Evaluation of Investment Strategies for Cryptocurrencies

How to get Rich Quick with this one Weird Trick (?)

Johannes Herrmann

August 27, 2020

Table of Contents

(1) The Problem: Investing in Bitcoin for Fun and Profit
(2) The Solution: Deploy a Trading Bot using a popular Trading Strategy
(3) The Evaluation: Are we rich yet?

Table of Contents

(1) The Problem: Investing in Bitcoin for Fun and Profit
(2) The Solution: Deploy a Trading Bot using a popular Trading Strategy
(3) The Evaluation: Are we rich yet?

Introduction

Problem: Given the price history of Bitcoin, decide whether to

- Buy
- Sell
- Do nothing

Introduction

Problem: Given the price history of Bitcoin, decide whether to

- Buy
- Sell
- Do nothing

Objective: Maximum profit

Measuring Profit: The ROI

ROI Return on Investment:
Percentage of funds gained/lost

$$
\mathrm{ROI}=\frac{\text { Net Profit }}{\text { Investment }}
$$

Measuring Profit: The ROI

ROI Return on Investment: Percentage of funds gained/lost

$$
\mathrm{ROI}=\frac{\text { Net Profit }}{\text { Investment }}
$$

Example:

- Assume we have $200 \$$
- Buy 2 BTC for $100 \$$ each

Measuring Profit: The ROI

ROI Return on Investment: Percentage of funds gained/lost

$$
\mathrm{ROI}=\frac{\text { Net Profit }}{\text { Investment }}
$$

Example:

- Assume we have $200 \$$
- Buy 2 BTC for $100 \$$ each
- BTC price increases by 10%

Measuring Profit: The ROI

ROI Return on Investment: Percentage of funds gained/lost

$$
\mathrm{ROI}=\frac{\text { Net Profit }}{\text { Investment }}
$$

Example:

- Assume we have $200 \$$
- Buy 2 BTC for $100 \$$ each
- BTC price increases by 10%
- Sell 2 BTC for $110 \$$ each

Measuring Profit: The ROI

ROI Return on Investment: Percentage of funds gained/lost

$$
\mathrm{ROI}=\frac{\text { Net Profit }}{\text { Investment }}
$$

Example:

- Assume we have $200 \$$
- Buy 2 BTC for $100 \$$ each
- BTC price increases by 10%
- Sell 2 BTC for $110 \$$ each
- ROI: $\frac{220-200}{200}=0.1=+10 \%$

Measuring Profit: The ROI

ROI Return on Investment: Percentage of funds gained/lost

$$
\mathrm{ROI}=\frac{\text { Net Profit }}{\text { Investment }}
$$

Example:

- Assume we have $200 \$$
- Buy 2 BTC for $100 \$$ each
- BTC price increases by 10%
- Sell 2 BTC for $110 \$$ each
- ROI: $\frac{220-200}{200}=0.1=+10 \%$

A Better Way To Calculate ROI

Example:

- Assume we have 200\$
- Buy 2 BTC for $100 \$$ each
- BTC price increases by 10%
- Sell 2 BTC for $110 \$$ each
- ROI: $\frac{220-200}{200}=0.1=+10 \%$

A Better Way To Calculate ROI

Example:

- Assume we have $200 \$$
- Buy 2 BTC for $100 \$$ each
- BTC price increases by 10%
- Sell 2 BTC for $110 \$$ each
- ROI: $\frac{220-200}{200}=0.1=+10 \%$
- Another way to calculate:
- ROI: $\frac{110}{100}-1=+10 \%$

A Better Way To Calculate ROI

Example:

- Assume we have $200 \$$
- Buy 2 BTC for $100 \$$ each
- BTC price increases by 10%
- Sell 2 BTC for $110 \$$ each
- ROI: $\frac{220-200}{200}=0.1=+10 \%$
- Another way to calculate:
- ROI: $\frac{110}{100}-1=+10 \%$
- This works because:

$$
\mathrm{ROI}=\frac{F_{s}-F_{b}}{F_{b}}, F_{s}=\frac{F_{b}}{p_{b}} p_{s}
$$

A Better Way To Calculate ROI

Example:

