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Abstract

The QLever engine allows efficient semantic search on a combination of RDF knowledge

bases and fulltext corpora using an extension to the SPARQL query language. In this thesis

we present several improvements to QLever that allow performing almost arbitrary SPARQL

queries on the Wikidata knowledge base. Those improvements heavily reduce the RAM usage

of QLever without significantly increasing the time needed for query processing.

1 Introduction

Knowledge bases are an effective way of storing structured data in the form of triples. Each triple

consists of a subject, a predicate and an object. E.g. the information which cities are capitals of

a country can be stored in the following way:

Subject Predicate Object
<Germany> <capital> <Berlin>

<France> <capital> <Paris>

<Colombia> <capital> <Bogota>

The format for such knowledge bases is standardized in the Resource Description Framework

(RDF). To obtain information from such knowledge bases the SPARQL query language can be

used. For example we can retrieve the capital of Colombia from our initial example using the

following SPARQL query:

SELECT ?capital_of_colombia WHERE {

<Colombia> <capital> ?capital_of_colombia

}

However much of the knowledge in the world does not exist in such a structured form but as

(human-readable) fulltext like in the following example from the Wikipedia article about the city

of Bogotá (https://en.wikipedia.org/wiki/Bogota):

“Important landmarks and tourist stops in Bogotá include the botanical garden

José Celestino Mutis, the Quinta de Boĺıvar, the national observatory, the planetar-

ium, Maloka, the Colpatria observation point, the observation point of La Calera, the

monument of the American flags, and La Candelaria (the historical district of the

city).”

One way to connect this (unstructured) full-text data to the structured data from a knowledge

base is to annotate snippets of the text with entities from the knowledge base. In our example

this would mean that we specify that the word “Bogotá” in our text refers to the entity <Bogota>

in the knowledge base. In 2017 Hannah Bast and Björn Buchhold ([1]) presented an extension to

the SPARQL language to perform queries on a combination of a knowledge base and an annotated

text corpus. Using this extension we can find a list of all capitals that have a botanical garden:
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SELECT ?capital WHERE {

?country <capital> ?capital .

?text ql:contains-entity ?capital .

?text ql:contains-word "botanical garden"

}

Bast and Buchhold also presented the QLever engine that is able to efficiently execute such

SPARQL + Text queries. They showed that their system outperformed other state-of-the-art

SPARQL engines with SPARQL + Text queries as well as with pure SPARQL queries.1

In the original QLever evaluation the Freebase knowledge base was used. Since this dataset has

been shutdown in 2014 it is desirable to use and evaluate the QLever engine with Wikidata which

has taken Freebase’s place as the biggest publicly available general-purpose knowledge base. When

trying to set up QLever with this knowledge base the following observation was made: QLever

scales well with an increased number of triples in the knowledge base but the RAM usage drasti-

cally increases if the number of distinct entities becomes larger.

1.1 Problem Definition

The QLever engine originally was not able to load a complete RDF dump of the Wikidata knowl-

edge base since the creation of the index (a preprocessing step that has to be performed before

being able to execute queries) ran out of memory even on machines with more than 200GB. In

this thesis we will introduce improvements for the QLever engine that allow us to build the index

and run queries using less than 32GB of RAM without slowing down the execution of queries. We

will also discuss mechanisms to effectively create queries for Wikidata.

1.2 Structure

In chapters 2 through 4 we will introduce the necessary background for our work. This includes

• The RDF format that is used to store knowledge bases.

• The SPARQL query language that is used to retrieve data from such knowledge bases.

• The Wikidata knowledge base.

• The QLever engine for SPARQL + Text queries and its extension to the SPARQL standard.

Chapters 5 through 7 describe several internal mechanisms of the QLever engine and how we

reduced their RAM usage to make QLever work with the full Wikidata knowledge base. Chapter

8 describes an efficient implementation of SPARQL language filters that are an important feature

for queries on large knowledge bases like Wikidata. In chapter 9 we will move our focus from

the efficient execution of queries to their effective creation: We will describe some difficulties that

arise when creating queries for Wikidata or other large knowledge bases. We will introduce the

Entity Finder, an efficient search engine that can be used to find the internal representation of an

entity in Wikidata given its (human-readable) name.

1Since the other engines had no native support for SPARQL + Text queries this feature had to be simulated
e.g. by inserting the information of the text corpus into the knowledge base and adapting the queries.
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2 SPARQL and the RDF Data Model

In this chapter we will introduce the RDF standard for knowledge bases and the SPARQL query

language. We will limit ourselves to the basic features that are required for understanding the

rest of this thesis. For completeness we link to the corresponding standardization documents.

The Resource Description Framework (RDF) is a data model with a well-defined semantic

used to store and exchange information or knowledge in the form of statements that are made

about (named) entities. It was standardized by the W3 consortium, the current version RDF

1.1 was published as a W3 recommendation in 2014 (all the standard documents can be found at

https://www.w3.org/RDF/). RDF was originally intended to store the meta data of web resources

like the author or the last modification date of a website. However it is also widely used to store

more general information. RDF statements have the form of triples. Each triple consists of a

subject, a predicate and an object. In the following the term knowledge base will stand for a set of

RDF triples. For example the information that Johann Sebastian Bach was born in Eisenach, a

German city, in 1685 could be expressed by the following knowledge base KBach:

<Johann Sebastian Bach> <place of birth> <Eisenach> .

<Johann Sebastian Bach> <year of birth> "1685" .

<Eisenach> <is a> <city> .

<Eisenach> <contained in> <Germany> .

The format we just used is (a simplified version of) the N-Triples format that is basically a list of

triples that are separated by dots. Below we will introduce this format in further detail. A set of

RDF statements can also be interpreted as a directed graph where the subjects and objects are

nodes in the graph and each statement or triple is an edge from the subject to the object of the

statement that is labeled with the predicate (see figure 1). In the following we will focus on the

Figure 1: The knowledge base KBach in its graph representation

triple-based formats for RDF knowledge bases because the QLever engine currently only works

with knowledge bases that are represented using triples.

2.1 The N-Triples Format

As already stated above, the N-Triples format is a relatively simple format to represent RDF

statements. Its full specification can be found at https://www.w3.org/TR/n-triples/. The
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N-Triples format consists of triples separated by dots. Within the triples entities are surrounded

by angles (e.g. <Eisenach>) while value literals like "1685" are surrounded by quotation marks.

Literals can only occur as the object of triples, the subject and the predicate of each triple must

be an entity.

Using URIs to Indentify Entities

In real-life knowledge bases the entities are represented by Uniform Resource Identifiers (URIs).

URIs have the same format as URLs but do not necessarily point to a web resource. For example

the city of Leipzig in eastern Germany is represented by the URI <http://www.wikidata.org/

entity/Q2079> in Wikidata. Using URIs makes it possible to uniquely identify entities across

different knowledge bases because one can (or should) only introduce new URIs if one owns the

corresponding URL namespace. For example if the team behind QLever would like to state its

favourite place in Cologne we could use Wikidata’s URI for Cologne but since there is no predicate

that maps a city to the QLever team’s favourite site of this city we would have to introduce a new

URI from an URL space that we own. So our triple could for example look as follows:

<http://www.wikidata.org/entity/Q2079>

<http://qlever.informatik.uni-freiburg.de/favourite-place>

<http://www.wikidata.org/entity/Q4176> .

( <http://...Q4176> represents the famous Cathedral of Cologne in Wikidata). Because we

reused the Wikidata URIs one can be sure that it is valid to search the Wikidata knowledge

base for more statements about <http://www.wikidata.org/entity/Q4176> if one wants to find

more information about this place which we have stated as our favourite. In this thesis we will

not always use fully qualified URIs but sometimes use shortened entity names like <Cologne> or

<name> for the sake of brevity and readability.

Language Tags and Datatypes

Value literals can be extended by a language tag or a datatype, this can be seen in the following

example knowledge base:

<Cologne> <name> "Cologne"@en .

<Cologne> <name> "Köln"@de .

<Cologne> <population> "+1075935"^^<Decimal> .

The language tags (@en and @de in the example) connect a literal to a specific language (The

city of Cologne is known under different names in German and English). Datatypes are entities

themselves and are connected to a literal using ^^. In our example "+1075935"^^<Decimal> tells

us that the string “+1075935” should be interpreted as the decimal number 1075935.

2.2 The Turtle Format

The turtle format (https://www.w3.org/TR/turtle/) is an alternative way of storing RDF state-

ments. It is an extension of the N-Triples format (every valid N-Triples file is also a valid Turtle

file) but allows several ways to compress information that occurs repeatedly in many triples.
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Prefix Directives

In section 2.1 we have seen that entity names should be fully-qualified URIs. Because of this

many entities in a typical knowledge base share a common beginning. For example many entities

in Wikidata start with <http://www.wikidata.org/entities/. The turtle format allows us to

introduce a short name for this prefix using a prefix directive. So instead of the fully qualified

triple

<http://www.wikidata.org/entity/Q42>

<http://www.wikidata.org/prop/direct/P31>

<http://www.wikidata.org/entity/Q5> .

(“Douglas Adams is a human”) we can write

@prefix wd: <http://www.wikidata.org/entity/> .

@prefix wdt: <http://www.wikidata.org/prop/direct/> .

wd:Q42 wdt:P31 wd:Q5 .

which is much more readable and also saves a lot of characters when the short form of the prefixes

is used in more triples.

Repeating Subjects and Objects

Typically many triples in a knowledge base have the same subject. When a Turtle triple is finished

with a semicolon instead of a dot this means that we will reuse the subject of the previous triple

and only specify a predicate and an object for the next triple:

@prefix wd: <http://www.wikidata.org/entity/> .

@prefix wdt: <http://www.wikidata.org/prop/direct/> .

wd:Q42 wdt:P31 wd:Q5 ; # Douglas Adams is a human

wdt:P21 wd:Q6581097 ; # ... gender male

wdt:P106 wd:Q214917 . # ... occupation playwright

When we want to repeat the subject and the predicate and only state a new object, the triples

are ended with a comma:

@prefix wd: <http://www.wikidata.org/entity/> .

@prefix wdt: <http://www.wikidata.org/prop/direct/> .

wd:Q42 wdt:P800 wd:Q25169 , # Douglas Adams notable work The Hitchhiker’s guide ...

wd:Q902712, # ... Dirk Gently’s Holistic Detective Agency

wd:Q7758404 # ... The Private Life of Genghis Khan.

2.3 The SPARQL Query Language

To efficiently retrieve information from RDF knowledge bases the SPARQL query language has

been specified by the W3 consortium (https://www.w3.org/TR/rdf-sparql-query/). Its syntax

resembles the SQL language for relational data bases in several aspects like the used keywords.

The most basic construct is a SELECT clause as we have already seen earlier in this thesis:
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SELECT ?a WHERE {

?a <is-a> <Astronaut>

}

Formally this query returns the subjects of all triples that have <is-a> as a predicate and

<Astronaut> as an object. Every token that starts with a question mark (?a) is a variable.

Multiple query triples can be connected by a dot:

SELECT ?h ?date WHERE {

?h <is-a> <Human> .

?h <date_of_birth> ?date

}

The semantic of the dot is the logical “and” or more precisely a join on the columns where the

triples have the same variable. So this query returns all pairs (h, d) such that h is a human

and d is the date of birth of the same human (according to the semantics of single triples in the

knowledge base).

Similar to the Turtle format we can also specify prefixes to make queries shorter and more readable:

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT ?human WHERE {

?human wdt:P31 wd:Q5 # <is-a> <human>

}

This internally expands the shorthand notation wd:Q5 to <http://www.wikidata.org/entity/Q5>.

Sorting

It is often desired to sort the results of a query in certain way. This function is provided by the

ORDER BY-clause of SPARQL:

SELECT ?h ?date WHERE {

?h <is-a> <Human> .

?h <date_of_birth> ?date

}

ORDER BY DESC(?date)

This query will sort the result such that the youngest humans (the ones most recently born) will

appear first. Changing the clause to ORDER BY ASC(?date) would reverse the order. The SPARQL

standard ensures that the ordering of different data types behaves as expected: Strings are sorted

lexicographically while dates and numeric literals are sorted according to the values they represent.

It is also possible to sort by multiple columns. E.g. the clause ORDER BY DESC(?date) ASC(?h)

would sort by the date first (in descending order). Humans with the same date of birth would

appear in alphabetical order.
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Filtering

Another commonly used feature in SPARQL is the FILTER clause. Often we are only interested

in results from a certain range:

PREFIX xsd: <http://www.w3.org/2001/XMLSchema>

SELECT ?h ?date WHERE {

?h <is-a> <Human> .

