, dass xs grep bei der suche auf einzelnen

Dateien um ein Vielfaches schneller ist als GNU grep (ein Standardprogramm für die

exakte Suche nach Zeichenketten in externen Daten). Wir zeigen außerdem, dass xs grep

in Szenarien, in denen die Suche das Lesen der Daten dominiert, auch schneller als ripgrep

(ein grep-ähnliches Kommandozeilen-Suchwerkzeug mit besserer Leistung als GNU grep)

arbeitet. Dafür präsentieren und diskutieren wir Laufzeitvergleiche von xs grep, GNU grep

und ripgrep auf unterschiedlicher Hardware und mit unterschiedlichen Suchkomplexitäten

(z.B. case-insensitive oder regex suchen).
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1 Introduction

String search is a fundamental problem in computer sciences with applications in diverse

fields such as information retrieval, natural language processing and bioinformatics. One

can distinguish between two major string-searching approaches. First is the full-text

search, which searches for matches of strings in individual database documents (Beall,

2008). This type of string search is often used in search engines that return a list of

documents that contain patterns of a search query. In order to increase the performance

of searching all documents of a database, the data are indexed (Ferragina and Grossi,

1999). The second type is the exact string matching problem. The exact string matching

problem involves finding one or all occurrences of a pattern p of length m in a text d of

size n (Charras and Lecroq, 2004).

This work focuses on the second type, the exact string search and its appliance in realistic

computer hardware systems. We define realistic computer hardware systems as systems

with limited computing power and primary memory. Thus, we consider string searching

on external data (e.g. data are stored on secondary memory).

String searching on external data refers to the problem of searching for a specific string or

pattern p within data d that are stored on secondary memory, such as a hard drive or a

network storage device. Searching external data differs from in-memory string searching,

where the entire data can be loaded into primary memory and searched using various

algorithms and data structures. We provide a more detailed and formal definition of the

problem in section 2.

One of the main challenges of string searching on external data is the limited size of primary

memory, which may not be sufficient to store the entirety of the data simultaneously. As

a result, we may only look at small chunks of the data at a time. The search results of

each chunk can then be combined to produce the final search result.
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Several approaches can be used to perform string searching on external data, depending

on the specific requirements and constraints of the problem. We will discuss some of these

approaches in section 3.

Preliminaries

This section formalizes terms that need a precise definition in the context of this work.

When we use any of the terms in the remainder of this work, it is to be understood with

the definition provided here.

Strings

An alphabet (Σ) is a finite set of characters. We define Σ to be the set of ASCII

(American Standard Code for Information Interchange) characters.

A string (s) over an alphabet Σ is any finite sequence of characters from Σ:

s ∈
⋃

n∈N0

Σn ⇐⇒ s ∈ Σ∗

Thus, Σ∗ denotes the set of all finite length strings over Σ.

Suffix: A string s is a suffix of another string t if and only if there exists a string p such

as ps = t.

A line (l) is a string of size n whose last character is the only newline character (’\n’,

ASCII code Fhex) within l:

l ∈
⋃

n∈N0

(Σ \ {Fhex})n−1 + Fhex
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A pattern (p) is a string of size m over Σ that must not contain a newline character:

p ∈
⋃

m∈N0

(Σ \ {Fhex})m

The size (or length) of a string s is the number of characters in s denoted by |s|.

A chunk (c) is a set of i lines (l0 to li−1).

Further Terminology

Primary memory refers to all kinds of computing memories directly accessible by the

processor via the data bus. Here we use this term primarily to refer to modern computer’s

RAM (Random Access Memory).

Secondary memory refers to all kinds of data storage not directly accessible by the

processor. When using the term external (e.g. ’external data’), we assume data to be

stored on secondary memory (e.g. SSD, HDD).

A task is a unit of work. In our case, a task is a unit of work that can be computationally

worked on. Examples are the task of reading or searching data.

I/O-bound describes the scenario where the runtime of a task is limited by reading or

writing data to/from secondary memory. Thus, a task is IO-bound, if the execution time

of the task is dominated by I/O processes such as reading from external memory. That

is, the processor cannot perform as much computation, as physically possible, because it

has to wait for new data to be loaded.

CPU-bound describes the scenario where the computing capabilities of the processor

limit the runtime of a task.

The bottleneck of a procedure (series of either I/O- or CPU-bound tasks) is the task

that requires the longest time to complete within the procedure.
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A pipeline is a series of data processing tasks where one task’s output becomes the

subsequent task’s input. Thus, the tasks rely on each other linearly, while the data can

be processed independently.

Motivation

In the past, efficient string searching algorithms such as the well-known Rabin-Karp (Karp

and Rabin, 1987), Knuth-Morris-Pratt (Knuth, James H. Morris, and Pratt, 1977) and

Boyer-Moore (Boyer and Moore, 1977) algorithms have been developed and formalized.

Those algorithms operate in-memory, meaning the pattern p and the string s remain in

primary memory. Those algorithms are asymptotically optimal (Baeza-Yates, Choffrut,

and Gonnet, 1994). However, naive implementations do not take into account physical

limitations such as memory management. Thus, the research claim of this work resides in

the challenge of implementing an algorithm that works fast in practice and on external

data. Since search tools that operate fast on external data (e.g. GNU grep, which we will

introduce later) already exist, the motivation for this work is to

1. Provide faster searches than existing tools.

2. Provide a C++ API for its usage in other C++ projects.
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2 Problem Definition

This section will formalize the External String Searching Problem (ESSP). It further

provides two example procedures that solve the ESSP as defined.

The External String Searching Problem

Let s be a static string. By static, we mean that s must not be changed after initialization.

Let k be the number of newline characters (ASCII Fhex) within s. s represents a set of k

lines {li : i ∈ [0, k) ∧ i ∈ N0}. The lines within s are indexed from 0 to (k − 1). Further,

let p be the pattern searched within s.

The goal is to find all indices of lines within s that contain p while only using a limited

amount of primary memory.

The requirements for software solving the External String Searching problem (ESSP) are

summarized below:

1. The input consists of a pattern p and the path of a file containing a string compliant

with the requirements stated for s.

2. The result is a list of indices of all lines that contain p.

3. The software only requires a limited amount of primary memory. This kind of

assumes that s is well separated in the sense that new line characters are not too

sparse.

It is important to note that the requirements do not exclude any preprocessing steps.

In later sections, we will see how to use preprocessing to increase reading and searching

performance in specific scenarios such as working with I/O-bound procedures.
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Examples

Example 1 and Example 2 describe basic procedures fulfilling the requirements for solving

the ESSP:

Algorithm 1 Example 1
1: procedure Search(Pattern p, File f)
2: Read f line by line while counting the number of read lines (k)
3: for line lk in read lines do
4: search p in lk
5: if p was found then
6: append k to the results list
7: end if
8: end for
9: end procedure

Algorithm 2 Example 2
1: procedure Preprocess(File f)
2: Read f line by line while counting the number of read lines (k)
3: for line lk in read lines do
4: Store the byte offset of the first character of lk together with k
5: end for
6: Store the collected data in file m
7: end procedure
8: procedure SEARCH(Pattern p, File f, Metafile m)
9: Read f in larger chunks c

10: Read m into list lm
11: for c in read chunks do
12: while p is found in c do
13: Map the byte offset returned by the search to a line index using lm
14: add the line index to the result list
15: end while
16: end for
17: end procedure
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3 Common Approaches

As mentioned, string search is frequently used in different contexts such as bioinformatics,

information retrieval and natural language processing. Therefore, different approaches

have been developed over time. This section presents different approaches and discusses

their application for solving the ESSP described in the previous section 2.

Full-Text Indexing

Some search engines implement text-searching functionalities using full-text indexing. Full-

text indexing involves an Indexer creating an index of all the words within the documents

of a database along with additional information about the words, like frequency or the

positions of the word. This index is used to efficiently search words or phrases within

the database’s documents. However, indexing a text and then searching for an infix

(a substring that appears within a word) will not necessarily result in all occurrences

of the infix. Typically, full-text-indexing-based search engines return the documents or

sections containing the pattern rather than all occurrences of the pattern within the

documents. Further, full-text indexing is typically only suitable for searching complete

words (keywords). Since our problem includes searching for substrings of any kinds,

full-text indexing is not suitable for solving the ESSP.

Suffix Trees

A suffix tree is a compressed trie representing all suffixes of a string. Suffix trees are

a commonly used data structure in various string-related algorithms. Relevant to this

work is its application for locating substrings within a string s. Ukkonen (1995) described
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an efficient suffix tree construction from a string s. Its space and runtime complexity is

linear in the size of s.

Substring search using a suffix tree can be implemented with a runtime linear in the size

m of a pattern p (|p| = m, O(m)) if each node holds an array of possible child nodes that

can be looked up in constant time (O(1)). Thus, each node in the suffix tree holds an

array of size |Σ|. This is only practical if |Σ| is small (e.g. for genetic sequences, Σ consists

of only four elements). However, the strings that we consider in this work are built over

the ASCII characters’ alphabet; thus, the size of Σ (|Σ|) is 128. Further, according to

McCreight (1976), the upper bound of the number of nodes (|nodes|) of a suffix tree of

a string s is |nodes| = 2 · |s|. Even if the average size of suffix trees might be smaller

in practice (< 1.38 ∗ |s|, Blumer, Ehrenfeucht, and Haussler, 1989), the overhead of the

size of a suffix tree over the size of the original data is relatively large since each node

does not only hold the actual character but also pointers to its child nodes and its byte

position within the data. Thus, constructing a suffix tree requires external approaches for

large data. Farach-Colton, Ferragina, and Muthukrishnan (2000) presented a theoretically

optimal algorithm for constructing a suffix tree in external memory. However, no practical

implementations are available. The most efficient algorithms, B2ST and others, only

operate on genomic data whose alphabet is restricted to only four characters and whose

size is at most a few gigabytes (Barsky et al., 2008).