- Assume we have $200 \$$
- Buy 2 BTC for $100 \$$ each
- BTC price increases by 10%
- Sell 2 BTC for $110 \$$ each
- ROI: $\frac{220-200}{200}=0.1=+10 \%$
- Another way to calculate:
- ROI: $\frac{110}{100}-1=+10 \%$
- This works because:

$$
\begin{aligned}
\mathrm{ROI}=\frac{F_{s}-F_{b}}{F_{b}}, F_{s}=\frac{F_{b}}{p_{b}} p_{s} \\
\Rightarrow \mathrm{ROI}=\frac{\frac{F_{b}}{p_{b}} p_{s}-F_{b}}{F_{b}}=\frac{p_{s}}{p_{b}}-1
\end{aligned}
$$

Formal Problem Definition

Given:

- Current point in time t
- Prices $p=p_{0}, p_{1}, p_{2}, \ldots, p_{t}$
- Trades $T=\left\{\left(b_{1}, s_{1}\right),\left(b_{2}, s_{2}\right), \ldots\right\}$

Formal Problem Definition

Given:

- Current point in time t
- Prices $p=p_{0}, p_{1}, p_{2}, \ldots, p_{t}$
- Trades $T=\left\{\left(b_{1}, s_{1}\right),\left(b_{2}, s_{2}\right), \ldots\right\}$

The strategy which generated T is called optimal, if there exists no set T^{\prime}, such that:

$$
\left(\prod_{(b, s) \in T} \frac{p_{s}}{p_{b}}\right)-1<\left(\prod_{\left(b^{\prime}, s^{\prime}\right) \in T^{\prime}} \frac{p_{s^{\prime}}}{p_{b^{\prime}}}\right)-1
$$

(Without cost)

Formal Problem Definition

Given:

- Current point in time t
- Prices $p=p_{0}, p_{1}, p_{2}, \ldots, p_{t}$
- Trades $T=\left\{\left(b_{1}, s_{1}\right),\left(b_{2}, s_{2}\right), \ldots\right\}$

The strategy which generated T is called optimal, if there exists no set T^{\prime}, such that:

$$
\left(\prod_{(b, s) \in T} \frac{p_{s} \cdot(1-c)}{p_{b} \cdot(1+c)}\right)-1<\left(\prod_{\left(b^{\prime}, s^{\prime}\right) \in T^{\prime}} \frac{p_{s^{\prime}} \cdot(1-c)}{p_{b^{\prime}} \cdot(1+c)}\right)-1
$$

(With cost)

Formal Problem Definition

Given:

- Current point in time t
- Prices $p=p_{0}, p_{1}, p_{2}, \ldots, p_{t}$
- Trades $T=\left\{\left(b_{1}, s_{1}\right),\left(b_{2}, s_{2}\right), \ldots\right\}$

The strategy which generated T is called optimal, if there exists no set T^{\prime}, such that:

$$
\begin{gathered}
\left(\prod_{(b, s) \in T} \frac{p_{s} \cdot(1-c)}{p_{b} \cdot(1+c)}\right)-1<\left(\prod_{\left(b^{\prime}, s^{\prime}\right) \in T^{\prime}} \frac{p_{s^{\prime}} \cdot(1-c)}{p_{b^{\prime}} \cdot(1+c)}\right)-1 \\
\quad \text { (With cost) } \\
\text { Why the brackets? }
\end{gathered}
$$

The Baseline: HODL

- The Buy and Hold strategy (a.k.a. HODLing)

The Baseline: HODL

- The Buy and Hold strategy (a.k.a. HODLing)
- Arguably one of the most common strategies

The Baseline: HODL

- The Buy and Hold strategy (a.k.a. HODLing)
- Arguably one of the most common strategies
- Buy at the first (possible) point in time and sell at the last

The Baseline: HODL

- The Buy and Hold strategy (a.k.a. HODLing)
- Arguably one of the most common strategies
- Buy at the first (possible) point in time and sell at the last
- Set of trades $T=\{(0, t)\}$

The Baseline: HODL

- The Buy and Hold strategy (a.k.a. HODLing)
- Arguably one of the most common strategies
- Buy at the first (possible) point in time and sell at the last
- Set of trades $T=\{(0, t)\}$
- ROI: $\frac{p_{t}}{p_{0}}-1$

The Baseline: HODL

- The Buy and Hold strategy (a.k.a. HODLing)
- Arguably one of the most common strategies
- Buy at the first (possible) point in time and sell at the last
- Set of trades $T=\{(0, t)\}$
- ROI: $\frac{p_{t}}{p_{0}}-1$

Can we do better?