?h <date_of_birth> ?date .

FILTER (?date >= "1950-01-01T00:00:00"^^xsd:dateTime)

}

This query only returns humans that were born in 1950 or later (xsd:dateTime is the canonical

data type for date and time values used in all common knowledge bases).

Another important type of filter is the language filter. Literals only pass this filter if they have

a language tag that meets the requirements of the filter. Language filters are described in detail

in chapter 8 of this thesis. The SPARQL standards also specifies other types of filters. Those are

not relevant for this work and are described in the SPARQL specification.

Advanced Features

The SPARQL language also contains many more features that are not of relevance for this work.

Those include for example subqueries (queries whose results are then used in another query),

aggregates like GROUP BY and the union of the result of multiple (sub-)queries. Those mostly

behave like their equivalents in the SQL language.

3 The Wikidata Knowledge Base

Wikidata (https://www.wikidata.org/) is a free knowledge base that is maintained and hosted

by the Wikimedia foundation which also maintains the famous Wikipedia and all of its sister

projects. One of Wikidata’s main goals is to centrally store the structured data from all the

Wikimedia projects to avoid duplications. For example most of the data contained in the info

boxes of Wikipedia articles about a country does not have to be maintained separately by the

Wikipedia project but is dynamically loaded from Wikidata. In addition to this “internal” use

by the Wikimedia foundation the Wikidata project also provides external APIs to access its

information (see section 3.2).

3.1 Structure

In this section we introduce the format Wikidata uses to represent knowledge as RDF triples. We

only describe aspects that are relevant for the rest of this thesis. A detailed description of Wiki-

data’s RDF format can be found at https://www.mediawiki.org/wiki/Wikibase/Indexing/

RDF_Dump_Format.
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3.1.1 Fully-Qualified Statements

Wikidata does not only state simple facts or claims but also annotates them with meta data.

For example Wikidata does not only state the fact that the German capital Berlin is populated

by about 6.2 million people but also contains information about the source or reference of the

statement, the date it refers to, etc. To represent this concept of meta data for statements in the

RDF standard the Wikidata project uses intermediate nodes that are used to connect a statement

to its value and its meta data. This can be seen in figure 2.

Berlin population abstract statement
wd:Q64 p:P1082 wds:Q64-D9D0[. . . ]

Direct and Indirect Value for Statement
wds:Q64-D9D0[. . . ] ps:P1082 “3611222”
wds:Q64-D9D0[. . . ] psv:P1082 wdv:8afdc[. . . ]

Reference/ Source for Statement
wds:Q64-D9D0[. . . ] wasDerivedFrom wdref:d32d[. . . ]

Direct and Indirect Date Qualifier
wds:Q64-D9D0[. . . ] pq:P585 “2017-11-30”
wds:Q64-D9D0[. . . ] pqv:P585 wdv:659df57[. . . ]
. . . . . . . . .

Figure 2: A Wikidata statement about the population of Berlin and some of its meta data.
Long entity names are abbreviated. The abstract statement entity wds:Q64-D. . . represents one
statement about Berlin’s population. This abstract entity is then used as a subject in additional
triples to connect the statement to its actual value, to its reference and to its date. Note that there
are two triples for the value: One directly states the value “3611222”. The other one introduces a
new abstract entity wdv:8a. . . that is used to add additional meta data to the value in a similar
way. Same goes for the date qualifier.

With this concept of meta data for statements it is now possible to have multiple statements

about the population of Berlin for example for different points in time or if different sources state

different numbers (it is hard to determine the exact population count of a big city).

When looking at figure 2 we observe that Wikidata contains multiple “flavors” of the same pred-

icate: The id P1082 always stands for the concept of the population of an entity. From this id we

get the predicate p:P1082 that maps an entity to a statement (a wds:... node), the predicate

ps:P1082 that maps a Wikidata statement to its value and many more. Another important vari-

ant is wdt:P1082 which will be described in the following section. The expanded forms of those

prefixes can be seen in Attachment A.

3.1.2 Truthy Statements

On the one hand the fully-qualified statements we just described contain a lot of information

that is needed e.g. when using Wikidata as a source for scientific research. On the other hand

this format also introduces a lot of overhead. In our example one might simply want to answer

the question “What is the population of Berlin?” which for the format just introduced roughly

translates to “What is the value of the most recent statement about the population of Berlin”.

For such simple queries Wikidata introduced the concept of truthy statements. For example the
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most recent population statement of a city is truthy while older statements are not.2 This is done

by assigning each statement a rank. All statements with the highest rank are considered to be

truthy. Note that there can be multiple truthy statements for the same combination of subject

and predicate depending on the type of the predicate: When we state the population of a city we

probably expect only one statement to be truthy. When we state which books were written by a

certain writer we probably expect all the books by that author to be truthy. For truthy statements

Wikidata contains triples that map the subject and the predicate directly to the value (see figure

3).

Berlin population 3611222
wd:Q64 wdt:P1082 “3611222”

Figure 3: Wikidata triple for a truthy/direct statement on the population of Berlin

3.2 Obtaining Data

The Wikidata project provides several ways to access its data: Each item has a webpage where the

most important facts about it can be viewed (for example https://www.wikidata.org/wiki/Q64

for the city of Berlin (Q64)). For structured access to the data there is the Wikidata Query Service,

(https://query.wikidata.org/) a SPARQL endpoint to the Wikidata project. It is also possible

to download full dumps of the Wikidata knowledge base in the Turtle format (see section 2.2).

This makes Wikidata interesting for this work since it allows us to set up an instance of the

QLever engine with the full Wikidata knowledge base which was the initial motivation for this

thesis. All the different ways to access Wikidata and the formats used there are described at

https://www.wikidata.org/wiki/Wikidata:Database_download.

3.3 Statistics and Size

The Wikidata project claims to contain ca. 550 million statements on ca. 50 million entities.3

However these numbers do not include the intermediate entities and triples used to add meta data

to a statement. The actual number of triples in an RDF dump of Wikidata is interesting for us

because this is the format QLever works on. It can be seen, among some other statistics, in the

following table:

Number of Triples 7.1 Billion
Number of Literals 418 Million
Number of Entities 862 Million

Table 1: Statistics on Wikidata. Uses the Turtle dump of the full knowledge base from October
1, 2018. Every token that is not a literal is counted as an entity.

2The actual method of determining truthy statements is a little bit more involved but this abstraction suffices
for the sake of this thesis.

3https://www.wikidata.org/wiki/Wikidata:Statistics, October 1, 2018
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4 The QLever Engine

QLever is a combined SPARQL + Text engine that is being developed at the Chair of Algorithms

and Data Structures at the University of Freiburg. In addition to standard SPARQL queries it

supports a custom extension of SPARQL that allows combined search on a RDF knowledge base

and a full text corpus when the entities of the knowledge base are linked to words in the text

corpus. A detailed description of this extension and of QLever’s internals can be found in [1].

When we refer to the original version of QLever in this thesis we always refer to the features

described in that paper. In this thesis we will focus on the standard SPARQL part of QLever.

Technical Details And Terminology

The QLever engine is implemented in C++ and currently only supports the Linux OS on 64-bit

machines. It can be run inside a Docker container. In QLever the complete knowledge base has to

be imported at once. It does not support insertion or deletion of triples. This limitation allows it

to optimize the internal data structures of QLever for fast query execution. Those data structures

are called the index of a knowledge base and the process where a knowledge base is imported into

QLever is called index building. Thus when we want to use a given knowledge base with QLever

we first have to build the index for this knowledge base. Then we can start the QLever engine

with this index and execute SPARQL queries.

Obtaining and Using QLever

The QLever engine is open-source and licensed under the Apache License 2.0. Its source code

can be obtained from https://github.com/ad-freiburg/QLever. QLever contains a small web

server that provides a simple user interface and a HTTP-GET API to perform queries. Some

demo instances running QLever on various knowledge bases can be accessed via http://qlever.

informatik.uni-freiburg.de/. Those instances are maintained by the QLever developers at

the chair of Algorithms and Data Structures in Freiburg.

5 The Vocabulary of QLever

As we have seen before, RDF knowledge bases and SPARQL queries contain tokens like

"Douglas Adams"@en, wdt:Q42, . . . that form triples. The Qlever engine internally maps each

of those tokens to a unique id. This is done by sorting all the tokens from the knowledge base

lexicographically. The position of a token after this sort becomes its id (see figure 4 for an example).

That way the lexicographical order of the tokens is the same as the numerical order of the ids.

Before sorting the vocabulary QLever transforms numerical literals and date literals to a special

representation such that the lexicographical order of the tokens reflects the order of the values

the literals represent (e.g. “10” < “9” in lexicographical order but 10 > 9 when interpreted as

numbers).

We refer to this sorted set of all tokens from a knowledge base as its Vocabulary. The actual query

processing inside QLever is done in the numeric id space which is way more efficient that working

on strings.

12

https://github.com/ad-freiburg/QLever
http://qlever.informatik.uni-freiburg.de/
http://qlever.informatik.uni-freiburg.de/


<alan_turing> <is_a> <scientist> .

<ada_lovelace> <is_a> <scientist>

Id token

0 <ada_lovelace>

1 <alan_turing>

2 <is_a>

3 <scientist>

Figure 4: A tiny knowledge base (left) and its sorted vocabulary (right)

5.1 Resolving Tokens and Ids

Since SPARQL queries and their results contain tokens from the knowledge base and since the

query processing of QLever is handled in the id space one important task for the engine when

executing a query is to translate between the token space and the id space: As a first step after

parsing the query all tokens from the query that correspond to a token in the knowledge base have

to be translated to their numeric id. Then the query is processed in the id space. After the ids

of all possible results have been computed, they have to be translated back to the token space to

obtain the actual result of the query. Consider for example the following SPARQL query:

SELECT ?city WHERE {

?city <is-a> <city> .

?city <contained-in> <Poland> .

}

It is intuitively clear that the QLever engine has to map the tokens <is-a>, <city>, <contained-in>

and <Poland> to their corresponding ids. If executing this query yields for example 3, 7, and 9 as

id values for the selected variable ?city, the engine as a last step has to translate these back to

string tokens like <Warsaw>, <Krakow> and <Mielec>. Since the Vocabulary of the knowledge base

is stored in lexicographical order we can perform those mappings as follows: To convert an id to

the corresponding token we can just look up the array at the position indicated by the id (O(1)).

To translate a token to the correct id we have to perform binary search on the array (O(log n)

where n is the size of the Vocabulary). This approach also allows us to find a lower or upper bound

for the id of a given token. This allows us to efficiently perform SPARQL FILTER clauses (see

section 2.3) directly in the id space. When we for example want to filter a certain result variable

for tokens that start with the letter ’a’ we have to find a lower bound for the id of all words that

lexicographically are greater or equal to the string "a" and an upper bound for all tokens that are

lexicographically smaller than the string "b". The binary search approach allows us to also find

these bounds if one of those strings is not contained in the vocabulary. It would theoretically be

possible to improve the runtime of the string-to-id translation to O(1) by additionally creating a

hash table that maps strings to ids. The main disadvantage of this method is that it only allows us

to perform the translation in one direction and that it consumes additional memory. Additionally

the translation from tokens to ids is mostly not that time critical: Normally there are relatively

few tokens to resolve within a query and thus the log n binary search in practice never becomes a

bottleneck.
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5.2 Improvements for Large Vocabularies

In the last section we have seen that the general approach for storing the sorted Vocabulary in

QLever is using a contiguous array in RAM. In practice this approach works well for small to

medium-size knowledge bases with a relatively small vocabulary that can be fit into RAM at

once. However big knowledge bases like Wikidata or Freebase contain a lot of different tokens:

For example the vocabulary of the full Wikidata needs about 80GB and contains about 1.2 billion

tokens. In the following section we will introduce several strategies that can be used to deal with

such large Vocabularies without completeley storing them in RAM.

5.2.1 Omitting Triples and Tokens From the Knowledge Base

The probably easiest way to reduce the RAM usage of the vocabulary and of the whole QLever

index is to reduce the size of the knowledge base by deleting triples that are not relevant for the

specific use case. Of course this is not a valid solution when our actual goal is to build a SPARQL

engine that can deal with large-scale knowledge bases. In practice however we often know what

we will use the knowledge base for and thus can prune the set of triples to fit our needs. When

we for example want to build a QLever index based on Wikidata that can help historians with

their research we can probably omit many triples from Wikidata that contain information about

chemical elements (Wikidata contains a lot of biological and chemical knowledge). And if we know

which languages are relevant for our users we can omit all triples that contain object literals with

language tags that probably will never be searched for.