Plain Text Search

As mentioned in section 1, highly optimized string-searching algorithms are already widely

used within many applications. The challenge focused on in this work is to search data

stored on external memory. GNU grep solves the problem defined in section 2. GNU

grep searches external data for a pattern and returns matching lines, line indices or byte

positions of found matches. Because of its performance and low RAM usage, GNU grep is
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considered a standard for string searching on external data. However, there are multiple

disadvantages of GNU grep:

1. No library implementation of GNU grep is available but only an executable.

2. GNU grep only uses a single thread when searching on a single file.

3. GNU grep does not provide an interface for processing the original data before

searching them.

4. GNU greps performance is decreased when searching for line indices of matching

lines.

5. GNU grep is licensed under the GNU General Public License1, which makes it

impossible to address the disadvantages (1 to 4) within GNU grep and use the

software within other licensed products.

ripgrep already addresses some of the issues claimed for GNU grep: ripgrep provides a

library implementation that can be included in other projects. ripgrep and its library are

written in Rust but provide C bindings for the library. However, a few limitations remain

that we aim to solve in our implementation:

1. Since the library is written in Rust and only C bindings exist for inclusion of ripgrep

into C++ projects, it is impossible to adjust and extend the search procedure or

efficiently embed custom processing tasks using C++.

2. ripgrep also only uses a single thread when processing a single file.

3. ripgrep’s performance is still decreased when searching line indices of matching

lines.

Boyer-Moore Algorithm

Since both, GNU grep and ripgrep implement versions of the Boyer-Moore algorithm,

this section briefly introduces the algorithm.

The Boyer-Moore algorithm is structured into two steps:

1https://www.gnu.org/licenses/gpl-3.0.html
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1. Preprocessing: The Boyer-Moore algorithm applies two different heuristics (bad

character and good suffix ). For both heuristics a lookup table is created within a

preprocessing step. For the bad character heuristic, the lookup table contains all

possible characters and the distance of the last occurrence of the character within

the pattern from the end of the pattern. The lookup table created for the good

suffix heuristic contains the the smallest shift distance that would align a prefix of

the pattern with the largest suffix of the pattern that has been matched so far in

the searched text.

2. Searching:

a) The algorithm starts with aligning the first byte of the pattern with the first

byte of the searched text.

b) Now bytes of the patterns are compared to the bytes of the searched text

starting at the last byte of the pattern. If a mismatch is found, the lookup

tables are used to determine the possible shift of the pattern towards the end

of the searched string. The algorithm chooses the maximum value between

the determined shifts from the lookup tables.

c) If both lookup tables cannot provide a possible shift, the pattern is shifted by

its length.

d) A match is found, if all bytes of the pattern match with the aligned bytes of

the searched text.

The worst case runtime of the Boyer-Moore algorithm is O(n+m) with n being the size

of the searched text and m being the size of the pattern. However, because of the applied

heuristics, its runtime can be increased up to O( n
m) if the pattern consists of distinct

bytes. In this case, the pattern is shifted by its full length once a mismatch was found.
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Our Approach

We use plain text search with an optional preprocessing step that collects metadata

allowing for a further increase of the overall performance in specific scenarios. We follow

a linear approach to process the main tasks necessary for the extern string search, which

are listed below:

1. Reading data in chunks from external memory into RAM.

2. Processing the chunks so that they can be trivially searched.

3. Perform the actual search.

4. Managing the results collected for the different chunks.

In the subsequent sections, we will also stick to these four main task domains when

explaining the structure of x-search.
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4 Challenges

This section discusses the challenges within the main task domains that arise when

implementing a solution to the ESSP. Solutions and explanations on how we have

addressed these challenges are discussed in section 5.5.

Reading external Data

Reading large data from disk (and other secondary memory) is a commonly known

bottleneck. While modern RAM modules provide data bandwidths of up to 25 GB per

second and lane1 (standard desktop baseboards operate on two lanes), modern SSDs are

limited to about 7.5 GB/s2.

Computing Line Indices

Computing line indices seems like a simple task: All one has to do is searching newline

bytes and increase a counter when a newline byte is found. However, in practice, this can

slow down a search process significantly. The already mentioned algorithms for string

searching perform well because, in most cases, they need to perform fewer comparison

operations than the data size (n). If we couple the search process to the simple line index

computation described above, we must perform at least n comparisons to find newline

characters and matches. On unprocessed data, it is impossible to perform better.

1Example: Kingston DDR5 modules
2Example: Samsung PCIe 4.0 NVMe M.2 SSD. Note that the stated bandwidth only holds for sequential

read operations, which is the main scenario for us.
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Substring Search

In section 3, we have mentioned different string search algorithms. These algorithms (or

their derivatives) are used in many substring search implementations such as std::strstr

or std::string::find (GCC and clang implementations). However, the runtime of those

algorithms is not necessarily optimal in practice. Also, substring search becomes more

complex and time-consuming when considering case-insensitive searches or searching for

regular expressions (regex). Therefore, substring search remains a challenge within this

work.

Thread Management

x-search runs different tasks that linearly depend on each other. However, the data

passing the pipeline can be processed independently. Thus, we can use multiple threads

(worker threads) for processing the data. Using multiple worker threads requires a thread

management system with optimal task scheduling to utilize the available threads as

efficiently as possible. Implementing such a thread management system is not trivial in

most cases and thus remains a challenge we must address in this work.
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5 The x-search Library

This section presents the practical result of this work: The x-search library provides a

solution to the ESSP with features exceeding the requirements of software solving the

ESSP.

We will present x-search’s features and limitations. After describing the core architecture

of x-search, we will finally present the implementation details of the library and its

components. Here we differentiate between the preprocessing (section 5.4) and the search

(section 5.5) procedure.

5.1 Features

x-search provides two different kinds of APIs: First is a high-level API that aims to be

easily included in other C++ projects and provide simple one-function calls to perform

external substring searches. Second, a more complex API that enables developers to

extend and add tasks run by the thread management system of x-search. The second API

aims to enable developers to adjust the reading, processing and searching tasks specific

to their requirements for optimal performance.

This work will not look into the APIs in more detail1.

In addition to the requirements of software solving the ESSP, x-search implements the

following features:

• Preprocessing the data to increase reading and search processes:

– Collecting line index mapping data: line index mapping data are pairs of a

line index with its corresponding byte offset. More details are provided in

section 5.4.

1For API references, we refer to the Wiki pages of this project accessible via GitHub.
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– Compressing the original data for increased reading performance. More details

are provided in section 5.4.

• Regex searches: x-search allows searching for regular expressions (regex).

• UTF-8 support: While the requirements only include ASCII data, x-search operates

on UTF-8 encoded data. Please note the limitations regarding UTF-8 data stated

in section 5.2.

• Different kinds of search results: The requirements include searching for line indices

only, while x-search includes search routines for different results (e.g. byte offsets,

lines, number of matches, . . . ).

5.2 Limitations

The following limitations must be considered when using x-search:

• Patterns must not include newline characters (included in the requirements). Since

data are read in chunks by default, patterns including newline characters lead to

false negative search results if a pattern starts at the end of one chunk and continues

at the beginning of the next chunk.

• UTF-8 support does not include Unicode normalization. The default searchers

operate on Unicode code points, and therefore, searches result in false negatives if

the pattern and the data are not in the same Unicode normalization.

However, developers can address these limitations by implementing custom tasks. For

example, to address the UTF-8 normalization issue, one could add a task that performs

Unicode normalization and schedule it before the search task within the task pipeline or

implement a searcher task that is aware of Unicode equivalences.

15



5.3 Overview and Architecture of the x-search Library

The core component of x-search is a pipeline called Executor that executes the provided

tasks using multiple threads (c.f. section 5.3).

A Pipeline as Core Component

The Executor is a generalized pipeline wrapper holding tasks and executing them using

multiple threads. As such, it can be applied in various scenarios that stick to the following

requirements:

1. The overall process is a pipeline-like process (tasks linearly depend on each other,

while data can be processed independently).

2. The tasks can be split into the following domains:

a) Data-Provider: a singular task that represents the pipeline’s entry point.

b) Inplace-Processors: a set of tasks that process the provided data in place.

c) Return-Processor: a singular task that performs final processing and returns

the partial result (partial, because each chunk that passes the pipeline results

in a separate result).

3. The partial results can be collected as a final result (this requirement can be bypassed

by adding a final result type that effectively does nothing).

The Executer is constructed with a number of worker threads, a single data provider

task, a list of inplace processors and a single return processor. The data provider task

and the processors linearly depend on each other and are executed in the order they are

provided to the Executer.

Apart from the primary purpose of the Executor, the external substring search process,

it is also used for the x-search-specific preprocessing.

16



Thread Management

In the previous section, we have seen that x-search consists of the Executor executing a

list in a linear dependency, starting with the data provider task. We can formalize this as

follows:

We define T as the set of all tasks consisting of the reader task (Treader = {T0}) and

e ∈ N subsequent processing tasks (including Inplace and Return-Processors, Tps{Ti : 0 <

i < e + 1}). While Treader is independent of other tasks, all Ti ∈ Tps depend on their

precedent task Ti−1.

Since Treader is independent, it can be started anytime, and thus multiple data chunks

might be available simultaneously. Therefore, we can use multiple threads for processing

the provided chunks to increase the overall runtime.