Table of Contents

(1) The Problem: Investing in Bitcoin for Fun and Profit

(2) The Solution: Deploy a Trading Bot using a popular Trading Strategy
(3) The Evaluation: Are we rich yet?

The Basic Idea

- Deploy a bot that can buy/sell when signal is given
- The signal is produced by another popular strategy:

The SMAC

The SMA: Simple Moving Average

- For each data point, calculate the average of last n data points

The SMA: Simple Moving Average

- For each data point, calculate the average of last n data points

Figure: Black line: Price over Time, Blue Line: SMA with a window of 10

The SMA

Formula for SMA s_{t} with window n :

$$
s_{t}=\frac{1}{n} \cdot \sum_{i=0}^{n-1} p_{t-i}
$$

The SMAC Strategy

SMAC Simple Moving Average Crossover

- For each data point, calculate two SMAs with different windows
- If the difference between the SMAs changes sign, buy/sell

The SMAC Strategy: Example

Figure: Red SMA window: 6, Blue SMA window: 10

The SMAC Strategy: Example

Sell signal

Figure: Red SMA window: 6, Blue SMA window: 10

The SMAC Strategy: Example

Sell signal

Figure: Red SMA window: 6, Blue SMA window: 10

The SMAC Strategy: Example

Figure: Red SMA window: 6, Blue SMA window: 10

The SMAC Strategy: Example

Figure: Red SMA window: 6, Blue SMA window: 10

The SMAC Strategy

- Let the window values be m, n with $m<n$
- Fast SMA: $f_{t}=\frac{1}{m} \cdot \sum_{i=0}^{m-1} p_{t-i}$
- Slow SMA: $s_{t}=\frac{1}{n} \cdot \sum_{i=0}^{n-1} p_{t-i}$
- Difference: $d_{t}=f_{t}-s_{t}$
- Strategy:

$$
\begin{aligned}
& d_{t-1}<0 \text { and } d_{t} \geq 0 \Rightarrow \text { Buy } \\
& d_{t-1}>0 \text { and } d_{t} \leq 0 \Rightarrow \text { Sell }
\end{aligned}
$$

Table of Contents

(1) The Problem: Investing in Bitcoin for Fun and Profit

(2) The Solution: Deploy a Trading Bot using a popular Trading Strategy
(3) The Evaluation: Are we rich yet?

Theory: An Optimal Model

- Assume price decreases linearly $p_{t}=p_{0}-t \cdot k$

Figure: $k=5$, Red SMA window: 2, Blue SMA window: 4

Theory: An Optimal Model

- Assume price decreases linearly $p_{t}=p_{0}-t \cdot k$
- Buy signal is only triggered by a change
$\geq k\left(\frac{n \cdot m}{2}-1\right)$

Figure: $k=5$, Red SMA window: 2, Blue SMA window: 4

Theory: An Optimal Model

- Assume price decreases linearly $p_{t}=p_{0}-t \cdot k$
- Buy signal is only triggered by a change
$\geq k\left(\frac{n \cdot m}{2}-1\right)$

Figure: $k=5$, Red SMA window: 2, Blue SMA window: 4

Theory: An Optimal Model

- We can trigger a sell signal in a similar fashion

Figure: $k=5$, Red SMA window: 2, Blue SMA window: 4

Theory: An Optimal Model

- We can trigger a sell signal in a similar fashion
- Here: change $\leq-k\left(\frac{n \cdot m}{2}-1\right)$

Figure: $k=5$, Red SMA window: 2, Blue SMA window: 4

Theory: An Optimal Model

 And so on...

Figure: $k=5$, Red SMA window: 2, Blue SMA window: 4

Bitcoins Next Top Model?

- $p_{0} \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_{0}}{p_{0}-k}-1$
- Length: $n \cdot m+2$

Bitcoins Next Top Model?

- $p_{0} \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_{0}}{p_{0}-k}-1$
- Length: $n \cdot m+2$
- For $k=5, m=2, n=4$:
- $p_{0}=50 \geq 20$

Figure: $k=5, m=2, n=4$

Bitcoins Next Top Model?

- $p_{0} \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_{0}}{p_{0}-k}-1$
- Length: $n \cdot m+2$
- For $k=5, m=2, n=4$:
- $p_{0}=50 \geq 20$
- ROI:

$$
\frac{50}{50-5}-1=+11.1111 \%
$$

Figure: $k=5, m=2, n=4$

Bitcoins Next Top Model?