5.2.2 Externalizing Tokens to Disk

In most large-scale knowledge bases there are types of tokens that are used relatively seldom but

contribute in a great amount to the total size of the vocabulary. These can for example be

• Literals in “exotic” languages. This is especially true for Wikidata because its concept is

not to be biased towards any language.

• Very long literals like descriptions of entities.

• Abstract entity URIs that represent intermediate nodes and typically never appear in a

query or a result. This is for example true for the wds:, wdv:, . . . entities in Wikidata (see

section 3.1)

The original version of QLever already contained the following mechanism to externalize certain

literals:

• During the index build, decide for each literal whether it shall be externalized or not (this

decision could for instance be made depending on the language tag of the literal or on its

length).

• Prepend all literals that are to be externalized with a special, non-printable character that

will cause them to lexicographically appear after all literals that are not externalized (the

implementation uses a byte with the value 127. This works because in the N-Triples format

that QLever uses internally all Tokens either start with < or " [see section 2.1]. The ASCII

value of both characters is less than 127).
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• After sorting the Vocabulary (see section 5.4 for the details of this procedure) write all the

literals that start with the special externalization character to a separate file.

When starting the Qlever engine we only read the not-externalized literals into RAM. We can tell

by the id of a token whether it was externalized or not because the ids of all externalized tokens

are higher than the ids of all the tokens that were loaded to RAM. When resolving a string to its

id, we first check whether this string meets the criteria for externalization. If this check is true,

we resolve it using binary search on the externalized vocabulary on hard disk4. If not, we perform

binary search on the array of “internal” words in RAM as described above.

We can see that this method is still able to correctly resolve ids to strings and vice versa. However,

this method breaks the lexicographical ordering of the vocabulary under certain conditions: When

sorting a set of ids that partly belongs to the internal and to the external vocabulary the internal

ids will always appear before the external ids which does not necessarily reflect the lexicographic

ordering of the corresponding tokens (see figure 5). Similar problems arise when filtering query

results. In practice this is mostly not problematic since we aim to only externalize tokens that we

mostly won’t use.

Internal (RAM)
Id token

0 “Douglas Adams”@en

1 rdfs:label
2 wd:Q42

External (disk)

Id token

3 “Adams Duglas”@vep

4 wds:Q42-. . . -D97778CBBEF9

Figure 5: Internal and External Vocabulary for some tokens from Wikidata. Note that the id of
“Douglas Adams”@en is lower than that of “Adams Duglas”@vep because the latter is externalized.
Thus when both of them appear in a query result (e.g. when we do not filter for a specific language)
their ordering is incorrect.

Contributions

The original version of QLever only supported the externalization of literals depending on their

length and their language tag. We have extended this mechanism to also externalize entities if

they match a certain pattern. For example in the Wikidata knowledge base we externalize all

intermediate entities that only refer to abstract statement, value or reference nodes (see section

3.1).

5.3 Compression

For this thesis we have also evaluated possible memory savings when applying compression algo-

rithms to the vocabulary. This is described in detail in chapter 6.

5.4 RAM-efficient Vocabulary Creation

Until now we have seen that once we have created our Vocabulary and also a suitable representation

of the knowledge base in the id space we are able to perform the query execution in the id space.

4The externalized vocabulary is implemented using a data structure that allows us to perform binary search on
an array of strings on disk. This still runs in O(n) but with the overhead of random accesses to the hard disk. The
implementation details of this data structure are not relevant for this thesis and thus are omitted.
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In this section we will put our focus on creating these data structures. Namely we need to create

the bijective mapping from each token in the knowledge base to its lexicographical position within

the vocabulary. In a second step we read the complete knowledge base and convert each triple of

tokens to a triple of ids.5 On a high level this can be done as follows:

1. Read all triples from the knowledge base and create the set S of all tokens (we need a set

since tokens can occur in multiple triples).

2. Sort S according to the lexicographical ordering of strings.

3. Assign the id 0 to the first element of S, 1 to the second element, etc.

4. In a second pass over all the triples we can now map the whole knowledge base to the id

space and store it efficiently using 3 · sizeof(Id) bytes per triple.

5.4.1 Original Implementation

The original version of QLever implemented these steps in the following way

1. Read all triples and insert all tokens into a hash set (this ensures that each token is added

to the vocabulary only once).

2. Store all the elements of the set in a (dynamic) array and sort this array.

3. The index of a token in the array now equals its id.

4. Transform the sorted array into a hash table that maps tokens to their ids.

5. During the second pass, read each triple and query the hash map for the corresponding id.

We can see that this algorithm is asymptotically optimal, since insertion and access to hash maps

and hash sets run in O(1) per token in average. Thus steps 1 and 5 run in in O(t) if t is the number

of triples in the knowledge base. Steps 2 (first half) and 4 run in O(n) where n is the number

of distinct tokens (n ≤ t). The sorting in step 2 is done in O(n log n). The overall runtime of

O(t+ n log n) is optimal because we have to access each triple of the knowledge base and because

we have to sort the vocabulary.

The method just described performed well enough in practice for the original use case of QLever

where the focus was put more on combined SPARQL + Text queries with huge text corpora but

with relatively small knowledge bases. However, when trying to build a QLever index for the

complete Wikidata knowledge base we ran into trouble for the following reasons:

• The whole vocabulary was kept in memory at the same time. (Only after the index build

the most memory-consuming literals could be externalized to disk, see section 5.2.2)

• During the conversions from the hash set to the dynamic array and from the dynamic array

to the hash table actually two copies of the vocabulary were kept in memory.

5This step is needed to create the permutations, the internal representation of the knowledge base QLever uses.
They are described in section 7.1
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• The chosen hash set and hash table implementations (dense hash map and dense hash set

from google::sparsehash6) have a relatively big memory overhead per value since they are

optimized for speed.

For those reasons it was not possible to build the Wikidata index even on machines with 128GB

of RAM because we ran out of memory during the creation of the vocabulary. To deal with this

problem, some minor improvements immediately come to mind when reading the list of problems

just stated:

• Choose a hash set and hash table implementation that is optimized for a low memory over-

head (e.g. the sparse hash set from google::sparsehash which only has an overhead of 2 to 5

bits per entry.7

• When converting the vocabulary from a hash set to a dynamic array (step 2) make sure

that the elements that were already inserted to the dynamic array are deleted from the hash

set and that the hash set frees some of the memory which becomes unused. This is is a

non-trivial process, since decreasing the memory usage of a hash map involves rehashing.

• A similar approach (deleting already moved elements) could be applied when converting the

(sorted) array to the hash map.

However, those methods can not deal with the problem that the whole vocabulary is stored in

RAM at once. Since our goal was to make it possible to build a QLever index on any machine

that is also able to use this index this is not sufficient because of the possible externalization of

memory-consuming tokens that still would be applied after the mapping of the vocabulary to the

id space was finished. We decided to use a more involved method to meet this requirement which

will be presented in the following section.

5.4.2 Improved Implementation

To reduce the memory usage during the creation of the vocabulary mapping we proposed and

implemented the following algorithm:

1. Define an integer constant LINES PER PARTIAL.

2. Split the knowledge base into disjoint parts p1, . . . pk with LINES PER PARTIAL triples

each.

3. Use the algorithm described in section 5.4.1 to create partial sorted vocabularies v1, . . . vk

such that vi contains all the tokens occuring in pi.

4. Perform a k-way merge on the partial sorted vocabularies to create the complete sorted

vocabulary v. From this vocabulary we can directly determine the complete vocabulary

mapping m by assigning each token its position in the vocabulary.

5. For each partial vocabulary vi create a partial vocabulary mapping mi such that each word

is mapped to its id according to the complete mapping m.

6https://github.com/sparsehash/sparsehash
7ibidem
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6. For each knowledge base part pi use the partial mapping mi to map them to index space.

When considering the RAM usage of this approach we observe the following: During step 2 the

size of the data structures (hash set + dynamic array, see section 5.4.1) needed to create the partial

vocabulary vi is upper bounded by the number of distinct tokens in pi which is upper bounded by

3 × LINES PER PARTIAL (each triple introduces at most three new tokens). After vi is created

it is written to disk. This means we only have to handle one partial vocabulary at a time and

control the memory usage of this step by the choice of the constant LINES PER PARTIAL. Same

goes for step 6.

The k-way merge and the creation of the partial mappings (step 3 and 4) are performed in one go

as follows:

Algorithm 1: Merging the Partial Vocabularies to Obtain the Complete Vocabulary and

the Partial Mappings.

Data: v1, . . . , vn, partial vocabularies

Result: m1, . . .mn, mappings from tokens to ids and vglobal, the global vocabulary

1 Let Q← an empty PriorityQueue;

2 Let curId← 0;

3 Let prevWord← null;

4 Let m1, . . .mn be empty mappings;

5 for Each i in {1, . . . n} do

6 // Insert first word of each partial vocab together with id of vocab

7 Insert (vi.first, i) into Q;

8 end

9 while Q is not empty do

10 Let (curWord, originId)← Q.getMin();

11 Q.deleteMin() ;

12 // We might see the same word in different partial vocabs

13 if curWord 6= prevWord then

14 curWord← prevWord;

15 vglobal.append(curWord);

16 moriginId[curWord] = curId;

17 curId← curId + 1;

18 else

19 // Same word has to get the same id

20 moriginId[curWord] = curId− 1;

21 end

22 if voriginId is not exhausted then

23 // Ensure that we always have one word from each partial vocab in Q

24 Insert (voriginId.next, originId) into Q

25 end

26 end

27 return m1, . . . ,mn, vglobal

Note that in Algorithm 1 we assume the following data structures:
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• The PriorityQueue Q stores pairs of strings and ids (the next word from a given partial

vocabulary and the index of this vocabulary). It determines its minimum by the lexico-

graphical order of the string. Otherwise it is in an ordinary priority queue that supports

insert, getMin and deleteMin operations (implemented for example as a binary heap or a

fibonacci heap).

• The sorted vocabularies vi can be iterated using .first and .next operations that yield the

words of the vocabulary in lexicographically increasing order. They are “exhausted” if their

last word has already been retrieved and added to the PriorityQueue.

An example of the execution of algorithm 1 can be seen in figure 6.

partial vocabulary p1 partial vocabulary p2

word id word id

alpha ? bravo ?
bravo ? charlie ?
delta ? echo ?
echo ? - -

blub
blub

partial vocabulary p1 partial vocabulary p2 complete vocabulary v

word id word id word

alpha 0 alpha
bravo 1 bravo 1 bravo

charlie 2 charlie
delta 3 delta
echo 4 echo 4 echo

Figure 6: Two partial vocabularies before and after merging them. Before the merge (top row)
the partial vocabularies are sorted within themselves but the global id of their elements is yet
unknown. After the merge (bottom row) the complete vocabulary is created and thus the ids for
all the tokens are known.

Our actual implementation of this algorithm additionally has the following properties:

• The complete vocabulary vglobal is directly written to disk during the k-way merge. It is

serialized as a text file with one word per line, sorted in lexicographical order.

• The partial vocabularies vi are read directly from disk and the mappings mi are written

directly to disk.

Summarized, this step of the vocabulary creation almost requires no RAM since the only data

structure that is kept in memory is the priority queue Q. It always contains at most one word

per partial vocabulary. This number is typically very small (< 200 during our tests with the full

Wikidata knowledge base).

The runtime of the k-way merge is mostly determined by the total size of the partial vocab-

ularies because they have to be completely written to and read from disk. It is not possible to

theoretically upper bound this number using the size of the complete vocabulary: It is possible

to create worst-case examples where almost all words occur in all partial vocabularies. However,

in N-Triples or Turtle dumps of real-life knowledge bases most tokens show a high locality. Most
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literals only occur in few triples and the statements about a certain entity are normally close to

each other. Then the size of the complete vocabulary is roughly the size of the concatenated

partial vocabularies.

5.5 Evaluation and Summary

We have shown how the RAM usage of the vocabulary in the QLever engine can be reduced by

externalizing rarely used tokens to disk. This technique reduces the in-memory size of Wikidata’s

vocabulary from initially 80GB to 20GB. We have also introduced an algorithm which is able

to create the vocabulary representation for huge knowledge bases in a memory efficient way.

Especially the amount of RAM needed to build the vocabulary is now less than the amount of

RAM needed to use it in the QLever engine. This fulfills our goal to be able to build a QLever

index on the same machine where we will use it.