In section 4, we have stated the challenge of implementing an efficient thread management

system. Following, we list the approaches that we have followed during this work:

1. Fixed Thread-Task-Assignment: In the first approach, we use fixed assignments

of threads to tasks. For example, we assign one thread for working on T0, one

for working on T1 and two for working on T2 (considering e = 2 and the number

of available threads nthreads = 4). The data are transferred between the tasks

using thread-safe queues. The issue with this approach is that it is unclear what

tasks require the most CPU capacities. E.g. it might be that T1 is far more CPU

demanding than T2. Thus, processing T1 is the bottleneck of the pipeline, and the

threads assigned for T2 are not at capacity because they are waiting for data that

are processed within T1. The system would perform better if the threads operating

on T2 temporarily work on T1 whenever data for T2 are missing.

2. Priority Based Thread-Task-Assigment: In the second approach, we use a

priority-based assignment to address the issue faced in the first approach. We

construct a thread pool whose threads receive tasks from a queue qtask. A task

manager pushes the tasks of highest priority to qtask. While the issue claimed in the
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first approach is resolved, another issue raises: This approach requires one thread

for computing priorities instead of using this thread for operating on the actual

tasks. Thus, assuming that nthreads = 4, only three threads work on the tasks, while

one thread is responsible for computing priorities and creating corresponding tasks.

Also, computing priorities for tasks is not trivial and must be perfectly balanced to

achieve optimal thread usage.

3. Semi-Fixed Thread-Task-Assignment: The third approach includes a semi-

fixed assignment of threads to tasks. By semi-fixed, we mean that by default,

threads are assigned to tasks as in the first approach, but if a thread has no data to

operate on, it starts working on the precedent task. However, this approach has

another difficulty: Assuming the bottleneck of the whole procedure is Treader (e.g.

because of the disk I/O), no more threads can increase reading throughput, and

all threads of subsequent tasks do not have data to operate on. Thus, the threads

assigned to subsequent tasks try operating on their precedent tasks but fail due to

missing data, which results in a busy-wait2 state of these threads.

4. Rotating Threads: In the fourth approach, we design the procedure so that each

thread sequentially runs all tasks without passing data between threads. This means

each thread first reads data, then runs all processing and searching tasks on the

read data and finally starts reading again, continuing until no data are left to read.

5. Dedicated Read - Rotating Threads: The last approach is a mix of the previous

ones. It aims to consider the actual conditions for reading data from secondary

memory that must be taken into account: Reading data using multiple threads

might result in an overhead of the context switch of different threads accessing

the same file stream. Therefore, having a dedicated reader thread that is only

responsible for reading data can increase reading performance. The read data are

provided to the other worker threads (that perform the processing and searching)

via a thread-safe queue. However, reading data using multiple threads concurrently

for fast secondary memory with fast random access is still possible by falling back

2Busy-wait: The threads repeatedly check if any task has data to operate on. Thus, the threads require
CPU resources without operating on any task.
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to the Rotating Threads approach.

Additional implementations could eliminate most of the issues that we claimed for the first

three approaches. However, this would have made the code more complex, less readable

and less maintainable.

Further, we give a proof that the Rotating Threads approach is an optimal solution for

the given problem of thread task assignments.

Proof of Optimal Thread Usage in Approach 4 (Rotating Threads)

We define optimal thread usage as follows: The thread usage is optimal if all threads work

at maximal capacity or data are missing due to other hardware restrictions (e.g. waiting

for I/O operations to complete) limiting the threads. Thus no task can be processed

using the remaining CPU capacities.

The following statements directly follow from the definition of a pipeline given in sec-

tion 1:

S0 T0 can be processed independent of other tasks

S1 ∀ Ti ∈ Tps : Ti−1 7→ Ti (Ti depends on Ti−1)

We further claim the following assumptions that can be considered to be trivial:

A0 A thread that is working on a CPU-bound task is at maximal capacity

A1 Processing and searching text data that are directly accessible by the CPU is

CPU-bound and thus ∀ Ti ∈ Tps : Ti is CPU-bound

A2 The bottleneck of the reader task (T0) depends on the secondary memory and CPU

performance and thus T0 can be

a) CPU-bound (if the secondary memory provides data faster than the CPU can

process them)

b) I/O-bound
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From here, we can conclude conclusion C0:

C0 From assumptions A0 and A1 and the definition of optimal thread usage, we

conclude that whenever a thread is working on Ti ∈ Tps, its usage is optimal.

It remains to show that all threads not currently working on any task within Tps are also

used optimally.

Using statement S0, we argue that all threads not working on tasks from Tps start working

on T0 (T0 can be processed independently). We consider the two cases for the bottleneck

of T0 stated in assumption A2.

C1 If T0 is CPU-bound, we use assumption A0 to argue, that the thread usage is

optimal. Together with conclusion C0, we argue, that in this case, the overall thread

usage is optimal.

C2 We consider T0 to be I/O bound. Since every thread sequentially runs all tasks

from T , and all tasks from Tps depend on their precedent task (statement S1), no

data are available for processing. Thus, we can conclude, that the thread usage is

optimal in this case too, since the threads cannot work on another task with higher

capacity. Together with conclusion C0, we conclude that the overall thread usage is

optimal in this case.

Since conclusion C1 and conclusion C2 cover all possible scenarios, the thread management

described above is optimal.

5.4 Preprocessing Procedure

The preprocessing supported by x-search includes compression and collecting metadata

that will then be used to increase the reading and searching performance within the

search procedure. The preprocessing is constructed using the pipeline wrapper Executor
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described in the previous section (c.f. 5.3). The pipeline consists of the following tasks

executed in the given order:

1. Reading data

2. Collecting Line index mapping data (optional)

3. Compression (optional)

4. Writing compressed data and metadata to files

A schematic overview of the preprocessing procedure is provided in figure 1.

0100
0010

Unstructured Data0

1

Reading 
Data

Collecting 
Metadata

Compression

Compressed Data

2 Metadata

Figure 1: Preprocessing Procedure Scheme: The original unstructured text data ( ) are
read in chunks of similar sizes, all ending with a newline character. Metadata
written to a separate metafile is collected for every chunk ( ). Each chunk
is compressed if the compression option is set, and the compressed data are
written to a separate file ( ).

Implementation Details

This section focuses on the implementation details of the tasks involved in the preprocessing

procedure.
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Reading Data

The original data are read in chunks of fixed sizes (by default 16 MiB) plus additional

bytes until a newline character or EOF (end-of-file character) is read. Therefore, each

chunk begins right after a newline character and ends with a newline character. Reading

to the end of a line is necessary because it ensures that the chunks can be processed and

searched independently of each other (in section 1, we have defined the pattern as a string

that must not contain a newline character). The position of the first byte (absolute to the

beginning of the original data) and the size (number of bytes) of each chunk are stored as

metadata for later usage (c.f. section 5.4).

Collecting Line Index Mapping Data

Line index mapping data consist of an absolute byte position of a character within a

chunk and the absolute line index of the corresponding line containing this byte. The

task consists of searching newline characters and storing information about their position

within the data. In more detail, the tasks sequentially search for newline characters, and

once a given number of bytes are searched, the current byte offset and the line index of

the line containing the current byte are stored as a pair. The line index mapping data are

stored in the metafile, too (c.f. section 5.4). We will describe how these data can be used

for searching line indices faster in section 5.5.

Compressing Data (optional)

x-search supports compression as preprocessing using either the LZ4 3 or the ZStandard4

algorithms. In addition to the metadata collected while reading the original data, the

absolute byte position of the first byte of the compressed chunk and its size are collected

3LZ4 is a compression algorithm that focuses on fast decompression times.
4ZStandard is a compression algorithm developed by Facebook that focuses on a good ratio between

compressed size and compression/decompression time.
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as metadata, too (c.f. section 5.4). Additionally, a new file is written containing the

compressed chunks.

Runtime Complexity

The preprocessing procedure is a series of tasks with runtime complexities linear in

the data size (n, O(n)). This trivially holds for reading the data and searching line

indices, while compression depends on the used algorithms. The two algorithms supported

by x-search (ZStandard and LZ4 ) also have linear runtime with respect to the data

size (n, O(n)). Since we only use the libraries provided for the compression algorithms

respectively, we will not look at their runtime in more detail. The overall runtime of

the preprocessing procedure depends on the number of tasks (ntasks) the chunks are

passed through, and the data size (n) in the form of the number of chunks (nchunks)

the data are split into and the size of a single chunk (schunk). Since the size of the

chunks and the number of tasks is constant at runtime, the overall runtime complexity is

O(ntasks · nchunks · schunk) ∈ O(nchunks) = O(n)

Space Complexity

The memory used during preprocessing is dependent on the number of threads (nthreads)

used, and the size of the chunks (schunk) read: Each assigned thread reads data and then

operates on them. Thus, memory usage (m) can be computed by m = nthreads · schunk.

Since the number of threads is constant at runtime, and the size of a chunk does not depend

on the size of the data (n), the overall space complexity is constant: O(nthreads · schunk) ∈

O(schunk) = O(1)
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Metafile

As mentioned, metadata collected during preprocessing are stored in a separate metafile

in binary format. Figure 2 provides an overview of the structure of the binary format.

The metafile consists of an integer indicating the compression type of the data provided

( ), followed by a series of metadata collected for each chunk ( and ). Thus, the

size of the metafile (smetafile) depends on the chunk sizes (schunk) and the number of

bytes between collecting the next line index mapping data (md_distance) for each chunk.

smetafile can be calculated using equation 1:

smetafile = (4 +
∑

chunk∈C
40 + ⌈ schunk

md_distance
⌉ · 16) bytes (1)

where C indicates the set of chunks that the data are composed of.