- $p_{0} \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_{0}}{p_{0}-k}-1$
- Length: $n \cdot m+2$
- For $k=5, m=2, n=4$:
- $p_{0}=50 \geq 20$
- ROI:

$$
\frac{50}{50-5}-1=+11.1111 \%
$$

- Length: $2 \cdot 4+2=10$
- Seems reasonable

Figure: $k=5, m=2, n=4$

Bitcoins Next Top Model?

- $p_{0} \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_{0}}{p_{0}-k}-1$
- Length: $n \cdot m+2$
- For a realistic setting: $k=5, m=50, n=100$:
- $p_{0} \geq 12500$

Figure: $k=5, m=50, n=100$

Bitcoins Next Top Model?

- $p_{0} \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_{0}}{p_{0}-k}-1$
- Length: $n \cdot m+2$
- For a realistic setting:

$$
k=5, m=50, n=100
$$

- $p_{0} \geq 12500$
- ROI:
$\frac{12500}{12500-5}-1=+0.04 \%$

Figure: $k=5, m=50, n=100$

Bitcoins Next Top Model?

- $p_{0} \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_{0}}{p_{0}-k}-1$
- Length: $n \cdot m+2$
- For a realistic setting:

$$
k=5, m=50, n=100
$$

- $p_{0} \geq 12500$
- ROI:

$$
\frac{12500}{12500-5}-1=+0.04 \%
$$

- Length:

$$
50 \cdot 100+2=5002
$$

Figure: $k=5, m=50, n=100$

Bitcoins Next Top Model?

- $p_{0} \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_{0}}{p_{0}-k}-1$
- Length: $n \cdot m+2$
- For a realistic setting:

$$
k=5, m=50, n=100
$$

- $p_{0} \geq 12500$
- ROI:

$$
\frac{12500}{12500-5}-1=+0.04 \%
$$

- Length:
$50 \cdot 100+2=5002$
- Does not seem reasonable

Figure: $k=5, m=50, n=100$

Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)

Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)
- Time period ≥ 3 months

Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)
- Time period ≥ 3 months
- Which will yield a greater ROI:

Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)
- Time period ≥ 3 months
- Which will yield a greater ROI:
- HODLing or using the SMAC?

Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)
- Time period ≥ 3 months
- Which will yield a greater ROI:
- HODLing or using the SMAC?
- And if it is the SMAC: For what window setting?

Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)
- Time period ≥ 3 months
- Which will yield a greater ROI:
- HODLing or using the SMAC?
- And if it is the SMAC: For what window setting?

Optional: Formal definition of the binomial test setting

SMAC: The Strategy Settings

- If we consider window sizes up to 300 reasonable:
- 44850 possible settings (Proof)

SMAC: The Strategy Settings

- If we consider window sizes up to 300 reasonable:
- 44850 possible settings (Proof)
- Window sizes recommended by "experts":
- $10,20,50,100,200$ (10 different settings in total)

SMAC: The Strategy Settings

- If we consider window sizes up to 300 reasonable:
- 44850 possible settings (Proof)
- Window sizes recommended by "experts":
- 10, 20, 50, 100, 200 (10 different settings in total)
- Settings used by R+V Insurance (Volksbank):
- 38, 200

SMAC: The Strategy Settings

- If we consider window sizes up to 300 reasonable:
- 44850 possible settings (Proof)
- Window sizes recommended by "experts":
- 10, 20, 50, 100, 200 (10 different settings in total)
- Settings used by $\mathrm{R}+\mathrm{V}$ Insurance (Volksbank):
- 38, 200
- Total number of recommended settings:
- 11

SMAC: The Strategy Settings

- If we consider window sizes up to 300 reasonable:
- 44850 possible settings (Proof)
- Window sizes recommended by "experts":
- 10, 20, 50, 100, 200 (10 different settings in total)
- Settings used by R+V Insurance (Volksbank):
- 38, 200
- Total number of recommended settings:
- 11
- What gives a higher chance of success:

Choosing a recommended setting or one at random?