6 Compression of Common Prefixes

When looking at large knowledge bases like Wikidata we observe that many of the URIs used as

entity names have a common beginning. For example all entity names that were introduced by

the Wikidata project start with <http://www.wikidata.org/. In the Turtle format for storing

RDF triples and in the SPARQL query language we can shorten these common prefixes by using

a prefix directive like

PREFIX wd: <http://www.wikidata.org/entity/>

so that in the rest of the knowledge base or query we can write e.g. wd:Q5 instead of

<http://www.wikidata.org/entity/Q5> (see section 2.2). Inspired by this method we came up

with the following approach to compress our vocabulary using code words of constant size for a

set of prefixes:

• Let C be a set of strings of fixed length called the codes.

• Let P be a set of strings or prefixes with |P | = |C| and code : P → C a bijective mapping

of the prefixes to the codes.

• Let len be the function that maps a string of characters to its length.

• If a word x from our vocabulary starts with p ∈ P , so if x = p · rem where · is the

concatenation of strings and rem an arbitrary string, store x as xc := code(p) · rem. This

saves us len(p)− len(code(p)) bytes.

• If there are multiple pairwise distinct p1, . . . pn ∈ P that all are a prefix of x always choose

the longest pi for compression (since we have a fixed length of the codes this saves us the

most bytes).

When we want to retrieve a word from the vocabulary, we have to check if it starts with one of our

codes c ∈ C. If this is the case we have to replace this prefix by code−1(c) to obtain our original

string. In the following we will refer to this decompression process also as the expansion of the
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compressed prefixes. In order to make this compression process work correctly we have to make

sure of the following properties:

• When expanding the prefixes we have to know whether a string was compressed or not. That

means that none of the (uncompressed) strings we want to store may start with one of our

prefixes from P . If we for example know that our characters will only come from from the

ASCII range (0 − 127) we can use byte values from 128 to 255 to encode the prefixes. For

the vocabulary of a RDF knowledge base this property is true since all the tokens either

have to start with " (literals) or with < (fully qualified URIs).8 To be more explicit we have

chosen a different approach that prefixes every string with a special code even if it cannot be

compressed. Theoretically this could add to the size of our vocabulary for these strings. But

for the reasons just mentioned we can easily add " and < to our set of prefixes so that we at

least don’t increase our vocabulary size for words where we find no prefix that compresses

them better (Assuming that the code length for these prefixes is 1 which is the case in our

implementation).

• When expanding the prefixes we need to be able to uniquely identify which code was used

to compress our prefix. This holds for example if we use codes of fixed length or so-called

prefix free codes where no code is a prefix of each other.

In our implementation we have chosen a fixed code length of 1 byte and have used 127 prefixes.

6.1 Finding Prefixes Suitable for Compression

We have seen how a set of common prefixes can be used to compress the vocabulary of a knowledge

base. In this section we will describe methods to find a set of such prefixes. The easiest way is

to manually specify them. For example when working with the Wikidata knowledge base it is

save to assume that it is helpful to compress using the prefixes that are also typically used when

formulating queries on this dataset like

<http://www.wikidata.org/entity/

<http://www.wikidata.org/entity/statement/

<http://www.wikidata.org/prop/direct/

However this approach is not very convenient since it depends on the structure of the knowledge

base and has to be executed manually. Additionally we can never guarantee that the prefixes

that were chosen are at least close to optimal for compression. Thus we have developed a greedy

algorithm to automatically find such prefixes. We will describe this algorithm in the following

sections.

6.2 Problem Definition

We have given a set of strings called the vocabulary that contains nv elements. We have given

a fixed code length lc and an integer nc that describes the number of available codes. We want

to find a set P consisting of nc prefixes such that compressing our vocabulary using the method

8QLever originally works on fully qualified URIs and converts the single quotes ’ that are also valid for RDF
literals to double quotes ” to unify the internal representation of tokens.
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described at page 20 reduces its sizes as much as possible. We measure this reduction using the

compression ratio which is calculated by dividing the size of the vocabulary after the compression

by its initial size. E.g. a compression ratio of 0.5 means that we halved the sized of the vocabulary.

6.3 Previous Work

According to Fraenkel et al. ([4]) there exists a polynomial time algorithm for the optimal solu-

tion of this problem. Unfortunately they give no detailed description of this algorithm or a more

accurate measure of its runtime. However, if we assume that in this case “polynomial time” means

O(n2) or slower we can argue that this algorithm could never be feasible for our needs. Even if

we assume that we have to perform exactly n2 operations for n = 420 · 106 (This is the size of the

Wikidata vocabulary after externalization has been performed as described in section 5.2.2) and

each operation takes 1 nanosecond (which is obviously underestimated for operations working on

strings) we still need about 5.6 years of time to finish the algorithm.

The algorithm described here was inspired by a heuristic for the same problem that was developed

by T. Radhakrishnan in 1978 ([8]). Radhakrishnan also uses a tree to store prefixes that are

candidates for compression. However our approach differ’s from Radhakrishnan’s in the following

properties:

• Radhakrishnan uses the per-word compression ratio as a metric while we consider the abso-

lute gain of the prefixes.

• Radhakrishnan does not take into consideration that the compression gain which a certain

prefix can achieve highly depends on which prefixes have already been chosen for compression

previously. This is an important part of our algorithm.

6.4 Description of the Algorithm

We have implemented a greedy approximation of the set of optimal compression prefixes. On a

high level of abstraction this can be described as follows:

22



Algorithm 2: FindPrefixes: Greedy heuristic for finding compression prefixes. High-level

description

Data: Vocabulary v (a set of strings), number nc of prefixes we want to compute

Result: A set of strings P with |P | ≤ nc that can be used for prefix compression on v

1 Let P ← ∅;
2 while |P | < nc do

3 Let pnext ← the prefix string that compresses the most bytes in v under the

assumption that we have already compressed v using the prefixes from P ;

4 if pnext ==“” then

5 break;

6 else

7 Let P ← P ∪ pnext;

8 end

9 end

10 return P ;

Please note that the break condition pnext ==“” is only needed to avoid infinite loops in very

small vocabularies where |v| < nc or in the case that all strings that could still be compressed are

shorter that the code length. Both cases typically never occur when compressing large vocabular-

ies.

Our next step will be to formalize the way that pnext is computed. We will first illustrate this by

an example: Consider a vocabulary V consisting of the words peal, pear, bin. Assume we want

to find two prefixes for compression that are encoded by 1 character or byte each. Compression

using the prefix “peal” will gain us 3 bytes ((4 − 1) · 1, the prefix has length 4, 1 byte is used

for encoding, and the prefix occurs in one word), same goes for “pear” while bin has gain of 2

((3− 1) · 1). The prefix “pea” gains us 4 bytes ((3− 1) · 2 since it occurs in two words) and thus

will be chosen in the first step, so P={"pea"} (We have omitted the gain for some possible prefixes

that are obviously less than the ones calculated).

In the next step note that the gain for the prefix “peal” has decreased: Compressing its 4 char-

acters originally gained us 4− 1 = 3 bytes, but since we have already chosen the prefix “pea” for

compression we “lose” the 3 characters we originally gained when compressing with “pea”. So in

this step, choosing the prefix “peal” would gain us only 1 byte, same goes for “pear”. We end

up choosing “bin” as the second compression prefix which gains us the full 2 = 3 − 1 bytes since

none of its prefixes have yet been chosen for compression (We will use this example throughout

this chapter).

This example motivates the following definitions which we already have implicitly used:

Definitions

The following definitions all refer to a set of strings voc called the vocabulary and a set of strings

P called the compression prefixes. We additionally use an integer constant lcode called the (fixed)

code length.
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Definition 6.1. Let s be an arbitrary string. We define the relevant length lrelevant(s, P ) of s

by

lrelevant(s, P ) := length(s)− length(maxPrefix(s, P ))

Where the function length returns the length of a string and maxPrefix(s, P ) is the longest

string in P that is a prefix of s or the empty string if no such string exists.

The relevant length of s is the number of characters we can save for each word in the vocabulary

that starts with s when choosing s as an additional compression prefix.

Definition 6.2. Let s be an arbitrary string. The relevant count crelevant(s, voc, P ) of s is

defined by

crelevant = |{v ∈ voc : startsWith(v, s) ∧ @p ∈ P : startsWith(v, p) ∧ len(p) ≥ len(s))}|

Where the boolean function startsWith(v, p) evaluates to true iff p is a prefix of v.

The relevant count of s is the number of words in our vocabulary which can benefit from ad-

ditionally choosing s as a compression prefix. This is not the case for words that already were

compressed using a longer prefix p ∈ P (remember that we are designing a greedy algorithm).

Definition 6.3. Let s be an arbitrary string. The relevant gain grelevant(s, voc, P ) is defined

by

grelevant(s) := (lrelevant(s, P )− lcode) · crelevant(s, voc, P )

The relevant gain of s is the total number of characters we save in our greedy algorithm when

additionally choosing s as a compression prefix.

Now we can formalize the calculation of pnext in FindPrefixes (algorithm 2) as:

Algorithm 3: Formal definition of the calculation of pnext in FindPrefixes (algorithm 2)

1 Let pnext ← the string that maximizes grelevant(pnext, voc, P )

It is trivial to see that only strings that are prefixes of words from our vocabulary can have

a relevant gain > 0. To efficiently implement the FindPrefixes algorithm we have to calculate

the relevant gain of all the prefixes of words from our vocabulary (In the following we will call

those prefixes the candidates). To do so we need the relevant length and relevant counts of those

strings. Both of them possibly change over time since we add to our set P of compression prefixes.

In the following we will define a data structure that allows us to efficiently and incrementally

compute the relevant gain for all the candidates in each step to find the maximum and thus our

next compression prefix pnext.

QLever-Tries

Definition 6.4. We define a QLever-Trie t to be a rooted directed tree. Since we are only

interested in the nodes of the tree we write n ∈ t for the nodes of the tree. The connection

between the nodes is defined by a function parent that maps each node except for the root to

its unique parent. Each node n ∈ t is a tuple n = {val, num, len,marked} where val is a string

called the value of n, num and len are integers ≥ 0 and marked is a boolean flag. As a convention

we write val(n) etc. for the single tuple elements of a given node n. A QLever-Trie t holds the

following invariants (in addition to the “ordinary” invariants of a rooted tree):
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1. The value of the root of t is the empty string "".

2. The values of the nodes in t are unique.

3. For each node n that is not the root the value of parent(n) is the value of n without the last

character (E.g. if val(n) =“peace” then val(parent(n)) =“peac”

Because of property 3 we do not have to store the complete string value for a node n but it

suffices to store the one character we have to append to its parent’s value to obtain val(n). Figure

7 illustrates this concept.

Figure 7: A simple Trie. Only the string values of the nodes are shown. On the left we see the
full values that the nodes represent, on the right we see the compressed form with one character
per node.

The QLever-Trie is an extension of the general Trie data structure that was originally intro-

duced by de la Briandaise in 1959 ([3]) and is widely used in the field of information retrieval.

To connect a QLever-Trie to our FindPrefixes algorithm we use the following definition:

Definition 6.5. A QLever-Trie t is associated with a vocabulary voc and a set of compression

prefixes P if all of the following properties hold:

1. v ∈ voc⇔ ∃n ∈ t : val(n) = v

2. ∀n ∈ t : num(n) = crelevant(val(n), voc, P )

3. ∀n ∈ t : len(n) = lenrelevant(val(n), P )

4. ∀n ∈ t : (marked(n)⇔ val(n) ∈ P ∨ val(n) =“”)

Properties 2 and 3 ensure that we can calculate the relevant gain of a node n (more exactly:

the relevant gain of val(n)) by only looking at that node. Property 1 ensures that the trie contains
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exactly our set of candidates. Property 4 ensures that all prefixes that have already been chosen

for compression and the root are marked. We will see later why this is useful.

To start our algorithm we have to build a QLever-Trie that is associated with our vocabulary

voc and the initially empty set of compressed prefixes P = ∅:

Algorithm 4: Building the initial QLever-Trie for the FindPrefixes algorithm

Data: Vocabulary voc (a set of strings)

Result: QLever-Trie t that is associated with voc and P = ∅
1 Let t← an empty QLever-Trie;

2 for Each word w in the vocabulary voc do

3 for Each prefix p of w (ascending length of p) do

4 if p is already contained in t then

5 find the corresponding node n and set num(n)← num(n) + 1;

6 else

7 insert a new node n into t with val(n)← p, num(n)← 1, len(n)← length(p)

8 end

9 end

10 end

11 Let marked(root(t))← true and marked(n)← false for all other nodes;

12 return t;

By “p is already contained in t” we mean that there exists a node n ∈ t with val(t) = p. It is

easy to see that this algorithm produces a trie that is correctly associated with voc and P = ∅:

• Each prefix of each word w ∈ voc is contained in the trie (trivial) and there are no nodes

that do not represent prefixes of words from voc.