0 32 64

Size (bits)

va
lu

es

Compression Type (int)

Original Offset (uint64_t)

Actual Offset (uint64_t)

Original Size (uint64_t)

Actual Size (uint64_t)

Number of newline-offset-mapping data (size_t)

Byte offset (uint64_t)

Corresponding line index (uint64_t)

1

⋮

2

0

Figure 2: Metafile structure: The metadata are stored in a separate metafile in binary
format. The metafile begins with an integer indicating the compression type
(unknown: 0, None: 1, LZ4: 2, ZSTD: 3) of the data ( ). Then, for every
chunk, size and position information and the number of collected line index
mapping data are stored ( ). The line index mapping data are stored for
each chunk separately ( ).
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5.5 Search Procedure

As the preprocessing procedure, the searching procedure utilizes the Executor described

earlier and thus consists of different tasks. This section will describe the tasks used in

the search procedure in more detail. We will orient ourselves at the four stated main

task domains, and we will include how we addressed the challenges stated in section 4

corresponding to the task domains:

1. Reading data from external memory into RAM

2. Processing data so that they can be trivially searched

3. Perform the actual search

4. Managing results

Implementation Details

This section provides implementation details and runtime information about the tasks

involved in the search procedure.

Reading Data

Unpreprocessed data are read using the same reader used for reading data within the

preprocessing procedure. For preprocessed data, we have seen that metadata are collected

that can be used to increase reading performance. More specifically, if preprocessed data

are read, the start position and the size of each chunk are already known, and the reader

does not need to read until it reaches the first newline character. However, reading data

from secondary to primary memory is a known bottleneck. In section 4, we have pointed

out the performance difference between disks and RAM storage. x-search implements

different concepts to approach this challenge:
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Reading Data in Chunks

Reading data from disk performs best when reading large chunks of bytes instead of single

bytes. The reader tasks provided within x-search read the data in chunks of predefined

sizes.

Reading Data using Memory Mapping

Memory mapping can further improve I/O by directly mapping the data from the disk

into the program’s virtual memory space.

Data Compression

By compressing the data, we can trade computing time (data must be decompressed

before searching them later) for reading time (the data are smaller). It is important to

note that this trade-off is not always beneficial. In most cases, we must run benchmarks

on the CPU and disk to tell if compression will increase the overall runtime.

Further Approaches (not implemented)

While we explicitly consider reading external data, it is possible to implement reader

tasks that add additional features like

1. Buffering data that are most frequently used to provide these data faster to subse-

quent tasks

2. Providing data that are owned by another process
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Processing Data

Data that are read by reader tasks are provided for processing tasks. The purpose of the

processing tasks is to process the data so that the subsequent searcher task (c.f. section 5.5)

operates on normalized text data that can be searched without further limitations.

Working with Compressed Data

In section 5.5, we mention compression as a possible solution to increase reading perfor-

mance. In this case, decompression is a necessary processing task (c.f. section 5.4 for

more details).

Further Approaches (not implemented)

One possible additional processing task that is not included within x-search is the interna-

tionalization of read data (e.g. support of different encodings or Unicode normalization)

Searching Data

By default, x-search supports the following searches for literal and regex patterns:

• Count the number of matches of the search pattern within the data.

• Count the number of lines that contain the given search pattern.

• Search byte offsets of all matches of the pattern within the data.

• Search byte offsets of the start of all lines containing the search pattern.

• Search line indices of all lines containing the search pattern.

While the first four search operations can be implemented using standard search algorithms

(for a literal substring or regex search, respectively), the last one (searching line indices) is

more complicated to implement in a performant way. We have pointed out the difficulty of
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searching line indices in section 4. Our solution to solve this difficulty is using additional

line index mapping data

Line Index Mapping

We source each byte’s necessary newline character comparison out into a processing

step done within the preprocessing or right before the actual search is performed (if no

metadata are available) as described in section 5.4. We can now assume that the line

index mapping data are available for the actual search. In order to get the line index of a

match, a search is run that returns the byte offset of a match, and then, the line index

mapping data are used to map this byte offset to a line index: Therefore, we perform a

binary search on the collected line index mapping data to get the line index of the byte

closest to the match’s byte offset. We only need to count newline characters starting at

this byte until we reach the byte offset returned by the search to get the line index.

The runtime of mapping a byte offsets to a line index consists of two factors: First is the

binary search, and the second is the remaining data size that needs to be scanned for

newline characters. The binary search is implemented using std::upper_bound included

in the C++ standard algorithm library. The specifications claim a runtime complexity

that is logarithmic in the size of the mapping data (nmd, O(log(nmd)), ISO/IEC, 2023).

Scanning the remaining data for newline characters is performed by using a trivial

character search function which has a complexity linear in the size of the remaining data

(nr, O(nr)), resulting in a complexity of O(log(nmd) + nr). Since nr is a constant set

while preprocessing, the runtime of the mapping results in O(log(nmd)).

Substring Search

As mentioned, x-search supports literal and regex pattern searches. The regex search is

supported using the Google/RE2 regex library5. The Google/RE2 library uses Deter-

5Google/RE2 is a regex engine written in C++, developed and maintained by Google™
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ministic Finite State Automata (DFA) to perform the regex search. The runtime of this

approach is linear in the size of the input data (Cox, 2007). The literal substring search

is done using a SIMD-based substring search algorithm developed in the scope of this

work.

SIMD Search Algorithm

To increase the performance of the actual substring search, we have implemented versions

of std::strstr and std::strchr (originally implemented within the cstring library of

the C++ standard, ISO/IEC, 2023) using SIMD (Single Instruction, Multiple Data)

instructions. More specifically, we have implemented std::strstr and std::strchr

using AVX26 instructions. However, the algorithms described are also suitable for other

SIMD instruction sets like SSE (Streaming SIMD Extensions) or Neon-ARM.

Limitations

For a C-style null-terminating byte string (on which we operate), we likely produce

segmentation faults if we load data longer than the string provided (in this case, we may

try to access data from a restricted memory area). The benefit of SIMD instructions is

that they load multiple data at once. We most likely produce a segmentation fault if we

do not check the data for the null-terminating byte before loading them into a SIMD

register. However, checking each byte for being a null byte would negate the benefit of

SIMD instructions.

We address this observation by changing the signatures of std::strstr and std::strchr

by adding the haystacks and patterns size:

std : : s t r s t r ( char ∗ haystack , char ∗ need le )

std : : s t r c h r ( char ∗ s t r , i n t ch )

6AVX2 is an expansion of AVX (Advanced Vector Extensions), an expansion of the instruction set of
the x86 architecture.
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become

simd : : s t r s t r ( char ∗ haystack , s i ze_t haystack_size ,

char ∗ needle , s i z e_t need l e_s i ze )

simd : : s t r c h r ( char ∗ s t r , s i z e_t s t r_s i z e , i n t ch )

Algorithms

simd::strstr: We use predicate equality of the first (first = p0) and the last (last =

pn−1) byte of the pattern p of size m. These two bytes are loaded into two SIMD vector

registers (Rfirst and Rlast), respectively. We now iteratively load two chunks c (size nc,

which depends on the vectors size supported by the SIMD instruction used) of the data

(haystack) d of size n into two additional SIMD vector registers A and B while counting

the offset i. i is increased by nc at the end of each iteration. A is read starting from i

and B is read starting from i+ np − 1. Thus, A and B are shifted by the pattern size m.

We now compute the following vector expression:

(Rfirst == A) ∧ (Rlast == B)

The result is a byte vector (or mask) Rmatch, where true values indicate that first and

last matches within A and B with a distance of m. For each true value within this mask,

we perform a string comparison of the pattern and the data beginning at the offsets

indicated by the true values from Rmatch. If this comparison evaluates positively, we

return the pointer first. To avoid segmentation faults, the iteration ends if i+ nc > n

evaluates to true, and the remaining data are searched using std::strstr.

simd::strchr: In the first step, we load the searched character p into a SIMD vector

register Rp. We now iteratively load chunks c (size nc, which depends on the vectors

size supported by the SIMD instruction used) of the data (str) d (size n) into a SIMD

vector register A while counting the offset i. A is read from offset i which is increased by

nc in the end of each iteration. Now, we compute the vector expression Rp == A and
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check for true values in the resulting mask. We return the pointer to this character if we

find a true value. Else, we skip to the next iteration. To avoid segmentation faults, the

iteration ends if i+ nc > n evaluates to true, and the remaining data are searched using

std::strchr.

Runtime Analysis

simd::strstr: The computing complexity of simd::strstr is O(n) where n is the size

of the data d since all bytes are loaded into vector registers and compared to the first and

last byte of the pattern.

The space complexity of simd::strstr is O(n+m) where n is the size of the data d and

m is the size of the pattern p. In our use case, this term is dominated by n resulting in a

space complexity of O(n).

simd::strchr: The computing complexity of simd::strchr also is O(n) where n is the

size of the data d since all bytes are loaded into vector registers and compared to the

searched character.

The space complexity of simd::strchr is O(n) where n is the size of the data d. This

is because the pattern p is a single byte with a constant size of m = 1 and thus

O(n+m) ∈ O(n).

Runtime Complexity

The overall runtime complexity of the search procedure depends on the tasks involved in

the search procedure. However, since the tasks linearly depend on each other, the overall

runtime is the sum of the runtime of the single tasks. In the previous sections, we have

shown that the tasks involved in the default search procedure (reading, decompression,

searching, line index mapping) are either linear in the size of the input data (n, reading,
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decompression, searching) or logarithmic in the size of the line index mapping data (nmd,

which is linearly dependent on n). Thus, the overall complexity is O(n+n+n+log(nmd)) =

O(3n+ log(nmd)) ∈ O(n).