Test Results

Dataset

Recommended settings (11) All settings (44850)

Test Results

Dataset

Bitcoin (daily)

Recommended settings (11) All settings (44850)
0.033\% (15)

Test Results

Dataset

Recommended settings (11) All settings (44850)

Bitcoin (daily)	0	$0.033 \%(15)$
Bitcoin (4-hourly)	0	0

Test Results

Dataset

Bitcoin (daily)
Bitcoin (4-hourly)
Ethereum

Recommended settings (11) All settings (44850)
0.033\% (15)

0
45.45\% (5)

0
27.77\% (12454)

Test Results

Dataset

Bitcoin (daily)
Bitcoin (4-hourly)
Ethereum
Dow Jones

Recommended settings (11) All settings (44850)

Bitcoin (daily)	0	$0.033 \%(15)$
Bitcoin (4-hourly)	0	0
Ethereum	$45.45 \%(5)$	$27.77 \%(12454)$
Dow Jones	0	$0.68 \%(307)$

Test Results

Dataset

Bitcoin (daily)
Bitcoin (4-hourly)
Ethereum
Dow Jones
Microsoft

Recommended settings (11) All settings (44850)
0.033\% (15)

0
27.77\% (12454)
0.68\% (307)

0

Test Results

Dataset	Recommended settings (11)	All settings (44850)
Bitcoin (daily)	0	$0.033 \%(15)$
Bitcoin (4-hourly)	0	0
Ethereum	$45.45 \%(5)$	$27.77 \%(12454)$
Dow Jones	0	$0.68 \%(307)$
Microsoft	0	0
Euro (in USD)	$18.18 \%(2)$	$20.43 \%(9165)$

Test Results

Dataset Recommended settings (11) All settings (44850)

Bitcoin (daily)	0	$0.033 \%(15)$
Bitcoin (4-hourly)	0	0
Ethereum	$45.45 \%(5)$	$27.77 \%(12454)$
Dow Jones	0	$0.68 \%(307)$
Microsoft	0	0
Euro (in USD)	$18.18 \%(2)$	$20.43 \%(9165)$

The recommended settings do not give a higher chance for profit!

Conclusion

- Theoretical model provides limited insights

Conclusion

- Theoretical model provides limited insights
- Empirical evaluation shows that there are very few good settings

Conclusion

- Theoretical model provides limited insights
- Empirical evaluation shows that there are very few good settings
- Recommended settings do not provide an advantage

Conclusion

- Theoretical model provides limited insights
- Empirical evaluation shows that there are very few good settings
- Recommended settings do not provide an advantage
- An algorithm might be able to find the profitable settings

Conclusion

- Theoretical model provides limited insights
- Empirical evaluation shows that there are very few good settings
- Recommended settings do not provide an advantage
- An algorithm might be able to find the profitable settings
- Most other day trading strategies lack a mathematical justification

Conclusion

- Theoretical model provides limited insights
- Empirical evaluation shows that there are very few good settings
- Recommended settings do not provide an advantage
- An algorithm might be able to find the profitable settings
- Most other day trading strategies lack a mathematical justification

Day trading strategies are basically astrology for Millenials

Thank you!

Cost

- How do cryptocurrency exchanges earn money?

Cost

- How do cryptocurrency exchanges earn money?
- With the spread

Cost

- How do cryptocurrency exchanges earn money?
- With the spread
- Spread: Difference between buying and selling price

Cost

- How do cryptocurrency exchanges earn money?
- With the spread
- Spread: Difference between buying and selling price
- Example, where spread is 2% :

Cost

- How do cryptocurrency exchanges earn money?
- With the spread
- Spread: Difference between buying and selling price
- Example, where spread is 2% :
- "Regular" BTC price is $100 \$$

Cost

- How do cryptocurrency exchanges earn money?
- With the spread
- Spread: Difference between buying and selling price
- Example, where spread is 2% :
- "Regular" BTC price is $100 \$$
- Exchange will sell BTC for $101 \$$
- Exchange will buy BTC for 99\$

Cost

- How do cryptocurrency exchanges earn money?
- With the spread
- Spread: Difference between buying and selling price
- Example, where spread is 2% :
- "Regular" BTC price is $100 \$$
- Exchange will sell BTC for 101\$
- Exchange will buy BTC for $99 \$$
- Note: This is more complex in a real setting
- (Based on price movement, amount of customers, trading volume, etc.)