• P = ∅ means that we haven’t chosen any prefixes for compression yet. So the relevant length

of every string is equal to its actual length.

• For each node n, num(n) is the number of words in the vocabulary that start with val(n).

Since P = ∅ this is equal to the relevant count crelevant(val(n), voc, ∅).

Once we have created this initial trie, the maximum of the relevant gain and the node/prefix that

achieves it (called pnext in algorithm 2) can be calculated as follows:

• Traverse the tree.

• Calculate the relevant gain for each node using its relevant length.

• Keep track of the maximum and the node where it is achieved.

An example for a QLever-Trie and the calculation of the maximum can be seen in figure 8.

This gives us the node nmax with the maximum relevant gain and thus the prefix pmax = pnext

that we have to add to our set P in the FindPrefixes algorithm. Because of the observations made

above it is clear that this step does not only work for the first step (P = ∅) but always correctly

determines pnext as long as t is correctly associated with the current set of compressed prefixes P .

As a last step we have to make sure that after adding pnext to P our Trie t is associated with
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Figure 8: A QLever-Trie for the vocabulary consisting of peal, pear, bin
for the first step of the FindPrefixes algorithm. Each node stores the prefix string it represents,
the number n of occurences of this prefix within the vocabulary, its relevant length l (initially
the length of the prefix). The gain g of a node is computed by (l − 1) · n (assuming 1 byte of

code length). The root is marked (different color)

voc and the updated P again. This is done by algorithm 5 on page 28. This algorithm is called

ReAssociate.

An example for the application of ReAssociate (algorithm 5) can be found in figure 9.

The first part of this algorithm (the reduction of len in the subtree of nmax) ensures that the

len of each trie node is equal to the relevant length of the prefix string it represents (see definition

6.1 on page 24). Of course we also have to apply this for nmax: We set its relevant length to 0 to

mark that this node already was chosen. The reason for the PenaltizeParent step can also be

seen in the example: When we already have compressed using the prefix “pea” and in a later step

we additionally compress by “pe” then we obviously do not gain anything for the words that also

start with “pea” (Of course this only works with a fixed code length which we always assume for

our algorithm FindPrefixes).

6.5 Improvements of the Algorithm

In this section we will describe some improvements for the FindPrefixes algorithm which help

reducing its runtime and memory usage.
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Algorithm 5: ReAssociate: Modification of the QLever-Trie After Choosing a Prefix

Data: QLever-Trie t, node nmax ∈ t whose value pmax = val(nmax) we have chosen for
compression in the current step of FindPrefixes. t

Result: None, modifies t in place. If t was associated with a set P \ {pmax} before the
execution of this algorithm, then it is associated with P ∪ {pmax} afterwards.

1 for each node ndesc in the subtree of nmax do
2 // adjust the relevant length of each child
3 Let len(ndesc)← min(len(ndesc, length(value(ndesc)− length(pmax))));

4 end
5 PenaltizeParent (nmax, lenght(pmax));
6 marked(nmax)← true;

Algorithm 6: The Recursive PenaltizeParent Helper Function

1 function PenaltizeParent (trie-node n, integer penalty)
2 if marked(n) then
3 return
4 else
5 num(n)← num(n)− penalty ;
6 PenaltizeParent(parent(n))

7 end

Only Inserting Relevant Prefixes

In the algorithm just presented all possible prefixes of words in our vocabulary are stored within

our tree (e.g. for the word “plum” we have to add “p”, “pl”, “plu”, “plum”). But we observe that

not all of them will ever become relevant for our algorithm: If every word that starts with a prefix

p1 also starts with a longer prefix p2 then our algorithm will never chosse p1 for compression (see

the example vocabulary peal, pear, bing from figure 8 on page 27 where every word that starts

with “pe” also starts with “pea”). It is possible to avoid inserting those superfluous prefixes. To

do so we have to adjust the definition of our QLever-Trie (see page 25) in the following way: We

replace the condition

• For each node n that is not the root the value of parent(n) is the value of n without the last

character (E.g. if val(n) =“peace” then val(parent(n)) =“peac”

by

• ∀n ∈ t : val(parent(n)) is a prefix of val(n)

• If n1, n2 ∈ t and pcommon is the longest common prefix between val(n1) and val(n2) then

there is also ncommon ∈ t with val(ncommon) = pcommon.

We will refer to this data structure (the QLever-Trie with the modified conditions) as a QLever-

Patricia-Trie. It is a modification of the PATRICIA-Trie introduced by D.R.Morrison in 1968

([6]). We can build a QLever-Patricia-Trie for the prefixes of a vocabulary voc as seen in algorithm

7
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Figure 9: Update of the Trie from figure 8 after the Prefix “pea” has been chosen for compression.
n : x→ y means that the value n has been modified from x to the new value y

Algorithm 7: Building the initial QLever-Patricia-Trie for the FindPrefixes algorithm

Data: Vocabulary voc (a set of strings)

Result: QLever-Patricia-Trie t that is associated with voc and P = ∅
1 Let t← an empty QLever-Patricia-Trie;

2 for Each word w in the vocabulary voc do

3 if w is already contained in t then

4 find the corresponding node n and set num(n)← num(n) + 1;

5 else

6 if ∃nconflict ∈ t : @n2 ∈ t : val(n2) = commonPrefix(w, val(nconflict)) then

7 Let pcommon ← commonPrefix(w, val(nconflict);

8 insert ncommon with val(ncommon)← pcommon and num(ncommon)← 0 into t ;

9 end

10 insert a new node nnew into t with val(nnew)← w,

num(nnew)← 1, len(nnew)← len(w)

11 end

12 end

13 Let marked(root(t))← true and marked(n) = false for all other nodes n;

14 return t;

The function commonPrefix maps a set of strings to the longest string that is a prefix of all

the members of the set.
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When we have to insert the ncommon node in our algorithm we observe that nconflict and nnew

become direct children of ncommon. An example for this procedure can be seen in figure 10.

Figure 10: Building a Patricia Tree for the vocabulary {“bin”, “peal”, “pear”}
. When we have inserted “bin” and “pear” (left half) and we want to insert “pear” we also have
to add a dummy node with the value “pea” (right half). Summing up the n-values in the subtree
of a node gives us the number of words that start with this prefix. E.g. there are 2 words that
start with “pea”

Our Patricia-QLever-Trie t now has the following properties:

• A string s is the longest common prefix of a set of words from our vocabulary if and only if

it is contained in t.

• For each node n with value s in the Trie the number of words in our vocabulary of which s

is a prefix is the sum of the nums in the subtree of n (including n itself).

Strictly speaking the tree created by algorithm 7 is not associated with voc and ∅ according to

the definition on page 25. But the observation we just made allows us to extend this definition to

Patricia-QLever-Tries:

Definition 6.6. A Patricia-QLever-Trie t is associated with a vocabulary voc and a set of

compression prefixes P if all of the following properties hold:

• v ⊂ voc⇔ ∃n ∈ t : val(n) = commonPrefix(v)

• ∀n ∈ t : crelevant(val(n), voc, P ) =
∑

n∈desc(n) num(n) where desc(n) is the set of all descen-

dants of n (including n itself).

• ∀n ∈ t : len(n) = lenrelevant(val(n), P )

• ∀n ∈ t : (marked(n)⇔ val(n) ∈ P ∨ val(n) =“”)

We observe that the ReAssociate step (algorithm 5) also works correctly on Patricia-QLever-

Tries. When calculating the relevant gain of a node we have to first sum the counts (num) of all

the nodes in its subtree. This can be done in linear time (linear in the number of nodes in the

trie) by a postorder traversal.
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Only Insert Shared Prefixes

Until now we always have inserted the complete words from our vocabulary into the trie. Typically

strings that are only a prefix of exactly one word in our vocabulary are not relevant for our prefix

compression since we deal with large vocabularies. Thus in the implementation of this algorithm

for QLever we only add prefixes into the trie that are shared between at least two words. Since

our vocabulary is alphabetically sorted this can be done efficiently since the following property

holds:

• Let w be a word from the vocabulary and w− the word that stands directly before w and

w+ the word that stands directly after w in our vocabulary.

• If p is a prefix of w but not of w− or of w+ then p also is not a prefix of any other word

from our vocabulary.

Thus we can reduce the memory footprint of our algorithm by modifying the first step of our

algorithm as follows:

• Start with an empty trie.

• For each word w in the vocabulary calculate the longest common prefix p− of w and w−
and the longest common prefix p+ of w and w+.

• Insert the longest string of {p+, p−} into the trie.

While this clearly decreases the compression gain of small vocabularies with great length differences

(as an extreme example consider {"a", "b", "thisIsAVeryLongWord"} as a vocabulary) we have

found this improvement to be really helpful with reducing the memory usage and runtime when

compressing the vocabulary of huge knowledge bases like Wikidata.

6.6 Evaluation and Summary

In this chapter we have introduced a scheme that uses common prefixes to compress QLever’s

vocabulary. We also have introduced a greedy algorithm called FindPrefixes that finds prefixes

that are suitable for this compression. We have implemented this compression method inside the

QLever engine including all the RAM-saving improvements.

After the externalization of large parts of Wikidata’s vocabulary the size of the in-memory vocab-

ulary was ca. 20 GB (see section 5.5). We have applied the prefix compression scheme introduced

in this chapter on the in-memory vocabulary. It was able to compress ca. 45% of the vocabulary’s

size so that a size of 11GB remained. The execution of the FindPrefixes algorithm took less than

10 minutes in our setup and required 13GB of RAM (For the hardware setup used in our exper-

iments see section 10.2). Since this time is negligible in comparison to the time needed for the

complete index build we have made prefix compression the default setting in QLever.

7 Memory-Efficient Permutations

In this section we will describe improvements for the QLever engine that allow us to efficiently

perform SPARQL queries which also contain predicate variables using a much smaller amount of
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RAM than the original version of QLever. To do so we first have to introduce permutations, the

most important data structure used inside QLever and the way they were originally implemented.

7.1 Permutations

To efficiently perform SPARQL queries on RDF knowledge bases Qlever internally uses a data

structure called permutation. A permutation basically is the set of all triples in a knowledge base,

mapped to id space (see section 5) and sorted in a specific way. Each permutation is identified by

an actual permutation of the set {Subject, Predicate, Object} or shorter {S, P, O}. For example

in the PSO-permutation the triples are sorted according to their predicate id. Triples with the

same predicate are sorted according to their subject id. If the subject and the predicate of two

triples are the same, then the object id determines the order. In the following we say that P is

the first order key of the PSO permutation while S is the second order key and O the third order

key. Consider for example the following set of “id triples”, sorted by different permutations:

S P O

0 3 5
1 2 4
1 3 5

S P O

1 2 4
0 3 5
1 3 5

Figure 11: A knowledge base of three triples, sorted according to the SPO permutation (left) and
the PSO permutation (right)

7.2 Supported Operations

Before we talk about the implementation of the permutation data structure and our improvements

to it we will first introduce two operations scan and join that are needed when executing a

SPARQL query and can be performed efficiently using the permutations.

7.2.1 The Scan Operation

The permutation data structure described in the previous section allows us to efficiently retrieve

certain subsets of the triples that are already sorted in a specific way. This operation is called a

scan of a permutation. It can be performed in the following variants:

• Full scan. Retrieve all the triples from the knowledge base. Nothing has to be done for this

operation because the six permutations already store all possible sortings of this set. Full

scans are currently not supported by the QLever engine and also typically not needed for

big knowledge bases. Because of this we will only consider the other two scan variants in

this thesis.

• Scan with fixed first order key. Retrieve all triples with a fixed value for one of the

triple elements. For example when we need all triples that have <sub> as a subject sorted

first by the objects and then by the predicates we perform a scan with the fixed subject

<sub> on the SOP permutation.
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• Scan with fixed first and second order key. Retrieve all triples with a fixed value for

two of the triple elements. For example when we need all triples that have <sub> as a subject

and <pred> as a predicate we could perform a scan with a fixed subject <sub> and a fixed

predicate <pred> on the SPO or the PSO permutation. The result of both scans would be

the same. It depends on the implementation of the permutations (see below) which of the

two variants is faster.

For a SPARQL query we typically have to perform one scan per triple. For example the Scan

with fixed subject <sub> and fixed predicate <pred> just described directly gives us the result of

the query

SELECT ?ob WHERE {

<sub> <pred> ?ob

}

As soon as there are multiple triples in a SPARQL query we additionally need the join operation

to connect those triples.