Space Complexity

The space complexity of the search procedure is constant. However, the arguments for

this depend on the used thread management:

1. Rotating Threads: As for the preprocessing, the used memory depends on the

number of threads that concurrently run the tasks of the search procedure. Each

thread works on one chunk of size schunk at a time. schunk does not depend on the

size of the input data n but is a constant at runtime. Since the number of threads

(nthreads) is constant at runtime, too, the overall space complexity is constant:

O(nthreads · schunk) ∈ O(schunk) = O(1).

2. Dedicated Read - Rotating Threads: The used memory depends on the size

of the queue (qs) on which the reader task pushes the read chunks. Since the

size of the queue is constant at runtime, the overall space complexity results in

O(qs · schunk) ∈ O(schunk) = O(1).

Providing Search Results

The last step of the search procedure is providing the collected results. By default,

x-search supports the search results listed in section 5.5.

A result consists of a collection of partial results. A partial result is the search result of

one single chunk.

By default, x-search provides two base result types. First is a count result type (for match

counts), and the second is a container result type for collections of results (e.g. byte

offsets or line indices).

32



x-search also provides iterators for the default result types that enable access and iterate

over the already collected partial results, while data chunks are still being processed.
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6 xs grep: a Command-Line Text Search

Utility

This section introduces xs grep, a GNU grep-like executable built using x-search. Extended

information are provided in the scope of the Bachelorproject of the author of this work in

form of a blog post available at ad-blog.uni-freiburg.de.

6.1 Limitations

The following limitations must be considered when using xs grep.

• Single File Input: At the state of this work, xs grep supports searching on single

file inputs only instead of on directories or multiple files.

• Linux Only: xs grep is not yet ported to MaxOS and Windows and is only tested

on Linux (Ubuntu 22.04).

• Limited Command-Line Options: xs grep does not provide all command-line

options provided by alternatives like GNU grep and ripgrep (e.g. Context control

arguments).

6.2 Advantages

The main advantage of xs grep over GNU grep, and ripgrep is the ability to use multiple

threads for a single input file. While GNU grep and ripgrep can be used for multi-threaded

search on multiple input files, xs grep can utilize multiple threads for searching on a

single input file. In section 7, we will see that this feature increases the overall runtime

for systems with fast secondary memory access. Further, xs grep provides additional
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command-line options for internal configuration (c.f. section 6.3). Therefore, users can

configure xs grep specifically for their system specifications and use cases.

6.3 Usage

xs greps basic usage is similar to that of GNU grep or ripgrep: The program takes a

pattern, an input file and a set of (optional) command-line arguments and then searches

the content of the input file for the given pattern (literal or regex).

Command-Line Options

The following command-line options are equivalent in use and function to those of GNU

grep and ripgrep:

Option Description

--count (-c) Count and Output the number of matching lines

--byte-offset (-b) Output matching lines with their absolute byte offset

within the file

--line-number (-n) Output matching lines with their line number

--only-matching (-o) Only print nonempty parts of matching lines

--ignore-case (-i) Search case-insensitive

--fixed-string (-F) Consider pattern as fixed string (literal search)

Additionally, xs grep provides the following command-line options for internal configuration

rather than for specifying search details:
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Option Description

--metafile [PATH] (-m) Read the additional metafile (c.f. section 5.4)

--threads [INT] (-j) Use the given number of worker threads:

Value Actual number of used threads

value < 0 number of systems physical cores

value == 0 1
2 of systems physical cores

value value

--max-readers Maximal number of threads concurrently reading from

file

--no-mmap Suppress using memory mapping
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7 Evaluation

This section first describes the hardware and software used for the experiments. It then

provides information about the input data and patterns used for the benchmarks. Last,

this section presents and discusses the results of the benchmark experiments.

Benchmarking the x-search library is difficult. Since x-search aims to provide a backbone

for pipeline-driven systems where single components can be individually set, benchmarking

the default components is not expedient. Hence, we want to benchmark the whole system

rather than single components. Therefor, we perform benchmarks using xs grep, a GNU

grep-like executable that we have introduced in the previous section (c.f. section 6). The

components used within xs grep can be considered neither trivial nor highly optimized.

Therefore, xs grep becomes a solid use case of x-search for benchmarks.

In the first evaluation step, we evaluated different internal configurations of xs grep

on different hardware (c.f. section 7.2.1). The results of this evaluation were used to

define the default configuration of xs grep that has been used for comparison with other

command-line search utilities.

We consider the following command-line search tools for comparison:

• ripgrep (baseline): In section 3, we have introduced ripgrep as an alternative

to GNU grep. It aims to provide faster text search than GNU grep and provides

a Rust library with C bindings. We use ripgrep as the baseline for the following

benchmarks because it can be considered a modern, high-performance text search

utility which is widely used.

• GNU grep: We have introduced GNU grep in section 3 as a standard external

string search tool used on many systems. Therefore, when performing search tool

comparison benchmarks, GNU grep should be considered.

• xs grep: xs grep is our implementation of a grep-like command line search tool.

Its implementation uses x-search as its backbone and implements custom search
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and result types. xs grep was introduced in section 6. It was written in the scope of

this work and is used to benchmark the performance of x-search.

7.1 Experimental Setup

Hardware

In the previous sections, we point out that the external string search performance depends

on two main factors: First is the I/O bandwidth of the external memory, and the second

is the algorithms used for the searching procedure and, thus, the CPU performance.

Therefore, we run the benchmark experiments on two different computers (HW0 and

HW1) that only differ in secondary memory:

• CPU: AMD Ryzen 7 3700X (8 Cores + SMT)

• RAM: 128 GB, DDR-4

• Secondary Memory:

SSD: 2× 2 TB SSD (NVMe, RAID 0)

HDD: 3× 32 TB HDD (RAID 5)

Benchmark Input Characteristics

This section describes the characteristics of the data and the patterns that are used

within the benchmarks. Last, we claim an introductory remark about the fairness and

extensiveness of the benchmarks.

Text Data

We run all benchmarks on the English, Spanish and Greek samples of the OpenSubtitles2016

dataset (a collection of subtitles of movies from opensubtitles.org) published by Pierre
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Lison, 2016. We have decided to run benchmarks on these three data sets because they

differ in size and character characteristics: While the English version primarily consists

of single byte characters, the Greek version consists of mainly multi-byte characters. The

Spanish version represents a mix of single- and multi-byte characters. Since the core

statements made within the discussion apply to all three input files, we only present and

discuss the results of the benchmarks run on the English version. Below, some statistics

about the English file are listed:

Metric Value

Number of Lines 337,845,355

by
te

s
pe

r
lin

e

Mean 29.5

Min 1

25 % Quartile 14

50 % Quartile 24

75 % Quartile 38

Max 26,586

The actual performance of substring matching depends on the searched data and the

pattern. We consider the sample data a representative data file for text search because

of its natural language content (subtitles of movies and TV). Therefore, we focus on

comparing benchmark results on different search pattern complexities rather than on

different input files. However, the benchmark results are also reproducible for files of

other sizes and characteristics.

Search Patterns

We run searches on the previously described data using different patterns described

below.
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Pattern Description Matching lines % of lines

’Sherlock’ substring search pattern 13645 0.0040

’She[r ]lock’ simple regex pattern matching

’Sherlock’ and ’She lock’

14211 0.0042

’ [sS][A-Za-z]*[kK] ’ complex regex pattern match-

ing words starting with upper

or lower case ’s’, followed by

any alphabetic character and

ending with lower or upper case

’k’

1079731 0.3196

The patterns differ in the number of matches and search complexity. We consider

’Sherlock’ as a pattern of low search complexity since the search tools will run a

standard substring search on the data. ’She[r ]lock’ is a regex pattern of medium

complexity. The last pattern, ’ [sS][A-Za-z][kK] ’, is of high search complexity since

it does not contain any literal characters and it matches a relatively large number of lines

(about 0.3 %).

Remark

It is important to remark that a comprehensive benchmark must consider more patterns

that differ in size, number of matches and search complexities.

Further, it is essential to remember that the author of this work also designed the

benchmark procedure. Even if the benchmarks were designed with the intention of

creating a fair benchmark, the benchmarks might be biased towards xs grep.

To put this remark into perspective, it must be said that the components for reading and

searching data used by xs grep have not been optimized with respect to the input data and
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patterns used within this benchmark. The searching and reading algorithms are advanced

but general and thus perform similarly on different patterns and data. Further, this

benchmark aims to show that the x-search library provides a backbone for pipeline-based

procedures that can be used to create competitive software.

Benchmark Tools

To automate and simplify benchmark runs, we have written a python program called

cmdbench that reads a JSON file containing information about a benchmark and sets

up and runs benchmarks based on the provided information. cmdbench uses an external

benchmarking tool for collecting metrics. By default, cmdbench can use either GNU Time

or InlineBench as an external benchmark tool.

1. GNU Time: GNU time is a command line tool that allows collecting different

metrics like CPU time (CT) and Wall time (Real Time, RT) of other programs. We

use GNU Time whenever we only need a program’s total CPU or Wall time (e.g.

comparison benchmarks).

2. InlineBench: InlineBench is a C++ benchmarking tool the author has written

in the scope of this work. Users can start and stop timers dynamically within

C++ code. InlineBench supports CPU and Wall timers that collect thread-specific

timings (e.g. if multiple threads pass an InlineBench timer, times are collected for

each thread separately). The InlineBench timers must be activated at compilation

using the -BENCHMARK flag. We use InlineBench to measure runtimes of specific

components within x-search, and xs grep (e.g. only the reading task).