Compounded ROI

- For $T=\left\{\left(b_{1}, s_{1}\right), \ldots,\left(b_{n}, s_{n}\right)\right\}$

Compounded ROI

- For $T=\left\{\left(b_{1}, s_{1}\right), \ldots,\left(b_{n}, s_{n}\right)\right\}$
- ROI $=\frac{F_{s_{n}}-F_{b_{1}}}{F_{b_{1}}}$

Compounded ROI

- For $T=\left\{\left(b_{1}, s_{1}\right), \ldots,\left(b_{n}, s_{n}\right)\right\}$
- ROI $=\frac{F_{s_{n}}-F_{b_{1}}}{F_{b_{1}}}$
- Remember: $F_{s_{i}}=\frac{p_{s_{i}}}{p_{b_{i}}} F_{b_{i}}$

Compounded ROI

- For $T=\left\{\left(b_{1}, s_{1}\right), \ldots,\left(b_{n}, s_{n}\right)\right\}$
- ROI $=\frac{F_{s_{n}}-F_{b_{1}}}{F_{b_{1}}}$
- Remember: $F_{s_{i}}=\frac{p_{s_{i}}}{p_{b_{i}}} F_{b_{i}}$
- If we do not change the funds in between trades:
- $F_{b_{i}}=F_{s_{i-1}}$

Compounded ROI

- For $T=\left\{\left(b_{1}, s_{1}\right), \ldots,\left(b_{n}, s_{n}\right)\right\}$
- ROI $=\frac{F_{s_{n}}-F_{b_{1}}}{F_{b_{1}}}$
- Remember: $F_{s_{i}}=\frac{p_{s_{i}}}{p_{b_{i}}} F_{b_{i}}$
- If we do not change the funds in between trades:
- $F_{b_{i}}=F_{s_{i-1}}$
- $\Rightarrow F_{s_{i}}=\frac{p_{s_{i}}}{p_{b_{i}}} F_{s_{i-1}}$

Compounded ROI

- For $T=\left\{\left(b_{1}, s_{1}\right), \ldots,\left(b_{n}, s_{n}\right)\right\}$
- ROI $=\frac{F_{s_{n}}-F_{b_{1}}}{F_{b_{1}}}$
- Remember: $F_{s_{i}}=\frac{p_{s_{i}}}{p_{b_{i}}} F_{b_{i}}$
- If we do not change the funds in between trades:
- $F_{b_{i}}=F_{s_{i-1}}$
- $\Rightarrow F_{s_{i}}=\frac{p_{s_{i}}}{p_{b_{i}}} F_{s_{i-1}}$
- Solving the recursion:
- $F_{S_{n}}=\left(\prod_{i=1}^{n} \frac{p_{s_{i}}}{p_{b_{i}}}\right) \cdot F_{b_{1}}$

Compounded ROI

- For $T=\left\{\left(b_{1}, s_{1}\right), \ldots,\left(b_{n}, s_{n}\right)\right\}$
- $\mathrm{ROI}=\frac{F_{s_{n}}-F_{b_{1}}}{F_{b_{1}}}$
- Remember: $F_{s_{i}}=\frac{p_{s_{i}}}{p_{b_{i}}} F_{b_{i}}$
- If we do not change the funds in between trades:
- $F_{b_{i}}=F_{s_{i-1}}$
- $\Rightarrow F_{s_{i}}=\frac{p_{s_{i}}}{p_{b_{i}}} F_{s_{i-1}}$
- Solving the recursion:
- $F_{s_{n}}=\left(\prod_{i=1}^{n} \frac{p_{s_{i}}}{p_{b_{i}}}\right) \cdot F_{b_{1}}$
$\bullet \Rightarrow \mathrm{ROI}=\left(F_{b_{1}} \cdot \prod_{i=1}^{n} \frac{p_{s_{i}}}{p_{b_{i}}}-F_{b_{1}}\right) \cdot \frac{1}{F_{b_{1}}}$