7.2.2 The Join Operation

Consider the following SPARQL query consisting of two triples:

SELECT ?x WHERE {

?x <is-a> <astronaut> .

?x <gender> <female>

}

In the previous section we have seen how we can translate each of the triples into a scan operation.

After performing them we end up with

• A list of possible values for ?x that meet the constraints of the first triple (a list of all

astronauts).

• A list of possible values for ?x that meet the constraints of the second triple (a list of all

female entities).

To complete the query we have to intersect those two lists to find all ?x that are contained in both

of them. This operation is referred to as a join. Since both of our intermediate result lists are

already sorted the join can be performed in linear time using the intersection algorithm for sorted

lists. With more complex queries sometimes the intermediate results are not automatically sorted

in the way needed for the join. In this case the QLever engine first has to sort them. There can

be also more complex variants of the join operation e.g. when multiple variables per triple are

involved. These can also be performed using similar approaches (sort if necessary and intersect).

7.3 Implementation

The implementation of the permutations makes use of the fact that all triples with the same first

order key are stored adjacent to each other. Thus it suffices to store only the second and third

order key of each triple. For the first order key we only have to store the index of the first triple

(the offset) for this key and the number of triples for that key (see figure 12).
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S P O

1 2 4
0 3 5
1 3 5

S O
1 4

}
P = 2, offset = 0, numtriples = 1

0 5
}
P = 3, offset = 1, numtriples = 2

1 5

Figure 12: A small knowledge base sorted according to the PSO permutation. On the left we see
the complete triples. On the right we see QLever’s implementation: For the contiguous range of
each first order key (P in this example) QLever only stores the range of the triples.

7.3.1 Original Implementation

The original version of QLever stores the second and third order keys of each triple (S and O

columns in figure 12) in a contiguous area of disk memory. The offset and the number of triples

(this information is called a FullRelationMetaData in the source code) for each first order key

are stored in a hash table that maps the id of the first order key to its FullRelationMetaData.

Using this implementation of the permutations we can perform the different variants of the scan

operation (see section 7.2.1) as follows:

• Scan with fixed first order key k: First get the offset o and the number of triples n for k

from the hash table (O(1) in average) and then read all the triples in the range [o, o + n)

from hard disk (O(n) with the overhead of the hard disk access).

• Scan with fixed first and second order key k1, k2: First get o1 and n1 for k1 as stated above.

Within the range [o1, o1+n1] on hard disk find the range [o1,2, n1,2] that additionally has the

correct k2 using binary search. We then read this range (O(n1,2 + log n1) with the overhead

of the disk access).

For big relations binary search on disk is not efficient since a lot of different memory pages have

to be touched. Additionally magnetic hard drives are very slow when it comes to random access.

To deal with this issue the original version of QLever also implements blocks which are basically

skip pointers into big relations that are stored in RAM. The details of this implementation can be

found in [1], page 3.

7.3.2 Issues of the Original Implementation

We have found that the access to the second and third order keys on hard disk using the blocks/

skip pointers works very efficiently also for large-scale knowledge bases. However we ran into

trouble when building the hash map for several permutations of the full Wikidata knowledge base:

Wikidata contains about 1 billion different objects and subjects each, so we needed to store 1 billion

entries in the hash table for each of the OSP, OPS, SPO and SOP permutations. For each entry

we had to store at least 32 bytes (size of a single id + size of a single FullRelationMetaData)

which already gives us more than 30GB per permutation if we assume a hash table without

any memory overhead which is clearly utopian. Since we need four hash tables of this size for

the different permutations it is easy to imagine that even machines with 200GB of RAM would

struggle with an index of the full Wikidata knowledge base (including the overhead of hash tables

and other information like the vocabulary which we additionally store in RAM, see section 5).

This implementation worked well for the original purpose of QLever: It was designed to work on
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the special SPARQL+Text extension. There it is very uncommon to have predicate variables in

SPARQL queries. When having a fixed value as predicate in every triple of a query it suffices

to only build and work with the POS and PSO permutations. For those permutations the hash

table approach just described works well since even large knowledge bases typically only have a

relatively small number of predicates (ca. 30000 for Wikidata, ca. 700000 for Freebase) which can

be stored in a hash table without running into trouble.

7.3.3 Improved Implementation

In the previous section we have seen that storing the FullRelationMetaData of certain permu-

tations in RAM is not feasible for large knowledge bases. This directly suggests externalizing

them to hard disk and only loading them as needed. Theoretically we could implement or use a

disk-based hash table but this is not necessary for the following reasons:

• Hash tables are efficient and necessary when the set of actually used keys is much smaller

than the set of possible keys (e.g. when using arbitrary strings as keys for a hash table the

set of possible keys is infinite).

• For our purpose the keys are integers which are always less than the total vocabulary size of

the knowledge base (see section 5).

• For the critical permutations OSP, OPS, SPO and SOP the number of first order keys that

have to be stored in the hash map is almost equal to the size of the complete vocabulary.

These observations suggest the following implementation for a dictionary where the set of possible

keys is a range of integers (called possibleKeys). We will refer to this data structure as a dense

dictionary.

• We need a special value called the empty value that will never occur in the data we store in

the dictionary.

• We create an array arr with size |possibleKeys| and fill it with the empty value.

• When inserting a (key, value) pair we write value to the array position arr[key].

• When checking for a key in the dictionary we access arr[key] and check if the found value

is not the empty value.

All other operations typically supported by a dictionary can be implemented in a similar way. This

data structure which is basically just an array with special operations can easily be implemented

on disk. For this purpose we have first implemented a templated data structure MmapVector

that is a dynamic array which stores its information in a persistent file on hard disk. This file

is mapped to a virtual memory address space using the POSIX system call mmap. That way the

actual reading of the file and all caching and buffering mechanisms are handled by the operating

system (OS). A nice side effect of using mmap is that the OS can automatically cache and pre-load

a huge portion of the file if there is a lot of RAM available. If this is not the case it suffices to

only load pages of the file that are actually accessed and immediatly remove them from memory

as soon as the access is completed. That way we can create huge dynamic arrays on systems with
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a small amount of RAM available but on the other hand our application possibly gets faster when

there is more RAM available since the number of page misses should be less.

Based on the MmapVector we have written a dictionary-like type called the MetaDataHandlerMmap

that implements a dense dictionary for FullRelationMetaData. We then use this type as a

template parameter for our permutations. That way we can keep the hash table implementation for

the permutations where it is efficient (PSO and POS) while all other permutations are implemented

using our dense and disk-based MetaDataHandlerMmap.

7.4 Evaluation and Summary

We have presented a memory-efficient implementation for dense permutations inside QLever (per-

mutations where almost all possible ids appear as a first order key). It replaces a O(1) access to

a hash table in RAM by a O(1) access on hard disk. We have not found any significant influence

on the scan times since the runtime of a scan is mostly determined by reading the actual triples

from disk.

8 Efficient Language Filters

Language filters are a feature commonly used in SPARQL queries on Wikidata and other knowledge

bases that contain literals in different languages. In this chapter we will first give an introduction

to the syntax and semantics of language filters in the SPARQL language. Then we will discuss

several possible implementations of this feature for the QLever engine.

8.1 Introduction to Language Filters

Many large-scale knowledge bases contain literals in many different languages. For example the

following query for the names or labels of the entity Q42 (English writer Douglas Adams) yields

more than 100 results on Wikidata:

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?label WHERE {

wd:Q42 rdfs:label ?label

}

We observe that the result contains the name of Douglas Adams in many different languages.

Many of those literals are equal if we disregard their language tag, e.g. "Douglas Adams"@en and

"Douglas Adams"@fr but the result also contains transliterations of this name in Arabic, Cyrillic,

Korean and other non-latin scripts. While the result size is not a problem for this simple query

we can observe that the multilinguality of Wikidata easily causes trouble when we have a query

that already would yield many results without the rdfs:label relation which then bloats up the

result size although we are actually interested in only one name for each entity, preferably in a

language we understand. This motivates the use of language filters in SPARQL. For example we

can formulate the query “What is the english name of the entity wd:Q42 ” in SPARQL as
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PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?label WHERE {

wd:Q42 rdfs:label ?label .

FILTER langMatches(lang(?label), "en")

}

The function langMatches returns true if and only if its first argument (a single language) matches

its second argument (a language range, see below). The function lang(?label) returns the

language of the variable ?label as specified by its language tag. Note that the language range

"en" also matches “sub-languages” of English like "en-gb" (British English) or "en-ca" (Canadian

English). If we only want to have exact matches of the language tag we can also write

FILTER (lang(?label) = "en")

8.2 Possible Implementations

In chapter 5 we have described that the ids of tokens from the knowledge base also reflect

their alphabetical or numerical order. This way we can efficiently implement value filters like

FILTER ?x < 3 efficiently by checking if the id of ?x is smaller than the id of the first numerical

token that is ≥ 3. (By checking for ≥ we also get correct results if the token 3 is not contained

in our vocabulary). We can easily see that this filter can not be extended to work for the lan-

guage tags of the literals since the literals are sorted by their alphabetical order and not by their

language. In this section we will describe methods to extend the QLever engine by an efficient

mechanism for SPARQL language filters.

8.2.1 Checking the String Value

The probably easiest way to perform a language filter goes as follows:

1. Compute the result of the query (in the id space) without the language filter.

2. Convert all ids to their corresponding string values.

3. For each row in the result, check if the language tag of the variable that is to be filtered

matches the desired language tag.

This method was the first to be implemented in QLever since it requires no changes in the structure

of the index or the query execution and is (obviously) able to correctly perform the language

filtering. However we can already assume that it will not be very efficient because we always have

to compute the full result containing all the languages. Additionally we have to translate all the

values of the filtered variable to their string value which is a relatively expensive procedure.

8.2.2 Sorting the Vocabulary by Language

This variant is inspired by the implementation of the value filters: If the literals for one language

form a consecutive range in the vocabulary and thus in the id space we can directly filter the
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language on the level of the ids. To implement this method it would suffice to transform all the

literals from the form "value"@langtag to @langtag"value". This allows us to determine the

language of a literal directly by checking if its id lies in the range of a certain language. This

method still has the disadvantage of first having to compute the full and unfiltered result in the id

space. Additionally we lose the lexicographical sorting of the literals which means that for example

an ORDER BY-clause for a result variable with string values would not work properly anymore as

soon as our result contains literals in different languages. Of course it would be possible to change

the implementation of ORDER BY to a probably less efficient method. But it is highly questionable

if this would be overall desirable since sorting results of SPARQL queries alphabetically by an

ORDER BY clause also is a frequently used feature which we want to keep as efficient as possible.

8.2.3 Using a Special Predicate for the Language Tag

This and the following method internally transform the language filter clause into a special RDF

triple which is then treated in the “ordinary” way by QLever’s query planner.9 This first approach

uses a special predicate called ql:langtag and special entity names like ql:@en to map each literal

to its language. This means that during the index building process when we see a triple containing

a literal with a language tag like

<subject> <predicate> "french literal"@fr .

we additionally add the triple

"french literal"@fr ql:langtag ql:@fr .

When parsing a SPARQL query with a language filter we similarly transform

FILTER (lang(?variable) = "de")

to the triple

?variable ql:langtag ql:@de .

Please note that the special triples we add are actually forbidden by the RDF standard since

literals can never occur as subjects of a triple. We have relaxed QLever to internally allow them

so that we can evaluate this method of language filtering.

This method also correctly implements language filters. It can be easily integrated into the QLever

engine since we only have to modify the query parsing and the triple parsing during the index

build. Since the filters are transformed to “ordinary” triples they can also be optimized by QLever’s

query planner. One disadvantage is the increased size of the index: For every literal that has a

language tag we add a triple which increases the size of our permutations. But since those are

only stored on disk this does not hurt much. We also do not expect this method to slow down

queries which do not use a language filter: In the PSO and POS permutations the newly inserted

predicate forms a contiguous range on disk that is only touched when using a language filter. With

the other permutations the new triples are added “in the middle” (see section 7.1 for the structure

of permutations) which could in theory slow some queries down. But since those permutations

typically have only few triples per first order key10 we do not expect this to have a great impact

on our query speed.

9For the internals of the query planning algorithm in QLever see [1]
10E.G. For a given subject there typically is only a relatively small number of triples with this subject.

38



8.2.4 Using Language-Tagged Predicates

This approach resembles the one just described as it is also based on adding special triples to the

knowledge base. This time we add the language tag to the predicate of the triple a literal occurs

in. This means that during the index build when parsing the triple

<entity> <label> "english-label"@en .

we also add the triple

<entity> @en@<label> "english-label"@en .