Evaluation Metrics

This section describes the three evaluation metrics used for the benchmarks. Since we are

running an exact substring search, there is no metric for the quality of the results.
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Wall Time

Wall time is the intuitive time that we would measure using a classic stopwatch measuring

from a time point start to a time point stop.

CPU Time

CPU time refers to the total time that CPU cores have been involved in the computations.

In more detail, CPU time is computed using the number of CPU cycles per core and

the CPU frequency. Therefore, CPU time from start to stop can be greater than the

corresponding Wall time if multiple CPU cores are concurrently computing for the same

program. Thus, CPU Time can also be considered as a metric for power efficiency: Lower

CPU time corresponds to less power usage. Since the compared search tools solve the

same problem, less CPU Time corresponds to better power efficiency.

Relative Wall Time (Wall %)

The relative wall time is used for comparing the results of different benchmark setups. A

baseline run is set to a base value of 100 %, and the Wall % of compared runs is computed

by Wallbaseline/Wallcompared_run · 100. Thus Wall % refers to the performance of a run

(Wall time only) relative to that of a baseline (e.g. A Wall % of 200 indicates a speedup

of factor 2 compared to the baseline).

7.2 Results

This section presents and discusses a selection of the benchmarks run1. We divide the

benchmarks into two different domains. Table 1 lists a selection of the benchmarks for

different xs grep configurations (section 7.2.1). Table 2, 3 and 4 list a selection of the

1The entirety of the raw data were submitted together with the source code
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comparison benchmarks of the command-line search tools GNU grep, ripgrep and xs grep

(section 7.2.2).

7.2.1 xs grep Configuration

Secondary Memory Performance vs Processing Complexities: Using Multiple Worker

Threads

The benefit of using multiple worker threads depends on the limiting factor within the

procedure. Two limiting factors can be observed within our procedure that can dominate

the runtime: First, the performance of the secondary memory (I/O time, depending on

the secondary memory type: RAM cache, SSD, HDD). Second, the computing complexity

of processing the data (processing complexity, depending on the search complexity: literal,

regex, case-insensitive, ...). If the processing complexity dominates the I/O time (table 1,

Cached Reads, and SSD Reads (C0)), the wall time increases with additional worker

threads. For the less complex literal search, the dominating factor swaps between using

four and eight worker threads. From here on, additional worker threads cannot increase

performance because no data are available to operate on. For the complex regex search,

we can see that the wall time increases even when using eight worker threads. Here, we

can observe speedups of over 700 %. When reading data from HDD, I/O is the limiting

factor. Thus, the overall process is I/O bound and using additional worker threads does

not increase performance.

SMT Cannot Increase Performance

We have mentioned that the CPU used for the benchmarks use Simultaneous Multithread-

ing (SMT). We observe that using more worker threads than physical cores available (8)

does not result in performance increases (even for CPU-bound processes). This is because

each physical core corresponds to two virtual processors. However, the virtual processors
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’Sherlock’ ’ [sS][A-Za-z]*[kK] ’
Wall (s) CPU (s) Wall (%) Wall (s) CPU (s) Wall (%)

C
ac

he
d

R
ea

d

Threads

1 0.938 0.938 100.0 27.270 27.276 100.0
2 0.548 1.046 171.2 14.082 27.944 193.7
4 0.408 1.438 229.9 7.134 28.492 382.3
8 0.426 2.786 220.2 3.654 29.054 746.3
16 0.434 2.790 216.1 3.696 29.376 737.8

mmap yes 0.424 1.450 100.0
no 1.680 2.786 25.2

SS
D

R
ea

d

Threads

1 2.734 3.122 100.0 28.876 29.168 100.0
2 1.888 3.542 144.8 15.028 30.254 192.1
4 1.612 4.624 169.6 7.662 30.816 376.9
8 1.624 7.376 168.3 4.002 31.902 721.5
16 1.632 7.164 167.5 4.020 32.048 718.3

mmap yes 1.604 4.498 100.0
no 3.512 4.574 45.7

H
D

D
R

ea
d

Threads

1 34.526 4.188 100.0 41.642 28.792 100.0
2 37.534 4.198 92.0 45.736 43.178 91.0
4 37.842 3.944 91.2 37.044 53.766 112.4
8 37.868 4.196 91.2 36.216 57.380 115.0
16 37.834 4.194 91.3 36.054 57.736 115.5

mmap yes 37.472 4.134 100.0
no 25.674 4.940 146.0

Table 1: xs grep Configuration (number of worker threads ("Threads") and whether
to use memory mapping ("mmap", "yes") or not ("no")): The listed
benchmarks consider two differently complex search patterns (Sherlock and
’ [sS][A-Za-z]*[kK] ’) and three different secondary memory types (RAM
Cache, SSD and HDD).
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share the same processing unit while utilizing different registers. Therefore, each physical

core can run two threads in parallel but can only perform arithmetic operations for one

of them simultaneously. This can increase performance in specific scenarios: When one

thread cannot compute (e.g. because of cache misses, I/O time, dependencies of sequential

instructions, ...), the other thread can start computing without a precedent context switch

because the second thread runs on a virtual processor that has its own registers. However,

in our scenario, utilizing SMT decreases performance for most measurements which is

most likely due to the shared resources of the virtual processors: The threads work on

relatively large data (within the range of multiple megabytes) stored in RAM. The RAM

bandwidth the physical core can utilize might be at capacity for a single virtual processor.

Further, virtual processors share the same cache and thus changing the context may

result in cache misses since the virtual processors work on different data. Thus, utilizing

a second virtual processor cannot further increase performance.

Trading Real Time for Computing Time

Earlier, we observe that adding worker threads increases performance given that the

process is CPU-bound. We can trade wall time for CPU time until the process swaps from

CPU-bound to I/O-bound. This implies decreasing wall time while increasing CPU time.

However, we can also see that for I/O-bound processes, additional threads cannot further

increase wall time but may increase CPU time. Thus, tuning the number of threads to

a value that achieves reasonable wall time increases while not increasing CPU time too

heavily is important. We observe an extreme case of this scenario when looking at the

cached read, literal search setup (table 1): When using at least eight threads, the wall

and CPU time increase (compared to using four threads). Thus, using more than four

worker threads increases computing time while not decreasing wall time.
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Memory Mapping is Slow on HDD

From the memory mapping benchmarks (mmap rows in table 1), we can see that data can

be provided significantly faster when using memory mapping for reads from RAM cache

(factor 4) and SSD (factor 2). The opposite can be seen for reads from HDD: Not using

memory mapping results in faster wall time (factor 1.5). However, it must be remarked

that this cannot be generalized for HDD reads. The reader used by xs grep that uses

memory mapping (mmap-reader) is not optimized for reads from secondary memory with

slow random access (such as HDDs): Memory mapping requires reading chunks starting

at a multiple of the systems page size. Also, the chunk size must be a multiple of the

system’s page size. However, the mmap-reader provides data starting right after and

ending with a newline character. Thus, the reader aligns the file pointer to positions that

fulfill the memory mapping requirements while the actual needed data are within the

range of the mapped data. Therefore, the mmap-reader maps overlapping chunks of the

file. This does not result in significant overheads when the secondary memory from which

data are mapped has fast random access (e.g. cache and SSD) but can result in high

overheads for reads from HDD (resulting from physically moving the magnetic reader

head of the HDD).

x-search’s Thread Management Performs Well in Practice

We only consider the heavily CPU-bound scenario to allow for a valid statement on the

thread management’s performance (cached read and search for ’ [sS][A-Za-z]*[kK] ’,

table 1). Here, we can see that doubling the number of worker threads (1 → 2 → 4 →

8) results in a speedup of more than 1.9 for each. Theoretically optimal would be a

speedup of 2. However, a small overhead of utilizing multiple threads must always be

considered. We cannot observe a performance increase when doubling the number of

worker threads from 8 to 16. The reason for this is described in the previous section

(SMT cannot Increase Performance).
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Conclusion: Defining Default Values for xs grep

From the results described above, we have set the following default settings for xs grep:

Parameter Default Value Explanation

Worker

Threads

1
4 of available

processors

Using only a single worker thread is best for low CPU

times. However, for CPU-bound processes, multiple

worker threads can increase performance. In most

cases, using 1
4 of the available processors is considered

a good compromise.

Memory

Mapping

on Most modern computers operate using SSDs as sec-

ondary memory. Further, a common use case of a

command-line search utility is to search different pat-

terns within the same data. Therefore, data are cached

by the operating system after the first search and sub-

sequent searches perform better when using memory

mapping. However, it is recommended not to use

memory mapping (by specifying the --no-mmap flag)

when searches are performed on data stored on HDD.