Compounded ROI

- For $T=\left\{\left(b_{1}, s_{1}\right), \ldots,\left(b_{n}, s_{n}\right)\right\}$
- ROI $=\frac{F_{s_{n}}-F_{b_{1}}}{F_{b_{1}}}$
- Remember: $F_{s_{i}}=\frac{p_{s_{i}}}{p_{b_{i}}} F_{b_{i}}$
- If we do not change the funds in between trades:
- $F_{b_{i}}=F_{s_{i-1}}$
- $\Rightarrow F_{s_{i}}=\frac{p_{s_{i}}}{p_{b_{i}}} F_{s_{i-1}}$
- Solving the recursion:
- $F_{s_{n}}=\left(\prod_{i=1}^{n} \frac{p_{s_{i}}}{p_{b_{i}}}\right) \cdot F_{b_{1}}$
- $\Rightarrow \mathrm{ROI}=\left(F_{b_{1}} \cdot \prod_{i=1}^{n} \frac{p_{s_{i}}}{p_{b_{i}}}-F_{b_{1}}\right) \cdot \frac{1}{F_{b_{1}}}$
- $=\left(\prod_{(b, s) \in T} \frac{p_{s}}{p_{b}}\right)-1$

Number of SMAC strategies

- Example: For slow window of 4, there are 3 possible settings
- $(4,3),(4,2),(4,1)$

Number of SMAC strategies

- Example: For slow window of 4, there are 3 possible settings
- $(4,3),(4,2),(4,1)$
- For a slow window of i, there are $i-1$ possible settings

Number of SMAC strategies

- Example: For slow window of 4, there are 3 possible settings
- $(4,3),(4,2),(4,1)$
- For a slow window of i, there are $i-1$ possible settings
- Total number of settings, up to a slow window of n :

Number of SMAC strategies

- Example: For slow window of 4, there are 3 possible settings
- $(4,3),(4,2),(4,1)$
- For a slow window of i, there are $i-1$ possible settings
- Total number of settings, up to a slow window of n :

$$
\sum_{i=2}^{n} i-1=\sum_{i=1}^{n-1} i=\frac{n(n-1)}{2}
$$

Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$
- $H_{0}: \theta \in\left[0, \frac{1}{2}\right], H_{1}: \theta \in\left(\frac{1}{2}, 1\right]$

Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$
- $H_{0}: \theta \in\left[0, \frac{1}{2}\right], H_{1}: \theta \in\left(\frac{1}{2}, 1\right]$
- Each SMAC setting is tested on 100 random samples

Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$
- $H_{0}: \theta \in\left[0, \frac{1}{2}\right], H_{1}: \theta \in\left(\frac{1}{2}, 1\right]$
- Each SMAC setting is tested on 100 random samples
- For a significance level $\alpha=0.01$:

Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$
- $H_{0}: \theta \in\left[0, \frac{1}{2}\right], H_{1}: \theta \in\left(\frac{1}{2}, 1\right]$
- Each SMAC setting is tested on 100 random samples
- For a significance level $\alpha=0.01$:
- We reject H_{0}, if SMAC succeeds in more than 62 out of 100 trials

Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$
- $H_{0}: \theta \in\left[0, \frac{1}{2}\right], H_{1}: \theta \in\left(\frac{1}{2}, 1\right]$
- Each SMAC setting is tested on 100 random samples
- For a significance level $\alpha=0.01$:
- We reject H_{0}, if SMAC succeeds in more than 62 out of 100 trials
- $X \sim B(100,0.5), \mathrm{P}(X \leq 62)=0.994$

Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$
- $H_{0}: \theta \in\left[0, \frac{1}{2}\right], H_{1}: \theta \in\left(\frac{1}{2}, 1\right]$
- Each SMAC setting is tested on 100 random samples
- For a significance level $\alpha=0.01$:
- We reject H_{0}, if SMAC succeeds in more than 62 out of 100 trials
- $X \sim B(100,0.5), \mathbb{P}(X \leq 62)=0.994$
- Assume we commit a type II error, if $\theta \geq 0.7$
- $Y \sim B(100,0.7), \mathbb{P}(Y \leq 62)=0.053$

Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$
- $H_{0}: \theta \in\left[0, \frac{1}{2}\right], H_{1}: \theta \in\left(\frac{1}{2}, 1\right]$
- Each SMAC setting is tested on 100 random samples
- For a significance level $\alpha=0.01$:
- We reject H_{0}, if SMAC succeeds in more than 62 out of 100 trials
- $X \sim B(100,0.5), \mathbb{P}(X \leq 62)=0.994$
- Assume we commit a type II error, if $\theta \geq 0.7$
- $Y \sim B(100,0.7), \mathbb{P}(Y \leq 62)=0.053$
- Then we get type II error probability $\beta=0.053$
- And power $(1-\beta)=0.947$

Bitcoin Price Data

Ethereum Price Data

Dow Jones Price Data

Microsoft Price Data

EUR/USD Price Data

Notes