When parsing a language filter on a variable ?x for the language "lang" in a sparql query

(FILTER (lang(?x) = "lang")) we have to do the following:

1. Find a triple where ?x occurs as the object and the predicate is not a variable. Let

<sub> <pred> ?x . be that triple (<sub> may also be a variable).

2. Substitute <sub> <pred> ?x by <sub> @lang@<pred> ?x .

We see that this approach can only be applied if the query contains a triple that meets the

requirements from step 1. For example it can not execute the following query correctly, be cause

the filtered variable only occurs in connection with predicate variables:

SELECT ?literal WHERE {

wd:Q42 ?pred ?literal .

FILTER (lang(?literal) = "de")

}

(“Get all German literals that are directly connected to Douglas Adams”). Another type of query

that cannot be performed is when the second argument of the langMatches function is not a

constant:

SELECT ?name ?description WHERE {

wd:Q42 rdfs:label ?name .

wd:Q42 schema:description ?description .

FILTER (lang(?name) = lang(?description))

}

(“Get all pairs of (name, description) for Douglas Adams such that the name and the description

have the same language”). But there is also a great benefit of this method: For each predicate

p that has string literals as objects in at least one of its triples and for every language tag l we

precompute the subset of triples for p filtered by l. Since those triples are stored contiguously on

hard disk we never have to deal with the complete relation but can always directly work with the

filtered relation as soon as this filtering approach can be applied. As an extreme example for this

consider the query

SELECT ?x ?label WHERE {

?x rdfs:label ?label .

FILTER (lang(?label) = "en")

}
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The filter using the ql:langtag predicate would translate this to

SELECT ?x ?label WHERE {

?x rdfs:label ?label .

?label ql:lang ql:@en

}

The query planner has to perform a join between the full rdfs:label relation (from the POS or

the PSO permutation) with the result of a scan of the POS permutation with the fixed predicate

ql:lang and the fixed object ql:@en (For the description of the join and scan operations see

section 7.2).

The method just described would translate this query to

SELECT ?x ?label WHERE {

?x @en@rdfs:label ?label .

}

So it would do a full scan of the PSO or POS relation with P = @en@rdfs:label which would

directly yield the result. So we would only load information into RAM that is actually relevant for

the result of our query. Although this surely was an extreme example we can argue that our query

planner in every query that contains a triple <sub> <fixed-predicate> ?x where ?x is language-

filtered with language "lang" at some place has to touch the relation for <fixed-predicate>.

With the language-tagged predicates it can instead use the relation @en<fixed-predicate> which

is smaller than <fixed-predicate>. This substitution has no additional overhead and directly

performs the language filter.

8.3 Evaluation and Summary

We have described 4 possible implementations for a language filter in QLever. The first two

(filtering the language tags at the end by the actual string values of the result and sorting the

vocabulary according to the language tags) have serious disadvantages: The first method is very

inefficient while the second one broke the functionality of efficient ORDER BY clauses. The most

promising approaches use the insertion of special triples and can thus be optimized by QLever’s

query planner. Introducing a special predicate ql:langtag that maps each literal to its language

tag is a flexible approach that can correctly handle all possible uses of language filter clauses

that are allowed by the RDF standard. Introducing special predicates @lang@<predicate> that

already filter the relations by language during the index build can only be applied when we filter

for an explicitly stated language and if the filtered variable appears together in an triple. We

have implemented those last two methods for QLever: The @en@<predicate> variant is chosen

whenever this is possible otherwise we fall back to the ql:langtag approach. In chapter 10 of

this thesis there is an evaluation that shows that this choice is the most efficient one.

9 Effective Query Construction on Wikidata

Until now we mainly discussed how to efficiently perform given SPARQL queries on a certain

knowledge base using the QLever engine. In practice however it is also a hard task to find the
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appropriate query that yields the expected results. When we for example want to find out who

currently is the CEO of Apple using a knowledge base we have to find answers to the following

questions:

• How is the company Apple represented in our knowledge base. For example in Wikidata,

Apple (the manufacturer of computers etc.) is represented by wd:Q312.

• How is the relation between a company and its CEO modeled in the knowledge base. For

example in a knowledge base with readable entity names this could be modeled in one of the

following ways:

# option 1

<Dummy Inc> <CEO> <Mr. Boss> .

# option 2

<Mr. Boss> <CEO> <Dummy Inc> .

# option 3

<Mr. Boss> <works at> <Dummy Inc> .

<Mr. Boss> <position> <CEO> .

The most convenient way to handle this problem would be to automatically translate natural

language to SPARQL queries using e.g. deep learning. One system that aims to solve this difficult

task is Aqqu ([2]). However such systems are currently only able to handle simple questions and

fail with more complex requests.

Another promising approach to make query construction easier is the query autocompletion im-

plemented by J. Bürklin and D. Kemen for the QLever engine. This can be tried out in the

QLever-UI at http://qlever.informatik.uni-freiburg.de/ when choosing the Wikipedia +

Freebase Easy backend. When typing a SPARQL query this UI suggests entities that lead to a

non-empty result given the partial query that has already been typed in. However this currently

only works on the Freebase Easy knowledge base that contains human-readable entity names.

One step still needed to make this method work on Wikidata is to implement an efficient way to

find the correct entity name for a given verbal description (e.g. wd:Q312 for “Apple Inc.”). We

have implemented an efficient system that solves this task which we will describe in the following

sections.

9.1 Problem Definition

When creating a SPARQL query on Wikidata a major challenge is to find out which of the internal

entity and property names represent the entities from our query. For instance, when querying for

a list of humans, sorted by their dates of birth we conceptionally could try the following query:

SELECT ?person ?dateOfBirth WHERE {

?person <is-a> <human> .

?person <date-of-birth> ?dateOfBirth . }

ORDER BY ASC(?dateOfBirth)

To successfully execute this query on Wikidata, we have to know that the concept of being a

member of the human species is assigned to the name wd:Q5, the relation “is a” or “instance of”
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is represented by the property P31 and the date of birth can be retrieved using wd:P569. Then

our query becomes

SELECT ?person ?dateOfBirth WHERE {

?person wdt:P31 wd:Q5 .

?person wdt:P569 ?dateOfBirth

}

ORDER BY ASC(?dateOfBirth)

In this section we want to introduce a software we have implemented to effectively find the find

the proper Wikidata entity names (Q. . . and P. . . ) for a given textual representation.

9.2 The Entity Finder

To obtain the correct names for Wikidata entities one can e.g. use the search fields on the

Wikidata homepage (https://www.wikidata.org/). This typically works well when manually

creating relatively small queries. Since we aim to create a Sparql UI for Wikidata using QLever

which is completely independent from the Wikidata servers we have implemented an alternative

software called the Entity Finder that can also efficiently perform this task. It consists of a

frontend where the user can type in a query and see and use the created results and a backend

that performs the actual search. The Entity Finder supports the following features:

• Synonyms. Most entities or concepts are known under various names, even within the same

language. For example the English terms “profession” and “occupation” normally refer to the

same concept. For the Wikidata knowledge base it is relatively easy to implement synonyms

since Wikidata already contains many synonyms (or aliases as they are internally called) for

its entities. For instance, Wikidata contains the information, that the entity wd:Q60 whose

preferred English label is New York City is also referred to as NYC, City of New York, The

Big Apple, . . . . Within the Entity Finder a given query matches an entity if it matches its

preferred label or one of its aliases.

• Search-As-You-Type. We wanted the search to be interactive. This means that the user

can see intermediate results of their query before having completed it. There is no explicit

start button for the search but the results are always refined as the user changes the text in

the search field. Making this work requires two components: In the frontend a new query

is sent each time the user changes the contents of the search field. In the backend we have

implemented a prefix search. This means that a given query matches all names and aliases

of which it is a prefix. For example when typing “app” into the search field, “apple” is one

of the results.

• Useful ranking of the results. Many entities are known under the same name. For

example the term “apple” can refer to the fruit or to the IT company. Especially when we

enable prefix search (see above) and also take synonyms into account there are often many

entities that would match a query. We have implemented a ranking that effectively ranks

“expected” results of a query higher but is still fast to compute to not endanger our goal of

interactiveness. The details of this ranking are described below.
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• HTTP-API. The backend of the Entity Finder is implemented as a HTTP server that

answers GET requests containing a search term with the corresponding search results. This

ensures that the Entity Finder is independent from any concrete user interface and can be

easily reused as a building block for different applications that make use of Wikidata entity

names.

9.3 Ranking Matches

When ranking search results there are generally two different approaches:

• Assign a score toeach possible search result and rank the results according to this score.

• Determine how well a possible result matches the query and rank according to this metric.

An example for such a metric is the Levenshtein edit distance between the query and a

possible result.

Typically a mixture of both approaches is applied because we typically want both: A high relevance

of the search results and a good matching between our query and the result.

In the Entity Finder we only consider names as a result of a query if the query is a prefix of the

name. Additionally we rank all exact matches before all prefix matches. For example when our

query is “a” then the name “a” (representing e.g. the first letter of the latin alphabet) is always

ranked before “apple”. That way we avoid that a longer name with a higher score prevents its

prefixes from being found. E.g. if there are many entries that have “apple” as a name and all

have a higher score than “a” and we would only rank according to the scores, then we would not

be able to ever find the latter. Additionally this method is computationally cheap because the

contiguous range of the prefix matches for a given query as well as the range of the exact matches

can be found using binary search (We store all names and aliases of entities in a sorted manner).

As a simple metric for the score of a given entity in Wikidata we have chosen its number of

sitelinks. This is the number of websites in all the Wikimedia projects that this entity is linked

to. Then our complete ranking algorithm can be summarized as follows:

• Sort all exact matches before all prefix matches.

• Within the exact matches and within the prefix matches sort according to the sitelinks score.

To preserve the fast computation of the ranking for big results we disable the sorting of the prefix

matches when our result size exceeds a certain threshold. In this case the query is typically short

and unspecific yet so in practice this does not affect the quality of our search results.

9.4 Summary

We have presented the Entity Finder, a fast search engine that interactively finds Wikidata entities

by their names and aliases. We have introduced a simple but effective ranking heuristic that we

have found to work well for the entities of typical queries and additionally is fast to compute. As

a next step it would be possible to combine the Entity Finder with the autocompletion feature

from the QLever-UI to also make the autocompletion work with the Wikidata knowledge base.

A demo of the Entity Finder can be found at http://qlever.informatik.uni-freiburg.de/

drag-and-drop-ui/
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10 Evaluation

In this section we will evaluate the performance of QLever on the full Wikidata knowledge base

against the Wikidata Query Service (WQS). A special focus will be put on the different language

filter implementations. We are well aware that this comparison does not replace a proper evaluation

of different SPARQL engines that are run in a comparable and deterministic setting. However

we still found that the evaluation described here provides useful insights to the performance of

QLever and suggests further improvements.

10.1 Benchmark

We have evaluated QLever and the WQS on three queries, those are

• Q1: A query searching for all English names of entities that are directly connected to Douglas

Adams:

SELECT DISTINCT ?y ?yLabel WHERE {

wd:Q42 ?x ?y .

?y rdfs:label ?yLabel .

FILTER (lang(?yLabel) = "en")

}

• Q2: A query for German cities and their German names

SELECT ?cityLabel ?population WHERE {

?city wdt:P31 wd:Q515 .

?city wdt:P17 wd:Q183 .

?city wdt:P1082 ?population .

FILTER (lang(?cityLabel) = "de")

}

ORDER BY DESC(?population)

• Q3: A query for persons and their birth date if the birth date is precise by the day (precision

value "9")

SELECT ?person ?personLabel ?date_of_birth

WHERE {

?person p:P569 ?date_of_birth_statement .

?date_of_birth_statement psv:P569 ?date_of_birth_value .

?date_of_birth_value wikibase:timePrecision "9"^^xsd:integer .

?date_of_birth_value wikibase:timeValue ?date_of_birth .

FILTER (lang(?personLabel) = "en")

}

Each query was executed in the following variants:

• With the language filter (as just described)
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• Without the language filter (literals in all languages)

• Without retrieving the labels (completely omitting the triple with rdfs:label)

For QLever we have additionally evaluated two different language filters: The one where a special

predicate ql:langtag is used to map each literal to its language and the one where the predicates

get annotated versions for each language like @en@rdfs:label (see section 8.2 for details).