If not stated otherwise, these default values are used for xs grep within the comparison

benchmarks of section 7.2.2.
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7.2.2 Search Tool Comparison

Cached Read

’Sherlock’ ’She[r ]lock’ ’ [sS][A-Za-z]*[kK] ’

Wall CPU Wall % Wall CPU Wall % Wall CPU Wall %

Li
ne

ripgrep 0.836 0.830 100.0 1.262 1.256 100.0 21.166 21.162 100.0

GNU grep 3.206 3.204 26.1 3.930 3.926 32.1 33.032 33.026 64.1

xs grep -j 1 0.956 0.964 87.4 1.108 1.120 113.9 11.314 11.324 187.1

xs grep 0.424 1.458 197.2 0.436 1.504 289.4 3.022 12.068 700.4

xs grep -j 0.450 2.808 185.8 0.442 2.816 285.5 1.554 12.280 1362.0

Li
ne

N
um

be
r ripgrep 1.102 1.092 100.0 1.526 1.522 100.0 21.292 21.286 100.0

GNU grep 5.832 5.828 18.9 6.542 6.538 23.3 35.924 35.916 59.3

xs grep -j 1 3.886 3.900 28.4 4.080 4.092 37.4 14.944 14.956 142.5

xs grep 1.286 4.726 85.7 1.296 4.758 117.7 3.882 15.484 548.5

xs grep -j 0.894 6.144 123.3 0.894 6.158 170.7 2.010 15.822 1059.3

Ig
no

re
C

as
e

ripgrep 1.472 1.466 100.0 2.468 2.462 100.0 21.150 21.146 100.0

GNU grep 13.042 13.040 11.3 13.236 13.234 18.6 35.374 35.368 59.8

xs grep -j 1 2.216 2.224 66.4 11.796 11.806 20.9 27.384 27.392 77.2

xs grep 1.714 6.436 85.9 3.078 12.184 80.2 7.106 28.358 297.6

xs grep -j 1.770 13.146 83.2 1.598 12.432 154.4 3.632 28.794 582.3

Table 2: Search tool comparison benchmarks (cached reads): Wall, CPU and relative
Wall (Wall %) measurements for patterns of different complexities (’Sherlock’,
’She[r ]lock’ and ’ [sS][A-Za-z]*[kK] ’). Three different searches are
listed: searching for lines, line numbers and case-insensitive searches (Ignore
Case). Each row represents a single experiment. The best wall time results are
highlighted in green.

48



SSD Read

’Sherlock’ ’She[r ]lock’ ’ [sS][A-Za-z]*[kK] ’

Wall CPU Wall % Wall CPU Wall % Wall CPU Wall %

Li
ne

ripgrep 2.840 2.760 100.0 3.272 3.202 100.0 23.384 23.324 100.0

GNU grep 5.054 5.038 56.2 5.798 5.784 56.4 35.182 35.164 66.5

xs grep -j 1 2.730 3.118 104.0 2.894 3.284 113.1 13.224 13.422 176.8

xs grep 1.608 4.538 176.6 1.614 4.550 202.7 3.598 14.630 649.9

xs grep -j 1.626 7.112 174.7 1.630 7.406 200.7 1.978 15.736 1182.2

Li
ne

N
um

be
r ripgrep 3.174 3.106 100.0 3.576 3.504 100.0 23.628 23.572 100.0

GNU grep 7.708 7.694 41.2 8.424 8.410 42.5 37.786 37.770 62.5

xs grep -j 1 5.788 6.174 54.8 5.960 6.330 60.0 16.940 17.216 139.5

xs grep 2.102 7.946 151.0 2.164 8.072 165.2 4.556 18.336 518.6

xs grep -j 1.790 12.190 177.3 1.766 11.834 202.5 2.494 19.760 947.4

Ig
no

re
C

as
e

ripgrep 3.496 3.428 100.0 4.484 4.422 100.0 23.402 23.340 100.0

GNU grep 14.928 14.912 23.4 15.002 14.988 29.9 37.438 37.422 62.5

xs grep -j 1 4.288 4.664 81.5 13.610 13.904 32.9 28.866 29.160 81.1

xs grep 2.704 10.094 129.3 3.618 14.692 123.9 7.654 30.806 305.7

xs grep -j 2.720 21.18 128.5 1.990 15.790 225.3 3.994 31.814 585.9

Table 3: Search tool comparison benchmarks (SSD reads): Wall, CPU and relative Wall
(Wall %) measurements for patterns of different complexities (’Sherlock’,
’She[r ]lock’ and ’ [sS][A-Za-z]*[kK] ’). Three different searches are
listed: searching for lines, line numbers and case-insensitive searches (Ignore
Case). Each row represents a single experiment. The best wall time results are
highlighted in green.
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HDD Read

’Sherlock’

File Size (GB) Wall CPU Wall %
P

la
in

9.3

ripgrep 25.810 3.462 100.0

GNU grep 25.632 7.998 100.7

xs grep 25.662 4.826 100.6

ZS
ta

nd
ar

d

1.5

zstcat → ripgrep 9.518 8.068 269.4

zstcat → GNU grep 9.922 8.058 260.1

zstcat → xs grep 9.484 8.294 272.1

xs grep (xspp) 3.976 8.116 649.1

LZ
4

3.7

lz4cat → ripgrep 8.184 6.332 315.4

lz4cat → GNU grep 13.096 7.896 197.1

lz4cat → xs grep 8.228 7.586 313.7

xs grep (xspp) 8.862 6.438 291.2

LZ
4

H
C

2.1

lz4cat → ripgrep 6.446 5.750 400.4

lz4cat → GNU grep 11.614 6.680 222.2

lz4cat → xs grep 7.102 7.040 363.4

xs grep (xspp) 5.358 5.744 481.7

Table 4: Comparison benchmark results for HDD reads: Comparing GNU grep, ripgrep
and xs grep using plain text and compressed (ZStandard, LZ4, LZ4 HC) input.
The ’File Size’ Column indicates the size of the input data (in GB). The rows
indicated with ’Plain’ are the results for reading plain text data. Rows indicated
with ’ZStandard’, ’LZ4’ and ’LZ4 HC’ contain the results for input data that
were compressed using the corresponding algorithm, respectively. The arrow
notation (x → y) indicates that the input data were passed to x and x’s output
piped as input to y. xs grep is run using the --no-mmap flag.

Similar Results for HDD Reads

When comparing the results for HDD reads, we see that GNU grep, ripgrep, and xs

grep perform similarly on plain text input (c.f. table 4). This is because the process is
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heavily I/O-bound. Therefore, the underlying algorithms’ runtime fades into the reading’s

runtime, which is hardware and OS-dependent.

While decompression predominates the processes’ runtime when reading data from fast

secondary memory, it can increase the overall runtime when used on slow secondary

memory. Therefore, we consider the benchmark results for compressed data input

when looking at the HDD benchmark results (table 4) while predominantly highlighting

differences in the search performance when looking at the benchmark results of cached

and SSD reads (c.f. tables 2 and 3).

Fast Secondary Memory: The Search Algorithm Becomes the Limiting Factor

Table 2 and 3 show that the search algorithms become the limiting factors even for the

literal substring search (pattern ’Sherlock’) when reading from fast secondary memory

such as SSD or RAM cache. Here, the CPU time is strictly greater or equal (within

the range of minor deviations) to the corresponding wall time. Thus, searching the

data dominates reading the data, and the underlying search algorithm limits the overall

runtime. We will now look closer at the search algorithm implementations used by the

different search tools. The Boyer-Moore implementation used by GNU grep searches

for the last byte of the pattern using memchr whenever it can skip bytes. ripgrep also

implements Boyer-Moore but with a remarkable difference. In contrast to the GNU grep

implementation of Boyer-Moore, ripgrep uses heuristics to guess the rarest byte within

the pattern and then searches for this byte instead of searching for the last byte whenever

it can skip bytes. Both use memchr to search for the corresponding byte. Since memchr is

auto-vectorized2 by modern compilers, this search can be done relatively fast compared

to the overall substring search process. In our case (pattern ’Sherlock’), GNU grep

runs memchr on ’k’, while ripgrep runs it on ’S’. In our data set, ’k’ occurs about 2.8

times more frequently than ’S’ does (81,258,453 vs 29,018,097). Therefore, ripgrep can

2Automatic Vectorization describes the process of the compiler transforming scalar implementations
into vector implementations by utilizing, e.g. SIMD if possible.
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skip far more bytes using the vectorized memchr and thus becomes much faster. xs grep

uses an entirely different search algorithm described in section 5.5. Even though this

algorithm does not use any heuristics, it performs well. This is because of the additional

condition of searching the pattern’s first and last byte in the expected distance using

SIMD instructions. The computation becomes more complex because two bytes are

searched, and additional operations must be performed to check their distance. However,

the number of false negative expensive inner loop runs (comparing the bytes between the

first and the last byte of the pattern and the data) is much smaller in most cases: e.g.

’S......k’ (’.’ as a wildcard for any byte) only occurs 211,305 times which is over 130

times less frequent than ’S’. Thus, the overall runtime of the search procedure decreases

in most cases.

CPU-Bound Searches: xs grep Outperforms Alternatives

Our benchmarks consider different scenarios in which the procedure is CPU-bound: For

cached and SSD reads, all runs are CPU-bound. For HDD reads, the process becomes

CPU-bound if the input data are compressed using ZStandard or LZ4 (HC). In those cases,

xs grep can outperform its alternatives by up to 1300 % (c.f. table 2). Table 2 and table 3

show that xs grep outperforms GNU grep and ripgrep in almost all benchmarks (except

for case-insensitive literal search for ’Sherlock’ when reading from cache, table 2). This

is because xs grep is the only tool considered within this benchmark that utilizes multiple

worker threads when searching on a single file. In the xs grep Configuration Benchmarks

(c.f. section 7.2.1), we have already seen that using multiple worker threads can speed up

performance. However, it must be said that this speedup trades with power efficiency:

Utilizing multiple worker threads increases CPU time, and thus the power usage of the

search increases as well.
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ripgrep is the most Power Efficient

When looking at the CPU time spent within the different scenarios, ripgrep comes out

as the absolute baseline. In most scenarios, ripgreps CPU time undercuts those of GNU

grep and xs grep. This is primarily due to the optimized search algorithm implemented

within ripgrep described earlier.

Case-Insensitive Literal Searches

When looking at the case-insensitive searches of the benchmarks listed in table 2 and

table 3 (row: ’Ignore Case’), we see that ripgrep outperforms xs grep in some cases. It

is also notable that GNU grep performs badly for case-insensitive literal searches. The

reason for the named observations lies within the used search algorithms. All three tools

approach the challenge of case-insensitive searches in another way. For case-insensitive

searches, Boyer-Moore cannot be applied anymore the way it is for case-sensitive searches.

