A review of word embedding and document similarity algorithms applied to academic text

Computer Science

Bachelor's Thesis

Author:Jon Ezeiza Alvarez

Supervisor: Prof. Dr. Hannah Bast

Motivation

A consequence of two projects:

- IXA group practicum
- SCITODATE

A realization:

- There is no human endevour as well documented as science.
- With faster progress and increased publication rate it is getting hard for humans to keep a global grasp of science.
- A long-term goal: An AI toolbox for automatic understanding of large amounts of academic literature.

Scope

A small first step

- Literature review of the state-of-the-art in word embeddings and semantic textual similarity.
- Empirical review of the algorithms on academic literature.

What are word embeddings?

- Dense algebraic representations of semantic content.
- Trained on large corpora or knowledge graphs.
- Why?
 - An alternative to knowledge graphs.
 - Input for Machine Learning.

What are word embeddings?

- Words are placed in a high dimensional vector space such that their distances equate similarity or relatedness.
- Side effect: Analogy, real-world knowledge

Semantic Textual Similarity (STS)

- Task: approximate similarity between pairs of text.
 - Phrases
 - Sentences
 - Paragraphs
 - Documents
- Document embeddings
 - Word embedding compositionality.

Training dataset

A corpus to learn from

- Bio-medical articles from PubMed
- 3 billion tokens
- Separate titles, abstracts and bodies.
- Cleaned and normalized:
 - Tokenization
 - Stemming

Testing datasets

- Triplets: distinguish similarity from noise.
 - The first two elements are related.
 - The third element is non-related.
 - **Goal:** sim(1, 2) > sim(1, 3)
- Word embeddings: UMLS synonyms.
- Document similarity: ORCID author linking.

Word2Vec (Mikolov, K. Chen, et al., 2013)

Mayor breakthrough

Key to success: deep vs shallow models

Window scanning method:

- **Assumption:** words that appear in similar contexts have similar meaning (Harris, 1954).

GloVe (Pennington, Socher, and C. Manning, 2014)

 Formalization of window scanning method: implicit factorization of wordword global statistics matrix.

Alternative:

Explicit factorization of co-occurrene matrix.

FastText (Bojanowski et al., 2016)

Word2Vec with subword components.

- Modular word embeddings.
- N-gram embeddings.
- Compositon of subword structures.
- Robustness to language inconsistencies and morphological variations.

WordRank (Ji et al., 2015)

Optimizes Nearest Neighbour ranking

- Instead of target-context pairwise distance.
- Ranking tuned to have more resolution at the top.
- Similar results to state-of-the-art with smaller corpora.
 - Not reflected in our experiments.

Results and conclusions

Word embeddings accuracy	1M	10M	100M	1B	2B
W2V CBow - Total	0.03	0.17	0.46	0.83	0.89
W2V Skip-gram - Total	0.04	0.18	0.46	0.83	0.89
W2V CBow - Known	0.67	0.73	0.80	0.85	0.90
W2V Skip-gram - Known	0.67	0.79	0.80	0.88	0.90
GloVe - Total	0.04	0.17	0.45	0.80	0.87
GloVe - Known	0.71	0.73	0.78	0.85	0.88
FastText - Total	0.81	0.88	0.90	0.93	-
WordRank - Total	0.02	0.21	0.45	0.78	0.89
Wordrank - Known	0.69	0.75	0.77	0.84	0.90

STS Baseline

It is early days for STS

 Make sure that the state-of-the-art beats naive methods.

Baseline:

- VSM similarity: BoW, Tf-Idf, BM25
- Weighted word embedding centroids

Doc2Vec (Quoc V. Le and Mikolov, 2014)

Adaptation of Word2Vec

Add global document vector to the context.

Doc2VecC (M. Chen, 2017)

- Realization: simple word embedding average is a hard baseline to beat.
 - Optimize word embeddings such that averaging them results in meaningful document vector representations.
 - Heavy corruption to improve generality.

Word Mover's Distance (Kusner et al., 2015)

- A pairwise document similarity metric.
- Compares two sets of embeddings with weights (frequencies, VSM).
- Earth Mover's Distance

Skip-thoughts (Kiros et al., 2015)

- Exploits sentence adjacency to train sentence embeddings.
- Encoder-decoder RNN architecture
 - Breakthrough in machine translation

Sent2Vec (Pagliardini, Gupta, and Jaggi, 2017)

Shallow sentence embedding model

- Heavily based on Wor2Vec CBow
- The window is a full semantic unit (sentence, paragraph, document...) instead of a few consequtive words words.

Results and conclusions

Best results of each algorithm

STS eval	Baseline	Doc2Vec	Doc2VecC	WMD	Sent2Vec
Titles	0.91 (EMB)	0.65 (1M)	0.87 (1M)	0.90	0.91 (1M)
Abstracts	0.93 (both)	0.86 (1M)	0.92 (50K)	0.92	0.87 (100K)
Bodies	0.96 (VSM)	0.97 (500K)	0.94 (10K)	-	0.83 (10K)

Summary

Accomplishments

- Thorough literature review of state-of-the-art
- Analysed 10 algorithms:
 - Intuituion
 - The maths
 - Computational complesity
 - Empirical study
 - Computational benchmark
 - Evaluation

Conclusions

Word embeddings

- Very active field since Word2Vec
- Most algorithms are derivative of Word2Vec, no clear advantages on evaluation.
- Some breakthoughs: FastText.

Semantic Textual Similarity

- Active but early days.
- Most models barely match naive baselines.
- A lot of innovation and exploration, may lead to a breakthrough in a few years.

Future work

- Main barrier: lack of official datasets in the scientific domain.
 - Human scored similarity pairs in scientific domain.
 - Stronger article linkage
 - Training set for document similarity

SCITODATE R&D roadmap:

- NER for linking to BioPortal
- Vocabulary mining
- Fact and relationship mining
- Named Entity prediction