10.2 Setup

The QLever instance was run on a machine with the following technical specifications:

• CPU: 2x Xeon E5640 2,6 GHZ 4C 12MB

• RAM: 96GB, 12*8 GB DDR3 PC3-10600R ECC

• Disk: 5x 1TB SSD (Samsung Evo 960) as a hardware raid 5

The Wikimedia team reports that the Wikidata Query Service is run on six servers with specifi-

cations similar to the following:

• CPU: dual Intel(R) Xeon(R) CPU E5-2620 v3

• RAM: 128GB

• Disk: 800GB raw raided space SSD RAM: 128GB

(see https://www.mediawiki.org/wiki/Wikidata_Query_Service/Implementation#Hardware).

Each measurement was repeated six times, we report the average values and the standard devia-

tion. In QLever the cache was emptied after each query. In the WQS we waited for 30 minutes

after each measurement to limit the effect of caching. For the Wikidata Query Service we did

not use actual language filters but the Wikibase Label Service which is the preferred method to

retrieve labels of entities. The exact queries that were executed for each measurement are reported

in attachement A.

10.3 Results

Figures 13 throuh 15 show the query times of our three benchmark queries Q1, Q2 and Q3 in the

different variants. The labels of the data points have the following meaning:

• QL:@en@ : QLever, language filter implemented by language-tagged predicates

(@en@rdfs:label etc.)

• QL:langtag : QLever, language filter implemented by the special predicate that maps

literals to languages (ql:langtag)

• QL:no filter : QLever, no language filter (literals in all languages)

• QL:no label : QLever, no label resolution (only abstract entity names as result)

• WD : Wikidata Query Service, with language filter
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• WD:no filter : Wikidata Query Service, no language filter (literals in all languages)

• WD:no label : Wikidata Query Service, no label resolution (only abstract entity names as

result)
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Figure 13: Query Times for query Q1, The value of QL:no label is 2 ms
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Figure 14: Query Times for query Q2, The value of QL:no label is 8 ms

Looking at these graphs we can make the following observations: The different language filters

in QLever perform as expected. It is always more expensive to retrieve the labels for our query

result because it requires an extra join with rdfs:label. We get the least overhead with the

@en@rdfs:label variant of the language filter because it joins with already prefiltered predicates

that contain less triples. The language filter using the special ql:langtag predicate is even slower

than calculating the unfiltered result since it requires two joins (one with rdfs:label and one

with ql:langtag. We also observe that in our example queries QLever spends most of the time
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Figure 15: Query Times for query Q3, the times for WD and WD:no filter could not be measured
because the Wikidata Query Service always returned a timeout

retrieving the labels. This is not surprising for Q1 and Q2 which are otherwise computationally

relatively simple but it also holds for Q3. We can see that this is a complex query by looking

at the Wikidata Query Service which struggles or even fails to execute it (see figure 15). When

looking at the results of the WQS we see no big differences between the different variants. This

suggests that they use a different mechanism for the label retrieval than for the ordinary query

processing although we cannot be sure about this without checking the actual implementation.

When comparing QLever to the Wikidata Query Service we see that QLever is always two orders of

magnitude faster when we do not retrieve labels. Even if those numbers are not really comparable

it still speaks for QLever that it is able to efficiently compute the result of Q3 which is beyond

the capabilities of the WQS as soon as there are labels involved.

11 Conclusion

In this thesis we have shown that we can use externalization of uncommon tokens and automatic

prefix compression to reduce the RAM usage of QLever’s vocabulary for the Wikidata dataset.

We have also shown that externalizing the index permutations can further reduce the memory

footprint of the QLever engine without affecting its speed. Combining those two measures allows

QLever to run using 24GB of RAM while it initially failed to build an run a Wikidata index even

on machines with > 200GB RAM. We also presented a way to build the vocabulary without ever

loading it completely to RAM. That way the memory needed for building the index is lower than

the memory needed for running it. Thus we have achieved the most important goals for this thesis.

We have also presented an efficient implementation of SPARQL language filters which are heavily

used in typical queries on the Wikidata knowledge base. We also discussed which measures have

to be taken to allow the effective creation of SPARQL queries for Wikidata using autocompletion.
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11.1 Further Work

To further improve the performance and the usability of QLever we can think of the following

aspects:

Complete Support of the SPARQL Language

QLever still lacks the support for several features of the SPARQL language like subqueries or

certain types of filters. Thus it is currently not possible to execute certain types of queries.

Supporting the full SPARQL standard would increase the usability of QLever and also make it

easier to systematically evaluate its performance in comparison with other SPARQL engines.

Systematic Performance Evaluation

Since the focus of this work was to reduce the memory footprint of QLever and to make it run on

the full Wikidata knowledge base we did not yet find the time to evaluate QLever’s performance

on this dataset in comparison to other RDF engines. For example it would be interesting to

compare QLever’s performance on Wikidata to the performance of the Blazegraph engine (https:

//www.blazegraph.com) which is used in the Wikidata Query Service.

Further Compression of the Vocabulary

In this thesis we have only considered the compression of common prefixes. To further reduce

the memory footprint of QLever’s vocabulary we could implement and evaluate some state-of-the

art general-purpose dictionary compression schemes like they are discussed in [7] and [5]. We can

think of two motivations for further compression:

• If we can reduce QLever’s memory footprint for Wikidata below 16 GB we would allow to

locally set up a SPARQL engine for the full Wikidata on a modern consumer PC system

(Consumer systems with 32GB of RAM or more are still very uncommon).

• With better compression we could possibly get rid of the externalization of the vocabulary

and keep the complete vocabulary in RAM again. This would eliminate the expensive

random access to hard disk that currently occurs when a query or a result contain tokens

that are externalized.

Faster Mechanism for Label Resolution

We have seen that the language filter implementations for QLever that were presented in this

thesis still have a relatively big overhead especially for queries that are otherwise computationally

cheap. Since typical queries on Wikidata always retrieve labels to make their results readable to

humans if other methods can solve this problem faster. This probably leads to keeping a mapping

of all entities to their label in RAM at least for common languages.

Make Query Autocompletion Work on Wikidata

The effective creation of queries on Wikidata or any other large-scale knowledge base with abstract

entity representations is hard because wdt:P1082 is much less readable than <population>. We
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can think of a well-usable Wikidata-UI that utilizes the following features:

• Display abstract entities together with their name and description. Thus the user is able to

perceive the internal structure of Wikidata as well as the human-readable semantics of their

query at the same time.

• Use context-aware autocompletion in the query editor that utilizes the human-readable

names of entities. Thus when the user starts typing popu the UI suggests

wdt:P1082(population) if inserting this predicate still would lead to a non-empty query re-

sult. This can possibly be achieved by combining the autocompletion in the current QLever-

UI that works on FreebaseEasy with mechanism from the EntityFinder introduced in this

thesis.

Create Entity Taggings from Wikipedia to Wikidata

Since Wikipedia is a sister project of Wikidata and since both projects are among the most

interesting collections of human knowledge that are publicly available it seems somewhat natural

to create taggings between these two datasets to be able to also use the SPARQL + Text features

of QLever on this combination of datasets.
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Web Ressources

QLever

• https://github.com/ad-freiburg/QLever (source code)

• http://qlever.informatik.uni-freiburg.de (UI/ running instances)

Wikidata

• https://www.wikidata.org/ (main page)

• https://query.wikidata.org (Wikidata query service)

RDF and SPARQL

• https://www.w3.org/RDF/

• https://www.w3.org/TR/n-triples/ (N-Triples format)

• https://www.w3.org/TR/turtle/ (Turtle format)

• https://www.w3.org/TR/rdf-sparql-query/ (SPARQL query language)
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Attachment A: The Benchmark Queries

This attachement contains the exact queries that have been performed on QLever and the Wikidata

Query Service to obtain the results of the evaluation. When using them in QLever we have to

prepend the following list of prefixes:

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX wds: <http://www.wikidata.org/entity/statement/>

PREFIX psv: <http://www.wikidata.org/prop/statement/value/>

PREFIX p: <http://www.wikidata.org/prop/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX wikibase: <http://wikiba.se/ontology-beta#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX qlInt: <http://http://qlever.informatik.uni-freiburg.de/>

This step is not necessary for the Wikidata Query Service since it automatically uses those prefixes.

Q1: All Entities Connected to Douglas Adams

QLever: With Language Filter (ql:langtag)

SELECT DISTINCT ?y ?yLabel WHERE {

wd:Q42 ?x ?y .

?y rdfs:label ?yLabel .

?yLabel qlInt:predicates/langtag qlInt:entities/@en .

}

QLever: With Language Filter (@en@rdfs:label)

SELECT DISTINCT ?y ?yLabel WHERE {

wd:Q42 ?x ?y .

?y @en@rdfs:label ?yLabel .

}

WQS: With Language Filter

SELECT DISTINCT ?y ?yLabel WHERE {

wd:Q42 ?x ?y .

?y rdfs:label ?yLabel .

FILTER (lang(?yLabel) = "en")

}

Without Language Filter

SELECT DISTINCT ?y ?yLabel WHERE {
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wd:Q42 ?x ?y .

?y rdfs:label ?yLabel .

}

Without Label Resolution

SELECT DISTINCT ?y WHERE {

wd:Q42 ?x ?y .

}

Q2: German Cities and their German Names

QLever: With Language Filter (ql:langtag)

SELECT ?name ?population WHERE {

?city wdt:P31 wd:Q515 .

?city wdt:P17 wd:Q183 .

?city wdt:P1082 ?population .

?city rdfs:label ?name .

?name qlInt:predicates/langtag qlInt:entities/@de .

}

ORDER BY DESC(?population)

QLever: With Language Filter (@en@rdfs:label)

SELECT ?name ?population WHERE {

?city wdt:P31 wd:Q515 .

?city wdt:P17 wd:Q183 .

?city wdt:P1082 ?population .

?city @de@rdfs:label ?name .

}

ORDER BY DESC(?population)

WQS: With Language Filter

SELECT ?cityLabel ?population WHERE {

?city wdt:P31 wd:Q515 .

?city wdt:P17 wd:Q183 .

?city wdt:P1082 ?population .

SERVICE wikibase:label { bd:serviceParam wikibase:language "de". }

}

ORDER BY DESC(?population)
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WQS: Without Language Filter

SELECT ?cityLabel ?population WHERE {

?city wdt:P31 wd:Q515 .

?city wdt:P17 wd:Q183 .

?city wdt:P1082 ?population .

?city rdfs:label ?cityLabel .

}

ORDER BY DESC(?population)

Without Label Resolution

SELECT ?city ?population WHERE {

?city wdt:P31 wd:Q515 .

?city wdt:P17 wd:Q183 .

?city wdt:P1082 ?population .

}

ORDER BY DESC(?population)

Q3: Persons and their Birth Date

QLever: With Language Filter (ql:langtag)

SELECT ?person_id ?person_label ?date_of_birth

WHERE {

?person_id p:P569 ?date_of_birth_statement .

?person_id rdfs:label ?person_label .

?person_label qlInt:predicates/langtag qlInt:entities/@en .

?date_of_birth_statement psv:P569 ?date_of_birth_value .

?date_of_birth_value wikibase:timePrecision "9"^^xsd:integer .

?date_of_birth_value wikibase:timeValue ?date_of_birth

}

QLever: With Language Filter (@en@rdfs:label)

SELECT ?person_id ?person_label ?date_of_birth

WHERE {

?person_id p:P569 ?date_of_birth_statement .

?person_id @en@rdfs:label ?person_label .

?date_of_birth_statement psv:P569 ?date_of_birth_value .

?date_of_birth_value wikibase:timePrecision "9"^^xsd:integer .

?date_of_birth_value wikibase:timeValue ?date_of_birth

}
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WQS: With Language Filter

SELECT ?person ?personLabel ?date_of_birth

WHERE {

?person p:P569 ?date_of_birth_statement .

?date_of_birth_statement psv:P569 ?date_of_birth_value .

?date_of_birth_value wikibase:timePrecision "9"^^xsd:integer .

?date_of_birth_value wikibase:timeValue ?date_of_birth .

SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }

}

WQS: Without Language Filter

SELECT ?person ?personLabel ?date_of_birth

WHERE {

?person p:P569 ?date_of_birth_statement .

?person rdfs:label ?personLabel .

?date_of_birth_statement psv:P569 ?date_of_birth_value .

?date_of_birth_value wikibase:timePrecision "9"^^xsd:integer .

?date_of_birth_value wikibase:timeValue ?date_of_birth

}

WQS: Without Label Resolution

SELECT ?person ?date_of_birth

WHERE {

?person p:P569 ?date_of_birth_statement .

?date_of_birth_statement psv:P569 ?date_of_birth_value .

?date_of_birth_value wikibase:timePrecision "9"^^xsd:integer .

?date_of_birth_value wikibase:timeValue ?date_of_birth

}
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