GNU grep falls back to its regex engine for case-insensitive searches, which results in high

wall and CPU times. xs grep transforms the pattern and input data into lowercase and

then runs a case-sensitive search on the transformed data. xs greps approach is costly

when using a single worker thread. ripgreps high-performance results from a unique

search algorithm called Teddy. Teddy was introduced in 2019 by Andrew Gallant, the

author of ripgrep. Teddy is a multiple substrings matching algorithm implemented using

SIMD instructions. ripgrep constructs multiple literals out of a prefix of the provided

pattern covering all possible case distributions (e.g. for ’Sherlock’, the following literals can

be built: she|She|sHe|shE|SHe|ShE|sHE|SHE) and runs Teddy on them. For reported

matches, the remaining pattern must be compared to subsequent bytes of the data using a

naive approach of case-insensitive matching. However, the filtering done by Teddy reduces

the overall number of case-insensitive comparisons that must occur.
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Google/RE2 fails in Regex Pattern Optimization

When looking at the benchmark results for the pattern ’ [sS][A-Za-z][kK] ’ from

table 2 and table 3, we see that ripgrep and GNU grep perform similarly for the case-

sensitive and case-insensitive search respectively. xs greps runtime for the case-insensitive

search is much higher than the case-sensitive search. The interesting part here is that for

this specific pattern, case-sensitive and case-insensitive searches do not affect the actual

search because the pattern already is case-insensitive: Every character within the pattern

can already either be upper- or lowercase from the regexes definition. However, the regex

engine used by xs grep (Google/RE2) does not recognize this optimization possibility. It

starts a more complex search, which increases wall and CPU time. However, xs grep is

still faster than ripgrep and GNU grep because of its multithreading capabilities.

Searching Line Numbers

This section considers the benchmarks for searching line numbers (row ’Line Number’)

listed in table 2 and table 3. We observe a decreasing performance with regard to all three

search tools when searching line numbers instead of lines. We have explained the reason for

this in section 4. The benchmark runs of xs grep record the highest performance decrease:

For xs grep, the wall time quadruples when searching for line numbers instead of searching

for lines. The reason for this is the following. GNU grep, and ripgrep are searching for

newline characters and the provided pattern simultaneously. xs grep in contrast, first

searches newline characters and stores mapping data (described in section 5.5), then

performs the substring search and finally maps the substring search results to line indices

using the collected mapping data. This is more work because xs grep traverses the data

twice; thus, searching line numbers is much slower for xs grep when using a single worker

thread. However, xs greps approach can be easily parallelized: The newline character

searching and the substring searching can run concurrently on the same data. Only

mapping the byte offsets to the line indices requires the results of both searches. Since the

mapping is relatively fast in most cases (because, in most cases, the number of matches is
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small compared to the input data size), the overall runtime results in the runtime of the

slower search (either newline character or pattern search). Therefore, xs grep achieves

better results for line number searching concerning the wall time than GNU grep and

ripgrep when using multiple worker threads.

Compressed Input: Trading I/O for Computing Time

We can see benchmark results for compressed data input in table 4. We have seen

that reading data from HDD is the bottleneck within the overall procedure in table 1.

Therefore, compression can increase the overall performance: Compression trades I/O for

computing time by lowering the size of the data that must be read but increasing the

computational effort because the read data must be decompressed before being searched.

We can see the benefit of compressing data when I/O time is the bottleneck in table 4.

All three compression algorithms (Zstandard, LZ4 and LZ4 HC) perform at least twice

better than reading uncompressed data. The fastest option in our setup is compressing

the input using the x-search-specific preprocessing using the ZStandard algorithm (xs

grep (xspp), ZStandard). In this case, a speedup of over 600 % compared to reading

uncompressed text data can be reached. For the LZ4 HC compression, the x-search-

specific preprocessing also achieves the best benchmarking results. The reason for this is

that xs grep can decompress the read data using multiple threads. Therefore, the best

results are achieved when reading the data as fast as possible, which is the case for the

ZStandard compressed data (size 1.5G). For the LZ4 compressed input, it is faster to use

lz4cat for decompression and piping its output to one of the search tools than using

the x-search-specific processing. This is because the LZ4 compressed file is still relatively

large (3.7G), and the decompression of LZ4 compressed data is fast (c.f. decompression

benchmark comparisons listed on LZ4’s GitHub repository). Thus, the overall process is

still I/O-bound and using multiple worker threads cannot increase performance.
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Secondary Memory Affects Search Tool Requirements

Another important observation is that secondary memory affects the search tool require-

ments: We have seen that the search algorithm becomes the limiting factor for fast

secondary memory (SSD and RAM cache). Thus, it is essential to implement fast and

efficient search algorithms within the tools. Moreover, if the process is heavily CPU-bound,

it is worth using multiple worker threads for searching. However, if the secondary memory

is slow (HDD), the process becomes I/O-bound, and the underlying search algorithm

does not affect wall times. However, using efficient and fast search algorithms affect the

process’s power efficiency (CPU time). Thus, when reading from slow secondary memory,

it is recommended not to use multiple worker threads since their overhead may result in

higher CPU time without affecting wall time.
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8 Conclusion

This thesis has introduced an extensible and efficient backbone for implementing pipeline-

based procedures named x-search. x-search is optimized for external searches and therefore

provides many predefined components that can be used for external searches. The external

string search implementation provided by x-search meets the requirements for solving

the External String Searching Problem (ESSP). The thread management used within

x-search has been proven to be optimal, and the benchmark results show that the thread

management also performs well in practice. We have also introduced a GNU grep-like

executable (namely xs grep) that outperforms GNU grep and ripgrep especially for CPU-

bound searches. Thus, xs grep is a solid alternative to GNU grep and ripgrep for searching

on single files. We have seen how compression can increase performance for slow secondary

memory up to over 600 %. Further, from the SSD benchmarks, we can conclude that

external substring search is not necessarily I/O-bound; thus, the implemented underlying

algorithms affect the runtime of the overall process.

Further Work

This final section lists possible approaches to further extend and optimize x-search and

its components.

Optimize Search Algorithm

The search algorithm used for literal searches works well for standard substring searches.

However, searching for line indices or performing case-insensitive searches remains a

subject for optimization. Extending the search algorithm used by x-search could improve

performance for case-insensitive, line number and standard literal searches:
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• Case-Insensitive Search: As described, case-insensitive searching is done by

transforming the pattern and the data to lowercase and then performing a case-

sensitive search. This works well when using multiple worker threads. When using

a single worker thread, it can be more efficient to implement a case-aware substring

search algorithm rather than transforming the data first. We have mentioned the

multiple substrings matching algorithm Teddy that is used by ripgrep. A possible

improvement would be to implement a similar algorithm for x-search. However,

an implementation of Teddy requires a lot of low level optimizations and a deeper

understanding of the available SIMD instructions for serious performance increases.

Therefore, the task is considered relatively time intensive.

• Line Number Search: So far, searching for line numbers has also required a

pre-search step: Before searching for matches, the positions of newline bytes are

mapped to their line index. This means that the data are traversed twice when

searching for line numbers of matches. A more efficient implementation could be

achieved by extending the current SIMD-based string-matching algorithm: When

searching for matches of the first and last byte of the pattern, newline bytes are also

searched, and a corresponding counter is incremented if a new line is found. The

search function then returns the relative line number of the provided data along

with the byte offset if a match is found. This would reduce the byte offset search

time compared to the original algorithm but increase the single-core performance

when searching for line numbers. Extending the existing search algorithm to search

for new line characters and the pattern simultaneously is considered trivial.

• Literal Search: We could also extend the existing SIMD-based string matching

algorithm by applying heuristics similar to ripgrep that specify the bytes within

the pattern that are searched using SIMD instructions. If the bytes used for this

first search are as rare as possible within the data, the search algorithm will enter

the expensive inner loop less frequently for comparing all bytes of the pattern and

thus the overall performance increases. Extending the existing algorithm to support

search of other characters than the first and the last one can be done in a trivial

way and thus should not be too time intensive.
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Optimize Readers

We have noted the performance decrease when using memory mapping on secondary

memory with slow random access. This may not be a general issue of such secondary

memory but relies on the current implementation of the reader. Therefore, the memory

mapping reader could be optimized for using less file pointer movement while reading.

This could be done by buffering larger data ranges and providing parts of the buffer when

chunks are requested. Thus, larger regions of the input file would be mapped at once,

and the file pointer would be moved less. Another possibility would be to detect slow

random access while reading and switching to another reader.

Adding Support For Multiple Input Files

In contrast to ripgrep and GNU grep, xs grep only supports single file inputs. This could

be approached by

• Implementing additional readers, that traverse directories and accept multiple input

paths, and then provide data of all the input files.

• Sourcing the directory traversing out and constructing an Executor object for each

file.

Adding Readers for Reading Shared Data

In order to be able to use x-search for searching data owned by another process, an

additional reader must be implemented that provides const data from the foreign process.

By default, the data object used by x-search already supports such approaches since

memory-mapped data are considered foreign and const. Therefore, implementing such a

reader is a trivial task.
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Optimizing the Metafile

Following, we list possible improvements of the metafile format and the values that should

be stored in the metafile:

• Drop Original Size and Original Offset values if no compression was used since

these data correspond to Actual Size and Actual Offset, respectively.

• Use smaller integer types: If possible, store values as uint32_t.

• Add character heuristics (e.g. frequency distributions) for faster substring searches.
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